US20100320904A1 - LED-Based Replacement Lamps for Incandescent Fixtures - Google Patents

LED-Based Replacement Lamps for Incandescent Fixtures Download PDF

Info

Publication number
US20100320904A1
US20100320904A1 US12778763 US77876310A US2010320904A1 US 20100320904 A1 US20100320904 A1 US 20100320904A1 US 12778763 US12778763 US 12778763 US 77876310 A US77876310 A US 77876310A US 2010320904 A1 US2010320904 A1 US 2010320904A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
structure
coupling region
light
out
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12778763
Inventor
Noam Meir
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oree Inc
Original Assignee
Oree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/0001Light guides specially adapted for lighting devices or systems
    • G02B6/0011Light guides specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0058Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide
    • G02B6/0061Means for improving the coupling-out of light from the light guide varying in density, size, shape or depth along the light guide to provide homogeneous light output intensity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/61Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/0001Light guides specially adapted for lighting devices or systems
    • G02B6/0011Light guides specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/004Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles
    • G02B6/0041Scattering dots or dot-like elements, e.g. microbeads, scattering particles, nanoparticles provided in the bulk of the light guide
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/0001Light guides specially adapted for lighting devices or systems
    • G02B6/0011Light guides specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/003Lens or lenticular sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/0001Light guides specially adapted for lighting devices or systems
    • G02B6/0011Light guides specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0023Means for improving the coupling-in of light from the light source into the light guide provided by one optical element, or plurality thereof, placed between the light guide and the light source, or around the light source
    • G02B6/0031Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B6/00Light guides
    • G02B6/0001Light guides specially adapted for lighting devices or systems
    • G02B6/0011Light guides specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0081Mechanical or electrical aspects of the light guide and light source in the lighting device peculiar to the adaptation to planar light guides, e.g. concerning packaging
    • G02B6/0085Means for removing heat created by the light source from the package
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Abstract

A luminaire takes the form of a bulb-shaped, LED-based lamp, which can replace a conventional incandescent bulb.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application claims priority to and the benefit of U.S. Provisional Patent Application No. 61/177,834, filed on May 13, 2009, the entire disclosure of which is incorporated by reference herein.
  • FIELD OF THE INVENTION
  • In various embodiments, the present invention generally relates to illumination devices, and in particular to replacement lamps, based on discrete light sources, for incandescent fixtures.
  • BACKGROUND
  • Most household light fixtures utilize incandescent lightbulbs, which contain an incandescent filament inside a glass enclosure. These conventional light sources are fragile and have limited lifetimes, due primarily to increasing vulnerability of the filament to breakage as it ages. In practice, typical incandescent lightbulbs have a mean life of 500 to 4,000 hours.
  • Light-emitting diodes (LEDs) represent an attractive alternative as light sources. Solid-state LEDs consume less power than incandescent lightbulbs and may have lifetimes in excess of 100,000 hours. Besides producing little heat and being energy-efficient, LEDs are smaller and less vulnerable to breakage or damage due to shock or vibration than incandescent bulbs. LED characteristics also do not change significantly with age.
  • Widespread use of LED-based lighting systems has been limited, in part, because of the large installed based of incandescent fixtures and consumers accustomed to traditional bulb lights.
  • SUMMARY
  • Embodiments of the present invention utilize LED-based illumination structures that can replace incandescent lightbulbs in existing fixtures. These structures can be shaped to resemble conventional lightbulbs, and can be equipped with appropriate power-conversion circuitry and a threadable base for compatibility with incandescent fixtures. The emitted light may be white or another color, and the illumination systems may incorporate a phosphor material for converting light emitted by an LED of one wavelength into light of another wavelength. The luminous efficacies of illumination systems in accordance with embodiments of the invention may be 90 lumens/watt or more.
  • In an aspect, embodiments of the invention feature an LED-based illumination structure capable of replacing an incandescent bulb. The structure may include or consist essentially of a base for mating with an incandescent light socket, a rounded, bulb-shaped waveguide, and at least one LED. The waveguide includes or consists essentially of in-coupling, propagation, and out-coupling regions. The LED(s) are disposed for emission into the in-coupling region. Light from the LED(s) propagates (and/or mixes) through the propagation region and is emitted only from the out-coupling region.
  • Embodiments of the invention may include one or more of the following features in any of a variety of combinations. The waveguide may include a base edge and a rounded crown portion opposite the base edge, and the in-coupling region may encompass the base edge, and the out-coupling region may encompass the crown portion. The out-coupling region may extend over at least half the length from the base edge to a peak point on the crown portion. A phosphor material for converting light to a different wavelength may surround (e.g., be present on the exterior of, or within) at least a portion of the out-coupling region. The illumination structure may include a heat sink between the base and the waveguide and/or power-conversion and drive circuitry for driving the LED from household current supplied to the base.
  • A reflector may be disposed within and adjacent to the base edge. An inner reflector may be disposed over at least a portion of the inner surface of the waveguide, e.g., at least over the inner surface of the out-coupling region. The LED(s) may be embedded inside the base edge and/or may illuminate through the base edge. The illumination structure may include a plurality of LEDs evenly distributed circumferentially around the in-coupling region. At least one of the LEDs may emit light of a different color from that emitted by another one of the LEDs. The LED(s) may be bare light-emitting diode dies.
  • The waveguide may surround a hollow interior space in the manner of an incandescent lightbulb. Light emitted from an exterior face of the out-coupling region may pass through the phosphor, and light emitted from an interior face of the out-coupling region may pass into the interior space and through an opposed portion of the out-coupling region. The phosphor may be outside a direct line-of-sight of the LED(s). The out-coupling region may include a plurality of optical elements, e.g., microlenses and/or scattering particles.
  • These and other objects, along with advantages and features of the invention, will become more apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and can exist in various combinations and permutations. As used herein, the term “substantially” means±10%, and in some embodiments, ±5%.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
  • FIG. 1 is a schematic elevation of an exemplary replacement lamp in accordance with various embodiments of the invention; and
  • FIGS. 2A and 2B are schematic elevations of embodiments having, respectively, a bottom reflector and an inner reflector; and
  • FIG. 3B is a sectional view of the embodiment shown in FIG. 1, taken along the line A-A shown in FIG. 3A.
  • DETAILED DESCRIPTION
  • Refer first to FIG. 1, which illustrates an exemplary replacement lamp 100. The lamp 100 includes a mechanical and electrical interface 110, driver circuitry 115, a heat-sink element 120, and a bulb-shaped waveguide 125. In some embodiments, the interface (or base) 110 is a coupling for standard incandescent fixtures with a conductive threaded cap or sleeve and an electrical contact 130. It should be understood, however, that the interface 110 may be tailored to mate with any type of lamp socket.
  • Driver circuitry 115 is conventional and converts a household AC line voltage into a DC voltage suitable for powering one or more LEDs. For example, circuitry 115 may include a capacitor and a diode bridge, where the capacitor functions to limit current within the circuit 115 and the diode bridge converts the AC line voltage to DC (and provides a full-wave mode of operation); see, e.g., U.S. Pat. No. 5,463,280, the entire disclosure of which is hereby incorporated by reference. In some embodiments, the LED(s) may be driven directly by AC voltage, and the driver circuitry 115 connects the LED(s) to the AC line voltage. The circuit 115 is connected in a conventional fashion to the conductive cap and the electrical contact of interface 110 (in the manner of an incandescent bulb filament). Heat sink 120 has vanes, as illustrated, that promote convective dissipation of heat. Desirably, heat sink 120 is capable, for example, of dissipating at least 10 watts of consumed power.
  • Waveguide 125 has a rounded shape and includes a base edge attaching to heat sink 120 and an opposed crown portion; the overall shape of the waveguide 125 desirably conforms to that of a conventional incandescent lightbulb. The waveguide 125 surrounds a hollow interior region 132, and includes an in-coupling region 135 for receiving light from one or more discrete light sources 140, which may include or consist of, e.g., one or more LEDs. In a preferred embodiment, discrete light sources (hereinafter referred to, for convenience, as LEDs) 140 are embedded within in-coupling region 135 near the base edge, so that heat is efficiently transferred from the LEDs 140 to heat sink 120. The illumination of the LEDs 140 is aligned in the direction of, or perpendicular to, the waveguide propagation direction, or at any suitable angle consistent with proper in-coupling. As shown in FIG. 3B, waveguide 125 may have a circular base edge, and a plurality of discrete light sources may be embedded within in-coupling region 135. In such embodiments, the discrete light sources may be evenly distributed circumferentially around in-coupling region 135.
  • Waveguide 125 also includes a propagation region 145, distal to in-coupling region 135, for retaining and spreading light from in-coupling region 135 until it is emitted from an out-coupling region 150. The out-coupling region, in turn, is located distal to propagation region 145 and spans the crown portion of the waveguide 125. Propagation region 145 enables the light to disperse uniformly (e.g., in color and/or intensity) prior to entering out-coupling region 150 to promote uniform illumination from the lamp's surface.
  • Waveguide 125 typically includes or consists essentially of a waveguide material having a refractive index greater than 1. Representative examples of suitable waveguide materials include, without limitation, a thermoplastic such as a polycarbonate, polymethyl methacrylate (PMMA), and/or polyurethane (TPU) (aliphatic) with a refractive index of about 1.50, TPU (aromatic) with a refractive index of from about 1.58 to about 1.60, amorphous nylon such as GRILAMID supplied by EMS Grivory (e.g., GRILAMID TR90 with refractive index of about 1.54), polymethylpentene, e.g., TPX supplied by Mitsui with a refractive index of about 1.46, polyvinylidene fluoride (PVDF) with a refractive index of about 1.34, or other thermoplastic fluorocarbon polymers, and/or STYROLUX (UV stabilized) supplied by BASF with refractive index of about 1.58.
  • To facilitate emission of the light, out-coupling region 150 includes a plurality of optical elements therein or disposed on its top surface. The optical elements serve as scatterers and typically scatter light in more than one direction. When light is scattered by an optical element such that the impinging angle is below the critical angle for internal reflection, no total internal reflection occurs and the scattered light is emitted through the inner or outer surface of out-coupling region 150. Additional details regarding optical elements, their function, and their placement may be found in U.S. Patent Application Publication Nos. 2009/0161341, 2009/0161369, and 2009/0161383, the entire disclosures of which are incorporated by reference herein.
  • The optical elements may include or consist essentially of light-scattering particles such as, e.g., beads, glass beads, or other ceramic particles, rubber particles, silica particles, particles including or consisting essentially of inorganic materials such as BaSO4 or TiO2, particles including or consisting essentially of a phosphor material, and the like. In an embodiment, the light-scattering particles are substantially or even completely non-phosphorescent. Such non-phosphorescent particles merely scatter light without shifting the wavelength of any of the light striking the particles. The term “optical elements” may also refer to non-solid objects embedded in the waveguide, provided that such objects are capable of scattering the light. Representative example of suitable non-solid objects include, without limitation, closed voids within the waveguide, e.g., air bubbles, and/or droplets of liquid embedded within the waveguide. The optical elements may also be organic or biological particles, such as, but not limited to, liposomes. In some embodiments, optical elements such as microlenses are utilized in conjunction with, or even instead of, light-scattering particles. In other embodiments, optical elements include or consist essentially of structures such as hemispheres or diffusive dots.
  • In accordance with various embodiments of the invention, the size, type, and/or density of optical elements is selected to provide illumination that is substantially uniform in intensity across the out-coupling region 150 to faciliate omnidirectional light distribution. This need not be the case, however. For example, the density of the optical elements may increase toward the crown of waveguide 125.
  • In various embodiments, at least a portion of the light emitted from LEDs 140 is stimulated by a phosphor or other photoluminescent material disposed within or adjacent out-coupling region 150. In some embodiments, the optical elements incorporate the phosphor material, and in other embodiments, the phosphor material is present as a discrete layer or region within out-coupling region 150 through which the light propagates prior to being emitted. The phosphor material may even be present within a layer disposed directly on the interior or exterior surface of out-coupling region 150 such that light emitted therefrom is shifted as it passes through the layer. For ease of illustration, the figures show the phosphor 160 as a discrete layer over out-coupling region 150. As used herein, however, references to a phosphor “surrounding” the out-coupling region connote disposition within and/or on that region—that is, a phosphor embedded within the thickness of out-coupling region 150, disposed on the interior and/or exterior surface of out-coupling region 150, or both.
  • As used herein, the term “phosphor” refers to any material for converting at least a portion of the light from LEDs 140 into a different color (i.e., changing its wavelength). For example, part of the light from a blue LED may be shifted to yellow light, which mixes with the remaining blue light to provide white output illumination. Additional details regarding phosphor materials and their placement may be found in U.S. Patent Application Nos. 2009/0161341, 2009/0161369, 2009/0161383, 2009/0129115, 2009/0141476, and 2010/0002414, the entire disclosures of which are incorporated by reference herein. Thus, particularly in white-light embodiments, it is ordinarily important for only some of the light from LEDs 140 to interact with the phosphor, so that some unshifted light exists to mix with the wavelength-shifted (converted) light. The ratio between the shifted light and the unshifted light is determined by the phosphor concentration or layer thickness (for a given phosphor material). So long as the concentration or thickness is correctly chosen, proper mixing will occur. In particular, some of the light exiting the exterior surface of light-coupling region 150 will have interacted with the phosphor 160, and some will not have. Light emitted from the interior surface of light-coupling region 150—which may be partially shifted or entirely unshifted, depending on where the phosphor 160 is disposed with respect to the in-coupling region—traverses the hollow interior region 132 of lamp 100 and passes through an opposed portion of the out-coupling region (and the phosphor 160 associated therewith).
  • As shown in FIGS. 2A and 3B, a specular or diffusive reflector 200 may be placed across the narrow end of the waveguide 125, i.e., in the illustrated embodiment, the reflector 200 spans the circular region defined by the base edge of the waveguide. This reflector 200 prevents scattered light from entering and being lost in the lamp base. Alternatively or in addition, a specular or diffusive reflector 210 may cover all or a portion of the interior surface of waveguide 125. This reflector 210 prevents back-scattered light from the out-coupling region 150 from reaching and passing through the interior region 132 of the lamp 100, ensuring that all light is emitted directly through the outer surface of out-coupling region 150.
  • Various embodiments of the present invention feature one or more phosphor materials 160 surrounding out-coupling region 150 outside of the direct “line-of-sight” from LEDs 140. That is, in such embodiments, there is no direct, straight-line optical path between any LED 140 and the phosphor material; rather, light emitted from LEDs 140 reflects from a reflector, a surface, or an interface within the lamp 100 before reaching the phosphor material. Thus, any light striking and being back-reflected from phosphor material 160 will not propagate directly back into a LED 140 (where it could be absorbed, thus reducing overall light output and efficiency of lamp 100). Rather, light reflecting from the phosphor material 160 will tend to remain within waveguide 125 until it is emitted through out-coupling region 150. In some embodiments, there is substantially no direct line-of-sight between any of LEDs 140 and the phosphor material 160, i.e., less than approximately 5% of the light from LEDs 140 has a direct line-of-sight to the phosphor material; any losses thereof are therefore negligible.
  • Whether or not the phosphor material is within a direct line-of-sight of LEDs 140, the phosphor material 160 may advantageously be located remotely in relation to LEDs 140. The quantum efficiency (or other performance metric) of the phosphor material may degrade when the material is exposed to elevated temperatures, e.g., temperatures greater than approximately 50° C. Remote placement of the phosphor material 160 prevents the temperature of the material from rising during operation due to, e.g., heat given off by LEDs 140. Instead, the temperature of remotely placed phosphor material will generally remain at the ambient temperature of the surroundings of lamp 100. Generally, the temperature of the phosphor material may remain at least approximately 30° C., or even up to approximately 100° C. less than the maximum temperature of LEDs 140 during operation.
  • As previously mentioned, discrete light sources 140 may include or consist essentially of one or more LEDs, each of which includes the bare die and all the additional components packed in the LED package. More preferably, LEDs 140 may include or consist essentially of the bare die, excluding one or more of the other components (e.g., reflecting cup, substrate, LED package, and the like). In preferred embodiments of the invention, bare LED dies do not include a phosphor or other photoluminescent material as a portion thereof (e.g., on a common substrate therewith or incorporated into or onto the LED semiconductor layer structure).
  • As used herein “bare die” refers to a p-n junction of a semiconductor material. When a forward bias is applied to the p-n junction through electrical contacts connected to the p side and the n side of the p-n junction, the p-n junction emits light with a characteristic spectrum. Thus, in various exemplary embodiments of the invention, LEDs 140 include or consist essentially of only the semiconductor p-n junction and the electrical contacts. Also contemplated are configurations in which several light sources are LEDs, and several light sources are bare dies with electrical contacts connected thereto.
  • One advantage of using a bare die rather than a packaged LED is that some of the components in the LED package, including the LED package itself, may absorb part of the light emitted from the p-n junction and therefore reduce the light yield. Another advantage is that the use of a bare die reduces the amount of heat generated during light emission, because heat is generated via absorption of light by the LED package and reflecting cup. The consequent increase in temperature of the p-n junction causes a thermal imbalance that may reduce the light yield. Since the bare die does not include the LED package and reflecting cup, the embedding of a bare die in the waveguide reduces the overall amount of heat and increases the light yield. The elimination of the LED package permits the use of many small bare dies instead of large packaged LEDs. Such a configuration allows the operation of each bare die at low electrical current while still producing a sufficient overall amount of light, thus improving the p-n junction efficacy and/or the lifetime of the LED.
  • LEDs 140 may include or consist essentially of multiple LEDs (or bare LED dies), each of which may emit substantially the same or a substantially different color. In the latter case, the light from each of the LEDs may mix within propagation region 145 to form light having a desired color gamut that is emitted from out-coupling region 150. For example, LEDs 140 may include or consist essentially of one or more red LEDs, one or more green LEDs, and one or more blue LEDs, and the light emitted from out-coupling region 150 may be substantially white. LEDs 140 may also include one or more amber LEDs in such embodiments.
  • In one embodiment, the lamp has a luminous flux performance of over 900 μm at a power consumption less than 10 watts, meaning that the lamp's luminous efficacy is better than 90 lm/w.
  • The terms and expressions employed herein are used as terms and expressions of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described or portions thereof. In addition, having described certain embodiments of the invention, it will be apparent to those of ordinary skill in the art that other embodiments incorporating the concepts disclosed herein may be used without departing from the spirit and scope of the invention. Accordingly, the described embodiments are to be considered in all respects as only illustrative and not restrictive.

Claims (20)

  1. 1. An LED-based illumination structure for replacing an incandescent bulb, the structure comprising:
    a base for mating with an incandescent light socket;
    a rounded, bulb-shaped waveguide comprising in-coupling, propagation, and out-coupling regions; and
    at least one LED disposed for emission into the in-coupling region, whereby light from the at least one LED propagates through the propagation region and is emitted only from the out-coupling region.
  2. 2. The structure of claim 1 wherein the waveguide includes a base edge and a rounded crown portion opposite the base edge, the in-coupling region encompassing the base edge and the out-coupling region encompassing the crown portion.
  3. 3. The structure of claim 2 wherein the waveguide has a length from the base edge to a peak point on the crown portion, the out-coupling region extending over at least half the length.
  4. 4. The structure of claim 1 further comprising a phosphor material, for converting light to a different wavelength, surrounding at least a portion of the out-coupling region.
  5. 5. The structure of claim 4 wherein the phosphor material is within at least a portion of the out-coupling region.
  6. 6. The structure of claim 1 further comprising a heat sink between the base and the waveguide.
  7. 7. The structure of claim 1 further comprising power-conversion and drive circuitry for driving the LED from household current supplied to the base.
  8. 8. The structure of claim 2 further comprising a reflector disposed within and adjacent to the base edge.
  9. 9. The structure of claim 1 further comprising an inner reflector disposed over at least a portion of an inner surface of the waveguide.
  10. 10. The structure of claim 9 wherein the inner reflector extends at least over the inner surface of the out-coupling region.
  11. 11. The structure of claim 2 wherein the at least one LED is embedded inside the base edge.
  12. 12. The structure of claim 2 wherein the at least one LED illuminates through the base edge.
  13. 13. The structure of claim 1 comprising a plurality of LEDs evenly distributed circumferentially around the in-coupling region.
  14. 14. The structure of claim 13 wherein at least one of the LEDs emits light of a color different from that emitted by at least another one of the LEDs.
  15. 15. The structure of claim 1 wherein the at least one LED is a bare light-emitting diode die.
  16. 16. The structure of claim 4 wherein the waveguide surrounds a hollow interior space.
  17. 17. The structure of claim 16 wherein light is emitted from opposed faces of the out-coupling region, light emitted from an exterior face thereof passing through the phosphor and light emitted from an interior face thereof passing into the interior space and through an opposed portion of the out-coupling region.
  18. 18. The structure of claim 4 wherein the phosphor is outside a direct line-of-sight of the at least one LED.
  19. 19. The structure of claim 1 wherein the out-coupling region comprises a plurality of optical elements.
  20. 20. The structure of claim 19 wherein the optical elements comprise at least one of microlenses or scattering particles.
US12778763 2009-05-13 2010-05-12 LED-Based Replacement Lamps for Incandescent Fixtures Abandoned US20100320904A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17783409 true 2009-05-13 2009-05-13
US12778763 US20100320904A1 (en) 2009-05-13 2010-05-12 LED-Based Replacement Lamps for Incandescent Fixtures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12778763 US20100320904A1 (en) 2009-05-13 2010-05-12 LED-Based Replacement Lamps for Incandescent Fixtures

Publications (1)

Publication Number Publication Date
US20100320904A1 true true US20100320904A1 (en) 2010-12-23

Family

ID=43306277

Family Applications (2)

Application Number Title Priority Date Filing Date
US12778763 Abandoned US20100320904A1 (en) 2009-05-13 2010-05-12 LED-Based Replacement Lamps for Incandescent Fixtures
US12778772 Active 2031-01-21 US8328406B2 (en) 2009-05-13 2010-05-12 Low-profile illumination device

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12778772 Active 2031-01-21 US8328406B2 (en) 2009-05-13 2010-05-12 Low-profile illumination device

Country Status (1)

Country Link
US (2) US20100320904A1 (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110180824A1 (en) * 2010-01-26 2011-07-28 Tan Wei-Sin Light emitting diode device
DE202011050491U1 (en) 2011-06-20 2011-08-19 Inotec Sicherheitstechnik Gmbh Bulb with a screw, at least one element for generating light and a light-permeable body
US8064743B2 (en) 2007-12-19 2011-11-22 Oree, Inc. Discrete light guide-based planar illumination area
US8128272B2 (en) 2005-06-07 2012-03-06 Oree, Inc. Illumination apparatus
US8182128B2 (en) 2007-12-19 2012-05-22 Oree, Inc. Planar white illumination apparatus
US20120139403A1 (en) * 2010-12-06 2012-06-07 3M Innovative Properties Company Solid state light with optical guide and integrated thermal guide
US8215815B2 (en) 2005-06-07 2012-07-10 Oree, Inc. Illumination apparatus and methods of forming the same
US8272758B2 (en) 2005-06-07 2012-09-25 Oree, Inc. Illumination apparatus and methods of forming the same
US8297786B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US8301002B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US8328406B2 (en) 2009-05-13 2012-12-11 Oree, Inc. Low-profile illumination device
DE102012205472A1 (en) * 2012-04-03 2013-10-10 Osram Gmbh Semiconductor lamp e.g. incandescent LED-retrofit lamp, for decorative purposes, has light bulb designed as light conductor for emitted light, and lateral radiating reflector arranged in light bulb and provided with phosphor
US8591072B2 (en) 2011-11-16 2013-11-26 Oree, Inc. Illumination apparatus confining light by total internal reflection and methods of forming the same
US8624527B1 (en) 2009-03-27 2014-01-07 Oree, Inc. Independently controllable illumination device
US8629475B2 (en) 2012-01-24 2014-01-14 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US8727597B2 (en) 2009-06-24 2014-05-20 Oree, Inc. Illumination apparatus with high conversion efficiency and methods of forming the same
US20140210332A1 (en) * 2011-08-02 2014-07-31 Osram Gmbh Led lighting assembly and an led retrofit lamp having the led lighting assembly
US8896010B2 (en) 2012-01-24 2014-11-25 Cooledge Lighting Inc. Wafer-level flip chip device packages and related methods
US20140355302A1 (en) * 2013-03-15 2014-12-04 Cree, Inc. Outdoor and/or Enclosed Structure LED Luminaire for General Illumination Applications, Such as Parking Lots and Structures
US8907362B2 (en) 2012-01-24 2014-12-09 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9291320B2 (en) 2013-01-30 2016-03-22 Cree, Inc. Consolidated troffer
US9343443B2 (en) 2014-02-05 2016-05-17 Cooledge Lighting, Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9366799B2 (en) 2013-03-15 2016-06-14 Cree, Inc. Optical waveguide bodies and luminaires utilizing same
US9366396B2 (en) 2013-01-30 2016-06-14 Cree, Inc. Optical waveguide and lamp including same
US9389367B2 (en) 2013-01-30 2016-07-12 Cree, Inc. Optical waveguide and luminaire incorporating same
US9442243B2 (en) 2013-01-30 2016-09-13 Cree, Inc. Waveguide bodies including redirection features and methods of producing same
US9625638B2 (en) 2013-03-15 2017-04-18 Cree, Inc. Optical waveguide body
US9690029B2 (en) 2013-01-30 2017-06-27 Cree, Inc. Optical waveguides and luminaires incorporating same
US9798072B2 (en) 2013-03-15 2017-10-24 Cree, Inc. Optical element and method of forming an optical element
US9857519B2 (en) 2012-07-03 2018-01-02 Oree Advanced Illumination Solutions Ltd. Planar remote phosphor illumination apparatus
US9869432B2 (en) 2013-01-30 2018-01-16 Cree, Inc. Luminaires using waveguide bodies and optical elements

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120008060A (en) * 2009-04-21 2012-01-25 코닌클리즈케 필립스 일렉트로닉스 엔.브이. Illumination device with a phosphor
US9581756B2 (en) 2009-10-05 2017-02-28 Lighting Science Group Corporation Light guide for low profile luminaire
US9157581B2 (en) 2009-10-05 2015-10-13 Lighting Science Group Corporation Low profile luminaire with light guide and associated systems and methods
FI122809B (en) * 2011-02-15 2012-07-13 Marimils Oy The light source and the light source tape
US8814378B2 (en) * 2011-12-05 2014-08-26 Shenzhen China Star Optoelectronics Technology Co., Ltd. LCD device and LED package structure thereof
DE102012202041A1 (en) * 2012-02-10 2013-08-14 Osram Opto Semiconductors Gmbh radiation-emitting device
US9127818B2 (en) 2012-10-03 2015-09-08 Lighting Science Group Corporation Elongated LED luminaire and associated methods
US9920901B2 (en) 2013-03-15 2018-03-20 Cree, Inc. LED lensing arrangement
US8933478B2 (en) 2013-02-19 2015-01-13 Cooledge Lighting Inc. Engineered-phosphor LED packages and related methods
US8754435B1 (en) 2013-02-19 2014-06-17 Cooledge Lighting Inc. Engineered-phosphor LED package and related methods
US9459397B2 (en) 2013-03-12 2016-10-04 Lighting Science Group Corporation Edge lit lighting device
WO2014155250A1 (en) * 2013-03-29 2014-10-02 Koninklijke Philips N.V. Light emitting device comprising wavelength converter
DE102013106689A1 (en) * 2013-06-26 2014-12-31 Osram Opto Semiconductors Gmbh The optoelectronic semiconductor component
US9429294B2 (en) 2013-11-11 2016-08-30 Lighting Science Group Corporation System for directional control of light and associated methods

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871747A (en) * 1972-10-03 1975-03-18 Us Navy Optical waveguide display panel
US4829192A (en) * 1986-03-27 1989-05-09 Kabushiki Kaisha Tokai Rika Denki Seisakusho Photo-coupler with delay function using a fluorescent substance as the delay means
US4903172A (en) * 1987-09-11 1990-02-20 Schoeniger Karl Heinz Display construction
US4906062A (en) * 1988-10-26 1990-03-06 The General Electric Company, P.L.C. Integrated optical waveguide bend
US5211467A (en) * 1992-01-07 1993-05-18 Rockwell International Corporation Fluorescent lighting system
US5281134A (en) * 1991-11-19 1994-01-25 Schultz Allen J Fiber optic illumination system for dental instruments
US5718666A (en) * 1996-02-29 1998-02-17 Bioenterics Corporation Transilluminating bougie
US5899552A (en) * 1993-11-11 1999-05-04 Enplas Corporation Surface light source device
US6016038A (en) * 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
US6031511A (en) * 1997-06-10 2000-02-29 Deluca; Michael J. Multiple wave guide phosphorous display
US6226440B1 (en) * 1996-09-16 2001-05-01 Whelen Engineering Company, Inc. Optical coupler and illumination system employing the same
US6345903B1 (en) * 2000-09-01 2002-02-12 Citizen Electronics Co., Ltd. Surface-mount type emitting diode and method of manufacturing same
US6350041B1 (en) * 1999-12-03 2002-02-26 Cree Lighting Company High output radial dispersing lamp using a solid state light source
US6351069B1 (en) * 1999-02-18 2002-02-26 Lumileds Lighting, U.S., Llc Red-deficiency-compensating phosphor LED
US6356691B2 (en) * 1998-12-01 2002-03-12 Iljin Corp. Optical waveguide display having embedded light source
US6504301B1 (en) * 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
US6522065B1 (en) * 2000-03-27 2003-02-18 General Electric Company Single phosphor for creating white light with high luminosity and high CRI in a UV led device
US6528755B2 (en) * 2000-04-11 2003-03-04 Branson Ultrasonics Corporation Light guide for laser welding
US6527419B1 (en) * 2001-10-12 2003-03-04 Robert D. Galli LED spotlight illumination system
US6530670B2 (en) * 2000-11-06 2003-03-11 Sharp Kabushiki Kaisha Planar illumination device
US6549709B1 (en) * 1994-08-26 2003-04-15 Jds Uniphase Inc. Method of making a polymeric optical waveguide device provided with fibre ends, and free-standing, flexible waveguide sheets used therein
US6551346B2 (en) * 2000-05-17 2003-04-22 Kent Crossley Method and apparatus to prevent infections
US6554462B2 (en) * 1997-12-09 2003-04-29 Federal-Mogul World Wide, Inc. Optical waveguide structures
US6680004B2 (en) * 2000-06-27 2004-01-20 Sumitomo Chemical Company Limited Method of producing aluminate fluorescent substance, a fluorescent substance and a diode containing a fluorescent substance
US20040012556A1 (en) * 2002-07-17 2004-01-22 Sea-Weng Yong Method and related device for controlling illumination of a backlight of a liquid crystal display
US6687010B1 (en) * 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
US6694069B2 (en) * 2000-10-30 2004-02-17 Kyocera Corporation Optical integrated circuit substrate and optical module
US6709132B2 (en) * 2001-08-13 2004-03-23 Atex Co., Ltd. LED bulb
US6714711B1 (en) * 1999-06-16 2004-03-30 Optech Ventures, Llc Optical waveguide illuminator
US6847170B2 (en) * 1999-12-14 2005-01-25 Exfo Photonic Solutions Inc. Smart light source with integrated operational parameters data storage capability
US6850665B2 (en) * 1999-05-12 2005-02-01 Sabeus Photonics Wavelength-selective optical fiber components using cladding-mode assisted coupling
US20050041424A1 (en) * 1999-11-18 2005-02-24 Color Kinetics, Inc. Systems and methods for converting illumination
US6871982B2 (en) * 2003-01-24 2005-03-29 Digital Optics International Corporation High-density illumination system
US6890234B2 (en) * 2000-08-07 2005-05-10 General Electric Company LED cross-linkable phosphor coating
US20050100288A1 (en) * 2003-11-10 2005-05-12 Sunplus Technology Co., Ltd. Light guide module having embedded LED
US6982522B2 (en) * 2002-10-07 2006-01-03 Sharp Kabushiki Kaisha LED device including phosphor layers on the reflecting surface
US20060001036A1 (en) * 2004-07-02 2006-01-05 Gelcore, Llc LED-based edge lit illumination system
US20060002146A1 (en) * 2004-07-01 2006-01-05 Nec Lcd Technologies, Ltd. Backlight unit and liquid crystal display device using the same
US20060001037A1 (en) * 2004-06-30 2006-01-05 Schardt Craig R Phosphor based illumination system having a plurality of light guides and a display using same
US20060008205A1 (en) * 2004-06-21 2006-01-12 Noam Meir High efficacy waveguide coupler
US20060012286A1 (en) * 2004-07-15 2006-01-19 Cull Brian D Display with bright backlight
US7006306B2 (en) * 2003-07-29 2006-02-28 Light Prescriptions Innovators, Llc Circumferentially emitting luminaires and lens-elements formed by transverse-axis profile-sweeps
US7005086B2 (en) * 2002-11-08 2006-02-28 Seiwa Electric Mfg. Co., Ltd. Fluorescent substance, light-emitting diode and method for producing fluorescent substance
US7008078B2 (en) * 2001-05-24 2006-03-07 Matsushita Electric Industrial Co., Ltd. Light source having blue, blue-green, orange and red LED's
US7015510B2 (en) * 2000-05-15 2006-03-21 General Electric Company White light emitting phosphor blend for LED devices
US7026756B2 (en) * 1996-07-29 2006-04-11 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light LED and phosphor components
US7038246B2 (en) * 2002-07-25 2006-05-02 Toyoda Gosei Co., Ltd. Light emitting apparatus
US20060092346A1 (en) * 2004-10-30 2006-05-04 Moon Jeong M Light emitting diode backlight unit and liquid crystal display device using the same
US20060098434A1 (en) * 2004-11-10 2006-05-11 Coretronic Corporation Direct type backlight module
US7045826B2 (en) * 2003-03-28 2006-05-16 Korea Research Institute Of Chemical Technology Strontium silicate-based phosphor, fabrication method thereof, and LED using the phosphor
US7052152B2 (en) * 2003-10-03 2006-05-30 Philips Lumileds Lighting Company, Llc LCD backlight using two-dimensional array LEDs
US7160012B2 (en) * 2002-01-07 2007-01-09 Patent-Treuhand-Gesellschaft für elektrische Glëhlapen mbH Lamp
US20070019439A1 (en) * 2005-07-21 2007-01-25 Chuan-Pei Yu Back light unit and method of adjusting spectral distribution thereof
US20070031097A1 (en) * 2003-12-08 2007-02-08 University Of Cincinnati Light Emissive Signage Devices Based on Lightwave Coupling
US7178941B2 (en) * 2003-05-05 2007-02-20 Color Kinetics Incorporated Lighting methods and systems
US20070053208A1 (en) * 2003-05-09 2007-03-08 Koninklijke Philips Electronics, N.V. Uv light source coated with nano-particles of phosphor
US20070057626A1 (en) * 2005-09-15 2007-03-15 Matoko Kurihara Illumination device and display device provided with the same
US7193248B2 (en) * 2001-01-16 2007-03-20 Visteon Global Technologies, Inc. LED backlighting system
US7204607B2 (en) * 2003-09-16 2007-04-17 Matsushita Electric Industrial Co., Ltd. LED lamp
US20070086211A1 (en) * 2005-10-18 2007-04-19 Goldeneye, Inc. Side emitting illumination systems incorporating light emitting diodes
US20070103914A1 (en) * 2005-11-08 2007-05-10 United Technologies Corporation LED replacement bulb
US20080007541A1 (en) * 2006-07-06 2008-01-10 O-Pen A/S Optical touchpad system and waveguide for use therein
US20080029720A1 (en) * 2006-08-03 2008-02-07 Intematix Corporation LED lighting arrangement including light emitting phosphor
US7331700B2 (en) * 2003-11-14 2008-02-19 A L Lightech, Inc. High intensity utility light
US20080049445A1 (en) * 2006-08-25 2008-02-28 Philips Lumileds Lighting Company, Llc Backlight Using High-Powered Corner LED
US20080055931A1 (en) * 2004-09-27 2008-03-06 Barco N.V. Method and Systems for Illuminating
US20080061683A1 (en) * 2004-09-27 2008-03-13 Koninklijke Philips Electronics, N.V. Illumination System
US7345317B2 (en) * 1996-06-26 2008-03-18 Osram Gmbh Light-radiating semiconductor component with a luminescene conversion element
US7347586B2 (en) * 2005-05-09 2008-03-25 Gamasonic Ltd. LED light bulb
US7350936B2 (en) * 1999-11-18 2008-04-01 Philips Solid-State Lighting Solutions, Inc. Conventionally-shaped light bulbs employing white LEDs
US20080094348A1 (en) * 2006-09-29 2008-04-24 Innocom Technology (Shenzhen) Co., Ltd. Liquid crystal display device with light sensor on light guide plate thereof
US20090002668A1 (en) * 2007-06-26 2009-01-01 Carl Zeiss Smt Ag Method and Device for Controlling a Plurality of Actuators and an Illumination Device for Lithography
US20090001397A1 (en) * 2007-05-29 2009-01-01 Oree, Advanced Illumiation Solutions Inc. Method and device for providing circumferential illumination
US20090016060A1 (en) * 2005-04-18 2009-01-15 Rohm Co., Ltd. Lighting apparatus and display apparatus therewith
US7479733B2 (en) * 2005-03-24 2009-01-20 Lighthouse Technology Co., Ltd. Light-emitting diode package structure, cold cathode flourescent lamp and photoluminescent material thereof
US7481562B2 (en) * 2004-11-18 2009-01-27 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Device and method for providing illuminating light using quantum dots
US20090027588A1 (en) * 2007-07-29 2009-01-29 Medendorp Jr Nicholas W Led backlight system for lcd displays
US20090046978A1 (en) * 2007-06-06 2009-02-19 Hiroki Yasuda Mirror-Embedded Optical Waveguide and Fabrication Method of Same
US20090046453A1 (en) * 2005-05-11 2009-02-19 Regine Kramer Spotlight for shooting films and videos
US20090052205A1 (en) * 2007-08-23 2009-02-26 Ching-Chung Chen Light source module of scanning device
US20090051268A1 (en) * 2007-08-21 2009-02-26 Samsung Sdi Co., Ltd. White phosphor, light emission device including the same, and display device
US20090059359A1 (en) * 2007-08-28 2009-03-05 Carl Zeiss Surgical Gmbh Secondary light source
US20090059553A1 (en) * 2007-05-08 2009-03-05 Tai-Yen Lin Light guiding structure and manufacturing of the same
US20090067194A1 (en) * 2007-09-11 2009-03-12 World Properties, Inc. Light guide with imprinted phosphor
US7513669B2 (en) * 2005-08-01 2009-04-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Light source for LCD back-lit displays
US7600882B1 (en) * 2009-01-20 2009-10-13 Lednovation, Inc. High efficiency incandescent bulb replacement lamp
US20100002414A1 (en) * 2005-06-07 2010-01-07 Noam Meir Illumination Apparatus and Methods of Forming the Same
US20100008628A1 (en) * 2008-07-10 2010-01-14 Yosi Shani Slim waveguide coupling apparatus and method
US20100014822A1 (en) * 2002-12-09 2010-01-21 Oree Advanced Illumination Solutions Inc. Flexible Optical Device
US20100033420A1 (en) * 2008-08-06 2010-02-11 Kun-Huang Jheng Lighting system having control architecture
US20100045189A1 (en) * 2008-08-19 2010-02-25 Plextronics, Inc. Organic light emitting diode lighting systems
US20100046219A1 (en) * 2007-04-12 2010-02-25 Koninklijke Philips Electronics N.V. Light guide and light-output device
US20100060157A1 (en) * 2008-09-10 2010-03-11 Wei Shi Phosphor layer arrangement for use with light emitting diodes
US20100079841A1 (en) * 2008-09-26 2010-04-01 Nokia Corporation Device and a method for polarized illumination of a micro-display
US20100098377A1 (en) * 2008-10-16 2010-04-22 Noam Meir Light confinement using diffusers
US20110013415A1 (en) * 2007-12-19 2011-01-20 Oree Inc. Discrete light guide-based planar illumination area
US7891852B2 (en) * 2005-10-17 2011-02-22 Koninklijke Philips Electronics Nv Illumination system using phosphor remote from light source
US7903198B2 (en) * 2005-05-30 2011-03-08 Kyocera Corporation Liquid crystal display device

Family Cites Families (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB512062A (en) 1938-01-28 1939-08-29 Ernst Hirsch Improvements in reflectors
US3261356A (en) 1963-10-21 1966-07-19 American Cystoscope Makers Inc Suction and illumination device
US3626471A (en) 1969-10-13 1971-12-07 Robert E Florin Illuminated suction brain retractor
DE2433219A1 (en) 1973-10-19 1976-01-22 Nath Guenther Flexible light guide
US4551129A (en) 1983-04-08 1985-11-05 Coleman D Jackson Technique and apparatus for intraocular and microsurgery including lighter-irrigator hypodermic tube
US4669467A (en) 1985-03-22 1987-06-02 Massachusetts Institute Of Technology Mode mixer for a laser catheter
CA1260741A (en) 1985-03-30 1989-09-26 Takafumi Uemiya Elastomeric optical waveguide
US4714983A (en) 1985-06-10 1987-12-22 Motorola, Inc. Uniform emission backlight
JPS6289914A (en) 1986-01-29 1987-04-24 Sumitomo Electric Ind Ltd Optical waveguide integrated with optical element and its production
DE3633203A1 (en) 1986-09-30 1988-03-31 Siemens Ag Light-emitting diode (LED) - display device
US5165187A (en) 1987-01-30 1992-11-24 Fiber Sense & Signals Inc. Edge illuminated sign panel
FR2610511A1 (en) 1987-02-06 1988-08-12 Issalene Robert dental instrument and cannulas for aspirating, clean, dry and illuminate in the mouth
NL8702166A (en) 1987-09-11 1989-04-03 Oce Nederland Bv Lighting device aging correction system for an LED printer.
US5061032A (en) 1989-12-26 1991-10-29 United Technologies Corporation Optical waveguide embedded light redirecting and focusing bragg grating arrangement
US5048913A (en) 1989-12-26 1991-09-17 United Technologies Corporation Optical waveguide embedded transverse spatial mode discrimination filter
US5139420A (en) 1990-09-04 1992-08-18 Walker William S Dental mirror system
US5152686A (en) 1991-04-25 1992-10-06 Calvin Duggan Dental appliance
US5283722A (en) 1992-08-05 1994-02-01 Koenen Howard P Surgical-type glove and illuminator assembly
US5559358A (en) 1993-05-25 1996-09-24 Honeywell Inc. Opto-electro-mechanical device or filter, process for making, and sensors made therefrom
JPH07169311A (en) 1993-12-17 1995-07-04 Enplas Corp Light scattering photoconductive light source and liquid crystal display
US5425730A (en) 1994-02-16 1995-06-20 Luloh; K. P. Illumination cannula system for vitreous surgery
US5580154A (en) 1994-08-24 1996-12-03 Coulter; James D. Glow-in-the-dark glove apparatus
US5569254A (en) 1995-04-12 1996-10-29 Midas Rex Pneumatic Tools, Inc. Surgical resection tool having an irrigation, lighting, suction and vision attachment
US5613751A (en) 1995-06-27 1997-03-25 Lumitex, Inc. Light emitting panel assemblies
US5675678A (en) 1995-10-10 1997-10-07 Ceram Optec Industries Inc. Flexible system for linearly distributed illumination
US5803579A (en) 1996-06-13 1998-09-08 Gentex Corporation Illuminator assembly incorporating light emitting diodes
US6608332B2 (en) 1996-07-29 2003-08-19 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device and display
JP3676524B2 (en) 1996-10-25 2005-07-27 ペンタックス株式会社 prism
US6473554B1 (en) 1996-12-12 2002-10-29 Teledyne Lighting And Display Products, Inc. Lighting apparatus having low profile
US5813752A (en) 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue LED-phosphor device with short wave pass, long wave pass band pass and peroit filters
US5813753A (en) 1997-05-27 1998-09-29 Philips Electronics North America Corporation UV/blue led-phosphor device with efficient conversion of UV/blues light to visible light
US5847507A (en) 1997-07-14 1998-12-08 Hewlett-Packard Company Fluorescent dye added to epoxy of light emitting diode lens
JPH1144640A (en) 1997-07-28 1999-02-16 Tori Chem Kenkyusho:Kk Detection element, detector and detection method
US7358929B2 (en) 2001-09-17 2008-04-15 Philips Solid-State Lighting Solutions, Inc. Tile lighting methods and systems
US5947588A (en) 1997-10-06 1999-09-07 Grand General Accessories Manufacturing Inc. Light fixture with an LED light bulb having a conventional connection post
DE19746508A1 (en) 1997-10-22 1999-04-29 Daimler Chrysler Ag Apparatus and method for the preparation of waveguide structures with optical components
GB9814632D0 (en) 1998-07-06 1998-09-02 Lite On Electronics Inc Lateral-type back-light using light emitting diode
US5959316A (en) 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
US6329444B1 (en) 1998-10-14 2001-12-11 Apex Medical Technologies, Inc. Dip-molded medical devices from cis-1,4-polyisoprene
GB9824135D0 (en) 1998-11-05 1998-12-30 Spooner Paul Glove with illuminated light
US6252348B1 (en) 1998-11-20 2001-06-26 Micron Technology, Inc. Field emission display devices, and methods of forming field emission display devices
US6275512B1 (en) 1998-11-25 2001-08-14 Imra America, Inc. Mode-locked multimode fiber laser pulse source
US6155699A (en) 1999-03-15 2000-12-05 Agilent Technologies, Inc. Efficient phosphor-conversion led structure
FI107085B (en) 1999-05-28 2001-05-31 Ics Intelligent Control System Lighting panel
WO2001024284A1 (en) 1999-09-27 2001-04-05 Lumileds Lighting, U.S., Llc A light emitting diode device that produces white light by performing complete phosphor conversion
DE19952430A1 (en) 1999-10-22 2001-05-31 Hans Stern Illuminated glove for cyclists, comprises rows of light emitting diodes on fingers to allow signaling in dark and improve safety
JP4071407B2 (en) 1999-11-08 2008-04-02 矢崎総業株式会社 Optical connector for the sleeve, and a receptacle
JP3513448B2 (en) 1999-11-11 2004-03-31 キヤノン株式会社 The optical probe
JP2001184929A (en) 1999-12-24 2001-07-06 Nec Corp Plane light source apparatus and liquid crystal display provided with it
US6671235B1 (en) 2000-03-27 2003-12-30 Ultratech Stepper, Inc. Method of and apparatus for defining disk tracks in magnetic recording media
WO2001086200A1 (en) 2000-05-04 2001-11-15 Koninklijke Philips Electronics N.V. Illumination unit for a device having a multi-color reflective liquid crystal display
US6621211B1 (en) 2000-05-15 2003-09-16 General Electric Company White light emitting phosphor blends for LED devices
US6635363B1 (en) 2000-08-21 2003-10-21 General Electric Company Phosphor coating with self-adjusting distance from LED chip
US6635987B1 (en) 2000-09-26 2003-10-21 General Electric Company High power white LED lamp structure using unique phosphor application for LED lighting products
US6754408B2 (en) 2000-10-23 2004-06-22 Sony Corporation Optical switch and display unit
US6637924B2 (en) 2000-11-15 2003-10-28 Teledyne Lighting And Display Products, Inc. Strip lighting apparatus and method
ES2437131T3 (en) 2000-12-28 2014-01-09 Leuchtstoffwerk Breitungen Gmbh Light source to generate white light
DE10102587A1 (en) 2001-01-20 2002-07-25 Philips Corp Intellectual Pty Luminair with linear light sources and light guide plate with several ducts for light sources
JP2002258081A (en) 2001-02-28 2002-09-11 Fujitsu Ltd Optical wiring board, manufacturing method of the same, and multi-layer optical wiring
US6488704B1 (en) 2001-05-07 2002-12-03 Biomed Solutions, Llc Implantable particle measuring apparatus
US7001058B2 (en) 2001-05-16 2006-02-21 Ben-Zion Inditsky Ultra-thin backlight
CA2486643C (en) 2001-05-22 2008-10-21 Poly Optics Australia Pty. Ltd. Side scattering polymer light guide and method of manufacture
WO2003016782A1 (en) 2001-08-09 2003-02-27 Matsushita Electric Industrial Co., Ltd. Led illuminator and card type led illuminating light source
KR100863865B1 (en) 2001-10-04 2008-10-15 미츠비시 레이온 가부시키가이샤 Area light source and lightguide used therefor
US6599000B2 (en) 2001-10-15 2003-07-29 Steven T. Nolan Interior lamp for producing white light using bright white LEDs
US6796698B2 (en) 2002-04-01 2004-09-28 Gelcore, Llc Light emitting diode-based signal light
JP2003308714A (en) 2002-04-17 2003-10-31 Fuji Photo Film Co Ltd Light guide film
US6679621B2 (en) 2002-06-24 2004-01-20 Lumileds Lighting U.S., Llc Side emitting LED and lens
CA2398177A1 (en) 2002-08-14 2004-02-14 Gilles Trudeau Illuminating structure
EP1540395A4 (en) 2002-09-06 2005-08-31 Poly Optics Australia Pty Ltd Improvements in side-scattering light guides
WO2004027474A1 (en) * 2002-09-18 2004-04-01 Poly Optics Australia Pty Ltd Light emitting device
FR2845812B1 (en) 2002-10-10 2005-09-23 Inanov the display screen addressing system
CN2593229Y (en) 2002-12-17 2003-12-17 统宝光电股份有限公司 Light source module of liquid crystal display
US6917057B2 (en) 2002-12-31 2005-07-12 Gelcore Llc Layered phosphor coatings for LED devices
US6765237B1 (en) 2003-01-15 2004-07-20 Gelcore, Llc White light emitting device based on UV LED and phosphor blend
US6941069B2 (en) 2003-01-17 2005-09-06 Pentax Corporation Light-projecting device
US7425798B2 (en) 2003-01-23 2008-09-16 Lumination Llc Intelligent light degradation sensing LED traffic signal
US7923918B2 (en) 2003-03-13 2011-04-12 Nichia Corporation Light emitting film, luminescent device, method for manufacturing light emitting film and method for manufacturing luminescent device
US7279832B2 (en) 2003-04-01 2007-10-09 Innovalight, Inc. Phosphor materials and illumination devices made therefrom
EP1618549A4 (en) 2003-04-25 2006-06-21 Visioneered Image Systems Inc Led illumination source/display with individual led brightness monitoring capability and calibration method
US7005679B2 (en) 2003-05-01 2006-02-28 Cree, Inc. Multiple component solid state white light
ES2318306T3 (en) 2003-05-05 2009-05-01 Lumination, Llc Method and apparatus for systems with panel LED lamps.
US6965709B1 (en) 2003-05-14 2005-11-15 Sandia Corporation Fluorescent optical position sensor
US20040257352A1 (en) 2003-06-18 2004-12-23 Nuelight Corporation Method and apparatus for controlling
DE602004009684T2 (en) 2003-07-02 2008-02-07 S.C. Johnson & Son, Inc., Racine Lamp and bulb for exposure and ambient lighting
EP1663706A4 (en) 2003-09-08 2008-11-05 Odelo Gmbh Led light source
GB0322823D0 (en) 2003-09-30 2003-10-29 Oxley Dev Co Ltd Method and drive circuit for controlling leds
CN1321344C (en) 2003-10-14 2007-06-13 统宝光电股份有限公司 The liquid crystal display device
DE602004028648D1 (en) 2003-11-25 2010-09-23 Panasonic Elec Works Co Ltd A light-emitting component-with a light-emitting chip
US7123796B2 (en) 2003-12-08 2006-10-17 University Of Cincinnati Light emissive display based on lightwave coupling
US7066623B2 (en) 2003-12-19 2006-06-27 Soo Ghee Lee Method and apparatus for producing untainted white light using off-white light emitting diodes
EP1708284B1 (en) 2004-01-20 2017-03-29 Nichia Corporation Semiconductor light-emitting device
US7720116B2 (en) 2004-01-22 2010-05-18 Vescent Photonics, Inc. Tunable laser having liquid crystal waveguide
US6948829B2 (en) 2004-01-28 2005-09-27 Dialight Corporation Light emitting diode (LED) light bulbs
WO2005096258A1 (en) 2004-03-30 2005-10-13 Koninklijke Philips Electronics N.V. Method of calibrating an illumination system and an illumination system
GB0408347D0 (en) 2004-04-15 2004-05-19 Design Led Products Ltd Light guide device
US7215086B2 (en) * 2004-04-23 2007-05-08 Lighting Science Group Corporation Electronic light generating element light bulb
JP2005310611A (en) 2004-04-23 2005-11-04 Hitachi Display Devices Ltd Backlight device and display
EP1749074B1 (en) 2004-04-27 2016-04-20 Panasonic Intellectual Property Management Co., Ltd. Light-emitting device using phosphor composition
US7367692B2 (en) 2004-04-30 2008-05-06 Lighting Science Group Corporation Light bulb having surfaces for reflecting light produced by electronic light generating sources
US7086767B2 (en) 2004-05-12 2006-08-08 Osram Sylvania Inc. Thermally efficient LED bulb
KR20050108177A (en) 2004-05-12 2005-11-16 삼성전기주식회사 A method for increasing optical output of led device using pulsation current and a driving unit of led device using the method
JP4590283B2 (en) * 2004-05-21 2010-12-01 シャープ株式会社 A backlight unit and a liquid crystal display device having the same
US8482663B2 (en) 2004-06-30 2013-07-09 Osram Opto Semiconductors Gmbh Light-emitting diode arrangement, optical recording device and method for the pulsed operation of at least one light-emitting diode
US7267787B2 (en) 2004-08-04 2007-09-11 Intematix Corporation Phosphor systems for a white light emitting diode (LED)
US7722211B2 (en) 2004-08-06 2010-05-25 Koninklijke Philips Electronics N.V. Light engine
KR101166664B1 (en) 2004-08-06 2012-09-13 코닌클리즈케 필립스 일렉트로닉스 엔.브이. High performance led lamp system
US7153008B2 (en) 2004-08-18 2006-12-26 Grote Industries, Inc. Conversion cradle incandescent lamp to LED lamp
US7144131B2 (en) 2004-09-29 2006-12-05 Advanced Optical Technologies, Llc Optical system using LED coupled with phosphor-doped reflective materials
KR100665778B1 (en) 2004-10-19 2007-01-09 오므론 가부시키가이샤 A light emitting source and a light emitting source array
DE102004055991B3 (en) 2004-11-19 2006-02-02 Cts Fahrzeug-Dachsysteme Gmbh Adjustable vehicle roof with material cover has rear screen stowed between the rear leg of cover rod and main leg of cover rod in stowage position
US7221110B2 (en) 2004-12-17 2007-05-22 Bruce Industries, Inc. Lighting control system and method
KR101189080B1 (en) 2005-01-24 2012-11-09 삼성디스플레이 주식회사 Reflecting plate and liquid crystal display device having the same
US20060193133A1 (en) 2005-02-25 2006-08-31 Erco Leuchten Gmbh Lamp
US20060203502A1 (en) 2005-03-10 2006-09-14 Stevens Peter M Total internal reflection license plate frame
US7327097B2 (en) 2005-03-21 2008-02-05 Hannstar Display Corporation Light module with control of luminance and method for managing the luminance
WO2006104553A1 (en) 2005-03-25 2006-10-05 Five Star Import Group L.L.C. Led light bulb
US20060221610A1 (en) 2005-04-01 2006-10-05 Chew Tong F Light-emitting apparatus having a plurality of overlapping panels forming recesses from which light is emitted
GB0509308D0 (en) 2005-05-06 2005-06-15 Cambridge Consultants Optical device
KR100774061B1 (en) * 2005-05-17 2007-11-06 엔이씨 엘씨디 테크놀로지스, 엘티디. Backlight and liquid crystal display device
US20060262250A1 (en) 2005-05-18 2006-11-23 Hobbs Douglas S Microstructured optical device for polarization and wavelength filtering
US7293906B2 (en) 2005-05-23 2007-11-13 Avago Technologies Ecbu Ip (Singapore) Pte Ltd Light source adapted for LCD back-lit displays
US20060268537A1 (en) 2005-05-31 2006-11-30 Makoto Kurihara Phosphor film, lighting device using the same, and display device
KR100691179B1 (en) 2005-06-01 2007-03-09 삼성전기주식회사 Side Emitting LED Package and Method of Manufacturing The Same
WO2006131924A3 (en) 2005-06-07 2009-01-08 Oree Advanced Illum Sol Inc Illumination apparatus
US8215815B2 (en) 2005-06-07 2012-07-10 Oree, Inc. Illumination apparatus and methods of forming the same
WO2007002317A1 (en) 2005-06-23 2007-01-04 Fusion Optix, Inc. Enhanced diffusing plates, films and backlights
US20070019129A1 (en) 2005-07-20 2007-01-25 Cree, Inc. Independent control of light emitting diodes for backlighting of color displays
US7382091B2 (en) 2005-07-27 2008-06-03 Lung-Chien Chen White light emitting diode using phosphor excitation
US7230222B2 (en) 2005-08-15 2007-06-12 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Calibrated LED light module
WO2007034398A3 (en) 2005-09-19 2008-10-30 Koninkl Philips Electronics Nv Illumination system for illuminating display devices, and display device provided with such an illumination system
US7251389B2 (en) 2005-09-26 2007-07-31 Intel Corporation Embedded on-die laser source and optical interconnect
CN101278327B (en) 2005-09-29 2011-04-13 皇家飞利浦电子股份有限公司 Method of compensating an aging process of an illumination device
US7638754B2 (en) 2005-10-07 2009-12-29 Sharp Kabushiki Kaisha Backlight device, display apparatus including backlight device, method for driving backlight device, and method for adjusting backlight device
US8071997B2 (en) 2005-10-07 2011-12-06 Osram Sylvania Inc. LED with light transmissive heat sink
US7378686B2 (en) * 2005-10-18 2008-05-27 Goldeneye, Inc. Light emitting diode and side emitting lens
KR20070049322A (en) 2005-11-08 2007-05-11 엘지이노텍 주식회사 Back-light assembly and liquid crystal display device with the same
EP1785665B1 (en) 2005-11-14 2011-11-02 TRUMPF Medizin Systeme GmbH + Co. KG Surgical lamp
US7893633B2 (en) 2005-12-01 2011-02-22 Martin Professional A/S Method and apparatus for controlling a variable-colour light source
CA2570967C (en) 2005-12-13 2010-10-26 Lumincity Inc. An illuminating device and assembly for illuminating enclosed spaces using the same
DE102005061204A1 (en) 2005-12-21 2007-07-05 Perkinelmer Elcos Gmbh Lighting apparatus, lighting controller and lighting system
US20070147089A1 (en) * 2005-12-23 2007-06-28 Innolux Display Corp. Backlight module and lcd having same
WO2007086657A1 (en) 2006-01-24 2007-08-02 Lg Innotek Co., Ltd Backlight unit and lcd having the same
US8791645B2 (en) 2006-02-10 2014-07-29 Honeywell International Inc. Systems and methods for controlling light sources
KR100969907B1 (en) 2006-02-23 2010-07-13 파나소닉 전공 주식회사 Led luminaire
US7540628B2 (en) 2006-04-24 2009-06-02 Novicomm, Inc. Illuminated panels and methods therefor
US7740387B2 (en) 2006-05-24 2010-06-22 3M Innovative Properties Company Backlight wedge with side mounted light source
US7736044B2 (en) 2006-05-26 2010-06-15 Avago Technologies General Ip (Singapore) Pte. Ltd. Indirect lighting device for light guide illumination
US7626210B2 (en) 2006-06-09 2009-12-01 Philips Lumileds Lighting Company, Llc Low profile side emitting LED
US7703945B2 (en) 2006-06-27 2010-04-27 Cree, Inc. Efficient emitting LED package and method for efficiently emitting light
JP2009543279A (en) 2006-06-27 2009-12-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Large area lighting
US7736042B2 (en) 2006-07-20 2010-06-15 Ls Tech Co., Ltd. Back light unit
US8157400B2 (en) 2006-07-25 2012-04-17 Showa Denko K.K. Light emitting apparatus, display apparatus and method for manufacturing light emitting apparatus
JP4751269B2 (en) 2006-08-09 2011-08-17 セイコーインスツル株式会社 Lighting device and a display device including the same, a portable electronic device
EP2061288B8 (en) 2006-09-06 2012-03-07 Sharp Kabushiki Kaisha Illuminating device and liquid crystal display device
US20080062070A1 (en) 2006-09-13 2008-03-13 Honeywell International Inc. Led brightness compensation system and method
WO2008035282A1 (en) 2006-09-22 2008-03-27 Koninklijke Philips Electronics N.V. Illumination system
US8155489B2 (en) 2006-11-02 2012-04-10 Nokia Corporation Method for coupling light into a thin planar waveguide
WO2008059114A1 (en) 2006-11-14 2008-05-22 Oy Modilis Ltd Lightguide arrangement and related applications
WO2008059445A3 (en) 2006-11-14 2008-08-14 Koninkl Philips Electronics Nv External microcontroller for led lighting fixture, led lighting fixture with internal controller, and led lighting system
DE102006055610A1 (en) 2006-11-24 2008-05-29 Hella Kgaa Hueck & Co. A process for pulsed energization of incandescent lamps in motor vehicles
US7607815B2 (en) 2006-11-27 2009-10-27 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Low profile and high efficiency lighting device for backlighting applications
EP2115347A1 (en) 2007-01-30 2009-11-11 Philips Intellectual Property & Standards GmbH Light emitting floor surface
US20080192458A1 (en) 2007-02-12 2008-08-14 Intematix Corporation Light emitting diode lighting system
JP4996941B2 (en) 2007-02-21 2012-08-08 富士フイルム株式会社 The liquid crystal display device
US20080205078A1 (en) 2007-02-23 2008-08-28 Luminus Devices, Inc. Illumination tiles and related methods
US7883226B2 (en) 2007-03-05 2011-02-08 Intematix Corporation LED signal lamp
US7806579B2 (en) 2007-03-30 2010-10-05 Honeywell International Inc. Luminaire having a two-way waveguide
DE102007018224A1 (en) 2007-04-16 2008-10-23 Schott Ag LED lamp with stabilized luminous flux and stabilized light color
EP2153266A4 (en) 2007-06-04 2017-04-12 Nokia Technologies Oy A diffractive beam expander and a virtual display based on a diffractive beam expander
EP2000837A1 (en) 2007-06-07 2008-12-10 Nitto Denko Corporation Manufacturing method of optical waveguide
US20090020685A1 (en) 2007-07-19 2009-01-22 Aussmak Optoelectronic Corp. Light emitting device and its calibrating and control methods
US7845839B2 (en) 2007-11-13 2010-12-07 Intematix Corporation Light emitting display
US7791683B2 (en) 2007-11-19 2010-09-07 Honeywell International Inc. Backlight systems for liquid crystal displays
GB2448564B (en) 2007-11-26 2009-04-29 Iti Scotland Ltd Light guides
US20090151575A1 (en) 2007-12-14 2009-06-18 Benjamin Cardozo Eisendrath Elevated rotisserie for grill assembly
CN101463966A (en) 2007-12-19 2009-06-24 富准精密工业(深圳)有限公司;鸿准精密工业股份有限公司 White light illumination device and desk lamp using the same
US8182128B2 (en) 2007-12-19 2012-05-22 Oree, Inc. Planar white illumination apparatus
US8147081B2 (en) 2007-12-26 2012-04-03 Lumination Llc Directional linear light source
US8723073B2 (en) 2008-02-07 2014-05-13 Cymer, Llc Illumination apparatus and method for controlling energy of a laser source
JP5075673B2 (en) 2008-02-26 2012-11-21 パナソニック株式会社 Lighting control system
CN101978297A (en) 2008-03-05 2011-02-16 奥利高级照明解决公司 Illumination apparatus and methods of forming the same
KR100986359B1 (en) 2008-03-14 2010-10-08 엘지이노텍 주식회사 Light emitting apparatus and display apparatus having the same
KR101046079B1 (en) 2008-04-03 2011-07-01 삼성엘이디 주식회사 led lighting fixture using the device and it Led
WO2009130637A1 (en) 2008-04-23 2009-10-29 Koninklijke Philips Electronics N.V. Direction-dependent control of light guide
WO2009134433A3 (en) 2008-05-02 2010-02-25 Light Prescriptions Innovators, Llc Remote-phosphor led downlight
US7719022B2 (en) 2008-05-06 2010-05-18 Palo Alto Research Center Incorporated Phosphor illumination optics for LED light sources
US8297786B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US20100201611A1 (en) 2008-12-23 2010-08-12 Illumitex, Inc. Led displays
US20100195306A1 (en) 2009-02-03 2010-08-05 Rene Helbing Light emitting diode lamp with phosphor coated reflector
US20100208470A1 (en) 2009-02-10 2010-08-19 Yosi Shani Overlapping illumination surfaces with reduced linear artifacts
US20100320904A1 (en) 2009-05-13 2010-12-23 Oree Inc. LED-Based Replacement Lamps for Incandescent Fixtures

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871747A (en) * 1972-10-03 1975-03-18 Us Navy Optical waveguide display panel
US4829192A (en) * 1986-03-27 1989-05-09 Kabushiki Kaisha Tokai Rika Denki Seisakusho Photo-coupler with delay function using a fluorescent substance as the delay means
US4903172A (en) * 1987-09-11 1990-02-20 Schoeniger Karl Heinz Display construction
US4906062A (en) * 1988-10-26 1990-03-06 The General Electric Company, P.L.C. Integrated optical waveguide bend
US5281134A (en) * 1991-11-19 1994-01-25 Schultz Allen J Fiber optic illumination system for dental instruments
US5211467A (en) * 1992-01-07 1993-05-18 Rockwell International Corporation Fluorescent lighting system
US5899552A (en) * 1993-11-11 1999-05-04 Enplas Corporation Surface light source device
US6549709B1 (en) * 1994-08-26 2003-04-15 Jds Uniphase Inc. Method of making a polymeric optical waveguide device provided with fibre ends, and free-standing, flexible waveguide sheets used therein
US5718666A (en) * 1996-02-29 1998-02-17 Bioenterics Corporation Transilluminating bougie
US7345317B2 (en) * 1996-06-26 2008-03-18 Osram Gmbh Light-radiating semiconductor component with a luminescene conversion element
US7026756B2 (en) * 1996-07-29 2006-04-11 Nichia Kagaku Kogyo Kabushiki Kaisha Light emitting device with blue light LED and phosphor components
US6226440B1 (en) * 1996-09-16 2001-05-01 Whelen Engineering Company, Inc. Optical coupler and illumination system employing the same
US6031511A (en) * 1997-06-10 2000-02-29 Deluca; Michael J. Multiple wave guide phosphorous display
US6016038A (en) * 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
US6554462B2 (en) * 1997-12-09 2003-04-29 Federal-Mogul World Wide, Inc. Optical waveguide structures
US6356691B2 (en) * 1998-12-01 2002-03-12 Iljin Corp. Optical waveguide display having embedded light source
US6351069B1 (en) * 1999-02-18 2002-02-26 Lumileds Lighting, U.S., Llc Red-deficiency-compensating phosphor LED
US6850665B2 (en) * 1999-05-12 2005-02-01 Sabeus Photonics Wavelength-selective optical fiber components using cladding-mode assisted coupling
US6714711B1 (en) * 1999-06-16 2004-03-30 Optech Ventures, Llc Optical waveguide illuminator
US6504301B1 (en) * 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
US6687010B1 (en) * 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
US20050041424A1 (en) * 1999-11-18 2005-02-24 Color Kinetics, Inc. Systems and methods for converting illumination
US7350936B2 (en) * 1999-11-18 2008-04-01 Philips Solid-State Lighting Solutions, Inc. Conventionally-shaped light bulbs employing white LEDs
US6350041B1 (en) * 1999-12-03 2002-02-26 Cree Lighting Company High output radial dispersing lamp using a solid state light source
US6847170B2 (en) * 1999-12-14 2005-01-25 Exfo Photonic Solutions Inc. Smart light source with integrated operational parameters data storage capability
US6853131B2 (en) * 2000-03-27 2005-02-08 General Electric Company Single phosphor for creating white light with high luminosity and high CRI in a UV LED device
US6522065B1 (en) * 2000-03-27 2003-02-18 General Electric Company Single phosphor for creating white light with high luminosity and high CRI in a UV led device
US6528755B2 (en) * 2000-04-11 2003-03-04 Branson Ultrasonics Corporation Light guide for laser welding
US7015510B2 (en) * 2000-05-15 2006-03-21 General Electric Company White light emitting phosphor blend for LED devices
US6551346B2 (en) * 2000-05-17 2003-04-22 Kent Crossley Method and apparatus to prevent infections
US6680004B2 (en) * 2000-06-27 2004-01-20 Sumitomo Chemical Company Limited Method of producing aluminate fluorescent substance, a fluorescent substance and a diode containing a fluorescent substance
US6890234B2 (en) * 2000-08-07 2005-05-10 General Electric Company LED cross-linkable phosphor coating
US6345903B1 (en) * 2000-09-01 2002-02-12 Citizen Electronics Co., Ltd. Surface-mount type emitting diode and method of manufacturing same
US6694069B2 (en) * 2000-10-30 2004-02-17 Kyocera Corporation Optical integrated circuit substrate and optical module
US6530670B2 (en) * 2000-11-06 2003-03-11 Sharp Kabushiki Kaisha Planar illumination device
US7193248B2 (en) * 2001-01-16 2007-03-20 Visteon Global Technologies, Inc. LED backlighting system
US7008078B2 (en) * 2001-05-24 2006-03-07 Matsushita Electric Industrial Co., Ltd. Light source having blue, blue-green, orange and red LED's
US6709132B2 (en) * 2001-08-13 2004-03-23 Atex Co., Ltd. LED bulb
US6527419B1 (en) * 2001-10-12 2003-03-04 Robert D. Galli LED spotlight illumination system
US7160012B2 (en) * 2002-01-07 2007-01-09 Patent-Treuhand-Gesellschaft für elektrische Glëhlapen mbH Lamp
US20040012556A1 (en) * 2002-07-17 2004-01-22 Sea-Weng Yong Method and related device for controlling illumination of a backlight of a liquid crystal display
US7038246B2 (en) * 2002-07-25 2006-05-02 Toyoda Gosei Co., Ltd. Light emitting apparatus
US6982522B2 (en) * 2002-10-07 2006-01-03 Sharp Kabushiki Kaisha LED device including phosphor layers on the reflecting surface
US7005086B2 (en) * 2002-11-08 2006-02-28 Seiwa Electric Mfg. Co., Ltd. Fluorescent substance, light-emitting diode and method for producing fluorescent substance
US20100014822A1 (en) * 2002-12-09 2010-01-21 Oree Advanced Illumination Solutions Inc. Flexible Optical Device
US6871982B2 (en) * 2003-01-24 2005-03-29 Digital Optics International Corporation High-density illumination system
US7045826B2 (en) * 2003-03-28 2006-05-16 Korea Research Institute Of Chemical Technology Strontium silicate-based phosphor, fabrication method thereof, and LED using the phosphor
US7178941B2 (en) * 2003-05-05 2007-02-20 Color Kinetics Incorporated Lighting methods and systems
US20070053208A1 (en) * 2003-05-09 2007-03-08 Koninklijke Philips Electronics, N.V. Uv light source coated with nano-particles of phosphor
US7006306B2 (en) * 2003-07-29 2006-02-28 Light Prescriptions Innovators, Llc Circumferentially emitting luminaires and lens-elements formed by transverse-axis profile-sweeps
US7204607B2 (en) * 2003-09-16 2007-04-17 Matsushita Electric Industrial Co., Ltd. LED lamp
US7052152B2 (en) * 2003-10-03 2006-05-30 Philips Lumileds Lighting Company, Llc LCD backlight using two-dimensional array LEDs
US20050100288A1 (en) * 2003-11-10 2005-05-12 Sunplus Technology Co., Ltd. Light guide module having embedded LED
US7331700B2 (en) * 2003-11-14 2008-02-19 A L Lightech, Inc. High intensity utility light
US20070031097A1 (en) * 2003-12-08 2007-02-08 University Of Cincinnati Light Emissive Signage Devices Based on Lightwave Coupling
US20060008205A1 (en) * 2004-06-21 2006-01-12 Noam Meir High efficacy waveguide coupler
US20060001037A1 (en) * 2004-06-30 2006-01-05 Schardt Craig R Phosphor based illumination system having a plurality of light guides and a display using same
US20060002146A1 (en) * 2004-07-01 2006-01-05 Nec Lcd Technologies, Ltd. Backlight unit and liquid crystal display device using the same
US20060001036A1 (en) * 2004-07-02 2006-01-05 Gelcore, Llc LED-based edge lit illumination system
US20060012286A1 (en) * 2004-07-15 2006-01-19 Cull Brian D Display with bright backlight
US20080055931A1 (en) * 2004-09-27 2008-03-06 Barco N.V. Method and Systems for Illuminating
US20080061683A1 (en) * 2004-09-27 2008-03-13 Koninklijke Philips Electronics, N.V. Illumination System
US20060092346A1 (en) * 2004-10-30 2006-05-04 Moon Jeong M Light emitting diode backlight unit and liquid crystal display device using the same
US20060098434A1 (en) * 2004-11-10 2006-05-11 Coretronic Corporation Direct type backlight module
US7481562B2 (en) * 2004-11-18 2009-01-27 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Device and method for providing illuminating light using quantum dots
US7479733B2 (en) * 2005-03-24 2009-01-20 Lighthouse Technology Co., Ltd. Light-emitting diode package structure, cold cathode flourescent lamp and photoluminescent material thereof
US20090016060A1 (en) * 2005-04-18 2009-01-15 Rohm Co., Ltd. Lighting apparatus and display apparatus therewith
US7347586B2 (en) * 2005-05-09 2008-03-25 Gamasonic Ltd. LED light bulb
US20090046453A1 (en) * 2005-05-11 2009-02-19 Regine Kramer Spotlight for shooting films and videos
US7903198B2 (en) * 2005-05-30 2011-03-08 Kyocera Corporation Liquid crystal display device
US20100002414A1 (en) * 2005-06-07 2010-01-07 Noam Meir Illumination Apparatus and Methods of Forming the Same
US20070019439A1 (en) * 2005-07-21 2007-01-25 Chuan-Pei Yu Back light unit and method of adjusting spectral distribution thereof
US7513669B2 (en) * 2005-08-01 2009-04-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Light source for LCD back-lit displays
US7661841B2 (en) * 2005-09-15 2010-02-16 Seiko Instruments Inc. Illumination device and display device provided with the same
US20070057626A1 (en) * 2005-09-15 2007-03-15 Matoko Kurihara Illumination device and display device provided with the same
US7891852B2 (en) * 2005-10-17 2011-02-22 Koninklijke Philips Electronics Nv Illumination system using phosphor remote from light source
US20070086211A1 (en) * 2005-10-18 2007-04-19 Goldeneye, Inc. Side emitting illumination systems incorporating light emitting diodes
US20070103914A1 (en) * 2005-11-08 2007-05-10 United Technologies Corporation LED replacement bulb
US20080007541A1 (en) * 2006-07-06 2008-01-10 O-Pen A/S Optical touchpad system and waveguide for use therein
US20080029720A1 (en) * 2006-08-03 2008-02-07 Intematix Corporation LED lighting arrangement including light emitting phosphor
US20080049445A1 (en) * 2006-08-25 2008-02-28 Philips Lumileds Lighting Company, Llc Backlight Using High-Powered Corner LED
US20080094348A1 (en) * 2006-09-29 2008-04-24 Innocom Technology (Shenzhen) Co., Ltd. Liquid crystal display device with light sensor on light guide plate thereof
US20100046219A1 (en) * 2007-04-12 2010-02-25 Koninklijke Philips Electronics N.V. Light guide and light-output device
US20090059553A1 (en) * 2007-05-08 2009-03-05 Tai-Yen Lin Light guiding structure and manufacturing of the same
US20090001397A1 (en) * 2007-05-29 2009-01-01 Oree, Advanced Illumiation Solutions Inc. Method and device for providing circumferential illumination
US20090046978A1 (en) * 2007-06-06 2009-02-19 Hiroki Yasuda Mirror-Embedded Optical Waveguide and Fabrication Method of Same
US20090002668A1 (en) * 2007-06-26 2009-01-01 Carl Zeiss Smt Ag Method and Device for Controlling a Plurality of Actuators and an Illumination Device for Lithography
US20090027588A1 (en) * 2007-07-29 2009-01-29 Medendorp Jr Nicholas W Led backlight system for lcd displays
US20090051268A1 (en) * 2007-08-21 2009-02-26 Samsung Sdi Co., Ltd. White phosphor, light emission device including the same, and display device
US20090052205A1 (en) * 2007-08-23 2009-02-26 Ching-Chung Chen Light source module of scanning device
US20090059359A1 (en) * 2007-08-28 2009-03-05 Carl Zeiss Surgical Gmbh Secondary light source
US20090067194A1 (en) * 2007-09-11 2009-03-12 World Properties, Inc. Light guide with imprinted phosphor
US20110013415A1 (en) * 2007-12-19 2011-01-20 Oree Inc. Discrete light guide-based planar illumination area
US20100008628A1 (en) * 2008-07-10 2010-01-14 Yosi Shani Slim waveguide coupling apparatus and method
US20100033420A1 (en) * 2008-08-06 2010-02-11 Kun-Huang Jheng Lighting system having control architecture
US20100045189A1 (en) * 2008-08-19 2010-02-25 Plextronics, Inc. Organic light emitting diode lighting systems
US20100060157A1 (en) * 2008-09-10 2010-03-11 Wei Shi Phosphor layer arrangement for use with light emitting diodes
US20100079841A1 (en) * 2008-09-26 2010-04-01 Nokia Corporation Device and a method for polarized illumination of a micro-display
US20100098377A1 (en) * 2008-10-16 2010-04-22 Noam Meir Light confinement using diffusers
US7600882B1 (en) * 2009-01-20 2009-10-13 Lednovation, Inc. High efficiency incandescent bulb replacement lamp

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414174B2 (en) 2005-06-07 2013-04-09 Oree, Inc. Illumination apparatus
US8641254B2 (en) 2005-06-07 2014-02-04 Oree, Inc. Illumination apparatus
US8272758B2 (en) 2005-06-07 2012-09-25 Oree, Inc. Illumination apparatus and methods of forming the same
US8128272B2 (en) 2005-06-07 2012-03-06 Oree, Inc. Illumination apparatus
US8579466B2 (en) 2005-06-07 2013-11-12 Oree, Inc. Illumination apparatus and methods of forming the same
US8215815B2 (en) 2005-06-07 2012-07-10 Oree, Inc. Illumination apparatus and methods of forming the same
US8459856B2 (en) 2007-12-19 2013-06-11 Oree, Inc. Planar white illumination apparatus
US8182128B2 (en) 2007-12-19 2012-05-22 Oree, Inc. Planar white illumination apparatus
US8238703B2 (en) 2007-12-19 2012-08-07 Oree Inc. Waveguide sheet containing in-coupling, propagation, and out-coupling regions
US8172447B2 (en) 2007-12-19 2012-05-08 Oree, Inc. Discrete lighting elements and planar assembly thereof
US8064743B2 (en) 2007-12-19 2011-11-22 Oree, Inc. Discrete light guide-based planar illumination area
US8542964B2 (en) * 2007-12-19 2013-09-24 Oree, Inc. Waveguide sheet containing in-coupling, propagation, and out-coupling regions
US8297786B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US9164218B2 (en) 2008-07-10 2015-10-20 Oree, Inc. Slim waveguide coupling apparatus and method
US8301002B2 (en) 2008-07-10 2012-10-30 Oree, Inc. Slim waveguide coupling apparatus and method
US8624527B1 (en) 2009-03-27 2014-01-07 Oree, Inc. Independently controllable illumination device
US8328406B2 (en) 2009-05-13 2012-12-11 Oree, Inc. Low-profile illumination device
US8727597B2 (en) 2009-06-24 2014-05-20 Oree, Inc. Illumination apparatus with high conversion efficiency and methods of forming the same
US8258524B2 (en) * 2010-01-26 2012-09-04 Sharp Kabushiki Kaisha Light emitting diode device
US20110180824A1 (en) * 2010-01-26 2011-07-28 Tan Wei-Sin Light emitting diode device
US8487518B2 (en) * 2010-12-06 2013-07-16 3M Innovative Properties Company Solid state light with optical guide and integrated thermal guide
US20120139403A1 (en) * 2010-12-06 2012-06-07 3M Innovative Properties Company Solid state light with optical guide and integrated thermal guide
DE202011050491U1 (en) 2011-06-20 2011-08-19 Inotec Sicherheitstechnik Gmbh Bulb with a screw, at least one element for generating light and a light-permeable body
US9255667B2 (en) * 2011-08-02 2016-02-09 Osram Gmbh LED lighting assembly and an LED retrofit lamp having the LED lighting assembly
US20140210332A1 (en) * 2011-08-02 2014-07-31 Osram Gmbh Led lighting assembly and an led retrofit lamp having the led lighting assembly
US8591072B2 (en) 2011-11-16 2013-11-26 Oree, Inc. Illumination apparatus confining light by total internal reflection and methods of forming the same
US9039244B2 (en) 2011-11-16 2015-05-26 Oree, Inc. Illumination apparatus confining light by total internal reflection and methods of forming the same
US8840276B2 (en) 2011-11-16 2014-09-23 Oree, Inc. Illumination apparatus confining light by total internal reflection and methods of forming the same
US9276178B2 (en) 2012-01-24 2016-03-01 Cooledge Lighting, Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US8785960B1 (en) 2012-01-24 2014-07-22 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US8759125B2 (en) 2012-01-24 2014-06-24 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US8884326B2 (en) 2012-01-24 2014-11-11 Cooledge Lighting Inc. Polymeric binders incorporating light-detecting elements and related methods
US8896010B2 (en) 2012-01-24 2014-11-25 Cooledge Lighting Inc. Wafer-level flip chip device packages and related methods
US9472732B2 (en) 2012-01-24 2016-10-18 Cooledge Lighting, Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US8907362B2 (en) 2012-01-24 2014-12-09 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US8748929B2 (en) 2012-01-24 2014-06-10 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US8629475B2 (en) 2012-01-24 2014-01-14 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9184351B2 (en) 2012-01-24 2015-11-10 Cooledge Lighting Inc. Polymeric binders incorporating light-detecting elements
US9190581B2 (en) 2012-01-24 2015-11-17 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9236502B2 (en) 2012-01-24 2016-01-12 Cooledge Lighting, Inc. Wafer-level flip chip device packages and related methods
US8680558B1 (en) 2012-01-24 2014-03-25 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9496472B2 (en) 2012-01-24 2016-11-15 Cooledge Lighting Inc. Wafer-level flip chip device packages and related methods
US9478715B2 (en) 2012-01-24 2016-10-25 Cooledge Lighting Inc. Discrete phosphor chips for light-emitting devices and related methods
DE102012205472A1 (en) * 2012-04-03 2013-10-10 Osram Gmbh Semiconductor lamp e.g. incandescent LED-retrofit lamp, for decorative purposes, has light bulb designed as light conductor for emitted light, and lateral radiating reflector arranged in light bulb and provided with phosphor
US9857519B2 (en) 2012-07-03 2018-01-02 Oree Advanced Illumination Solutions Ltd. Planar remote phosphor illumination apparatus
US9581751B2 (en) 2013-01-30 2017-02-28 Cree, Inc. Optical waveguide and lamp including same
US9366396B2 (en) 2013-01-30 2016-06-14 Cree, Inc. Optical waveguide and lamp including same
US9389367B2 (en) 2013-01-30 2016-07-12 Cree, Inc. Optical waveguide and luminaire incorporating same
US9442243B2 (en) 2013-01-30 2016-09-13 Cree, Inc. Waveguide bodies including redirection features and methods of producing same
US9823408B2 (en) 2013-01-30 2017-11-21 Cree, Inc. Optical waveguide and luminaire incorporating same
US9690029B2 (en) 2013-01-30 2017-06-27 Cree, Inc. Optical waveguides and luminaires incorporating same
US9291320B2 (en) 2013-01-30 2016-03-22 Cree, Inc. Consolidated troffer
US9869432B2 (en) 2013-01-30 2018-01-16 Cree, Inc. Luminaires using waveguide bodies and optical elements
US9625638B2 (en) 2013-03-15 2017-04-18 Cree, Inc. Optical waveguide body
US9798072B2 (en) 2013-03-15 2017-10-24 Cree, Inc. Optical element and method of forming an optical element
US20140355302A1 (en) * 2013-03-15 2014-12-04 Cree, Inc. Outdoor and/or Enclosed Structure LED Luminaire for General Illumination Applications, Such as Parking Lots and Structures
US9366799B2 (en) 2013-03-15 2016-06-14 Cree, Inc. Optical waveguide bodies and luminaires utilizing same
US9343444B2 (en) 2014-02-05 2016-05-17 Cooledge Lighting, Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9343443B2 (en) 2014-02-05 2016-05-17 Cooledge Lighting, Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods

Also Published As

Publication number Publication date Type
US20100315817A1 (en) 2010-12-16 application
US8328406B2 (en) 2012-12-11 grant

Similar Documents

Publication Publication Date Title
US7524089B2 (en) LED light
US7722220B2 (en) Lighting device
US20120147624A1 (en) Led-based lamps
US6350041B1 (en) High output radial dispersing lamp using a solid state light source
US20110170289A1 (en) Compact light-mixing led light engine and white led lamp with narrow beam and high cri using same
US20080198603A1 (en) Light Source and Illumination Device Comprising at Least One Light-Emitting Element
US20100315813A1 (en) Solid state light unit and heat sink, and method for thermal management of a solid state light unit
US20100301360A1 (en) Lighting devices with discrete lumiphor-bearing regions on remote surfaces thereof
US20120140436A1 (en) Solid-state lamps with light guide and photoluminescence material
US7600882B1 (en) High efficiency incandescent bulb replacement lamp
US20070139923A1 (en) Lighting device
US20120039073A1 (en) Luminaire with distributed led sources
US20100008086A1 (en) LED white-light devices for direct form, fit, and function replacement of existing incandescent and compact fluorescent lighting devices
US20080198572A1 (en) LED lighting systems including luminescent layers on remote reflectors
US20110175528A1 (en) Lamp using solid state source and doped semiconductor nanophosphor
US20120134133A1 (en) Led illumination apparatus
US20100002444A1 (en) Bulb-shaped led lamp and compact led lamp
US8465167B2 (en) Color conversion occlusion and associated methods
JP2009170114A (en) Led bulb and luminaire
US20070267976A1 (en) Led-Based Light Bulb
US20100277068A1 (en) Light emitting diode devices containing replaceable subassemblies
US20110175546A1 (en) Phosphor-centric control of color characteristic of white light
US7960872B1 (en) Side illumination light emitting diode lighting device
JP2004030929A (en) Led device and led lighting device
US20130051003A1 (en) LED Lighting Device with Efficient Heat Removal

Legal Events

Date Code Title Description
AS Assignment

Owner name: OREE, INC., ISRAEL

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MEIR, NOAM;REEL/FRAME:025078/0808

Effective date: 20090608

AS Assignment

Owner name: KREOS CAPITAL III LIMITED, CHANNEL ISLANDS

Free format text: AMENDMENT TO AMENDED AND RESTATED U.S. INTELLECTUAL PROPERTY SECURITY AGREEMENT AT REELS AND FRAMES23565/0454 AND 21633/0001;ASSIGNOR:OREE, ADVANCED ILLUMINATION SOLUTIONS INC.;REEL/FRAME:026074/0105

Effective date: 20110131