US20110003222A1 - Hydrogen passivation shut down system for a fuel cell power plant - Google Patents
Hydrogen passivation shut down system for a fuel cell power plant Download PDFInfo
- Publication number
- US20110003222A1 US20110003222A1 US12/880,493 US88049310A US2011003222A1 US 20110003222 A1 US20110003222 A1 US 20110003222A1 US 88049310 A US88049310 A US 88049310A US 2011003222 A1 US2011003222 A1 US 2011003222A1
- Authority
- US
- United States
- Prior art keywords
- hydrogen
- flow path
- anode
- cathode
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0258—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04225—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04228—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
- H01M8/04302—Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during start-up
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/043—Processes for controlling fuel cells or fuel cell systems applied during specific periods
- H01M8/04303—Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/0444—Concentration; Density
- H01M8/04447—Concentration; Density of anode reactants at the inlet or inside the fuel cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04559—Voltage of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04313—Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
- H01M8/04537—Electric variables
- H01M8/04544—Voltage
- H01M8/04567—Voltage of auxiliary devices, e.g. batteries, capacitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04746—Pressure; Flow
- H01M8/04753—Pressure; Flow of fuel cell reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04097—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with recycling of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04201—Reactant storage and supply, e.g. means for feeding, pipes
- H01M8/04216—Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04223—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
- H01M8/04231—Purging of the reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04298—Processes for controlling fuel cells or fuel cell systems
- H01M8/04694—Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
- H01M8/04955—Shut-off or shut-down of fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to fuel cell power plants that are suited for usage in transportation vehicles, portable power plants, or as stationary power plants, and the invention especially relates to a system that minimizes performance degradation of fuel cells of the plant resulting from repeated shutting down and starting up of the plant.
- Fuel cell power plants are well-known and are commonly used to produce electrical energy from hydrogen containing reducing fluid fuel and oxygen containing oxidant reactant streams to power electrical apparatus such as power plants and transportation vehicles.
- fuel cell power plants of the prior art it is well known that, when an electrical circuit connected to the fuel cells is disconnected or opened and there is no longer a load across the cell, such as upon and during shut down of the cell, the presence of air on a cathode electrode along with hydrogen fuel remaining on an anode electrode, often cause unacceptable anode and cathode potentials, resulting in oxidation and corrosion of electrode catalyst and catalyst support materials and attendant cell performance degradation.
- 5,013,617 and 5,045,414 describe using 100% nitrogen as the anode side purge gas, and a cathode side purging mixture comprising a very small percentage of oxygen (e.g. less than 1%) with a balance of nitrogen. Both of these patents also discuss the option of connecting a dummy electrical load across the cell during the start of a purging process to lower the cathode potential rapidly to between the acceptable limits of 0.3-0.7 volt.
- the costs and complexity of such stored inert gases are undesirable especially in automotive applications where compactness and low cost are critical, and where the system must be shut down and started up frequently.
- shutting down a fuel cell power plant by disconnecting the primary electricity using device (hereinafter, “primary load”), shutting off the air or process oxidant flow, and controlling the hydrogen fuel flow into the system and the gas flow out of the system in a manner that results in the fuel cell gases coming to equilibrium across the cells, and maintaining a gas composition of at least 0.0001% hydrogen (by volume), balance fuel cell inert gas, during shut down.
- This method of fuel cell shut down also includes, after disconnecting the primary load and shutting off the air supply to the cathode flow field, continuing to supply fresh fuel to the anode flow field until the remaining oxidant is completely consumed.
- This oxidant consumption is preferably aided by having a small auxiliary load applied across the cell, which also quickly drives down the electrode potentials. Once all the oxidant is consumed the hydrogen fuel feed is stopped. Thereafter, during continued shut down, a hydrogen concentration is monitored; and hydrogen is added, as and if necessary, to maintain the desired hydrogen concentration level.
- shut down system for a fuel cell power plant that eliminates significant performance degradation of the plant, and that minimizes oxidation and corrosion within plant fuel cells at shut down of the plant, during shut down, or upon restarting the fuel cell power plant.
- the invention is a hydrogen passivation shut down system for a fuel cell power plant.
- the system includes at least one fuel cell for generating electrical current from hydrogen containing reducing fluid fuel and process oxidant reactant streams.
- the fuel cell includes an anode catalyst and a cathode catalyst on opposed sides of an electrolyte; an anode flow path in fluid communication with the anode catalyst for directing the hydrogen fuel to flow through the fuel cell and to flow adjacent to the anode catalyst; and a cathode flow path in fluid communication with the cathode catalyst for directing the oxidant to flow through the fuel cell and to flow adjacent to the cathode catalyst.
- a hydrogen inlet valve is secured between a hydrogen containing reducing fluid fuel storage source and the anode flow path for selectively permitting the hydrogen fuel to flow into the anode flow path.
- An oxidant inlet valve is secured between an oxygen containing oxidant storage source and the cathode flow path for selectively permitting the oxidant to flow into the cathode flow path.
- the system includes hydrogen transfer means secured in communication between the anode flow path and the cathode flow path for selectively permitting transfer of the hydrogen fuel between the anode flow path and the cathode flow path.
- the hydrogen transfer means may be in the form of a hydrogen transfer valve in fluid communication between the anode and cathode flow paths, an electrochemical pump for pumping hydrogen from the anode flow path through the electrolyte into the cathode flow path, or a proton exchange membrane (“PEM”) electrolyte that permits diffusion of hydrogen from the anode flow path through the PEM electrolyte into the cathode flow path.
- PEM proton exchange membrane
- a hydrogen reservoir is secured in fluid communication with the anode flow path.
- the hydrogen reservoir receives and stores hydrogen whenever the hydrogen inlet valve is open to permit flow of the hydrogen fuel through the anode flow path, and the hydrogen reservoir releases the hydrogen into the anode flow path whenever the hydrogen inlet valve is closed and the hydrogen concentration in the anode flow field is reduced below a hydrogen concentration during operation of the fuel cell.
- the hydrogen reservoir may be hydrogen storage media, such as hydrides, that are located within the anode flow path, such as coatings on manifolds within the anode flow path, or located within porous support plates supporting or in fluid communication with the anode catalyst.
- the hydrogen reservoir may also be a hydrogen vessel secured outside of the fuel cell that may also have hydrogen storage media within the vessel.
- the oxidant inlet valve is closed to prohibit the oxidant from flowing into the cathode flow path, the oxygen within the cathode flow path is consumed, and then the hydrogen transfer valve is opened to permit hydrogen fuel from the fuel storage source and stored hydrogen within the hydrogen reservoir to move into the cathode flow path.
- the hydrogen inlet valve is closed, and any hydrogen exhaust and oxidant exhaust valves are closed.
- a cathode recycle line including a cathode recycle blower and an oxidant blower may be secured in fluid communication between a cathode exhaust and cathode inlet of the cathode flow path.
- the cathode recycle or oxidant blower may be operated after an oxidant source isolation valve is closed to rapidly cycle the hydrogen fuel from the anode flow path, through the hydrogen transfer valve and into and throughout the cathode flow path.
- the system may include a hydrogen sensor that may be utilized to determine a concentration of hydrogen fuel within the anode and cathode flow paths while the fuel cell power plant is shut down. If the sensor detects that the hydrogen concentration has declined below acceptable limits, such as below 0.0001 percent hydrogen, a controller may open the hydrogen inlet valve to actively direct hydrogen to enter the anode and cathode flow paths, while the fuel cell power plant is shut down, such as immediately prior to a start up of the plant. Output from the sensor may also be used to select a start up procedure.
- a hydrogen sensor may be utilized to determine a concentration of hydrogen fuel within the anode and cathode flow paths while the fuel cell power plant is shut down. If the sensor detects that the hydrogen concentration has declined below acceptable limits, such as below 0.0001 percent hydrogen, a controller may open the hydrogen inlet valve to actively direct hydrogen to enter the anode and cathode flow paths, while the fuel cell power plant is shut down, such as immediately prior to a start up of the plant. Output from the sensor may
- An exemplary start up procedure includes a rapid fuel purge wherein the hydrogen fuel is directed to traverse an anode flow field of the fuel cell in less than 1.0 seconds, or preferably in less than 0.2 seconds, and most preferably in less than 0.05 seconds to minimize oxidation and corrosion of electrode catalyst and catalyst support materials.
- the hydrogen sensor may be a direct hydrogen concentration sensor known in the art, or a sensor circuit in electrical communication with the catalysts of the fuel cell.
- the system may also include an anode recycle line and anode recycle blower secured in fluid communication between an anode exhaust and anode inlet of the anode flow path.
- the anode recycle line and blower may also be in fluid communication with the reducing fluid fuel storage source so that the anode recycle blower may rapidly move the hydrogen fuel through the anode flow path.
- the anode flow path may include an anode exhaust vent
- the cathode flow path may include a cathode exhaust vent, wherein both the anode exhaust vent and cathode exhaust vent are located with reference to a directional force of gravity to be below the fuel cell. Because hydrogen is lighter than oxygen, the hydrogen will tend to remain above, or within the fuel cell while atmospheric oxygen entering the flow paths during shut down will tend to flow downward, out of the anode and cathode flow paths through the anode and cathode exhaust vents, thereby aiding in preserving a finite hydrogen concentration of greater than 0.0001 percent during shut down of the fuel cell power plant.
- FIG. 1 is a schematic representation of a preferred embodiment of a hydrogen passivation shut down system for a fuel cell power plant constructed in accordance with the present invention.
- FIG. 1 a first embodiment of a hydrogen passivation shut down system for a fuel cell power plant is shown in FIG. 1 , and is generally designated by the reference numeral 10 .
- the system 10 includes at least one fuel cell, such as a fuel cell 12 having an anode catalyst 14 (which may also be referred to herein as an anode electrode), a cathode catalyst 16 (which may also be referred to as a cathode electrode), and an electrolyte 18 disposed between the anode and cathode.
- the electrolyte 18 may be in the form of a proton exchange membrane (PEM) of the type described in U.S. Pat. No. 6,024,848, or the electrolyte may be held within a ceramic matrix, such as is typically found in acid aqueous electrolyte fuel cells, such as phosphoric acid electrolyte fuel cells.
- PEM proton exchange membrane
- the anode catalyst 14 may be supported on an anode substrate layer 20
- the cathode electrode 16 may be supported on a cathode substrate layer 22
- the system 10 also includes an anode flow path 24 in fluid communication with the anode catalyst 14 for directing a hydrogen containing reducing fluid fuel to pass from a fuel source 54 through the fuel cell 12 and adjacent to the anode catalyst 14 ; also being referred to herein for efficiency as the anode flow path 24 being configured to couple the anode catalyst 14 with the fuel source 54 .
- the anode flow path 24 includes an anode inlet 26 for directing the hydrogen fuel into the fuel cell 12 , such as manifolds etc. known in the art.
- the anode inlet 26 is in fluid communication with an anode flow field 28 , which is part of the anode flow path 24 , and is defined as voids, channels, or pores of support material, in fluid communication with and adjacent to the anode catalyst 14 for directing the hydrogen fuel to pass adjacent to the anode catalyst 14 .
- the anode flow path 24 also includes an anode exhaust 30 , in fluid communication with the anode flow field 28 , for directing the hydrogen fuel out of the fuel cell 12 .
- An anode exhaust valve 32 is secured in fluid communication with the anode exhaust 30
- an anode exhaust vent 34 is secured to the anode exhaust valve 32 .
- An anode vacuum release valve 36 in the nature of a known one-way, or check valve may be secured to the anode exhaust 30 , to an anode recycle line 75 , or to the anode flow path 24 to permit atmospheric air to move into the anode flow path to avoid a partial vacuum forming within the anode flow path 24 during shut down of the fuel cell 12 as gases are consumed in reactions, or condensed, as is known in the art.
- the system 10 also includes a cathode flow path 38 in fluid communication with the cathode catalyst 16 for directing an oxygen containing oxidant to pass through the fuel cell 12 and adjacent to the cathode catalyst 16 ; also being referred to herein for convenience as the cathode flow path 38 being configured to couple the cathode catalyst 16 to an oxygen source 58 .
- the cathode flow path 38 includes a cathode inlet 40 for directing the oxidant into the fuel cell 12 , such as manifolds etc. known in the art.
- the cathode inlet 40 is in fluid communication with a cathode flow field 42 , which is part of the cathode flow path 24 , and is defined as voids, channels, or pores of support material, in fluid communication with and adjacent to the cathode catalyst 16 for directing the oxidant to pass adjacent to the cathode catalyst 16 .
- the cathode flow path 38 also includes a cathode exhaust 44 , in fluid communication with the cathode flow field 42 , for directing the oxidant out of the fuel cell 12 .
- a cathode exhaust valve 46 is secured in fluid communication with the cathode exhaust 44
- a cathode exhaust vent 48 is secured to the cathode exhaust valve 44 .
- a cathode vacuum release valve 50 in the nature of a known one-way, or check valve may be secured to the cathode exhaust 44 , or to the cathode flow path 38 to permit atmospheric air to move into the cathode flow path 38 to avoid a partial vacuum forming within the cathode flow path 38 during shut down of the fuel cell 12 as gases are consumed in reactions, or condensed, as is known in the art.
- anode exhaust vent 34 and cathode exhaust vent 48 are both disposed below the fuel cell 12 , wherein “below” is associated with a reference to a directional force of gravity as represented by a directional arrow 53 shown in FIG. 1 .
- the anode exhaust vent 34 and the cathode exhaust vent 48 may also be in the form of vacuum release valves that prevent a vacuum from forming inside the fuel cell 12 .
- a hydrogen inlet valve 52 is secured in fluid communication between the anode inlet 26 of the anode flow path 24 and the hydrogen containing reducing fluid fuel storage source 54 for selectively directing the hydrogen fuel to flow into the anode flow path 24 .
- a hydrogen fuel feed line 55 may be secured between the hydrogen fuel source 54 and the hydrogen inlet valve 52 .
- An oxidant inlet valve 56 is secured in fluid communication between the oxygen containing oxidant source 58 , such as the atmosphere, and the cathode inlet 40 for selectively directing the oxidant to flow into the cathode flow path 38 .
- An oxidant blower or compressor 60 may be secured to an oxidant feed line 62 between the oxidant source 58 and the oxidant inlet valve 56 for pressurizing the oxidant as it moves into and through the cathode flow path 38 .
- the oxidant inlet valve 56 may be located upstream of the blower 60 , or downstream of the oxidant blower 60 (as shown in FIG. 1 ).
- the system also includes hydrogen transfer means in communication between the anode flow path 24 and the cathode flow path 38 for selectively permitting transfer of hydrogen fuel between the anode flow path 24 and the cathode flow path 38 during shut down of the fuel cell 12 .
- the hydrogen transfer means may be a hydrogen transfer valve 64 secured in fluid communication between the anode flow path 24 and the cathode flow path 38 , such as between the anode inlet 26 and the cathode inlet 40 .
- a switch or valve such as the hydrogen transfer valve 64 may be selected to be in an open position to thereby permit flow of the hydrogen fuel between the anode flow path 24 and the cathode flow path 38 , or the valve 64 may be selected to be in a closed position to prohibit flow of the hydrogen fuel or any fluid between the anode and cathode flow paths 24 , 38 .
- the hydrogen transfer means may also be in the form of an electrochemical hydrogen pump, wherein hydrogen is electrochemically pumped from the anode flow path 24 to the cathode flow path 38 by passing a direct current through the fuel cell in a manner known in the art so that hydrogen is consumed at the anode catalyst 14 and evolved at the cathode catalyst 16 to increase a concentration of hydrogen in the cathode flow field 42 .
- a hydrogen transfer electrochemical pump reduces an oxygen concentration within the cathode flow path 38 during shut down of the fuel cell 12 and reduces a requirement for additional valves and plumbing to achieve the reduced oxygen concentration.
- the hydrogen transfer means may also be in the form of a hydrogen transfer proton exchange membrane (“PEM”) electrolyte 18 , wherein hydrogen diffuses across the PEM electrolyte 18 until the hydrogen concentration within the cathode flow field 42 is in substantial equilibrium with the hydrogen concentration with the hydrogen concentration within the anode flow field 28 .
- PEM hydrogen transfer proton exchange membrane
- the system 10 also includes hydrogen reservoir means for storing the hydrogen fuel secured in fluid communication with the anode flow path 24 .
- the hydrogen reservoir means may be in the form of a hydrogen vessel 66 secured outside of the fuel cell 12 (as shown in FIG. 1 .) to be in fluid communication with the anode flow path 24 , such as through a vessel feed line 68 being secured between the vessel 66 and the anode inlet 26 of the anode flow path 24 .
- the hydrogen reservoir means may be in the form of hydrogen storage media, such as hydrides that are secured within the anode flow path 24 , such as by a coating.
- the hydrogen storage media may be applied as a coating of pores of the porous anode substrate layer 20 , so that hydrogen fuel is stored within the storage media as the fuel flows through the anode flow path 24 .
- the hydrogen vessel 66 may include hydrogen storage media within the vessel 66 .
- the hydrogen storage media may also be in the form of a coating of inlet or exhaust manifolds defined within the anode inlet 26 or anode exhaust 30 so that the hydrogen storage media is in fluid communication with the hydrogen fuel passing through the anode flow path 24 .
- the hydrogen storage media of the hydrogen reservoir means may also be a coating within the anode flow field 28 exposed to the hydrogen fuel.
- the hydrogen reservoir means for storing hydrogen fuel thus is able to store the hydrogen fuel as the fuel passes through the anode flow path 24 and the media may passively release the stored hydrogen into the anode flow path 24 whenever the hydrogen fuel is no longer passing from the hydrogen fuel storage source 52 through the anode flow path 24 .
- the hydrogen reservoir means and hydrogen transfer means may be constructed so that the system 10 may achieve a hydrogen concentration in the anode flow path 24 and cathode flow path 38 of substantially pure hydrogen, wherein “substantially pure hydrogen” is a hydrogen concentration of greater than seventy percent hydrogen, or alternatively the system may achieve a concentration within the anode flow path 24 and cathode flow path 24 of essentially pure hydrogen, wherein “essentially pure hydrogen” is a hydrogen concentration of greater than ninety percent hydrogen.
- the hydrogen passivation shut down system for a fuel cell power plant 10 also may include a first cathode recycle line 70 secured in fluid communication between the cathode exhaust 44 of the cathode flow path 38 and the oxidant feed line 62 upstream of the blower 60 and downstream of an oxidant source isolation valve 71 as shown in FIG. 1 .
- a cathode recycle valve 72 may selectively permit a portion of a cathode exhaust stream to pass from the cathode exhaust 44 to the oxidant feed line 62 to pass again through the cathode flow path 38 .
- the cathode recycle blower 76 or the oxidant blower 60 may be operated continuously or intermittently during the shutdown process to accelerate a rate of oxygen reduction from the cathode flow path 38 , which includes the cathode flow field 42 and associated inlet and exit manifolds and plumbing known in the art.
- the oxygen contained within the cathode flow path 38 manifolds would slowly diffuse into the cathode flow field 42 where it would react with hydrogen on the cathode catalyst 16 . That reaction with the hydrogen would consume the hydrogen, thereby reducing the time the fuel cell 12 could be maintained in a passive state.
- a second cathode recycle line 74 may be secured in fluid communication between the cathode recycle valve 72 and the cathode inlet 40 , and a cathode recycle blower 76 may be secured to the second cathode recycle line 74 to accelerate flow through the second cathode recycle line.
- the system 10 may also include an anode recycle line 75 secured in fluid communication between the anode exhaust 30 and the anode inlet 26 , having an anode recycle blower 77 secured to the anode recycle line 75 to accelerate flow through the anode recycle line 75 .
- the system 10 may also include hydrogen sensor means for detecting a concentration of hydrogen within the anode flow path 24 and the cathode flow path 38 .
- the hydrogen sensor means may be a direct hydrogen sensor 78 or sensors known in the art secured, for example, in the cathode flow field 42 for sensing and communicating to a controller the hydrogen concentration within the cathode flow path 38 when the fuel cell power plant 10 is shut down.
- a controller may be any controller means (not shown) known in the art capable of receiving and responding to sensed information, such as a computer, electro-mechanical switches, a human controller, etc.
- the hydrogen sensor means may be a sensor circuit 80 secured in electrical communication with the cathode catalyst 14 and anode catalyst 16 of the fuel cell 12 , such as through an external circuit 82 .
- the sensor circuit 80 includes a direct current power source 84 such as a D.C. conventional, regulated power supply, battery-type of power source; a voltage-measuring device means for measuring the voltage in the sensor circuit, such as a standard voltmeter 86 ; and a sensor circuit switch 88 .
- the sensor circuit 80 is calibrated by establishing the voltage, at a fixed current, as a gas composition in both the anode flow field 28 and cathode flow field 42 is varied from pure hydrogen to air.
- the sensor circuit 80 may selectively deliver a pre-determined sensing current to the fuel cell 12 for a pre-determined sensing duration for measuring a voltage difference between the anode catalyst 14 and cathode catalyst 16 to thereby determine hydrogen concentrations within the anode flow path 24 and cathode flow path 38 .
- a primary load 90 receives electrical current generated by the fuel cell 12 through the external circuit 82 , and a primary load switch 92 is closed (it is shown open in FIG. 1 ); an auxiliary load 94 does not receive electrical current and an auxiliary load switch 96 is open, so that the fuel cell power plant 10 is providing electricity only to the primary load 90 , such as an electric motor, etc.; and the sensor circuit switch 88 is open, so that the sensor circuit 84 is not directing any electrical current to the anode and cathode catalysts 14 , 16 .
- the oxidant blower 60 , and the anode exhaust recycle blower 77 are on.
- the oxidant inlet valve 56 and cathode exhaust valve 46 are open, as are the hydrogen inlet valve 52 and anode exhaust valve 32 .
- the anode vacuum release valve 36 is closed so that no air flows into the anode flow path 24 .
- process oxidant such as air from the oxidant source 58 is continuously delivered into the cathode flow field 42 through the cathode flow path 38 , and leaves the cathode flow path 38 through the cathode exhaust vent 48 .
- the hydrogen containing reducing fluid fuel from the fuel source 54 is continuously delivered into the anode flow field 28 through the anode flow path 24 .
- the hydrogen passes through the anode flow field, it electrochemically reacts on the anode catalyst layer 14 in a well-known manner to produce protons (hydrogen ions) and electrons.
- the electrons flow from the anode catalyst 14 to the cathode catalyst 16 through the external circuit 82 to power the primary load 90 .
- Shutting down the operating fuel cell power plant 10 includes opening or disconnecting the primary load switch 92 (as shown in FIG. 1 ) in the external circuit 82 to disconnect the primary load 90 .
- the hydrogen inlet valve 52 remains open; and the anode exhaust recycle blower 77 remains on to continue recirculation of a portion of the anode exhaust.
- the anode exhaust valve 32 will remain open or be closed depending upon the percent hydrogen in the incoming fuel.
- the flow of fresh air or oxidant through the cathode flow path 38 is turned off by turning off the cathode blower 60 .
- auxiliary load 94 may then be connected to the external circuit 82 by closing the auxiliary load switch 96 .
- auxiliary load switch 96 With current flowing through the auxiliary load 94 , typical electrochemical cell reactions occur, causing the oxygen concentration in the cathode flow path 38 to be reduced and cell voltage to be lowered.
- the application of the auxiliary load 94 is initiated while there is still sufficient hydrogen within the fuel cell 12 to electrochemically react all the oxygen remaining within the fuel cell 12 . It preferably remains connected at least until the cell voltage is lowered to a pre-selected value, preferably 0.2 volts per cell or less.
- a diode 98 connected across the cathode catalyst 14 and anode catalyst 16 , senses the cell voltage and allows current to pass through the auxiliary load 94 as long as the cell voltage is above the pre-selected value. In that way, the fuel cell 12 voltage is reduced to and thereafter limited to the pre-selected value.
- the cell voltage drops to 0.2 volts per cell, substantially all the oxygen within the cathode flow field 42 , and any that has diffused across the electrolyte 18 to the anode flow field 28 , will have been consumed.
- the auxiliary load 94 may then be disconnected by opening the auxiliary load switch 96 , but is preferably left connected.
- the hydrogen transfer valve 64 may then be selected to an open position to permit hydrogen fuel to pass from the anode flow path 24 into the cathode flow path 38 .
- the oxidant source isolation valve 71 is then closed, and the cathode recycle valve 72 may then be opened while the cathode recycle blower 76 or oxidant blower 60 is turned on to draw the hydrogen from the anode flow path 24 through the hydrogen transfer valve 64 and through the cathode flow path 38 .
- the hydrogen sensor means determines that the concentration of hydrogen within the anode flow path 24 and cathode flow path 38 is about one-hundred percent (100%) hydrogen, the anode exhaust valve 32 and cathode exhaust valve 46 are closed, the hydrogen inlet valve 52 , oxidant inlet valve 56 , and cathode recycle valve 72 are also closed, while the hydrogen transfer valve 64 remains open. Hydrogen stored within the hydrogen reservoir means may then be passively released to maintain an elevated hydrogen concentration within the anode flow path 24 and cathode flow path 38 during shut down of the fuel cell power plant 10 . It is desired to maximize the hydrogen concentration within the anode flow path 24 and cathode flow path 38 during the shut down process.
- a preferred hydrogen concentration at shut down is greater than seventy percent (70%) hydrogen, and a more preferred hydrogen concentration is greater than ninety percent (90%).
- the auxiliary load 94 is connected to the external circuit 82 by closing the auxiliary load switch 96 . This minimizes the potential of the individual electrode or cathode catalyst 16 and cathode substrate 22 should air leak into the fuel cell 12 .
- oxygen from the air may leak into the cathode flow path 24 or anode flow path 38 through seals, or through the anode vacuum release valve 36 or cathode vacuum release valve so that the potential of the anode and cathode catalysts 14 , 16 will eventually ascend above 0.2 volts relative to a hydrogen reference electrode, leading to oxidative decay within the fuel cell 12 .
- Hydrogen gas from the reducing fluid source 54 may then be admitted prior to the electrode potential reaching 0.2 volts in order to consume the oxygen, thereby minimizing any oxidative decay.
- the hydrogen may be circulated throughout the anode flow path 24 by opening the anode inlet valve 52 and turning on the anode recycle blower 68 while the anode exhaust valve 32 remains closed.
- an anode recycle valve 100 secured to an anode recycle feed line 102 secured in fluid communication between the hydrogen fuel storage source 54 and the anode recycle line 75 may be opened to supply hydrogen to the anode flow path 24 while the hydrogen inlet valve 52 remains closed. Any such admitted hydrogen will also pass through the hydrogen transfer means to pass into the cathode flow path 38 .
- the cathode recycle blower 76 or oxidant blower 60 may also be used to hasten distribution of the hydrogen throughout the cathode flow path 38 .
- a quantity of hydrogen that is admitted to the flow paths 24 , 38 may be inversely proportional to a concentration of hydrogen within the anode and cathode flow paths 24 , 38 . That minimizes the quantity of hydrogen that is required to maintain the fuel cell 12 in a passive state and maximizes the time the fuel cell 12 can be maintained in a passive state without addition of hydrogen to the flow paths 24 , 38 during shut down of the plant 10 .
- the sensor circuit 80 may also be in communication with a hydrogen admitting controller means (not shown) for controlling admission of the hydrogen fuel into the anode flow path 24 and cathode flow path 38 .
- the hydrogen admitting controller means may be any controller known in the art that can accomplish the task of admitting hydrogen into the flow paths 24 , 38 upon detection by the sensor circuit 80 of a shut down monitoring voltage at about or exceeding the sensor voltage limit.
- Exemplary controller means include simple manual opening by a power plant operator (not shown) of the hydrogen inlet valve 52 , anode recycle valve 100 , or any other mechanism capable of admitting hydrogen into the flow paths 24 , 38 and starting of the anode exhaust recycle blower 77 by the operator or a control system.
- controller means could include electro-mechanical controls integrating the voltage measuring device with the hydrogen inlet valve 52 , anode recycle valve 100 , as well as with the anode recycle blower 68 , cathode recycle blower, such as are known in the art for opening valves and blowers, etc., in response to sensed signals.
- an operator may utilize the sensor means, such as the direct sensor 78 , to determine if an adequate volume of hydrogen is within the anode and cathode flow paths 24 , 39 immediately prior to starting up the fuel cell 12 after a period of being shut down, such as an automobile powered by the fuel cell being shut down over night.
- the sensor means such as the direct sensor 78
- an ordinary start up may be utilized, wherein the hydrogen transfer valve 64 is closed, the hydrogen inlet valve 52 , oxidant inlet valve 56 and isolation valve 71 are opened, the oxidant blower 60 , is activated, the anode recycle blower 66 is activated, and the anode and cathode exhaust valve 32 , 46 are opened.
- a rapid hydrogen purge includes directing the hydrogen fuel to traverse the anode flow field 28 from the anode inlet 26 to the anode exhaust 30 in less than 1.0 seconds, or preferably in less than 0.2 seconds and most preferably in less than 0.05 seconds.
- the auxiliary load 94 is connected during the hydrogen purge. Air flow to the cathode flow field 42 is begun after the hydrogen purge is completed and the auxiliary load 96 removed.
- Such a rapid hydrogen fuel purge may be accomplished by utilization of a highly pressurized hydrogen fuel source 54 known in the art, or fuel blowers or compressors, etc. also known in the art.
- hydrogen is only admitted to the fuel cell 12 while an operator is present, thereby eliminating safety concerns of unattended hydrogen transfer, wherein a system malfunction might lead to release of flammable concentrations of hydrogen from the power plant 10 .
- the senor means may be utilized to detect when the cathode and anode electrode 14 , 16 potentials ascend above the acceptable level, and then the hydrogen admitting controller responds to the sensed information from the sensor means to control the hydrogen inlet valve 52 , or the anode recycle valve 100 to admit an adequate amount of hydrogen into the anode flow path 24 to reduce the electrode potential back to or below an acceptable level.
- the system 10 may rely only upon the passive release of stored hydrogen from the hydrogen reservoir means, such as the hydrogen vessel 66 as described above.
- the system 10 includes hydrogen passivation of the fuel cell 12 through the steps of disconnecting the primary load 90 from the fuel cell; terminating admission of the oxidant into the cathode flow path 38 from the oxidant source, such as by shutting off the oxidant blower; operating the hydrogen transfer means to permit passage of hydrogen from the anode flow path 24 into the cathode flow path 38 ; shutting off flow of the hydrogen fuel into the anode flow path 24 whenever the anode flow path 24 and cathode flow path 38 are filled with a predetermined, adequate volume of hydrogen; and permitting release into the anode flow path 24 , hydrogen transfer valve and cathode flow path 38 of hydrogen stored within the hydrogen reservoir means, such as from the hydrogen vessel 66 .
- that embodiment of the system may also include operating the cathode recycle blower to more rapidly consume oxygen within the cathode flow path 38 ; and closing the anode and cathode exhaust valves 32 , 46 when the anode and cathode flow paths 24 , 38 are filled with hydrogen.
- the present hydrogen passivation shut down system for a fuel cell power plant 10 provides for efficient, passivation of the fuel cell catalysts or electrodes 14 , 16 that reduces oxidative corrosion of the catalysts and catalyst support materials by replacing oxygen in the fuel cell 12 with hydrogen while shutting down the fuel cell 12 , and for replenishing hydrogen prior to start up of the fuel cell, either passively or actively, depending upon requirements of the system 10 .
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
- This application is a divisional application of U.S. patent application Ser. No. 11/978,270 filed on Oct. 29, 2007, which was a divisional of U.S. patent application Ser. No. 11/284,867, filed on Nov. 22, 2005, which was a continuation application of U.S. patent application Ser. No. 10/635,779, filed on Aug. 6, 2003.
- The present invention relates to fuel cell power plants that are suited for usage in transportation vehicles, portable power plants, or as stationary power plants, and the invention especially relates to a system that minimizes performance degradation of fuel cells of the plant resulting from repeated shutting down and starting up of the plant.
- Fuel cell power plants are well-known and are commonly used to produce electrical energy from hydrogen containing reducing fluid fuel and oxygen containing oxidant reactant streams to power electrical apparatus such as power plants and transportation vehicles. In fuel cell power plants of the prior art, it is well known that, when an electrical circuit connected to the fuel cells is disconnected or opened and there is no longer a load across the cell, such as upon and during shut down of the cell, the presence of air on a cathode electrode along with hydrogen fuel remaining on an anode electrode, often cause unacceptable anode and cathode potentials, resulting in oxidation and corrosion of electrode catalyst and catalyst support materials and attendant cell performance degradation.
- Passivation efforts have been proposed to return the cathode electrode to a passive, non-oxidative state upon shut down of the fuel cell. For example, it was thought that inert gas needed to be used to purge both an anode flow field and a cathode flow field immediately upon cell shut down to passivate the anode and cathode electrodes so as to minimize or prevent such cell performance degradation. Further, the use of an inert gas purge avoided, on start-up, the possibility of the presence of a flammable mixture of hydrogen and air, which is a safety issue. Commonly owned U.S. Pat. Nos. 5,013,617 and 5,045,414 describe using 100% nitrogen as the anode side purge gas, and a cathode side purging mixture comprising a very small percentage of oxygen (e.g. less than 1%) with a balance of nitrogen. Both of these patents also discuss the option of connecting a dummy electrical load across the cell during the start of a purging process to lower the cathode potential rapidly to between the acceptable limits of 0.3-0.7 volt. However, the costs and complexity of such stored inert gases are undesirable especially in automotive applications where compactness and low cost are critical, and where the system must be shut down and started up frequently.
- Other efforts to minimize corrosion of catalyst and catalyst support materials include shutting down a fuel cell power plant by disconnecting the primary electricity using device (hereinafter, “primary load”), shutting off the air or process oxidant flow, and controlling the hydrogen fuel flow into the system and the gas flow out of the system in a manner that results in the fuel cell gases coming to equilibrium across the cells, and maintaining a gas composition of at least 0.0001% hydrogen (by volume), balance fuel cell inert gas, during shut down. This method of fuel cell shut down also includes, after disconnecting the primary load and shutting off the air supply to the cathode flow field, continuing to supply fresh fuel to the anode flow field until the remaining oxidant is completely consumed. This oxidant consumption is preferably aided by having a small auxiliary load applied across the cell, which also quickly drives down the electrode potentials. Once all the oxidant is consumed the hydrogen fuel feed is stopped. Thereafter, during continued shut down, a hydrogen concentration is monitored; and hydrogen is added, as and if necessary, to maintain the desired hydrogen concentration level.
- Known improvements to the problem of oxidation and corrosion of electrode catalysts and catalyst support materials have reduced the deleterious consequences of the presence of oxygen on the cathode electrode and a non-equilibrium of reactant fluids between the anode and cathode electrodes that result in unacceptable anode and cathode electrode potentials upon and during shut down and start up of a fuel cell. However, it has been found that even with known solutions, the presence of oxygen within an anode flow field during start up results in a reverse current leading to unacceptable, localized electrode potentials and corrosion of catalysts and catalyst support materials. Moreover, active addition of hydrogen to fuel cells of a power plant while the plant is shut down and unattended presents significant safety issues where a system failure may lead to release of potentially flammable hydrogen concentrations out of the power plant.
- Consequently, there is a need for a shut down system for a fuel cell power plant that eliminates significant performance degradation of the plant, and that minimizes oxidation and corrosion within plant fuel cells at shut down of the plant, during shut down, or upon restarting the fuel cell power plant.
- The invention is a hydrogen passivation shut down system for a fuel cell power plant. The system includes at least one fuel cell for generating electrical current from hydrogen containing reducing fluid fuel and process oxidant reactant streams. The fuel cell includes an anode catalyst and a cathode catalyst on opposed sides of an electrolyte; an anode flow path in fluid communication with the anode catalyst for directing the hydrogen fuel to flow through the fuel cell and to flow adjacent to the anode catalyst; and a cathode flow path in fluid communication with the cathode catalyst for directing the oxidant to flow through the fuel cell and to flow adjacent to the cathode catalyst. A hydrogen inlet valve is secured between a hydrogen containing reducing fluid fuel storage source and the anode flow path for selectively permitting the hydrogen fuel to flow into the anode flow path. An oxidant inlet valve is secured between an oxygen containing oxidant storage source and the cathode flow path for selectively permitting the oxidant to flow into the cathode flow path.
- The system includes hydrogen transfer means secured in communication between the anode flow path and the cathode flow path for selectively permitting transfer of the hydrogen fuel between the anode flow path and the cathode flow path. The hydrogen transfer means may be in the form of a hydrogen transfer valve in fluid communication between the anode and cathode flow paths, an electrochemical pump for pumping hydrogen from the anode flow path through the electrolyte into the cathode flow path, or a proton exchange membrane (“PEM”) electrolyte that permits diffusion of hydrogen from the anode flow path through the PEM electrolyte into the cathode flow path. Additionally, a hydrogen reservoir is secured in fluid communication with the anode flow path. The hydrogen reservoir receives and stores hydrogen whenever the hydrogen inlet valve is open to permit flow of the hydrogen fuel through the anode flow path, and the hydrogen reservoir releases the hydrogen into the anode flow path whenever the hydrogen inlet valve is closed and the hydrogen concentration in the anode flow field is reduced below a hydrogen concentration during operation of the fuel cell. The hydrogen reservoir may be hydrogen storage media, such as hydrides, that are located within the anode flow path, such as coatings on manifolds within the anode flow path, or located within porous support plates supporting or in fluid communication with the anode catalyst. The hydrogen reservoir may also be a hydrogen vessel secured outside of the fuel cell that may also have hydrogen storage media within the vessel.
- In use of a preferred embodiment of the system, whenever the fuel cell is shut down, the oxidant inlet valve is closed to prohibit the oxidant from flowing into the cathode flow path, the oxygen within the cathode flow path is consumed, and then the hydrogen transfer valve is opened to permit hydrogen fuel from the fuel storage source and stored hydrogen within the hydrogen reservoir to move into the cathode flow path. When the cathode and anode flow paths are substantially filled with about 100% hydrogen, the hydrogen inlet valve is closed, and any hydrogen exhaust and oxidant exhaust valves are closed. During a shut down period, some oxygen from the atmosphere will enter the fuel cell, and hydrogen stored within the hydrogen reservoir continues to move from the reservoir into the anode and cathode flow paths to react with the oxygen and maintain a finite concentration in excess of 0.0001 percent hydrogen within the flow paths.
- In another preferred embodiment of the system, a cathode recycle line including a cathode recycle blower and an oxidant blower may be secured in fluid communication between a cathode exhaust and cathode inlet of the cathode flow path. During a shut down procedure, the cathode recycle or oxidant blower may be operated after an oxidant source isolation valve is closed to rapidly cycle the hydrogen fuel from the anode flow path, through the hydrogen transfer valve and into and throughout the cathode flow path.
- In an additional embodiment, the system may include a hydrogen sensor that may be utilized to determine a concentration of hydrogen fuel within the anode and cathode flow paths while the fuel cell power plant is shut down. If the sensor detects that the hydrogen concentration has declined below acceptable limits, such as below 0.0001 percent hydrogen, a controller may open the hydrogen inlet valve to actively direct hydrogen to enter the anode and cathode flow paths, while the fuel cell power plant is shut down, such as immediately prior to a start up of the plant. Output from the sensor may also be used to select a start up procedure. An exemplary start up procedure includes a rapid fuel purge wherein the hydrogen fuel is directed to traverse an anode flow field of the fuel cell in less than 1.0 seconds, or preferably in less than 0.2 seconds, and most preferably in less than 0.05 seconds to minimize oxidation and corrosion of electrode catalyst and catalyst support materials. The hydrogen sensor may be a direct hydrogen concentration sensor known in the art, or a sensor circuit in electrical communication with the catalysts of the fuel cell.
- The system may also include an anode recycle line and anode recycle blower secured in fluid communication between an anode exhaust and anode inlet of the anode flow path. The anode recycle line and blower may also be in fluid communication with the reducing fluid fuel storage source so that the anode recycle blower may rapidly move the hydrogen fuel through the anode flow path.
- In a further embodiment, the anode flow path may include an anode exhaust vent, and the cathode flow path may include a cathode exhaust vent, wherein both the anode exhaust vent and cathode exhaust vent are located with reference to a directional force of gravity to be below the fuel cell. Because hydrogen is lighter than oxygen, the hydrogen will tend to remain above, or within the fuel cell while atmospheric oxygen entering the flow paths during shut down will tend to flow downward, out of the anode and cathode flow paths through the anode and cathode exhaust vents, thereby aiding in preserving a finite hydrogen concentration of greater than 0.0001 percent during shut down of the fuel cell power plant.
- Accordingly, it is a general purpose of the present invention to provide a hydrogen passivation shut down system for a fuel cell power plant that overcomes deficiencies of the prior art.
- It is a more specific purpose to provide a hydrogen passivation shut down system for a fuel cell power plant that substantially fills and maintains an anode flow path and cathode flow path of the plant with about 100 percent hydrogen during shut down of the plant to thereby passivate fuel cell cathode and anode catalysts and catalyst support materials while the fuel cell power plant is shut down.
- It is yet another purpose to provide a hydrogen passivation shut down system for a fuel cell power plant that senses hydrogen concentrations within an anode flow path and a cathode flow path of the plant during shut down of the plant and that permits additional hydrogen to enter the flow paths prior to start up of the plant to passivate fuel cell cathode and anode catalysts and catalyst support materials
- These and other purposes and advantages of the present hydrogen passivation shut down system for a fuel cell power plant will become more readily apparent when the following description is read in conjunction with the accompanying drawing.
-
FIG. 1 is a schematic representation of a preferred embodiment of a hydrogen passivation shut down system for a fuel cell power plant constructed in accordance with the present invention. - Referring to the drawings in detail, a first embodiment of a hydrogen passivation shut down system for a fuel cell power plant is shown in
FIG. 1 , and is generally designated by thereference numeral 10. Thesystem 10 includes at least one fuel cell, such as afuel cell 12 having an anode catalyst 14 (which may also be referred to herein as an anode electrode), a cathode catalyst 16 (which may also be referred to as a cathode electrode), and anelectrolyte 18 disposed between the anode and cathode. Theelectrolyte 18 may be in the form of a proton exchange membrane (PEM) of the type described in U.S. Pat. No. 6,024,848, or the electrolyte may be held within a ceramic matrix, such as is typically found in acid aqueous electrolyte fuel cells, such as phosphoric acid electrolyte fuel cells. - The
anode catalyst 14 may be supported on ananode substrate layer 20, and thecathode electrode 16 may be supported on acathode substrate layer 22. Thesystem 10 also includes ananode flow path 24 in fluid communication with theanode catalyst 14 for directing a hydrogen containing reducing fluid fuel to pass from afuel source 54 through thefuel cell 12 and adjacent to theanode catalyst 14; also being referred to herein for efficiency as theanode flow path 24 being configured to couple theanode catalyst 14 with thefuel source 54. Theanode flow path 24 includes ananode inlet 26 for directing the hydrogen fuel into thefuel cell 12, such as manifolds etc. known in the art. Theanode inlet 26 is in fluid communication with ananode flow field 28, which is part of theanode flow path 24, and is defined as voids, channels, or pores of support material, in fluid communication with and adjacent to theanode catalyst 14 for directing the hydrogen fuel to pass adjacent to theanode catalyst 14. Theanode flow path 24 also includes ananode exhaust 30, in fluid communication with theanode flow field 28, for directing the hydrogen fuel out of thefuel cell 12. Ananode exhaust valve 32 is secured in fluid communication with theanode exhaust 30, and ananode exhaust vent 34 is secured to theanode exhaust valve 32. An anodevacuum release valve 36 in the nature of a known one-way, or check valve may be secured to theanode exhaust 30, to ananode recycle line 75, or to theanode flow path 24 to permit atmospheric air to move into the anode flow path to avoid a partial vacuum forming within theanode flow path 24 during shut down of thefuel cell 12 as gases are consumed in reactions, or condensed, as is known in the art. - The
system 10 also includes acathode flow path 38 in fluid communication with thecathode catalyst 16 for directing an oxygen containing oxidant to pass through thefuel cell 12 and adjacent to thecathode catalyst 16; also being referred to herein for convenience as thecathode flow path 38 being configured to couple thecathode catalyst 16 to anoxygen source 58. Thecathode flow path 38 includes acathode inlet 40 for directing the oxidant into thefuel cell 12, such as manifolds etc. known in the art. Thecathode inlet 40 is in fluid communication with acathode flow field 42, which is part of thecathode flow path 24, and is defined as voids, channels, or pores of support material, in fluid communication with and adjacent to thecathode catalyst 16 for directing the oxidant to pass adjacent to thecathode catalyst 16. Thecathode flow path 38 also includes acathode exhaust 44, in fluid communication with thecathode flow field 42, for directing the oxidant out of thefuel cell 12. Acathode exhaust valve 46 is secured in fluid communication with thecathode exhaust 44, and acathode exhaust vent 48 is secured to thecathode exhaust valve 44. A cathodevacuum release valve 50 in the nature of a known one-way, or check valve may be secured to thecathode exhaust 44, or to thecathode flow path 38 to permit atmospheric air to move into thecathode flow path 38 to avoid a partial vacuum forming within thecathode flow path 38 during shut down of thefuel cell 12 as gases are consumed in reactions, or condensed, as is known in the art. - It is pointed out that the
anode exhaust vent 34 andcathode exhaust vent 48 are both disposed below thefuel cell 12, wherein “below” is associated with a reference to a directional force of gravity as represented by adirectional arrow 53 shown inFIG. 1 . By having theanode exhaust vent 34 andcathode exhaust vent 48 disposed to discharge gases from theanode flow path 24 andcathode flow path 38 below thefuel cell 12, hydrogen gas being lighter than oxygen will tend to rise above the oxygen and remain within thefuel cell 12 while heavier oxygen will tend to flow in the direction ofgravity 53 through thevents vents anode exhaust vent 34 and thecathode exhaust vent 48 may also be in the form of vacuum release valves that prevent a vacuum from forming inside thefuel cell 12. - A
hydrogen inlet valve 52 is secured in fluid communication between theanode inlet 26 of theanode flow path 24 and the hydrogen containing reducing fluidfuel storage source 54 for selectively directing the hydrogen fuel to flow into theanode flow path 24. A hydrogenfuel feed line 55 may be secured between thehydrogen fuel source 54 and thehydrogen inlet valve 52. Anoxidant inlet valve 56 is secured in fluid communication between the oxygen containingoxidant source 58, such as the atmosphere, and thecathode inlet 40 for selectively directing the oxidant to flow into thecathode flow path 38. An oxidant blower orcompressor 60 may be secured to anoxidant feed line 62 between theoxidant source 58 and theoxidant inlet valve 56 for pressurizing the oxidant as it moves into and through thecathode flow path 38. Theoxidant inlet valve 56 may be located upstream of theblower 60, or downstream of the oxidant blower 60 (as shown inFIG. 1 ). - The system also includes hydrogen transfer means in communication between the
anode flow path 24 and thecathode flow path 38 for selectively permitting transfer of hydrogen fuel between theanode flow path 24 and thecathode flow path 38 during shut down of thefuel cell 12. The hydrogen transfer means may be ahydrogen transfer valve 64 secured in fluid communication between theanode flow path 24 and thecathode flow path 38, such as between theanode inlet 26 and thecathode inlet 40. By use of the phrase “for selectively” permitting or directing, it is meant herein that a switch or valve, such as thehydrogen transfer valve 64 may be selected to be in an open position to thereby permit flow of the hydrogen fuel between theanode flow path 24 and thecathode flow path 38, or thevalve 64 may be selected to be in a closed position to prohibit flow of the hydrogen fuel or any fluid between the anode andcathode flow paths - Alternatively, the hydrogen transfer means may also be in the form of an electrochemical hydrogen pump, wherein hydrogen is electrochemically pumped from the
anode flow path 24 to thecathode flow path 38 by passing a direct current through the fuel cell in a manner known in the art so that hydrogen is consumed at theanode catalyst 14 and evolved at thecathode catalyst 16 to increase a concentration of hydrogen in thecathode flow field 42. Such a hydrogen transfer electrochemical pump reduces an oxygen concentration within thecathode flow path 38 during shut down of thefuel cell 12 and reduces a requirement for additional valves and plumbing to achieve the reduced oxygen concentration. The hydrogen transfer means may also be in the form of a hydrogen transfer proton exchange membrane (“PEM”)electrolyte 18, wherein hydrogen diffuses across thePEM electrolyte 18 until the hydrogen concentration within thecathode flow field 42 is in substantial equilibrium with the hydrogen concentration with the hydrogen concentration within theanode flow field 28. Such a hydrogen transfer means transfers hydrogen at a slower rate than the previously describedhydrogen transfer valve 64 and hydrogen transfer electrochemical pump, but the hydrogen transfer PEM electrolyte is the least complicated hydrogen transfer means. - The
system 10 also includes hydrogen reservoir means for storing the hydrogen fuel secured in fluid communication with theanode flow path 24. The hydrogen reservoir means may be in the form of ahydrogen vessel 66 secured outside of the fuel cell 12 (as shown inFIG. 1 .) to be in fluid communication with theanode flow path 24, such as through avessel feed line 68 being secured between thevessel 66 and theanode inlet 26 of theanode flow path 24. - Alternatively, the hydrogen reservoir means may be in the form of hydrogen storage media, such as hydrides that are secured within the
anode flow path 24, such as by a coating. Additionally, the hydrogen storage media may be applied as a coating of pores of the porousanode substrate layer 20, so that hydrogen fuel is stored within the storage media as the fuel flows through theanode flow path 24. Also, thehydrogen vessel 66 may include hydrogen storage media within thevessel 66. The hydrogen storage media may also be in the form of a coating of inlet or exhaust manifolds defined within theanode inlet 26 oranode exhaust 30 so that the hydrogen storage media is in fluid communication with the hydrogen fuel passing through theanode flow path 24. The hydrogen storage media of the hydrogen reservoir means may also be a coating within theanode flow field 28 exposed to the hydrogen fuel. The hydrogen reservoir means for storing hydrogen fuel thus is able to store the hydrogen fuel as the fuel passes through theanode flow path 24 and the media may passively release the stored hydrogen into theanode flow path 24 whenever the hydrogen fuel is no longer passing from the hydrogenfuel storage source 52 through theanode flow path 24. The hydrogen reservoir means and hydrogen transfer means may be constructed so that thesystem 10 may achieve a hydrogen concentration in theanode flow path 24 andcathode flow path 38 of substantially pure hydrogen, wherein “substantially pure hydrogen” is a hydrogen concentration of greater than seventy percent hydrogen, or alternatively the system may achieve a concentration within theanode flow path 24 andcathode flow path 24 of essentially pure hydrogen, wherein “essentially pure hydrogen” is a hydrogen concentration of greater than ninety percent hydrogen. - The hydrogen passivation shut down system for a fuel
cell power plant 10 also may include a firstcathode recycle line 70 secured in fluid communication between thecathode exhaust 44 of thecathode flow path 38 and theoxidant feed line 62 upstream of theblower 60 and downstream of an oxidantsource isolation valve 71 as shown inFIG. 1 . Acathode recycle valve 72 may selectively permit a portion of a cathode exhaust stream to pass from thecathode exhaust 44 to theoxidant feed line 62 to pass again through thecathode flow path 38. When the oxidantsource isolation valve 71 is closed, thecathode recycle blower 76 or theoxidant blower 60 may be operated continuously or intermittently during the shutdown process to accelerate a rate of oxygen reduction from thecathode flow path 38, which includes thecathode flow field 42 and associated inlet and exit manifolds and plumbing known in the art. In the absence of such a recycle flow the oxygen contained within thecathode flow path 38 manifolds would slowly diffuse into thecathode flow field 42 where it would react with hydrogen on thecathode catalyst 16. That reaction with the hydrogen would consume the hydrogen, thereby reducing the time thefuel cell 12 could be maintained in a passive state. Recycling hydrogen from the hydrogen reservoir means 66 through the firstcathode recycle line 70 andcathode flow path 38 maximizes a hydrogen concentration of thefuel cell 12 at the end of afuel cell 12 shut down process. That in turn maximizes a duration thefuel cell 12 can be maintained in a passive state without adding additional hydrogen to thefuel cell 12. - A second
cathode recycle line 74 may be secured in fluid communication between thecathode recycle valve 72 and thecathode inlet 40, and acathode recycle blower 76 may be secured to the secondcathode recycle line 74 to accelerate flow through the second cathode recycle line. Thesystem 10 may also include ananode recycle line 75 secured in fluid communication between theanode exhaust 30 and theanode inlet 26, having ananode recycle blower 77 secured to theanode recycle line 75 to accelerate flow through theanode recycle line 75. - The
system 10 may also include hydrogen sensor means for detecting a concentration of hydrogen within theanode flow path 24 and thecathode flow path 38. The hydrogen sensor means may be adirect hydrogen sensor 78 or sensors known in the art secured, for example, in thecathode flow field 42 for sensing and communicating to a controller the hydrogen concentration within thecathode flow path 38 when the fuelcell power plant 10 is shut down. Such a controller may be any controller means (not shown) known in the art capable of receiving and responding to sensed information, such as a computer, electro-mechanical switches, a human controller, etc. - Alternatively, the hydrogen sensor means may be a
sensor circuit 80 secured in electrical communication with thecathode catalyst 14 andanode catalyst 16 of thefuel cell 12, such as through anexternal circuit 82. Thesensor circuit 80 includes a directcurrent power source 84 such as a D.C. conventional, regulated power supply, battery-type of power source; a voltage-measuring device means for measuring the voltage in the sensor circuit, such as astandard voltmeter 86; and asensor circuit switch 88. Thesensor circuit 80 is calibrated by establishing the voltage, at a fixed current, as a gas composition in both theanode flow field 28 andcathode flow field 42 is varied from pure hydrogen to air. Thesensor circuit 80 may selectively deliver a pre-determined sensing current to thefuel cell 12 for a pre-determined sensing duration for measuring a voltage difference between theanode catalyst 14 andcathode catalyst 16 to thereby determine hydrogen concentrations within theanode flow path 24 andcathode flow path 38. - During normal operation of the fuel
cell power plant 10, aprimary load 90 receives electrical current generated by thefuel cell 12 through theexternal circuit 82, and aprimary load switch 92 is closed (it is shown open inFIG. 1 ); anauxiliary load 94 does not receive electrical current and anauxiliary load switch 96 is open, so that the fuelcell power plant 10 is providing electricity only to theprimary load 90, such as an electric motor, etc.; and thesensor circuit switch 88 is open, so that thesensor circuit 84 is not directing any electrical current to the anode andcathode catalysts oxidant blower 60, and the anodeexhaust recycle blower 77 are on. Theoxidant inlet valve 56 andcathode exhaust valve 46 are open, as are thehydrogen inlet valve 52 andanode exhaust valve 32. The anodevacuum release valve 36 is closed so that no air flows into theanode flow path 24. - Therefore, during normal operation of the
plant 10, process oxidant such as air from theoxidant source 58 is continuously delivered into thecathode flow field 42 through thecathode flow path 38, and leaves thecathode flow path 38 through thecathode exhaust vent 48. The hydrogen containing reducing fluid fuel from thefuel source 54 is continuously delivered into theanode flow field 28 through theanode flow path 24. A portion of an anode exhaust stream, containing depleted hydrogen fuel, leaves theanode flow path 24 through theanode exhaust valve 32 and theanode exhaust vent 34, while theanode recycle line 75 and anode recycleblower 77 re-circulates the balance of the anode exhaust through theanode flow path 24 in a manner well know in the prior art. Recycling a portion of the anode exhaust helps maintain a relatively uniform gas composition throughout theanode flow path 24, and permits increased hydrogen utilization. As the hydrogen passes through the anode flow field, it electrochemically reacts on theanode catalyst layer 14 in a well-known manner to produce protons (hydrogen ions) and electrons. The electrons flow from theanode catalyst 14 to thecathode catalyst 16 through theexternal circuit 82 to power theprimary load 90. - Shutting down the operating fuel
cell power plant 10 includes opening or disconnecting the primary load switch 92 (as shown inFIG. 1 ) in theexternal circuit 82 to disconnect theprimary load 90. Thehydrogen inlet valve 52 remains open; and the anodeexhaust recycle blower 77 remains on to continue recirculation of a portion of the anode exhaust. However, theanode exhaust valve 32 will remain open or be closed depending upon the percent hydrogen in the incoming fuel. The flow of fresh air or oxidant through thecathode flow path 38 is turned off by turning off thecathode blower 60. - During shut down the
auxiliary load 94 may then be connected to theexternal circuit 82 by closing theauxiliary load switch 96. With current flowing through theauxiliary load 94, typical electrochemical cell reactions occur, causing the oxygen concentration in thecathode flow path 38 to be reduced and cell voltage to be lowered. The application of theauxiliary load 94 is initiated while there is still sufficient hydrogen within thefuel cell 12 to electrochemically react all the oxygen remaining within thefuel cell 12. It preferably remains connected at least until the cell voltage is lowered to a pre-selected value, preferably 0.2 volts per cell or less. Adiode 98, connected across thecathode catalyst 14 andanode catalyst 16, senses the cell voltage and allows current to pass through theauxiliary load 94 as long as the cell voltage is above the pre-selected value. In that way, thefuel cell 12 voltage is reduced to and thereafter limited to the pre-selected value. When the cell voltage drops to 0.2 volts per cell, substantially all the oxygen within thecathode flow field 42, and any that has diffused across theelectrolyte 18 to theanode flow field 28, will have been consumed. Theauxiliary load 94 may then be disconnected by opening theauxiliary load switch 96, but is preferably left connected. - The
hydrogen transfer valve 64 may then be selected to an open position to permit hydrogen fuel to pass from theanode flow path 24 into thecathode flow path 38. The oxidantsource isolation valve 71 is then closed, and thecathode recycle valve 72 may then be opened while thecathode recycle blower 76 oroxidant blower 60 is turned on to draw the hydrogen from theanode flow path 24 through thehydrogen transfer valve 64 and through thecathode flow path 38. Whenever the hydrogen sensor means determines that the concentration of hydrogen within theanode flow path 24 andcathode flow path 38 is about one-hundred percent (100%) hydrogen, theanode exhaust valve 32 andcathode exhaust valve 46 are closed, thehydrogen inlet valve 52,oxidant inlet valve 56, and cathode recyclevalve 72 are also closed, while thehydrogen transfer valve 64 remains open. Hydrogen stored within the hydrogen reservoir means may then be passively released to maintain an elevated hydrogen concentration within theanode flow path 24 andcathode flow path 38 during shut down of the fuelcell power plant 10. It is desired to maximize the hydrogen concentration within theanode flow path 24 andcathode flow path 38 during the shut down process. Maximizing the hydrogen concentration at the end of the shut down process will maximize a time thefuel cell 12 will be maintained in a passive state without the addition of more hydrogen. A preferred hydrogen concentration at shut down is greater than seventy percent (70%) hydrogen, and a more preferred hydrogen concentration is greater than ninety percent (90%). During the shutdown period, it is preferred that theauxiliary load 94 is connected to theexternal circuit 82 by closing theauxiliary load switch 96. This minimizes the potential of the individual electrode orcathode catalyst 16 andcathode substrate 22 should air leak into thefuel cell 12. - During shut down of the
plant 10, oxygen from the air may leak into thecathode flow path 24 oranode flow path 38 through seals, or through the anodevacuum release valve 36 or cathode vacuum release valve so that the potential of the anode andcathode catalysts fuel cell 12. Hydrogen gas from the reducingfluid source 54 may then be admitted prior to the electrode potential reaching 0.2 volts in order to consume the oxygen, thereby minimizing any oxidative decay. The hydrogen may be circulated throughout theanode flow path 24 by opening theanode inlet valve 52 and turning on theanode recycle blower 68 while theanode exhaust valve 32 remains closed. Alternatively, ananode recycle valve 100 secured to an anoderecycle feed line 102 secured in fluid communication between the hydrogenfuel storage source 54 and theanode recycle line 75 may be opened to supply hydrogen to theanode flow path 24 while thehydrogen inlet valve 52 remains closed. Any such admitted hydrogen will also pass through the hydrogen transfer means to pass into thecathode flow path 38. Thecathode recycle blower 76 oroxidant blower 60 may also be used to hasten distribution of the hydrogen throughout thecathode flow path 38. A quantity of hydrogen that is admitted to theflow paths cathode flow paths fuel cell 12 in a passive state and maximizes the time thefuel cell 12 can be maintained in a passive state without addition of hydrogen to theflow paths plant 10. - The
sensor circuit 80 may also be in communication with a hydrogen admitting controller means (not shown) for controlling admission of the hydrogen fuel into theanode flow path 24 andcathode flow path 38. The hydrogen admitting controller means may be any controller known in the art that can accomplish the task of admitting hydrogen into theflow paths sensor circuit 80 of a shut down monitoring voltage at about or exceeding the sensor voltage limit. Exemplary controller means include simple manual opening by a power plant operator (not shown) of thehydrogen inlet valve 52, anode recyclevalve 100, or any other mechanism capable of admitting hydrogen into theflow paths exhaust recycle blower 77 by the operator or a control system. Other controller means could include electro-mechanical controls integrating the voltage measuring device with thehydrogen inlet valve 52, anode recyclevalve 100, as well as with theanode recycle blower 68, cathode recycle blower, such as are known in the art for opening valves and blowers, etc., in response to sensed signals. - For example, in a passive method of using the
system 10, an operator (not shown) may utilize the sensor means, such as thedirect sensor 78, to determine if an adequate volume of hydrogen is within the anode andcathode flow paths 24, 39 immediately prior to starting up thefuel cell 12 after a period of being shut down, such as an automobile powered by the fuel cell being shut down over night. If thesensor 78 indicates adequate hydrogen is present to maintain theanode electrode 14 andcathode electrode 16 potentials at an adequately low potential, such as less than 0.2 volts relative to a standard hydrogen electrode, than an ordinary start up may be utilized, wherein thehydrogen transfer valve 64 is closed, thehydrogen inlet valve 52,oxidant inlet valve 56 andisolation valve 71 are opened, theoxidant blower 60, is activated, theanode recycle blower 66 is activated, and the anode andcathode exhaust valve - However, if the sensor means detects an inadequate concentration of hydrogen, a rapid hydrogen purge may be utilized to eliminate oxygen in contact with the anode and
cathode catalysts anode flow field 28 from theanode inlet 26 to theanode exhaust 30 in less than 1.0 seconds, or preferably in less than 0.2 seconds and most preferably in less than 0.05 seconds. Preferably theauxiliary load 94 is connected during the hydrogen purge. Air flow to thecathode flow field 42 is begun after the hydrogen purge is completed and theauxiliary load 96 removed. Such a rapid hydrogen fuel purge may be accomplished by utilization of a highly pressurizedhydrogen fuel source 54 known in the art, or fuel blowers or compressors, etc. also known in the art. In this passive usage of thesystem 10, hydrogen is only admitted to thefuel cell 12 while an operator is present, thereby eliminating safety concerns of unattended hydrogen transfer, wherein a system malfunction might lead to release of flammable concentrations of hydrogen from thepower plant 10. - In an alternative, active usage of the present hydrogen passivation shut down
system 10, the sensor means may be utilized to detect when the cathode andanode electrode hydrogen inlet valve 52, or theanode recycle valve 100 to admit an adequate amount of hydrogen into theanode flow path 24 to reduce the electrode potential back to or below an acceptable level. - For specific embodiments of the
system 10, wherein operational requirements do not anticipate long term shut downs, or for circumstances wherein thefuel cell 12 is adequately sealed to restrict unacceptable depletion of hydrogen, thesystem 10 may rely only upon the passive release of stored hydrogen from the hydrogen reservoir means, such as thehydrogen vessel 66 as described above. In such an embodiment, thesystem 10 includes hydrogen passivation of thefuel cell 12 through the steps of disconnecting theprimary load 90 from the fuel cell; terminating admission of the oxidant into thecathode flow path 38 from the oxidant source, such as by shutting off the oxidant blower; operating the hydrogen transfer means to permit passage of hydrogen from theanode flow path 24 into thecathode flow path 38; shutting off flow of the hydrogen fuel into theanode flow path 24 whenever theanode flow path 24 andcathode flow path 38 are filled with a predetermined, adequate volume of hydrogen; and permitting release into theanode flow path 24, hydrogen transfer valve andcathode flow path 38 of hydrogen stored within the hydrogen reservoir means, such as from thehydrogen vessel 66. Optionally, that embodiment of the system may also include operating the cathode recycle blower to more rapidly consume oxygen within thecathode flow path 38; and closing the anode andcathode exhaust valves cathode flow paths - It can be seen that the present hydrogen passivation shut down system for a fuel
cell power plant 10 provides for efficient, passivation of the fuel cell catalysts orelectrodes fuel cell 12 with hydrogen while shutting down thefuel cell 12, and for replenishing hydrogen prior to start up of the fuel cell, either passively or actively, depending upon requirements of thesystem 10. - While the present invention has been disclosed with respect to the described and illustrated embodiments, it is to be understood that the invention is not to be limited to those embodiments. Accordingly, reference should be made primarily to the following claims rather than the foregoing description to determine the scope of the invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/880,493 US7855020B1 (en) | 2003-08-06 | 2010-09-13 | Hydrogen passivation shut down system for a fuel cell power plant |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/635,779 US6984464B2 (en) | 2003-08-06 | 2003-08-06 | Hydrogen passivation shut down system for a fuel cell power plant |
US11/284,867 US20060078780A1 (en) | 2003-08-06 | 2005-11-22 | Hydrogen passivation shut down system for a fuel cell power plant |
US11/978,270 US20080107936A1 (en) | 2003-08-06 | 2007-10-29 | Hydrogen passivation shut down system for a fuel cell power plant |
US12/880,493 US7855020B1 (en) | 2003-08-06 | 2010-09-13 | Hydrogen passivation shut down system for a fuel cell power plant |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/978,270 Division US20080107936A1 (en) | 2003-08-06 | 2007-10-29 | Hydrogen passivation shut down system for a fuel cell power plant |
Publications (2)
Publication Number | Publication Date |
---|---|
US7855020B1 US7855020B1 (en) | 2010-12-21 |
US20110003222A1 true US20110003222A1 (en) | 2011-01-06 |
Family
ID=34116309
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/635,779 Expired - Lifetime US6984464B2 (en) | 2003-08-06 | 2003-08-06 | Hydrogen passivation shut down system for a fuel cell power plant |
US11/284,867 Abandoned US20060078780A1 (en) | 2003-08-06 | 2005-11-22 | Hydrogen passivation shut down system for a fuel cell power plant |
US11/289,196 Expired - Lifetime US7141324B2 (en) | 2003-08-06 | 2005-11-29 | Hydrogen passivation shut down system for a fuel cell power plant |
US11/978,270 Abandoned US20080107936A1 (en) | 2003-08-06 | 2007-10-29 | Hydrogen passivation shut down system for a fuel cell power plant |
US12/880,493 Active US7855020B1 (en) | 2003-08-06 | 2010-09-13 | Hydrogen passivation shut down system for a fuel cell power plant |
Family Applications Before (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/635,779 Expired - Lifetime US6984464B2 (en) | 2003-08-06 | 2003-08-06 | Hydrogen passivation shut down system for a fuel cell power plant |
US11/284,867 Abandoned US20060078780A1 (en) | 2003-08-06 | 2005-11-22 | Hydrogen passivation shut down system for a fuel cell power plant |
US11/289,196 Expired - Lifetime US7141324B2 (en) | 2003-08-06 | 2005-11-29 | Hydrogen passivation shut down system for a fuel cell power plant |
US11/978,270 Abandoned US20080107936A1 (en) | 2003-08-06 | 2007-10-29 | Hydrogen passivation shut down system for a fuel cell power plant |
Country Status (7)
Country | Link |
---|---|
US (5) | US6984464B2 (en) |
EP (1) | EP1665427B1 (en) |
JP (1) | JP2007534108A (en) |
KR (1) | KR101129937B1 (en) |
CN (1) | CN100481587C (en) |
BR (1) | BRPI0413357A (en) |
WO (1) | WO2005018017A2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120098332A1 (en) * | 2010-10-25 | 2012-04-26 | Hyundai Motor Company | Starting device for high-voltage components of fuel cell vehicle and method for controlling the same |
WO2014001253A1 (en) * | 2012-06-27 | 2014-01-03 | Compagnie Generale Des Etablissements Michelin | Fuel cell supply system |
US20140322625A1 (en) * | 2013-04-24 | 2014-10-30 | GM Global Technology Operations LLC | Systems and methods to monitor and control a flow of air within a fuel cell stack |
US20150064509A1 (en) * | 2012-04-02 | 2015-03-05 | Hydrogenics Corporation | Fuel cell start up method |
US20150288041A1 (en) * | 2013-10-02 | 2015-10-08 | Hydrogenics Corporation | Fast starting fuel cell |
US10084196B2 (en) | 2012-05-04 | 2018-09-25 | Hydrogenics Corporation | System and method for controlling fuel cell module |
US11309556B2 (en) | 2013-10-02 | 2022-04-19 | Hydrogenics Corporation | Fast starting fuel cell |
WO2023018925A1 (en) * | 2021-08-12 | 2023-02-16 | Ticona Llc | Fluidic member for use in a fuel cell system |
US11901591B2 (en) | 2016-03-22 | 2024-02-13 | Loop Energy Inc. | Fuel cell flow field design for thermal management |
Families Citing this family (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7147945B2 (en) * | 2002-09-16 | 2006-12-12 | Utc Fuel Cells, Llc | System for determining a gas composition within a shut down fuel cell power plant and method of operation |
US20040185328A1 (en) * | 2003-03-21 | 2004-09-23 | Lifun Lin | Chemoelectric generating |
US20070237993A1 (en) * | 2003-03-21 | 2007-10-11 | Karin Carlsson | Fuel cell reforming |
DK1665433T3 (en) * | 2003-06-25 | 2011-03-14 | Hydrogenics Corp | Passive electrode protection in a fuel cell |
US20090220831A1 (en) * | 2003-08-06 | 2009-09-03 | Reoser Carl A | Hydrogen passivation shut down system for a fuel cell power plant |
US8142950B2 (en) * | 2003-08-06 | 2012-03-27 | Utc Power Corporation | Hydrogen passivation shut down system for a fuel cell power plant |
US6984464B2 (en) * | 2003-08-06 | 2006-01-10 | Utc Fuel Cells, Llc | Hydrogen passivation shut down system for a fuel cell power plant |
US8277991B2 (en) * | 2003-08-06 | 2012-10-02 | Utc Power Corporation | Hydrogen passivation shut down system for a fuel cell power plant |
US8765314B2 (en) * | 2003-08-25 | 2014-07-01 | Panasonic Corporation | Fuel cell system and method for stopping operation of fuel cell system |
US7479337B2 (en) * | 2003-09-17 | 2009-01-20 | General Motors Corporation | Fuel cell shutdown and startup using a cathode recycle loop |
US6939633B2 (en) * | 2003-09-17 | 2005-09-06 | General Motors Corporation | Fuel cell shutdown and startup using a cathode recycle loop |
US7396604B2 (en) * | 2003-10-29 | 2008-07-08 | General Motors Corporation | Centrifugal compressor surge detection using a bi-directional MFM in a fuel cell system |
JP4354792B2 (en) * | 2003-12-12 | 2009-10-28 | パナソニック株式会社 | Fuel cell power generator |
US7771883B2 (en) * | 2004-01-27 | 2010-08-10 | Gm Global Technology Operations, Inc. | Virtual compressor operational parameter measurement and surge detection in a fuel cell system |
US7364815B2 (en) * | 2004-03-09 | 2008-04-29 | Matsushita Electric Industrial Co., Ltd. | Method of preserving fuel cell membrane electrode assembly |
WO2005104284A1 (en) * | 2004-04-20 | 2005-11-03 | Ener1, Inc. | Method and apparatus for shutting down a pem fuel cell system |
US7732073B2 (en) * | 2004-05-04 | 2010-06-08 | Utc Power Corporation | Fuel cell minimum fuel recycle with maximum fuel utilization |
US7799475B2 (en) * | 2004-08-26 | 2010-09-21 | Gm Global Technology Operations, Inc. | Method of using H2 purge for stack startup/shutdown to improve stack durability |
US20060099469A1 (en) * | 2004-11-05 | 2006-05-11 | Meltser Mark A | Control apparatus to improve start-up time in a PEM fuel cell power module |
WO2006049299A1 (en) | 2004-11-08 | 2006-05-11 | Matsushita Electric Industrial Co., Ltd. | Fuel cell system |
US8257873B2 (en) * | 2005-01-31 | 2012-09-04 | Panasonic Corporation | Fuel cell power generation system with valve on raw material gas supply passage and valve downstream of carbon monoxide decreasing unit, and method for operating fuel cell power generation system |
JP4603427B2 (en) * | 2005-06-17 | 2010-12-22 | 本田技研工業株式会社 | Fuel cell system |
US8597849B2 (en) * | 2005-08-30 | 2013-12-03 | GM Global Technology Operations LLC | Pressure activated shut-off valve |
US20070128474A1 (en) * | 2005-11-18 | 2007-06-07 | Bach Peter J | Shutdown procedure for fuel cell stacks |
EP2495793B1 (en) * | 2005-12-27 | 2016-04-13 | Nissan Motor Co., Ltd | Fuel cell system |
JP5070700B2 (en) * | 2005-12-28 | 2012-11-14 | 日産自動車株式会社 | Fuel cell system |
US7976995B2 (en) * | 2005-12-27 | 2011-07-12 | Nissan Motor Co., Ltd. | Fuel cell system comprising a voltage limit device |
US7521146B2 (en) * | 2005-12-27 | 2009-04-21 | Plug Power Inc. | Switching modes of operation of a fuel cell |
US20070154742A1 (en) * | 2005-12-29 | 2007-07-05 | Hao Tang | Starting up and shutting down a fuel cell |
US20070154752A1 (en) * | 2005-12-29 | 2007-07-05 | Mcelroy James F | Starting up and shutting down a fuel cell stack |
JP5151035B2 (en) * | 2006-02-03 | 2013-02-27 | 日産自動車株式会社 | Fuel cell system |
US20070207367A1 (en) * | 2006-02-07 | 2007-09-06 | Fellows Richard G | System and method of operation of a fuel cell system and of ceasing the same for inhibiting corrosion |
WO2007090284A1 (en) * | 2006-02-08 | 2007-08-16 | Hydrogenics Corporation | Passive electrode blanketing in a fuel cell |
KR20070095685A (en) * | 2006-03-22 | 2007-10-01 | 삼성에스디아이 주식회사 | Apparatus and method for activating passive type fuel cell system |
WO2007137600A1 (en) * | 2006-05-26 | 2007-12-06 | Daimler Ag | Apparatus for supplying a cathode area of a fuel cell stack and method for driving the apparatus |
JP2007323954A (en) * | 2006-05-31 | 2007-12-13 | Aisin Seiki Co Ltd | Fuel cell system, and control method thereof |
US9094257B2 (en) | 2006-06-30 | 2015-07-28 | Centurylink Intellectual Property Llc | System and method for selecting a content delivery network |
US8488447B2 (en) | 2006-06-30 | 2013-07-16 | Centurylink Intellectual Property Llc | System and method for adjusting code speed in a transmission path during call set-up due to reduced transmission performance |
US8477614B2 (en) | 2006-06-30 | 2013-07-02 | Centurylink Intellectual Property Llc | System and method for routing calls if potential call paths are impaired or congested |
US8717911B2 (en) | 2006-06-30 | 2014-05-06 | Centurylink Intellectual Property Llc | System and method for collecting network performance information |
US8289965B2 (en) | 2006-10-19 | 2012-10-16 | Embarq Holdings Company, Llc | System and method for establishing a communications session with an end-user based on the state of a network connection |
US9614236B2 (en) * | 2006-08-10 | 2017-04-04 | GM Global Technology Operations LLC | Method for mitigating cell degradation due to startup and shutdown via cathode re-circulation combined with electrical shorting of stack |
US8015294B2 (en) | 2006-08-22 | 2011-09-06 | Embarq Holdings Company, LP | Pin-hole firewall for communicating data packets on a packet network |
US8549405B2 (en) | 2006-08-22 | 2013-10-01 | Centurylink Intellectual Property Llc | System and method for displaying a graphical representation of a network to identify nodes and node segments on the network that are not operating normally |
US8223655B2 (en) | 2006-08-22 | 2012-07-17 | Embarq Holdings Company, Llc | System and method for provisioning resources of a packet network based on collected network performance information |
US8307065B2 (en) | 2006-08-22 | 2012-11-06 | Centurylink Intellectual Property Llc | System and method for remotely controlling network operators |
US7684332B2 (en) | 2006-08-22 | 2010-03-23 | Embarq Holdings Company, Llc | System and method for adjusting the window size of a TCP packet through network elements |
US8064391B2 (en) | 2006-08-22 | 2011-11-22 | Embarq Holdings Company, Llc | System and method for monitoring and optimizing network performance to a wireless device |
US8619600B2 (en) | 2006-08-22 | 2013-12-31 | Centurylink Intellectual Property Llc | System and method for establishing calls over a call path having best path metrics |
US8130793B2 (en) | 2006-08-22 | 2012-03-06 | Embarq Holdings Company, Llc | System and method for enabling reciprocal billing for different types of communications over a packet network |
US8531954B2 (en) | 2006-08-22 | 2013-09-10 | Centurylink Intellectual Property Llc | System and method for handling reservation requests with a connection admission control engine |
US8537695B2 (en) | 2006-08-22 | 2013-09-17 | Centurylink Intellectual Property Llc | System and method for establishing a call being received by a trunk on a packet network |
US8750158B2 (en) | 2006-08-22 | 2014-06-10 | Centurylink Intellectual Property Llc | System and method for differentiated billing |
US8238253B2 (en) | 2006-08-22 | 2012-08-07 | Embarq Holdings Company, Llc | System and method for monitoring interlayer devices and optimizing network performance |
US9479341B2 (en) | 2006-08-22 | 2016-10-25 | Centurylink Intellectual Property Llc | System and method for initiating diagnostics on a packet network node |
US8576722B2 (en) | 2006-08-22 | 2013-11-05 | Centurylink Intellectual Property Llc | System and method for modifying connectivity fault management packets |
US8743703B2 (en) | 2006-08-22 | 2014-06-03 | Centurylink Intellectual Property Llc | System and method for tracking application resource usage |
US8224255B2 (en) | 2006-08-22 | 2012-07-17 | Embarq Holdings Company, Llc | System and method for managing radio frequency windows |
US8407765B2 (en) | 2006-08-22 | 2013-03-26 | Centurylink Intellectual Property Llc | System and method for restricting access to network performance information tables |
US8274905B2 (en) | 2006-08-22 | 2012-09-25 | Embarq Holdings Company, Llc | System and method for displaying a graph representative of network performance over a time period |
US8189468B2 (en) | 2006-10-25 | 2012-05-29 | Embarq Holdings, Company, LLC | System and method for regulating messages between networks |
US8228791B2 (en) | 2006-08-22 | 2012-07-24 | Embarq Holdings Company, Llc | System and method for routing communications between packet networks based on intercarrier agreements |
US7843831B2 (en) | 2006-08-22 | 2010-11-30 | Embarq Holdings Company Llc | System and method for routing data on a packet network |
US8199653B2 (en) | 2006-08-22 | 2012-06-12 | Embarq Holdings Company, Llc | System and method for communicating network performance information over a packet network |
US8144587B2 (en) | 2006-08-22 | 2012-03-27 | Embarq Holdings Company, Llc | System and method for load balancing network resources using a connection admission control engine |
US8062801B2 (en) * | 2006-08-31 | 2011-11-22 | Utc Power Corporation | Avoiding coolant slump into reactant fields during PEM fuel cell shutdown |
DE102006045921B4 (en) | 2006-09-28 | 2022-07-14 | Robert Bosch Gmbh | Fuel cell with a device for the quantitative determination of gas components |
DE102006051674A1 (en) | 2006-11-02 | 2008-05-08 | Daimler Ag | Fuel cell system and method for operating the same |
US7678477B2 (en) * | 2006-12-18 | 2010-03-16 | Gm Global Technology Operations, Inc. | Method of operating a fuel cell stack |
EP2132819B1 (en) * | 2006-12-27 | 2012-05-02 | Nissan Motor Co., Ltd. | Fuel cell system |
US20080187788A1 (en) * | 2007-02-06 | 2008-08-07 | Fellows Richard G | System and method of operation of a fuel cell system and of ceasing the same for inhibiting corrosion |
TWI334240B (en) * | 2007-02-09 | 2010-12-01 | Young Green Energy Co | Fuel cell system |
DE102007031071A1 (en) * | 2007-03-12 | 2008-09-18 | Daimler Ag | Shutting down a fuel cell system |
DE102007035056A1 (en) | 2007-07-26 | 2009-01-29 | Daimler Ag | A device for recirculating a cathode gas in a fuel cell assembly, a method of shutting down a fuel cell device with the fuel cell assembly |
JP5169056B2 (en) * | 2007-07-31 | 2013-03-27 | 日産自動車株式会社 | Fuel cell system and its operation stop method |
JP2009059669A (en) * | 2007-09-03 | 2009-03-19 | Aisin Seiki Co Ltd | Operation method of fuel cell |
CN101874323B (en) * | 2007-11-22 | 2012-08-29 | 松下电器产业株式会社 | Fuel cell system and method of operating the same |
DE102007058717A1 (en) * | 2007-12-06 | 2008-06-12 | Daimler Ag | Fuel cell system for motor vehicle, has fuel cell stack, whose fuel cells are connected with air inlet pipe and with air outlet pipe by end plate, where locking units prevent air supply through air inlet and air outlet pipes |
WO2009082368A1 (en) * | 2007-12-20 | 2009-07-02 | Utc Power Corporation | Rapid start-up and operating system for a fuel cell power plant utilizing a reformate fuel |
JP4755171B2 (en) * | 2007-12-28 | 2011-08-24 | 本田技研工業株式会社 | Fuel cell system and method for stopping operation |
US8068425B2 (en) | 2008-04-09 | 2011-11-29 | Embarq Holdings Company, Llc | System and method for using network performance information to determine improved measures of path states |
US8048579B2 (en) * | 2008-04-16 | 2011-11-01 | GM Global Technology Operations LLC | Shutdown operations for a sealed anode fuel cell system |
FI122476B (en) * | 2008-07-10 | 2012-02-15 | Waertsilae Finland Oy | Process and arrangement for reducing the consumption of shielding gas in a fuel cell system |
US20100035098A1 (en) * | 2008-08-06 | 2010-02-11 | Manikandan Ramani | Using chemical shorting to control electrode corrosion during the startup or shutdown of a fuel cell |
JP2010086853A (en) * | 2008-10-01 | 2010-04-15 | Honda Motor Co Ltd | Fuel cell system and its operation stop method |
US20110189570A1 (en) * | 2008-10-21 | 2011-08-04 | Utc Power Corporation | System and method for passivating a fuel cell power plant |
US8580445B2 (en) | 2008-12-04 | 2013-11-12 | GM Global Technology Operations LLC | Shutdown strategy to avoid carbon corrosion due to slow hydrogen/air intrusion rates |
WO2010065017A1 (en) * | 2008-12-04 | 2010-06-10 | Utc Power Corporation | Determining duration of fuel cell shutdown hydrogen stabilization by counting coulombs |
JP4764916B2 (en) * | 2008-12-17 | 2011-09-07 | 本田技研工業株式会社 | Fuel cell system and method for starting fuel cell system |
US8177884B2 (en) * | 2009-05-20 | 2012-05-15 | United Technologies Corporation | Fuel deoxygenator with porous support plate |
KR100923448B1 (en) * | 2009-05-27 | 2009-10-27 | 한국기계연구원 | A closed loop type fuel cell system |
KR101113651B1 (en) * | 2009-08-31 | 2012-02-15 | 현대자동차주식회사 | Hydrogen exhaust system of fuel cell vehicle |
FR2952232B1 (en) | 2009-10-30 | 2011-12-16 | Michelin Soc Tech | FUEL CELL AND PROCEDURE FOR STOPPING A FUEL CELL. |
US8232014B2 (en) * | 2009-12-11 | 2012-07-31 | GM Global Technology Operations LLC | Fuel cell operational methods for hydrogen addition after shutdown |
US9509002B2 (en) | 2010-05-20 | 2016-11-29 | Audi Ag | Quick restart of fuel cell power plant as alternative to idling |
US8304138B2 (en) * | 2010-05-26 | 2012-11-06 | Ford Global Technologies, Llc | Fuel cell system and method of use |
US20180151901A1 (en) | 2010-10-06 | 2018-05-31 | Ford Global Technologies, Llc | Method of operating a fuel cell during a soak time period |
US20110165485A1 (en) * | 2010-10-06 | 2011-07-07 | Ford Global Technologies, Llc | Fuel Cell System And Method Of Use |
US8158292B2 (en) * | 2010-10-12 | 2012-04-17 | Ford Global Technologies, Llc | Fuel cell system and method of using the same |
DE102011009109B9 (en) * | 2011-01-21 | 2013-06-06 | Diehl Aerospace Gmbh | Fuel cell with means for regulating the power output and fuel cell unit |
US9537160B2 (en) * | 2012-02-15 | 2017-01-03 | GM Global Technology Operations LLC | Operational method for a simplified fuel cell system |
KR101417290B1 (en) * | 2012-06-20 | 2014-07-08 | 현대자동차주식회사 | Fuel cell system operating method |
JP5783974B2 (en) * | 2012-08-28 | 2015-09-24 | 本田技研工業株式会社 | Method for starting fuel cell system and fuel cell system |
DE102012023799A1 (en) | 2012-12-04 | 2014-06-05 | Daimler Ag | Method for preparing re-start of fuel cell system, involves drying anode side and cathode side of fuel cell system by applying vacuum, and filling anode side and the cathode side of fuel cell system with fuel |
CN104969387B (en) | 2012-12-09 | 2018-09-14 | 联合工艺公司 | Flow battery with limitation voltage device |
EP2945816B1 (en) * | 2013-01-11 | 2019-09-18 | Audi AG | Power-on shutdown of fuel cell power plant for enhanced durability |
US9680171B2 (en) | 2013-03-15 | 2017-06-13 | Intelligent Energy Limited | Methods for operating a fuel cell system |
US9023545B2 (en) * | 2013-03-15 | 2015-05-05 | Societe Bic | Method for operating a fuel cell system |
DE102013011979A1 (en) | 2013-07-18 | 2015-01-22 | Daimler Ag | Method for parking a fuel cell system |
DE102013218958A1 (en) * | 2013-09-20 | 2015-03-26 | Bayerische Motoren Werke Aktiengesellschaft | Exhaust system and motor vehicle with exhaust system |
CN103647092B (en) * | 2013-10-30 | 2016-02-03 | 张勇 | Extend the method and apparatus of fuel battery service life |
KR101551024B1 (en) * | 2013-12-23 | 2015-09-08 | 현대자동차주식회사 | Start control method of fuel cell system |
DE102014207450A1 (en) * | 2014-04-17 | 2015-10-22 | Bayerische Motoren Werke Aktiengesellschaft | A method for purging a fuel cell and apparatus for carrying out the method |
FI125775B (en) | 2014-06-30 | 2016-02-15 | Teknologian Tutkimuskeskus Vtt Oy | Procedures and systems for eliminating decay by back current in fuel cells |
US10193173B2 (en) * | 2015-07-21 | 2019-01-29 | GM Global Technology Operations LLC | Electrochemical hydrogen sensor for global/local hydrogen starvation detection in PEM fuel cells |
DE102015222237A1 (en) | 2015-11-11 | 2017-05-11 | Robert Bosch Gmbh | fuel cell |
CN107856565A (en) * | 2017-11-16 | 2018-03-30 | 黑冻科技有限公司 | A kind of combined air iron drive system |
CN110474071B (en) * | 2018-05-11 | 2022-08-23 | 江苏清能新能源技术股份有限公司 | Hydrogen supply device of fuel cell system and operation method thereof |
US11056698B2 (en) | 2018-08-02 | 2021-07-06 | Raytheon Technologies Corporation | Redox flow battery with electrolyte balancing and compatibility enabling features |
DE102018216389B3 (en) * | 2018-09-26 | 2019-11-07 | Audi Ag | Operating method for an antenna array of a vehicle |
US12111281B2 (en) | 2018-11-21 | 2024-10-08 | Hyaxiom, Inc. | Hydrogen concentration sensor |
US11824238B2 (en) | 2019-04-30 | 2023-11-21 | Hyaxiom, Inc. | System for managing hydrogen utilization in a fuel cell power plant |
CN111900438A (en) * | 2019-05-06 | 2020-11-06 | 上海轩玳科技有限公司 | Fuel cell system and method for solving low-temperature starting capability of fuel cell system |
JP2021157873A (en) * | 2020-03-25 | 2021-10-07 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh | Fuel cell and method for operating fuel cell |
CN112285013A (en) * | 2020-09-28 | 2021-01-29 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | On-site rapid spot inspection method for coating quality of metal bipolar plate |
US12000794B2 (en) | 2020-12-08 | 2024-06-04 | Hyaxiom, Inc. | Hydrogen concentration sensor |
US11768186B2 (en) | 2020-12-08 | 2023-09-26 | Hyaxiom, Inc. | Hydrogen concentration sensor |
US11271226B1 (en) | 2020-12-11 | 2022-03-08 | Raytheon Technologies Corporation | Redox flow battery with improved efficiency |
DE102022206216A1 (en) * | 2022-06-22 | 2023-12-28 | Robert Bosch Gesellschaft mit beschränkter Haftung | Diagnostic method for a fuel cell system and fuel cell system |
DE102022212445B3 (en) | 2022-11-22 | 2023-11-16 | Vitesco Technologies GmbH | Method, control device and computer program for determining a hydrogen concentration in a fuel cell system tank as well as gas mixture analysis device and fuel cell system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6399231B1 (en) * | 2000-06-22 | 2002-06-04 | Utc Fuel Cells, Llc | Method and apparatus for regenerating the performance of a PEM fuel cell |
US20040001980A1 (en) * | 2002-06-26 | 2004-01-01 | Balliet Ryan J. | System and method for shutting down a fuel cell power plant |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3748180A (en) * | 1972-03-30 | 1973-07-24 | Us Navy | Fuel cell system for underwater vehicle |
JPS61107668A (en) * | 1984-10-31 | 1986-05-26 | Kawasaki Heavy Ind Ltd | Fuel cell power generation equipment |
US4859545A (en) * | 1988-05-05 | 1989-08-22 | International Fuel Cells Corporation | Cathode flow control for fuel cell power plant |
JPH0249359A (en) * | 1988-05-17 | 1990-02-19 | Fuji Electric Co Ltd | Fuel cell power generating system |
JPH02117072A (en) * | 1988-10-26 | 1990-05-01 | Toyo Eng Corp | Fuel cell power generation system |
US5045414A (en) | 1989-12-29 | 1991-09-03 | International Fuel Cells Corporation | Reactant gas composition for fuel cell potential control |
US5013617A (en) | 1989-12-29 | 1991-05-07 | International Fuel Cells Corporation | Air ejector system for fuel cell passivation |
JPH0494062A (en) * | 1990-08-09 | 1992-03-26 | Fuji Electric Co Ltd | Fuel cell power generation system |
JPH04294065A (en) * | 1991-03-22 | 1992-10-19 | Toshiba Corp | Power-generating plant by phosphoric acid type fuel cell |
US5527632A (en) * | 1992-07-01 | 1996-06-18 | Rolls-Royce And Associates Limited | Hydrocarbon fuelled fuel cell power system |
JPH08195210A (en) * | 1995-01-18 | 1996-07-30 | Toyota Motor Corp | Fuel-cell system |
US6024848A (en) | 1998-04-15 | 2000-02-15 | International Fuel Cells, Corporation | Electrochemical cell with a porous support plate |
US6007933A (en) * | 1998-04-27 | 1999-12-28 | Plug Power, L.L.C. | Fuel cell assembly unit for promoting fluid service and electrical conductivity |
US6103410A (en) * | 1998-06-05 | 2000-08-15 | International Fuel Cells Corporation | Start up of frozen fuel cell |
JP3868137B2 (en) * | 1999-01-29 | 2007-01-17 | 三菱重工業株式会社 | humidifier |
JP4283928B2 (en) * | 1999-03-04 | 2009-06-24 | 大阪瓦斯株式会社 | Operation method of fuel cell |
US6589312B1 (en) * | 1999-09-01 | 2003-07-08 | David G. Snow | Nanoparticles for hydrogen storage, transportation, and distribution |
US6299996B1 (en) * | 1999-09-24 | 2001-10-09 | Plug Power Inc. | Fuel cell system |
JP4809965B2 (en) * | 2000-01-28 | 2011-11-09 | 本田技研工業株式会社 | Hydrogen supply system for hydrogen fueled devices and electric vehicles |
US6455181B1 (en) * | 2000-03-31 | 2002-09-24 | Plug Power, Inc. | Fuel cell system with sensor |
JP4632501B2 (en) * | 2000-09-11 | 2011-02-16 | 大阪瓦斯株式会社 | How to stop and store fuel cells |
JP4887558B2 (en) * | 2000-11-07 | 2012-02-29 | ソニー株式会社 | How to use the fuel cell |
JP2002260698A (en) * | 2001-02-27 | 2002-09-13 | Nissan Motor Co Ltd | Fuel cell system |
US6635370B2 (en) * | 2001-06-01 | 2003-10-21 | Utc Fuel Cells, Llc | Shut-down procedure for hydrogen-air fuel cell system |
US6838199B2 (en) * | 2002-12-26 | 2005-01-04 | Utc Fuel Cells, Llc | Start up system and method for a fuel cell power plant using a cathode electrode fuel purge |
US6984464B2 (en) * | 2003-08-06 | 2006-01-10 | Utc Fuel Cells, Llc | Hydrogen passivation shut down system for a fuel cell power plant |
-
2003
- 2003-08-06 US US10/635,779 patent/US6984464B2/en not_active Expired - Lifetime
-
2004
- 2004-07-29 CN CNB2004800291800A patent/CN100481587C/en not_active Expired - Fee Related
- 2004-07-29 EP EP04779682A patent/EP1665427B1/en not_active Expired - Lifetime
- 2004-07-29 KR KR1020067002506A patent/KR101129937B1/en active IP Right Grant
- 2004-07-29 WO PCT/US2004/024700 patent/WO2005018017A2/en active Application Filing
- 2004-07-29 JP JP2006522637A patent/JP2007534108A/en active Pending
- 2004-07-29 BR BRPI0413357-9A patent/BRPI0413357A/en not_active IP Right Cessation
-
2005
- 2005-11-22 US US11/284,867 patent/US20060078780A1/en not_active Abandoned
- 2005-11-29 US US11/289,196 patent/US7141324B2/en not_active Expired - Lifetime
-
2007
- 2007-10-29 US US11/978,270 patent/US20080107936A1/en not_active Abandoned
-
2010
- 2010-09-13 US US12/880,493 patent/US7855020B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6399231B1 (en) * | 2000-06-22 | 2002-06-04 | Utc Fuel Cells, Llc | Method and apparatus for regenerating the performance of a PEM fuel cell |
US20040001980A1 (en) * | 2002-06-26 | 2004-01-01 | Balliet Ryan J. | System and method for shutting down a fuel cell power plant |
US6835479B2 (en) * | 2002-06-26 | 2004-12-28 | Utc Fuel Cells, Llc | System and method for shutting down a fuel cell power plant |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8957611B2 (en) * | 2010-10-25 | 2015-02-17 | Hyundai Motor Company | Starting device for high-voltage components of fuel cell vehicle and method for controlling the same |
US20120098332A1 (en) * | 2010-10-25 | 2012-04-26 | Hyundai Motor Company | Starting device for high-voltage components of fuel cell vehicle and method for controlling the same |
US11495807B2 (en) | 2012-04-02 | 2022-11-08 | Hydrogenics Corporation | Fuel cell start up method |
US20150064509A1 (en) * | 2012-04-02 | 2015-03-05 | Hydrogenics Corporation | Fuel cell start up method |
US11804611B2 (en) | 2012-04-02 | 2023-10-31 | Hydrogenics Corporation | Fuel cell start up method |
US10741859B2 (en) * | 2012-04-02 | 2020-08-11 | Hydrogenics Corporation | Fuel cell start up method |
US11101477B2 (en) | 2012-04-02 | 2021-08-24 | Hydrogenics Corporation | Fuel cell start up method |
US10084196B2 (en) | 2012-05-04 | 2018-09-25 | Hydrogenics Corporation | System and method for controlling fuel cell module |
FR2992777A1 (en) * | 2012-06-27 | 2014-01-03 | Michelin & Cie | FUEL CELL POWER SUPPLY SYSTEM |
US20150380752A1 (en) * | 2012-06-27 | 2015-12-31 | Compagnie Generale Des Etablissements Michelin | Fuel Cell Supply System |
WO2014001253A1 (en) * | 2012-06-27 | 2014-01-03 | Compagnie Generale Des Etablissements Michelin | Fuel cell supply system |
US9559369B2 (en) * | 2012-06-27 | 2017-01-31 | Compagnie Generale Des Etablissements Michelin | Fuel cell supply system |
US20140322625A1 (en) * | 2013-04-24 | 2014-10-30 | GM Global Technology Operations LLC | Systems and methods to monitor and control a flow of air within a fuel cell stack |
US9397354B2 (en) * | 2013-04-24 | 2016-07-19 | GM Global Technology Operations LLC | Systems and methods to monitor and control a flow of air within a fuel cell stack |
CN106133997A (en) * | 2013-10-02 | 2016-11-16 | 水吉能公司 | Quick-starting direct fuel cell |
CN111509265A (en) * | 2013-10-02 | 2020-08-07 | 水吉能公司 | Power supply system and fuel cell module starting method |
US10680258B2 (en) * | 2013-10-02 | 2020-06-09 | Hydrogenics Corporation | Fast starting fuel cell |
US10181610B2 (en) * | 2013-10-02 | 2019-01-15 | Hydrogenics Corporation | Fast starting fuel cell |
US11309556B2 (en) | 2013-10-02 | 2022-04-19 | Hydrogenics Corporation | Fast starting fuel cell |
US20160218381A1 (en) * | 2013-10-02 | 2016-07-28 | Hydrogenics Corporation | Fast starting fuel cell |
US20150288041A1 (en) * | 2013-10-02 | 2015-10-08 | Hydrogenics Corporation | Fast starting fuel cell |
US11901591B2 (en) | 2016-03-22 | 2024-02-13 | Loop Energy Inc. | Fuel cell flow field design for thermal management |
WO2023018925A1 (en) * | 2021-08-12 | 2023-02-16 | Ticona Llc | Fluidic member for use in a fuel cell system |
Also Published As
Publication number | Publication date |
---|---|
US6984464B2 (en) | 2006-01-10 |
EP1665427A4 (en) | 2010-08-25 |
KR101129937B1 (en) | 2012-03-28 |
KR20060119867A (en) | 2006-11-24 |
US7855020B1 (en) | 2010-12-21 |
WO2005018017A2 (en) | 2005-02-24 |
US20050031917A1 (en) | 2005-02-10 |
US20080107936A1 (en) | 2008-05-08 |
WO2005018017A3 (en) | 2005-06-09 |
CN100481587C (en) | 2009-04-22 |
CN1864292A (en) | 2006-11-15 |
EP1665427B1 (en) | 2012-11-21 |
BRPI0413357A (en) | 2006-10-10 |
US20060078780A1 (en) | 2006-04-13 |
JP2007534108A (en) | 2007-11-22 |
EP1665427A2 (en) | 2006-06-07 |
US7141324B2 (en) | 2006-11-28 |
US20060083963A1 (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7855020B1 (en) | Hydrogen passivation shut down system for a fuel cell power plant | |
US8142950B2 (en) | Hydrogen passivation shut down system for a fuel cell power plant | |
US6635370B2 (en) | Shut-down procedure for hydrogen-air fuel cell system | |
US6835479B2 (en) | System and method for shutting down a fuel cell power plant | |
US7147945B2 (en) | System for determining a gas composition within a shut down fuel cell power plant and method of operation | |
JP4656947B2 (en) | Startup system and method for a fuel cell power plant using cathode electrode fuel purge | |
JP4538190B2 (en) | High fuel utilization in the fuel cell | |
US20070166598A1 (en) | Passive electrode blanketing in a fuel cell | |
US20060251937A1 (en) | Stop method for fuel cell system and fuel cell system | |
US8557455B2 (en) | Method for controlling the pressure in an anode of a fuel cell, and a fuel cell | |
US20120315558A1 (en) | Hydrogen passivation shut down system for a fuel cell power plant | |
US8277991B2 (en) | Hydrogen passivation shut down system for a fuel cell power plant | |
US6743538B2 (en) | Fuel cell system and method for operating same | |
JP7512338B2 (en) | Fuel Cell Systems | |
JP2005209569A (en) | Control method and control unit of fuel and air for fuel cell | |
JP2003229165A (en) | Solid polymer fuel cell |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: UNITED TECHNOLOGIES CORPORATION, CONNECTICUT Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UTC POWER CORPORATION;REEL/FRAME:031033/0325 Effective date: 20130626 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: AUDI AG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BALLARD POWER SYSTEMS INC.;REEL/FRAME:035772/0192 Effective date: 20150506 |
|
AS | Assignment |
Owner name: AUDI AG, GERMANY Free format text: CORRECTION OF ASSIGNEE ADDRESS PREVIOUSLY RECORDED AT REEL 035772, FRAME 0192;ASSIGNOR:BALLARD POWER SYSTEMS INC.;REEL/FRAME:036407/0001 Effective date: 20150506 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |