US20100313596A1 - Cooling warehouse and air refrigerant type cooling system - Google Patents

Cooling warehouse and air refrigerant type cooling system Download PDF

Info

Publication number
US20100313596A1
US20100313596A1 US12/849,653 US84965310A US2010313596A1 US 20100313596 A1 US20100313596 A1 US 20100313596A1 US 84965310 A US84965310 A US 84965310A US 2010313596 A1 US2010313596 A1 US 2010313596A1
Authority
US
United States
Prior art keywords
air
cooling
warehouse
cooled
cooling warehouse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/849,653
Inventor
Shigemitsu Kikuchi
Seiichi Okuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
International Center for Environmental Technology Transfer
Original Assignee
Mitsubishi Heavy Industries Ltd
International Center for Environmental Technology Transfer
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, International Center for Environmental Technology Transfer filed Critical Mitsubishi Heavy Industries Ltd
Priority to US12/849,653 priority Critical patent/US20100313596A1/en
Assigned to INTERNATIONAL CENTER FOR ENVIRONMENTAL TECHNOLOGY TRANSFER, MITSUBISHI HEAVY INDUSTRIES, LTD. reassignment INTERNATIONAL CENTER FOR ENVIRONMENTAL TECHNOLOGY TRANSFER ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KIKUCHI, SHIGEMITSU, OKUDA, SEIICHI
Publication of US20100313596A1 publication Critical patent/US20100313596A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/004Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/04Self-contained movable devices, e.g. domestic refrigerators specially adapted for storing deep-frozen articles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/066Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply
    • F25D2317/0665Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air supply from the top

Definitions

  • the present invention relates to a cooling apparatus using an air refrigerant and a cooling warehouse cooled by the cooling apparatus.
  • a cooling apparatus using air as a refrigerant has been developed in recent years instead of a conventional cooling apparatus using chlorofluorocarbon as a refrigerant.
  • This type of the cooling apparatus using a refrigerant air generally uses a system for performing cooling by directly blowing the air used as a refrigerant into a cooling chamber.
  • Japanese Unexamined Patent Publication No. 8-61821 discloses a low-temperature freezer for cooling a cooling space to a target temperature by a circulation equipment for circulating low-temperature air in the cooling space between the cooling spaces in a cooling portion outside of the cooling space, in which the circulation equipment for circulating the low-temperature air is systematized by arranging an air compressor, compressed-air cooler, expander, and cooler in order of air flow in a circulation route, and constituted by including a main unit for expanding compressed air and generating low-temperature air, a mixing-injecting nozzle for mixing low-temperature air which is dried low-temperature air sufficiently dehumidified with the air in the cooling space and thereby directly injecting the mixed air into the cooling space, and an air intake hole for attracting the air from the cooling space and directly returning the air to the main unit.
  • the object of the present invention is to provide a technique for further uniforming cooling of the cooling warehouse using the air refrigerant type cooling apparatus.
  • the cooling warehouse of the present invention has a first cooled-air introducing pipe introducing a first cooled air cooled by an air refrigerant type cooling apparatus, a second cooled-air introducing pipe taking in second cooled air in the cooling warehouse, and an air introducing port introducing the mixed air in which the first cooled air and second cooled air are mixed into the cooling warehouse.
  • the air introducing port is opened on a duct set in the cooling warehouse.
  • a second cooled air introducing pipe is set to the outside of the cooling warehouse and one end of the second cooled air introducing pipe is opened on the wall face of the cooling warehouse.
  • the second cooled-air introducing pipe is set inside the cooling warehouse.
  • the air refrigerant type cooling system of the present invention has the air refrigerant type cooling apparatus and the cooling warehouse.
  • the air refrigerant type cooling apparatus has a compressor compressing the refrigerant air coming out of the cooling warehouse, a heat exchanger cooling the refrigerant air coming out of the compressor, and an expansion turbine expanding the air refrigerant coming out of the heat exchanger and supplying the refrigerant air to the cooling warehouse.
  • the cooling warehouse has a first cooled-air introducing pipe introducing the refrigerant air coming out of the expansion turbine, a second cooled air introducing pipe taking in cooled air in the cooling warehouse, and an air introducing port introducing mixed air in which the refrigerant air introduced by the first cooled-air introducing pipe and the cooled air are mixed into the cooling warehouse.
  • a transporting apparatus of the present invention has the air refrigerant type cooling apparatus, the cooling warehouse, and a carriage mounting the air refrigerant type cooling apparatus and the cooling warehouse.
  • the air refrigerant type cooling apparatus has the compressor compressing the refrigerant air coming out of the cooling warehouse, the heat exchanger cooling the refrigerant air coming out of the compressor, and the expansion turbine expanding the refrigerant air coming out of the heat exchanger and supplying the refrigerant air to the cooling warehouse.
  • the cooling warehouse has the first cooled-air introducing pipe introducing the refrigerant air coming out of the expansion turbine, the second cooled-air introducing pipe taking in the cooled air in the cooling warehouse, and the air introducing port introducing the mixed air in which the refrigerant air introduced by the first cooled-air introducing pipe and the cooled air are mixed into the cooling warehouse.
  • the present invention provides a technique for further uniforming cooling of the cooling warehouse using the air refrigerant type cooling apparatus.
  • FIG. 1 shows a configuration of the air refrigerant type cooling apparatus of a background technique.
  • FIG. 2 shows the flow of air in a cooling warehouse.
  • FIG. 3 shows the flow of air in the cooling warehouse.
  • FIG. 4 shows a configuration of the air refrigerant type cooling apparatus.
  • FIG. 5 shows an air refrigerant type cooling apparatus mounted on a carriage.
  • FIG. 1 A configuration of an air refrigerant type cooling apparatus is shown in FIG. 1 .
  • the cooling apparatus includes a freezer, a cooler, and an air-conditioning cooler (the same is applied to the cooling warehouse). This is because it is possible to apply the air refrigerant type cooling apparatus to freezing, cooling, and air-conditioning cooling by changing the temperature and pressure level of a system.
  • the air refrigerant type cooling apparatus 1 has a compressor 2 to be driven by a motor 4 .
  • the compressor 2 is connected to a first cooled-air-type heat exchanger 6 . It is also allowed to use a heat exchanger which is not the air cooling type as the first cooled-air heat exchanger 6 .
  • the first cooled-air heat exchanger 6 is connected to a second cooling heat exchanger 10 .
  • the second cooling heat exchanger 10 is connected to an expansion turbine 12 to be driven by the motor 4 .
  • the expansion turbine 12 is connected to the cooling warehouse 14 .
  • the cooling warehouse 14 is a warehouse having a door which can be opened and closed to form a space closed by closing the door inside.
  • the cooling warehouse 14 is connected to the second cooling heat exchanger 10 .
  • the second cooling heat exchanger 10 is connected to the compressor 2 .
  • the air discharged from the cooling warehouse 14 is introduced into the compressor 2 through the second cooling heat exchanger 10 .
  • the air is brought into a high-temperature high-pressure state by the compressor 2 .
  • the air discharged from the compressor 2 is air-cooled due to outside air by the first cooling heat exchanger 6 .
  • the outside air is circulated through the first cooling heat exchange 6 by a fan 8 .
  • the air coming out of the first cooling heat exchanger 6 is further cooled by performing heat exchange with the air discharged from the cooling warehouse 14 in the second cooling heat exchanger 10 .
  • the air coming out of the second cooling heat exchanger 10 becomes lower-temperature cooled air by being adiabatically expanded by the expansion turbine 12 .
  • the cooled air is introduced into the cooling warehouse 14 to cool the cooling warehouse 14 .
  • a cooling apparatus using an refrigerant air generally has a larger temperature difference between a refrigerant (cooled air) and the inside of a cooling warehouse than the case of a cooling apparatus using chlorofluorocarbon as a refrigerant. Therefore, the air-refrigerant cooling apparatus requires smaller quantity and speed of the cooled air to be supplied to the cooling warehouse 14 .
  • the flow of air nearby the cooling warehouse is shown in FIG. 2 .
  • the cooled air produced by the air refrigerant type cooling apparatus 1 is sent up to a portion nearby the cooling warehouse 14 by a cooled-air introducing pipe 26 .
  • a hole is formed on the wall face of the cooling warehouse 14 and an in-warehouse-air taking-in pipe 22 is connected to the hole.
  • the other end of the in-warehouse-air taking-in pipe 22 is connected to the cooled-air introducing pipe 26 .
  • a cooled-air feeding fan 24 to be rotated in the direction for supplying air to the connective portion with the cooled-air introducing pipe 26 from the hole on the wall face of the cooling warehouse 14 is set in the in-warehouse-air taking-in pipe 22 .
  • the cooled-air introducing pipe 26 is connected to a duct 28 set in the cooling warehouse 14 at the downstream side of the connective portion with the in-warehouse-air taking-in pipe 22 .
  • a plurality of cooled-air blow-off ports 30 are formed on the duct 28 .
  • an another supplying mechanism for supplying mixed air containing air from the cooled-air introducing pipe 26 and the in-warehouse-air taking-in pipe 22 can be included instead of the duct 28 or with the duct 28 .
  • Such a supplying mechanism is preferred to distribute air to the wide range of the cooling warehouse 14 .
  • the supplying mechanism is, for example, a guiding plate guiding air to the number of places of the cooling warehouse 14 .
  • a fan distributing air to the wide range of the cooling warehouse 14 is preferred to be used in addition to the duct 28 or the supplying mechanism.
  • the cooled air produced by the air refrigerant type cooling apparatus 1 flows to the cooled-air introducing pipe 26 .
  • the temperature of the cooled air is, for example, ⁇ 60° C.
  • the air in the warehouse 14 is taken into the in-warehouse-air taking-in pipe 22 by the cooled-air feeding fan 24 .
  • the temperature of the air is, for example, ⁇ 30° C.
  • the air incoming from the cooled-air introducing pipe 26 and the air incoming from the in-warehouse-air taking-in pipe 22 are mixed at the downstream side of the connective portion between the pipes 26 and 22 .
  • the temperature of the mixed air 32 is, for example, ⁇ 40° C.
  • the mixed air 32 is blown off from the cooled-air blow-off ports 30 of the duct 28 into the cooling warehouse 14 .
  • the quantity and speed of the air blown off is small comparing with a cooling apparatus using a chlorofluorocarbon refrigerant.
  • the air in the warehouse is suctioned and added to the cooled air sent from the air refrigerant type cooling apparatus 1 . Therefore, the quantity and speed of the air are increased. Therefore, the air in the cooling warehouse 14 is agitated and the temperature distribution becomes flatter.
  • the difference of the temperature between the mixed air 32 and the cooling warehouse 14 is smaller than the difference of the temperature between the cooled air sent from the air refrigerant type cooling apparatus 1 and the cooling warehouse 14 , the temperature distribution in the cooling warehouse 14 becomes flatter.
  • the cooled air feeding fan 24 is placed at the outside of the cooling warehouse 14 and thereby, a motor for rotating the cooled-air feeding fan 24 is set to the outside of the cooling warehouse 14 , the heat produced by the motor is not discharged into the cooling warehouse 14 and thereby, cooling is efficiently performed.
  • FIG. 3 shows the flow of air in the vicinity of a cooling warehouse of another embodiment of the present invention.
  • the cooled air produced by the air refrigerant type cooling apparatus 1 is sent up to the inside of the cooling warehouse 14 by a cooled-air introducing pipe 38 .
  • An in-warehouse-air taking-in pipe 34 is set in the cooling warehouse 14 .
  • One end of the pipe 34 is opened at the inside of the cooling warehouse 14 .
  • the other end of the in-warehouse-air taking-in pipe 34 is connected to the cooled-air introducing pipe 38 in the cooling warehouse 14 .
  • a cooled-air feeding fan 36 to be rotated in the direction for supplying air to the connective portion with the cooled-air introducing pipe 38 from one end opened in the cooling warehouse 14 is set in the in-warehouse-air taking-in pipe 34 .
  • the cooled-air introducing pipe 38 is connected to the duct 28 set in the cooling warehouse 14 at the downstream side of the connective portion with the in-warehouse-air taking-in pipe 34 .
  • a plurality of cooled-air blow-off ports 30 are formed on the duct 28 .
  • cooled air produced by the air refrigerant type cooling apparatus 1 flows to the cooled-air introducing pipe 38 .
  • the temperature of the cooled air is, for example, ⁇ 60° C.
  • the air in the cooling warehouse 14 is taken into the in-warehouse-air taking-in pipe 34 by the cooled-air feeding fan 36 .
  • the temperature of the air is, for example, ⁇ 30° C.
  • the air incoming from the cooled-air introducing pipe 38 and the air incoming from the in-warehouse-air taking-in pipe 34 are mixed at the downstream side of the connective portion between the cooled-air introducing pipe 38 and the in-warehouse-air taking-in pipe 34 .
  • the temperature of the mixed air 40 is, for example, ⁇ 40° C.
  • the mixed air 40 blows off into the cooling warehouse 14 from the cooled-air blow-off ports 30 of the duct 28 .
  • This embodiment also has a large quantity and speed of air similarly to the case of the embodiment described by referring to FIG. 2 .
  • advantages are expected that agitation of the air in the cooling warehouse 14 is accelerated and the temperature distribution become more uniform.
  • the temperature of the mixed air 40 is closer to the temperature in the cooling warehouse 14 than the temperature of the cooled air sent from the air refrigerant type cooling apparatus 1 , there is an advantage that the temperature distribution in the cooling warehouse 14 becomes flatter.
  • an object to be cooled by the air refrigerant type cooling apparatus 1 is a cooling warehouse to be closed by closing the door.
  • the present invention it is possible to apply the present invention to a semi-closing-type cooling warehouse in which frozen food is prepared when food passes through a space cooled by the air refrigerant type cooling apparatus 1 by a belt conveyer.
  • the present invention can be applied to a medical product reactor for cooling medicinal products in their manufacturing process.
  • FIG. 4 The another embodiment of the air refrigerant type cooling apparatus of the present invention is shown in FIG. 4 .
  • the same number is put on the component similar to FIG. 1 , and those explanations are omitted.
  • the defrosting machine 42 is intermediately connected between the expansion turbine 12 and the cooling warehouse 14 .
  • the outlet of the defrosting machine 42 is connected to the inlet of the cooling warehouse 14 through a piping 43 .
  • the piping 44 connected to the outlet of the cooling warehouse 14 diverges to a piping 46 and a piping 48 through a three way valve.
  • the piping 46 is connected to the inlet of the defrosting machine 42 .
  • the piping 48 is connected to the lower temperature side piping of the second cooling heat exchanger.
  • This embodiment also has a large quantity and speed of air similarly to the case of the embodiment described by referring to FIG. 2 and FIG. 3 .
  • advantages are expected that agitation of the air in the cooling warehouse 14 is accelerated and the temperature distribution become flatter.
  • the temperature of the mixed air 40 flowing in the piping 43 is closer to the temperature in the cooling warehouse 14 than the temperature of the cooled air supplied by the expansion turbine 12 , there is an advantage that the temperature distribution in the cooling warehouse 14 becomes flatter.
  • the air flowing in the piping 46 is introduced to the cooling warehouse 14 after defrosted by the defrosting machine 42 , the frost inside in the cooling warehouse 14 decreases.
  • FIG. 5 shows an air refrigerant type cooling system applying the air refrigerant type cooling apparatus 1 to a container.
  • the air refrigerant type cooling system includes a vehicle 51 (freight car of railroad or ship are included) and a container 50 mounted on the vehicle 51 .
  • the container 50 loads the air refrigerant type cooling apparatus 1 and the cooling warehouse 14 .
  • the vehicle 51 loads a battery 52 .
  • the motor 4 and the fan 8 of the air refrigerant type cooling apparatus 1 and the cooled-air feeding fan 24 or 36 of the cooling warehouse 14 are fed by the battery 52 and driven.
  • the freight in the container is cooled and transported by the air refrigerant type cooling system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

The object of the present invention is to cool an inside space of cooling warehouse uniformly by using a air refrigerant type cooling apparatus. A piping for taking in air in the cooling warehouse is installed. The air taken in by the piping (higher temperature) is mixed by the air sent from the air refrigerant type cooling apparatus (lower temperature) and blown off to the cooling warehouse. The temperature of the mixed air is closer to the temperature inside of the cooling warehouse than the air sent from the air refrigerant type cooling apparatus so that the inside of the cooling warehouse is cooled more uniformly. Furthermore, the amount and speed of the air blown off into the cooling warehouse are increased so that the inside space of the cooling warehouse is more uniformly cooled.

Description

    TECHNICAL FIELD
  • The present invention relates to a cooling apparatus using an air refrigerant and a cooling warehouse cooled by the cooling apparatus.
  • BACKGROUND ART
  • A cooling apparatus using air as a refrigerant has been developed in recent years instead of a conventional cooling apparatus using chlorofluorocarbon as a refrigerant. This type of the cooling apparatus using a refrigerant air generally uses a system for performing cooling by directly blowing the air used as a refrigerant into a cooling chamber.
  • Japanese Unexamined Patent Publication No. 8-61821 (1996) discloses a low-temperature freezer for cooling a cooling space to a target temperature by a circulation equipment for circulating low-temperature air in the cooling space between the cooling spaces in a cooling portion outside of the cooling space, in which the circulation equipment for circulating the low-temperature air is systematized by arranging an air compressor, compressed-air cooler, expander, and cooler in order of air flow in a circulation route, and constituted by including a main unit for expanding compressed air and generating low-temperature air, a mixing-injecting nozzle for mixing low-temperature air which is dried low-temperature air sufficiently dehumidified with the air in the cooling space and thereby directly injecting the mixed air into the cooling space, and an air intake hole for attracting the air from the cooling space and directly returning the air to the main unit.
  • DISCLOSURE OF INVENTION
  • In the case of the cooling of the cooling warehouse by the cooling apparatus using the air refrigerant, generally the amount of the airflow and wind speed are smaller than the case of a system using chlorofluorocarbon as a refrigerant. Therefore, when the vessel is large, it is difficult to sufficiently circulate low-temperature air in the warehouse and uniform the temperature in the vessel. In the case of a food warehouse, it is requested that the temperature distribution in the warehouse is controlled within 2° C. above and below a target temperature. Therefore, this problem is important.
  • The object of the present invention is to provide a technique for further uniforming cooling of the cooling warehouse using the air refrigerant type cooling apparatus.
  • The cooling warehouse of the present invention has a first cooled-air introducing pipe introducing a first cooled air cooled by an air refrigerant type cooling apparatus, a second cooled-air introducing pipe taking in second cooled air in the cooling warehouse, and an air introducing port introducing the mixed air in which the first cooled air and second cooled air are mixed into the cooling warehouse.
  • In the case of the cooling warehouse of the present invention, the air introducing port is opened on a duct set in the cooling warehouse.
  • In the case of the cooling warehouse of the present invention, a second cooled air introducing pipe is set to the outside of the cooling warehouse and one end of the second cooled air introducing pipe is opened on the wall face of the cooling warehouse.
  • In the case of the cooling warehouse of the present invention, the second cooled-air introducing pipe is set inside the cooling warehouse.
  • The air refrigerant type cooling system of the present invention has the air refrigerant type cooling apparatus and the cooling warehouse. The air refrigerant type cooling apparatus has a compressor compressing the refrigerant air coming out of the cooling warehouse, a heat exchanger cooling the refrigerant air coming out of the compressor, and an expansion turbine expanding the air refrigerant coming out of the heat exchanger and supplying the refrigerant air to the cooling warehouse. The cooling warehouse has a first cooled-air introducing pipe introducing the refrigerant air coming out of the expansion turbine, a second cooled air introducing pipe taking in cooled air in the cooling warehouse, and an air introducing port introducing mixed air in which the refrigerant air introduced by the first cooled-air introducing pipe and the cooled air are mixed into the cooling warehouse.
  • A transporting apparatus of the present invention has the air refrigerant type cooling apparatus, the cooling warehouse, and a carriage mounting the air refrigerant type cooling apparatus and the cooling warehouse. The air refrigerant type cooling apparatus has the compressor compressing the refrigerant air coming out of the cooling warehouse, the heat exchanger cooling the refrigerant air coming out of the compressor, and the expansion turbine expanding the refrigerant air coming out of the heat exchanger and supplying the refrigerant air to the cooling warehouse. The cooling warehouse has the first cooled-air introducing pipe introducing the refrigerant air coming out of the expansion turbine, the second cooled-air introducing pipe taking in the cooled air in the cooling warehouse, and the air introducing port introducing the mixed air in which the refrigerant air introduced by the first cooled-air introducing pipe and the cooled air are mixed into the cooling warehouse.
  • The present invention provides a technique for further uniforming cooling of the cooling warehouse using the air refrigerant type cooling apparatus.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a configuration of the air refrigerant type cooling apparatus of a background technique.
  • FIG. 2 shows the flow of air in a cooling warehouse.
  • FIG. 3 shows the flow of air in the cooling warehouse.
  • FIG. 4 shows a configuration of the air refrigerant type cooling apparatus.
  • FIG. 5 shows an air refrigerant type cooling apparatus mounted on a carriage.
  • BEST MODE FOR CARRYING OUT THE INVENTION
  • The best mode for carrying out the present invention is described below by referring to the attached drawings.
  • A configuration of an air refrigerant type cooling apparatus is shown in FIG. 1. The cooling apparatus includes a freezer, a cooler, and an air-conditioning cooler (the same is applied to the cooling warehouse). This is because it is possible to apply the air refrigerant type cooling apparatus to freezing, cooling, and air-conditioning cooling by changing the temperature and pressure level of a system. The air refrigerant type cooling apparatus 1 has a compressor 2 to be driven by a motor 4. The compressor 2 is connected to a first cooled-air-type heat exchanger 6. It is also allowed to use a heat exchanger which is not the air cooling type as the first cooled-air heat exchanger 6. The first cooled-air heat exchanger 6 is connected to a second cooling heat exchanger 10. The second cooling heat exchanger 10 is connected to an expansion turbine 12 to be driven by the motor 4. The expansion turbine 12 is connected to the cooling warehouse 14. The cooling warehouse 14 is a warehouse having a door which can be opened and closed to form a space closed by closing the door inside. The cooling warehouse 14 is connected to the second cooling heat exchanger 10. The second cooling heat exchanger 10 is connected to the compressor 2.
  • In the above air refrigerant type cooling apparatus 1, the air discharged from the cooling warehouse 14 is introduced into the compressor 2 through the second cooling heat exchanger 10. The air is brought into a high-temperature high-pressure state by the compressor 2. The air discharged from the compressor 2 is air-cooled due to outside air by the first cooling heat exchanger 6. The outside air is circulated through the first cooling heat exchange 6 by a fan 8. The air coming out of the first cooling heat exchanger 6 is further cooled by performing heat exchange with the air discharged from the cooling warehouse 14 in the second cooling heat exchanger 10. The air coming out of the second cooling heat exchanger 10 becomes lower-temperature cooled air by being adiabatically expanded by the expansion turbine 12. The cooled air is introduced into the cooling warehouse 14 to cool the cooling warehouse 14.
  • A cooling apparatus using an refrigerant air generally has a larger temperature difference between a refrigerant (cooled air) and the inside of a cooling warehouse than the case of a cooling apparatus using chlorofluorocarbon as a refrigerant. Therefore, the air-refrigerant cooling apparatus requires smaller quantity and speed of the cooled air to be supplied to the cooling warehouse 14.
  • The flow of air nearby the cooling warehouse is shown in FIG. 2. The cooled air produced by the air refrigerant type cooling apparatus 1 is sent up to a portion nearby the cooling warehouse 14 by a cooled-air introducing pipe 26. A hole is formed on the wall face of the cooling warehouse 14 and an in-warehouse-air taking-in pipe 22 is connected to the hole. The other end of the in-warehouse-air taking-in pipe 22 is connected to the cooled-air introducing pipe 26. A cooled-air feeding fan 24 to be rotated in the direction for supplying air to the connective portion with the cooled-air introducing pipe 26 from the hole on the wall face of the cooling warehouse 14 is set in the in-warehouse-air taking-in pipe 22.
  • The cooled-air introducing pipe 26 is connected to a duct 28 set in the cooling warehouse 14 at the downstream side of the connective portion with the in-warehouse-air taking-in pipe 22. A plurality of cooled-air blow-off ports 30 are formed on the duct 28.
  • Also, an another supplying mechanism for supplying mixed air containing air from the cooled-air introducing pipe 26 and the in-warehouse-air taking-in pipe 22 can be included instead of the duct 28 or with the duct 28. Such a supplying mechanism is preferred to distribute air to the wide range of the cooling warehouse 14. The supplying mechanism is, for example, a guiding plate guiding air to the number of places of the cooling warehouse 14. Also, a fan distributing air to the wide range of the cooling warehouse 14 is preferred to be used in addition to the duct 28 or the supplying mechanism.
  • In the case of this cooling warehouse 14, the cooled air produced by the air refrigerant type cooling apparatus 1 flows to the cooled-air introducing pipe 26. The temperature of the cooled air is, for example, −60° C. The air in the warehouse 14 is taken into the in-warehouse-air taking-in pipe 22 by the cooled-air feeding fan 24. The temperature of the air is, for example, −30° C. The air incoming from the cooled-air introducing pipe 26 and the air incoming from the in-warehouse-air taking-in pipe 22 are mixed at the downstream side of the connective portion between the pipes 26 and 22. The temperature of the mixed air 32 is, for example, −40° C. The mixed air 32 is blown off from the cooled-air blow-off ports 30 of the duct 28 into the cooling warehouse 14.
  • In the case of an air-refrigerant cooling apparatus, the quantity and speed of the air blown off is small comparing with a cooling apparatus using a chlorofluorocarbon refrigerant. In the case of the cooling warehouse of this embodiment, however, the air in the warehouse is suctioned and added to the cooled air sent from the air refrigerant type cooling apparatus 1. Therefore, the quantity and speed of the air are increased. Therefore, the air in the cooling warehouse 14 is agitated and the temperature distribution becomes flatter. Moreover, because the difference of the temperature between the mixed air 32 and the cooling warehouse 14 is smaller than the difference of the temperature between the cooled air sent from the air refrigerant type cooling apparatus 1 and the cooling warehouse 14, the temperature distribution in the cooling warehouse 14 becomes flatter.
  • Furthermore, in this embodiment, because the cooled air feeding fan 24 is placed at the outside of the cooling warehouse 14 and thereby, a motor for rotating the cooled-air feeding fan 24 is set to the outside of the cooling warehouse 14, the heat produced by the motor is not discharged into the cooling warehouse 14 and thereby, cooling is efficiently performed.
  • FIG. 3 shows the flow of air in the vicinity of a cooling warehouse of another embodiment of the present invention. The cooled air produced by the air refrigerant type cooling apparatus 1 is sent up to the inside of the cooling warehouse 14 by a cooled-air introducing pipe 38. An in-warehouse-air taking-in pipe 34 is set in the cooling warehouse 14. One end of the pipe 34 is opened at the inside of the cooling warehouse 14. The other end of the in-warehouse-air taking-in pipe 34 is connected to the cooled-air introducing pipe 38 in the cooling warehouse 14. A cooled-air feeding fan 36 to be rotated in the direction for supplying air to the connective portion with the cooled-air introducing pipe 38 from one end opened in the cooling warehouse 14 is set in the in-warehouse-air taking-in pipe 34.
  • The cooled-air introducing pipe 38 is connected to the duct 28 set in the cooling warehouse 14 at the downstream side of the connective portion with the in-warehouse-air taking-in pipe 34. A plurality of cooled-air blow-off ports 30 are formed on the duct 28.
  • In the case of the cooling warehouse 14, cooled air produced by the air refrigerant type cooling apparatus 1 flows to the cooled-air introducing pipe 38. The temperature of the cooled air is, for example, −60° C. The air in the cooling warehouse 14 is taken into the in-warehouse-air taking-in pipe 34 by the cooled-air feeding fan 36. The temperature of the air is, for example, −30° C. The air incoming from the cooled-air introducing pipe 38 and the air incoming from the in-warehouse-air taking-in pipe 34 are mixed at the downstream side of the connective portion between the cooled-air introducing pipe 38 and the in-warehouse-air taking-in pipe 34. The temperature of the mixed air 40 is, for example, −40° C. The mixed air 40 blows off into the cooling warehouse 14 from the cooled-air blow-off ports 30 of the duct 28.
  • This embodiment also has a large quantity and speed of air similarly to the case of the embodiment described by referring to FIG. 2. For this embodiment, advantages are expected that agitation of the air in the cooling warehouse 14 is accelerated and the temperature distribution become more uniform. Moreover, because the temperature of the mixed air 40 is closer to the temperature in the cooling warehouse 14 than the temperature of the cooled air sent from the air refrigerant type cooling apparatus 1, there is an advantage that the temperature distribution in the cooling warehouse 14 becomes flatter.
  • Moreover, in the case of this embodiment, it is unnecessary to perform the construction of opening a hole for setting the in-warehouse-air taking-in pipe 22 to the wall face of the cooling warehouse 14, setting the in-warehouse-air taking-in pipe 22 to the outside of the wall face of the warehouse 14, and setting the cooled-air feeding fan 24 as shown in FIG. 2. The in-warehouse-air taking-in pipe 34 and the cooled-air feeding fan 36 are set in the cooling warehouse 14. Therefore, when remodeling and forming an existing warehouse into a cooling warehouse of this embodiment, construction is easily completed.
  • In the case of this embodiment, an object to be cooled by the air refrigerant type cooling apparatus 1 is a cooling warehouse to be closed by closing the door. Moreover, it is possible to apply the present invention to a semi-closing-type cooling warehouse in which frozen food is prepared when food passes through a space cooled by the air refrigerant type cooling apparatus 1 by a belt conveyer. Furthermore, the present invention can be applied to a medical product reactor for cooling medicinal products in their manufacturing process.
  • The another embodiment of the air refrigerant type cooling apparatus of the present invention is shown in FIG. 4. The same number is put on the component similar to FIG. 1, and those explanations are omitted.
  • The defrosting machine 42 is intermediately connected between the expansion turbine 12 and the cooling warehouse 14. The outlet of the defrosting machine 42 is connected to the inlet of the cooling warehouse 14 through a piping 43. The piping 44 connected to the outlet of the cooling warehouse 14 diverges to a piping 46 and a piping 48 through a three way valve. The piping 46 is connected to the inlet of the defrosting machine 42. The piping 48 is connected to the lower temperature side piping of the second cooling heat exchanger.
  • When this type of the air refrigerant type cooling apparatus is driven, low temperature cooled air is exhausted from the expansion turbine 12. After moisture is removed, the cooled air is introduced to the inside in the cooling warehouse 14. The air inside in the cooling warehouse 14 is extracted by the piping 44. The air flowing in the piping 44 diverges to the piping 46 and the piping 48. The temperature of the air flowing in the piping 46 is equal to or a little higher than the temperature of the air inside in the cooling warehouse 14. The air flowing in the piping 46 is introduced to the defrosting machine 42, mixed with air exhausted from the expansion turbine 12, and flows in the cooling warehouse 14.
  • This embodiment also has a large quantity and speed of air similarly to the case of the embodiment described by referring to FIG. 2 and FIG. 3. For this embodiment, advantages are expected that agitation of the air in the cooling warehouse 14 is accelerated and the temperature distribution become flatter. Moreover, because the temperature of the mixed air 40 flowing in the piping 43 is closer to the temperature in the cooling warehouse 14 than the temperature of the cooled air supplied by the expansion turbine 12, there is an advantage that the temperature distribution in the cooling warehouse 14 becomes flatter. The air flowing in the piping 46 is introduced to the cooling warehouse 14 after defrosted by the defrosting machine 42, the frost inside in the cooling warehouse 14 decreases.
  • FIG. 5 shows an air refrigerant type cooling system applying the air refrigerant type cooling apparatus 1 to a container. The air refrigerant type cooling system includes a vehicle 51 (freight car of railroad or ship are included) and a container 50 mounted on the vehicle 51. The container 50 loads the air refrigerant type cooling apparatus 1 and the cooling warehouse 14. The vehicle 51 loads a battery 52. The motor 4 and the fan 8 of the air refrigerant type cooling apparatus 1 and the cooled- air feeding fan 24 or 36 of the cooling warehouse 14 are fed by the battery 52 and driven. The freight in the container is cooled and transported by the air refrigerant type cooling system.

Claims (8)

1. A cooling warehouse comprising:
a first cooled air introducing pipe introducing a first cooled air cooled by an air refrigerant type cooling apparatus,
a second cooled air introducing pipe taking in second cooled air in said cooling warehouse; and
an air introducing port introducing a mixed air in which said first cooled air and said second cooled air are mixed into said cooling warehouse:,
wherein said second cooled air introducing pipe is set to an outside of said cooling warehouse and one end of said second cooled air introducing pipe is opened on a wall face of said cooling warehouse.
2. A cooling warehouse according to claim 1, wherein said air introducing port is opened on a duct set in said cooling warehouse.
3. (canceled)
4. A cooling warehouse according to claim 1, wherein said second cooled air introducing pipe is set inside said cooling warehouse.
5. An air refrigerant type cooling system comprising:
an air refrigerant type cooling apparatus; and
a cooling warehouse, wherein said air refrigerant type cooling apparatus includes:
a compressor compressing a refrigerant air coming out of said cooling warehouse, a heat exchanger cooling said refrigerant air coming out of said compressor; and
an expansion turbine expanding said refrigerant air coming out of said heat exchanger and supplying said refrigerant air to said cooling warehouse, and
said cooling warehouse includes:
a first cooled air introducing pipe introducing said refrigerant air coming out of said expansion turbine,
a second cooled air introducing pipe disposed within said cooling warehouse and configured to take in air from said cooling warehouse; and
a connective portion disposed in the cooling warehouse and configured to mix first cooled air introduced by said first cooled air with air from said second cooled air introducing pipe.
6. A transporting apparatus comprising:
an air refrigerant type cooling apparatus, a cooling warehouse; and
a carriage mounting said air refrigerant type cooling apparatus and said cooling warehouse,
wherein said air refrigerant type cooling apparatus includes:
a compressor compressing an refrigerant air coming out of said cooling warehouse,
a heat exchanger cooling said refrigerant air coming out of said compressor; and
an expansion turbine expanding said refrigerant air coming out of said heat exchanger and supplying said refrigerant air to said cooling warehouse, and
said cooling warehouse includes:
a first cooled air introducing pipe introducing said refrigerant air coming out of said expansion turbine,
a second cooled air introducing pipe disposed entirely within said cooling warehouse and configured to take in air from said cooling warehouse; and
a connective portion disposed in the cooling warehouse and configured to mix first cooled air introduced by said first cooled air with air from said second cooled air introducing pipe.
7. A cooling warehouse comprising:
a first cooled air introducing pipe introducing a first cooled air cooled by an air refrigerant type cooling apparatus,
a second cooled air introducing pipe taking in second cooled air in said cooling warehouse, wherein said second cooled air introducing pipe is set inside said cooling warehouse;
a duct in the cooling warehouse; and
a connective portion inside the cooling warehouse connecting the first cooled air introducing pipe to the duct in the cooling warehouse at a downstream side of the connective portion with the second cooled air introducing pipe, wherein the connective portion is configured to mix said first cooled air and said second cooled air.
8. The cooling warehouse according to claim 7, further comprising:
a cooled-air feeding fan disposed in the warehouse and configured to supply the second cooled air to be mixed with the first cooled air at the connective portion
US12/849,653 2004-07-30 2010-08-03 Cooling warehouse and air refrigerant type cooling system Abandoned US20100313596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/849,653 US20100313596A1 (en) 2004-07-30 2010-08-03 Cooling warehouse and air refrigerant type cooling system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004224953 2004-07-30
JP224953/2004 2004-07-30
PCT/JP2005/000107 WO2006011251A1 (en) 2004-07-30 2005-01-07 Cooling chamber and air refrigerant type cooling system
US52463107A 2007-03-29 2007-03-29
US12/849,653 US20100313596A1 (en) 2004-07-30 2010-08-03 Cooling warehouse and air refrigerant type cooling system

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/000107 Continuation WO2006011251A1 (en) 2004-07-30 2005-01-07 Cooling chamber and air refrigerant type cooling system
US52463107A Continuation 2004-07-30 2007-03-29

Publications (1)

Publication Number Publication Date
US20100313596A1 true US20100313596A1 (en) 2010-12-16

Family

ID=35786009

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/524,631 Abandoned US20070169503A1 (en) 2004-07-30 2005-01-07 Cooling warehouse and air refrigerant type cooling system
US12/849,653 Abandoned US20100313596A1 (en) 2004-07-30 2010-08-03 Cooling warehouse and air refrigerant type cooling system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/524,631 Abandoned US20070169503A1 (en) 2004-07-30 2005-01-07 Cooling warehouse and air refrigerant type cooling system

Country Status (4)

Country Link
US (2) US20070169503A1 (en)
EP (1) EP1783444B1 (en)
JP (1) JPWO2006011251A1 (en)
WO (1) WO2006011251A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018067025A1 (en) * 2016-10-04 2018-04-12 Deta Engineering Llc Moisture separator and air cycle refrigeration system containing such moisture separator
WO2022191518A1 (en) * 2021-03-09 2022-09-15 제주대학교 산학협력단 Ventilating and cooling apparatus using air refrigerant

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5046621B2 (en) * 2006-11-24 2012-10-10 三菱重工業株式会社 Refrigeration system and method of operating refrigeration system
DE102008007923A1 (en) * 2008-02-07 2009-08-13 Linde Aktiengesellschaft Method for cooling a storage container
US8783047B2 (en) 2009-09-10 2014-07-22 Tippmann Engineering LLC Rack-aisle freezing system for palletized product
US20110107784A1 (en) * 2009-09-10 2011-05-12 Daniel Joseph Tippmann Apparatus for blast freezing palletized product
US8919142B2 (en) 2011-03-29 2014-12-30 Daniel J. Tippmann Swing seal for a rack-aisle freezing and chilling system
CN102506539A (en) * 2012-01-04 2012-06-20 天津商业大学 Cold damage prevention refrigeration house
KR102403512B1 (en) 2015-04-30 2022-05-31 삼성전자주식회사 Outdoor unit of air conditioner, control device applying the same
GB201509661D0 (en) * 2015-06-03 2015-07-15 Ocado Innovation Ltd Temperature controlled storage system
CN107202462B (en) * 2016-03-16 2021-02-09 博西华电器(江苏)有限公司 Refrigerator with a door
WO2021083648A1 (en) * 2019-10-30 2021-05-06 Liconic Ag High-efficiency low-temperature storage device
JP2023094906A (en) * 2021-12-24 2023-07-06 三菱重工業株式会社 Refrigerating container
JP2023159757A (en) * 2022-04-20 2023-11-01 三菱重工業株式会社 Freezing container
JP2023159754A (en) * 2022-04-20 2023-11-01 三菱重工業株式会社 Freezing container
DE102022111028A1 (en) 2022-05-04 2023-11-09 Refolution Industriekälte GmbH Rapid cooler with changing chamber
DE102022126025A1 (en) 2022-10-07 2024-04-18 Transport Innovation Gmbh Mobile refrigerated transport device, motor vehicle or vehicle trailer herewith and their use

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2118949A (en) * 1935-02-15 1938-05-31 Lewis L Scott Process of cooling and ventilating
US2706894A (en) * 1952-07-03 1955-04-26 Philco Corp Two temperature refrigerator
US2733574A (en) * 1956-02-07 Refrigerating system
US3355903A (en) * 1965-01-04 1967-12-05 Fleur Corp System of power-refrigeration
US3696637A (en) * 1968-08-15 1972-10-10 Air Prod & Chem Method and apparatus for producing refrigeration
US3792595A (en) * 1972-10-26 1974-02-19 Thermo King Corp Transportable refrigeration apparatus for preserving perishables
US4328684A (en) * 1978-04-10 1982-05-11 Hughes Aircraft Company Screw compressor-expander cryogenic system with magnetic coupling
US4483153A (en) * 1983-02-02 1984-11-20 Emhart Industries, Inc. Wide island air defrost refrigerated display case having a defrost-only center passage
US4730464A (en) * 1985-12-16 1988-03-15 Bosch-Siemens Hausgerate Gmbh Refrigerator and freezer
US5014521A (en) * 1989-03-06 1991-05-14 Hoshizaki Denki Kabushiki Kaisha Refrigeration system in ice making machine
US5237837A (en) * 1990-08-06 1993-08-24 Hoshizaki Denki Kabushiki Kaisha Ice making machine
US5248239A (en) * 1992-03-19 1993-09-28 Acd, Inc. Thrust control system for fluid handling rotary apparatus
US5267449A (en) * 1992-05-20 1993-12-07 Air Products And Chemicals, Inc. Method and system for cryogenic refrigeration using air
US5644928A (en) * 1992-10-30 1997-07-08 Kajima Corporation Air refrigerant ice forming equipment
US5884498A (en) * 1996-10-25 1999-03-23 Mitsubishi Heavy Industries, Ltd. Turborefrigerator
US5924307A (en) * 1997-05-19 1999-07-20 Praxair Technology, Inc. Turbine/motor (generator) driven booster compressor
US6148622A (en) * 1998-04-03 2000-11-21 Alliedsignal Inc. Environmental control system no condenser high pressure water separation system
US6151909A (en) * 1998-03-13 2000-11-28 Alliedsignal Inc. Two spool air cycle machine having concentric shafts
US6164084A (en) * 1997-10-16 2000-12-26 Normalair-Garrett (Holdings) Ltd. Motor cooling
US6260375B1 (en) * 2000-06-09 2001-07-17 Chin-Sheng Kuo Air conditioner blowing cool air to many directions
US6381973B1 (en) * 1999-10-04 2002-05-07 Delphi Technologies, Inc. Vehicle air cycle air conditioning system
US6415621B2 (en) * 2000-02-29 2002-07-09 Airbus Deutschland Gmbh Aircraft air conditioning system providing auxiliary ventilation
US6481232B2 (en) * 2000-07-26 2002-11-19 Fakieh Research & Development Center Apparatus and method for cooling of closed spaces and production of freshwater from hot humid air
US20030024254A1 (en) * 2001-07-31 2003-02-06 Mitsubishi Denki Kabushiki Kaisha Refrigerator
US6848261B2 (en) * 2003-04-03 2005-02-01 Honeywell International Inc. Condensing cycle with energy recovery augmentation
US6868693B2 (en) * 2003-05-28 2005-03-22 Lg Electronics Inc. Air conditioning system
US7040100B2 (en) * 2002-12-24 2006-05-09 Kaeser Kompressoren Gmbh Low-temperature dryer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1038575A (en) * 1964-05-04 1966-08-10 Fleur Corp Improvements in or relating to refrigeration systems
JPS5618883U (en) * 1979-07-20 1981-02-19
WO1986003825A1 (en) * 1984-12-17 1986-07-03 Itumic Oy Method for the control of air-conditioning as well as equipment for carrying out the method
JP2513367Y2 (en) * 1992-10-02 1996-10-02 日本フルハーフ株式会社 Van-type refrigeration vehicle
JPH07324789A (en) * 1994-06-02 1995-12-12 Tac Kenchiku Toshi Keikaku Kenkyusho:Kk Preservation environment setting method for cultural property preservation facility with concrete skeleton
JPH09178323A (en) * 1995-12-26 1997-07-11 Hitachi Plant Eng & Constr Co Ltd Refrigerator-freezer type warehouse
JPH09196485A (en) * 1996-01-19 1997-07-31 Mitsubishi Heavy Ind Ltd Air refrigeration method, and air refrigerating device and refrigerator adopting this method
JP3336428B2 (en) * 1997-03-21 2002-10-21 日本酸素株式会社 Freezing method
DE10010119A1 (en) * 2000-03-03 2001-09-13 Krantz Tkt Gmbh Method and device for ventilation and temperature control of a room
US6250096B1 (en) * 2000-05-01 2001-06-26 Praxair Technology, Inc. Method for generating a cold gas
US6301923B1 (en) * 2000-05-01 2001-10-16 Praxair Technology, Inc. Method for generating a cold gas
KR20030031540A (en) * 2003-03-28 2003-04-21 (주)범양 유니콜드 Air cycle low temperature refrigerator for warehouse using high speed brushless direct current motor

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733574A (en) * 1956-02-07 Refrigerating system
US2118949A (en) * 1935-02-15 1938-05-31 Lewis L Scott Process of cooling and ventilating
US2706894A (en) * 1952-07-03 1955-04-26 Philco Corp Two temperature refrigerator
US3355903A (en) * 1965-01-04 1967-12-05 Fleur Corp System of power-refrigeration
US3696637A (en) * 1968-08-15 1972-10-10 Air Prod & Chem Method and apparatus for producing refrigeration
US3792595A (en) * 1972-10-26 1974-02-19 Thermo King Corp Transportable refrigeration apparatus for preserving perishables
US4328684A (en) * 1978-04-10 1982-05-11 Hughes Aircraft Company Screw compressor-expander cryogenic system with magnetic coupling
US4483153A (en) * 1983-02-02 1984-11-20 Emhart Industries, Inc. Wide island air defrost refrigerated display case having a defrost-only center passage
US4730464A (en) * 1985-12-16 1988-03-15 Bosch-Siemens Hausgerate Gmbh Refrigerator and freezer
US5014521A (en) * 1989-03-06 1991-05-14 Hoshizaki Denki Kabushiki Kaisha Refrigeration system in ice making machine
US5237837A (en) * 1990-08-06 1993-08-24 Hoshizaki Denki Kabushiki Kaisha Ice making machine
US5248239A (en) * 1992-03-19 1993-09-28 Acd, Inc. Thrust control system for fluid handling rotary apparatus
US5267449A (en) * 1992-05-20 1993-12-07 Air Products And Chemicals, Inc. Method and system for cryogenic refrigeration using air
US5644928A (en) * 1992-10-30 1997-07-08 Kajima Corporation Air refrigerant ice forming equipment
US5884498A (en) * 1996-10-25 1999-03-23 Mitsubishi Heavy Industries, Ltd. Turborefrigerator
US5924307A (en) * 1997-05-19 1999-07-20 Praxair Technology, Inc. Turbine/motor (generator) driven booster compressor
US6164084A (en) * 1997-10-16 2000-12-26 Normalair-Garrett (Holdings) Ltd. Motor cooling
US6151909A (en) * 1998-03-13 2000-11-28 Alliedsignal Inc. Two spool air cycle machine having concentric shafts
US6148622A (en) * 1998-04-03 2000-11-21 Alliedsignal Inc. Environmental control system no condenser high pressure water separation system
US6381973B1 (en) * 1999-10-04 2002-05-07 Delphi Technologies, Inc. Vehicle air cycle air conditioning system
US6415621B2 (en) * 2000-02-29 2002-07-09 Airbus Deutschland Gmbh Aircraft air conditioning system providing auxiliary ventilation
US6260375B1 (en) * 2000-06-09 2001-07-17 Chin-Sheng Kuo Air conditioner blowing cool air to many directions
US6481232B2 (en) * 2000-07-26 2002-11-19 Fakieh Research & Development Center Apparatus and method for cooling of closed spaces and production of freshwater from hot humid air
US20030024254A1 (en) * 2001-07-31 2003-02-06 Mitsubishi Denki Kabushiki Kaisha Refrigerator
US7040100B2 (en) * 2002-12-24 2006-05-09 Kaeser Kompressoren Gmbh Low-temperature dryer
US6848261B2 (en) * 2003-04-03 2005-02-01 Honeywell International Inc. Condensing cycle with energy recovery augmentation
US6868693B2 (en) * 2003-05-28 2005-03-22 Lg Electronics Inc. Air conditioning system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018067025A1 (en) * 2016-10-04 2018-04-12 Deta Engineering Llc Moisture separator and air cycle refrigeration system containing such moisture separator
WO2022191518A1 (en) * 2021-03-09 2022-09-15 제주대학교 산학협력단 Ventilating and cooling apparatus using air refrigerant
KR20220126834A (en) * 2021-03-09 2022-09-19 제주대학교 산학협력단 Ventilation cooling system using air refrigerant
KR102540771B1 (en) * 2021-03-09 2023-06-07 제주대학교 산학협력단 Ventilation cooling system using air refrigerant

Also Published As

Publication number Publication date
JPWO2006011251A1 (en) 2008-05-01
EP1783444B1 (en) 2020-03-25
EP1783444A4 (en) 2011-10-05
WO2006011251A1 (en) 2006-02-02
EP1783444A1 (en) 2007-05-09
US20070169503A1 (en) 2007-07-26

Similar Documents

Publication Publication Date Title
US20100313596A1 (en) Cooling warehouse and air refrigerant type cooling system
US10214292B2 (en) Cooling system using chiller and thermally coupled cooling circuit
CN102245006A (en) Cooling method and cooling system for electronic device
KR101168945B1 (en) Ammonia/co2 refrigeration system, co2 brine production system for use therein, and ammonia cooing unit incorporating that production system
US10569614B2 (en) Method and device for refrigerated transport using an indirect injection of a cryogenic liquid and a heating system for maintaining temperature in the event of extremely low outside temperatures
CN101585336B (en) Distributed refrigeration system
CN102083298A (en) Cooling method and cooling system of electronic device
RU2438930C2 (en) Cooling system and cargo container
US20070101756A1 (en) Air-refrigerant cooling apparatus
CN104937351B (en) Many separation transport refrigeration systems with energy-saving appliance
US20160242323A1 (en) Rack type data center
WO2017032148A1 (en) Refrigerator
CN101668682A (en) Cooling system and freight container
KR100785741B1 (en) Cooling apparatus for semiconductor test handler
US20160144763A1 (en) Eutectic device for a transport refrigeration system and methods for cooling and installing the eutectic device
CN105300003B (en) A kind of removable pre-cooler
CN211451522U (en) Circulating carbon dioxide sprays quick-freeze system
CN109197178A (en) A kind of grain storing granary cooling device
CN106091473B (en) A kind of big warm area refrigerating plant of satellite normal pressure heat test
CN110758924A (en) Cold chain unit distribution box with independent cold accumulation space
JPH10267444A (en) Freezing method and device
CN201808424U (en) Vehicle-mounted freezer section freezing device
CN211392434U (en) Cold chain unit distribution box with independent cold accumulation space
CN209017490U (en) A kind of grain storing granary cooling device
CN218884411U (en) Cold chain equipment

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERNATIONAL CENTER FOR ENVIRONMENTAL TECHNOLOGY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIKUCHI, SHIGEMITSU;OKUDA, SEIICHI;REEL/FRAME:024782/0655

Effective date: 20050519

Owner name: MITSUBISHI HEAVY INDUSTRIES, LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIKUCHI, SHIGEMITSU;OKUDA, SEIICHI;REEL/FRAME:024782/0655

Effective date: 20050519

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION