US20100324186A1 - Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles - Google Patents

Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles Download PDF

Info

Publication number
US20100324186A1
US20100324186A1 US12/854,314 US85431410A US2010324186A1 US 20100324186 A1 US20100324186 A1 US 20100324186A1 US 85431410 A US85431410 A US 85431410A US 2010324186 A1 US2010324186 A1 US 2010324186A1
Authority
US
United States
Prior art keywords
organo
hydrocarbon
thermoplastic resin
otes
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/854,314
Inventor
John Nicholas Birmingham
Stephan Claude De La Veaux
Yunghsing Samson Hsu
Peter Jernakoff
Kevin Joseph Leary
Charles David Musick
Philipp M. Niedenzu
Narayanan S. Subramanian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US12/854,314 priority Critical patent/US20100324186A1/en
Publication of US20100324186A1 publication Critical patent/US20100324186A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3676Treatment with macro-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3692Combinations of treatments provided for in groups C09C1/3615 - C09C1/3684
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2993Silicic or refractory material containing [e.g., tungsten oxide, glass, cement, etc.]
    • Y10T428/2995Silane, siloxane or silicone coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • This invention relates to a process for producing titanium dioxide particles suitable for incorporation at high loadings into polymer matrices, said particles possessing the attributes of a high degree of polymer additive derived discolouration resistance, good photodurability, excellent volatilization resistance, high dispersibility, good processing in high load polymer matrices, excellent optical properties, and high bulk density.
  • a problem associated with use of these surface treated particles is their inability to varying degrees to resist the UV light induced formation of chromophores (typically yellow) when the particles are incorporated into polymer matrices possessing (in concert) certain types of phenolic stabilizers (such as, for example, butylated hydroxytoluene or butylated hydroxyanisole) and hindered amine light stabilizers (such as, for example, bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate).
  • phenolic stabilizers such as, for example, butylated hydroxytoluene or butylated hydroxyanisole
  • hindered amine light stabilizers such as, for example, bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate.
  • Another problem is their inability to yield particle/polymer composites that possess any significant photodurability, that is, resistance of the particle/polymer composite to UV light induced degradation.
  • One aspect of this invention is to provide a composition
  • a composition comprising a titanium dioxide particle having on the surface of said particle a substantially encapsulating layer comprising a pyrogenically-deposited metal oxide; said substantially encapsulating layer having on its surface at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight poly
  • the at least one organic surface treatment material is an organo-silane having the formula:
  • pigments and thermoplastic resins comprising a composition of the invention.
  • Another aspect of the invention is to provide a method for producing high lacing resistant, semi-photodurable, stabilizer-derived yellowing resistant titanium dioxide particles comprising:
  • a further aspect is to provide a method for producing high lacing resistant, semi-photodurable, stabilizer-derived yellowing resistant titanium dioxide particles comprising:
  • Also provided is a method for producing high lacing resistant, semi-photodurable, stabilizer-derived yellowing resistant titanium dioxide particles comprising:
  • a further aspect is to provide a method for producing high lacing resistant, semi-photodurable, stabilizer-derived yellowing resistant titanium dioxide particles comprising:
  • Another aspect is to provide a method for producing high lacing resistant, semi-photodurable, stabilizer-derived yellowing resistant titanium dioxide particles comprising:
  • substantially encapsulating layer means that the surface of the titanium dioxide particle is predominately covered with a layer of pyrogenic metal oxide.
  • Titanium dioxide particles suitable for use in the invention are those that have been substantially encapsulated with a pyrogenic metal oxide.
  • Methods such as, for example, those disclosed in co-owned, co-pending U.S. Patent Publication No. 2003/0051635, incorporated herein by reference, are particularly suitable for producing titanium dioxide particles substantially encapsulated with a pyrogenic metal oxide.
  • the composition of the oxide treatment deposited on the titanium dioxide particles is an amorphous pyrogenically-deposited metal oxide.
  • the pyrogenically-deposited metal oxide is silica, alumina, zirconia, phosphoria, boria, or mixtures thereof.
  • silica such as pyrogenic silica deposited by a process disclosed in U.S. Patent Publication No. 2003/0051635.
  • the thickness of the treatment layer deposited is typically in a range of from about 2 to about 6 nm, but any amount of deposited pyrogenic metal oxide is suitable.
  • the particles are typically more than 99% rutile.
  • the method of adding the at least one organic surface treatment material to the titanium dioxide particles substantially encapsulated with pyrogenically-deposited metal oxide of the present invention is not especially critical, and said TiO2 particles may be treated with the at least one organic surface treatment material in a number of ways.
  • the at least one organic surface treatment material can be added either neat or via solution to said TiO2 particles while said particles are either in a dry state or in a wet state.
  • Examples involving the former state include, but are not limited to, the addition of said material (1) to conveyed particles via injector mixer technology such as that described in U.S. Pat. No. 4,430,001 or as described in WO 97/07879 published Mar. 6, 1997, and assigned to E.I.
  • du Pont de Nemours and Company (2) to particles undergoing deagglomeration in a micronizer (said material typically added to the micronizer feed block or to conveyed pigment up to about several feet past the exit of the micronizer) or in a dry media mill.
  • a micronizer said material typically added to the micronizer feed block or to conveyed pigment up to about several feet past the exit of the micronizer
  • dry media mill examples involving the latter state include, but are not limited to, the addition of said material (1) to particles present in slurry form either separate from or during filtration, (2) to particle wet cake after filtration but before drying, (3) to particles that are being dried by, for example, flash dryer or spray drier based techniques or (4) to particles undergoing deagglomeration via wet media milling techniques.
  • the at least one organic surface treatment material can be added in portions at different processing stages. For example, one-half of said material can be added during a drying step and the remaining half at a subsequent stage such as during a deagglomer
  • Suitable organic surface treatment materials include, but are not limited to, for example, organo-silanes; organo-siloxanes; fluoro-silanes; organo-phosphonates; organo-phosphoric acid compounds such as organo-acid phosphates, organo-pyrophosphates, organo-polyphosphates, and organo-metaphosphates; organo-phosphinates; organo-sulfonic compounds; hydrocarbon-based carboxylic acids and associated derivatives and polymers; hydrocarbon-based amides; low molecular weight hydrocarbon waxes; low molecular weight polyolefins and co-polymers thereof; hydrocarbon-based polyols and derivatives thereof; alkanolamines and derivatives thereof; and commonly utilized organic dispersing agents; all the above utilized either individually or as mixtures, applied in concert or sequentially.
  • the surface of the titanium dioxide particles substantially encapsulated with a pyrogenically-deposited metal oxide are treated with an organo-sio
  • Suitable organo-silanes for use in the practice of this invention include silanes disclosed in U.S. Pat. No. 5,560,845 issued to Birmingham, Jr. et al. on Oct. 1, 1996, having the general formula
  • At least one R is a non-hydrolyzable organic group, such as alkyl, cycloalkyl, aryl, or aralkyl, having 1-20 carbon atoms, preferably 4-20 carbon atoms, most preferably 6-20 carbon atoms, and at least one R is a hydrolyzable group such as alkoxy, halogen, acetoxy, or hydroxy.
  • the other two R are, independently, hydrolyzable or non-hydrolyzable as above. It is preferred that at least two, and especially that three, of the R are hydrolyzable.
  • the non-hydrolyzable R can be fully or partially fluorine substituted.
  • Organo-silane in reference to the non-hydrolyzable R group(s).
  • Organo-silanes may be linear or branched, substituted or unsubstituted, and saturated or unsaturated.
  • non-hydrolyzable R are non-reactive.
  • Alkyl, cycloalkyl, aryl, and aralkyl are preferred non-hydrolyzable R, with alkyl being most preferred, including the possibility of any of these groups being fully or partially fluorine substituted.
  • the organo-silane can be represented by
  • Preferred R 6 include methoxy, ethoxy, chloro, and hydroxy. Ethoxy is especially preferred for ease of handling.
  • Preferred organo-silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, hexadecyltriethoxysilane, heptadecyltriethoxysilane and octadecyltriethoxysilane. Mixtures of organo-silanes can be used.
  • the R 5 8-18 carbon atoms are preferred, for example for enhanced processibility.
  • R 6 ethoxy is preferred for ease of handling. Most preferred is octyltriethoxysilane.
  • Suitable organo-siloxanes for use in the practice of this invention are of the general formula
  • Polydimethylsiloxane (PDMS) terminated in a multitude of different ways, for example, by trimethylsilyl functionality, and the like are the preferred polysiloxanes.
  • useful organo-siloxanes include, for example, polymethylhydrosiloxane (PMHS) and polysiloxanes derived from the functionalization (by hydrosilylation) of PMHS with olefins.
  • Organo-silanes and polysiloxanes are commercially available or can be prepared by processes known in the art. See, for example, S. Pawlenko, “Organosilicon Compounds”, G. Thieme Verlag, New York (1980).
  • R 8 is an alkyl group or a cycloalkyl group containing 1 to 22 carbon atoms and R 9 and R 10 are each, independently, hydrogen, an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group.
  • R 8 contains from 1 to 20, more preferably 4-20, and even more preferably 6-20 carbon atoms and is a straight chain alkyl group.
  • organo-phosphonates possessing linear or branched, substituted or unsubstituted and saturated and unsaturated R 8 , R 9 and R 10 functionality are suitable for use.
  • Organo-phosphonates of use include n-octylphosphonic acid and its esters, n-decylphosphonic acid and its esters, 2-ethylhexylphosphonic acid and its esters, and camphyl phosphonic acid and its esters.
  • R 9 and R 10 are both hydrogen, the above Formula IV represents an organo-phosphonic acid, and when at least one of R 9 and R 10 is a hydrocarbyl group, the formula represents an ester of an organo-phosphonic acid.
  • R 9 and R 10 preferably contain up to 10 carbon atoms and more preferably up to 8 carbon atoms (i.e., the ester is an ester of an alcohol containing up to 10, and preferably up to 8 carbon atoms).
  • R 9 and R 10 can be different but frequently are the same.
  • Suitable esters include ethyl esters, butyl esters, octyl esters, cyclohexyl esters, and phenyl esters.
  • organo-phosphonate derivatives possessing hydrolyzable halogen functionality examples of which include, but are not limited to, n-octylphosphonic dichloride, n-decylphosphonic dichloride and 2-ethylhexylphosphonic dichloride.
  • Suitable organo-phosphoric acid compounds for use in the practice of this invention include an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, or a salt of any of the aforementioned organo-phosphoric acid compounds as disclosed in U.S. Pat. No. 6,713,543 issued to EI-Shoubary et al. on Mar. 30, 2004.
  • Suitable organo-acid phosphates have the general formula
  • R 11 is an organic group having from 2 to 22 carbon atoms.
  • organo-acid phosphate refers to a compound that may be represented by Formula V.
  • the organic groups may be linear or branched, substituted or unsubstituted, and saturated or unsaturated.
  • R 11 is a linear hexyl- or octyl-aliphatic group or a branched hexyl- or octyl-aliphatic group.
  • Suitable organo-pyrophosphate or organo-polyphosphate compounds may be represented by the formula:
  • each R 12 is an organic group having from 2 to 22 carbon atoms or hydrogen and within any one molecule, any two or more R 12 groups may be the same provided that at least one of the R 12 groups is not hydrogen.
  • R 12 as used in Formula VI denotes any organic group that contains from 2 to 22 carbon atoms or hydrogen. Within any molecule the R 12 groups may all be the same moiety or they may be different moieties. These organic groups may be linear or branched, substituted or unsubstituted, and saturated or unsaturated. If the R 12 groups are all the same moieties, then they cannot be hydrogen. Preferably at least one of the R 12 groups is hydrogen and at least one of the R 12 groups will be linear hexyl or octyl aliphatic groups or branched hexyl or octyl aliphatic groups.
  • organopyrophosphate acid compounds and organopolyphosphate acid compounds include caprylpyrophosphate, 2-ethylhexylpyrophosphate, dihexylpyrophosphate, dihexylammoniumpyrophosphate, dioctylpyrophosphate, diisooctylpyrophosphate, dioctyltriethanolaminepyrophosphate, bis(2-ethylhexyl)pyrophosphate, bis(2-ethylhexyl) sodium pyrophosphate, tetraethylpyrophosphate, tetrabuytlpyrophosphate, tetrahexylpyrophosphate, tetraoctylpyrophosphate, pentahexyltripolyphosphate, pentaoctyltripolyphosphate, tetrahexyl sodium tripolyphosphate, tetrahexylammoniumtripolyphosphate, pentahexyl
  • Suitable organo-metaphosphate compounds may be represented by the formula:
  • each R 13 is an organic group having from 2 to 22 carbon atoms or hydrogen and within any one molecule, any two or more R 13 groups may be the same provided that at least one of the R 13 groups is not hydrogen.
  • R 13 as used in Formula VII denotes any organic group that contains from 2 to 22 carbon atoms or hydrogen. These organic groups may be linear or branched, substituted or unsubstituted, and saturated or unsaturated. “b” may be from about 1 to about 14, and preferably “b” is from about 4 to about 14. Within any molecule, the R 13 groups may all be the same moiety or they may be different moieties. If the R 13 groups are all the same moieties, then they cannot be hydrogen. Preferably at least one of the R 13 groups will be a linear hexyl or octyl aliphatic group or a branched hexyl or octyl aliphatic group. Examples of organo-metaphosphates include ethylmetaphosphate, propylmetaphosphate, butylmetaphosphate, hexylmetaphosphate, and octylmetaphosphate.
  • organo-phosphoric acids of the present invention may be utilized in their acidic or salt forms.
  • salts useful with the present invention are the potassium, sodium, ammonium, and aluminum salts and salts formed with alkanolamines such as triethanolamine of the substances identified by Formula V, Formula VI, or Formula VII.
  • Organo-acid phosphates are readily available commercially or may be prepared by procedures known or knowable to those skilled in the art such as those procedures disclosed in U.S. Pat. No. 4,350,645, issued to Kurosaki et al. on Sep. 21, 1982.
  • Organo-pyrophosphates and organo-polyphosphates are readily available commercially or produced according to the procedures that are known or easily knowable to persons skilled in the art.
  • Organo-metaphosphates may also be produced according to the procedures that are known or easily knowable to persons skilled in the art. Examples of these procedures for synthesizing organo-pyrophosphates, organo-polyphosphates, and organo-metaphosphates are described in Alder, Howard and Woodstock, Willard Chem, Indus., 1942, 51:516.
  • Suitable organo-phosphinates for use in the practice of this invention include those which are represented by the general formulas
  • R 14 , R 16 , R 17 are alkyl groups or cycloalkyl groups containing 1 to 22 carbon atoms and R 15 and R 18 are each, independently, hydrogen, an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group.
  • R 14 , R 16 , R 17 contain from 1 to 20, more preferably 4-20, and even more preferably 6-20 carbon atoms and are straight chain alkyl groups.
  • organo-phosphinates possessing linear or branched, substituted or unsubstituted and saturated and unsaturated R 14 , R 15 , R 16 , R 17 , and R 18 functionality are suitable for use.
  • R 16 and R 17 can be different but frequently are the same.
  • Phosphorus compounds of use include, but are not limited to, n-hexylphosphinic acid and its esters (VIII), n-octylphosphinic acid and its esters (VIII), di-n-hexylphosphinic acid and its esters (IX) and di-n-octylphosphinic acid and its esters (IX).
  • R 15 and R 18 are both hydrogen the above formula represents an organo-phosphinic acid and when at least one of R 15 and R 18 is a hydrocarbyl group the formula represents an ester of an organo-phosphinic acid.
  • R 15 and R 18 contain up to 10 carbon atoms and more preferably up to 8 carbon atoms (i.e. the ester is an ester of an alcohol containing up to 10, and preferably up to 8 carbon atoms).
  • Suitable esters include ethyl esters, butyl esters, octyl esters, cyclohexyl esters, and phenyl esters.
  • organo-phosphinate derivatives possessing hydrolyzable halogen functionality examples of which include, but are not limited to, chloroethylphosphine oxide and chlorodiethylphosphine oxide.
  • Organo-sulfonic compounds as disclosed in U.S. Pat. No. 6,646,037 issued to EI-Shoubary et al. on Nov. 11, 2003, may in general be represented by Formula X, which includes not only organo-sulfonic acids, but also their salts. These organo-sulfonic compounds of Formula X may be synthesized de novo or obtained from commercial sources.
  • Formula X is:
  • R 19 represents a saturated, unsaturated, branched, linear, or cyclic organic group having from 2 to 22 carbon atoms; c equals 1, 2, 3, or 4; and M represents hydrogen, a metal ion, ammonium ion or organoammonium ion such as protonated triethanolamine.
  • M is a metal ion, it is a metal ion with a valence of +1, +2, +3, or +4 such as Na 1+ , Ca 2+ , Mg 2+ , Al 3+ , or Ti 4+ .
  • R 19 is hexyl-, octyl-, or 2-ethylhexyl-.
  • Suitable hydrocarbon-based carboxylic acids for use in the practice of this invention include those that possess linear or branched, substituted or unsubstituted and saturated or unsaturated (including aromatic) functionality as well as one or more carboxylic acid groups.
  • said acids will possess about 2-28, more preferably 2-18, and most preferably 2-12 carbon atoms.
  • Said acids can be applied to the particle surface both as the free acid or as a neutralized salt.
  • suitable acids include maleic, malonic, fumaric, benzoic, phthalic, stearic, oleic, and linoleic.
  • esters and partial esters formed by the reaction of the above described hydrocarbon-based carboxylic acids with organic hydroxy compounds that possess linear or branched, substituted or unsubstituted, and saturated or unsaturated (including aromatic) functionality and, typically, 1 to 6 hydroxyl (OH) groups.
  • organic hydroxy compounds that possess linear or branched, substituted or unsubstituted, and saturated or unsaturated (including aromatic) functionality and, typically, 1 to 6 hydroxyl (OH) groups.
  • suitable non-aromatic hydroxy compounds include, but are not limited to, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, and pentaerythritol.
  • aromatic hydroxy compounds examples include, but are not limited to, bisphenol A, hydroquinone, and phloroglucinol. Said esters and partial esters are described in U.S. Pat. No. 5,288,320 issued to Decelles on Feb. 22, 1994.
  • Polyesters derived from the self-condensation of, for example, 12-hydroxystearic acid or from, for example, the condensation of a dicarboxylic acid containing compound with a dihydroxyl containing compound can also be utilized for the current invention.
  • Suitable hydrocarbon-based amides for use in the practice of this invention include those that possess linear or branched, substituted or unsubstituted and saturated or unsaturated (including aromatic) functionality.
  • said amides will possess about 8-22, more preferably 12-22, and most preferably 18-22 carbon atoms.
  • suitable amides include stearamide, oleamide, and erucamide.
  • Also suitable for use in the practice of this invention are surface treatments derived from relatively low molecular weight hydrocarbon waxes and polyolefins, the latter either homopolymeric, for example, polyethylene or polypropylene, or derived from the co-polymerization of, for example, ethylene with one or more of propylene, butylene, vinylacetate, acrylates, or acrylamide.
  • hydrocarbon-based polyols examples include species such as glycerol and the commonly utilized particle grinding aids trimethylolethane and trimethylolpropane.
  • alkanolamines examples include diethanolamine and triethanolamine.
  • Common organic dispersing agents that are of use in the practice of this invention include, but are not limited to, citric acid, polyacrylic acid, and polymethacrylic acid as well as the more complex, specialty polymeric organic dispersing agents possessing anionic, cationic, zwitterionic, or non-ionic functionality and whose structures are typically trade secrets but are usually derived from linear, comb, star, brush, or dendrimer based polymer chain and pendant substituent morphologies.
  • organic surface treatments may also be used various inorganic based dispersing aids which are usually phosphate, polyphosphate, pyrophosphate, and metaphosphate derived and are typically added, either as the acids or associated salts, to particle slurries.
  • inorganic based dispersing aids which are usually phosphate, polyphosphate, pyrophosphate, and metaphosphate derived and are typically added, either as the acids or associated salts, to particle slurries.
  • Mixtures of organic surface treatment materials are contemplated, including mixtures of organic surface treatment materials from within one class of compounds, for example mixtures of organo-silanes, or mixtures of organic surface treatment materials from within two or more classes, for examples mixtures organo-silanes and organo-phosphonates.
  • Weight content of the organic surface treatment material is typically about 0.05 to about 5 weight %, preferably about 0.1 to about 1.5 weight %. In excess of 5 weight % may be used.
  • titanium dioxide particles substantially encapsulated with a pyrogenically-deposited metal oxide can be treated with only one organic surface treatment material or mixtures of said material added in a single treatment step
  • alternative embodiments contemplate subsequent treatment of said titanium dioxide particles with additional organic surface treatment materials.
  • titanium dioxide particles previously treated with one organic surface treatment material can be treated with the same organic surface treatment material repeating the previous treatment method or using another treatment method.
  • a different organic surface treatment material can be added through an identical treatment method or through another treatment method. Treatments beyond one additional treatment are contemplated.
  • Weight content of the organic surface treatment material in layers beyond the first layer of organic surface treatment material, based on total TiO 2 , is typically about 0.01 to about 1.0 weight %, but higher amounts are acceptable.
  • the method of adding additional treatments of organic surface treatment materials is not especially critical, and any of the aforementioned methods may be used for subsequent treatments.
  • the additional layers of organic surface treatment material beyond the first layer of organic surface treatment material are added via the use of an apparatus for coating particles, such as powdery or granular materials, as described in WO 97/07879 published Mar. 6, 1997, and assigned to E.I. du Pont de Nemours and Company, or as described in U.S. Pat. No. 4,430,001.
  • Use of said apparatus for encapsulating titanium dioxide particles with the organic surface treatment material involves metering a liquid composition comprising the organic surface treatment material, where the liquid composition is either a solution, slurry, or melt, into a flow restrictor and injecting a gas stream through the flow restrictor concurrently with the metering of the liquid composition to create a zone of turbulence at the outlet of the flow restrictor, thereby atomizing the liquid composition.
  • the gas stream can be heated if necessary.
  • Dried titanium dioxide particles substantially encapsulated with a pyrogenically-deposited metal oxide can be added to the zone of turbulence concurrently with the metering of the liquid composition and the injection of the heated gas to mix the titanium dioxide particles with the atomized liquid composition.
  • said titanium dioxide particles can be added downstream of the zone of turbulence. The mixing at the zone of turbulence treats the titanium dioxide particles with the organic surface treatment material.
  • thermoplastic resins such as those disclosed in U.S. Pat. No. 5,397,391.
  • thermoplastic resins such as those disclosed in U.S. Pat. No. 5,397,391.
  • thermoplastic resins include, but are not limited to, such well known classes of thermoplastic resins as polyolefin resins, acrylic resins, polyester resins, polyamide resins, epoxy resins, phenolic resins, poly(vinylaromatic) resins, poly(vinylhalide) resins, polycarbonate resins, fluoropolymer resins, elastomeric polymer resins, polyurethaneurea resins, polyurethane resins, polyacetal resins, polyimide resins, polyetherimide resins, polyamideimide resins, polyetheretherketone resins, polyetherketoneketone resins, liquid crystal polymer resins and the like, and blends thereof.
  • thermoplastic resins include polyolefin resins such as polyethylene including, but not limited to, polyethylene made with conventional, high activity and metallocene-based catalyst systems such as, for example, ultra low density polyethylenes (ULDPE), very low density polyethylenes (VLDPE), linear low density polyethylenes (LLDPE), low density polyethylenes (LDPE), medium density polyethylenes (MDPE), high density polyethylenes (HDPE), high molecular weight high density polyethylenes (HMWHDPE), ultra high molecular weight high density polyethylenes (UHMWHDPE), ethylene/vinyl acetate (EVA) co-polymer, ethylene/methacrylic acid (EMA) co-polymer, and blends thereof, polypropylene including homopolymers, copolymers, compounded and in situ thermoplastic olefins, and the like, and blends thereof; acrylic resins such as poly(acrylic acid), poly(methacrylic acid), poly(methyl
  • thermoplastics may be used to fill thermoplastics in any of the customary ways such as, for example, extrusion applications including, for example, cast film extrusion, blown film extrusion, slit film extrusion, sheet and profile extrusion, fiber and filament extrusion, and wire coating extrusion; molded article applications including, for example, injection molding, blow molding, and rotational molding; and post-article forming coating applications such as, for example, powder coating, roll-on coating, brush-on coating, trowel-on coating, and spray-on coating.
  • extrusion applications including, for example, cast film extrusion, blown film extrusion, slit film extrusion, sheet and profile extrusion, fiber and filament extrusion, and wire coating extrusion
  • molded article applications including, for example, injection molding, blow molding, and rotational molding
  • post-article forming coating applications such as, for example, powder coating, roll-on coating, brush-on coating, trowel-on coating, and spray-on coating.
  • thermoplastics include, for example, polyethylenes, polypropylenes, polyesters, polyvinyl chlorides, styrenes, polyamides, and polycarbonates.
  • thermoplastics include, for example, polyethylenes and polypropylenes.
  • thermoplastics include, for example, polypropylenes.
  • thermoplastics include, for example, polyethylenes, polypropylenes, polyesters, polyvinyl chlorides, styrenes, fluoropolymers, polyamides, polycarbonates, elastomeric polymers, polyimides, polyetherimides, polyamideimides, polyetheretherketones, polyetherketoneketones, polyphenylene sulfides, and polyacetals.
  • thermoplastics include, for example, polypropylenes, polyesters, polyamides, and polyurethaneureas and elastomeric polymers.
  • thermoplastics include, for example, polyethylenes, polyvinyl chlorides, and fluoropolymers, polyimides, polyetherimides, and elastomeric polymers.
  • thermoplastics include, for example, polyethylenes, polypropylenes, polyesters, polyvinyl chlorides, styrenes, polyamides, polycarbonates, urethanes, acetals, polyphenylene sulfides, elastomeric polymers, polyimides, polyetherimides, polyamideimides, polyetheretherketones, and liquid crystalline polymers.
  • thermoplastics include, for example, polyethylenes, polypropylenes, polyesters, polyvinyl chlorides, polyamides, and polycarbonates.
  • thermoplastics include, for example, polyethylenes and polypropylenes.
  • thermoplastics include, for example, polyethylenes, polyvinyl chlorides, fluoropolymers, elastomeric polymers, and urethanes.
  • compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit, and scope of the invention. More specifically, it will be apparent that certain agents which are chemically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the invention as defined by the appended claims.
  • the invention herein can be construed as excluding any element or process step that does not materially affect the basic and novel characteristics of the composition or process. Additionally, the invention can be construed as excluding any element or process step not specified herein.
  • the produced filter cake was removed from the filter apparatus and dropped onto a conveying screw where neat octyltriethoxysilane (OTES) was added to said cake by peristaltic pump.
  • OTES octyltriethoxysilane
  • the resulting pigment/OTES mixture was then fed directly to a spray dryer.
  • the resultant dried product (dryer exit temperature ⁇ 100° C.) was then pneumatically conveyed to a fluid energy mill (steam micronizer) where it was subjected to de-agglomeration and subsequently packaged.
  • the resulting material (analyzed in ⁇ 1 metric ton increments) possessed OTES-derived carbon values ranging from 0.19 to 0.37 wt %.
  • the produced filter cake was conveyed to a flash dryer where said cake was simultaneously dried and treated with varying amounts of neat octyltriethoxysilane (OTES) which was injected directly into the dryer body.
  • the resultant dried product (dryer exit temperature ⁇ 120° C.) was then conveyed to a fluid energy mill (steam micronizer) where it was subjected to de-agglomeration and subsequently packaged.
  • the resulting material (analyzed in ⁇ 5 metric ton increments) possessed OTES-derived carbon values ranging from 0.29 to 0.32 wt %.
  • An additional ⁇ 260 metric tons of OTES-treated material was produced as described above with the exception that the OTES was added to the dry pigment just prior to said pigment entering the steam micronizer. Material produced using this latter procedure (again analyzed in ⁇ 5 metric ton increments) possessed OTES-derived carbon values ranging from 0.26 to 0.38 wt %.
  • the produced filter cake was conveyed to a flash dryer where said cake was simultaneously dried and treated with varying amounts of neat trimethylolpropane (TMP), which was injected directly into the dryer body.
  • TMP trimethylolpropane
  • the resultant dried product (dryer exit temperature ⁇ 120° C.) was then conveyed to a fluid energy mill (steam micronizer) where it was subjected to de-agglomeration and subsequently packaged.
  • the resulting material (analyzed in ⁇ 5 metric ton increments) possessed TMP-derived carbon values ranging from 0.12 to 0.29 wt %.
  • the dried product was also found to possess an average silica (SiO 2 ) content of about 1.3 wt % and not the larger value (see above) determined for the titanium particles prior to their TMP treatment. This reduction in silica content was attributed to an inadvertent contamination of the aqueous slurry of the pyrogenic silica-encapsulated titanium dioxide particles with slurry
  • the produced filter cake was conveyed to a flash dryer where said cake was simultaneously dried and treated with neat OTES, which was injected directly into the dryer body.
  • the resultant dried product (dryer exit temperature ⁇ 120° C.) was then conveyed to a fluid energy mill (steam micronizer) where it was subjected to de-agglomeration and subsequently packaged. Standard characterization of the resulting material (analyzed in ⁇ 20 metric ton increments) yielded the data provided in Table 1:
  • the resulting thick films (2.6 wt % pigment, 0.3 wt % BHT, 0.3 wt % Tinuvin® 770) were then hot pressed ( ⁇ 325-350° F. (162.8-176.7° C.), ⁇ 50,000 psi (3516.2 kg/cm 2 ) for ⁇ 2 minutes) into plaques using a pre-made template.
  • the initial CIE Commission Internationale de l'Eclairage
  • L*a*b* color coordinates of the plaques were then measured (Hunter Lab Labscan XE, 10° observer angle, D65 light source) and the plaques subsequently placed into an enclosed, ultraviolet light source-containing light box (not temperature controlled).
  • the resulting masterbatches were then ground into small pieces and individually combined by hand with fresh low density polyethylene (DuPont 20) to yield 20 wt % product mixtures which were then dried overnight (88° C.) in air.
  • Each of the prepared mixtures was then converted (400 g per conversion) into a thin ribbon ( ⁇ 1.0-1.5 mil ( ⁇ 0.0254-0.0381 mm) thick, ⁇ 23 ⁇ 4 inches ( ⁇ 6.985 cm) wide) using a single screw extruder.
  • the temperature of the film extrudate was ⁇ 610° F. ( ⁇ 321.1° C.). After cooling, the extruded ribbons were then examined for signs of lacing using the rating scheme presented in Table 3.
  • Example 2 Product collected from Example 2, as well as a control sample derived from an OTES-treated, non-silica-containing commercial product (high processing rate control), were evaluated for their effect on the melt flow rate of highly loaded masterbatch.
  • Said masterbatches were prepared by individually compounding the above indicated products into polyethylene (NA206, Equistar) at a 70 wt % product loading using a 30 mm co-rotating twin screw extruder (Werner and Pfleiderer) set up to extrude masterbatch at 50, 60 and 70 pound/hour (22.7, 27.2 and 31.8 kg/hour) rates (300 rpm screw speed, all barrel temperature controllers set to 150° C.).
  • a general purpose screw design was used as was standard post-compounding equipment consisting of a strand die, a cooling water trough and an air knife pelletizer. Neither screens nor breaker plates were employed during the compounding runs.
  • the produced masterbatch pellets (as well as pellets of the unpigmented resin used to make the above described masterbatches) were vacuum dried under a nitrogen purge (204° C., 12 hours) prior to their analysis for melt flow rate. Said analysis was carried out at 190° C. using a Dynisco Kayeness Model D4004 melt indexer in accordance with ASTM Method D-1238 Condition 190/2.160 (360 seconds preheat time, sample cuts taken at 15 second intervals). The resulting data is presented in Table 8.
  • Example 8 The data in Table 8 reveal that, independent of their production rate, the masterbatches produced with the pyrogenic silica-encapsulated, OTES-treated sample (Sample 1) possessed noticeably higher melt flow rate values relative to those of the masterbatch produced using the OTES-treated, non-silica-containing, high processing rate control sample (Control 1). This unexpected finding has favourable practical implications as it suggests that the product of this invention can be incorporated into masterbatch at high loadings without a concern for the occurrence of undesirable masterbatch processing rate restrictions. Further evidence in this regard is provided in Example 10.
  • the resulting masterbatches were ground into small pieces prior to their analysis for melt flow rate. Said analysis was carried out at 190° C. using a Dynisco Kayeness Model 7053 melt indexer in accordance with ASTM Method D-1238 Condition 190/2.160 (360 seconds preheat time, sample cuts taken at 30 second intervals). The resulting data is presented in Table 9.
  • Said methodology involved an initial hand sieving of product through a 10 mesh sieve over a tared pan until said pan was overfilled. Excess product above the rim of the pan was then carefully and uniformly removed using a large spatula blade held at a 45° angle (from

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

One aspect of the invention is to provide a composition comprising a titanium dioxide particle having on the surface of said particle a substantially encapsulating layer comprising a pyrogenically-deposited metal oxide; said substantially encapsulating layer having on its surface at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof. Another aspect of the invention is to provide processes for producing said composition.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 60/565,773, filed Apr. 27, 2004 incorporated by reference herein in its entirety.
  • FIELD OF THE INVENTION
  • This invention relates to a process for producing titanium dioxide particles suitable for incorporation at high loadings into polymer matrices, said particles possessing the attributes of a high degree of polymer additive derived discolouration resistance, good photodurability, excellent volatilization resistance, high dispersibility, good processing in high load polymer matrices, excellent optical properties, and high bulk density.
  • BACKGROUND OF THE INVENTION
  • The surface application of certain organosilicon compounds to initially untreated, chloride process-derived titanium dioxide particles has been described for allowing incorporation of the particles at high loadings, high processing rates and with a high degree of dispersion into various thermoplastic polymer matrices, particularly polyolefin derived matrices, see for example, U.S. Pat. Nos. 5,607,994; 5,631,310; 5,889,090; and 5,959,004. In addition, the treatment has been known to allow the subsequent production of finished articles, e.g., films, which are unaffected by the development of imperfections because of the release of particle associated volatiles. During high temperature thin film fabrication, these imperfections are typically referred to as lacing.
  • However, a problem associated with use of these surface treated particles is their inability to varying degrees to resist the UV light induced formation of chromophores (typically yellow) when the particles are incorporated into polymer matrices possessing (in concert) certain types of phenolic stabilizers (such as, for example, butylated hydroxytoluene or butylated hydroxyanisole) and hindered amine light stabilizers (such as, for example, bis(2,2,6,6-tetramethyl-4-piperidinyl) sebacate). Another problem is their inability to yield particle/polymer composites that possess any significant photodurability, that is, resistance of the particle/polymer composite to UV light induced degradation.
  • Substantially encapsulating the particles, before the addition of any organic surface treatment, with certain metal oxides (for example, silica, alumina, or mixtures thereof) deposited in an aqueous environment by either batch or continuous operations has been described to solve the problems of chromophore formation and photodurability, see, for example, U.S. Pat. Nos. 3,437,502; 5,993,533; and 6,783,586. However, a serious disadvantage of this solution is that the resulting metal oxide shell is prone to moisture retention and/or moisture generation which can, under high temperature fabrication conditions, result in the formation of the aforementioned polymer matrix imperfections, e.g., lacing in high temperature thin film fabrication.
  • It has now been found that the above-described problems and disadvantages can be significantly overcome and the highly desirable benefits associated with the aforementioned organosilane surface treatment technology retained by coupling an organosilane surface treatment with the encapsulation technology described in US Patent Publication No. 2003/0051635, incorporated herein by reference in its entirety. The encapsulation technology described in US Patent Publication No. 2003/0051635 encapsulates titanium dioxide particles with a thin shell of pyrogenically deposited silica. It has surprisingly been found that combining these techniques allows the preparation, using standard commercial production equipment, of titanium dioxide particles possessing the attributes of a high degree of polymer additive derived discolouration resistance, good photodurability, excellent volatilization resistance, high dispersibility, good processing in high load polymer matrices, excellent optical properties, and high bulk density.
  • SUMMARY OF THE INVENTION
  • One aspect of this invention is to provide a composition comprising a titanium dioxide particle having on the surface of said particle a substantially encapsulating layer comprising a pyrogenically-deposited metal oxide; said substantially encapsulating layer having on its surface at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof.
  • In a preferred embodiment, the at least one organic surface treatment material is an organo-silane having the formula:

  • R5 xSiR6 4-x
      • wherein
      • R5 is a nonhydrolyzable alkyl, cycloalkyl, aryl, or aralkyl group having at least 1 to about 20 carbon atoms;
      • R6 is a hydrolyzable alkoxy, halogen, acetoxy, or hydroxy group; and
      • x=1 to 3.
        Octyltriethoxysilane is a preferred organo-silane.
  • Also provided are pigments and thermoplastic resins comprising a composition of the invention.
  • Another aspect of the invention is to provide a method for producing high lacing resistant, semi-photodurable, stabilizer-derived yellowing resistant titanium dioxide particles comprising:
      • (a) providing titanium dioxide particles having on the surface of said particles a substantially encapsulating layer comprising a pyrogenically-deposited metal oxide;
      • (b) treating said particles with at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof; and
      • (c) optionally, repeating step (b).
  • A further aspect is to provide a method for producing high lacing resistant, semi-photodurable, stabilizer-derived yellowing resistant titanium dioxide particles comprising:
      • (a) providing a slurry comprising titanium dioxide particles having on the surface of said particles a substantially encapsulating layer comprising a pyrogenically-deposited metal oxide;
      • (b) adjusting the pH of the slurry to aid in neutralization of residual chlorine;
      • (c) adjusting the pH of the slurry to aid in filtration of the slurry;
      • (d) treating the slurry with at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof;
      • (e) filtering the slurry to produce a filter cake;
      • (f) optionally, during or after step (e), treating the filter cake with at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof;
      • (g) drying the filter cake;
      • (h) optionally, during or after step (g), treating the filter cake with at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof;
      • (i) deagglomerating titanium dioxide particles from the treated filter cake; and
      • (j) optionally, during or after step (i), treating the titanium dioxide particles with at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof.
  • Also provided is a method for producing high lacing resistant, semi-photodurable, stabilizer-derived yellowing resistant titanium dioxide particles comprising:
      • (a) providing a slurry comprising titanium dioxide particles having on the surface of said particles a substantially encapsulating layer comprising a pyrogenically-deposited metal oxide;
      • (b) adjusting the pH of the slurry to aid in neutralization of residual chlorine;
      • (c) adjusting the pH of the slurry to aid in filtration of the slurry;
      • (d) filtering the slurry to produce a filter cake;
      • (e) during or after step (d), treating the filter cake with at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof;
      • (f) drying the filter cake;
      • (g) optionally, during or after step (f), treating the filter cake with at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof;
      • (h) deagglomerating titanium dioxide particles from the treated filter cake; and
      • (i) optionally, during or after step (h), treating the titanium dioxide particles with at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof.
  • A further aspect is to provide a method for producing high lacing resistant, semi-photodurable, stabilizer-derived yellowing resistant titanium dioxide particles comprising:
      • (a) providing a slurry comprising titanium dioxide particles having on the surface of said particles a substantially encapsulating layer comprising a pyrogenically-deposited metal oxide;
      • (b) adjusting the pH of the slurry to aid in neutralization of residual chlorine;
      • (c) adjusting the pH of the slurry to aid in filtration of the slurry;
      • (d) filtering the slurry to produce a filter cake;
      • (e) drying the filter cake;
      • (f) during or after step (e), treating the filter cake with at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof;
      • (g) deagglomerating titanium dioxide particles from the treated filter cake; and
      • (h) optionally, during or after step (g), treating the titanium dioxide particles with at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof.
  • Another aspect is to provide a method for producing high lacing resistant, semi-photodurable, stabilizer-derived yellowing resistant titanium dioxide particles comprising:
      • (a) providing a slurry comprising titanium dioxide particles having on the surface of said particles a substantially encapsulating layer comprising a pyrogenically-deposited metal oxide;
      • (b) adjusting the pH of the slurry to aid in neutralization of residual chlorine;
      • (c) adjusting the pH of the slurry to aid in filtration of the slurry;
      • (d) filtering the slurry to produce a filter cake;
      • (e) drying the filter cake;
      • (f) adding the filter cake into a micronizer;
      • (g) adding to the micronizer feed block or to conveyed particles up to about several feet past the exit of the micronizer at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof; and
      • (h) optionally, treating the micronized particles with at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof.
  • Other objects and advantages of the present invention will become apparent to those skilled in the art upon reference to the detailed description that hereinafter follows.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Applicants specifically incorporate the entire content of all cited references in this disclosure. Further, when an amount, concentration, or other value or parameter is given as either a range, preferred range, or a list of upper preferable values and lower preferable values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper range limit or preferred value and any lower range limit or preferred value, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the invention be limited to the specific values recited when defining a range.
  • “Substantially encapsulating layer”, as used herein, means that the surface of the titanium dioxide particle is predominately covered with a layer of pyrogenic metal oxide.
  • Titanium dioxide particles suitable for use in the invention are those that have been substantially encapsulated with a pyrogenic metal oxide. Methods such as, for example, those disclosed in co-owned, co-pending U.S. Patent Publication No. 2003/0051635, incorporated herein by reference, are particularly suitable for producing titanium dioxide particles substantially encapsulated with a pyrogenic metal oxide.
  • The composition of the oxide treatment deposited on the titanium dioxide particles is an amorphous pyrogenically-deposited metal oxide. Preferably, the pyrogenically-deposited metal oxide is silica, alumina, zirconia, phosphoria, boria, or mixtures thereof. Most preferred is silica, such as pyrogenic silica deposited by a process disclosed in U.S. Patent Publication No. 2003/0051635. The thickness of the treatment layer deposited is typically in a range of from about 2 to about 6 nm, but any amount of deposited pyrogenic metal oxide is suitable. The particles are typically more than 99% rutile.
  • The method of adding the at least one organic surface treatment material to the titanium dioxide particles substantially encapsulated with pyrogenically-deposited metal oxide of the present invention is not especially critical, and said TiO2 particles may be treated with the at least one organic surface treatment material in a number of ways. For example, the at least one organic surface treatment material can be added either neat or via solution to said TiO2 particles while said particles are either in a dry state or in a wet state. Examples involving the former state include, but are not limited to, the addition of said material (1) to conveyed particles via injector mixer technology such as that described in U.S. Pat. No. 4,430,001 or as described in WO 97/07879 published Mar. 6, 1997, and assigned to E.I. du Pont de Nemours and Company or (2) to particles undergoing deagglomeration in a micronizer (said material typically added to the micronizer feed block or to conveyed pigment up to about several feet past the exit of the micronizer) or in a dry media mill. Examples involving the latter state include, but are not limited to, the addition of said material (1) to particles present in slurry form either separate from or during filtration, (2) to particle wet cake after filtration but before drying, (3) to particles that are being dried by, for example, flash dryer or spray drier based techniques or (4) to particles undergoing deagglomeration via wet media milling techniques. In addition, the at least one organic surface treatment material can be added in portions at different processing stages. For example, one-half of said material can be added during a drying step and the remaining half at a subsequent stage such as during a deagglomeration operation such as during micronizing.
  • Suitable organic surface treatment materials include, but are not limited to, for example, organo-silanes; organo-siloxanes; fluoro-silanes; organo-phosphonates; organo-phosphoric acid compounds such as organo-acid phosphates, organo-pyrophosphates, organo-polyphosphates, and organo-metaphosphates; organo-phosphinates; organo-sulfonic compounds; hydrocarbon-based carboxylic acids and associated derivatives and polymers; hydrocarbon-based amides; low molecular weight hydrocarbon waxes; low molecular weight polyolefins and co-polymers thereof; hydrocarbon-based polyols and derivatives thereof; alkanolamines and derivatives thereof; and commonly utilized organic dispersing agents; all the above utilized either individually or as mixtures, applied in concert or sequentially. Preferably, the surface of the titanium dioxide particles substantially encapsulated with a pyrogenically-deposited metal oxide are treated with an organo-silane.
  • Suitable organo-silanes for use in the practice of this invention include silanes disclosed in U.S. Pat. No. 5,560,845 issued to Birmingham, Jr. et al. on Oct. 1, 1996, having the general formula

  • SiR1R2R3R4  (I)
  • in which at least one R is a non-hydrolyzable organic group, such as alkyl, cycloalkyl, aryl, or aralkyl, having 1-20 carbon atoms, preferably 4-20 carbon atoms, most preferably 6-20 carbon atoms, and at least one R is a hydrolyzable group such as alkoxy, halogen, acetoxy, or hydroxy. The other two R are, independently, hydrolyzable or non-hydrolyzable as above. It is preferred that at least two, and especially that three, of the R are hydrolyzable. The non-hydrolyzable R can be fully or partially fluorine substituted. A silane having the foregoing description is herein called “organo-silane” in reference to the non-hydrolyzable R group(s). Organo-silanes may be linear or branched, substituted or unsubstituted, and saturated or unsaturated. Preferably, non-hydrolyzable R are non-reactive. Alkyl, cycloalkyl, aryl, and aralkyl are preferred non-hydrolyzable R, with alkyl being most preferred, including the possibility of any of these groups being fully or partially fluorine substituted. When the hydrolyzable R are identical, the organo-silane can be represented by

  • R5 xSiR6 4-x  (II)
  • in which R5 is non-hydrolyzable and R6 is hydrolyzable as defined above and x=1-3. Preferred R6 include methoxy, ethoxy, chloro, and hydroxy. Ethoxy is especially preferred for ease of handling. Preferred organo-silanes include octyltriethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dodecyltriethoxysilane, tridecyltriethoxysilane, tetradecyltriethoxysilane, pentadecyltriethoxysilane, hexadecyltriethoxysilane, heptadecyltriethoxysilane and octadecyltriethoxysilane. Mixtures of organo-silanes can be used.
  • In embodiments utilizing organo-silanes represented by Formula II, preferred silanes are R5=8-18 carbon atoms; R6=ethoxy; and x=1 to 3. The R5=8-18 carbon atoms are preferred, for example for enhanced processibility. R6=ethoxy is preferred for ease of handling. Most preferred is octyltriethoxysilane.
  • Suitable organo-siloxanes for use in the practice of this invention are of the general formula

  • [R7 nSiO(4-n)/2]m  (III)
  • in which R7 may be organic or inorganic, n=0-3, and m≧2.
    Polydimethylsiloxane (PDMS), terminated in a multitude of different ways, for example, by trimethylsilyl functionality, and the like are the preferred polysiloxanes. Additionally useful organo-siloxanes include, for example, polymethylhydrosiloxane (PMHS) and polysiloxanes derived from the functionalization (by hydrosilylation) of PMHS with olefins.
  • Organo-silanes and polysiloxanes are commercially available or can be prepared by processes known in the art. See, for example, S. Pawlenko, “Organosilicon Compounds”, G. Thieme Verlag, New York (1980).
  • Suitable organo-phosphonates for use in the practice of this invention are disclosed in U.S. Pat. No. 5,837,049 issued to Watson et al. on Nov. 17, 1998, and have the general formula
  • Figure US20100324186A1-20101223-C00001
  • in which R8 is an alkyl group or a cycloalkyl group containing 1 to 22 carbon atoms and R9 and R10 are each, independently, hydrogen, an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group.
    Preferably, R8 contains from 1 to 20, more preferably 4-20, and even more preferably 6-20 carbon atoms and is a straight chain alkyl group. However, organo-phosphonates possessing linear or branched, substituted or unsubstituted and saturated and unsaturated R8, R9 and R10 functionality are suitable for use. Organo-phosphonates of use include n-octylphosphonic acid and its esters, n-decylphosphonic acid and its esters, 2-ethylhexylphosphonic acid and its esters, and camphyl phosphonic acid and its esters.
  • When R9 and R10 are both hydrogen, the above Formula IV represents an organo-phosphonic acid, and when at least one of R9 and R10 is a hydrocarbyl group, the formula represents an ester of an organo-phosphonic acid. In the case of esters, R9 and R10 preferably contain up to 10 carbon atoms and more preferably up to 8 carbon atoms (i.e., the ester is an ester of an alcohol containing up to 10, and preferably up to 8 carbon atoms). R9 and R10 can be different but frequently are the same. Suitable esters include ethyl esters, butyl esters, octyl esters, cyclohexyl esters, and phenyl esters.
  • In addition to the above described organo-phosphonates, one can also envision utilizing in the practice of this invention organo-phosphonate derivatives possessing hydrolyzable halogen functionality examples of which include, but are not limited to, n-octylphosphonic dichloride, n-decylphosphonic dichloride and 2-ethylhexylphosphonic dichloride.
  • Suitable organo-phosphoric acid compounds for use in the practice of this invention include an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, or a salt of any of the aforementioned organo-phosphoric acid compounds as disclosed in U.S. Pat. No. 6,713,543 issued to EI-Shoubary et al. on Mar. 30, 2004. Suitable organo-acid phosphates have the general formula

  • (R11—O)yPO(OH)z  (V)
  • wherein y=1 or 2; z=3−y; and R11 is an organic group having from 2 to 22 carbon atoms.
  • The phrase “organo-acid phosphate” as used herein refers to a compound that may be represented by Formula V. In the organo-acid phosphate of Formula V, the organic groups may be linear or branched, substituted or unsubstituted, and saturated or unsaturated. Preferably R11 is a linear hexyl- or octyl-aliphatic group or a branched hexyl- or octyl-aliphatic group.
  • Suitable organo-pyrophosphate or organo-polyphosphate compounds may be represented by the formula:

  • R12 a—P(a−2)O4+[3(a−3)]  (VI)
  • wherein a=4-14; and each R12 is an organic group having from 2 to 22 carbon atoms or hydrogen and within any one molecule, any two or more R12 groups may be the same provided that at least one of the R12 groups is not hydrogen.
  • The symbol R12 as used in Formula VI denotes any organic group that contains from 2 to 22 carbon atoms or hydrogen. Within any molecule the R12 groups may all be the same moiety or they may be different moieties. These organic groups may be linear or branched, substituted or unsubstituted, and saturated or unsaturated. If the R12 groups are all the same moieties, then they cannot be hydrogen. Preferably at least one of the R12 groups is hydrogen and at least one of the R12 groups will be linear hexyl or octyl aliphatic groups or branched hexyl or octyl aliphatic groups. Examples of organopyrophosphate acid compounds and organopolyphosphate acid compounds include caprylpyrophosphate, 2-ethylhexylpyrophosphate, dihexylpyrophosphate, dihexylammoniumpyrophosphate, dioctylpyrophosphate, diisooctylpyrophosphate, dioctyltriethanolaminepyrophosphate, bis(2-ethylhexyl)pyrophosphate, bis(2-ethylhexyl) sodium pyrophosphate, tetraethylpyrophosphate, tetrabuytlpyrophosphate, tetrahexylpyrophosphate, tetraoctylpyrophosphate, pentahexyltripolyphosphate, pentaoctyltripolyphosphate, tetrahexyl sodium tripolyphosphate, tetrahexylammoniumtripolyphosphate, pentahexyl sodium tetrapolyphosphate, trioctyl sodium tetrapolyphosphate, trioctyl potassium tetrapolyphosphate, hexabutyltetrapolyphosphate, hexahexyltetrapolyphosphate, and hexaoctyltetrapolyphosphate.
  • Suitable organo-metaphosphate compounds may be represented by the formula:

  • (R13PO3)b  (VII)
  • wherein b=1-14, and each R13 is an organic group having from 2 to 22 carbon atoms or hydrogen and within any one molecule, any two or more R13 groups may be the same provided that at least one of the R13 groups is not hydrogen.
  • The symbol R13 as used in Formula VII denotes any organic group that contains from 2 to 22 carbon atoms or hydrogen. These organic groups may be linear or branched, substituted or unsubstituted, and saturated or unsaturated. “b” may be from about 1 to about 14, and preferably “b” is from about 4 to about 14. Within any molecule, the R13 groups may all be the same moiety or they may be different moieties. If the R13 groups are all the same moieties, then they cannot be hydrogen. Preferably at least one of the R13 groups will be a linear hexyl or octyl aliphatic group or a branched hexyl or octyl aliphatic group. Examples of organo-metaphosphates include ethylmetaphosphate, propylmetaphosphate, butylmetaphosphate, hexylmetaphosphate, and octylmetaphosphate.
  • The organo-phosphoric acids of the present invention may be utilized in their acidic or salt forms. Examples of salts useful with the present invention are the potassium, sodium, ammonium, and aluminum salts and salts formed with alkanolamines such as triethanolamine of the substances identified by Formula V, Formula VI, or Formula VII.
  • Organo-acid phosphates are readily available commercially or may be prepared by procedures known or knowable to those skilled in the art such as those procedures disclosed in U.S. Pat. No. 4,350,645, issued to Kurosaki et al. on Sep. 21, 1982. Organo-pyrophosphates and organo-polyphosphates are readily available commercially or produced according to the procedures that are known or easily knowable to persons skilled in the art. Organo-metaphosphates may also be produced according to the procedures that are known or easily knowable to persons skilled in the art. Examples of these procedures for synthesizing organo-pyrophosphates, organo-polyphosphates, and organo-metaphosphates are described in Alder, Howard and Woodstock, Willard Chem, Indus., 1942, 51:516.
  • Suitable organo-phosphinates for use in the practice of this invention include those which are represented by the general formulas

  • R14P(O)H(OR15)  (VIII)

  • and

  • R16R17P(O)(OR18)  (IX)
  • in which R14, R16, R17 are alkyl groups or cycloalkyl groups containing 1 to 22 carbon atoms and R15 and R18 are each, independently, hydrogen, an alkyl group, a cycloalkyl group, an aryl group, or an aralkyl group. Preferably, R14, R16, R17 contain from 1 to 20, more preferably 4-20, and even more preferably 6-20 carbon atoms and are straight chain alkyl groups. However, organo-phosphinates possessing linear or branched, substituted or unsubstituted and saturated and unsaturated R14, R15, R16, R17, and R18 functionality are suitable for use. R16 and R17 can be different but frequently are the same. Phosphorus compounds of use include, but are not limited to, n-hexylphosphinic acid and its esters (VIII), n-octylphosphinic acid and its esters (VIII), di-n-hexylphosphinic acid and its esters (IX) and di-n-octylphosphinic acid and its esters (IX).
  • When R15 and R18 are both hydrogen the above formula represents an organo-phosphinic acid and when at least one of R15 and R18 is a hydrocarbyl group the formula represents an ester of an organo-phosphinic acid. In the case of esters, preferably, R15 and R18 contain up to 10 carbon atoms and more preferably up to 8 carbon atoms (i.e. the ester is an ester of an alcohol containing up to 10, and preferably up to 8 carbon atoms). Suitable esters include ethyl esters, butyl esters, octyl esters, cyclohexyl esters, and phenyl esters.
  • In addition to the above described organo-phosphinates, one can also envision utilizing in the practice of this invention organo-phosphinate derivatives possessing hydrolyzable halogen functionality examples of which include, but are not limited to, chloroethylphosphine oxide and chlorodiethylphosphine oxide.
  • Organo-sulfonic compounds, as disclosed in U.S. Pat. No. 6,646,037 issued to EI-Shoubary et al. on Nov. 11, 2003, may in general be represented by Formula X, which includes not only organo-sulfonic acids, but also their salts. These organo-sulfonic compounds of Formula X may be synthesized de novo or obtained from commercial sources. Formula X is:

  • (R19SO3)cMc+  (X)
  • where R19 represents a saturated, unsaturated, branched, linear, or cyclic organic group having from 2 to 22 carbon atoms; c equals 1, 2, 3, or 4; and M represents hydrogen, a metal ion, ammonium ion or organoammonium ion such as protonated triethanolamine. Preferably, if M is a metal ion, it is a metal ion with a valence of +1, +2, +3, or +4 such as Na1+, Ca2+, Mg2+, Al3+, or Ti4+. Preferably, R19 is hexyl-, octyl-, or 2-ethylhexyl-.
  • Suitable hydrocarbon-based carboxylic acids for use in the practice of this invention include those that possess linear or branched, substituted or unsubstituted and saturated or unsaturated (including aromatic) functionality as well as one or more carboxylic acid groups. Preferably, said acids will possess about 2-28, more preferably 2-18, and most preferably 2-12 carbon atoms. Said acids can be applied to the particle surface both as the free acid or as a neutralized salt. Examples of suitable acids include maleic, malonic, fumaric, benzoic, phthalic, stearic, oleic, and linoleic.
  • Also suitable for use in the practice of this invention are esters and partial esters formed by the reaction of the above described hydrocarbon-based carboxylic acids with organic hydroxy compounds that possess linear or branched, substituted or unsubstituted, and saturated or unsaturated (including aromatic) functionality and, typically, 1 to 6 hydroxyl (OH) groups. Examples of appropriate non-aromatic hydroxy compounds include, but are not limited to, ethylene glycol, propylene glycol, trimethylolpropane, diethanolamine, triethanolamine, glycerol, hexanetriol, erythritol, mannitol, sorbitol, and pentaerythritol. Examples of appropriate aromatic hydroxy compounds include, but are not limited to, bisphenol A, hydroquinone, and phloroglucinol. Said esters and partial esters are described in U.S. Pat. No. 5,288,320 issued to Decelles on Feb. 22, 1994.
  • Polyesters derived from the self-condensation of, for example, 12-hydroxystearic acid or from, for example, the condensation of a dicarboxylic acid containing compound with a dihydroxyl containing compound can also be utilized for the current invention.
  • Suitable hydrocarbon-based amides for use in the practice of this invention include those that possess linear or branched, substituted or unsubstituted and saturated or unsaturated (including aromatic) functionality. Preferably, said amides will possess about 8-22, more preferably 12-22, and most preferably 18-22 carbon atoms. Examples of suitable amides include stearamide, oleamide, and erucamide.
  • Also suitable for use in the practice of this invention are surface treatments derived from relatively low molecular weight hydrocarbon waxes and polyolefins, the latter either homopolymeric, for example, polyethylene or polypropylene, or derived from the co-polymerization of, for example, ethylene with one or more of propylene, butylene, vinylacetate, acrylates, or acrylamide.
  • In addition to the above described additives, one can also utilize as particle surface treatments in the practice of this invention hydrocarbon-based polyols, alkanolamines, and derivatives thereof, for example, esters and partial esters. Examples of said polyols include species such as glycerol and the commonly utilized particle grinding aids trimethylolethane and trimethylolpropane. Examples of said alkanolamines include diethanolamine and triethanolamine.
  • Common organic dispersing agents that are of use in the practice of this invention include, but are not limited to, citric acid, polyacrylic acid, and polymethacrylic acid as well as the more complex, specialty polymeric organic dispersing agents possessing anionic, cationic, zwitterionic, or non-ionic functionality and whose structures are typically trade secrets but are usually derived from linear, comb, star, brush, or dendrimer based polymer chain and pendant substituent morphologies.
  • Note that, in conjunction with the above, organic surface treatments may also be used various inorganic based dispersing aids which are usually phosphate, polyphosphate, pyrophosphate, and metaphosphate derived and are typically added, either as the acids or associated salts, to particle slurries.
  • Mixtures of organic surface treatment materials are contemplated, including mixtures of organic surface treatment materials from within one class of compounds, for example mixtures of organo-silanes, or mixtures of organic surface treatment materials from within two or more classes, for examples mixtures organo-silanes and organo-phosphonates.
  • Weight content of the organic surface treatment material, based on total TiO2, is typically about 0.05 to about 5 weight %, preferably about 0.1 to about 1.5 weight %. In excess of 5 weight % may be used.
  • While titanium dioxide particles substantially encapsulated with a pyrogenically-deposited metal oxide can be treated with only one organic surface treatment material or mixtures of said material added in a single treatment step, alternative embodiments contemplate subsequent treatment of said titanium dioxide particles with additional organic surface treatment materials. Thus, for example, titanium dioxide particles previously treated with one organic surface treatment material can be treated with the same organic surface treatment material repeating the previous treatment method or using another treatment method. Alternatively, a different organic surface treatment material can be added through an identical treatment method or through another treatment method. Treatments beyond one additional treatment are contemplated.
  • Weight content of the organic surface treatment material in layers beyond the first layer of organic surface treatment material, based on total TiO2, is typically about 0.01 to about 1.0 weight %, but higher amounts are acceptable.
  • As described above for the initial treatments of organic surface treatment material, the method of adding additional treatments of organic surface treatment materials is not especially critical, and any of the aforementioned methods may be used for subsequent treatments. In a preferred embodiment, the additional layers of organic surface treatment material beyond the first layer of organic surface treatment material are added via the use of an apparatus for coating particles, such as powdery or granular materials, as described in WO 97/07879 published Mar. 6, 1997, and assigned to E.I. du Pont de Nemours and Company, or as described in U.S. Pat. No. 4,430,001. Use of said apparatus for encapsulating titanium dioxide particles with the organic surface treatment material involves metering a liquid composition comprising the organic surface treatment material, where the liquid composition is either a solution, slurry, or melt, into a flow restrictor and injecting a gas stream through the flow restrictor concurrently with the metering of the liquid composition to create a zone of turbulence at the outlet of the flow restrictor, thereby atomizing the liquid composition. The gas stream can be heated if necessary. Dried titanium dioxide particles substantially encapsulated with a pyrogenically-deposited metal oxide can be added to the zone of turbulence concurrently with the metering of the liquid composition and the injection of the heated gas to mix the titanium dioxide particles with the atomized liquid composition. Alternatively, said titanium dioxide particles can be added downstream of the zone of turbulence. The mixing at the zone of turbulence treats the titanium dioxide particles with the organic surface treatment material.
  • Pigments disclosed herein can be employed to readily and uniformly fill a wide variety of thermoplastic resins, such as those disclosed in U.S. Pat. No. 5,397,391. These include, but are not limited to, such well known classes of thermoplastic resins as polyolefin resins, acrylic resins, polyester resins, polyamide resins, epoxy resins, phenolic resins, poly(vinylaromatic) resins, poly(vinylhalide) resins, polycarbonate resins, fluoropolymer resins, elastomeric polymer resins, polyurethaneurea resins, polyurethane resins, polyacetal resins, polyimide resins, polyetherimide resins, polyamideimide resins, polyetheretherketone resins, polyetherketoneketone resins, liquid crystal polymer resins and the like, and blends thereof. Representative, but non-limiting, examples of these various classes of thermoplastic resins include polyolefin resins such as polyethylene including, but not limited to, polyethylene made with conventional, high activity and metallocene-based catalyst systems such as, for example, ultra low density polyethylenes (ULDPE), very low density polyethylenes (VLDPE), linear low density polyethylenes (LLDPE), low density polyethylenes (LDPE), medium density polyethylenes (MDPE), high density polyethylenes (HDPE), high molecular weight high density polyethylenes (HMWHDPE), ultra high molecular weight high density polyethylenes (UHMWHDPE), ethylene/vinyl acetate (EVA) co-polymer, ethylene/methacrylic acid (EMA) co-polymer, and blends thereof, polypropylene including homopolymers, copolymers, compounded and in situ thermoplastic olefins, and the like, and blends thereof; acrylic resins such as poly(acrylic acid), poly(methacrylic acid), poly(methylacrylate), poly(methylmethacrylate), and the like, and blends thereof; polyester resins such as poly(ethylene terephthalate), poly(butylene terephthalate), poly(cyclohexylene-dimethylene terephthalate), poly(trimethylene terephthalate), poly(ethylene naphthalate), and the like, and blends thereof; polyamide resins such as nylon 6, nylon 6,6, nylon 6/6,6 co-polymer, nylon 11, nylon 6,10, nylon 6,12, amorphous nylon, and the like, and blends thereof; epoxy resins such as poly(epichlorohydrin/bisphenol A) and the like and esters thereof such as those prepared by the esterification of poly(epichlorohydrin/bisphenol A) with a fatty acid, resin acid, tall oil acid or mixtures thereof; phenolic resins such as those derived from the reaction of formaldehyde with phenol, resorcinol, cresol, p-phenylphenol, and the like, and blends thereof; poly(vinylaromatic) resins such as polystyrene and copolymers thereof such as poly(styrene-acrylonitrile), poly(acrylonitrile-styrene-butadiene), poly(acrylonitrile-styrene-acetate), and the like, and blends thereof; poly(vinylhalide) resins, such as poly(vinylchloride), poly(vinylchloride/vinylidene chloride), and the like, and blends thereof; polycarbonate resins such as those attained either by the phosgenation of dihydroxy aliphatic or aromatic monomers such as ethylene glycol, propylene glycol, bisphenol A (i.e., 4,4′-isopropylidene diphenol), and the like or by the base catalyzed transesterification of bisphenol A with dimethyl or diphenyl carbonate to produce bisphenol A polycarbonate, and blends thereof; fluoropolymer resins, such as tetrafluoroethylene/perfluoro(propyl vinyl ether) (PFA) co-polymer, polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), tetrafluoroethylene/hexafluoropropylene (FEP) co-polymer, ethylene/tetrafluoroethylene/perfluorobutyl ethylene (EFTE) ter-polymer, ethylene/chlorotrifluoroethylene (ECTFE) co-polymer, and the like, and blends thereof; elastomeric polymer resins such as natural rubber, synthetic rubber, acrylics, chlorosulfonated polyethylene, neoprene, silicones, urethanes, and the like, and blends thereof; polyurethaneurea resins such as polyether- and polyester-based spandex, and the like, and blends thereof; polyurethane resins obtained by the reaction of di- or poly-functional hydroxy compounds such as glycols or hydroxyl terminated polyesters and polyethers with di- or poly-isocyanate containing compounds, and the like, such as, for example, 4,4′-dicyclohexylmethane diisocyanate (H12MDI), hexamethyl diisocyanate (HDI), isophorone diisocyanate (IPDI), methylene diphenyl diisocyanate (MDI), toluene diisocyanate (TDI), tetramethylxylene diisocyanate (TMXDI), o-tolidine diisocyanate (TODD, 1,4-cyclohexane diisocyanate (CHDI), and blends thereof; polyacetal resins such as polyformaldehyde, copolymers of formaldehyde with cyclic ethers such as, for example, ethylene oxide, 1,3-dioxolane, and the like, and blends thereof; polyimide resins obtained by the reaction of an aromatic dianhydride such as pyromellitic dianhydride with an aromatic diamine such as p-phenylenediamine, and the like, and blends thereof; polyetherimide resins obtained by the reaction of an aromatic dianhydride such as pyromellitic dianhydride with an aromatic diamine such as 4,4′-oxydianiline, and the like, and blends thereof; polyamideimide resins obtained by the reaction of an aromatic anhydride acid chloride such as trimellitic anhydride acid chloride with an aliphatic diamine such as 1,4-cyclohexanediamine, and the like, and blends thereof; polyetheretherketone resins obtained by the reaction of an dihaloaromatic ketone such as bis(4-chlorophenyl) ketone with an aromatic diol such as hydroquinone, and the like, and blends thereof; polyetherketoneketone resins obtained by the reaction of an diaromatic ether such as diphenyl ether with an aromatic diacid chloride such as terephthaloyl chloride, and the like, and blends thereof; and liquid crystal polymer resins such as those as described in U.S. Pat. No. 6,492,463, and the like, and blends thereof.
  • Particles comprising compositions of the invention may be used to fill thermoplastics in any of the customary ways such as, for example, extrusion applications including, for example, cast film extrusion, blown film extrusion, slit film extrusion, sheet and profile extrusion, fiber and filament extrusion, and wire coating extrusion; molded article applications including, for example, injection molding, blow molding, and rotational molding; and post-article forming coating applications such as, for example, powder coating, roll-on coating, brush-on coating, trowel-on coating, and spray-on coating.
  • In cast film extrusion, useful thermoplastics include, for example, polyethylenes, polypropylenes, polyesters, polyvinyl chlorides, styrenes, polyamides, and polycarbonates.
  • In blown film extrusion, useful thermoplastics include, for example, polyethylenes and polypropylenes.
  • In slit film extrusion, useful thermoplastics include, for example, polypropylenes.
  • In sheet and profile extrusion, useful thermoplastics include, for example, polyethylenes, polypropylenes, polyesters, polyvinyl chlorides, styrenes, fluoropolymers, polyamides, polycarbonates, elastomeric polymers, polyimides, polyetherimides, polyamideimides, polyetheretherketones, polyetherketoneketones, polyphenylene sulfides, and polyacetals.
  • In fiber and filament extrusion, useful thermoplastics include, for example, polypropylenes, polyesters, polyamides, and polyurethaneureas and elastomeric polymers.
  • In wire coating extrusion, useful thermoplastics include, for example, polyethylenes, polyvinyl chlorides, and fluoropolymers, polyimides, polyetherimides, and elastomeric polymers.
  • In injection molding, useful thermoplastics include, for example, polyethylenes, polypropylenes, polyesters, polyvinyl chlorides, styrenes, polyamides, polycarbonates, urethanes, acetals, polyphenylene sulfides, elastomeric polymers, polyimides, polyetherimides, polyamideimides, polyetheretherketones, and liquid crystalline polymers.
  • In blow molding, useful thermoplastics include, for example, polyethylenes, polypropylenes, polyesters, polyvinyl chlorides, polyamides, and polycarbonates.
  • In rotational molding, useful thermoplastics include, for example, polyethylenes and polypropylenes.
  • In post-article forming coatings, useful thermoplastics include, for example, polyethylenes, polyvinyl chlorides, fluoropolymers, elastomeric polymers, and urethanes.
  • All of the compositions and methods disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the compositions and methods of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the compositions and methods and in the steps or in the sequence of steps of the method described herein without departing from the concept, spirit, and scope of the invention. More specifically, it will be apparent that certain agents which are chemically related may be substituted for the agents described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope, and concept of the invention as defined by the appended claims.
  • In one embodiment, the invention herein can be construed as excluding any element or process step that does not materially affect the basic and novel characteristics of the composition or process. Additionally, the invention can be construed as excluding any element or process step not specified herein.
  • EXAMPLES
  • The present invention is further defined in the following Examples. It should be understood that these Examples, while indicating preferred embodiments of the invention, are given by way of illustration only. From the above discussion and these Examples, one skilled in the art can ascertain the preferred features of this invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various uses and conditions.
  • The meaning of abbreviations is as follows: “h” means hour(s), “min” means minute(s), “sec” means second(s), “mL” means milliliter(s), “g” means gram(s), “psi” means pound(s) per square inch, “wt %” means weight percent(age), “Pa” means Pascal, “TGA” means thermogravimetric analysis, “OTES” means octyltriethoxysilane, “˜” means approximately, “L” means liters, “° C.” means degrees Celsius, “mil” means thousandth of an inch, “° F.” means degrees Fahrenheit, “°” means degree(s), “Δ” means delta, “vol %” means volume percent(age), “mm” means millimeter(s), “rpm” means revolutions per minute, and “cm3” means cubic centimeter(s).
  • Standard Test Methods
  • Descriptions of the standard test methodologies utilized for the physical characterization of the particles produced by the current invention (except bulk density, see Example 11) are provided below. More specifically:
      • Carbon analyses were performed on dry particle samples using LECO CNS 2000 or C400 Analyzers (LECO Corporation, St. Joseph, Mich.).
      • Dispersion analyses, as defined by particle retention on a 500 mesh screen, were performed on 50 wt % polyethylene (NA206, Equistar) masterbatch concentrates (Farrel Banbury® BR1600 produced) containing the particles of interest. Said concentrates were extruded (500 g; Killion ¾ inch single screw extruder, Cedar Grove, N.J.) through a sandwich of fine mesh, metal wire screens (30, 60, 500, 60, 60, 60 mesh) which were then separated, and the magnitude of particles retained on the 500 mesh screen determined using x-ray fluorescence (9200 Series Portable Analyzer, Texas Nuclear Corp., Austin, Tex.).
      • Vinyl based tint strength and undertone analyses were performed on flexible polyvinylchloride (Coastal Plastics, Hope Valley, R.I.) sheets containing carbon black (0.02 wt %; delivered in dioctyl phthalate; Custom Chemical Co., Elmwood, N.J.) and the particles of interest (3.16 wt %). Said sheets were produced with the aid of a two-roll mill (Kobelco Stewart Bolling, Inc., Hudson, Ohio) and were analyzed (along with a sheet comparably produced using control titanium dioxide particles) colourimetrically using a Hunter Lab Labscan XE (D65 light source; Hunter Associates Laboratory, Inc., Reston, Va.) for their X, Y and Z tristimulus values which were then converted to tint strength and undertone values via Kubelka-Monk methodology.
      • Analyses for median particle size were performed on sonicated (Sonicator Ultrasonic Liquid Processor Model XL 2020, Heat Systems, Inc., Farmingdale, N.Y.) 3 wt % solids slurries (made up in a 0.2 g/L tetrapotassium pyrophosphate solution) using a Horiba LA-900 laser light-scattering, particle size analyzer (Horiba Instruments, Inc., Irvine, Calif.).
      • Colour analyses (Commission Internationale de l'Eclairage L*a*b* color coordinates) were performed on compressed solid cakes of particles using a Hunter Lab Labscan XE (10° observer angle, D65 light source; Hunter Associates Laboratory, Inc., Reston, Va.).
    Example 1
  • Approximately 10 metric tons of pigmentary sized titanium dioxide particles (rutile crystalline phase) substantially encapsulated with about 2.0 wt % pyrogenic silica were produced using commercial scale equipment according to the teaching of U.S. Patent Publication No. 2003/0051635. An acidic, aqueous slurry of this material (˜380 g/L) was adjusted to a pH value of ˜8 (sodium hydroxide) and the residual chlorine present in said slurry neutralized. Said slurry was then acidified temporarily to pH 6 (sulfuric acid), subsequently re-adjusted to pH 8.5 (sodium hydroxide) and finally filtered (rotary drum filter). The produced filter cake was removed from the filter apparatus and dropped onto a conveying screw where neat octyltriethoxysilane (OTES) was added to said cake by peristaltic pump. The resulting pigment/OTES mixture was then fed directly to a spray dryer. The resultant dried product (dryer exit temperature ˜100° C.) was then pneumatically conveyed to a fluid energy mill (steam micronizer) where it was subjected to de-agglomeration and subsequently packaged. The resulting material (analyzed in ˜1 metric ton increments) possessed OTES-derived carbon values ranging from 0.19 to 0.37 wt %.
  • Example 2
  • Approximately 55 metric tons of pigmentary sized titanium dioxide particles (rutile crystalline phase) substantially encapsulated with about 1.5 wt % pyrogenic silica were produced using commercial scale equipment according to the teaching of U.S. Patent Publication No. 2003/0051635. An acidic, aqueous slurry of this material (˜350 g/L) was adjusted to a pH value of 4.7 (sodium hydroxide) and the residual chlorine present in said slurry neutralized. Said slurry was then filtered using a press plate filter at pH values between 4.0 (pH reductions performed using hydrochloric acid) and 5.1 (pH increases performed using sodium hydroxide). The produced filter cake was conveyed to a flash dryer where said cake was simultaneously dried and treated with varying amounts of neat octyltriethoxysilane (OTES) which was injected directly into the dryer body. The resultant dried product (dryer exit temperature ˜120° C.) was then conveyed to a fluid energy mill (steam micronizer) where it was subjected to de-agglomeration and subsequently packaged. The resulting material (analyzed in ˜5 metric ton increments) possessed OTES-derived carbon values ranging from 0.29 to 0.32 wt %. An additional ˜260 metric tons of OTES-treated material was produced as described above with the exception that the OTES was added to the dry pigment just prior to said pigment entering the steam micronizer. Material produced using this latter procedure (again analyzed in ˜5 metric ton increments) possessed OTES-derived carbon values ranging from 0.26 to 0.38 wt %.
  • Example 3
  • Approximately 194 metric tons of pigmentary sized titanium dioxide particles (rutile crystalline phase) substantially encapsulated with about 2.0 wt % pyrogenic silica were produced using commercial scale equipment according to the teaching of U.S. Patent Publication No. 2003/0051635. An acidic, aqueous slurry of this material (˜350 g/L) was adjusted to a pH value of 8.0 (sodium hydroxide) and the residual chlorine present in said slurry neutralized. Said slurry was then filtered using a press plate filter at pH values between 4.5 (pH reductions performed using hydrochloric acid) and 8.8 (pH increases performed using sodium hydroxide). The produced filter cake was conveyed to a flash dryer where said cake was simultaneously dried and treated with varying amounts of neat trimethylolpropane (TMP), which was injected directly into the dryer body. The resultant dried product (dryer exit temperature ˜120° C.) was then conveyed to a fluid energy mill (steam micronizer) where it was subjected to de-agglomeration and subsequently packaged. The resulting material (analyzed in ˜5 metric ton increments) possessed TMP-derived carbon values ranging from 0.12 to 0.29 wt %. The dried product was also found to possess an average silica (SiO2) content of about 1.3 wt % and not the larger value (see above) determined for the titanium particles prior to their TMP treatment. This reduction in silica content was attributed to an inadvertent contamination of the aqueous slurry of the pyrogenic silica-encapsulated titanium dioxide particles with slurry containing titanium dioxide particles that did not possess said encapsulation.
  • Example 4
  • Approximately 337 metric tons of pigmentary sized titanium dioxide particles (rutile crystalline phase) substantially encapsulated with about 2.0 wt % pyrogenic silica were produced using commercial scale equipment according to the teaching of U.S. Patent Publication No. 2003/0051635. An acidic, aqueous slurry of this material (˜350 g/L) was adjusted to a pH value of 6.5 (sodium hydroxide) and the residual chlorine present in said slurry neutralized. Said slurry was then filtered using a press plate filter at pH values between 3.7 (pH reductions performed using hydrochloric acid) and 4.5 (pH increases performed using sodium hydroxide). The produced filter cake was conveyed to a flash dryer where said cake was simultaneously dried and treated with neat OTES, which was injected directly into the dryer body. The resultant dried product (dryer exit temperature ˜120° C.) was then conveyed to a fluid energy mill (steam micronizer) where it was subjected to de-agglomeration and subsequently packaged. Standard characterization of the resulting material (analyzed in ˜20 metric ton increments) yielded the data provided in Table 1:
  • TABLE 1
    Analysis Data Range
    OTES-derived carbon 0.30-0.37 wt %
    Screen pack dispersion, 13-35
    500 mesh (50 wt %
    masterbatch)
    Vinyl tint strength 107-111
    Vinyl undertone 0.030-0.038
    Median particle size 0.295-0.333 microns
    Dry colour L* 99.0-99.6
    Dry colour a* −0.50-−0.64
    Dry colour b* 1.6-2.2
  • Example 5
  • Product collected from Examples 1 and 2, as well as a control sample derived from an OTES-treated, non-silica-containing commercial product (yellowing control), were evaluated for their resistance to stabilizer derived yellowing using an in-house version of the Toyo Test, the results from which are presented in Table 2. Said test involved individually compounding said products into DuPont 20 polyethylene (low density polyethylene) along with butylated hydroxytoluene (BHT) and Tinuvin® 770 (Ciba Specialty Chemicals, Tarrytown, N.Y.) using a standard two-roll milling procedure (35 mil roller gap, 220° F. (104.4° C.) and 240° F. (115.6° C.) roller temperatures). The resulting thick films (2.6 wt % pigment, 0.3 wt % BHT, 0.3 wt % Tinuvin® 770) were then hot pressed (˜325-350° F. (162.8-176.7° C.), ˜50,000 psi (3516.2 kg/cm2) for ˜2 minutes) into plaques using a pre-made template. The initial CIE (Commission Internationale de l'Eclairage) L*a*b* color coordinates of the plaques were then measured (Hunter Lab Labscan XE, 10° observer angle, D65 light source) and the plaques subsequently placed into an enclosed, ultraviolet light source-containing light box (not temperature controlled). Said plaques were then periodically removed (approximately every 1-2 days) and their CIE L*a*b* color coordinates re-obtained. A consistent rotation scheme was utilized when said plaques were placed back into the light box for continued exposure. After ˜218 hours of exposure, the Δb* value associated with each sample was normalized against that of the control sample which yellows significantly under the conditions of this test (Δb* Sample/Δb* Control).
  • TABLE 2
    OTES-
    Calculated Derived Δb* Sample/
    Pyrogenic Carbon Δb* Control after
    SiO2 Content Content Of ~218 exposure
    Sample Of Sample Sample hours
    Non-silica-containing, 0.0 wt % Typically 1.00
    OTES-treated TiO2: 0.30 wt % (by definition)
    Yellowing Control (dryer added)
    OTES-treated, 1.5 wt % 0.31 wt % 0.13
    pyrogenic silica- (dryer added)
    encapsulated
    TiO2: Sample 1
    OTES-treated, ~2.0 wt %  0.36 wt % 0.02
    pyrogenic silica- (slurry added)
    encapsulated
    TiO2: Sample 2
    OTES-treated, ~2.0 wt %  0.26 wt % 0.07
    pyrogenic silica- (slurry added)
    encapsulated
    TiO2: Sample 3
    OTES-treated, 1.4 wt % 0.30 wt % 0.20
    pyrogenic silica- (micronized
    encapsulated added)
    TiO2: Sample 4
    OTES-treated, 1.3 wt % 0.35 wt % 0.21
    pyrogenic silica- (micronizer
    encapsulated added)
    TiO2: Sample 5
    OTES-treated, 1.3 wt % 0.36 wt % 0.12
    pyrogenic silica- (micronizer
    encapsulated added)
    TiO2: Sample 6
  • The data in Table 2 reveal that all of the pyrogenic silica-encapsulated, OTES-treated samples (Samples 1 through 6) possess significantly greater stabilizer derived discolouration resistance relative to the OTES-treated, non-silica-containing, yellowing control sample. This finding has favourable practical implications as it suggests that the product of this invention can be incorporated into polymeric systems possessing a broad range of polymer additives (including stabilizers) without a concern for the occurrence of deleterious, ultraviolet light-driven, discolouration. That said finding is a direct result of the pyrogenic silica encapsulation can be logically inferred from the fact that the only important difference between Sample 1 and the yellowing control sample is that the former possesses a significant quantity of particle encapsulating pyrogenic silica while the latter does not (both sets of samples possess comparable levels of OTES-derived carbon, applied in identical fashion).
  • Example 6
  • Product collected from Examples 1 and 2, as well as control samples derived from an OTES-treated, non-silica-containing commercial product (non-lacing control) and from a non-OTES treated, amorphous alumina-containing commercial product (lacing control), were evaluated for their thin film lacing propensity using an in-house developed test. Said test involved individually compounding the above indicated products into polyethylene (NA206, Equistar) using a batch internal mixer (Farrel Banbury® BR1600) at a 50 wt % product loading (76 vol % fill factor). The resulting masterbatches were then ground into small pieces and individually combined by hand with fresh low density polyethylene (DuPont 20) to yield 20 wt % product mixtures which were then dried overnight (88° C.) in air. Each of the prepared mixtures was then converted (400 g per conversion) into a thin ribbon (˜1.0-1.5 mil (˜0.0254-0.0381 mm) thick, ˜2¾ inches (˜6.985 cm) wide) using a single screw extruder. The temperature of the film extrudate was ˜610° F. (˜321.1° C.). After cooling, the extruded ribbons were then examined for signs of lacing using the rating scheme presented in Table 3.
  • TABLE 3
    Lacing Test
    Rating Description
    10+ No indications of a pre-lacing condition (dark
    striations) or lacing (elongated thin spots or holes).
    10  No elongated thin spots or holes, but pre-lacing
    signs are present.
    8 Presence of a few very small elongated thin spots
    or holes.
    6 Presence of numerous small elongated thin spots
    or holes.
    4 Presence of numerous large elongated thin spots
    or holes.
    2 Total film is covered with elongated holes.
    0 Film break is caused by complete loss of film
    integrity.
  • Data from said examination is presented in Table 4.
  • TABLE 4
    Calculated OTES-Derived Lacing
    Pyrogenic SiO2 Carbon Content Test
    Sample Content Of Sample Of Sample Rating
    Non-silica-containing, 0.0 wt % Typically 10+
    OTES-treated TiO2: 0.30 wt %
    Non-Lacing Control (dryer added)
    Wet treatment 0.0 wt % Typically 4
    alumina- (alumina derived 0.19 wt %
    encapsulated encapsulation only) (non-OTES
    TiO2: Lacing Control derived)
    OTES-treated, 1.5 wt % 0.31 wt % 10+
    pyrogenic silica- (dryer added)
    encapsulated
    TiO2: Sample 1
    OTES-treated, 1.4 wt % 0.30 wt % 10+
    pyrogenic silica- (micronized
    encapsulated added)
    TiO2: Sample 2
    OTES-treated, 1.3 wt % 0.35 wt % 10+
    pyrogenic silica- (micronizer
    encapsulated added)
    TiO2: Sample 3
    OTES-treated, 1.3 wt % 0.36 wt % 10+
    pyrogenic silica- (micronizer
    encapsulated added)
    TiO2: Sample 4
    OTES-treated, ~2.0 wt %  0.36 wt % 10+
    pyrogenic silica- (slurry added)
    encapsulated
    TiO2: Sample 5
    OTES-treated, ~2.0 wt %  0.35 wt % 10+
    pyrogenic silica- (slurry added)
    encapsulated
    TiO2: Sample 6
  • The data in Table 4 reveal that all of the masterbatch samples derived from the pyrogenic silica-encapsulated, OTES-treated samples (Samples 1 through 6) did not lace. This finding has favourable practical implications as it suggests that the product of this invention can be incorporated into thin polymer films at high pigment loading under severe extrusion conditions without a concern for lacing-derived film damage.
  • Example 7
  • Product collected from Examples 1 and 2, as well a control sample derived from an OTES-treated, non-silica-containing commercial product (non-photodurable control), were evaluated for their photodurability behaviour (550 exposure hours) using an in-house developed gloss retention test, the results from which are presented in Table 5. Said test involved individually compounding the above indicated products into polyethylene (NA206, Equistar) using a batch internal mixer (Farrel Banbury® BR1600) at a 50 wt % pigment loading (76 vol % fill factor). The resulting masterbatches were ground into small pieces and then individually let down at 420° F. (215.6° C.) to 10 wt % TiO2 with injection molding grade polypropylene (Montell PH-920S) using a Cincinnati-Milacron (Vista VT85-7) injection molder. The molder-produced 1¾ inches×3 inches×⅛ inch (4.45 cm×7.62 cm×0.318 cm) chips were analyzed for initial gloss (average of readings from the top, middle and bottom of the to-be-exposed side of each chip) using a Byk-Gardener Gloss-Haze meter. Said chips were then weathered in an Atlas Ci65A xenon Weather-Ometer® in accordance with ASTM Method G26-92 (Annual Book of ASTM Standards, Volume. 6.01, G26-92, 310-318, (1999)). To eliminate water spotting, water with a minimum resistance of 12 megaohms was used. At periodic intervals, the chips were removed from the Weather-Ometer®, dried, and re-analyzed for surface gloss retention, loss of which results from the product-catalyzed photo-degradation of the chip polymer matrix (greater gloss retention equates with greater photo-durability).
  • TABLE 5
    Calculated % Gloss
    Pyrogenic OTES-Derived Retention After
    SiO2 Content Carbon Content 550 Exposure
    Sample Of Sample Of Sample Hours
    Non-silica-containing, 0.0 wt % Typically 48.3
    OTES-treated TiO2: 0.30 wt %
    Non-Photodurable (dryer added)
    Control
    OTES-treated, 1.5 wt % 0.31 wt % 64.0
    pyrogenic silica- (dryer added)
    encapsulated
    TiO2: Sample 1
    OTES-treated, 1.4 wt % 0.30 wt % 62.0
    pyrogenic silica- (micronized
    encapsulated added)
    TiO2: Sample 2
    OTES-treated, 1.3 wt % 0.35 wt % 61.5
    pyrogenic silica- (micronizer
    encapsulated added)
    TiO2: Sample 3
    OTES-treated, 1.3 wt % 0.36 wt % 61.2
    pyrogenic silica- (micronizer
    encapsulated added)
    TiO2: Sample 4
    OTES-treated, ~2.0 wt %  0.36 wt % 71.5
    pyrogenic silica (slurry added)
    encapsulated
    TiO2: Sample 5
    OTES-treated, ~2.0 wt %  0.35 wt % 71.4
    pyrogenic silica- (slurry added)
    encapsulated
    TiO2: Sample 6
  • The data in Table 5 reveal that all of the polyethylene/polypropylene composite chips containing the pyrogenic silica-encapsulated, OTES-treated samples (Samples 1 through 6) exhibited significantly higher gloss retention after exposure (in other words, significantly better photodurability) as compared to the chip containing the OTES-treated, non-silica-containing, non-photodurable control sample. This finding has favourable practical implications given that the photo-passivation of TiO2 particles is typically accomplished via an aqueous-based, surface deposition of inorganic oxides, treatments which are characteristically prone to moisture retention and/or generation which contribute to thin film lacing. Such treated particles cannot be reliably used for high temperature, thin film extrusion applications, unlike particles resulting from the current invention (see Example 6). That said finding is a direct result of the pyrogenic silica encapsulation can be logically inferred from the fact that the only important difference between Sample 1 and the non-photodurable control sample is that the former possesses a significant quantity of particle encapsulating pyrogenic silica while the latter does not (both sets of samples possess comparable levels of OTES-derived carbon, applied in identical fashion).
  • Example 8
  • Product collected from Examples 1 and 2, as well as control samples derived from an OTES-treated, but non-silica-containing commercial product (high processing rate control), were evaluated for their effect on the melt viscosity of highly loaded masterbatch. Said masterbatches were prepared by individually compounding the above indicated products into polyethylene (NA206, Equistar) using a batch internal mixer (Farrel Banbury® BR1600) at an 80 wt % pigment loading (74 vol % fill factor). An ˜650 g sample of each of the produced masterbatches was then degassed, while still hot, by repeatedly (5 times) running it through a two-roll mill (35 mil roller gap, 220° F. (104.4° C.) and 240° F. (115.6° C.) roller temperatures). The resulting thick films were cut into slivers (˜35 milט¼ inch×2 inch (˜0.89 mmט0.64 cm×5.08 cm)) which were then dried overnight in a vacuum oven (204° C., nitrogen purge). Appropriate amounts of the dried slivers were then fed into a Dynisco LCR7001Capillary Rheometer (die type=X400-15, capillary diameter=0.0400 inch (1.02 mm), L/D=15.00, entrance angle=120°, capillary length=0.6000 inch (1.52 cm)) and their melt viscosity versus shear rate behavior (10-1000 sec−1) determined at 190° C. Calculated (from curve fitting) low shear rate (10 sec−1) masterbatch melt viscosity data associated with product derived from Example 1 are presented in Table 6 while said data associated with product derived from Example 2 are presented in Table 7.
  • TABLE 6
    Calculated
    Pyrogenic Calculated
    SiO2 OTES-Derived Masterbatch
    Content Carbon Content Melt Viscosity
    Sample Of Sample Of Sample (190° C., 10 sec−1)
    Non-silica-containing,  0.0 wt % Typically 2951 Pa-sec
    OTES-treated TiO2: 0.30 wt %
    High Processing Rate (dryer added)
    Control 1
    Non-silica-containing,  0.0 wt % Typically 3177 Pa-sec
    OTES-treated TiO2: 0.30 wt %
    High Processing Rate (dryer added)
    Control 2
    OTES-treated, ~2.0 wt % 0.24 wt % 3128 Pa-sec
    pyrogenic silica- (slurry added)
    encapsulated
    TiO2: Sample 1
    OTES-treated, ~2.0 wt % 0.31 wt % 2680 Pa-sec
    pyrogenic silica- (slurry added)
    encapsulated
    TiO2: Sample 2
    OTES-treated, ~2.0 wt % 0.32 wt % 2522 Pa-sec
    pyrogenic silica- (slurry added)
    encapsulated
    TiO2: Sample 3
    OTES-treated, ~2.0 wt % 0.33 wt % 2464 Pa-sec
    pyrogenic silica- (slurry added)
    encapsulated
    TiO2: Sample 4
  • TABLE 7
    Calculated
    Pyrogenic Calculated
    SiO2 OTES-Derived Masterbatch
    Content Carbon Content Melt Viscosity
    Sample Of Sample Of Sample (190° C., 10 sec−1)
    Non-silica-containing, 0.0 wt % Typically 2483 Pa-sec
    OTES-treated TiO2: 0.30 wt %
    High Processing Rate (dryer added)
    Control 3
    Non-silica-containing, 0.0 wt % Typically 2662 Pa-sec
    OTES-treated TiO2: 0.30 wt %
    High Processing Rate (dryer added)
    Control 4
    OTES-treated, 1.5 wt % 0.31 wt % 2559 Pa-sec
    pyrogenic silica- (dryer added)
    encapsulated
    TiO2: Sample 5
    OTES-treated, 1.4 wt % 0.30 wt % 2493 Pa-sec
    pyrogenic silica- (micronized
    encapsulated added)
    TiO2: Sample 6
    OTES-treated, 1.3 wt % 0.35 wt % 2332 Pa-sec
    pyrogenic silica- (micronizer
    encapsulated added)
    TiO2: Sample 7
    OTES-treated, 1.3 wt % 0.36 wt % 2423 Pa-sec
    pyrogenic silica- (micronizer
    encapsulated added)
    TiO2: Sample 8
  • The data in Table 6 reveal that all of the masterbatches produced with the pyrogenic silica-encapsulated, OTES-treated samples involving slurry addition of OTES (Samples 1 through 4) possessed low shear rate melt viscosity values either comparable to or unexpectedly less than that derived from the masterbatches containing the OTES-treated, non-silica-containing, high processing rate control samples (Controls 1 and 2). The data in Table 7 show that similar behaviour is displayed by the masterbatches derived from the pyrogenic silica-encapsulated, OTES-treated samples involving dryer and micronizer addition of OTES (Samples 5 through 8, compared against Controls 3 and 4). The above aggregate findings have favourable practical implications as they suggest that the product of this invention can be incorporated into masterbatch at high loadings without a concern for the occurrence of undesirable masterbatch processing rate restrictions.
  • Example 9
  • Product collected from Example 2, as well as a control sample derived from an OTES-treated, non-silica-containing commercial product (high processing rate control), were evaluated for their effect on the melt flow rate of highly loaded masterbatch. Said masterbatches were prepared by individually compounding the above indicated products into polyethylene (NA206, Equistar) at a 70 wt % product loading using a 30 mm co-rotating twin screw extruder (Werner and Pfleiderer) set up to extrude masterbatch at 50, 60 and 70 pound/hour (22.7, 27.2 and 31.8 kg/hour) rates (300 rpm screw speed, all barrel temperature controllers set to 150° C.). A general purpose screw design was used as was standard post-compounding equipment consisting of a strand die, a cooling water trough and an air knife pelletizer. Neither screens nor breaker plates were employed during the compounding runs. The produced masterbatch pellets (as well as pellets of the unpigmented resin used to make the above described masterbatches) were vacuum dried under a nitrogen purge (204° C., 12 hours) prior to their analysis for melt flow rate. Said analysis was carried out at 190° C. using a Dynisco Kayeness Model D4004 melt indexer in accordance with ASTM Method D-1238 Condition 190/2.160 (360 seconds preheat time, sample cuts taken at 15 second intervals). The resulting data is presented in Table 8.
  • TABLE 8
    Calculated OTES-Derived Melt
    Pyrogenic Carbon Masterbatch Flow
    SiO2 Content Content Of Throughput Rate
    Sample Of Sample Sample (lb/hour) (190° C.)
    Unpigmented 13.4
    NA206
    polyethylene
    Non-silica- 0.0 wt % Typically 50 4.3
    containing, 0.30 wt %
    OTES-treated (dryer added)
    TiO2: High
    Processing
    Rate Control 1
    OTES-treated, 1.5 wt % 0.31 wt % 50 5.6
    pyrogenic (dryer added)
    silica-
    encapsulated
    TiO2: Sample 1
    Non-silica- 0.0 wt % Typically 60 4.3
    containing, 0.30 wt %
    OTES-treated (dryer added)
    TiO2: High
    Processing
    Rate Control 1
    OTES-treated, 1.5 wt % 0.31 wt % 60 5.8
    pyrogenic (dryer added)
    silica-
    encapsulated
    TiO2: Sample 1
    Non-silica- 0.0 wt % Typically 70 4.7
    containing, 0.30 wt %
    OTES-treated (dryer added)
    TiO2: High
    Processing
    Rate Control 1
    OTES-treated, 1.5 wt % 0.31 wt % 70 6.0
    pyrogenic (dryer added)
    silica-
    encapsulated
    TiO2: Sample 1
  • The data in Table 8 reveal that, independent of their production rate, the masterbatches produced with the pyrogenic silica-encapsulated, OTES-treated sample (Sample 1) possessed noticeably higher melt flow rate values relative to those of the masterbatch produced using the OTES-treated, non-silica-containing, high processing rate control sample (Control 1). This unexpected finding has favourable practical implications as it suggests that the product of this invention can be incorporated into masterbatch at high loadings without a concern for the occurrence of undesirable masterbatch processing rate restrictions. Further evidence in this regard is provided in Example 10. That said finding is a direct result of the pyrogenic silica-encapsulation can be logically inferred from the fact that the only important difference between Sample 1 and the high processing rate control sample is that the former possesses a significant quantity of particle encapsulating pyrogenic silica while the latter does not (both sets of samples possess comparable levels of OTES-derived carbon, applied in identical fashion).
  • Example 10
  • Product collected from Examples 1 and 2, as well as a control sample derived from an OTES-treated, non-silica-containing commercial product (high processing rate control), were evaluated for their effect on the melt flow rate of highly loaded masterbatch. Said masterbatches were prepared by individually compounding the above indicated products into polyethylene (NA206, Equistar) at an 80 wt % product loading using a Thermo Haake Rheomix 600p internal mixer (Thermo Electron Corporation) fitted with a pair of Banbury Mixer-type rotors (110° C. mixer pre-heat temperature; 200 rpm initial rotor speed, decreased to 120 rpm once the masterbatch temperature reached 130° C.; 10 minutes total compounding time). The resulting masterbatches were ground into small pieces prior to their analysis for melt flow rate. Said analysis was carried out at 190° C. using a Dynisco Kayeness Model 7053 melt indexer in accordance with ASTM Method D-1238 Condition 190/2.160 (360 seconds preheat time, sample cuts taken at 30 second intervals). The resulting data is presented in Table 9.
  • TABLE 9
    Calculated
    Pyrogenic OTES-Derived
    SiO2 Content Carbon Content Melt Flow
    Sample Of Sample Of Sample Rate (190° C.)
    Unpigmented 13.6 
    NA206 (average of 2
    polyethylene determinations)
    Non-silica- 0.0 wt % Typically 0.30 wt % 1.7
    containing, OTES- (dryer added) (average of 4
    treated TiO2: High determinations)
    Processing Rate
    Control 1
    OTES-treated, 1.5 wt % 0.31 wt % 2.4
    pyrogenic silica- (dryer added) (average of 4
    encapsulated determinations)
    TiO2: Sample 1
    OTES-treated, 1.3 wt % 0.36 wt % 2.9
    pyrogenic silica- (micronizer (average of 4
    encapsulated added) determinations)
    TiO2: Sample 2
    OTES-treated, 1.3 wt % 0.35 wt % 2.5
    pyrogenic silica- (micronizer (average of 4
    encapsulated added) determinations)
    TiO2: Sample 3
    OTES-treated, 1.4 wt % 0.30 wt % 2.1
    pyrogenic silica- (micronizer (average of 4
    encapsulated added) determinations)
    TiO2: Sample 4
    OTES-treated, ~2.0 wt %  0.36 wt % 2.1
    pyrogenic silica- (slurry added) (average of 2
    encapsulated determinations)
    TiO2: Sample 5
  • The data in Table 9 reveal that all of the masterbatches produced with the pyrogenic silica-encapsulated, OTES-treated samples (Samples 1 through 5) possessed noticeably higher melt flow rate values relative to that associated with the masterbatch produced using the OTES-treated, non-silica-containing, high processing rate control sample (Control 1). This unexpected finding has favourable practical implications as it suggests that the product of this invention can be incorporated into masterbatch at high loadings without a concern for the occurrence of undesirable masterbatch processing rate restrictions. That said finding is a direct result of the pyrogenic silica encapsulation can be logically inferred from the fact that the only important difference between Sample 1 and the high processing rate control sample is that the former possesses a significant quantity of particle encapsulating pyrogenic silica while the latter does not (both sets of samples possess comparable levels of OTES-derived carbon, applied in identical fashion).
  • Example 11
  • Product collected from Example 2, as well as control samples derived from an OTES-treated, non-silica-containing commercial product (hydrophobic product control), had their loose and tapped bulk density values determined, see Table 10, using in-house developed methodology. Said methodology involved an initial hand sieving of product through a 10 mesh sieve over a tared pan until said pan was overfilled. Excess product above the rim of the pan was then carefully and uniformly removed using a large spatula blade held at a 45° angle (from horizontal), taking care not to jostle the contents of the pan. The pan was then weighed to determine the amount of product added and the loose bulk density calculated (pan volume=150.58 cm3). A plastic extension ring was next carefully added to the pan. The extra volume afforded by said ring was almost completely filled with additional product, added using a metal spoon. The wooden handle end of a large spatula was then used to hand tap the underside of the pan at its center point using the same force for each tap. After 50 taps, the plastic extension ring was carefully removed and the excess product above the rim of the pan removed as described above. The pan was then re-weighed to determine the amount of product present and the tapped bulk density calculated.
  • TABLE 10
    Calculated OTES-
    Pyrogenic Derived
    SiO2 Carbon Loose Tapped
    Content Content Of Bulk Bulk
    Sample Of Sample Sample Density Density
    Non-silica-containing, 0.0 wt % Typically 0.77 g/mL 1.17 g/mL
    OTES-treated TiO2: 0.30 wt %
    Hydrophobic Pigment (dryer
    Control 1 added)
    Non-silica-containing, 0.0 wt % Typically 0.76 g/mL 1.22 g/mL
    OTES-treated TiO2: 0.30 wt %
    Hydrophobic Pigment (dryer
    Control 2 added)
    OTES-treated, 1.5 wt % 0.31 wt % 0.87 g/mL 1.41 g/mL
    pyrogenic silica- (dryer
    encapsulated added)
    TiO2: Sample 1
    OTES-treated, 1.4 wt % 0.30 wt % 0.83 g/mL 1.25 g/mL
    pyrogenic silica- (micronized
    encapsulated added)
    TiO2: Sample 2
    OTES-treated, 1.3 wt % 0.35 wt % 0.90 g/mL 1.34 g/mL
    pyrogenic silica- (micronizer
    encapsulated added)
    TiO2: Sample 3
    OTES-treated, 1.3 wt % 0.36 wt % 0.91 g/mL 1.33 g/mL
    pyrogenic silica- (micronizer
    encapsulated added)
    TiO2: Sample 4
  • The data in Table 10 reveal that the loose and tapped bulk densities of the pyrogenic silica-encapsulated, OTES treated samples (Samples 1 through 4) are greater than those associated with the OTES-treated, non-silica-containing, hydrophobic control sample group (Controls 1 and 2). This unexpected finding has favourable practical implications given that increased product bulk density tends to result in increased throughput during commercial scale polymer compounding. That said finding is a direct result of the pyrogenic silica encapsulation can be logically inferred from the fact that the only important difference between Sample 1 and the control samples is that the former possesses a significant quantity of particle encapsulating pyrogenic silica while the latter do not (both sets of samples possess comparable levels of OTES-derived carbon, applied in identical fashion).

Claims (36)

1. A composition comprising a titanium dioxide particle having on the surface of said particle a substantially encapsulating layer comprising a pyrogenically-deposited metal oxide; said substantially encapsulating layer having on its surface at least one organic surface treatment material selected from an organo-silane, an organo-siloxane, a fluoro-silane, an organo-phosphonate, an organo-acid phosphate, an organo-pyrophosphate, an organo-polyphosphate, an organo-metaphosphate, an organo-phosphinate, an organo-sulfonic compound, a hydrocarbon-based carboxylic acid, an associated ester of a hydrocarbon-based carboxylic acid, a derivative of a hydrocarbon-based carboxylic acid, a hydrocarbon-based amide, a low molecular weight hydrocarbon wax, a low molecular weight polyolefin, a co-polymer of a low molecular weight polyolefin, a hydrocarbon-based polyol, a derivative of a hydrocarbon-based polyol, an alkanolamine, a derivative of an alkanolamine, an organic dispersing agent, or a mixture thereof.
2. The composition of claim 1, wherein the at least one organic surface treatment material is an organo-silane having the formula:

R5 xSiR6 4-x
wherein
R5 is a nonhydrolyzable alkyl, cycloalkyl, aryl, or aralkyl group having at least 1 to about 20 carbon atoms;
R6 is a hydrolyzable alkoxy, halogen, acetoxy, or hydroxy group; and
x=1 to 3.
3. The composition of claim 2, wherein the organo-silane is octyltriethoxysilane.
4. The composition of claim 1, wherein the at least one organic surface treatment material is trimethylolpropane.
5. The composition of claim 1, wherein the pyrogenically-deposited metal oxide is selected from silica, alumina, zirconia, phosphoria, boria, or mixtures thereof.
6. The composition of claim 5, wherein the pyrogenically-deposited metal oxide is silica.
7. The composition of claim 1, wherein the at least one organic surface treatment material is present in a range of from about 0.05 to about 5 wt %.
8. The composition of claim 7, wherein the at least one organic surface treatment material is present in a range of from about 0.1 to about 1.5 wt %.
9. The composition of claim 1, wherein the at least one organic surface treatment material is an organic dispersing agent selected from citric acid, polyacrylic acid, polymethacrylic acid, or polymeric organic dispersing agent having anionic, cationic, zwitterionic, or non-ionic functionality derived from a linear, comb, star, brush, or dendrimer polymer chain and pendant substituent morphology.
10. The composition of claim 9, wherein the organic dispersing agent is present in a range of from about 0.01 to about 1.0 wt %.
11. A pigment comprising a composition of claim 1.
12. A thermoplastic resin comprising a titanium dioxide pigment having on the surface of said pigment a substantially encapsulating layer comprising a pyrogenic silica; wherein the pyrogenic silica-encapsulated titanium dioxide is treated with an organo-silane having the formula:

R5SiR6 3
wherein R5 is a nonhydrolyzable alkyl, cycloalkyl, aryl, or aralkyl group having at least 1 to 18 carbon atoms;
R6 is a hydrolyzable alkoxy, halogen, acetoxy, or hydroxy group.
and the thermoplastic resin is polyethylene.
13. (canceled)
14. (canceled)
15. The thermoplastic resin of claim 2, wherein the polyethylene is an ultra low density polyethylene, a very low density polyethylene, a linear low density polyethylene, a low density polyethylene, a medium density polyethylene, a high density polyethylene, a high molecular weight high density polyethylene, an ultra high molecular weight high density polyethylene, an ethylene/vinyl acetate co-polymer, an ethylene/methacrylic acid co-polymer, or a blend thereof.
16. The thermoplastic resin of claim 2, wherein the polypropylene is a homopolymer, a copolymer, a compounded olefin, an in situ thermoplastic olefin, or a blend thereof.
17-34. (canceled)
35. The thermoplastic resin of claim 12, wherein the thermoplastic resin is pigmented by an extrusion application, a molded article application, or a post-article forming coating application.
36. The thermoplastic resin of claim 35, wherein extrusion is performed by cast film extrusion, blown film extrusion, slit film extrusion, sheet and profile extrusion, fiber and filament extrusion, or wire coating extrusion.
37. The thermoplastic resin of claim 35, wherein the molded article application is performed by injection molding, blow molding, or rotational molding.
38. The thermoplastic resin of claim 35, wherein the post-article forming coating application is performed by powder coating, roll-on coating, brush-on coating, trowel-on coating, or spray-on coating.
39-48. (canceled)
49. An extruder article comprising the thermoplastic resin of claim 12.
50. A molded article comprising the thermoplastic resin of claim 12.
51. A cast film comprising the thermoplastic resin of claim 12.
52. A blown film comprising the thermoplastic resin of claim 12.
53. A slit film comprising the thermoplastic resin of claim 12.
54. An extruded sheet comprising the thermoplastic resin of claim 12.
55. An extruded profile comprising the thermoplastic resin of claim 12.
56. An extruded filament comprising the thermoplastic resin of claim 12.
57. An extruded fiber comprising the thermoplastic resin of claim 12.
58. A wire coating comprising the thermoplastic resin of claim 12.
59. An injection molded article comprising the thermoplastic resin of claim 12.
60. A blow molded article comprising the thermoplastic resin of claim 12.
61. A rotational molded article comprising the thermoplastic resin of claim 12.
62. A post-article formed coating comprising the thermoplastic resin of claim 12.
US12/854,314 2004-04-27 2010-08-11 Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles Abandoned US20100324186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/854,314 US20100324186A1 (en) 2004-04-27 2010-08-11 Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US56577304P 2004-04-27 2004-04-27
US10/993,456 US20050239921A1 (en) 2004-04-27 2004-11-19 Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles
US12/157,814 US7795330B2 (en) 2004-04-27 2008-06-12 Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles
US12/854,314 US20100324186A1 (en) 2004-04-27 2010-08-11 Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/157,814 Division US7795330B2 (en) 2004-04-27 2008-06-12 Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles

Publications (1)

Publication Number Publication Date
US20100324186A1 true US20100324186A1 (en) 2010-12-23

Family

ID=34935691

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/993,456 Abandoned US20050239921A1 (en) 2004-04-27 2004-11-19 Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles
US12/157,814 Active US7795330B2 (en) 2004-04-27 2008-06-12 Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles
US12/854,314 Abandoned US20100324186A1 (en) 2004-04-27 2010-08-11 Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/993,456 Abandoned US20050239921A1 (en) 2004-04-27 2004-11-19 Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles
US12/157,814 Active US7795330B2 (en) 2004-04-27 2008-06-12 Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles

Country Status (6)

Country Link
US (3) US20050239921A1 (en)
EP (3) EP1900780B1 (en)
JP (1) JP2005314701A (en)
KR (1) KR20060056219A (en)
AU (2) AU2005201697B2 (en)
CA (1) CA2505084A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120222863A1 (en) * 2011-03-02 2012-09-06 Basf Se Alkanesulfonic acid microcapsules and use thereof in deep wells
US20140238272A1 (en) * 2013-02-22 2014-08-28 Coatex Hydrophobization agent and use for the surface treatment of mineral matter particles
CN104395411A (en) * 2012-06-13 2015-03-04 阿米利尔股份公司 Dispersing agent comprising fillers or pigments
US9487670B2 (en) 2012-04-20 2016-11-08 Valspar Sourcing, Inc. Method for making titanium dioxide pigment grind dispersion and paint
US9598594B2 (en) 2012-04-20 2017-03-21 Valspar Sourcing, Inc. Titanium dioxide pigment grind dispersion and paint
US9962375B2 (en) * 2014-10-29 2018-05-08 Eli Lilly And Company Methyl-piperidine compounds useful for inhibiting microsomal prostaglandin E2 synthase-1
US9969714B2 (en) 2014-10-29 2018-05-15 Eli Lilly And Company Carboxylic acid compounds useful for inhibiting microsomal prostaglandin E2 synthase-1
CN110709672A (en) * 2017-06-02 2020-01-17 苹果公司 Providing optical navigation guidance

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050239921A1 (en) 2004-04-27 2005-10-27 Birmingham John N Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles
JP2006117820A (en) * 2004-10-22 2006-05-11 Toyo Ink Mfg Co Ltd Colorant composition for printing and its molding
US20070174972A1 (en) * 2005-11-14 2007-08-02 Invista North America S.A R.I. Spandex having enhanced whiteness, and fabrics and garments comprising the same
US7138010B1 (en) * 2005-12-12 2006-11-21 Millennium Inorganic Chemicals, Inc. Amino phosphoryl treated titanium dioxide
US8323594B2 (en) 2006-01-18 2012-12-04 Sparkxis B.V. Method of making hybrid organic-inorganic monomeric materials
US20080070146A1 (en) * 2006-09-15 2008-03-20 Cabot Corporation Hydrophobic-treated metal oxide
US8455165B2 (en) 2006-09-15 2013-06-04 Cabot Corporation Cyclic-treated metal oxide
US8202502B2 (en) 2006-09-15 2012-06-19 Cabot Corporation Method of preparing hydrophobic silica
US8435474B2 (en) 2006-09-15 2013-05-07 Cabot Corporation Surface-treated metal oxide particles
US7632570B2 (en) * 2006-09-20 2009-12-15 Ppg Industries Ohio, Inc. Aqueous resinous binders
DE102007010212A1 (en) * 2007-02-28 2008-09-04 Evonik Degussa Gmbh Polymer has titanium oxide, which builds pyrogen and is enclosed by silicium dioxide as filling material
US20090075099A1 (en) * 2007-04-09 2009-03-19 Sung-Yueh Shieh Waterborne Coating Compositions for Optical-use Polyester film
US7868085B2 (en) * 2007-07-05 2011-01-11 Ppg Industries Ohio, Inc. Aqueous dispersion comprising a branched triol having trimellitic anhydride and associated method
JP5071126B2 (en) * 2008-01-30 2012-11-14 東洋インキScホールディングス株式会社 Thermoplastic resin composition
JP5624460B2 (en) * 2008-05-02 2014-11-12 ポーラ化成工業株式会社 Titania fine particle composite and composition containing the titania fine particle composite
KR101454131B1 (en) * 2010-08-09 2014-10-22 캐논 가부시끼가이샤 Charging member, method for producing same, process cartridge, and electrophotographic device
JPWO2012032868A1 (en) * 2010-09-09 2014-01-20 Hoya株式会社 Method for producing surface-modified titania particles, titania particle dispersion and titania particle dispersion resin
WO2012036330A1 (en) * 2010-09-17 2012-03-22 주식회사 씨드 Method for preparing environmentally-friendly dye-pigment copolymerized plastid and ink composition having high molecular weight polymer and digital textile printing system using same
CN103153615B (en) 2010-10-15 2016-08-31 索尔维特殊聚合物意大利有限公司 Multilayer module
CN102660154A (en) * 2012-04-28 2012-09-12 常州大学 Surface modification method for nanometer titanium dioxide
US9505022B2 (en) * 2012-12-04 2016-11-29 The National Titanium Dioxide Co. Ltd. (Cristal) Surface treatment method for making high durability universal titanium dioxide rutile pigment
FR3005856B1 (en) * 2013-05-23 2015-06-26 Oreal COSMETIC USE AS HYDROPHOBIC SILICA PARTICLES DEODORANT DEODORANT
CN105377999B (en) * 2013-07-19 2021-05-07 宣伟投资管理有限公司 Polymer-coated pigment particles
US10233329B2 (en) 2013-07-19 2019-03-19 Swimc Llc Polymer-encapsulated pigment particle
US20150132582A1 (en) * 2013-11-12 2015-05-14 E I Du Pont De Nemours And Company Liquid fluoropolymer coating composition, fluoropolymer coated film, and process for forming the same
CN103804959B (en) * 2013-12-23 2015-08-12 杭州吉华高分子材料有限公司 A kind of preparation method of modified silicasol and application
EP2921533A1 (en) * 2014-03-20 2015-09-23 Heraeus Precious Metals North America Conshohocken LLC Inorganic oxide particles having organic coating
SG11201701916UA (en) 2014-09-24 2017-04-27 Chemours Company Tt Llc Materials with enhanced protection of light sensitive entities
CN104399532A (en) * 2014-10-20 2015-03-11 北京慧米诺科技有限公司 Photocatalyst solution for formaldehyde degradation under visible light, and preparation method thereof
AU2015360875B2 (en) 2014-12-08 2020-03-19 Swimc Llc Polymer-encapsulated pigment particle
WO2016196529A1 (en) * 2015-06-04 2016-12-08 The Chemours Company Tt, Llc Light protective bottle design
GB201517478D0 (en) * 2015-10-02 2015-11-18 Tioxide Europe Ltd Particle surface treatment
CA3044067A1 (en) 2016-12-13 2018-06-21 The Chemours Company Fc, Llc Rigid monolayer container
MX2019010333A (en) 2017-03-31 2019-10-17 Chemours Co Fc Llc Light protection package including monolayer container and monolayer closure.
CN107142780A (en) * 2017-05-15 2017-09-08 柳州博泽科技有限公司 A kind of surface treatment method of nano titanium oxide applied to facing paper
CN109456564B (en) * 2017-09-06 2021-10-22 浙江正信石油科技有限公司 Anti-aging rubber and preparation method thereof
CN108752680B (en) * 2018-04-04 2021-11-02 江苏欣宝科技股份有限公司 High-elasticity HDPE resin and preparation method thereof
EP3807165A1 (en) 2018-06-13 2021-04-21 The Chemours Company FC, LLC Light protection closure
CN110540691A (en) * 2019-09-06 2019-12-06 安徽长远机电股份有限公司 Powerful anti-crack cable plug material and preparation method thereof
CN112520744B (en) * 2019-09-19 2022-08-30 中国石油天然气股份有限公司 Preparation of nano SiO by using silica sol 2 Method (2)
CN111607236B (en) * 2020-05-28 2022-04-22 宁波泰甬汽车零部件有限公司 High-fluidity low-gloss styrene-based thermoplastic elastomer material and preparation method thereof
CN113150645A (en) * 2021-03-27 2021-07-23 青岛金大鹏粉体科技有限公司 Epoxy powder coating for seawater and preparation method thereof
WO2023230251A1 (en) 2022-05-27 2023-11-30 Cabot Corporation Aerogel composition for thermal insulation
CN114989639A (en) * 2022-06-22 2022-09-02 龙佰集团股份有限公司 Titanium dioxide, preparation method thereof and coating

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB689123A (en) 1949-10-08 1953-03-18 Schweizerhall Saeurefab Production of finely divided titanium dioxide
US3437502A (en) * 1968-03-28 1969-04-08 Du Pont Titanium dioxide pigment coated with silica and alumina
US3834924A (en) 1972-06-08 1974-09-10 Huber Corp J M Process for manufacturing surface modified inorganic pigments
US3856929A (en) 1972-08-25 1974-12-24 Du Pont PRODUCTION OF ANATASE TiO{11 {11 BY THE CHLORIDE PROCESS
US3915735A (en) 1974-03-06 1975-10-28 Malvern Minerals Company Process for preparing modified silicic fillers
IT1030934B (en) * 1974-12-20 1979-04-10 Sir Soc Italiana Resine Spa PROCEDURE FOR THE POST-TREATMENT OF TITANIUM DIOXIDE PIGMENTS
US4141751A (en) 1975-10-24 1979-02-27 Malvern Minerals Company Process for preparing modified particulate and/or fibrous, crystalline and amorphous inorganic substances
US4127641A (en) 1975-12-10 1978-11-28 Joseph Crosfield And Sons Limited Process for the preparation of precipitated silicas having morphology similar to pyrogenic silicas
US4151751A (en) * 1978-04-24 1979-05-01 Mccaslin Robert E Accelerometer
US4214913A (en) 1979-03-05 1980-07-29 E. I. Du Pont De Nemours And Company Process for producing rutile TiO2
JPS5686191A (en) * 1979-12-17 1981-07-13 Kao Corp Preparation of phosphoric monoester
US4430001A (en) * 1979-12-26 1984-02-07 E. I. Du Pont De Nemours & Co. Injector mixer apparatus
US4460655A (en) 1983-04-04 1984-07-17 E. I. Du Pont De Nemours And Company TiO2 Pigment bearing a coating with fluoride ions and laminate and coating based thereon
DE3628320A1 (en) 1986-08-21 1988-02-25 Bayer Ag HYDROPHOBIC PIGMENTS AND FILLERS FOR INTRODUCTION IN PLASTICS
US5318625A (en) * 1991-01-25 1994-06-07 Kerr-Mcgee Chemical Corporation Pigments for improved dispersibility in thermoplastic resins
GB9102315D0 (en) * 1991-02-02 1991-03-20 Tioxide Group Services Ltd Oxides and the production thereof
US5562990A (en) * 1994-02-28 1996-10-08 E. I. Du Pont De Nemours And Company Organosilicon treatment of TiO2 pigment bearing a coating with fluoride ions
US5607994A (en) * 1994-02-28 1997-03-04 E. I. Du Pont De Nemours And Company Processibility and lacing resistance when silanized pigments are incorporated in polymers
US5560845A (en) * 1994-02-28 1996-10-01 E. I. Du Pont De Nemours And Company Laser marking of fluoropolymer composition
US5562764A (en) 1994-06-28 1996-10-08 E. I. Du Pont De Nemours And Company Process for preparing improved TIO2 by silicon halide addition
US6492463B1 (en) 1994-08-31 2002-12-10 E. I. Du Pont De Nemours And Company Liquid crystalline polymer composition
EP0707051B1 (en) * 1994-10-14 2001-05-16 Tioxide Group Services Limited Inorganic particles coated with an alkylphosphonic acid or an ester thereof, their preparation and their use
DE19500674A1 (en) 1995-01-12 1996-07-18 Degussa Surface modified pyrogenic mixed oxides, process for their production and use
EP0847302B1 (en) 1995-08-29 2000-04-19 E.I. Du Pont De Nemours And Company Apparatus and process for coating a solid particle
US5922120A (en) 1997-12-23 1999-07-13 E. I. Du Pont De Nemours And Company Process for producing coated TiO2 pigment using cooxidation to provide hydrous oxide coatings
US5993533A (en) * 1998-07-02 1999-11-30 E. I. Du Pont De Nemours And Company Continuous wet treatment process to prepare durable, high gloss titanium dioxide pigment
US6620234B1 (en) 1999-11-12 2003-09-16 Millennium Inorganic Chemicals, Inc. Processes for preparing hydrophobic inorganic oxide pigments
WO2001081480A2 (en) * 2000-04-27 2001-11-01 E.I. Dupont De Nemours And Company Process for making durable titanium dioxide pigment by vapor phase deposition
US6765041B1 (en) * 2000-11-27 2004-07-20 Millenium Inorganic Chemicals, Inc. Organo-acid phosphate treated pigments
US6783586B2 (en) * 2001-11-01 2004-08-31 E. I. Du Pont De Nemours And Company Easy to disperse, high durability TiO2 pigment and method of making same
US6646037B1 (en) * 2002-07-31 2003-11-11 Millennium Inorganic Chemicals, Inc. Pigments treated with organosulfonic compounds
KR20050056193A (en) * 2002-08-07 2005-06-14 이시하라 산교 가부시끼가이샤 Titanium dioxide pigment and method for producing the same, and resin composition using the same
JP2004077976A (en) 2002-08-21 2004-03-11 Konica Minolta Holdings Inc Organic photoreceptor, image forming method and image forming apparatus
US20050239921A1 (en) 2004-04-27 2005-10-27 Birmingham John N Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles
US8663380B2 (en) 2007-11-16 2014-03-04 Cristal Usa Inc. Gas phase production of coated titania
US20090148605A1 (en) 2007-12-05 2009-06-11 Akhtar M Kamal Process for the production of coated titanium dioxide pigments

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8863841B2 (en) * 2011-03-02 2014-10-21 Basf Se Alkanesulfonic acid microcapsules and use thereof in deep wells
US20120222863A1 (en) * 2011-03-02 2012-09-06 Basf Se Alkanesulfonic acid microcapsules and use thereof in deep wells
US9598594B2 (en) 2012-04-20 2017-03-21 Valspar Sourcing, Inc. Titanium dioxide pigment grind dispersion and paint
US9487670B2 (en) 2012-04-20 2016-11-08 Valspar Sourcing, Inc. Method for making titanium dioxide pigment grind dispersion and paint
US9631098B2 (en) * 2012-06-13 2017-04-25 Amril Ag Dispersing agent comprising fillers or pigments
CN104395411A (en) * 2012-06-13 2015-03-04 阿米利尔股份公司 Dispersing agent comprising fillers or pigments
US20150232669A1 (en) * 2012-06-13 2015-08-20 Amril Ag Dispersing agent comprising fillers or pigments
US8920550B2 (en) * 2013-02-22 2014-12-30 Coatex Hydrophobization agent and use for the surface treatment of mineral matter particles
US20140238272A1 (en) * 2013-02-22 2014-08-28 Coatex Hydrophobization agent and use for the surface treatment of mineral matter particles
US9962375B2 (en) * 2014-10-29 2018-05-08 Eli Lilly And Company Methyl-piperidine compounds useful for inhibiting microsomal prostaglandin E2 synthase-1
US9969714B2 (en) 2014-10-29 2018-05-15 Eli Lilly And Company Carboxylic acid compounds useful for inhibiting microsomal prostaglandin E2 synthase-1
CN110709672A (en) * 2017-06-02 2020-01-17 苹果公司 Providing optical navigation guidance
US11650068B2 (en) 2017-06-02 2023-05-16 Apple Inc. Presenting suggested routes based on local route ranking
US11879746B2 (en) 2017-06-02 2024-01-23 Apple Inc. Providing light navigation guidance

Also Published As

Publication number Publication date
EP2284224A1 (en) 2011-02-16
EP1591490A2 (en) 2005-11-02
US20080280142A1 (en) 2008-11-13
EP1900780A1 (en) 2008-03-19
EP1591490A3 (en) 2006-02-01
AU2005201697A1 (en) 2005-11-10
AU2010224410A1 (en) 2010-10-14
US7795330B2 (en) 2010-09-14
KR20060056219A (en) 2006-05-24
AU2005201697B2 (en) 2010-06-24
EP1900780B1 (en) 2012-08-15
US20050239921A1 (en) 2005-10-27
CA2505084A1 (en) 2005-10-27
JP2005314701A (en) 2005-11-10

Similar Documents

Publication Publication Date Title
US7795330B2 (en) Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles
AU703097B2 (en) Improved processibility and lacing resistance when silanized pigments are incorporated in polymers
US6765041B1 (en) Organo-acid phosphate treated pigments
EP1294800B1 (en) Treatment of pigments or fillers with alkylsilane copolymers and terpolymers
EP0748361B1 (en) Silanized titanium dioxide pigments resistant to discoloration when incorporated in polymers
US8394873B2 (en) Polysiloxane modified titanium dioxide
US7338995B2 (en) Titanium dioxide—containing polymers and films with reduced melt fracture
CN1896148A (en) Preparation of pyrolized silicon oxide encapsulated titanium oxide powders treated with organic additives
US20080171818A1 (en) Treated Inorganic Metal Containing Powders and Polymer Films Containing Them
EP1484364B1 (en) Process for production of titanium dioxide pigment and resin compositions containing the pigment
KR20150127283A (en) Non-micronized pigment for plastics applications
CA2349030C (en) Improved processibility and lacing resistance when silanized pigments are incorporated in polymers
US20080153953A1 (en) Antistatic system for polymers

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION