US20100310997A1 - Domestic gas appliance with flame control - Google Patents

Domestic gas appliance with flame control Download PDF

Info

Publication number
US20100310997A1
US20100310997A1 US12/792,632 US79263210A US2010310997A1 US 20100310997 A1 US20100310997 A1 US 20100310997A1 US 79263210 A US79263210 A US 79263210A US 2010310997 A1 US2010310997 A1 US 2010310997A1
Authority
US
United States
Prior art keywords
signal
control
reference signal
gas
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/792,632
Inventor
José Ignacio Múgica Odriozola
Iñigo Albizuri Landa
José Joaquín Antxia Uribetxebarria
Aitor Zabalo Bayón
Antonio José Barbero Merino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coprecitec SL
Original Assignee
Coprecitec SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ESP200930261 priority Critical
Priority to ES200930261A priority patent/ES2381512B1/en
Application filed by Coprecitec SL filed Critical Coprecitec SL
Assigned to COPRECITEC, S.L. reassignment COPRECITEC, S.L. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ALBIZURI LANDA, INIGO, ANTXIA URIBETXEBARRIA, JOSE JOAQUIN, BARBERO MERINO, ANTONIO JOSE, MUGICA ODRIOZOLA, JOSE IGNACIO, ZABALO BAYON, AITOR
Publication of US20100310997A1 publication Critical patent/US20100310997A1/en
Application status is Abandoned legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/002Regulating fuel supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/16Systems for controlling combustion using noise-sensitive detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24COTHER DOMESTIC STOVES OR RANGES; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves and ranges for gaseous fuels
    • F24C3/12Arrangement for mounting of control and safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24COTHER DOMESTIC STOVES OR RANGES; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C3/00Stoves and ranges for gaseous fuels
    • F24C3/002Stoves
    • F24C3/006Stoves simulating flames

Abstract

A domestic gas appliance is disclosed. In one implementation the appliance includes a burner and a gas control valve situated to deliver and vary a flow of a gas to the burner. The gas control valve has an actuator that induces an opening and/or closing of the flow control valve dependent on a control signal delivered to the actuator. A control device is electrically coupled to the actuator and is used to control the opening and closing of the gas control valve. The control device is coupled to an audio input and is configured to receive an analog sound signal and to generate the control signal based on the analog sound signal. A method of modulating a flame in a burner of a domestic gas appliance is also disclosed. In one implementation the method includes producing an analog sound signal and subsequently creating a reference signal based on the analog sound signal. A control signal is produced using the reference signal with the relationship between the reference signal and the control signal being linear, logarithmic or potential. The control signal is delivered to an actuator of a gas control valve that is situated to control the flow of gas to the burner, the control signal acting upon the actuator to cause the actuator to open and/or close to modulate the flame in the burner.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is related to and claims priority to Spanish Patent Application No. P200930261, filed Jun. 4, 2009.
  • TECHNICAL FIELD
  • This invention relates to domestic gas appliances and, more specifically, to domestic gas appliances in which a flame is generated and in which the flame can be modified by acting on at least one valve.
  • BACKGROUND
  • Up until very recently domestic heating appliances and even lighting appliances functioned by burning solid materials such as wood. However, these types of appliances are gradually being replaced by appliances that burn non-solid materials such as gas or which generate heat or light electrically. The latter types of appliances do not, therefore, produce the combustion effect of flames that appliances burning solid materials do (e.g., visual effect and/or sound effect). The combustion effect often causes the user to feel a sense of well-being and relaxation that they do not experience with gas or electrical appliances.
  • In order to solve the absence of the combustion effect and generate these sensations in the user, different types of appliances are now appearing on the market. One type is electrical appliances that simulate the flame or fire to obtain these combustion effects, some of them even simulating the sound produced by the flames. An example of this type of appliance is disclosed in the document US20070125367A1 where a flame is simulated by electronic means. At least one light source, such as LEDs, is used to achieve this in conjunction with a microprocessor that is used to vary the intensity of the light and its colour of the light (of the LEDs) in order to simulate the natural effect of a live flame. Simulation of logs and wood are also disclosed.
  • Appliances that heat and/or light by means of a non-solid fuel such as gas for example, hereinafter referred to as gas appliances, comprise at least one burner to which the gas is supplied, a flame being generated in the burner when the gas is ignited. The intensity of the flame depends on the gas (or on an air-gas mixture) that reaches the burner, and there are known appliances that, in order to simulate the effect of combustion cause a modification of the flame by the blowing an air current directly into the burner (or onto the flame generated in the burner) for example, thereby altering the flame, which modifies its shape in accordance with the air current directed into the burner. U.S. Pat. No. 6,162,045 discloses an example of this type of appliances, in which the vibrations of a speaker disposed in the burner disturb the air-gas mixture that reaches the burner, the flame being altered in accordance with the vibrations.
  • In other gas appliances, in order to simulate a combustion effect, the gas that reaches the burner is regulated by acting on a valve that regulates the passage of the gas to the burner. Normally, the valve is acted on in accordance with preset patterns, the user being able to select among a preset number of patterns at any given moment. These patterns can imitate known music or even certain ambiences such as a romantic ambience. U.S. Publication No. 2005/0208443A1 discloses a gas heating appliance that comprises control means for regulating the characteristics of a gas generated flame, such as its frequency and size, thereby providing a combustion effect. To achieve this, the control means acts on a valve to regulate the gas that reaches the burner. The control means comprises a plurality of preset control modes or patterns that can be selected to control the valve according to the pattern selected by the user. However, a user of such appliance is unable to recreate ambiences that have not been preset in the control means.
  • SUMMARY OF THE DISCLOSURE
  • It is an object of the present invention to provide a domestic gas appliance in which a flame can be modified to provide an aesthetic visual effect.
  • In one implementation, a domestic gas appliance is provided that comprises at least one burner where a flame is generated, at least one valve associated to the burner and which regulates the passage of gas to the burner, and control means that is associated to the valve and which is adapted to generate a control signal for controlling the position of the valve based on an analog audio/sound input for the purpose of regulating the flow of gas to the burner.
  • In one implementation the control means receives a reference signal representative of the amplitude of the analog sound signal and generates the control signal in accordance with the reference signal. The different values (amplitudes) of the analog sound signal are not stored or selected beforehand. As such, the control means generates a control signal in accordance with a reference signal representative of sounds generated in real-time. As a result, the user can select in real-time a sequence of sounds in order to produce a flame to recreate a desired ambience or feeling at any given moment without being forced to select from among a limited number of preset ambience. At the same time the domestic gas appliance fulfils its main function, which can be heating (if it is a gas stove/heater) or lighting (if it is a gas lamp) for example.
  • In accordance with one implementation, a domestic gas appliance is provided comprising a burner; a gas control valve, when coupled to a gas source, situated to deliver a flow of the gas to the burner, the gas control valve having an actuator that induces an opening and/or closing of the flow control valve; and a control device electrically coupled to the actuator to control the opening and closing of the gas control valve, the control device coupled to an audio input and configured to receive an analog sound signal and to generate a control signal based on the analog sound signal deliverable to the actuator to cause the actuator to induce a modulation of a flame in the burner.
  • In accordance with another implementation, a kit for incorporation into a domestic gas appliance having a burner is provided, the kit comprising a gas control valve connectable between a gas source and the burner, the gas control valve having an actuator that induces an opening and/or closing of the gas control valve; and a control device electrically coupled to the actuator to control the opening and closing of the gas control valve, the control device coupled to an audio input and configured to receive an analog sound signal and to generate a control signal based on the analog sound signal deliverable to the actuator to cause the actuator to open and/or close for the purpose of inducing a modulation of a flame in the burner.
  • In accordance with another implementation, a method of modulating a flame in a burner of a domestic gas appliance is provided, the method comprising producing an analog sound signal, creating a reference signal based on the analog sound signal, acting on the reference signal to create a control signal, the reference signal being acted upon to establish either a linear, a logarithmic or a potential relationship between the reference signal and the control signal; and delivering the control signal to an actuator of a gas control valve that is situated to control the flow of gas to the burner, the control signal acting upon the actuator to cause the actuator to open and/or close to modulate the flame in the burner.
  • These and other advantages and characteristics of the invention will be made evident in the light of the drawings and the detailed description thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 schematically shows a gas appliance in one implementation.
  • FIG. 2 a shows a linear relationship between a reference signal and a control signal of an appliance, such as that illustrated in FIG. 1.
  • FIG. 2 b shows a logarithmic relationship between a reference signal and a control signal of an appliance, such as that illustrated in FIG. 1.
  • FIG. 2 c shows a potential relationship between a reference signal and a control signal of an appliance, such as that illustrated in FIG. 1.
  • FIG. 3 a represents the variations in amplitude of a melody for which the most suitable relationship is a linear relationship and also a reference signal representative of the variations.
  • FIG. 3 b represents the variations in amplitude of a melody for which the most suitable relationship is a logarithmic relationship and also a reference signal representative of the variations.
  • FIG. 3 c represents the variations in volume of a melody for which the most suitable relationship is the potential relationship and also a reference signal representative of the variations.
  • FIG. 4 a illustrates a burner of an appliance in one implementation.
  • FIG. 4 b illustrates a burner of the appliance in another implementation.
  • FIG. 5 is a cross-sectional view of a valve of an appliance in one implementation, with a voice-coil type actuator.
  • FIG. 6 is a block diagram illustrating a kit in one implementation for incorporation into a domestic gas appliance.
  • DETAILED DESCRIPTION
  • FIG. 1 illustrates, in the form of a block diagram, a domestic gas appliance 100 according to one implementation of the present invention. The appliance 100 may be, for example, a gas heating appliance, a gas stove, or a lighting appliance such as a gas lamp. In one implementation appliance 100 comprises at least one burner 1 where a flame is generated, at least one valve 2 associated to the burner 1, and control means 3 that is associated with valve 2 and which is adapted to generate at least one control signal Sc used in the control of valve 2 to regulate the passage of gas to burner 1. The appliance 100 may also comprise lighting means, such as, for example, an igniter or a spark generator (not shown in the figures) to ignite the flame in the burner 1. In one implementation the control means 3 is adapted to cause the lighting means to ignite the gas that reaches burner 1 at a given moment, the flame being generated as a result of the lighting. The control means 3 may comprise a DSP (Digital Signal Processor), a control device, a microprocessor or an equivalent device.
  • In one implementation the control means 3 receives an analog reference signal Sref representative of the amplitudes of a sequence of sounds, and generates the control signal Sc in accordance with a reference signal Sref to cause the flame in the burner 1 to move in accordance with the sequence of sounds. In some implementations the control signal Sc is digital, while in other implementations the control signal Sc is analogical.
  • In one implementation the sequence of sounds comprises a melody or music, although any other type of sequences can be used, such as, for example, the simulation of sea-waves. In one implementation the sequence of sounds is generated by a stereo, music centre or any other type media player 5 that transmits an analog sound signal Sson identifying the music it is playing. In one implementation the appliance 100 comprises an amplifying stage 6 that receives the sound signal Sson and which regulates the gain of the sound signal Sson. In one implementation, if the sound signal Sson has very high voltage values the amplifying stage 6 decreases the voltage values, if the sound signal Sson has very low voltage values it increases the voltage values, and if the sound signal Sson has intermediate or acceptable voltage values it maintains voltage values. Voltage values that can be accepted and treated by the control means 3 can be understood as intermediate or acceptable voltage values, which can depend on the control means 3 used.
  • In one implementation the appliance 100 comprises an adaptation stage 7 where the signal leaving the amplifying stage 6 is treated. In one implementation the manufacturer presets the parameter of the signal that is to be taken into account in generating the control signal Sc, which can correspond with its size (instantaneous signal), its effective value or which can be in accordance with the detection of peaks, for example. The output signal of the adaptation stage 7 corresponds with the reference signal Sref that reaches the control means 3, as shown in FIG. 1, the control means 3 generating the control signal Sc in accordance with the reference signal Sref. FIGS. 3 a and 3 c illustrate exemplary reference signals, Sref, producible by an adaptation stage 7.
  • The relationship between the reference signal Sref and the control signal Sc may be, for example, linear, logarithmic or potential, which are represented by the curves shown in FIGS. 2 a, 2 b and 2 c respectively. FIGS. 3 a, 3 b and 3 c show three different types of melodies, with different rhythms, shown in accordance with the variations in the amplitudes (peaks and/or valleys) of the melodies (reference signal Sref in the x-axis). In the representation shown in FIG. 3 a, the amplitude of the melody suffers frequent variations between an area of maximum levels Zmax and an area of minimum levels Zmin, these being major variations in amplitude, as a result of which the most suitable relationship to be applied in this case is the linear relationship shown in FIG. 2 a. In the representation shown in 3 b, the volume of the melody suffers frequent variations only in the area of minimum levels Zmin, these being minor variations in amplitude, and suffers very few variations between the area of minimum levels Zmin and the area of maximum levels Zmax, and/or area of maximum levels Zmax. In this case, therefore, in order to achieve good resolution, especially in the variations in amplitude of the area of minimum levels Zmin, as a result of which the most suitable relationship to be applied in this case is the logarithmic relationship shown in FIG. 2 b, by means of which a small range of analog input values (x-axis) of the area of minimum levels Zmin corresponds to a large range of digital output values (control signal Sc in the y-axis). In the representation shown in FIG. 3 c, the amplitude of the melody suffers frequent variations only in the area of maximum levels Zmax, these being minor variations in amplitude, and suffers very few variations between the area of maximum levels Zmax and the area of minimum levels Zmin, and/or in the area of minimum levels Zmin. In this case, therefore, in order to achieve a good resolution, especially in the variations in amplitude of the area of maximum levels Zmax, as a result of which the most suitable relationship to be applied in this case is the potential relationship shown in FIG. 2 c, by means of which a small range of analog input values (x-axis) of the area of maximum levels Zmax corresponds to a large range of digital output values (control signal Sc in the y-axis). In one implementation, the control means 3 automatically selects the most appropriate relationship to be applied. In another implementation one or more user interfaces are provided that enables the user to select between an automatic mode and a manual mode. In the automatic mode the control means automatically selects the most appropriate relation, whereas in the manual mode the user is permit to select the relationship to be applied.
  • Appliance 100 may comprise a single burner 1 with a single combustion area 1 a where a flame is ignited, or with a plurality of combustion areas 1 a where a flame is capable of being ignited in each of the combustion areas 1 a. Appliance 100 may also comprise a plurality of burners 1, each of them comprising one or more combustion areas 1 a. In one implementation appliance 100 comprises, for each combustion area la, an associated gas supply valve 2 with the control means 3 capable of generating a control signal Sc for each valves 2. The control signals Sc may be equal or different for all the valves 2. In one implementation control signals Sc having different relationships (e.g., linear, logarithmic, potential) with the reference signal Sref are supplied to different valves 2 of a gas appliance. For example, in one implementation a control signal Sc having a linear relationship with the reference signal Sref is supplied to one valve 2 while a control signal Sc having a logarithmic or potential relationship with the reference signal Sref is supplied to another valve 2. In general, in each combustion area 1 a the flame may be modulated or modified separately to the rest of the combustion areas 1 a. The burner 1 is not restricted to a specific shape and/or arrangement and can comprise any conventional shape such as those shown in FIG. 4 a (with a single combustion area 1 a in this case) and in FIG. 4 b (with two combustion areas 1 a in this case, also disposed at different heights). In each combustion area 1 a the corresponding tube 1 c comprises a plurality of grooves 1 a′ through which the flame exits to the outside. As shown in FIG. 4 b, additionally, the shape and/or arrangement of a combustion area 1 a (of a pipe 1 c where the combustion area 1 a is disposed) may be different to that of another combustion area 1 a (the pipe 1 c of another combustion area 1 a), and the burner 1 can comprise an intermediate pipe 1 b to connect the flame of one combustion area 1 a with another combustion area 1 a, so that the flames present in the burner 1 display a continuity despite being generated in different combustion areas 1 a.
  • To obtain a flame that represents the amplitude of the sequence of sounds in the most realistic way possible, the use of valves 2 that can be opened and closed at high speeds, speeds in excess of about 30 Hz for example, is advised. In one implementation of the present invention the valve 2 comprises a voice-coil type actuator as shown in FIG. 5. This type of actuator comprises a permanent magnet 2 b, and in one implementation the permanent magnet 2 b is axially magnetised while in another it is radially magnetised. Alternatively, the valve 2 may comprise, without limitation, a piezoelectric-bender actuator or an ultrasonic-type motor, which can also be opened and closed at high speeds.
  • In one implementation valve 2 comprises a voice-coil type actuator. This type of actuator comprises a moving part 2 a (moving reel), the movement of which causes the valve 2 to open and close, thereby enabling or preventing the passage of gas to the burner 1. In one implementation the voice-coil has a low mechanical inertia in order to allow the moving part 2 a to move at frequencies of 30 Hz or greater. In order to cause the moving part 2 a to move, an electrical current is supplied to the actuator with the result that a magnetic field is generated that is opposed to the force exerted by the permanent magnet 2 b, causing the valve 2 to open. In one implementation appliance 100 comprises a driver 8 or a control system (not shown in the figures) for the valve 2, which receives the control signal Sc. In such an implementation the driver 8 generates the electrical current for the actuator of the valve 2 in accordance with the control signal Sc, which in the implementation in which the control signal Sc is digital it can be a square wave signal. The square signals may comprise, in each period, an interval Ton in which the signal corresponds with a “1” logic, and an interval Toff in which the signal corresponds with a “0” logic, the relationship between the intervals Ton and Toff being known as a duty-cycle. The adjusting of the duty-cycle of the electrical current signal enables the opening and closing of the valve 2 to be controlled. In the implementation in which the control signal Sc is analogical, the valve 2 can comprise intermediate positions, not only a totally open position or a totally closed position, different amounts of gas being allowed through said valve 2 towards the burner 2 depending on said control signal Sc.
  • The sequence of sounds is generated by a sound device 5, which in one implementation is a conventional device that is already disposed with an output that corresponds with the sound signal Sson. The sound device 5 can comprise, for example, capture devices such as CD and DVD players, microphones etc, or devices known as virtual electronic devices, such as a guitar or an electronic baton for example. The sound device 5 can also be a device external to the heating appliance 100, as shown in FIG. 1, or it can be built into the appliance 100 itself. In the event that the sound device 5 is external, the appliance 100 comprises an input 15 for receiving the sound signal Sson originating from the sound device 5, which in one implementation comprises a plug.
  • In one implementation, a control system of the present invention includes an ON/OFF switch that permits a user of the system to deactivate the control system. When the OFF mode is selected, the gas control valve 2 is adapted to remain open in spite of any audio signal introduced into the system. In one implementation the ON/OFF control switch is operatively connected to the control means 3 so that a control signal is generated to maintain the gas control valve 2 open. In another implementation the ON/OFF switch deactivates the control means 3, or otherwise acts upon other control system components in a manner such that no control signal is delivered to the gas control valve 2, the gas control valve being adapted to assume and maintain an open position in the absence of receiving a control signal.
  • An advantage of present invention is that it may easily be integrated into a wide variety of gas appliances. In one implementation a kit 300 for integration into a convention gas appliance is provided. In one implementation, as shown in FIG. 6, the kit comprises a gas control valve 200 and a controller 205, with an optional ON/OFF switch 20. In the example of FIG. 6, the gas control valve 200 is installed in the gas line 208 between a shut-off valve 210 and a gas burner 220. In one implementation, the shut-off valve 210 is a safety valve that is coupled to a thermocouple situated in or near the burner and is adapted to close upon a disruption or extinguishing of a pilot flame associated with the burner 220. In another implementation the shut-off valve is a manually operated valve. In one implementation the controller 205 comprises at least an analog input for receiving an analog audio signal and also a control device/control means, similar to that previously discussed, for generating a control signal to be delivered to and regulate the position of control valve 205. In addition to the control device, the controller may include one or more of the components 5, 6, 7, 8 and 9 or any of the other features previously described herein.
  • Although the present invention has been disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses of the invention and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above.

Claims (36)

1. A domestic gas appliance comprising:
a burner,
a gas control valve, when coupled to a gas source, situated to deliver a flow of the gas to the burner, the gas control valve having an actuator that induces an opening and/or closing of the flow control valve; and
a control device electrically coupled to the actuator to control the opening and closing of the gas control valve, the control device coupled to an audio input and configured to receive an analog sound signal and to generate a control signal based on the analog sound signal deliverable to the actuator to cause the actuator to induce a modulation of a flame in the burner.
2. The domestic appliance according to claim 1, wherein the control signal is an analog signal.
3. The domestic gas appliance according to claim 1, wherein the control signal is a digital signal.
4. The domestic gas appliance according to claim 1, further comprising an amplifier that is configured to regulate the gain of the analog sound signal prior to the analog sound signal being received in the control device.
5. The domestic gas appliance according to claim 4, further comprising an adaptation stage that is configured to receive the analog sound signal from the amplifier and to generate a reference signal to be delivered to the control device, the reference signal based on the analog sound signal.
6. The domestic gas appliance according to claim 1, further comprising an adaptation stage that is configured to receive the analog sound signal and to generate a reference signal to be delivered to the control device, the reference signal based on the analog sound signal.
7. The domestic gas appliance according to claim 1, further comprising an input adapted for connection to a sound generating device to receive the analog sound signal.
8. The domestic gas appliance according to claim 1, further comprising an integrated sound generating device that is configured to generate the analog sound signal.
9. The domestic gas appliance according to claim 3, further comprising a driver that is configured to receive the control signal and which generates therefrom a square wave current signal deliverable to the actuator, the opening and closing of the gas control valve being regulated in accordance with the duty-cycle of the square wave current signal
10. The domestic gas appliance according to claim 6, wherein the control device is configurable to act upon the reference signal so that the relationship between the reference signal and the control signal is linear.
11. The domestic gas appliance according to claim 6, wherein the control device is configurable to act upon the reference signal so that the relationship between the reference signal and the control signal is logarithmic.
12. The domestic gas appliance according to claim 6, wherein the control device is configurable to act upon the reference signal so that the relationship between the reference signal and the control signal is potential.
13. The domestic gas appliance according to claim 1, wherein the actuator comprises a voice-coil type actuator that when operated operates at frequencies of about 30 Hz or greater.
14. The domestic gas appliance according to claim 1, wherein the burner comprises a plurality of combustion areas, the appliance comprising a plurality of gas control valves, one gas control valve for each combustion area.
15. The domestic gas appliance according to claim 14, wherein the control device is adapted to generate a separate control signal, one for each of the plurality of gas control valves.
16. The domestic gas appliance according to claim 6, wherein the control device is configured to automatically act upon the reference signal to establish either a linear, a logarithmic or a potential relationship between the reference signal and the control signal.
17. The domestic gas appliance according to claim 6, further comprising a user interface coupled to the control device and selectable between an automatic mode and a manual mode, in the automatic mode the control device configured to automatically act upon the reference signal to establish either a linear, a logarithmic or a potential relationship between the reference signal and the control signal, in the manual mode the control device configured to act upon the reference signal to establish either a linear, a logarithmic or a potential relationship between the reference signal and the control signal based on a manual selection of a user of the gas appliance.
18. A kit for incorporation into a domestic gas appliance having a burner, the kit comprising:
a gas control valve connectable between a gas source and the burner, the gas control valve having an actuator that induces an opening and/or closing of the gas control valve; and
a control device electrically coupled to the actuator to control the opening and closing of the gas control valve, the control device coupled to an audio input and configured to receive an analog sound signal and to generate a control signal based on the analog sound signal deliverable to the actuator to cause the actuator to open and/or close for the purpose of inducing a modulation of a flame in the burner.
19. The kit according to claim 18, wherein the control signal is an analog signal.
20. The kit according to claim 18, wherein the control signal is a digital signal.
21. The kit according to claim 18, further comprising an amplifier that is configured to regulate the gain of the analog sound signal prior to the analog sound signal being received in the control device.
22. The kit according to claim 21, further comprising an adaptation stage that is configured to receive the analog sound signal from the amplifier and to generate a reference signal to be delivered to the control device, the reference signal based on the analog sound signal.
23. The kit according to claim 18, further comprising an adaptation stage that is configured to receive the analog sound signal and to generate a reference signal to be delivered to the control device, the reference signal based on the analog sound signal.
24. The kit according to claim 18, further comprising an input adapted for connection to a sound generating device to receive the analog sound signal.
25. The kit according to claim 18, further comprising an integrated sound generating device that is configured to generate the analog sound signal.
26. The kit according to claim 20, further comprising a driver that is configured to receive the control signal and which generates therefrom a square wave current signal deliverable to the actuator, the opening and closing of the gas control valve being regulated in accordance with the duty-cycle of the square wave current signal
27. The kit according to claim 23, wherein the control device is configurable to act upon the reference signal so that the relationship between the reference signal and the control signal is linear.
28. The kit according to claim 23, wherein the control device is configurable to act upon the reference signal so that the relationship between the reference signal and the control signal is logarithmic.
29. The kit according to claim 23, wherein the control device is configurable to act upon the reference signal so that the relationship between the reference signal and the control signal is potential.
30. The kit according to claim 18, wherein the actuator comprises a voice-coil type actuator that when operated operates at frequencies of about 30 Hz or greater.
31. The kit according to claim 18, wherein the burner comprises a plurality of combustion areas, the appliance comprising a plurality of gas control valves, one gas control valve for each combustion area.
32. The kit according to claim 31, wherein the control device is adapted to generate a separate control signal, one for each of the plurality of gas control valves.
33. The kit according to claim 23, wherein the control device is configured to automatically act upon the reference signal to establish either a linear, a logarithmic or a potential relationship between the reference signal and the control signal.
34. The kit according to claim 23, further comprising a user interface coupled to the control device and selectable between an automatic mode and a manual mode, in the automatic mode the control device configured to automatically act upon the reference signal to establish either a linear, a logarithmic or a potential relationship between the reference signal and the control signal, in the manual mode the control device configured to act upon the reference signal to establish either a linear, a logarithmic or a potential relationship between the reference signal and the control signal based on a manual selection of a user of the gas appliance.
35. A method of modulating a flame in a burner of a domestic gas appliance, the method comprising:
producing an analog sound signal,
creating a reference signal based on the analog sound signal,
acting on the reference signal to create a control signal, the reference signal being acted upon to establish either a linear, a logarithmic or a potential relationship between the reference signal and the control signal; and
delivering the control signal to an actuator of a gas control valve that is situated to control the flow of gas to the burner, the control signal acting upon the actuator to cause the actuator to open and/or close to modulate the flame in the burner.
36. The method of claim 35, further comprising regulating the gain of the analog sound signal prior to creating the reference signal.
US12/792,632 2009-06-04 2010-06-02 Domestic gas appliance with flame control Abandoned US20100310997A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
ESP200930261 2009-06-04
ES200930261A ES2381512B1 (en) 2009-06-04 2009-06-04 domestic gas appliance with flame control

Publications (1)

Publication Number Publication Date
US20100310997A1 true US20100310997A1 (en) 2010-12-09

Family

ID=42668911

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/792,632 Abandoned US20100310997A1 (en) 2009-06-04 2010-06-02 Domestic gas appliance with flame control

Country Status (4)

Country Link
US (1) US20100310997A1 (en)
EP (1) EP2261562A3 (en)
CA (1) CA2706232A1 (en)
ES (1) ES2381512B1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7967007B2 (en) 2006-05-17 2011-06-28 David Deng Heater configured to operate with a first or second fuel
US7967006B2 (en) 2006-05-17 2011-06-28 David Deng Dual fuel heater
US8011920B2 (en) 2006-12-22 2011-09-06 David Deng Valve assemblies for heating devices
US8152515B2 (en) 2007-03-15 2012-04-10 Continental Appliances Inc Fuel selectable heating devices
US8241034B2 (en) 2007-03-14 2012-08-14 Continental Appliances Inc. Fuel selection valve assemblies
US8317511B2 (en) 2006-12-22 2012-11-27 Continental Appliances, Inc. Control valves for heaters and fireplace devices
US8465277B2 (en) 2009-06-29 2013-06-18 David Deng Heat engine with nozzle
US8516878B2 (en) 2006-05-17 2013-08-27 Continental Appliances, Inc. Dual fuel heater
US8545216B2 (en) 2006-12-22 2013-10-01 Continental Appliances, Inc. Valve assemblies for heating devices
US8752541B2 (en) 2010-06-07 2014-06-17 David Deng Heating system
US8985094B2 (en) 2011-04-08 2015-03-24 David Deng Heating system
US9022064B2 (en) 2012-05-10 2015-05-05 David Deng Dual fuel control device with auxiliary backline pressure regulator
US9222670B2 (en) 2010-12-09 2015-12-29 David Deng Heating system with pressure regulator
US9423123B2 (en) 2013-03-02 2016-08-23 David Deng Safety pressure switch
US9739389B2 (en) 2011-04-08 2017-08-22 David Deng Heating system
US9752782B2 (en) 2011-10-20 2017-09-05 David Deng Dual fuel heater with selector valve
US9752779B2 (en) 2013-03-02 2017-09-05 David Deng Heating assembly
US9829195B2 (en) 2009-12-14 2017-11-28 David Deng Dual fuel heating source with nozzle
US10073071B2 (en) 2010-06-07 2018-09-11 David Deng Heating system
US10222057B2 (en) 2011-04-08 2019-03-05 David Deng Dual fuel heater with selector valve
US10240789B2 (en) 2014-05-16 2019-03-26 David Deng Dual fuel heating assembly with reset switch

Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824345A (en) * 1973-05-02 1974-07-16 Microsystems Int Ltd Audio frequency automatic gain control circuit
GB2022241A (en) * 1979-05-22 1979-12-12 Mitchell D A Solid fuel effect gas fires
JPS62194109A (en) * 1986-02-18 1987-08-26 Matsushita Electric Ind Co Ltd Burner operated by voice
US5032766A (en) * 1990-02-09 1991-07-16 Glenn Gundlach Special effects generator
US5120214A (en) * 1989-11-13 1992-06-09 Control Techtronics, Inc. Acoustical burner control system and method
US5191319A (en) * 1990-10-15 1993-03-02 Kiltz Richard M Method and apparatus for visual portrayal of music
FR2689963A1 (en) * 1992-04-13 1993-10-15 Bismuth Robert Cigarette lighter with adjustable flame - includes flap modulating strength of flame according to received sound signals.
US5365149A (en) * 1993-04-08 1994-11-15 Robert Blakeslee Apparatus and method for producing a frequency based visual effect
US5424554A (en) * 1994-03-22 1995-06-13 Energy Kenitics, Inc. Oil-burner, flame-intensity, monitoring system and method of operation with an out of range signal discriminator
US5450841A (en) * 1993-05-18 1995-09-19 Gmi Holding, Inc. Multi-function remote control system for gas fireplace
US5655513A (en) * 1996-03-11 1997-08-12 Pyro Industries, Inc. Artificial log burner
US5826357A (en) * 1996-07-08 1998-10-27 Hechler; Duaine Entertainment and fireplace assembly
US5890485A (en) * 1996-09-27 1999-04-06 Heat-N-Glo Fireplace Products, Inc. Dancing flame control system for gas fireplaces
US5938421A (en) * 1997-11-12 1999-08-17 Gas Research Institute Flame movement method and system
US6162045A (en) * 1997-11-26 2000-12-19 Superior Fireplace Company Wave flame control
NL1014579C2 (en) * 2000-03-07 2001-09-10 Breves Groep B V Fireplace.
US6314191B1 (en) * 2000-07-20 2001-11-06 Mignon J. Smith Fireplace accessory
US20020081545A1 (en) * 2000-11-11 2002-06-27 Kurt-Henry Mindermann Flame monitor for an oil- or gas-operated burner
US6413079B1 (en) * 2000-04-10 2002-07-02 Heat-N-Glo Fireplace Products, Inc. Voice activated fireplace control system
US20020154787A1 (en) * 2001-02-20 2002-10-24 Rice Richard F. Acoustical to optical converter for providing pleasing visual displays
US6537058B1 (en) * 1999-03-23 2003-03-25 Peter Evans Gas appliances
US20030098805A1 (en) * 1999-11-29 2003-05-29 Bizjak Karl M. Input level adjust system and method
US20050208443A1 (en) * 2004-03-17 2005-09-22 Bachinski Thomas J Heating appliance control system
US20060147049A1 (en) * 2004-12-30 2006-07-06 Plantronics, Inc. Sound pressure level limiter with anti-startle feature
US7146253B2 (en) * 2003-03-24 2006-12-05 Smartway Solutions, Inc. Device and method for interactive programming of a thermostat
US20070125367A1 (en) * 2005-07-19 2007-06-07 Alvin Lim Apparatus and method for simulation of combustion effects in a fireplace
US20070235020A1 (en) * 2006-03-07 2007-10-11 Hills Douglas E Multi-zone gas fireplace system and method for control
US20080099090A1 (en) * 2006-10-25 2008-05-01 Enfield Technoloties, Llc Valve, controller, system and method providing closed loop current control of a voice coil using pulse width modulation drive elements
US20110150256A1 (en) * 2008-05-30 2011-06-23 Phonak Ag Method for adapting sound in a hearing aid device by frequency modification and such a device
US8269646B2 (en) * 2009-10-30 2012-09-18 Robert Francis Exman Audio driven synchronized light display

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0428373A3 (en) * 1989-11-13 1991-08-28 Control Techtronics, Inc. Acoustical burner control system and method
DE19636093B4 (en) * 1996-09-05 2004-07-29 Siemens Ag Method and device for acoustic modulation of a flame produced by a hybrid burner

Patent Citations (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3824345A (en) * 1973-05-02 1974-07-16 Microsystems Int Ltd Audio frequency automatic gain control circuit
GB2022241A (en) * 1979-05-22 1979-12-12 Mitchell D A Solid fuel effect gas fires
JPS62194109A (en) * 1986-02-18 1987-08-26 Matsushita Electric Ind Co Ltd Burner operated by voice
US5120214A (en) * 1989-11-13 1992-06-09 Control Techtronics, Inc. Acoustical burner control system and method
US5032766A (en) * 1990-02-09 1991-07-16 Glenn Gundlach Special effects generator
US5191319A (en) * 1990-10-15 1993-03-02 Kiltz Richard M Method and apparatus for visual portrayal of music
FR2689963A1 (en) * 1992-04-13 1993-10-15 Bismuth Robert Cigarette lighter with adjustable flame - includes flap modulating strength of flame according to received sound signals.
US5365149A (en) * 1993-04-08 1994-11-15 Robert Blakeslee Apparatus and method for producing a frequency based visual effect
US5450841A (en) * 1993-05-18 1995-09-19 Gmi Holding, Inc. Multi-function remote control system for gas fireplace
US5424554A (en) * 1994-03-22 1995-06-13 Energy Kenitics, Inc. Oil-burner, flame-intensity, monitoring system and method of operation with an out of range signal discriminator
US5655513A (en) * 1996-03-11 1997-08-12 Pyro Industries, Inc. Artificial log burner
US5826357A (en) * 1996-07-08 1998-10-27 Hechler; Duaine Entertainment and fireplace assembly
US5890485A (en) * 1996-09-27 1999-04-06 Heat-N-Glo Fireplace Products, Inc. Dancing flame control system for gas fireplaces
US5938421A (en) * 1997-11-12 1999-08-17 Gas Research Institute Flame movement method and system
US6162045A (en) * 1997-11-26 2000-12-19 Superior Fireplace Company Wave flame control
US6537058B1 (en) * 1999-03-23 2003-03-25 Peter Evans Gas appliances
US20030098805A1 (en) * 1999-11-29 2003-05-29 Bizjak Karl M. Input level adjust system and method
NL1014579C2 (en) * 2000-03-07 2001-09-10 Breves Groep B V Fireplace.
US6413079B1 (en) * 2000-04-10 2002-07-02 Heat-N-Glo Fireplace Products, Inc. Voice activated fireplace control system
US6314191B1 (en) * 2000-07-20 2001-11-06 Mignon J. Smith Fireplace accessory
US20020081545A1 (en) * 2000-11-11 2002-06-27 Kurt-Henry Mindermann Flame monitor for an oil- or gas-operated burner
US20020154787A1 (en) * 2001-02-20 2002-10-24 Rice Richard F. Acoustical to optical converter for providing pleasing visual displays
US7146253B2 (en) * 2003-03-24 2006-12-05 Smartway Solutions, Inc. Device and method for interactive programming of a thermostat
US20050208443A1 (en) * 2004-03-17 2005-09-22 Bachinski Thomas J Heating appliance control system
US20060147049A1 (en) * 2004-12-30 2006-07-06 Plantronics, Inc. Sound pressure level limiter with anti-startle feature
US20070125367A1 (en) * 2005-07-19 2007-06-07 Alvin Lim Apparatus and method for simulation of combustion effects in a fireplace
US20070235020A1 (en) * 2006-03-07 2007-10-11 Hills Douglas E Multi-zone gas fireplace system and method for control
US20080099090A1 (en) * 2006-10-25 2008-05-01 Enfield Technoloties, Llc Valve, controller, system and method providing closed loop current control of a voice coil using pulse width modulation drive elements
US20110150256A1 (en) * 2008-05-30 2011-06-23 Phonak Ag Method for adapting sound in a hearing aid device by frequency modification and such a device
US8269646B2 (en) * 2009-10-30 2012-09-18 Robert Francis Exman Audio driven synchronized light display

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8516878B2 (en) 2006-05-17 2013-08-27 Continental Appliances, Inc. Dual fuel heater
US7967006B2 (en) 2006-05-17 2011-06-28 David Deng Dual fuel heater
US7967007B2 (en) 2006-05-17 2011-06-28 David Deng Heater configured to operate with a first or second fuel
US9416977B2 (en) 2006-05-17 2016-08-16 Procom Heating, Inc. Heater configured to operate with a first or second fuel
US8235708B2 (en) 2006-05-17 2012-08-07 Continental Appliances, Inc. Heater configured to operate with a first or second fuel
US8281781B2 (en) 2006-05-17 2012-10-09 Continental Appliances, Inc. Dual fuel heater
US8568136B2 (en) 2006-05-17 2013-10-29 Procom Heating, Inc. Heater configured to operate with a first or second fuel
US10066838B2 (en) 2006-05-30 2018-09-04 David Deng Dual fuel heating system
US9140457B2 (en) 2006-05-30 2015-09-22 David Deng Dual fuel heating system and air shutter
US8011920B2 (en) 2006-12-22 2011-09-06 David Deng Valve assemblies for heating devices
US9328922B2 (en) 2006-12-22 2016-05-03 Procom Heating, Inc. Valve assemblies for heating devices
US8317511B2 (en) 2006-12-22 2012-11-27 Continental Appliances, Inc. Control valves for heaters and fireplace devices
US8545216B2 (en) 2006-12-22 2013-10-01 Continental Appliances, Inc. Valve assemblies for heating devices
US8297968B2 (en) 2006-12-22 2012-10-30 Continental Appliances, Inc. Pilot assemblies for heating devices
US8764436B2 (en) 2006-12-22 2014-07-01 Procom Heating, Inc. Valve assemblies for heating devices
US9200801B2 (en) 2007-03-14 2015-12-01 Procom Heating, Inc. Fuel selection valve assemblies
US9581329B2 (en) 2007-03-14 2017-02-28 Procom Heating, Inc. Gas-fueled heater
US8241034B2 (en) 2007-03-14 2012-08-14 Continental Appliances Inc. Fuel selection valve assemblies
US8152515B2 (en) 2007-03-15 2012-04-10 Continental Appliances Inc Fuel selectable heating devices
US8757139B2 (en) 2009-06-29 2014-06-24 David Deng Dual fuel heating system and air shutter
US8517718B2 (en) 2009-06-29 2013-08-27 David Deng Dual fuel heating source
US8465277B2 (en) 2009-06-29 2013-06-18 David Deng Heat engine with nozzle
US8757202B2 (en) 2009-06-29 2014-06-24 David Deng Dual fuel heating source
US9829195B2 (en) 2009-12-14 2017-11-28 David Deng Dual fuel heating source with nozzle
US8851065B2 (en) 2010-06-07 2014-10-07 David Deng Dual fuel heating system with pressure sensitive nozzle
US10073071B2 (en) 2010-06-07 2018-09-11 David Deng Heating system
US8752541B2 (en) 2010-06-07 2014-06-17 David Deng Heating system
US9021859B2 (en) 2010-06-07 2015-05-05 David Deng Heating system
US9222670B2 (en) 2010-12-09 2015-12-29 David Deng Heating system with pressure regulator
US10222057B2 (en) 2011-04-08 2019-03-05 David Deng Dual fuel heater with selector valve
US8985094B2 (en) 2011-04-08 2015-03-24 David Deng Heating system
US9739389B2 (en) 2011-04-08 2017-08-22 David Deng Heating system
US9752782B2 (en) 2011-10-20 2017-09-05 David Deng Dual fuel heater with selector valve
US9022064B2 (en) 2012-05-10 2015-05-05 David Deng Dual fuel control device with auxiliary backline pressure regulator
US9752779B2 (en) 2013-03-02 2017-09-05 David Deng Heating assembly
US9518732B2 (en) 2013-03-02 2016-12-13 David Deng Heating assembly
US9441833B2 (en) 2013-03-02 2016-09-13 David Deng Heating assembly
US9423123B2 (en) 2013-03-02 2016-08-23 David Deng Safety pressure switch
US10240789B2 (en) 2014-05-16 2019-03-26 David Deng Dual fuel heating assembly with reset switch

Also Published As

Publication number Publication date
ES2381512A1 (en) 2012-05-28
EP2261562A2 (en) 2010-12-15
EP2261562A3 (en) 2017-10-18
ES2381512B1 (en) 2013-05-07
CA2706232A1 (en) 2010-12-04

Similar Documents

Publication Publication Date Title
CA2262338C (en) Simulated fireplace assembly
US5470018A (en) Thermostatically controlled gas heater
EP1488447B1 (en) Electrically illuminated flame simulator
CN103492805B (en) System and method for flat flame
US5195820A (en) Fireplace with simulated flames
US6757487B2 (en) Electric fireplace with light randomizer, filter and diffuser screen
US20070121319A1 (en) Color changing light devices with active ingredient and sound emission for mood enhancement
US20020154787A1 (en) Acoustical to optical converter for providing pleasing visual displays
US7210256B2 (en) Artificial fireplace
US8807765B2 (en) System and method for creating artificial atmosphere
US7633232B2 (en) Electronic candle and method of use
US20140211499A1 (en) Device with simulated flame
US8733986B2 (en) Systems, components, and methods for electronic candles with moving flames
EP0146371A2 (en) Gas-fired appliances with coal effect
CN1776777B (en) Flame simulating assembly
US5450841A (en) Multi-function remote control system for gas fireplace
US20080151571A1 (en) Ornamental electronic candle
US6988820B2 (en) Method and a device for illumination
CN101918755A (en) Kinetic flame device
US8413648B2 (en) Fuel-fired barbecue
US7227075B2 (en) Lighting controller
CN1666573A (en) Coordinated emission of fragrance, light, and sound
US20150373815A1 (en) Systems and Methods for Controlling a Plurality of Electric Candles
US20080129226A1 (en) Simulated Open Flame Illumination
WO2000022346A9 (en) Sound producing candle

Legal Events

Date Code Title Description
AS Assignment

Owner name: COPRECITEC, S.L., SPAIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUGICA ODRIOZOLA, JOSE IGNACIO;ALBIZURI LANDA, INIGO;ANTXIA URIBETXEBARRIA, JOSE JOAQUIN;AND OTHERS;REEL/FRAME:024482/0031

Effective date: 20100426