US20100298696A1 - Self-contained, self-piercing, side-expelling marking apparatus - Google Patents
Self-contained, self-piercing, side-expelling marking apparatus Download PDFInfo
- Publication number
- US20100298696A1 US20100298696A1 US12/850,844 US85084410A US2010298696A1 US 20100298696 A1 US20100298696 A1 US 20100298696A1 US 85084410 A US85084410 A US 85084410A US 2010298696 A1 US2010298696 A1 US 2010298696A1
- Authority
- US
- United States
- Prior art keywords
- stylet
- cannula
- lateral opening
- lumen
- distal end
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3904—Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
- A61B2090/3908—Soft tissue, e.g. breast tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B90/00—Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
- A61B90/39—Markers, e.g. radio-opaque or breast lesions markers
- A61B2090/3987—Applicators for implanting markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/06—Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
- A61B5/061—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
- A61B5/064—Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using markers
Definitions
- This invention relates generally to an apparatus for the percutaneous positioning of an imaging marker for identifying the location of a lesion in a biopsy procedure. More particularly, the invention relates to a self-contained marking apparatus that expels the imaging marker through the side of the marking device.
- Tissue biopsies are commonly performed on many areas and organs of the body where it is desirable to ascertain whether or not the biopsied tissue is cancerous. Often, a lesion or other tissue to be biopsied is identified through use of an imaging technique such as a computerized axial tomography (CAT) scan, ultrasonography, magnetic resonance imaging, and mammography.
- CAT computerized axial tomography
- ultrasonography ultrasonography
- magnetic resonance imaging and mammography
- VABs vacuum assisted biopsy devices
- the VAB devices are many times integrated with a mammography imaging system. They include a large diameter cannula, approximately 9 to 12 gage, or probe that is inserted into the breast tissue. Instruments, such as a biopsy device and a marking device, are introduced into the breast tissue through the large diameter cannula to take biopsy samples or mark a biopsy location.
- the other primary type is self-contained marking devices comprising a small diameter, approximately 14 to 17 gage, open-end cannula and a stylet slidably received within the cannula.
- a marker is located in the cannula and expelled out the open-end upon the advancing of the stylet relative to the cannula.
- the biopsy and marking tools are integrated with the mammography imaging system.
- the capital investment of this type of system is substantial.
- the biopsy and marking tools are typically designed to work only with the large diameter probe, which tends to lock the hospital or medical professional into the same source for the imaging system and the biopsy and marking tools.
- the VAB systems are also intended for the same components to be reused, which requires sterilization after each step.
- the various components are also typically flexible to help insert them through the probe.
- the VAB systems also have a relatively large diameter probe, which, all things being equal, the larger the diameter, the greater trauma to the surrounding tissue and the greater the pain or discomfort for the patient.
- the self-contained marking devices address these disadvantages of the VAB systems. Since the self-contained marking device is not integrally incorporated with a particular imaging system, the self-contained marking devices can be used with any suitable imaging system and are not limited to just mammography. This permits the hospital or medical professional to mix and match the available imaging systems and self-contained marking devices to obtain the desired performance and cost-effectiveness.
- the self-contained marking devices are typically disposable, which negates the need to sterilize them after each use. They also have a much smaller diameter, resulting in much less trauma to the surrounding tissue and pain to the patient.
- the cannula has an open tip through which the marker is expelled.
- the open tip is generally closed by the marker residing in the cannula.
- the marker does not completely close off the open tip and it is possible for tissue to enter the open end of the cannula during the positioning of the marking device.
- the presence of tissue inside the open end of the cannula can interfere or make more difficult the expelling of the marker from the cannula.
- the possibility for tissue being present in the open end of the cannula is, to some extent, related to the distance that the cannula is inserted through the tissue to the marking site.
- the manner in which the marking device is located at the biopsy site can impact the presence of tissue in the open end of the cannula.
- the self-contained systems are sometimes used in combination with a positioning cannula that is inserted into the tissue mass with a stylet closing the end of the positioning cannula.
- the stylet is removed once the positioning cannula is properly located relative to the biopsy site.
- Both the biopsy device and the marking device can be inserted and withdrawn through the positioning cannula.
- the use of the positioning cannula reduces the distance that the open end of the marking device cannula must travel through the tissue.
- the marking device can be inserted without the positioning cannula. This is most common when it is desirable to place a marker without taking a biopsy. Under such circumstances, it is more likely that tissue will be received within the open end of the cannula. Therefore, it is more likely that the tissue will interfere with the expelling of the marker.
- a self-contained marking device that can be used with or without a positioning cannula and which does not receive tissue within the open end of the cannula that might interfere with the expelling of the marker.
- the invention relates to a marking apparatus for the percutaneous placement of an imaging marker at a predetermined location in a tissue mass to facilitate subsequent determination of the predetermined location.
- the marking apparatus comprises a handle, cannula, and plunger.
- the handle is to be grasped by a user to aid in the placement of the marker.
- the cannula comprises a peripheral wall forming a lumen, with a proximal end carried by the handle, and a distal end terminating in a self-piercing tip.
- a lateral opening is formed in the peripheral wall and is open to the lumen.
- a plunger having a distal end is slidably received within the lumen for movement between a ready position, where the distal end is spaced inwardly from the self-piercing tip to form a marker recess in communication with the lateral opening and sized to receive an imaging marker, and an expelled position, where the distal end is advanced a sufficient distance into the marker recess to expel a marker contained therein through the lateral opening.
- One or more imaging markers can be positioned within the marker recess.
- the handle, cannula, plunger are operably coupled such that they form a self-contained marking apparatus that can be easily and conveniently handled by a user to effect operation of the marking apparatus from the ready position to an expelled position.
- the cannula is preferably sufficiently rigid and a distal end of the cannula is pointed to form the self-piercing tip.
- the cannula is 13 gage or less.
- a ramp can be provided on at least one of the plunger and cannula to aid in expelling an imaging marker.
- the ramp can be located in the lumen adjacent the lateral opening.
- the distal end of the plunger can be flexible to be deflected toward the lateral opening by the ramp when the plunger is moved to the expelled position.
- the ramp can also be located on the distal end of the plunger.
- the invention in one form thereof, is directed to a marking apparatus for the percutaneous placement of an imaging marker in a tissue mass.
- the marking apparatus includes a handle to be grasped by a user, a rigid cannula and a stylet.
- the rigid cannula has a peripheral wall forming a lumen that carries the imaging marker, a proximal end coupled to the handle, a lateral opening in the peripheral wall that is open to the lumen, and a closed-off distal portion having a ramp adjacent the lumen.
- the closed-off distal portion extends distally from the ramp to terminate at a tissue piercing pointed tip.
- the ramp of the rigid cannula is curved to transition from the peripheral wall of the rigid cannula to the lateral opening of the rigid cannula.
- a stylet has a distal end, with at least the distal end of the stylet being flexible. The stylet is slidably received within the lumen of the rigid cannula for movement in the lumen. The ramp of the rigid cannula is adapted to engage the distal end of the stylet as the stylet is advanced through the lumen of the rigid cannula to guide the distal end of the stylet to a position to substantially close off the lateral opening of the rigid cannula having the tissue piercing tip.
- the invention in another form thereof, is directed to a marking apparatus for the percutaneous placement of an imaging marker in a tissue mass.
- the marking apparatus includes a handle to be grasped by a user, a cannula, and a stylet.
- the cannula has a peripheral wall forming a lumen that carries the imaging marker, a proximal end coupled to the handle, a lateral opening in the peripheral wall that is open to the lumen, and a closed-off distal portion having a ramp adjacent the lumen.
- the closed-off distal portion extends distally from the ramp to terminate at a tissue piercing pointed tip.
- the stylet has a distal end with an angled surface.
- the stylet is disposed in the lumen and movable in the lumen between a ready position and an expelled position, such that when the stylet is advanced through the lumen to the expelled position the ramp deflects the distal end of the stylet toward the lateral opening such that at the expelled position the angled surface is flush with the peripheral wall of the cannula at the lateral opening of the cannula.
- the invention in another form thereof, is directed to a marking apparatus for the percutaneous placement of an imaging marker in a tissue mass.
- the marking apparatus includes a handle to be grasped by a user, a cannula, and a stylet.
- the cannula has a peripheral wall forming a lumen that carries the imaging marker, a proximal end carried by the handle, a closed-off distal portion terminating in a self-piercing tip, a ramp integrated with the closed-off distal portion, and a lateral opening in the peripheral wall.
- the lateral opening extends in a region between the proximal end and the closed-off distal portion of the cannula.
- the lateral opening has a proximal extent and a distal extent, the distal extent being closer to the self-piercing tip than the proximal extent.
- the stylet includes a distal end. The stylet is slidably received within the lumen for movement between a ready position, wherein the distal end of the stylet is spaced inwardly from the self-piercing tip to form a marker recess in communication with the lateral opening, and an expelled position, wherein the distal end of the stylet is advanced a sufficient distance into the marker recess to expel the imaging marker contained in the lumen through the lateral opening of the cannula. When the distal end of the stylet is at the expelled position the distal end of the stylet is deflected by the ramp to close off the lateral opening of the cannula between the proximal extent and the distal extent of the lateral opening.
- the invention also relates to a method for percutaneously placing a marker at a predetermined location in a tissue mass using a self-piercing, side-ejecting, self-contained marking apparatus comprising a cannula defining a lumen and terminating in a self-piercing tip, with a lateral opening in communication with the lumen, and a plunger slidably received within the lumen for expelling a marker in the lumen through the lateral opening.
- the method comprises: inserting the cannula into the tissue mass by puncturing an exterior of the tissue mass with the self-piercing tip, and expelling the marker through the lateral opening by sliding the plunger within the lumen.
- the inserting step can comprise locating the lateral opening near a predetermined location in the tissue mass where it is desired to be marked.
- the lateral opening is located beneath the predetermined location.
- the expelling step comprises expelling multiple markers into the tissue mass.
- At least one of the multiple markers can be expelled at a different location in the tissue mass than another of the multiple markers.
- FIG. 1 is a plan view of a self-contained, self-piercing, and side-expelling marking apparatus comprising an actuator, a cannula with a side opening, and a stylet for laterally expelling a marker through the side opening in accordance with the invention.
- FIG. 2 is an enlarged sectional view of the area II of FIG. 1 , illustrating the relationship between the cannula, stylet and marker prior to the expelling of the marker.
- FIG. 3 is an enlarged top view of the cannula tip of FIG. 2 .
- FIG. 4 is an enlarged sectional view of a portion of the actuator.
- FIG. 5 is a sectional view of the marking device inserted into a tissue mass such that the cannula side opening is adjacent an area to be marked, with the stylet shown in a ready position and the marker still retained within the cannula lumen.
- FIG. 6 is an enlarged sectional view of the cannula tip of FIG. 5 .
- FIG. 7 is a sectional view of the marking device inserted into a tissue mass such that the cannula side opening is adjacent an area to be marked, with the stylet shown in a expelled position and the marker expelled through the side opening into the surrounding tissue mass.
- FIG. 8 is an enlarged sectional view of the cannula tip of FIG. 7 .
- FIG. 9 is a sectional view of an alternative design for the cannula and stylet according to the invention, with the stylet having a flexible tip and shown in the ready position.
- FIG. 10 is a sectional view of the cannula and stylet of FIG. 9 with the stylet shown in the expelled position.
- FIG. 11 is a sectional view of a second alternative design for the cannula and stylet according to the invention, with the stylet having a ramped tip and shown in the expelled position.
- FIGS. 1-4 illustrate a self-contained, self-penetrating, side-expelling marking apparatus 10 according to the invention, which is capable of the percutaneous placement of a imaging marker at a desired location, such as at a tissue biopsy site or a lesion site in a breast.
- the marking apparatus 10 comprises an introducer 12 and an imaging marker 14 ( FIG. 2 ) contained within the introducer 12 .
- the introducer 12 includes an actuator 16 having a hollow interior 18 .
- the actuator 16 comprises a grip portion 20 from which extends a tapered nose portion 22 .
- the grip portion 20 defines a rear opening 24 that provides access to the hollow interior 18 .
- a pair of detents 26 are formed in the grip portion 20 near the rear opening 24 .
- Channels 28 are formed on the interior surface of the grip portion 20 and extend from the rear opening 24 to the detents 26 .
- the nose portion 22 comprises a guide passage 30 extending from the tip of the nose portion 22 to the hollow interior 18 of the actuator 16 .
- the guide passage 30 decreases in diameter inwardly from the tip of the nose portion to form a cannula seat 32 ( FIG. 5 ).
- a plunger 50 comprises a cylindrical body 52 from which extend a pair of catches 54 at diametrically opposed positions.
- the cylindrical body 52 is sized so that it is slidably received within the rear opening 24 of the actuator 16 where it is so oriented with respect to the actuator such that the catches 54 are aligned with the guide channels 28 .
- the plunger is free to reciprocate within the grip portion 20 of the actuator 16 .
- a cannula 60 is mounted to the introducer 12 .
- the cannula 60 defines a hollow interior in the form of a lumen 62 and comprises a proximal end 64 and a distal end 66 .
- the proximal end 64 ( FIG. 5 ) is mounted within the cannula seat 32 to secure the cannula 60 to the introducer 12 .
- the distal end 66 terminates in a closed-off tip 68 to provide the marking apparatus with self-piercing functionality.
- the closed-off tip 68 is illustrated as being pointed, but other suitable shapes are possible.
- the cannula 60 is preferably 13 gage or less in size.
- the cannula 60 is also preferably rigid. That is, the cannula does not substantially flex.
- the rigidity of the cannula aids in inserting the cannula into a tissue mass, without the aid of a guide needle or guide cannula.
- a side opening 70 is formed in the cannula 60 and extends entirely through the cannula such that the lumen 62 is in communication with the exterior of the cannula 60 through the side opening 70 .
- the side opening is preferably located behind the closed-off tip 68 .
- a ramp 72 is provided on the interior of the cannula 60 .
- the ramp 72 is illustrated as being integrally formed with the closed-off tip 68 . Such a configuration can result in a solid distal end 66 as illustrated. However, the distal end can be hollow and the ramp 72 can be formed by separately from the distal end 66 .
- the ramp 72 extends diametrically across the lumen 62 and terminates at the side opening 70 . With this configuration, the ramp 72 aids in directing an imaging marker 14 stored in the lumen through the side opening 70 and beyond the exterior of the cannula.
- a stylet 80 comprising a shaft 82 and a base 84 is received within the hollow interior 18 of the actuator 16 in a manner such that the shaft 82 extends through the guide passage 30 and into the cannula interior 62 and the stylet base 84 lies within the hollow interior 18 and is mounted to the plunger 50 .
- the reciprocation of the plunger 50 relative to the grip portion 20 results in a reciprocation of the stylet 80 within the cannula 60 .
- the stylet 80 terminates in a distal end 86 , which, when the marking apparatus is in the ready position, is spaced from the distal end 66 of the cannula 60 to form a marker recess therebetween. As illustrated, a single marker 14 is stored within the marker recess. It is within the scope of the invention for multiple markers to be received within the marker recess.
- the foregoing construction provides a marking apparatus that is preassembled as a self-contained unit and prepackaged, all under sterile conditions, thereby affording the practitioner substantially greater convenience and reliability, while eliminating the need for sterilizing the self-contained unit after use.
- the self-contained unit is disposed of after it is used.
- the introducer 12 begins in the ready condition shown in FIGS. 5 and 6 .
- the distal end 86 of the stylet 80 is received within the cannula and spaced from the closed-off distal end 66 of the cannula to define a marker recess in which a marker 14 is stored.
- the plunger 50 is in a position relative to the grip portion 20 in which the catches are outside the grip portion; that is, they are not received within the detents 26 . However, the plunger 50 is so oriented with respect to the grip portion that the catches 54 are aligned with the guide channels 28 .
- the cannula With the introducer in the ready condition, the cannula is positioned within the tissue mass such that the side opening 70 is at or near the location of a tissue mass where it is desired to place the marker. In the case of marking a biopsy site, the side opening is preferably placed adjacent the biopsy site.
- the medical professional grasps the grip portion 20 of the actuator and presses the closed-off tip 68 against the exterior of the tissue mass to puncture the tissue mass.
- the medical professional continues applying force to the grip portion 20 to drive the cannula 60 to the desired location within the tissue mass.
- the closed tip 68 helps separate the tissue of the tissue mass to make it easier to insert the cannula within the tissue mass to the desired location.
- a starter incision can be made in the exterior of the tissue mass to reduce the initial force need to start the insertion.
- the used of a side opening 70 instead of a tip opening found in the prior art self-contained devices helps prevent the accumulation of tissue within the lumen 62 upon the insertion of the cannula 60 into the tissue mass.
- the closed tip 68 also helps in that it separates the tissue to form a path through which the side opening passes. Since the side opening is parallel to the path, there is much less tendency for the insertion of the cannula to force tissue into the side opening as could occur in the prior-art front opening cannulae.
- a suitable imaging system will be used by the medical professional to help guide the cannula to the desired location within the tissue mass.
- Examples of contemporary imaging systems include: stereotactic, x-ray, ultrasound, CAT scan, or MRI.
- the invention is not limited to any particular type of imaging system.
- the plunger 50 is moved from a first or ready condition as illustrated in FIGS. 5 and 6 to a second or expelled condition as illustrated in FIGS. 7 and 8 .
- the stylet 80 is advanced into the marker recess to drive the marker 14 up the ramp 72 .
- the continued advancement of the stylet 80 ultimately drives the marker 14 through the side opening 70 and into the adjacent tissue.
- the cannula can be withdrawn to leave the marker in the tissue.
- the medical professional pulls on the actuator to withdraw the cannula from the tissue mass.
- the marking apparatus is disposed of, negating the need for sterilization.
- the rigid cannula in combination with the closed-off tip 68 provides an ideal structure for inserting the device directly into the tissue without the need for a guide needle or cannula. This is advantageous in that it reduces the size of the opening formed in the tissue and thereby reducing the trauma to the patient.
- the closed-off tip is used to puncture the exterior of the tissue mass. While the marking apparatus of the invention can be used with a guide needle or cannula, there is no need to do so because of the self-piercing nature of the invention.
- FIGS. 9 and 10 illustrate an alternative design for the stylet in the ready and expelled conditions, respectively.
- the alternative stylet 80 ′ is essentially identical to the stylet 80 , except that the distal end 66 ′ is made from a resilient material and has an angled surface 90 ′.
- the resilient material permits the distal end 66 ′ to deflect when contacting the ramp 72 ′, such that the distal end 66 ′ generally follows the shape of the ramp 72 ′.
- the angle of the angled surface 90 ′ is preferably selected such that the angled surface substantially closes off the side opening 70 ′ when the stylet is in the expelled condition, which will ensure that the marker is completely expelled through the side opening 70 ′.
- the angled surface 90 ′ functions like the ramp 72 in that it helps to deflect the marker 14 through the side opening.
- FIG. 11 illustrates another alternative design for the stylet and cannula.
- the distal end 66 ′′ of the stylet 80 ′′ includes a ramp 72 ′′.
- a resilient end wall 92 ′′ is used instead of the ramp 72 of the cannula.
- the space between the ramp 72 ′′ and the resilient end wall 92 ′′ defines the marker recess in which multiple markers 14 ′′ are stored.
- the advancement of the stylet from the ready condition to the expelled condition drives the markers up the ramp 72 ′′.
- the resilient end wall 92 ′′ deflects to permit the ramp 72 ′′ to slide beneath and into the distal end closed tip 68 ′′ of the cannula.
- multiple markers can be located within the cannula and expelled at the same or different locations within the tissue mass.
Landscapes
- Health & Medical Sciences (AREA)
- Surgery (AREA)
- Life Sciences & Earth Sciences (AREA)
- Heart & Thoracic Surgery (AREA)
- Pathology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
Abstract
A marking apparatus includes a rigid cannula having a peripheral wall forming a lumen that carries an imaging marker, a proximal end coupled to a handle, a lateral opening in the peripheral wall that is open to the lumen, and a closed-off distal portion having a ramp adjacent the lumen. The closed-off distal portion extends distally from the ramp to terminate at a tissue piercing pointed tip. The ramp of the rigid cannula is curved to transition from the peripheral wall of the rigid cannula to the lateral opening of the rigid cannula. The ramp of the rigid cannula is adapted to engage the distal end of the stylet as the stylet is advanced through the lumen of the rigid cannula to guide the distal end of the stylet to a position to substantially close off the lateral opening of the rigid cannula having the tissue piercing tip.
Description
- This application is a continuation of U.S. application Ser. No. 11/275,918 filed Feb. 3, 2006, which is a continuation of U.S. application Ser. No. 10/710,587 filed Jul. 22, 2004 and a continuation-in-part of U.S. application Ser. No. 10/707,044 filed Nov. 17, 2003, now U.S. Pat. No. 7,424,320, issued Sep. 9, 2008, all of which are incorporated herein by reference in their entirety.
- 1. Field of the Invention
- This invention relates generally to an apparatus for the percutaneous positioning of an imaging marker for identifying the location of a lesion in a biopsy procedure. More particularly, the invention relates to a self-contained marking apparatus that expels the imaging marker through the side of the marking device.
- 2. Description of the Related Art
- Tissue biopsies are commonly performed on many areas and organs of the body where it is desirable to ascertain whether or not the biopsied tissue is cancerous. Often, a lesion or other tissue to be biopsied is identified through use of an imaging technique such as a computerized axial tomography (CAT) scan, ultrasonography, magnetic resonance imaging, and mammography.
- One problem commonly encountered, especially in breast biopsies, is that the lesion is so small that the biopsy reduces its size to the extent that it is no longer visible by the imaging method employed. In such circumstances, it is desirable to place an imaging marker at the site of the biopsy to enable the medical practitioner subsequently to locate the lesion quickly and accurately in the event complete removal of the affected tissue is indicated. This problem is currently met by placing an imaging marker at the biopsy area by means of a cannula or similar device housing the marker.
- There are currently two primary types of marking devices. One of the primary types is referred to as vacuum assisted biopsy devices (VABs). The VAB devices are many times integrated with a mammography imaging system. They include a large diameter cannula, approximately 9 to 12 gage, or probe that is inserted into the breast tissue. Instruments, such as a biopsy device and a marking device, are introduced into the breast tissue through the large diameter cannula to take biopsy samples or mark a biopsy location.
- The other primary type is self-contained marking devices comprising a small diameter, approximately 14 to 17 gage, open-end cannula and a stylet slidably received within the cannula. A marker is located in the cannula and expelled out the open-end upon the advancing of the stylet relative to the cannula.
- One disadvantage of the VAB system is the biopsy and marking tools are integrated with the mammography imaging system. The capital investment of this type of system is substantial. Also, the biopsy and marking tools are typically designed to work only with the large diameter probe, which tends to lock the hospital or medical professional into the same source for the imaging system and the biopsy and marking tools. The VAB systems are also intended for the same components to be reused, which requires sterilization after each step. The various components are also typically flexible to help insert them through the probe. The VAB systems also have a relatively large diameter probe, which, all things being equal, the larger the diameter, the greater trauma to the surrounding tissue and the greater the pain or discomfort for the patient.
- The self-contained marking devices address these disadvantages of the VAB systems. Since the self-contained marking device is not integrally incorporated with a particular imaging system, the self-contained marking devices can be used with any suitable imaging system and are not limited to just mammography. This permits the hospital or medical professional to mix and match the available imaging systems and self-contained marking devices to obtain the desired performance and cost-effectiveness.
- The self-contained marking devices are typically disposable, which negates the need to sterilize them after each use. They also have a much smaller diameter, resulting in much less trauma to the surrounding tissue and pain to the patient.
- A disadvantage of the self-contained systems is that the cannula has an open tip through which the marker is expelled. The open tip is generally closed by the marker residing in the cannula. However, the marker does not completely close off the open tip and it is possible for tissue to enter the open end of the cannula during the positioning of the marking device. The presence of tissue inside the open end of the cannula can interfere or make more difficult the expelling of the marker from the cannula.
- The possibility for tissue being present in the open end of the cannula is, to some extent, related to the distance that the cannula is inserted through the tissue to the marking site. Thus, the manner in which the marking device is located at the biopsy site can impact the presence of tissue in the open end of the cannula. For example, the self-contained systems are sometimes used in combination with a positioning cannula that is inserted into the tissue mass with a stylet closing the end of the positioning cannula. In such a configuration, the stylet is removed once the positioning cannula is properly located relative to the biopsy site. Both the biopsy device and the marking device can be inserted and withdrawn through the positioning cannula. The use of the positioning cannula reduces the distance that the open end of the marking device cannula must travel through the tissue.
- Alternatively, the marking device can be inserted without the positioning cannula. This is most common when it is desirable to place a marker without taking a biopsy. Under such circumstances, it is more likely that tissue will be received within the open end of the cannula. Therefore, it is more likely that the tissue will interfere with the expelling of the marker.
- Therefore, it is desirable to have a self-contained marking device that can be used with or without a positioning cannula and which does not receive tissue within the open end of the cannula that might interfere with the expelling of the marker.
- The invention relates to a marking apparatus for the percutaneous placement of an imaging marker at a predetermined location in a tissue mass to facilitate subsequent determination of the predetermined location. The marking apparatus comprises a handle, cannula, and plunger. The handle is to be grasped by a user to aid in the placement of the marker.
- The cannula comprises a peripheral wall forming a lumen, with a proximal end carried by the handle, and a distal end terminating in a self-piercing tip. A lateral opening is formed in the peripheral wall and is open to the lumen.
- A plunger having a distal end is slidably received within the lumen for movement between a ready position, where the distal end is spaced inwardly from the self-piercing tip to form a marker recess in communication with the lateral opening and sized to receive an imaging marker, and an expelled position, where the distal end is advanced a sufficient distance into the marker recess to expel a marker contained therein through the lateral opening.
- One or more imaging markers can be positioned within the marker recess.
- The handle, cannula, plunger are operably coupled such that they form a self-contained marking apparatus that can be easily and conveniently handled by a user to effect operation of the marking apparatus from the ready position to an expelled position.
- The cannula is preferably sufficiently rigid and a distal end of the cannula is pointed to form the self-piercing tip. The cannula is 13 gage or less.
- A ramp can be provided on at least one of the plunger and cannula to aid in expelling an imaging marker. The ramp can be located in the lumen adjacent the lateral opening. The distal end of the plunger can be flexible to be deflected toward the lateral opening by the ramp when the plunger is moved to the expelled position. The ramp can also be located on the distal end of the plunger.
- The invention, in one form thereof, is directed to a marking apparatus for the percutaneous placement of an imaging marker in a tissue mass. The marking apparatus includes a handle to be grasped by a user, a rigid cannula and a stylet. The rigid cannula has a peripheral wall forming a lumen that carries the imaging marker, a proximal end coupled to the handle, a lateral opening in the peripheral wall that is open to the lumen, and a closed-off distal portion having a ramp adjacent the lumen. The closed-off distal portion extends distally from the ramp to terminate at a tissue piercing pointed tip. The ramp of the rigid cannula is curved to transition from the peripheral wall of the rigid cannula to the lateral opening of the rigid cannula. A stylet has a distal end, with at least the distal end of the stylet being flexible. The stylet is slidably received within the lumen of the rigid cannula for movement in the lumen. The ramp of the rigid cannula is adapted to engage the distal end of the stylet as the stylet is advanced through the lumen of the rigid cannula to guide the distal end of the stylet to a position to substantially close off the lateral opening of the rigid cannula having the tissue piercing tip.
- The invention, in another form thereof, is directed to a marking apparatus for the percutaneous placement of an imaging marker in a tissue mass. The marking apparatus includes a handle to be grasped by a user, a cannula, and a stylet. The cannula has a peripheral wall forming a lumen that carries the imaging marker, a proximal end coupled to the handle, a lateral opening in the peripheral wall that is open to the lumen, and a closed-off distal portion having a ramp adjacent the lumen. The closed-off distal portion extends distally from the ramp to terminate at a tissue piercing pointed tip. The stylet has a distal end with an angled surface. The stylet is disposed in the lumen and movable in the lumen between a ready position and an expelled position, such that when the stylet is advanced through the lumen to the expelled position the ramp deflects the distal end of the stylet toward the lateral opening such that at the expelled position the angled surface is flush with the peripheral wall of the cannula at the lateral opening of the cannula.
- The invention, in another form thereof, is directed to a marking apparatus for the percutaneous placement of an imaging marker in a tissue mass. The marking apparatus includes a handle to be grasped by a user, a cannula, and a stylet. The cannula has a peripheral wall forming a lumen that carries the imaging marker, a proximal end carried by the handle, a closed-off distal portion terminating in a self-piercing tip, a ramp integrated with the closed-off distal portion, and a lateral opening in the peripheral wall. The lateral opening extends in a region between the proximal end and the closed-off distal portion of the cannula. The lateral opening has a proximal extent and a distal extent, the distal extent being closer to the self-piercing tip than the proximal extent. The stylet includes a distal end. The stylet is slidably received within the lumen for movement between a ready position, wherein the distal end of the stylet is spaced inwardly from the self-piercing tip to form a marker recess in communication with the lateral opening, and an expelled position, wherein the distal end of the stylet is advanced a sufficient distance into the marker recess to expel the imaging marker contained in the lumen through the lateral opening of the cannula. When the distal end of the stylet is at the expelled position the distal end of the stylet is deflected by the ramp to close off the lateral opening of the cannula between the proximal extent and the distal extent of the lateral opening.
- The invention also relates to a method for percutaneously placing a marker at a predetermined location in a tissue mass using a self-piercing, side-ejecting, self-contained marking apparatus comprising a cannula defining a lumen and terminating in a self-piercing tip, with a lateral opening in communication with the lumen, and a plunger slidably received within the lumen for expelling a marker in the lumen through the lateral opening. The method comprises: inserting the cannula into the tissue mass by puncturing an exterior of the tissue mass with the self-piercing tip, and expelling the marker through the lateral opening by sliding the plunger within the lumen.
- The inserting step can comprise locating the lateral opening near a predetermined location in the tissue mass where it is desired to be marked. Preferably, the lateral opening is located beneath the predetermined location.
- The expelling step comprises expelling multiple markers into the tissue mass.
- At least one of the multiple markers can be expelled at a different location in the tissue mass than another of the multiple markers.
- In the drawings:
-
FIG. 1 is a plan view of a self-contained, self-piercing, and side-expelling marking apparatus comprising an actuator, a cannula with a side opening, and a stylet for laterally expelling a marker through the side opening in accordance with the invention. -
FIG. 2 is an enlarged sectional view of the area II ofFIG. 1 , illustrating the relationship between the cannula, stylet and marker prior to the expelling of the marker. -
FIG. 3 . is an enlarged top view of the cannula tip ofFIG. 2 . -
FIG. 4 . is an enlarged sectional view of a portion of the actuator. -
FIG. 5 is a sectional view of the marking device inserted into a tissue mass such that the cannula side opening is adjacent an area to be marked, with the stylet shown in a ready position and the marker still retained within the cannula lumen. -
FIG. 6 is an enlarged sectional view of the cannula tip ofFIG. 5 . -
FIG. 7 is a sectional view of the marking device inserted into a tissue mass such that the cannula side opening is adjacent an area to be marked, with the stylet shown in a expelled position and the marker expelled through the side opening into the surrounding tissue mass. -
FIG. 8 is an enlarged sectional view of the cannula tip ofFIG. 7 . -
FIG. 9 is a sectional view of an alternative design for the cannula and stylet according to the invention, with the stylet having a flexible tip and shown in the ready position. -
FIG. 10 is a sectional view of the cannula and stylet ofFIG. 9 with the stylet shown in the expelled position. -
FIG. 11 is a sectional view of a second alternative design for the cannula and stylet according to the invention, with the stylet having a ramped tip and shown in the expelled position. -
FIGS. 1-4 illustrate a self-contained, self-penetrating, side-expellingmarking apparatus 10 according to the invention, which is capable of the percutaneous placement of a imaging marker at a desired location, such as at a tissue biopsy site or a lesion site in a breast. The markingapparatus 10 comprises anintroducer 12 and an imaging marker 14 (FIG. 2 ) contained within theintroducer 12. Theintroducer 12 includes anactuator 16 having ahollow interior 18. Theactuator 16 comprises agrip portion 20 from which extends atapered nose portion 22. Thegrip portion 20 defines arear opening 24 that provides access to thehollow interior 18. A pair ofdetents 26 are formed in thegrip portion 20 near therear opening 24.Channels 28 are formed on the interior surface of thegrip portion 20 and extend from therear opening 24 to thedetents 26. - The
nose portion 22 comprises aguide passage 30 extending from the tip of thenose portion 22 to thehollow interior 18 of theactuator 16. Theguide passage 30 decreases in diameter inwardly from the tip of the nose portion to form a cannula seat 32 (FIG. 5 ). - A
plunger 50 comprises acylindrical body 52 from which extend a pair ofcatches 54 at diametrically opposed positions. Thecylindrical body 52 is sized so that it is slidably received within therear opening 24 of theactuator 16 where it is so oriented with respect to the actuator such that thecatches 54 are aligned with theguide channels 28. The plunger is free to reciprocate within thegrip portion 20 of theactuator 16. - A
cannula 60 is mounted to theintroducer 12. Thecannula 60 defines a hollow interior in the form of alumen 62 and comprises aproximal end 64 and adistal end 66. The proximal end 64 (FIG. 5 ) is mounted within thecannula seat 32 to secure thecannula 60 to theintroducer 12. Thedistal end 66 terminates in a closed-offtip 68 to provide the marking apparatus with self-piercing functionality. The closed-offtip 68 is illustrated as being pointed, but other suitable shapes are possible. - The
cannula 60 is preferably 13 gage or less in size. Thecannula 60 is also preferably rigid. That is, the cannula does not substantially flex. The rigidity of the cannula aids in inserting the cannula into a tissue mass, without the aid of a guide needle or guide cannula. - A
side opening 70 is formed in thecannula 60 and extends entirely through the cannula such that thelumen 62 is in communication with the exterior of thecannula 60 through theside opening 70. The side opening is preferably located behind the closed-offtip 68. - A
ramp 72 is provided on the interior of thecannula 60. Theramp 72 is illustrated as being integrally formed with the closed-offtip 68. Such a configuration can result in a soliddistal end 66 as illustrated. However, the distal end can be hollow and theramp 72 can be formed by separately from thedistal end 66. - The
ramp 72 extends diametrically across thelumen 62 and terminates at theside opening 70. With this configuration, theramp 72 aids in directing animaging marker 14 stored in the lumen through theside opening 70 and beyond the exterior of the cannula. - A
stylet 80 comprising ashaft 82 and abase 84 is received within thehollow interior 18 of theactuator 16 in a manner such that theshaft 82 extends through theguide passage 30 and into thecannula interior 62 and thestylet base 84 lies within thehollow interior 18 and is mounted to theplunger 50. Thus, the reciprocation of theplunger 50 relative to thegrip portion 20 results in a reciprocation of thestylet 80 within thecannula 60. - The
stylet 80 terminates in adistal end 86, which, when the marking apparatus is in the ready position, is spaced from thedistal end 66 of thecannula 60 to form a marker recess therebetween. As illustrated, asingle marker 14 is stored within the marker recess. It is within the scope of the invention for multiple markers to be received within the marker recess. - As is shown, the foregoing construction provides a marking apparatus that is preassembled as a self-contained unit and prepackaged, all under sterile conditions, thereby affording the practitioner substantially greater convenience and reliability, while eliminating the need for sterilizing the self-contained unit after use. Preferably, the self-contained unit is disposed of after it is used.
- Referring to
FIGS. 5-8 , in operation, theintroducer 12 begins in the ready condition shown inFIGS. 5 and 6 . In this condition, thedistal end 86 of thestylet 80 is received within the cannula and spaced from the closed-offdistal end 66 of the cannula to define a marker recess in which amarker 14 is stored. Theplunger 50 is in a position relative to thegrip portion 20 in which the catches are outside the grip portion; that is, they are not received within thedetents 26. However, theplunger 50 is so oriented with respect to the grip portion that thecatches 54 are aligned with theguide channels 28. - With the introducer in the ready condition, the cannula is positioned within the tissue mass such that the
side opening 70 is at or near the location of a tissue mass where it is desired to place the marker. In the case of marking a biopsy site, the side opening is preferably placed adjacent the biopsy site. - To place the side opening adjacent the site to be marked, the medical professional grasps the
grip portion 20 of the actuator and presses the closed-offtip 68 against the exterior of the tissue mass to puncture the tissue mass. The medical professional continues applying force to thegrip portion 20 to drive thecannula 60 to the desired location within the tissue mass. - The
closed tip 68 helps separate the tissue of the tissue mass to make it easier to insert the cannula within the tissue mass to the desired location. A starter incision can be made in the exterior of the tissue mass to reduce the initial force need to start the insertion. - The used of a
side opening 70 instead of a tip opening found in the prior art self-contained devices helps prevent the accumulation of tissue within thelumen 62 upon the insertion of thecannula 60 into the tissue mass. Theclosed tip 68 also helps in that it separates the tissue to form a path through which the side opening passes. Since the side opening is parallel to the path, there is much less tendency for the insertion of the cannula to force tissue into the side opening as could occur in the prior-art front opening cannulae. - Typically, a suitable imaging system will be used by the medical professional to help guide the cannula to the desired location within the tissue mass. Examples of contemporary imaging systems include: stereotactic, x-ray, ultrasound, CAT scan, or MRI. The invention is not limited to any particular type of imaging system.
- Once the cannula is positioned at the desired location, the
plunger 50 is moved from a first or ready condition as illustrated inFIGS. 5 and 6 to a second or expelled condition as illustrated inFIGS. 7 and 8 . As the plunger is moved, thestylet 80 is advanced into the marker recess to drive themarker 14 up theramp 72. The continued advancement of thestylet 80 ultimately drives themarker 14 through theside opening 70 and into the adjacent tissue. - Once the stylet is in the expelled position, the cannula can be withdrawn to leave the marker in the tissue. To withdraw the cannula, the medical professional pulls on the actuator to withdraw the cannula from the tissue mass. After use, the marking apparatus is disposed of, negating the need for sterilization.
- As illustrated, the rigid cannula in combination with the closed-off
tip 68 provides an ideal structure for inserting the device directly into the tissue without the need for a guide needle or cannula. This is advantageous in that it reduces the size of the opening formed in the tissue and thereby reducing the trauma to the patient. The closed-off tip is used to puncture the exterior of the tissue mass. While the marking apparatus of the invention can be used with a guide needle or cannula, there is no need to do so because of the self-piercing nature of the invention. -
FIGS. 9 and 10 illustrate an alternative design for the stylet in the ready and expelled conditions, respectively. Thealternative stylet 80′ is essentially identical to thestylet 80, except that thedistal end 66′ is made from a resilient material and has an angledsurface 90′. The resilient material permits thedistal end 66′ to deflect when contacting theramp 72′, such that thedistal end 66′ generally follows the shape of theramp 72′. The angle of theangled surface 90′ is preferably selected such that the angled surface substantially closes off theside opening 70′ when the stylet is in the expelled condition, which will ensure that the marker is completely expelled through theside opening 70′. It will also ensure that no portion of themarker 14 will be pulled back into theside opening 70′ due to the vacuum forces created upon the withdrawal of the cannula. Theangled surface 90′ functions like theramp 72 in that it helps to deflect themarker 14 through the side opening. -
FIG. 11 illustrates another alternative design for the stylet and cannula. In this alternative design, thedistal end 66″ of thestylet 80″ includes aramp 72″. Aresilient end wall 92″ is used instead of theramp 72 of the cannula. The space between theramp 72″ and theresilient end wall 92″ defines the marker recess in whichmultiple markers 14″ are stored. The advancement of the stylet from the ready condition to the expelled condition drives the markers up theramp 72″. When contacted by theramp 72″, theresilient end wall 92″ deflects to permit theramp 72″ to slide beneath and into the distal end closedtip 68″ of the cannula. - In all of the embodiments, multiple markers can be located within the cannula and expelled at the same or different locations within the tissue mass.
- While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit.
Claims (11)
1. A marking apparatus for the percutaneous placement of an imaging marker in a tissue mass, the marking apparatus comprising:
a handle to be grasped by a user;
a rigid cannula having:
a peripheral wall forming a lumen that carries the imaging marker,
a proximal end coupled to the handle,
a lateral opening in the peripheral wall that is open to the lumen, and
a closed-off distal portion having a ramp adjacent the lumen, the closed-off distal portion extending distally from the ramp to terminate at a tissue piercing pointed tip, the ramp of the rigid cannula being curved to transition from the peripheral wall of the rigid cannula to the lateral opening of the rigid cannula; and
a stylet having a distal end, with at least the distal end of the stylet being flexible, the stylet being slidably received within the lumen of the rigid cannula for movement in the lumen, the ramp of the rigid cannula being adapted to engage the distal end of the stylet as the stylet is advanced through the lumen of the rigid cannula to guide the distal end of the stylet to a position to substantially close off the lateral opening of the rigid cannula having the tissue piercing tip.
2. The marking apparatus of claim 1 , wherein only the distal end of the stylet closes off the lateral opening.
3. The marking apparatus of claim 1 , wherein the stylet received in the lumen has a ready position, where the distal end of the stylet is spaced inwardly from the closed-off distal portion to form a marker recess that is in communication with the lateral opening and that is sized to receive the imaging marker, and an expelled position, where the distal end of the stylet is advanced a sufficient distance into the marker recess to expel the imaging marker contained in the lumen of the rigid cannula through the lateral opening, and the ramp being adapted to engage the distal end of the stylet and guide the distal end of the stylet into the lateral opening to substantially close off the lateral opening of the rigid cannula after the imaging marker is expelled.
4. The marking apparatus of claim 3 , and further comprising multiple imaging markers contained within the marker recess.
5. The marking apparatus of claim 1 , wherein the rigid cannula is 13 gage or less.
6. The marking apparatus of claim 1 , wherein the handle, the rigid cannula, and the stylet are operably coupled to form a self-contained marking apparatus.
7. A marking apparatus for the percutaneous placement of an imaging marker in a tissue mass, comprising:
a handle to be grasped by a user;
a cannula having:
a peripheral wall forming a lumen that carries the imaging marker,
a proximal end coupled to the handle,
a lateral opening in the peripheral wall that is open to the lumen, and
a closed-off distal portion having a ramp adjacent the lumen, the closed-off distal portion extending distally from the ramp to terminate at a tissue piercing pointed tip; and
a stylet having a distal end with an angled surface, the stylet being disposed in the lumen and movable in the lumen between a ready position and an expelled position, such that when the stylet is advanced through the lumen to the expelled position the ramp deflects the distal end of the stylet toward the lateral opening such that at the expelled position the angled surface is flush with the peripheral wall of the cannula at the lateral opening of the cannula.
8. The marking apparatus of claim 7 , wherein the angled surface of the distal end of the stylet closes off the lateral opening.
9. A marking apparatus for the percutaneous placement of an imaging marker in a tissue mass, the marking apparatus comprising:
a handle to be grasped by a user;
a cannula having:
a peripheral wall forming a lumen that carries the imaging marker,
a proximal end carried by the handle,
a closed-off distal portion terminating in a self-piercing tip,
a ramp integrated with the closed-off distal portion, and
a lateral opening in the peripheral wall, wherein the lateral opening extends in a region between the proximal end and the closed-off distal portion of the cannula, the lateral opening having a proximal extent and a distal extent, the distal extent being closer to the self-piercing tip than the proximal extent; and
a stylet that includes a distal end, the stylet being slidably received within the lumen for movement between a ready position, wherein the distal end of the stylet is spaced inwardly from the self-piercing tip to form a marker recess in communication with the lateral opening, and an expelled position, wherein the distal end of the stylet is advanced a sufficient distance into the marker recess to expel the imaging marker contained in the lumen through the lateral opening of the cannula;
wherein when the distal end of the stylet is at the expelled position the distal end of the stylet is deflected by the ramp to close off the lateral opening of the cannula between the proximal extent and the distal extent of the lateral opening.
10. The marking apparatus of claim 9 , wherein a portion of the stylet including the distal end is formed of a flexible material and includes an angled surface, the angled surface being configured to close the lateral opening in the cannula between the proximal extent and the distal extent of the lateral opening when the stylet is in the expelled position.
11. The marking apparatus of claim 9 , wherein a portion of the stylet including the distal end is formed of a flexible material and includes an angled surface, the angled surface being flush with the peripheral wall of the cannula at the lateral opening in the cannula when the stylet is in the expelled position.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/850,844 US20100298696A1 (en) | 2003-11-17 | 2010-08-05 | Self-contained, self-piercing, side-expelling marking apparatus |
US15/078,847 US20160199150A1 (en) | 2002-11-18 | 2016-03-23 | Self-contained, self-piercing, side-expelling marking apparatus |
US15/381,717 US9848956B2 (en) | 2002-11-18 | 2016-12-16 | Self-contained, self-piercing, side-expelling marking apparatus |
US15/853,052 US10813716B2 (en) | 2002-11-18 | 2017-12-22 | Self-contained, self-piercing, side-expelling marking apparatus |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/707,044 US7424320B2 (en) | 2002-11-18 | 2003-11-17 | Tissue localizing and marking device and method of using same |
US10/710,587 US20060036158A1 (en) | 2003-11-17 | 2004-07-22 | Self-contained, self-piercing, side-expelling marking apparatus |
US11/275,918 US7819820B2 (en) | 2003-11-17 | 2006-02-03 | Self contained, self piercing, side-expelling marking apparatus |
US12/850,844 US20100298696A1 (en) | 2003-11-17 | 2010-08-05 | Self-contained, self-piercing, side-expelling marking apparatus |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/275,918 Continuation US7819820B2 (en) | 2002-11-18 | 2006-02-03 | Self contained, self piercing, side-expelling marking apparatus |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/078,847 Continuation US20160199150A1 (en) | 2002-11-18 | 2016-03-23 | Self-contained, self-piercing, side-expelling marking apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100298696A1 true US20100298696A1 (en) | 2010-11-25 |
Family
ID=36568195
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/710,587 Abandoned US20060036158A1 (en) | 2002-11-18 | 2004-07-22 | Self-contained, self-piercing, side-expelling marking apparatus |
US11/275,918 Expired - Lifetime US7819820B2 (en) | 2002-11-18 | 2006-02-03 | Self contained, self piercing, side-expelling marking apparatus |
US12/850,844 Abandoned US20100298696A1 (en) | 2002-11-18 | 2010-08-05 | Self-contained, self-piercing, side-expelling marking apparatus |
US15/078,847 Abandoned US20160199150A1 (en) | 2002-11-18 | 2016-03-23 | Self-contained, self-piercing, side-expelling marking apparatus |
US15/381,717 Expired - Lifetime US9848956B2 (en) | 2002-11-18 | 2016-12-16 | Self-contained, self-piercing, side-expelling marking apparatus |
US15/853,052 Active 2025-01-01 US10813716B2 (en) | 2002-11-18 | 2017-12-22 | Self-contained, self-piercing, side-expelling marking apparatus |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/710,587 Abandoned US20060036158A1 (en) | 2002-11-18 | 2004-07-22 | Self-contained, self-piercing, side-expelling marking apparatus |
US11/275,918 Expired - Lifetime US7819820B2 (en) | 2002-11-18 | 2006-02-03 | Self contained, self piercing, side-expelling marking apparatus |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/078,847 Abandoned US20160199150A1 (en) | 2002-11-18 | 2016-03-23 | Self-contained, self-piercing, side-expelling marking apparatus |
US15/381,717 Expired - Lifetime US9848956B2 (en) | 2002-11-18 | 2016-12-16 | Self-contained, self-piercing, side-expelling marking apparatus |
US15/853,052 Active 2025-01-01 US10813716B2 (en) | 2002-11-18 | 2017-12-22 | Self-contained, self-piercing, side-expelling marking apparatus |
Country Status (3)
Country | Link |
---|---|
US (6) | US20060036158A1 (en) |
EP (1) | EP1618851A1 (en) |
CA (1) | CA2512490C (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD715442S1 (en) | 2013-09-24 | 2014-10-14 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD715942S1 (en) | 2013-09-24 | 2014-10-21 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD716451S1 (en) | 2013-09-24 | 2014-10-28 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD716450S1 (en) | 2013-09-24 | 2014-10-28 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
US9042965B2 (en) | 2006-12-18 | 2015-05-26 | C. R. Bard, Inc. | Biopsy marker with in situ-generated imaging properties |
US9039763B2 (en) | 1997-10-10 | 2015-05-26 | Senorx, Inc. | Tissue marking implant |
US9044162B2 (en) | 1999-02-02 | 2015-06-02 | Senorx, Inc. | Marker delivery device with releasable plug |
US9149341B2 (en) | 1999-02-02 | 2015-10-06 | Senorx, Inc | Deployment of polysaccharide markers for treating a site within a patient |
US9820824B2 (en) | 1999-02-02 | 2017-11-21 | Senorx, Inc. | Deployment of polysaccharide markers for treating a site within a patent |
US9848956B2 (en) | 2002-11-18 | 2017-12-26 | Bard Peripheral Vascular, Inc. | Self-contained, self-piercing, side-expelling marking apparatus |
US9901415B2 (en) | 2006-12-12 | 2018-02-27 | C. R. Bard, Inc. | Multiple imaging mode tissue marker |
US10172674B2 (en) | 1999-02-02 | 2019-01-08 | Senorx, Inc. | Intracorporeal marker and marker delivery device |
US10258428B2 (en) | 2008-12-30 | 2019-04-16 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
US10342635B2 (en) | 2005-04-20 | 2019-07-09 | Bard Peripheral Vascular, Inc. | Marking device with retractable cannula |
US10786604B2 (en) | 2008-09-23 | 2020-09-29 | Senorx, Inc. | Porous bioabsorbable implant |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7637948B2 (en) | 1997-10-10 | 2009-12-29 | Senorx, Inc. | Tissue marking implant |
US6862470B2 (en) | 1999-02-02 | 2005-03-01 | Senorx, Inc. | Cavity-filling biopsy site markers |
US6725083B1 (en) | 1999-02-02 | 2004-04-20 | Senorx, Inc. | Tissue site markers for in VIVO imaging |
US7651505B2 (en) | 2002-06-17 | 2010-01-26 | Senorx, Inc. | Plugged tip delivery for marker placement |
US7983734B2 (en) | 2003-05-23 | 2011-07-19 | Senorx, Inc. | Fibrous marker and intracorporeal delivery thereof |
US6575991B1 (en) | 1999-06-17 | 2003-06-10 | Inrad, Inc. | Apparatus for the percutaneous marking of a lesion |
CA2446993C (en) | 2000-11-20 | 2009-06-02 | Senorx, Inc. | Tissue site markers for in vivo imaging |
US7877133B2 (en) | 2003-05-23 | 2011-01-25 | Senorx, Inc. | Marker or filler forming fluid |
US20050273002A1 (en) | 2004-06-04 | 2005-12-08 | Goosen Ryan L | Multi-mode imaging marker |
JP4578817B2 (en) * | 2004-02-06 | 2010-11-10 | オリンパス株式会社 | Surgical lesion identification system |
US8062230B1 (en) * | 2004-10-14 | 2011-11-22 | Suros Surgical Systems, Inc. | Surgical site marker delivery system |
US8419656B2 (en) | 2004-11-22 | 2013-04-16 | Bard Peripheral Vascular, Inc. | Post decompression marker introducer system |
US20060217635A1 (en) * | 2005-03-24 | 2006-09-28 | Mccombs Elizabeth S | Biopsy device marker deployment |
US8052658B2 (en) | 2005-10-07 | 2011-11-08 | Bard Peripheral Vascular, Inc. | Drug-eluting tissue marker |
EP2079385B1 (en) | 2006-10-23 | 2013-11-20 | C.R.Bard, Inc. | Breast marker |
US20090192408A1 (en) * | 2008-01-28 | 2009-07-30 | Mark Joseph L | Surgical site marker delivery system |
WO2009099767A2 (en) | 2008-01-31 | 2009-08-13 | C.R. Bard, Inc. | Biopsy tissue marker |
US20100331677A1 (en) * | 2008-04-25 | 2010-12-30 | The Johns Hopkins University | Marker delivery system |
US20100160777A1 (en) * | 2008-12-22 | 2010-06-24 | Hardin Terry D | Reverse deployment device |
AU2010241934B2 (en) * | 2009-04-30 | 2014-01-16 | Cook Medical Technologies Llc | System and method for fiducial deployment |
US20110071423A1 (en) * | 2009-09-21 | 2011-03-24 | Speeg Trevor W V | Flexible biopsy marker delivery device |
US20110237942A1 (en) * | 2010-03-25 | 2011-09-29 | Tamotsu Zako | Bioimaging method using near-infrared (nir) fluorescent material |
US8838208B2 (en) | 2011-06-28 | 2014-09-16 | Cook Medical Technologies Llc | Fiducial deployment needle system |
WO2013008204A2 (en) | 2011-07-12 | 2013-01-17 | Maestroheart Sa | System for tissue marking and treatment |
US8938285B2 (en) * | 2011-08-08 | 2015-01-20 | Devicor Medical Products, Inc. | Access chamber and markers for biopsy device |
WO2014133777A1 (en) | 2013-02-26 | 2014-09-04 | Cook Medical Technologies Llc | Ratchet-slide handle and system for fiducial deployment |
US9993232B2 (en) | 2014-05-22 | 2018-06-12 | Andrew N. Ellingson | Biopsy with marker device and method |
JP6283128B2 (en) | 2014-06-09 | 2018-02-21 | クック・メディカル・テクノロジーズ・リミテッド・ライアビリティ・カンパニーCook Medical Technologies Llc | Screw-driven handle and system for reference marker placement |
WO2015195232A1 (en) | 2014-06-16 | 2015-12-23 | Cook Medical Technologies Llc | Plunger-driven collet handle and system for fiducial deployment |
US10123848B2 (en) | 2014-12-03 | 2018-11-13 | Cook Medical Technologies Llc | EUS fiducial needle stylet handle assembly |
CN104856759B (en) * | 2015-03-26 | 2017-11-28 | 张海 | A kind of multimode mammary gland development target and the special purpose device for discharging target |
WO2016164189A1 (en) * | 2015-04-09 | 2016-10-13 | Cleveland Kenneth Edwards | Hormone or other pellet delivery device |
KR101682419B1 (en) * | 2016-10-06 | 2016-12-05 | 이준성 | Lifting Surgical Instrument having branch |
EP3544518A1 (en) * | 2016-11-23 | 2019-10-02 | C.R. Bard, Inc. | Single insertion multiple sample biopsy apparatus |
US20200352693A1 (en) * | 2017-12-11 | 2020-11-12 | Spinal Balance, Inc. | Package for the containment, handling, and delivery of interbody cages |
US10932815B1 (en) * | 2019-01-02 | 2021-03-02 | Indian Wells Medical, Inc. | Steerable endoluminal punch |
Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2192270A (en) * | 1938-05-25 | 1940-03-05 | American Brake Co | Brake rigging |
US2481408A (en) * | 1946-08-13 | 1949-09-06 | Olin Mathieson | Regeneration of caustic soda-sodium sulfide cooking liquor |
US2832888A (en) * | 1956-05-17 | 1958-04-29 | David R Houston | Box car detector |
US2899362A (en) * | 1959-08-11 | Hemostatic sponges and method of | ||
US2907327A (en) * | 1957-02-08 | 1959-10-06 | Pfizer & Co C | Pellet implanter |
US3341417A (en) * | 1965-07-14 | 1967-09-12 | Edwin S Sinaiko | Method of and means for diagnosis of ingested drugs with radio-opaque and other indicators |
US3402712A (en) * | 1966-07-19 | 1968-09-24 | American Home Prod | Pellet implanter |
US3516412A (en) * | 1965-08-16 | 1970-06-23 | Electro Catheter Corp | Bipolar electrode having irregularity at inserting end thereof and method of insertion |
US3593343A (en) * | 1968-07-19 | 1971-07-20 | Robert F Viggers | Prosthetic ball-check heart valve |
US3757781A (en) * | 1971-09-17 | 1973-09-11 | R Smart | Tool for administering pills to animals |
US3818894A (en) * | 1971-01-22 | 1974-06-25 | Ceskoslovenska Akademie Ved | Laryngeal implant |
US3823212A (en) * | 1968-11-27 | 1974-07-09 | Freudenberg C Fa | Process for the production of collagen fiber fabrics in the form of felt-like membranes or sponge-like layers |
US3921632A (en) * | 1974-08-16 | 1975-11-25 | Frank M Bardani | Implant device |
US4005699A (en) * | 1974-10-09 | 1977-02-01 | Louis Bucalo | Methods and apparatus for use in magnetic treatment of the body |
US4007732A (en) * | 1975-09-02 | 1977-02-15 | Robert Carl Kvavle | Method for location and removal of soft tissue in human biopsy operations |
US4041931A (en) * | 1976-05-17 | 1977-08-16 | Elliott Donald P | Radiopaque anastomosis marker |
US4103690A (en) * | 1977-03-21 | 1978-08-01 | Cordis Corporation | Self-suturing cardiac pacer lead |
US4105030A (en) * | 1977-01-03 | 1978-08-08 | Syntex (U.S.A.) Inc. | Implant apparatus |
US4172449A (en) * | 1978-05-01 | 1979-10-30 | New Research And Development Laboratories, Inc. | Body fluid pressure monitor |
US4197846A (en) * | 1974-10-09 | 1980-04-15 | Louis Bucalo | Method for structure for situating in a living body agents for treating the body |
US4217889A (en) * | 1976-09-15 | 1980-08-19 | Heyer-Schulte Corporation | Flap development device and method of progressively increasing skin area |
US4276885A (en) * | 1979-05-04 | 1981-07-07 | Rasor Associates, Inc | Ultrasonic image enhancement |
US4294241A (en) * | 1977-06-09 | 1981-10-13 | Teruo Miyata | Collagen skin dressing |
US4298998A (en) * | 1980-12-08 | 1981-11-10 | Naficy Sadeque S | Breast prosthesis with biologically absorbable outer container |
US4331654A (en) * | 1980-06-13 | 1982-05-25 | Eli Lilly And Company | Magnetically-localizable, biodegradable lipid microspheres |
US4390018A (en) * | 1980-09-15 | 1983-06-28 | Zukowski Henry J | Method for preventing loss of spinal fluid after spinal tap |
US4400170A (en) * | 1981-09-29 | 1983-08-23 | Syntex (U.S.A.) Inc. | Implanting device and implant magazine |
US4401124A (en) * | 1981-08-13 | 1983-08-30 | Technicare Corporation | Reflection enhancement of a biopsy needle |
US4405314A (en) * | 1982-04-19 | 1983-09-20 | Cook Incorporated | Apparatus and method for catheterization permitting use of a smaller gage needle |
US4428082A (en) * | 1980-12-08 | 1984-01-31 | Naficy Sadeque S | Breast prosthesis with filling valve |
US4438253A (en) * | 1982-11-12 | 1984-03-20 | American Cyanamid Company | Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same |
US4442843A (en) * | 1980-11-17 | 1984-04-17 | Schering, Ag | Microbubble precursors and methods for their production and use |
US4470160A (en) * | 1980-11-21 | 1984-09-11 | Cavon Joseph F | Cast gel implantable prosthesis |
US4487209A (en) * | 1981-03-16 | 1984-12-11 | Creative Research And Manufacturing Inc. | Biopsy needle |
US4545367A (en) * | 1982-07-16 | 1985-10-08 | Cordis Corporation | Detachable balloon catheter and method of use |
US4549560A (en) * | 1984-03-19 | 1985-10-29 | Andis Company | Hair curling appliance with elastomer material covering heating element |
US4582640A (en) * | 1982-03-08 | 1986-04-15 | Collagen Corporation | Injectable cross-linked collagen implant material |
US4582061A (en) * | 1981-11-18 | 1986-04-15 | Indianapolis Center For Advanced Research, Inc. | Needle with ultrasonically reflective displacement scale |
US4588395A (en) * | 1978-03-10 | 1986-05-13 | Lemelson Jerome H | Catheter and method |
US4597753A (en) * | 1983-04-21 | 1986-07-01 | Hundon Forge Limited | Implanting method and device |
US4647480A (en) * | 1983-07-25 | 1987-03-03 | Amchem Products, Inc. | Use of additive in aqueous cure of autodeposited coatings |
US4655226A (en) * | 1983-12-16 | 1987-04-07 | Southland Instruments, Inc. | Disposable biopsy needle unit |
US4661103A (en) * | 1986-03-03 | 1987-04-28 | Engineering Development Associates, Ltd. | Multiple implant injector |
US4682606A (en) * | 1986-02-03 | 1987-07-28 | Decaprio Vincent H | Localizing biopsy apparatus |
US4693237A (en) * | 1986-01-21 | 1987-09-15 | Hoffman Richard B | Radiopaque coded ring markers for use in identifying surgical grafts |
US4740208A (en) * | 1980-11-21 | 1988-04-26 | Cavon Joseph F | Cast gel implantable prosthesis |
US4813062A (en) * | 1986-08-13 | 1989-03-14 | Milliken Research Corporation | Radio-opaque marker and method |
US4820267A (en) * | 1985-02-19 | 1989-04-11 | Endocon, Inc. | Cartridge injector for pellet medicaments |
US4832680A (en) * | 1986-07-03 | 1989-05-23 | C.R. Bard, Inc. | Apparatus for hypodermically implanting a genitourinary prosthesis |
US4832686A (en) * | 1986-06-24 | 1989-05-23 | Anderson Mark E | Method for administering interleukin-2 |
US4847049A (en) * | 1985-12-18 | 1989-07-11 | Vitaphore Corporation | Method of forming chelated collagen having bactericidal properties |
US4863470A (en) * | 1985-03-19 | 1989-09-05 | Medical Engineering Corporation | Identification marker for a breast prosthesis |
US4870966A (en) * | 1988-02-01 | 1989-10-03 | American Cyanamid Company | Bioabsorbable surgical device for treating nerve defects |
US4874376A (en) * | 1987-04-13 | 1989-10-17 | Hawkins Jr Irvin F | Needle guide assembly |
US4889707A (en) * | 1988-01-29 | 1989-12-26 | The Curators Of The University Of Missouri | Composition and method for radiation synovectomy of arthritic joints |
US4909250A (en) * | 1988-11-14 | 1990-03-20 | Smith Joseph R | Implant system for animal identification |
US4938763A (en) * | 1988-10-03 | 1990-07-03 | Dunn Richard L | Biodegradable in-situ forming implants and methods of producing the same |
US4950665A (en) * | 1988-10-28 | 1990-08-21 | Oklahoma Medical Research Foundation | Phototherapy using methylene blue |
US4963150A (en) * | 1984-08-30 | 1990-10-16 | Daniel Brauman | Implantable prosthetic devices |
US4970298A (en) * | 1984-03-27 | 1990-11-13 | University Of Medicine And Dentistry Of New Jersey | Biodegradable matrix and methods for producing same |
US4989608A (en) * | 1987-07-02 | 1991-02-05 | Ratner Adam V | Device construction and method facilitating magnetic resonance imaging of foreign objects in a body |
US4994028A (en) * | 1987-03-18 | 1991-02-19 | Endocon, Inc. | Injector for inplanting multiple pellet medicaments |
US5012818A (en) * | 1989-05-04 | 1991-05-07 | Joishy Suresh K | Two in one bone marrow surgical needle |
US5059197A (en) * | 1989-04-15 | 1991-10-22 | Urie Robert G | Lesion location device |
US5081997A (en) * | 1989-03-09 | 1992-01-21 | Vance Products Incorporated | Echogenic devices, material and method |
US5120802A (en) * | 1987-12-17 | 1992-06-09 | Allied-Signal Inc. | Polycarbonate-based block copolymers and devices |
US5125413A (en) * | 1989-03-29 | 1992-06-30 | Baran Gregory W | Automated biopsy instrument |
US5137928A (en) * | 1990-04-26 | 1992-08-11 | Hoechst Aktiengesellschaft | Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents |
US5141748A (en) * | 1989-02-17 | 1992-08-25 | Hoffmann-La Roche, Inc. | Implant drug delivery device |
US5147631A (en) * | 1991-04-30 | 1992-09-15 | Du Pont Merck Pharmaceutical Company | Porous inorganic ultrasound contrast agents |
US5147307A (en) * | 1991-06-17 | 1992-09-15 | Gluck Seymour M | Anatomical marker device and method |
US5162430A (en) * | 1988-11-21 | 1992-11-10 | Collagen Corporation | Collagen-polymer conjugates |
US5163896A (en) * | 1988-07-28 | 1992-11-17 | Best Industries, Inc. | Pellet for a radioactive seed |
US5195540A (en) * | 1991-08-12 | 1993-03-23 | Samuel Shiber | Lesion marking process |
US5197846A (en) * | 1989-12-22 | 1993-03-30 | Hitachi, Ltd. | Six-degree-of-freedom articulated robot mechanism and assembling and working apparatus using same |
US5197482A (en) * | 1989-06-15 | 1993-03-30 | Research Corporation Technologies, Inc. | Helical-tipped lesion localization needle device and method of using the same |
US5199441A (en) * | 1991-08-20 | 1993-04-06 | Hogle Hugh H | Fine needle aspiration biopsy apparatus and method |
US5219339A (en) * | 1989-11-17 | 1993-06-15 | Masataka Saito | Single use medical needle |
US5221269A (en) * | 1990-10-15 | 1993-06-22 | Cook Incorporated | Guide for localizing a nonpalpable breast lesion |
US5231615A (en) * | 1990-04-23 | 1993-07-27 | Teac Corporation | Carriage fixing apparatus and disk driver having such carriage fixing apparatus |
US5236410A (en) * | 1990-08-02 | 1993-08-17 | Ferrotherm International, Inc. | Tumor treatment method |
US5242759A (en) * | 1991-05-21 | 1993-09-07 | Cook Incorporated | Joint, a laminate, and a method of preparing a nickel-titanium alloy member surface for bonding to another layer of metal |
US5250026A (en) * | 1992-05-27 | 1993-10-05 | Destron/Idi, Inc. | Adjustable precision transponder injector |
US5271961A (en) * | 1989-11-06 | 1993-12-21 | Alkermes Controlled Therapeutics, Inc. | Method for producing protein microspheres |
US5273532A (en) * | 1991-09-03 | 1993-12-28 | Texas Instruments Incorporated | Injector for hypodermically implanting an object in a living being |
US5280788A (en) * | 1991-02-26 | 1994-01-25 | Massachusetts Institute Of Technology | Devices and methods for optical diagnosis of tissue |
US5281408A (en) * | 1991-04-05 | 1994-01-25 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5281197A (en) * | 1992-07-27 | 1994-01-25 | Symbiosis Corporation | Endoscopic hemostatic agent delivery system |
US5282781A (en) * | 1990-10-25 | 1994-02-01 | Omnitron International Inc. | Source wire for localized radiation treatment of tumors |
US5284479A (en) * | 1989-08-30 | 1994-02-08 | N.V. Nederlandsche Apparatenfabriek Nedap | Implanter |
US5289831A (en) * | 1989-03-09 | 1994-03-01 | Vance Products Incorporated | Surface-treated stent, catheter, cannula, and the like |
US5669882A (en) * | 1996-04-23 | 1997-09-23 | Pyles; Stephen | Curved epidural needle system |
US5941439A (en) * | 1997-05-14 | 1999-08-24 | Mitek Surgical Products, Inc. | Applicator and method for deploying a surgical fastener in tissue |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US6203524B1 (en) * | 1997-02-10 | 2001-03-20 | Emx, Inc. | Surgical and pharmaceutical site access guide and methods |
US6234177B1 (en) * | 1999-08-12 | 2001-05-22 | Thomas Barsch | Apparatus and method for deploying an expandable biopsy marker |
US6725083B1 (en) * | 1999-02-02 | 2004-04-20 | Senorx, Inc. | Tissue site markers for in VIVO imaging |
US20040097981A1 (en) * | 2002-08-01 | 2004-05-20 | Selis James E. | Biopsy devices and methods |
US20040236212A1 (en) * | 2003-05-23 | 2004-11-25 | Senorx, Inc. | Fibrous marker and intracorporeal delivery thereof |
Family Cites Families (430)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1294241A (en) | 1918-01-25 | 1919-02-11 | Ernest G Crossley | Wind-shield. |
GB708148A (en) | 1950-12-18 | 1954-04-28 | Hoechst Ag | Hemostatic preparations and process for the manufacture thereof |
DE1029528B (en) | 1954-01-30 | 1958-05-08 | Med H C Ernst Pohl Dr | Device for marking a drill hole to be made, especially for bone nails and bone screws |
US3005457A (en) | 1957-04-01 | 1961-10-24 | Ortho Pharma Corp | Methyl cellulose sponge and method of making |
US3128744A (en) | 1963-01-02 | 1964-04-14 | Keith B Jefferts | Method for investigating the migratory habits of macro-organisms |
US3820545A (en) | 1973-03-26 | 1974-06-28 | K Jefferts | Tag implanting machine |
US4086914A (en) | 1977-02-11 | 1978-05-02 | Edwin Bailey Moore | Implant injector |
US4127774A (en) | 1977-06-20 | 1978-11-28 | Jerry Gillen | X-ray marker |
SU745505A1 (en) | 1977-09-28 | 1980-07-05 | Научно-Исследовательский Институт Экспериментальной Медицины Амн Ссср | Method of guiding stereotaxic tool on target point |
DE2843963A1 (en) | 1978-10-09 | 1980-04-24 | Merck Patent Gmbh | BODY-RESORBABLE SHAPED MATERIAL BASED ON COLLAGEN AND THEIR USE IN MEDICINE |
US5542915A (en) | 1992-08-12 | 1996-08-06 | Vidamed, Inc. | Thermal mapping catheter with ultrasound probe |
US4718433A (en) | 1983-01-27 | 1988-01-12 | Feinstein Steven B | Contrast agents for ultrasonic imaging |
CH661199A5 (en) | 1983-12-22 | 1987-07-15 | Sulzer Ag | MARKING IMPLANT. |
US4648880A (en) | 1984-08-30 | 1987-03-10 | Daniel Brauman | Implantable prosthetic devices |
US5628781A (en) | 1985-06-06 | 1997-05-13 | Thomas Jefferson University | Implant materials, methods of treating the surface of implants with microvascular endothelial cells, and the treated implants themselves |
EP0255123A3 (en) | 1986-07-30 | 1988-04-20 | Sumitomo Pharmaceuticals Company, Limited | Solid preparation administering instrument |
US4931059A (en) | 1986-11-24 | 1990-06-05 | Markham Charles W | Needle/stylet combination |
US4762128A (en) | 1986-12-09 | 1988-08-09 | Advanced Surgical Intervention, Inc. | Method and apparatus for treating hypertrophy of the prostate gland |
EP0292936B1 (en) | 1987-05-26 | 1996-03-06 | Sumitomo Pharmaceuticals Company, Limited | Device for administering solid preparations |
US5035891A (en) | 1987-10-05 | 1991-07-30 | Syntex (U.S.A.) Inc. | Controlled release subcutaneous implant |
WO1989006978A1 (en) | 1988-02-05 | 1989-08-10 | Schering Aktiengesellschaft Berlin Und Bergkamen | Ultrasonic contrast agents, process for producing them and their use as diagnostic and therapeutic agents |
US5425366A (en) | 1988-02-05 | 1995-06-20 | Schering Aktiengesellschaft | Ultrasonic contrast agents for color Doppler imaging |
US5374261A (en) | 1990-07-24 | 1994-12-20 | Yoon; Inbae | Multifunctional devices for use in endoscopic surgical procedures and methods-therefor |
US5702716A (en) | 1988-10-03 | 1997-12-30 | Atrix Laboratories, Inc. | Polymeric compositions useful as controlled release implants |
JPH0545458Y2 (en) | 1988-10-25 | 1993-11-19 | ||
JPH02131757A (en) | 1988-11-11 | 1990-05-21 | Olympus Optical Co Ltd | Cutting implement for surgery |
US5800541A (en) | 1988-11-21 | 1998-09-01 | Collagen Corporation | Collagen-synthetic polymer matrices prepared using a multiple step reaction |
US5475052A (en) | 1988-11-21 | 1995-12-12 | Collagen Corporation | Collagen-synthetic polymer matrices prepared using a multiple step reaction |
AU5154390A (en) | 1989-02-15 | 1990-09-05 | Microtek Medical, Inc. | Biocompatible material and prosthesis |
US5201314A (en) | 1989-03-09 | 1993-04-13 | Vance Products Incorporated | Echogenic devices, material and method |
DE8905585U1 (en) | 1989-05-03 | 1989-06-29 | Bosch-Siemens Hausgeräte GmbH, 8000 München | Storage and dosing device for storing pumpable detergent or dishwashing detergent ingredients |
US5018530A (en) | 1989-06-15 | 1991-05-28 | Research Corporation Technologies, Inc. | Helical-tipped lesion localization needle device and method of using the same |
US5234426A (en) | 1989-06-15 | 1993-08-10 | Research Corporation Technologies, Inc. | Helical-tipped lesion localization needle device and method of using the same |
US5201704A (en) | 1989-11-07 | 1993-04-13 | Ray Joel W | Method of making and using a hemostatic agent applicator |
US5334381A (en) | 1989-12-22 | 1994-08-02 | Unger Evan C | Liposomes as contrast agents for ultrasonic imaging and methods for preparing the same |
US5585112A (en) | 1989-12-22 | 1996-12-17 | Imarx Pharmaceutical Corp. | Method of preparing gas and gaseous precursor-filled microspheres |
GB9003821D0 (en) | 1990-02-20 | 1990-04-18 | Danbiosyst Uk | Diagnostic aid |
AU636481B2 (en) | 1990-05-18 | 1993-04-29 | Bracco International B.V. | Polymeric gas or air filled microballoons usable as suspensions in liquid carriers for ultrasonic echography |
ATE139126T1 (en) | 1990-09-10 | 1996-06-15 | Synthes Ag | MEMBRANE FOR BONE REGENERATION |
US5353804A (en) | 1990-09-18 | 1994-10-11 | Peb Biopsy Corporation | Method and device for percutaneous exisional breast biopsy |
US5391183A (en) | 1990-09-21 | 1995-02-21 | Datascope Investment Corp | Device and method sealing puncture wounds |
US5108421A (en) | 1990-10-01 | 1992-04-28 | Quinton Instrument Company | Insertion assembly and method of inserting a vessel plug into the body of a patient |
US6347240B1 (en) | 1990-10-19 | 2002-02-12 | St. Louis University | System and method for use in displaying images of a body part |
US6325789B1 (en) | 1990-12-27 | 2001-12-04 | Datascope Investment Corporation | Device and method for sealing puncture wounds |
US5147295A (en) | 1991-01-23 | 1992-09-15 | Ideal Instruments, Inc. | Retractable implanter |
US5370901A (en) | 1991-02-15 | 1994-12-06 | Bracco International B.V. | Compositions for increasing the image contrast in diagnostic investigations of the digestive tract of patients |
EP0574434B1 (en) | 1991-03-06 | 1995-07-26 | Süddeutsche Feinmechanik Gmbh | Needle for inserting an object into the body |
GB9106673D0 (en) | 1991-03-28 | 1991-05-15 | Hafslund Nycomed As | Improvements in or relating to contrast agents |
JP3007903B2 (en) | 1991-03-29 | 2000-02-14 | 京セラ株式会社 | Artificial disc |
US5354623A (en) | 1991-05-21 | 1994-10-11 | Cook Incorporated | Joint, a laminate, and a method of preparing a nickel-titanium alloy member surface for bonding to another layer of metal |
US5449560A (en) | 1991-07-05 | 1995-09-12 | Dow Corning S.A. | Composition suitable for glass laminate interlayer and laminate made therefrom |
WO1993000933A1 (en) | 1991-07-05 | 1993-01-21 | University Of Rochester | Ultrasmall non-aggregated porous particles entrapping gas-bubbles |
US5320100A (en) | 1991-09-16 | 1994-06-14 | Atrium Medical Corporation | Implantable prosthetic device having integral patency diagnostic indicia |
US5344640A (en) | 1991-10-22 | 1994-09-06 | Mallinckrodt Medical, Inc. | Preparation of apatite particles for medical diagnostic imaging |
US5290310A (en) | 1991-10-30 | 1994-03-01 | Howmedica, Inc. | Hemostatic implant introducer |
US5358514A (en) | 1991-12-18 | 1994-10-25 | Alfred E. Mann Foundation For Scientific Research | Implantable microdevice with self-attaching electrodes |
GB9200391D0 (en) | 1992-01-09 | 1992-02-26 | Nycomed As | Improvements in or relating to contrast agents |
FR2686499A1 (en) | 1992-01-28 | 1993-07-30 | Technomed Int Sa | APPARATUS FOR TREATING A TARGET, SUCH AS A DAMAGE WITHIN THE BODY OF A MAMMAL, PARTICULARLY A HUMAN BEING, USING A MARKING ELEMENT IMPLANTED IN OR IN THE VICINITY OF THE TARGET TO CONTROL THERAPY OF THE SAME TARGET. |
AU3783893A (en) | 1992-02-28 | 1993-09-13 | Stanley E. Order | Use of aggregated proteins to prolong retention time of a therapeutic agent adjacent a targeted site such as a tumor |
NZ251320A (en) | 1992-03-06 | 1999-08-30 | Statens Seruminstitut | Bis-aromatic alpha,beta-unsaturated ketones, preparation and use in pharmaceutical compositions |
US5674468A (en) | 1992-03-06 | 1997-10-07 | Nycomed Imaging As | Contrast agents comprising gas-containing or gas-generating polymer microparticles or microballoons |
ATE184491T1 (en) | 1992-03-06 | 1999-10-15 | Nycomed Imaging As | IMPROVEMENTS REGARDING CONTRAST AGENTS |
US6350274B1 (en) | 1992-05-11 | 2002-02-26 | Regen Biologics, Inc. | Soft tissue closure systems |
NL9200844A (en) | 1992-05-13 | 1993-12-01 | De Wijdeven Gijsbertus G P Van | DEVICE AND METHOD FOR INJECTING WITH A SOLID SUBSTANCE. |
US5629008A (en) | 1992-06-02 | 1997-05-13 | C.R. Bard, Inc. | Method and device for long-term delivery of drugs |
US5366756A (en) | 1992-06-15 | 1994-11-22 | United States Surgical Corporation | Method for treating bioabsorbable implant material |
US5469847A (en) | 1992-09-09 | 1995-11-28 | Izi Corporation | Radiographic multi-modality skin markers |
US5368030A (en) | 1992-09-09 | 1994-11-29 | Izi Corporation | Non-invasive multi-modality radiographic surface markers |
US5460182A (en) | 1992-09-14 | 1995-10-24 | Sextant Medical Corporation | Tissue penetrating apparatus and methods |
US5334216A (en) | 1992-12-10 | 1994-08-02 | Howmedica Inc. | Hemostatic plug |
US5320613A (en) | 1993-01-06 | 1994-06-14 | Scimed Life Systems, Inc. | Medical lumen flushing and guide wire loading device and method |
CA2132216A1 (en) | 1993-01-19 | 1994-08-04 | Lee Hang-Fu | Apparatus and method for implant prostheses |
DK12293D0 (en) | 1993-02-02 | 1993-02-02 | Novo Nordisk As | HETEROCYCLIC COMPOUNDS AND THEIR PREPARATION AND USE |
US5730130A (en) | 1993-02-12 | 1998-03-24 | Johnson & Johnson Professional, Inc. | Localization cap for fiducial markers |
US5799099A (en) | 1993-02-12 | 1998-08-25 | George S. Allen | Automatic technique for localizing externally attached fiducial markers in volume images of the head |
US5362478A (en) | 1993-03-26 | 1994-11-08 | Vivorx Pharmaceuticals, Inc. | Magnetic resonance imaging with fluorocarbons encapsulated in a cross-linked polymeric shell |
DE4306277C2 (en) | 1993-03-01 | 2000-11-02 | Leibinger Gmbh | Operation marking tool |
US5405402A (en) | 1993-04-14 | 1995-04-11 | Intermedics Orthopedics, Inc. | Implantable prosthesis with radiographic marker |
US5388588A (en) | 1993-05-04 | 1995-02-14 | Nabai; Hossein | Biopsy wound closure device and method |
US5312435A (en) | 1993-05-17 | 1994-05-17 | Kensey Nash Corporation | Fail predictable, reinforced anchor for hemostatic puncture closure |
US5409004A (en) | 1993-06-11 | 1995-04-25 | Cook Incorporated | Localization device with radiopaque markings |
DK79493A (en) | 1993-07-02 | 1995-01-03 | Coloplast As | External urinary catheter |
US5994341A (en) | 1993-07-19 | 1999-11-30 | Angiogenesis Technologies, Inc. | Anti-angiogenic Compositions and methods for the treatment of arthritis |
US5431639A (en) | 1993-08-12 | 1995-07-11 | Boston Scientific Corporation | Treating wounds caused by medical procedures |
US5494030A (en) | 1993-08-12 | 1996-02-27 | Trustees Of Dartmouth College | Apparatus and methodology for determining oxygen in biological systems |
US5490521A (en) | 1993-08-31 | 1996-02-13 | Medtronic, Inc. | Ultrasound biopsy needle |
US5676698A (en) | 1993-09-07 | 1997-10-14 | Datascope Investment Corp. | Soft tissue implant |
US6069070A (en) * | 1993-09-20 | 2000-05-30 | East/West Technology Partners, Ltd. | Multilevel interconnections of electronic components |
US5360416A (en) * | 1993-09-30 | 1994-11-01 | Sherwood Medical Company | Thin-walled anesthesia needles |
US5394875A (en) | 1993-10-21 | 1995-03-07 | Lewis; Judith T. | Automatic ultrasonic localization of targets implanted in a portion of the anatomy |
US5433204A (en) | 1993-11-16 | 1995-07-18 | Camilla Olson | Method of assessing placentation |
US5545180A (en) | 1993-12-13 | 1996-08-13 | Ethicon, Inc. | Umbrella-shaped suture anchor device with actuating ring member |
US5728122A (en) | 1994-01-18 | 1998-03-17 | Datascope Investment Corp. | Guide wire with releaseable barb anchor |
US6241734B1 (en) | 1998-08-14 | 2001-06-05 | Kyphon, Inc. | Systems and methods for placing materials into bone |
US5626611A (en) | 1994-02-10 | 1997-05-06 | United States Surgical Corporation | Composite bioabsorbable materials and surgical articles made therefrom |
US5928773A (en) | 1994-02-15 | 1999-07-27 | Vitric Corporation | Foamed glass articles and methods of making same and methods of controlling the pH of same within specific limits |
US5507807A (en) | 1994-03-01 | 1996-04-16 | Shippert; Ronald D. | Apparatus for the release of a substance within a patient |
US5417708A (en) | 1994-03-09 | 1995-05-23 | Cook Incorporated | Intravascular treatment system and percutaneous release mechanism therefor |
US5422730A (en) | 1994-03-25 | 1995-06-06 | Barlow; Clyde H. | Automated optical detection of tissue perfusion by microspheres |
DE4424394B4 (en) | 1994-07-13 | 2004-12-16 | Bip Acquisition Company Inc., Wilmington | Device for marking tissue sites |
US5451406A (en) | 1994-07-14 | 1995-09-19 | Advanced Uroscience, Inc. | Tissue injectable composition and method of use |
US6159445A (en) | 1994-07-20 | 2000-12-12 | Nycomed Imaging As | Light imaging contrast agents |
WO1996008208A1 (en) | 1994-09-16 | 1996-03-21 | Biopsys Medical, Inc. | Methods and devices for defining and marking tissue |
US5954670A (en) | 1994-10-05 | 1999-09-21 | Baker; Gary H. | Mandrel-guided tandem multiple channel biopsy guide device and method of use |
US5891558A (en) | 1994-11-22 | 1999-04-06 | Tissue Engineering, Inc. | Biopolymer foams for use in tissue repair and reconstruction |
US5632432A (en) | 1994-12-19 | 1997-05-27 | Ethicon Endo-Surgery, Inc. | Surgical instrument |
US5499989A (en) | 1994-12-22 | 1996-03-19 | Labash; Stephen S. | Breast biopsy apparatus and method of use |
WO1996022123A1 (en) | 1995-01-18 | 1996-07-25 | Medchem Products, Inc. | Apparatus and method for applying a hemostatic agent onto a tissue |
US6540981B2 (en) | 1997-12-04 | 2003-04-01 | Amersham Health As | Light imaging contrast agents |
US5657366A (en) | 1995-02-23 | 1997-08-12 | Nakayama; Masanari | Film markers for specifying body postures of animal photographed in roentgenograms |
US5643246A (en) | 1995-02-24 | 1997-07-01 | Gel Sciences, Inc. | Electromagnetically triggered, responsive gel based drug delivery device |
FR2731343B1 (en) | 1995-03-08 | 1997-08-22 | De La Joliniere Jean H Bouquet | DEVICE FOR LOCATING SUSPECTED BREAST INJURIES AND APPARATUS FOR PLACING SAME |
US5795308A (en) | 1995-03-09 | 1998-08-18 | Russin; Lincoln D. | Apparatus for coaxial breast biopsy |
US5762903A (en) | 1995-03-10 | 1998-06-09 | Korea Atomic Energy Research Institute | Radioactive chitosan complex for radiation therapy |
US5817022A (en) | 1995-03-28 | 1998-10-06 | Sonometrics Corporation | System for displaying a 2-D ultrasound image within a 3-D viewing environment |
US6135993A (en) | 1995-04-17 | 2000-10-24 | Hussman; Karl L. | Optical localization fiber |
US5782771A (en) | 1995-04-17 | 1998-07-21 | Hussman; Karl L. | Dual, fused, and grooved optical localization fibers |
US6120536A (en) | 1995-04-19 | 2000-09-19 | Schneider (Usa) Inc. | Medical devices with long term non-thrombogenic coatings |
GB2301362B (en) | 1995-05-30 | 1999-01-06 | Johnson & Johnson Medical | Absorbable implant materials having controlled porosity |
US5779647A (en) | 1995-06-07 | 1998-07-14 | Chau; Sonny | Automated biopsy instruments |
US6521211B1 (en) | 1995-06-07 | 2003-02-18 | Bristol-Myers Squibb Medical Imaging, Inc. | Methods of imaging and treatment with targeted compositions |
US5609629A (en) | 1995-06-07 | 1997-03-11 | Med Institute, Inc. | Coated implantable medical device |
US6774278B1 (en) | 1995-06-07 | 2004-08-10 | Cook Incorporated | Coated implantable medical device |
US5580568A (en) | 1995-07-27 | 1996-12-03 | Micro Therapeutics, Inc. | Cellulose diacetate compositions for use in embolizing blood vessels |
US5667767A (en) | 1995-07-27 | 1997-09-16 | Micro Therapeutics, Inc. | Compositions for use in embolizing blood vessels |
US5817034A (en) | 1995-09-08 | 1998-10-06 | United States Surgical Corporation | Apparatus and method for removing tissue |
US5611352A (en) | 1995-09-14 | 1997-03-18 | Kobren; Myles S. | Cervical biopsy device |
US6162192A (en) | 1998-05-01 | 2000-12-19 | Sub Q, Inc. | System and method for facilitating hemostasis of blood vessel punctures with absorbable sponge |
US6071301A (en) | 1998-05-01 | 2000-06-06 | Sub Q., Inc. | Device and method for facilitating hemostasis of a biopsy tract |
US6183497B1 (en) | 1998-05-01 | 2001-02-06 | Sub-Q, Inc. | Absorbable sponge with contrasting agent |
KR19990064209A (en) | 1995-10-13 | 1999-07-26 | 트랜스바스큘라, 인코포레이티드 | Apparatus, Systems, and Methods for Interstitial Acupoint Intervention |
CA2187975C (en) | 1995-10-20 | 2001-05-01 | Lisa W. Heaton | Surgical apparatus and method for marking tissue location |
US5782775A (en) | 1995-10-20 | 1998-07-21 | United States Surgical Corporation | Apparatus and method for localizing and removing tissue |
US5800445A (en) | 1995-10-20 | 1998-09-01 | United States Surgical Corporation | Tissue tagging device |
US5782764A (en) * | 1995-11-07 | 1998-07-21 | Iti Medical Technologies, Inc. | Fiber composite invasive medical instruments and methods for use in interventional imaging procedures |
US5702682A (en) | 1995-12-01 | 1997-12-30 | Hercules Incorporated | Methods for preparing radiopaque medical devices |
US5769086A (en) | 1995-12-06 | 1998-06-23 | Biopsys Medical, Inc. | Control system and method for automated biopsy device |
US5752974A (en) | 1995-12-18 | 1998-05-19 | Collagen Corporation | Injectable or implantable biomaterials for filling or blocking lumens and voids of the body |
US5800389A (en) | 1996-02-09 | 1998-09-01 | Emx, Inc. | Biopsy device |
US5842477A (en) | 1996-02-21 | 1998-12-01 | Advanced Tissue Sciences, Inc. | Method for repairing cartilage |
US5651772A (en) | 1996-02-28 | 1997-07-29 | Aeroquip Corporation | Needle guard assembly |
US5636255A (en) | 1996-03-05 | 1997-06-03 | Queen's University At Kingston | Method and apparatus for CT image registration |
JP2000509014A (en) | 1996-03-11 | 2000-07-18 | フォーカル,インコーポレイテッド | Polymer delivery of radionuclides and radiopharmaceuticals |
US5747060A (en) | 1996-03-26 | 1998-05-05 | Euro-Celtique, S.A. | Prolonged local anesthesia with colchicine |
US5821184A (en) | 1996-03-29 | 1998-10-13 | Andrew Ungerleider | Foamed glass article for preparing surfaces, use therefor, and method of making same |
US5865806A (en) | 1996-04-04 | 1999-02-02 | Becton Dickinson And Company | One step catheter advancement automatic needle retraction system |
US5824042A (en) | 1996-04-05 | 1998-10-20 | Medtronic, Inc. | Endoluminal prostheses having position indicating markers |
US7236816B2 (en) | 1996-04-25 | 2007-06-26 | Johns Hopkins University | Biopsy and sampling needle antennas for magnetic resonance imaging-guided biopsies |
US5846220A (en) | 1996-04-30 | 1998-12-08 | Medtronic, Inc. | Therapeutic method for treatment of Alzheimer's disease |
US6530896B1 (en) | 1996-05-13 | 2003-03-11 | James B. Elliott | Apparatus and method for introducing an implant |
US5690120A (en) | 1996-05-24 | 1997-11-25 | Sarcos, Inc. | Hybrid catheter guide wire apparatus |
US5853366A (en) | 1996-07-08 | 1998-12-29 | Kelsey, Inc. | Marker element for interstitial treatment and localizing device and method using same |
US5820918A (en) | 1996-07-11 | 1998-10-13 | Hercules Incorporated | Medical devices containing in-situ generated medical compounds |
US5702128A (en) | 1996-07-18 | 1997-12-30 | Beekley Corporation | Radiographic marker system and method of making same |
US5695480A (en) | 1996-07-29 | 1997-12-09 | Micro Therapeutics, Inc. | Embolizing compositions |
US5830178A (en) | 1996-10-11 | 1998-11-03 | Micro Therapeutics, Inc. | Methods for embolizing vascular sites with an emboilizing composition comprising dimethylsulfoxide |
US5842999A (en) | 1996-07-31 | 1998-12-01 | C.R. Bard, Inc. | Automated tissue sampling device |
US5823198A (en) | 1996-07-31 | 1998-10-20 | Micro Therapeutics, Inc. | Method and apparatus for intravasculer embolization |
US5902310A (en) * | 1996-08-12 | 1999-05-11 | Ethicon Endo-Surgery, Inc. | Apparatus and method for marking tissue |
US6066325A (en) | 1996-08-27 | 2000-05-23 | Fusion Medical Technologies, Inc. | Fragmented polymeric compositions and methods for their use |
US5810884A (en) | 1996-09-09 | 1998-09-22 | Beth Israel Deaconess Medical Center | Apparatus and method for closing a vascular perforation after percutaneous puncture of a blood vessel in a living subject |
US5676146B1 (en) | 1996-09-13 | 2000-04-18 | Osteotech Inc | Surgical implant containing a resorbable radiopaque marker and method of locating such within a body |
US5824081A (en) | 1996-09-13 | 1998-10-20 | Lipomatrix Incorporated | Hydraulic foam tissue implant |
US6166079A (en) | 1996-09-25 | 2000-12-26 | Board Of Regents, The University Of Texas System | DFMO for the treatment or prevention of cervical intraepithelial neoplasia |
DE69735354T2 (en) | 1996-10-28 | 2006-11-30 | Amersham Health As | IMPROVEMENTS AT OR RELATED TO DIAGNOSTIC / THERAPEUTIC COMPOUNDS |
US5845646A (en) | 1996-11-05 | 1998-12-08 | Lemelson; Jerome | System and method for treating select tissue in a living being |
US6106473A (en) | 1996-11-06 | 2000-08-22 | Sts Biopolymers, Inc. | Echogenic coatings |
US6119031A (en) | 1996-11-21 | 2000-09-12 | Boston Scientific Corporation | Miniature spectrometer |
US5897507A (en) | 1996-11-25 | 1999-04-27 | Symbiosis Corporation | Biopsy forceps instrument having irrigation and aspiration capabilities |
US5876340A (en) | 1997-04-17 | 1999-03-02 | Irvine Biomedical, Inc. | Ablation apparatus with ultrasonic imaging capabilities |
US5876457A (en) | 1997-05-20 | 1999-03-02 | George J. Picha | Spinal implant |
WO1998056435A1 (en) | 1997-06-13 | 1998-12-17 | Micro Therapeutics, Inc. | Contoured syringe and novel luer hub and methods for embolizing blood vessels |
GB9712525D0 (en) | 1997-06-16 | 1997-08-20 | Nycomed Imaging As | Method |
US6306154B1 (en) | 1997-06-18 | 2001-10-23 | Bhk Holding | Hemostatic system for body cavities |
US5976146A (en) | 1997-07-11 | 1999-11-02 | Olympus Optical Co., Ltd. | Surgical operation system and method of securing working space for surgical operation in body |
DE19731021A1 (en) | 1997-07-18 | 1999-01-21 | Meyer Joerg | In vivo degradable metallic implant |
US6096037A (en) | 1997-07-29 | 2000-08-01 | Medtronic, Inc. | Tissue sealing electrosurgery device and methods of sealing tissue |
US6096065A (en) | 1997-09-29 | 2000-08-01 | Boston Scientific Corporation | Sheath for tissue spectroscopy |
US5980564A (en) | 1997-08-01 | 1999-11-09 | Schneider (Usa) Inc. | Bioabsorbable implantable endoprosthesis with reservoir |
US6174330B1 (en) | 1997-08-01 | 2001-01-16 | Schneider (Usa) Inc | Bioabsorbable marker having radiopaque constituents |
US6340367B1 (en) | 1997-08-01 | 2002-01-22 | Boston Scientific Scimed, Inc. | Radiopaque markers and methods of using the same |
US6090996A (en) | 1997-08-04 | 2000-07-18 | Collagen Matrix, Inc. | Implant matrix |
DE69834920T2 (en) | 1997-08-05 | 2007-05-24 | Boston Scientific Ltd., St. Michael | REMOVABLE SYSTEM FOR CLOSING AN ANEURYSMAS NECK |
US5854382A (en) | 1997-08-18 | 1998-12-29 | Meadox Medicals, Inc. | Bioresorbable compositions for implantable prostheses |
US6316522B1 (en) | 1997-08-18 | 2001-11-13 | Scimed Life Systems, Inc. | Bioresorbable hydrogel compositions for implantable prostheses |
US6616630B1 (en) | 1997-08-20 | 2003-09-09 | B. Braun Melsungen A.G. | Spring clip safety IV catheter |
DE20103363U1 (en) | 2001-02-26 | 2001-05-17 | Braun Melsungen Ag | Protection device for an injection needle |
US6117108A (en) | 1997-08-20 | 2000-09-12 | Braun Melsungen Ag | Spring clip safety IV catheter |
US7125397B2 (en) | 1997-08-20 | 2006-10-24 | B. Braun Melsungen Ag | Protective device for an injection needle |
AU8913998A (en) | 1997-08-28 | 1999-03-22 | Boston Scientific Corporation | System for implanting a cross-linked polysaccharide fiber and methods of formingand inserting the fiber |
US6551253B2 (en) | 1997-09-12 | 2003-04-22 | Imagyn Medical Technologies | Incisional breast biopsy device |
US6142955A (en) | 1997-09-19 | 2000-11-07 | United States Surgical Corporation | Biopsy apparatus and method |
US7637948B2 (en) | 1997-10-10 | 2009-12-29 | Senorx, Inc. | Tissue marking implant |
US8668737B2 (en) | 1997-10-10 | 2014-03-11 | Senorx, Inc. | Tissue marking implant |
US6638308B2 (en) | 1997-10-10 | 2003-10-28 | John D. Corbitt, Jr. | Bioabsorbable breast implant |
US8288745B2 (en) | 1997-10-10 | 2012-10-16 | Senorx, Inc. | Method of utilizing an implant for targeting external beam radiation |
EP1023004A4 (en) | 1997-10-10 | 2003-03-26 | John D Corbitt | Breast implant |
US6309420B1 (en) | 1997-10-14 | 2001-10-30 | Parallax Medical, Inc. | Enhanced visibility materials for implantation in hard tissue |
US6511468B1 (en) | 1997-10-17 | 2003-01-28 | Micro Therapeutics, Inc. | Device and method for controlling injection of liquid embolic composition |
US6419621B1 (en) | 1997-10-24 | 2002-07-16 | Radiomed Corporation | Coiled brachytherapy device |
WO1999021584A1 (en) | 1997-10-24 | 1999-05-06 | Children's Medical Center Corporation | METHODS FOR PROMOTING CELL TRANSFECTION $i(IN VIVO) |
US6030333A (en) | 1997-10-24 | 2000-02-29 | Radiomed Corporation | Implantable radiotherapy device |
US6015541A (en) | 1997-11-03 | 2000-01-18 | Micro Therapeutics, Inc. | Radioactive embolizing compositions |
US6270464B1 (en) | 1998-06-22 | 2001-08-07 | Artemis Medical, Inc. | Biopsy localization method and device |
US6251418B1 (en) | 1997-12-18 | 2001-06-26 | C.R. Bard, Inc. | Systems and methods for local delivery of an agent |
NZ505479A (en) | 1997-12-29 | 2003-07-25 | Alza Corp | Implanter device for subcutaneous implants |
US6451871B1 (en) | 1998-11-25 | 2002-09-17 | Novartis Ag | Methods of modifying surface characteristics |
US6118848A (en) | 1998-01-14 | 2000-09-12 | Reiffel; Leonard | System to stabilize an irradiated internal target |
US6181960B1 (en) | 1998-01-15 | 2001-01-30 | University Of Virginia Patent Foundation | Biopsy marker device |
US6289229B1 (en) | 1998-01-20 | 2001-09-11 | Scimed Life Systems, Inc. | Readable probe array for in vivo use |
US6660010B2 (en) | 1998-01-27 | 2003-12-09 | Scimed Life Systems, Inc. | Bone anchor placement device with recessed anchor mount |
US6540693B2 (en) | 1998-03-03 | 2003-04-01 | Senorx, Inc. | Methods and apparatus for securing medical instruments to desired locations in a patients body |
US6053925A (en) | 1998-02-27 | 2000-04-25 | Barnhart; William H. | Lesion localization device and method |
US6312429B1 (en) | 1998-09-01 | 2001-11-06 | Senorx, Inc. | Electrosurgical lesion location device |
US6471700B1 (en) * | 1998-04-08 | 2002-10-29 | Senorx, Inc. | Apparatus and method for accessing biopsy site |
US6638234B2 (en) | 1998-03-03 | 2003-10-28 | Senorx, Inc. | Sentinel node location and biopsy |
ATE397887T1 (en) | 1998-04-07 | 2008-07-15 | Cytyc Corp | DEVICES FOR LOCALIZING LESIONS IN SOLID TISSUE |
US6161034A (en) | 1999-02-02 | 2000-12-12 | Senorx, Inc. | Methods and chemical preparations for time-limited marking of biopsy sites |
US6347241B2 (en) | 1999-02-02 | 2002-02-12 | Senorx, Inc. | Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it |
US6447527B1 (en) | 1998-04-23 | 2002-09-10 | Ronald J. Thompson | Apparatus and methods for the penetration of tissue |
US6610026B2 (en) | 1998-05-01 | 2003-08-26 | Sub-Q, Inc. | Method of hydrating a sponge material for delivery to a body |
US20010045575A1 (en) | 1998-05-01 | 2001-11-29 | Mark Ashby | Device and method for facilitating hemostasis of a biopsy tract |
US6363940B1 (en) | 1998-05-14 | 2002-04-02 | Calypso Medical Technologies, Inc. | System and method for bracketing and removing tissue |
US6224630B1 (en) | 1998-05-29 | 2001-05-01 | Advanced Bio Surfaces, Inc. | Implantable tissue repair device |
US6159143A (en) | 1998-06-17 | 2000-12-12 | Scimed Life Systems, Inc. | Method and device for delivery of therapeutic agents in conjunction with isotope seed placement |
US20020058882A1 (en) | 1998-06-22 | 2002-05-16 | Artemis Medical, Incorporated | Biopsy localization method and device |
EP0966979B1 (en) | 1998-06-25 | 2006-03-08 | Biotronik AG | Implantable bioresorbable support for the vascular walls, in particular coronary stent |
US6261302B1 (en) | 1998-06-26 | 2001-07-17 | Ethicon Endo-Surgery, Inc. | Applier for implantable surgical marker |
US5941890A (en) | 1998-06-26 | 1999-08-24 | Ethicon Endo-Surgery, Inc. | Implantable surgical marker |
US5921933A (en) | 1998-08-17 | 1999-07-13 | Medtronic, Inc. | Medical devices with echogenic coatings |
US6179860B1 (en) | 1998-08-19 | 2001-01-30 | Artemis Medical, Inc. | Target tissue localization device and method |
JP2002523136A (en) | 1998-08-21 | 2002-07-30 | プロビデンス ヘルス システム−オレゴン | Insertable stent and method of making and using the stent |
US6335029B1 (en) | 1998-08-28 | 2002-01-01 | Scimed Life Systems, Inc. | Polymeric coatings for controlled delivery of active agents |
US6159240A (en) | 1998-08-31 | 2000-12-12 | Medtronic, Inc. | Rigid annuloplasty device that becomes compliant after implantation |
US6936014B2 (en) | 2002-10-16 | 2005-08-30 | Rubicor Medical, Inc. | Devices and methods for performing procedures on a breast |
US6656192B2 (en) | 1998-09-25 | 2003-12-02 | United States Surgical Corporatioin | Site marker device |
US6056700A (en) | 1998-10-13 | 2000-05-02 | Emx, Inc. | Biopsy marker assembly and method of use |
DE69931006T2 (en) | 1998-10-14 | 2007-01-04 | Terumo K.K. | Wired radiation source and catheter assembly for radiotherapy |
US6220248B1 (en) * | 1998-10-21 | 2001-04-24 | Ethicon Endo-Surgery, Inc. | Method for implanting a biopsy marker |
WO2000023124A1 (en) | 1998-10-22 | 2000-04-27 | Edwards Lifesciences Corporation | Multi-functional coatings for medical devices |
US6951564B2 (en) | 1998-10-23 | 2005-10-04 | United States Surgical Corporation | Site marker device |
WO2000024332A1 (en) | 1998-10-23 | 2000-05-04 | Cortese Armand F | Marker for indicating the location of identified tissue |
US7844319B2 (en) | 1998-11-04 | 2010-11-30 | Susil Robert C | Systems and methods for magnetic-resonance-guided interventional procedures |
ES2259480T3 (en) | 1998-11-06 | 2006-10-01 | Ge Healthcare Limited | BRAQUITERAPIA PRODUCTS AND METHODS. |
US6356782B1 (en) | 1998-12-24 | 2002-03-12 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6371904B1 (en) | 1998-12-24 | 2002-04-16 | Vivant Medical, Inc. | Subcutaneous cavity marking device and method |
US6270472B1 (en) | 1998-12-29 | 2001-08-07 | University Of Pittsburgh Of The Commonwealth System Of Higher Education | Apparatus and a method for automatically introducing implants into soft tissue with adjustable spacing |
US8498693B2 (en) | 1999-02-02 | 2013-07-30 | Senorx, Inc. | Intracorporeal marker and marker delivery device |
US20080039819A1 (en) | 2006-08-04 | 2008-02-14 | Senorx, Inc. | Marker formed of starch or other suitable polysaccharide |
US6862470B2 (en) | 1999-02-02 | 2005-03-01 | Senorx, Inc. | Cavity-filling biopsy site markers |
US8361082B2 (en) | 1999-02-02 | 2013-01-29 | Senorx, Inc. | Marker delivery device with releasable plug |
US8282573B2 (en) | 2003-02-24 | 2012-10-09 | Senorx, Inc. | Biopsy device with selectable tissue receiving aperture orientation and site illumination |
US7651505B2 (en) | 2002-06-17 | 2010-01-26 | Senorx, Inc. | Plugged tip delivery for marker placement |
US20090216118A1 (en) | 2007-07-26 | 2009-08-27 | Senorx, Inc. | Polysaccharide markers |
US7189206B2 (en) | 2003-02-24 | 2007-03-13 | Senorx, Inc. | Biopsy device with inner cutter |
JP3720999B2 (en) | 1999-02-18 | 2005-11-30 | 沖電気工業株式会社 | Input protection circuit |
US6482143B1 (en) | 1999-02-28 | 2002-11-19 | Syntheon, Llc | Raidoactive therapeutic seed having selective marker configuration |
US6200258B1 (en) | 1999-08-10 | 2001-03-13 | Syntheon, Llc | Radioactive therapeutic seed having selective marker configuration |
US6173715B1 (en) | 1999-03-01 | 2001-01-16 | Lucent Medical Systems, Inc. | Magnetic anatomical marker and method of use |
US6203507B1 (en) | 1999-03-03 | 2001-03-20 | Cordis Webster, Inc. | Deflectable catheter with ergonomic handle |
US6144875A (en) | 1999-03-16 | 2000-11-07 | Accuray Incorporated | Apparatus and method for compensating for respiratory and patient motion during treatment |
US6511650B1 (en) | 1999-04-09 | 2003-01-28 | The Regents Of The University Of Michigan | Preparing porous hydrogel products |
GB9909801D0 (en) | 1999-04-28 | 1999-06-23 | Btg Int Ltd | Ultrasound detectable instrument |
US6712836B1 (en) | 1999-05-13 | 2004-03-30 | St. Jude Medical Atg, Inc. | Apparatus and methods for closing septal defects and occluding blood flow |
US20060247665A1 (en) | 1999-05-28 | 2006-11-02 | Ferree Bret A | Methods and apparatus for treating disc herniation and preventing the extrusion of interbody bone graft |
DK1185200T3 (en) | 1999-06-05 | 2008-04-07 | Wilson Cook Medical Inc | Characteristics of an endoscopic medical device |
US6066122A (en) | 1999-06-09 | 2000-05-23 | Fisher; John | Needle apparatus and method for marking lesions |
US6766186B1 (en) | 1999-06-16 | 2004-07-20 | C. R. Bard, Inc. | Post biospy tissue marker and method of use |
US6575991B1 (en) | 1999-06-17 | 2003-06-10 | Inrad, Inc. | Apparatus for the percutaneous marking of a lesion |
US6626899B2 (en) | 1999-06-25 | 2003-09-30 | Nidus Medical, Llc | Apparatus and methods for treating tissue |
WO2001008578A1 (en) | 1999-07-30 | 2001-02-08 | Vivant Medical, Inc. | Device and method for safe location and marking of a cavity and sentinel lymph nodes |
US6250307B1 (en) | 1999-09-17 | 2001-06-26 | Pi Medical, Inc. | Snoring treatment |
US8239001B2 (en) | 2003-10-17 | 2012-08-07 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation |
JP2001161838A (en) | 1999-12-07 | 2001-06-19 | Radiomed Corp | Wire-like radiation source member for cancer treatment and feeding device of the same |
US6450937B1 (en) | 1999-12-17 | 2002-09-17 | C. R. Bard, Inc. | Needle for implanting brachytherapy seeds |
WO2001049338A1 (en) | 1999-12-30 | 2001-07-12 | Li Wei Pin | Controlled delivery of therapeutic agents by insertable medical devices |
EP1114618A3 (en) | 2000-01-04 | 2001-08-22 | Ethicon Endo-Surgery, Inc. | Surgical instrument for applying beads to tissue |
US6506156B1 (en) | 2000-01-19 | 2003-01-14 | Vascular Control Systems, Inc | Echogenic coating |
US6575888B2 (en) | 2000-01-25 | 2003-06-10 | Biosurface Engineering Technologies, Inc. | Bioabsorbable brachytherapy device |
CA2366813A1 (en) | 2000-01-26 | 2001-08-02 | Heartport, Inc. | Vascular incisor and method |
US6358217B1 (en) | 2000-01-31 | 2002-03-19 | Hugh Bourassa | Automatic and semi-automatic disposable biopsy needle device |
US6436030B2 (en) | 2000-01-31 | 2002-08-20 | Om P. Rehil | Hiatal hernia repair patch and method for using the same |
US6564806B1 (en) | 2000-02-18 | 2003-05-20 | Thomas J. Fogarty | Device for accurately marking tissue |
US6241687B1 (en) | 2000-02-18 | 2001-06-05 | Ethicon Endo-Surgery, Inc. | Method of use for a biopsy instrument with breakable sample segments |
EP1259155B1 (en) | 2000-02-18 | 2010-12-08 | Fogarty, Thomas J. | Improved device for accurately marking tissue |
US6350244B1 (en) | 2000-02-21 | 2002-02-26 | Biopsy Sciences, Llc | Bioabsorable markers for use in biopsy procedures |
US6770070B1 (en) * | 2000-03-17 | 2004-08-03 | Rita Medical Systems, Inc. | Lung treatment apparatus and method |
US6450938B1 (en) | 2000-03-21 | 2002-09-17 | Promex, Llc | Brachytherapy device |
US6356112B1 (en) | 2000-03-28 | 2002-03-12 | Translogic Technology, Inc. | Exclusive or/nor circuit |
US6628982B1 (en) | 2000-03-30 | 2003-09-30 | The Regents Of The University Of Michigan | Internal marker device for identification of biological substances |
US6869430B2 (en) | 2000-03-31 | 2005-03-22 | Rita Medical Systems, Inc. | Tissue biopsy and treatment apparatus and method |
US6425903B1 (en) | 2000-05-09 | 2002-07-30 | James W. Voegele | Implantable surgical marker |
US6776796B2 (en) | 2000-05-12 | 2004-08-17 | Cordis Corportation | Antiinflammatory drug and delivery device |
US7419678B2 (en) | 2000-05-12 | 2008-09-02 | Cordis Corporation | Coated medical devices for the prevention and treatment of vascular disease |
US6544231B1 (en) | 2000-05-22 | 2003-04-08 | Medcanica, Inc. | Catch, stop and marker assembly for a medical instrument and medical instrument incorporating the same |
US20020044969A1 (en) | 2000-05-22 | 2002-04-18 | Jerome Harden | Method for increasing the compressibility of poorly binding powder materials |
US6961608B2 (en) | 2000-06-05 | 2005-11-01 | Kabushiki Kaisha Toshiba | Interventional MR imaging with detection and display of device position |
US6991652B2 (en) | 2000-06-13 | 2006-01-31 | Burg Karen J L | Tissue engineering composite |
US20020077693A1 (en) | 2000-12-19 | 2002-06-20 | Barclay Bruce J. | Covered, coiled drug delivery stent and method |
AU2001273133A1 (en) | 2000-08-10 | 2002-02-25 | Cook Incorporated | Localizer needle |
US6394965B1 (en) | 2000-08-15 | 2002-05-28 | Carbon Medical Technologies, Inc. | Tissue marking using biocompatible microparticles |
NZ525519A (en) | 2000-09-25 | 2005-01-28 | Cohesion Tech Inc | Resorbable anastomosis stents for insertion into an opening in a lumen of a vessel or tissue of a patient |
US6716444B1 (en) | 2000-09-28 | 2004-04-06 | Advanced Cardiovascular Systems, Inc. | Barriers for polymer-coated implantable medical devices and methods for making the same |
US7261735B2 (en) | 2001-05-07 | 2007-08-28 | Cordis Corporation | Local drug delivery devices and methods for maintaining the drug coatings thereon |
US6746773B2 (en) | 2000-09-29 | 2004-06-08 | Ethicon, Inc. | Coatings for medical devices |
US6863685B2 (en) | 2001-03-29 | 2005-03-08 | Cordis Corporation | Radiopacity intraluminal medical device |
US6712774B2 (en) | 2000-10-13 | 2004-03-30 | James W. Voegele | Lockout for a surgical biopsy device |
US6730044B2 (en) | 2000-10-13 | 2004-05-04 | Ethicon Endo-Surgery, Inc. | Firing mechanism for use in a surgical biopsy device |
US6540694B1 (en) | 2000-10-16 | 2003-04-01 | Sanarus Medical, Inc. | Device for biopsy tumors |
US6447524B1 (en) | 2000-10-19 | 2002-09-10 | Ethicon Endo-Surgery, Inc. | Fastener for hernia mesh fixation |
US6544185B2 (en) | 2000-10-23 | 2003-04-08 | Valentino Montegrande | Ultrasound imaging marker and method of use |
US6554760B2 (en) | 2000-10-25 | 2003-04-29 | Gary A. Lamoureux | Pre-loaded needle assembly |
US7803149B2 (en) | 2002-07-12 | 2010-09-28 | Cook Incorporated | Coated medical device |
DE60129578T2 (en) | 2000-10-31 | 2008-04-03 | Med Institute, Inc., West Lafayette | COATED, IMPLANTABLE MEDICAL DEVICES |
US6758824B1 (en) | 2000-11-06 | 2004-07-06 | Suros Surgical Systems, Inc. | Biopsy apparatus |
US6746661B2 (en) | 2000-11-16 | 2004-06-08 | Microspherix Llc | Brachytherapy seed |
CA2446993C (en) | 2000-11-20 | 2009-06-02 | Senorx, Inc. | Tissue site markers for in vivo imaging |
US20020077687A1 (en) | 2000-12-14 | 2002-06-20 | Ahn Samuel S. | Catheter assembly for treating ischemic tissue |
US6478790B2 (en) | 2000-12-22 | 2002-11-12 | Frank M. Bardani | Implant device and dosage form employable therein |
CA2434151C (en) | 2001-01-11 | 2009-12-22 | Rita Medical Systems, Inc. | Bone-treatment instrument and method |
US20020095205A1 (en) | 2001-01-12 | 2002-07-18 | Edwin Tarun J. | Encapsulated radiopaque markers |
US6749627B2 (en) | 2001-01-18 | 2004-06-15 | Ev3 Peripheral, Inc. | Grip for stent delivery system |
US7014610B2 (en) | 2001-02-09 | 2006-03-21 | Medtronic, Inc. | Echogenic devices and methods of making and using such devices |
US6636758B2 (en) | 2001-05-01 | 2003-10-21 | Concentric Medical, Inc. | Marker wire and process for using it |
US6723052B2 (en) | 2001-06-07 | 2004-04-20 | Stanley L. Mills | Echogenic medical device |
US6824527B2 (en) | 2001-06-07 | 2004-11-30 | Peter Gollobin | Protective sheath for winged needles and sheath and needle assembly |
US8197535B2 (en) | 2001-06-19 | 2012-06-12 | Cordis Corporation | Low profile improved radiopacity intraluminal medical device |
US6702744B2 (en) | 2001-06-20 | 2004-03-09 | Advanced Cardiovascular Systems, Inc. | Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery |
US7160258B2 (en) | 2001-06-26 | 2007-01-09 | Entrack, Inc. | Capsule and method for treating or diagnosing the intestinal tract |
US6648849B2 (en) | 2001-06-27 | 2003-11-18 | Ethicon, Inc. | Medicinal implant and device and method for loading and delivering implants containing drugs and cells |
ATE294535T1 (en) | 2001-07-26 | 2005-05-15 | Univ Oregon Health Sciences | CLOSURE DEVICE FOR A VESSEL AND ATTACHMENT DEVICE |
ES2271321T3 (en) | 2001-08-03 | 2007-04-16 | Tyco Healthcare Group Lp | MARKER TO BE USED WITH A FABRIC MARKING DEVICE. |
US6913626B2 (en) | 2001-08-14 | 2005-07-05 | Mcghan Jim J. | Medical implant having bioabsorbable textured surface |
US6605047B2 (en) | 2001-09-10 | 2003-08-12 | Vivant Medical, Inc. | Biopsy marker delivery system |
US7135978B2 (en) | 2001-09-14 | 2006-11-14 | Calypso Medical Technologies, Inc. | Miniature resonating marker assembly |
US7294118B2 (en) | 2001-10-24 | 2007-11-13 | Becton, Dickinson And Company | Retractable needle assembly |
US6939318B2 (en) | 2002-05-03 | 2005-09-06 | Boston Scientific Scimed, Inc. | Method, tool, and system for deploying an implant into the body |
US7280865B2 (en) | 2001-12-20 | 2007-10-09 | Accuray Incorporated | Anchored fiducial apparatus and method |
US8088388B2 (en) | 2002-02-14 | 2012-01-03 | United Biomedical, Inc. | Stabilized synthetic immunogen delivery system |
US20030225420A1 (en) | 2002-03-11 | 2003-12-04 | Wardle John L. | Surgical coils and methods of deploying |
US7527610B2 (en) | 2002-03-29 | 2009-05-05 | Bioform Medical, Inc. | Connection indicator for a medical delivery/extraction system |
WO2003085125A1 (en) | 2002-04-03 | 2003-10-16 | Agy Therapeutics, Inc. | Use of biomolecular targets in the treatment and visualization of brain tumors |
US20030191355A1 (en) | 2002-04-04 | 2003-10-09 | Ferguson Patrick J. | Hollow bioabsorbable elements for positioning material in living tissue |
US6818668B2 (en) | 2002-04-12 | 2004-11-16 | Biotest Laboratories, Llc | 5-alkyl-7-alkylcarbonate-isoflavone ester and related method |
US6652442B2 (en) | 2002-04-23 | 2003-11-25 | Acueity, Inc. | Micro-endoscope assembly for intraductal brachytherapy of a mammary duct and method of using same |
US20030199887A1 (en) | 2002-04-23 | 2003-10-23 | David Ferrera | Filamentous embolization device and method of use |
US7329414B2 (en) | 2002-05-03 | 2008-02-12 | Biopsy Sciences, Llc | Biodegradable polymer for marking tissue and sealing tracts |
US6780179B2 (en) | 2002-05-22 | 2004-08-24 | Rubicor Medical, Inc. | Methods and systems for in situ tissue marking and orientation stabilization |
US6992233B2 (en) | 2002-05-31 | 2006-01-31 | Medafor, Inc. | Material delivery system |
US7166133B2 (en) | 2002-06-13 | 2007-01-23 | Kensey Nash Corporation | Devices and methods for treating defects in the tissue of a living being |
US20040101548A1 (en) | 2002-11-26 | 2004-05-27 | Pendharkar Sanyog Manohar | Hemostatic wound dressing containing aldehyde-modified polysaccharide |
US20040016195A1 (en) | 2002-07-24 | 2004-01-29 | Archuleta John Paul | Foamed glass article for use as thermal energy control media |
WO2004020024A1 (en) | 2002-08-30 | 2004-03-11 | Inrad, Inc. | Localizing needle with fluid delivery |
US7103418B2 (en) | 2002-10-02 | 2006-09-05 | Medtronic, Inc. | Active fluid delivery catheter |
US20040116802A1 (en) | 2002-10-05 | 2004-06-17 | Jessop Precision Products, Inc. | Medical imaging marker |
US8027712B2 (en) | 2002-10-11 | 2011-09-27 | Ion Beam Applications S.A. | Elongated markers for soft tissue volume identification |
US6994712B1 (en) | 2002-11-12 | 2006-02-07 | Biopsy Sciences, Llc | Bioabsorbable marker having external anchoring means |
US20060036158A1 (en) | 2003-11-17 | 2006-02-16 | Inrad, Inc. | Self-contained, self-piercing, side-expelling marking apparatus |
US7424320B2 (en) | 2002-11-18 | 2008-09-09 | Bard Peripheral Vascular, Inc. | Tissue localizing and marking device and method of using same |
US8137288B2 (en) | 2002-11-20 | 2012-03-20 | Boston Scientific Scimed, Inc. | Medical instrument |
US7008382B2 (en) | 2002-11-20 | 2006-03-07 | Scimed Life Systems, Inc. | Medical instrument |
US6889833B2 (en) | 2002-12-30 | 2005-05-10 | Calypso Medical Technologies, Inc. | Packaged systems for implanting markers in a patient and methods for manufacturing and using such systems |
US7247160B2 (en) | 2002-12-30 | 2007-07-24 | Calypso Medical Technologies, Inc. | Apparatuses and methods for percutaneously implanting objects in patients |
US20040133124A1 (en) | 2003-01-06 | 2004-07-08 | Cook Incorporated. | Flexible biopsy needle |
US9314235B2 (en) | 2003-02-05 | 2016-04-19 | Smith & Nephew, Inc. | Tissue anchor and insertion tool |
WO2004075789A2 (en) | 2003-02-26 | 2004-09-10 | Cook Incorporated | PROTHESIS ADAPTED FOR PLACEDd UNDER EXTERNAL IMAGING |
FR2853521B1 (en) | 2003-04-10 | 2005-12-02 | Claude Mialhe | DEVICE FOR EXPANDING A VESSEL AND INTRODUCING VASCULAR IMPLANT |
US8372112B2 (en) | 2003-04-11 | 2013-02-12 | St. Jude Medical, Cardiology Division, Inc. | Closure devices, related delivery methods, and related methods of use |
US8383158B2 (en) | 2003-04-15 | 2013-02-26 | Abbott Cardiovascular Systems Inc. | Methods and compositions to treat myocardial conditions |
US7306580B2 (en) | 2003-04-16 | 2007-12-11 | Cook Incorporated | Medical device with therapeutic agents |
US6945973B2 (en) | 2003-05-01 | 2005-09-20 | Nuvasive, Inc. | Slidable bone plate system |
US7877133B2 (en) | 2003-05-23 | 2011-01-25 | Senorx, Inc. | Marker or filler forming fluid |
US20050119562A1 (en) | 2003-05-23 | 2005-06-02 | Senorx, Inc. | Fibrous marker formed of synthetic polymer strands |
US7783336B2 (en) | 2003-06-06 | 2010-08-24 | Ethicon Endo-Surgery, Inc. | Subcutaneous biopsy cavity marker device |
US20040253185A1 (en) | 2003-06-12 | 2004-12-16 | Atrium Medical Corp. | Medicated ink |
US20040265371A1 (en) | 2003-06-25 | 2004-12-30 | Looney Dwayne Lee | Hemostatic devices and methods of making same |
US7744852B2 (en) | 2003-07-25 | 2010-06-29 | Rubicor Medical, Llc | Methods and systems for marking post biopsy cavity sites |
US7537788B2 (en) | 2003-07-25 | 2009-05-26 | Rubicor Medical, Inc. | Post-biopsy cavity treatment implants and methods |
US20050033157A1 (en) | 2003-07-25 | 2005-02-10 | Klein Dean A. | Multi-modality marking material and method |
US20050049634A1 (en) | 2003-08-07 | 2005-03-03 | Scimed Life Systems, Inc. | Medical closure device |
US7790141B2 (en) | 2003-08-11 | 2010-09-07 | Pathak Holdings, Llc | Radio-opaque compounds, compositions containing same and methods of their synthesis and use |
US7001341B2 (en) | 2003-08-13 | 2006-02-21 | Scimed Life Systems, Inc. | Marking biopsy sites |
US20050059887A1 (en) | 2003-09-16 | 2005-03-17 | Hassan Mostafavi | Localization of a target using in vivo markers |
WO2005037338A1 (en) | 2003-10-14 | 2005-04-28 | Cook Incorporated | Hydrophilic coated medical device |
EP1691852A2 (en) | 2003-11-10 | 2006-08-23 | Angiotech International AG | Medical implants and fibrosis-inducing agents |
US20050273002A1 (en) | 2004-06-04 | 2005-12-08 | Goosen Ryan L | Multi-mode imaging marker |
AU2004293463A1 (en) | 2003-11-20 | 2005-06-09 | Angiotech International Ag | Implantable sensors and implantable pumps and anti-scarring agents |
US20050112151A1 (en) | 2003-11-20 | 2005-05-26 | Horng Liou L. | Skin adherent hydrogels |
US20050113659A1 (en) | 2003-11-26 | 2005-05-26 | Albert Pothier | Device for data input for surgical navigation system |
WO2005053560A1 (en) | 2003-11-26 | 2005-06-16 | Invivo Germany Gmbh | Tissue marker and method and apparatus for deploying the marker |
US20050142161A1 (en) | 2003-12-30 | 2005-06-30 | Freeman Lynetta J. | Collagen matrix for soft tissue augmentation |
US7761138B2 (en) | 2004-03-12 | 2010-07-20 | Boston Scientific Scimed, Inc. | MRI and X-ray visualization |
WO2005087221A1 (en) | 2004-03-15 | 2005-09-22 | Christine Allen | Biodegradable biocompatible implant and method of manufacturing same |
US20050234336A1 (en) | 2004-03-26 | 2005-10-20 | Beckman Andrew T | Apparatus and method for marking tissue |
US9638770B2 (en) | 2004-05-21 | 2017-05-02 | Devicor Medical Products, Inc. | MRI biopsy apparatus incorporating an imageable penetrating portion |
US8075568B2 (en) | 2004-06-11 | 2011-12-13 | Selis James E | Biopsy devices and methods |
DE102004030391A1 (en) | 2004-06-23 | 2006-01-26 | Somatex Medical Technologies Gmbh | marker |
US20080097199A1 (en) | 2004-08-20 | 2008-04-24 | David Mullen | Tissue Marking Devices and Systems |
US8280486B2 (en) | 2004-10-13 | 2012-10-02 | Suros Surgical Systems, Inc. | Site marker visable under multiple modalities |
US20060079805A1 (en) | 2004-10-13 | 2006-04-13 | Miller Michael E | Site marker visable under multiple modalities |
EP1806160A1 (en) | 2004-10-22 | 2007-07-11 | Kaneka Corporation | Catheter for medical treatment |
US8419656B2 (en) | 2004-11-22 | 2013-04-16 | Bard Peripheral Vascular, Inc. | Post decompression marker introducer system |
WO2006056739A2 (en) | 2004-11-23 | 2006-06-01 | Quantum Medical Technology Limited | Surgical tag, magnetometer, and associated system |
EP1830902A2 (en) | 2004-12-30 | 2007-09-12 | Cinvention Ag | Combination comprising an agent providing a signal, an implant material and a drug |
US7577473B2 (en) | 2005-02-03 | 2009-08-18 | Bard Peripheral Vascular, Inc. | Apparatus for subcutaneous placement of an imaging marker |
DE102005012574A1 (en) | 2005-03-18 | 2006-09-21 | Bkh - Technotransfer Gmbh | Markers for animal and human tissue, in particular soft tissue |
US20060217635A1 (en) | 2005-03-24 | 2006-09-28 | Mccombs Elizabeth S | Biopsy device marker deployment |
WO2006105353A2 (en) | 2005-03-31 | 2006-10-05 | Cytyc Corporation | Internal biopsy marking |
US20060241385A1 (en) | 2005-04-12 | 2006-10-26 | Ethicon Endo-Surgery, Inc. | Guided disposable fiducial for breast biopsy localization fixture |
US10357328B2 (en) | 2005-04-20 | 2019-07-23 | Bard Peripheral Vascular, Inc. and Bard Shannon Limited | Marking device with retractable cannula |
CA2613286A1 (en) | 2005-06-21 | 2007-01-04 | Naviscan Pet Systems, Inc. | Tissue interventions using nuclear-emission image guidance |
US20060292690A1 (en) | 2005-06-22 | 2006-12-28 | Cesco Bioengineering Co., Ltd. | Method of making cell growth surface |
US7736293B2 (en) | 2005-07-22 | 2010-06-15 | Biocompatibles Uk Limited | Implants for use in brachytherapy and other radiation therapy that resist migration and rotation |
US9498647B2 (en) | 2005-09-23 | 2016-11-22 | Allen B. Kantrowitz | Fiducial marker system for subject movement compensation during medical treatment |
EP1767167B1 (en) | 2005-09-26 | 2011-05-18 | Bard Peripheral Vascular, Inc. | Post decompression marker introducer system |
US8052658B2 (en) | 2005-10-07 | 2011-11-08 | Bard Peripheral Vascular, Inc. | Drug-eluting tissue marker |
US20070083132A1 (en) | 2005-10-11 | 2007-04-12 | Sharrow James S | Medical device coil |
US7761137B2 (en) | 2005-12-16 | 2010-07-20 | Suros Surgical Systems, Inc. | Biopsy site marker deployment device |
US8118786B2 (en) | 2006-03-29 | 2012-02-21 | Kawasumi Laboratories, Inc. | Guarded medical winged needle assembly |
US20070287933A1 (en) | 2006-06-08 | 2007-12-13 | Chris Phan | Tissue debulking device and method of using the same |
US7945307B2 (en) | 2006-08-04 | 2011-05-17 | Senorx, Inc. | Marker delivery system with obturator |
US20080294039A1 (en) | 2006-08-04 | 2008-11-27 | Senorx, Inc. | Assembly with hemostatic and radiographically detectable pellets |
US20090171198A1 (en) | 2006-08-04 | 2009-07-02 | Jones Michael L | Powdered marker |
EP2079385B1 (en) | 2006-10-23 | 2013-11-20 | C.R.Bard, Inc. | Breast marker |
US9579077B2 (en) | 2006-12-12 | 2017-02-28 | C.R. Bard, Inc. | Multiple imaging mode tissue marker |
WO2008076973A2 (en) | 2006-12-18 | 2008-06-26 | C.R.Bard Inc. | Biopsy marker with in situ-generated imaging properties |
US20080177179A1 (en) | 2006-12-19 | 2008-07-24 | Cytyc Corporation | Target Tissue Locator for Image Guided Radiotherapy |
US20090024225A1 (en) | 2007-07-16 | 2009-01-22 | Stubbs James B | Implant for Targeting Therapeutic Procedure |
US9327061B2 (en) | 2008-09-23 | 2016-05-03 | Senorx, Inc. | Porous bioabsorbable implant |
US20100204570A1 (en) | 2009-02-06 | 2010-08-12 | Paul Lubock | Anchor markers |
-
2004
- 2004-07-22 US US10/710,587 patent/US20060036158A1/en not_active Abandoned
-
2005
- 2005-07-14 EP EP05015367A patent/EP1618851A1/en not_active Withdrawn
- 2005-07-19 CA CA2512490A patent/CA2512490C/en not_active Expired - Fee Related
-
2006
- 2006-02-03 US US11/275,918 patent/US7819820B2/en not_active Expired - Lifetime
-
2010
- 2010-08-05 US US12/850,844 patent/US20100298696A1/en not_active Abandoned
-
2016
- 2016-03-23 US US15/078,847 patent/US20160199150A1/en not_active Abandoned
- 2016-12-16 US US15/381,717 patent/US9848956B2/en not_active Expired - Lifetime
-
2017
- 2017-12-22 US US15/853,052 patent/US10813716B2/en active Active
Patent Citations (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2899362A (en) * | 1959-08-11 | Hemostatic sponges and method of | ||
US2192270A (en) * | 1938-05-25 | 1940-03-05 | American Brake Co | Brake rigging |
US2481408A (en) * | 1946-08-13 | 1949-09-06 | Olin Mathieson | Regeneration of caustic soda-sodium sulfide cooking liquor |
US2832888A (en) * | 1956-05-17 | 1958-04-29 | David R Houston | Box car detector |
US2907327A (en) * | 1957-02-08 | 1959-10-06 | Pfizer & Co C | Pellet implanter |
US3341417A (en) * | 1965-07-14 | 1967-09-12 | Edwin S Sinaiko | Method of and means for diagnosis of ingested drugs with radio-opaque and other indicators |
US3516412A (en) * | 1965-08-16 | 1970-06-23 | Electro Catheter Corp | Bipolar electrode having irregularity at inserting end thereof and method of insertion |
US3402712A (en) * | 1966-07-19 | 1968-09-24 | American Home Prod | Pellet implanter |
US3593343A (en) * | 1968-07-19 | 1971-07-20 | Robert F Viggers | Prosthetic ball-check heart valve |
US3823212A (en) * | 1968-11-27 | 1974-07-09 | Freudenberg C Fa | Process for the production of collagen fiber fabrics in the form of felt-like membranes or sponge-like layers |
US3818894A (en) * | 1971-01-22 | 1974-06-25 | Ceskoslovenska Akademie Ved | Laryngeal implant |
US3757781A (en) * | 1971-09-17 | 1973-09-11 | R Smart | Tool for administering pills to animals |
US3921632A (en) * | 1974-08-16 | 1975-11-25 | Frank M Bardani | Implant device |
US4005699A (en) * | 1974-10-09 | 1977-02-01 | Louis Bucalo | Methods and apparatus for use in magnetic treatment of the body |
US4197846A (en) * | 1974-10-09 | 1980-04-15 | Louis Bucalo | Method for structure for situating in a living body agents for treating the body |
US4007732A (en) * | 1975-09-02 | 1977-02-15 | Robert Carl Kvavle | Method for location and removal of soft tissue in human biopsy operations |
US4041931A (en) * | 1976-05-17 | 1977-08-16 | Elliott Donald P | Radiopaque anastomosis marker |
US4217889A (en) * | 1976-09-15 | 1980-08-19 | Heyer-Schulte Corporation | Flap development device and method of progressively increasing skin area |
US4105030A (en) * | 1977-01-03 | 1978-08-08 | Syntex (U.S.A.) Inc. | Implant apparatus |
US4103690A (en) * | 1977-03-21 | 1978-08-01 | Cordis Corporation | Self-suturing cardiac pacer lead |
US4294241A (en) * | 1977-06-09 | 1981-10-13 | Teruo Miyata | Collagen skin dressing |
US4588395A (en) * | 1978-03-10 | 1986-05-13 | Lemelson Jerome H | Catheter and method |
US4172449A (en) * | 1978-05-01 | 1979-10-30 | New Research And Development Laboratories, Inc. | Body fluid pressure monitor |
US4276885A (en) * | 1979-05-04 | 1981-07-07 | Rasor Associates, Inc | Ultrasonic image enhancement |
US4331654A (en) * | 1980-06-13 | 1982-05-25 | Eli Lilly And Company | Magnetically-localizable, biodegradable lipid microspheres |
US4390018A (en) * | 1980-09-15 | 1983-06-28 | Zukowski Henry J | Method for preventing loss of spinal fluid after spinal tap |
US4442843A (en) * | 1980-11-17 | 1984-04-17 | Schering, Ag | Microbubble precursors and methods for their production and use |
US4470160A (en) * | 1980-11-21 | 1984-09-11 | Cavon Joseph F | Cast gel implantable prosthesis |
US4740208A (en) * | 1980-11-21 | 1988-04-26 | Cavon Joseph F | Cast gel implantable prosthesis |
US4428082A (en) * | 1980-12-08 | 1984-01-31 | Naficy Sadeque S | Breast prosthesis with filling valve |
US4298998A (en) * | 1980-12-08 | 1981-11-10 | Naficy Sadeque S | Breast prosthesis with biologically absorbable outer container |
US4487209A (en) * | 1981-03-16 | 1984-12-11 | Creative Research And Manufacturing Inc. | Biopsy needle |
US4401124A (en) * | 1981-08-13 | 1983-08-30 | Technicare Corporation | Reflection enhancement of a biopsy needle |
US4400170A (en) * | 1981-09-29 | 1983-08-23 | Syntex (U.S.A.) Inc. | Implanting device and implant magazine |
US4582061A (en) * | 1981-11-18 | 1986-04-15 | Indianapolis Center For Advanced Research, Inc. | Needle with ultrasonically reflective displacement scale |
US4582640A (en) * | 1982-03-08 | 1986-04-15 | Collagen Corporation | Injectable cross-linked collagen implant material |
US4405314A (en) * | 1982-04-19 | 1983-09-20 | Cook Incorporated | Apparatus and method for catheterization permitting use of a smaller gage needle |
US4545367A (en) * | 1982-07-16 | 1985-10-08 | Cordis Corporation | Detachable balloon catheter and method of use |
US4438253A (en) * | 1982-11-12 | 1984-03-20 | American Cyanamid Company | Poly(glycolic acid)/poly(alkylene glycol) block copolymers and method of manufacturing the same |
US4597753A (en) * | 1983-04-21 | 1986-07-01 | Hundon Forge Limited | Implanting method and device |
US4647480A (en) * | 1983-07-25 | 1987-03-03 | Amchem Products, Inc. | Use of additive in aqueous cure of autodeposited coatings |
US4655226A (en) * | 1983-12-16 | 1987-04-07 | Southland Instruments, Inc. | Disposable biopsy needle unit |
US4549560A (en) * | 1984-03-19 | 1985-10-29 | Andis Company | Hair curling appliance with elastomer material covering heating element |
US4970298A (en) * | 1984-03-27 | 1990-11-13 | University Of Medicine And Dentistry Of New Jersey | Biodegradable matrix and methods for producing same |
US4963150B1 (en) * | 1984-08-30 | 1994-10-04 | Daniel Brauman | Implantable prosthetic device |
US4963150A (en) * | 1984-08-30 | 1990-10-16 | Daniel Brauman | Implantable prosthetic devices |
US4820267A (en) * | 1985-02-19 | 1989-04-11 | Endocon, Inc. | Cartridge injector for pellet medicaments |
US4863470A (en) * | 1985-03-19 | 1989-09-05 | Medical Engineering Corporation | Identification marker for a breast prosthesis |
US4847049A (en) * | 1985-12-18 | 1989-07-11 | Vitaphore Corporation | Method of forming chelated collagen having bactericidal properties |
US4693237A (en) * | 1986-01-21 | 1987-09-15 | Hoffman Richard B | Radiopaque coded ring markers for use in identifying surgical grafts |
US4682606A (en) * | 1986-02-03 | 1987-07-28 | Decaprio Vincent H | Localizing biopsy apparatus |
US4661103A (en) * | 1986-03-03 | 1987-04-28 | Engineering Development Associates, Ltd. | Multiple implant injector |
US4832686A (en) * | 1986-06-24 | 1989-05-23 | Anderson Mark E | Method for administering interleukin-2 |
US4832680A (en) * | 1986-07-03 | 1989-05-23 | C.R. Bard, Inc. | Apparatus for hypodermically implanting a genitourinary prosthesis |
US4813062A (en) * | 1986-08-13 | 1989-03-14 | Milliken Research Corporation | Radio-opaque marker and method |
US4994028A (en) * | 1987-03-18 | 1991-02-19 | Endocon, Inc. | Injector for inplanting multiple pellet medicaments |
US4874376A (en) * | 1987-04-13 | 1989-10-17 | Hawkins Jr Irvin F | Needle guide assembly |
US4989608A (en) * | 1987-07-02 | 1991-02-05 | Ratner Adam V | Device construction and method facilitating magnetic resonance imaging of foreign objects in a body |
US5120802A (en) * | 1987-12-17 | 1992-06-09 | Allied-Signal Inc. | Polycarbonate-based block copolymers and devices |
US4889707A (en) * | 1988-01-29 | 1989-12-26 | The Curators Of The University Of Missouri | Composition and method for radiation synovectomy of arthritic joints |
US4870966A (en) * | 1988-02-01 | 1989-10-03 | American Cyanamid Company | Bioabsorbable surgical device for treating nerve defects |
US5163896A (en) * | 1988-07-28 | 1992-11-17 | Best Industries, Inc. | Pellet for a radioactive seed |
US4938763A (en) * | 1988-10-03 | 1990-07-03 | Dunn Richard L | Biodegradable in-situ forming implants and methods of producing the same |
US4938763B1 (en) * | 1988-10-03 | 1995-07-04 | Atrix Lab Inc | Biodegradable in-situ forming implants and method of producing the same |
US4950665A (en) * | 1988-10-28 | 1990-08-21 | Oklahoma Medical Research Foundation | Phototherapy using methylene blue |
US4909250A (en) * | 1988-11-14 | 1990-03-20 | Smith Joseph R | Implant system for animal identification |
US5162430A (en) * | 1988-11-21 | 1992-11-10 | Collagen Corporation | Collagen-polymer conjugates |
US5141748A (en) * | 1989-02-17 | 1992-08-25 | Hoffmann-La Roche, Inc. | Implant drug delivery device |
US5289831A (en) * | 1989-03-09 | 1994-03-01 | Vance Products Incorporated | Surface-treated stent, catheter, cannula, and the like |
US5081997A (en) * | 1989-03-09 | 1992-01-21 | Vance Products Incorporated | Echogenic devices, material and method |
US5125413A (en) * | 1989-03-29 | 1992-06-30 | Baran Gregory W | Automated biopsy instrument |
US5059197A (en) * | 1989-04-15 | 1991-10-22 | Urie Robert G | Lesion location device |
US5012818A (en) * | 1989-05-04 | 1991-05-07 | Joishy Suresh K | Two in one bone marrow surgical needle |
US5197482A (en) * | 1989-06-15 | 1993-03-30 | Research Corporation Technologies, Inc. | Helical-tipped lesion localization needle device and method of using the same |
US5284479A (en) * | 1989-08-30 | 1994-02-08 | N.V. Nederlandsche Apparatenfabriek Nedap | Implanter |
US5271961A (en) * | 1989-11-06 | 1993-12-21 | Alkermes Controlled Therapeutics, Inc. | Method for producing protein microspheres |
US5219339A (en) * | 1989-11-17 | 1993-06-15 | Masataka Saito | Single use medical needle |
US5197846A (en) * | 1989-12-22 | 1993-03-30 | Hitachi, Ltd. | Six-degree-of-freedom articulated robot mechanism and assembling and working apparatus using same |
US5231615A (en) * | 1990-04-23 | 1993-07-27 | Teac Corporation | Carriage fixing apparatus and disk driver having such carriage fixing apparatus |
US5137928A (en) * | 1990-04-26 | 1992-08-11 | Hoechst Aktiengesellschaft | Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents |
US5236410A (en) * | 1990-08-02 | 1993-08-17 | Ferrotherm International, Inc. | Tumor treatment method |
US5221269A (en) * | 1990-10-15 | 1993-06-22 | Cook Incorporated | Guide for localizing a nonpalpable breast lesion |
US5282781A (en) * | 1990-10-25 | 1994-02-01 | Omnitron International Inc. | Source wire for localized radiation treatment of tumors |
US5280788A (en) * | 1991-02-26 | 1994-01-25 | Massachusetts Institute Of Technology | Devices and methods for optical diagnosis of tissue |
US5281408A (en) * | 1991-04-05 | 1994-01-25 | Unger Evan C | Low density microspheres and their use as contrast agents for computed tomography |
US5147631A (en) * | 1991-04-30 | 1992-09-15 | Du Pont Merck Pharmaceutical Company | Porous inorganic ultrasound contrast agents |
US5242759A (en) * | 1991-05-21 | 1993-09-07 | Cook Incorporated | Joint, a laminate, and a method of preparing a nickel-titanium alloy member surface for bonding to another layer of metal |
US5147307A (en) * | 1991-06-17 | 1992-09-15 | Gluck Seymour M | Anatomical marker device and method |
US5195540A (en) * | 1991-08-12 | 1993-03-23 | Samuel Shiber | Lesion marking process |
US5199441A (en) * | 1991-08-20 | 1993-04-06 | Hogle Hugh H | Fine needle aspiration biopsy apparatus and method |
US5273532A (en) * | 1991-09-03 | 1993-12-28 | Texas Instruments Incorporated | Injector for hypodermically implanting an object in a living being |
US5250026A (en) * | 1992-05-27 | 1993-10-05 | Destron/Idi, Inc. | Adjustable precision transponder injector |
US5281197A (en) * | 1992-07-27 | 1994-01-25 | Symbiosis Corporation | Endoscopic hemostatic agent delivery system |
US6190353B1 (en) * | 1995-10-13 | 2001-02-20 | Transvascular, Inc. | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
US5669882A (en) * | 1996-04-23 | 1997-09-23 | Pyles; Stephen | Curved epidural needle system |
US6203524B1 (en) * | 1997-02-10 | 2001-03-20 | Emx, Inc. | Surgical and pharmaceutical site access guide and methods |
US5941439A (en) * | 1997-05-14 | 1999-08-24 | Mitek Surgical Products, Inc. | Applicator and method for deploying a surgical fastener in tissue |
US6725083B1 (en) * | 1999-02-02 | 2004-04-20 | Senorx, Inc. | Tissue site markers for in VIVO imaging |
US6234177B1 (en) * | 1999-08-12 | 2001-05-22 | Thomas Barsch | Apparatus and method for deploying an expandable biopsy marker |
US20040097981A1 (en) * | 2002-08-01 | 2004-05-20 | Selis James E. | Biopsy devices and methods |
US20040236212A1 (en) * | 2003-05-23 | 2004-11-25 | Senorx, Inc. | Fibrous marker and intracorporeal delivery thereof |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9039763B2 (en) | 1997-10-10 | 2015-05-26 | Senorx, Inc. | Tissue marking implant |
US9861294B2 (en) | 1999-02-02 | 2018-01-09 | Senorx, Inc. | Marker delivery device with releasable plug |
US9044162B2 (en) | 1999-02-02 | 2015-06-02 | Senorx, Inc. | Marker delivery device with releasable plug |
US10172674B2 (en) | 1999-02-02 | 2019-01-08 | Senorx, Inc. | Intracorporeal marker and marker delivery device |
US9820824B2 (en) | 1999-02-02 | 2017-11-21 | Senorx, Inc. | Deployment of polysaccharide markers for treating a site within a patent |
US9149341B2 (en) | 1999-02-02 | 2015-10-06 | Senorx, Inc | Deployment of polysaccharide markers for treating a site within a patient |
US10813716B2 (en) | 2002-11-18 | 2020-10-27 | Bard Peripheral Vascular, Inc. | Self-contained, self-piercing, side-expelling marking apparatus |
US9848956B2 (en) | 2002-11-18 | 2017-12-26 | Bard Peripheral Vascular, Inc. | Self-contained, self-piercing, side-expelling marking apparatus |
US11278370B2 (en) | 2005-04-20 | 2022-03-22 | Bard Peripheral Vascular, Inc. | Marking device with retractable cannula |
US10357328B2 (en) | 2005-04-20 | 2019-07-23 | Bard Peripheral Vascular, Inc. and Bard Shannon Limited | Marking device with retractable cannula |
US10342635B2 (en) | 2005-04-20 | 2019-07-09 | Bard Peripheral Vascular, Inc. | Marking device with retractable cannula |
US9901415B2 (en) | 2006-12-12 | 2018-02-27 | C. R. Bard, Inc. | Multiple imaging mode tissue marker |
US11471244B2 (en) | 2006-12-12 | 2022-10-18 | C.R. Bard, Inc. | Multiple imaging mode tissue marker |
US10682200B2 (en) | 2006-12-12 | 2020-06-16 | C. R. Bard, Inc. | Multiple imaging mode tissue marker |
US9042965B2 (en) | 2006-12-18 | 2015-05-26 | C. R. Bard, Inc. | Biopsy marker with in situ-generated imaging properties |
US10786604B2 (en) | 2008-09-23 | 2020-09-29 | Senorx, Inc. | Porous bioabsorbable implant |
US11833275B2 (en) | 2008-09-23 | 2023-12-05 | Senorx, Inc. | Porous bioabsorbable implant |
US10258428B2 (en) | 2008-12-30 | 2019-04-16 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
US11779431B2 (en) | 2008-12-30 | 2023-10-10 | C. R. Bard, Inc. | Marker delivery device for tissue marker placement |
USD716450S1 (en) | 2013-09-24 | 2014-10-28 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD716451S1 (en) | 2013-09-24 | 2014-10-28 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD715442S1 (en) | 2013-09-24 | 2014-10-14 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
USD715942S1 (en) | 2013-09-24 | 2014-10-21 | C. R. Bard, Inc. | Tissue marker for intracorporeal site identification |
Also Published As
Publication number | Publication date |
---|---|
US20170100203A1 (en) | 2017-04-13 |
CA2512490A1 (en) | 2006-01-22 |
US20180200019A1 (en) | 2018-07-19 |
US10813716B2 (en) | 2020-10-27 |
US7819820B2 (en) | 2010-10-26 |
EP1618851A1 (en) | 2006-01-25 |
CA2512490C (en) | 2013-02-26 |
US20060036158A1 (en) | 2006-02-16 |
US20160199150A1 (en) | 2016-07-14 |
US20060116573A1 (en) | 2006-06-01 |
US9848956B2 (en) | 2017-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10813716B2 (en) | Self-contained, self-piercing, side-expelling marking apparatus | |
US7465279B2 (en) | Marker device and method of deploying a cavity marker using a surgical biopsy device | |
EP1551308B1 (en) | Introduction system for minimally invasive surgical instruments | |
US6638235B2 (en) | Biopsy apparatus | |
EP1545316B1 (en) | Biopsy devices | |
US8764679B2 (en) | Biopsy apparatus | |
US8554309B2 (en) | Localizing obturator with site marking capability | |
US20120078087A1 (en) | Tissue Localization Device and Method | |
US20090163870A1 (en) | Targeting obturator | |
WO2002062232A1 (en) | Biopsy apparatus and method | |
WO1996010953A1 (en) | Specification of amendment a percutaneous multicannula guide for biopsies and other percutaneous interventions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |