US20100293673A1 - Compositions and Methods of Plant Breeding Using High Density Marker Information - Google Patents

Compositions and Methods of Plant Breeding Using High Density Marker Information Download PDF

Info

Publication number
US20100293673A1
US20100293673A1 US12/376,998 US37699807A US2010293673A1 US 20100293673 A1 US20100293673 A1 US 20100293673A1 US 37699807 A US37699807 A US 37699807A US 2010293673 A1 US2010293673 A1 US 2010293673A1
Authority
US
United States
Prior art keywords
haplotypes
group
plant
crop
corn plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/376,998
Inventor
Jason Bull
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Technology LLC
Original Assignee
Monsanto Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Technology LLC filed Critical Monsanto Technology LLC
Priority to US12/376,998 priority Critical patent/US20100293673A1/en
Assigned to MONSANTO TECHNOLOGY LLC reassignment MONSANTO TECHNOLOGY LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: REITER, ROBERT S., BULL, JASON, GUPTA, ANJU, JOHNSON, G. RICHARD, EDWARDS, MARLIN, BUTRUILLE, DAVID, EATHINGTON, SAM
Publication of US20100293673A1 publication Critical patent/US20100293673A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/54Leguminosae or Fabaceae, e.g. soybean, alfalfa or peanut
    • A01H6/542Glycine max [soybean]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/172Haplotypes

Definitions

  • This invention relates to the field of plant breeding, in particular to methods to facilitating informed germplasm improvement activities within a breeding program by defining haplotypes within pre-determined chromosomal windows within a genome and associating the haplotypes with haplotype effect estimates for one or more traits, wherein the associations can be made de novo or by leveraging historical marker-trait association data. Accordingly, the methods of the present invention enable decisions related to germplasm improvement activities to be made by ranking haplotypes based on numerical values, wherein the values represent the haplotype effect estimates, haplotype frequency, and/or breeding values.
  • breeding values are calculated based on haplotype effect estimates and haplotype frequency, wherein the haplotype breeding value represents the effect of fixing a particular haplotype in a population, thus providing the basis for ranking haplotypes.
  • breeding germplasm includes breeding germplasm, breeding populations, collection of elite inbred lines, populations of random mating individuals, and biparental crosses.
  • Genetic marker alleles are used to identify plants that contain a desired genotype at multiple loci, and that are expected to transfer the desired genotype, along with a desired phenotype to their progeny.
  • Genetic marker alleles are used to identify plants that contain the desired genotype at one marker locus, several loci, or a haplotype, and that would be expected to transfer the desired genotype, along with a desired phenotype to their progeny. This process has been widely referenced and has served to greatly economize plant breeding by accelerating the fixation of advantageous alleles and also eliminating the need for phenotyping every generation.
  • RFLP Restriction Fragment Length Polymorphisms
  • AFLP Amplified Fragment Length Polymorphisms
  • SSR Simple Sequence Repeats
  • SNP Single Nucleotide Polymorphisms
  • Indels Insertion/Deletion Polymorphisms
  • VNTR Variable Number Tandem Repeats
  • RAPD Random Amplified Polymorphic DNA
  • the resulting “genetic map” is the representation of the relative position of characterized loci (DNA markers or any other locus for which alleles can be identified) along the chromosomes. The measure of distance on this map is relative to the frequency of crossover events between sister chromatids at meiosis.
  • polyallelic markers serve as a useful tool for fingerprinting plants to inform the degree of identity of lines or varieties (U.S. Pat. No. 6,207,367). These markers form the basis for determining associations with phenotype and can be used to drive genetic gain. The implementation of marker-assisted selection is dependent on the ability to detect underlying genetic differences between individuals.
  • QTL can be identified by statistical evaluation of the genotypes and phenotypes of segregating populations. Processes to map QTL are well-described (WO 90/04651; U.S. Pat. Nos. 5,492,547, 5,981,832, 6,455,758; reviewed in Flint-Garcia et al. 2003 Ann. Rev. Plant Biol. 54:357-374). Using markers to infer phenotype in these cases results in the economization of a breeding program by substitution of costly, time-intensive phenotyping with genotyping. Further, breeding programs can be designed to explicitly drive the frequency of specific, favorable phenotypes by targeting particular genotypes (U.S. Pat. No. 6,399,855). Fidelity of these associations may be monitored continuously to ensure maintained predictive ability and, thus, informed breeding decisions (US Patent Application 2005/0015827).
  • Marker-assisted introgression involves the transfer of a chromosomal region, defined by one or more markers, from one germplasm to a second germplasm.
  • the initial step in that process is the localization of the genomic region or transgene by gene mapping, which is the process of determining the position of a gene or genomic region relative to other genes and genetic markers through linkage analysis.
  • the basic principle for linkage mapping is that the closer together two genes are on a chromosome, the more likely they are to be inherited together.
  • a cross is generally made between two genetically compatible but divergent parents relative to the traits of interest. Genetic markers can then be used to follow the segregation of these traits in the progeny from the cross, often a backcross (BC1), F 2 , or recombinant inbred population.
  • BC1 backcross
  • F 2 F 2
  • recombinant inbred population a backcross
  • QTL identification is a low-power activity, requiring that information from a large number of progeny be leveraged to achieve a significant confidence that any observed differences in the expression of a quantitative trait amongst classes of progeny must be due to linkage of a trait locus to the genetic marker that provided the basis for DIFFERENTIATING classes of progeny.
  • the progeny generation usually employed in QTL mapping is of relatively recent derivation from the F1 generation, the point where genetic mechanisms could first act to allow linked alleles to begin the slow approach to linkage EQUILIBRIUM.
  • the consequence of these two facts is that identified QTL can be placed only with a reasonable confidence of existing within a segment of DNA as large as 20-30 cM.
  • genes and genomic sequences may be identical by state (i.e., identical by independent origins) or identical by descent (i.e., through historical inheritance from a common progenitor) which has tremendous bearing on studies of linkage disequilibrium and, ultimately, mapping studies (Nordberg et al. 2002 Trends Gen. 18:83-90).
  • genetic markers were not appropriate for distinguishing identical in state or by descent.
  • newer classes of markers such as SNPs (single nucleotide polymorphisms) are more diagnostic of origin. The likelihood that a particular SNP allele is derived from independent origins in the extant populations of a particular species is very low.
  • Polymorphisms occurring in linked genes are randomly assorted at a slow, but predictable rate, described by the decay of linkage disequilibrium or, alternatively, the approach of linkage equilibrium. Consequences of this well-established scientific discovery are that long stretches of coding DNA, defined by a specific combination of polymorphisms, are very unique and extremely improbable of existing in duplication except through linkage disequilibrium, which is indicative of recent co-ancestry from a common progenitor. The probability that a particular genomic region, as defined by some combination of alleles, indicates absolute identity of the entire intervening genetic sequence is dependent on the number of linked polymorphisms in this genomic region, barring the occurrence of recent mutations in the interval.
  • haplotype windows Each haplotype within that window is defined by specific combinations of alleles; the greater the number of alleles, the greater the number of potential haplotypes, and the greater the certainty that identity by state is a result of identity by descent at that region.
  • ancestral haplotypes are maintained through the process and are typically thought of as ‘linkage blocks’ that are inherited as a unit through a pedigree. Further, if a specific haplotype has a known effect, or phenotype, it is possible to extrapolate its effect in other lines with the same haplotype, as determined using one or more diagnostic markers for that haplotype window.
  • mice 6,969,589).
  • haplotype structure In mice, the resolution of haplotype structure (Frazer et al. 2004 Genome Res. 14:1493-1500; Wiltshire et al. 2003 Proc. Natl. Acad. Sci. 100:3380-3385) has also enabled enhanced QTL mapping for inbred lines (Pletcher et al. 2004 PLoS Biol. 2:e393; McClurg et al. 2006 BMC Bioinformatics 7:61).
  • the present invention allows researchers to address the biological limitations of known methods of QTL mapping and incorporates pedigree information such that the invention enables an improved approach to predictive breeding, based on both an improved approach to traditional QTL mapping coupled with high density fingerprinting.
  • This combination of information allows the correspondence of the deductive inferences about linkage between marker alleles and phenotype with the ability to reliably predict where the same parental linkages exist elsewhere in the germplasm pool.
  • the present invention provides a means to predict across a broad group of germplasm, comprising multiple populations, where the prior inferences of genotype-phenotype associations are applicable. Further, the present invention allows such inferences to be made for multiple traits, a key feature lacking in previous inventions.
  • haplotype windows are defined across the genome in order to enable comparisons between two or more haplotypes within and between windows, wherein the haplotypes are associated with one or more traits to establish an estimated effect.
  • haplotypes associated with improved performance with respect to an phenotypic trait or multiple traits are targeted for selection and it is possible to then select for these genomic regions simultaneously.
  • Assessing haplotypes at a genome level generates a greater density of haplotypes and facilitates the identification of preferred haplotypes that might be overlooked with smaller-scale haplotype analyses.
  • the traits may be nontransgenic or transgenic in nature.
  • haplotype effect estimates can also be used to calculate haplotype breeding values for a group of haplotypes.
  • a calculated set of breeding values can be used to ranking haplotypes both within and between windows.
  • haplotype breeding values provide for comparing haplotypes across windows for substitution effects. Both rankings of haplotype effects and breeding values allow one skilled in the art to make selections for the purpose of germplasm improvement activities.
  • the present Invention includes and provides a method for improving plant germplasm by accumulation of haplotypes of interest in a germplasm comprising determining haplotype windows in the genome, defining at least two haplotypes within those windows based on one or more polymorphic markers, and associating the haplotypes with their specific effects, and using the haplotype effect estimates to direct breeding decisions.
  • haplotype effect estimates can be derived using historical marker-trait associations or de novo from mapping populations.
  • the haplotype effect estimates for one or more traits provide the basis for making decisions in a breeding program.
  • This invention also provides an alternative basis for decision-making using breeding value calculations based on the estimated effect and frequency of haplotypes, within and between haplotype windows, in the germplasm.
  • Haplotype breeding values are used to rank a specified set of haplotypes, either within or across windows. Haplotype breeding values also provide the basis for ranking haplotypes, by evaluating the effect of fixing a haplotype by introgression or a transgenic event.
  • haplotype effect estimates and/or breeding values for one or more traits of interest provide the basis for determining one or more haplotypes of interest in comparisons of two or more haplotypes.
  • breeding selections are conducted on a haplotype, rather than marker, basis, wherein a first plant is crossed with a SECOND plant that contains at least one haplotype that is different from the first plant haplotype or haplotypes; and at least one progeny plant is selected by detecting the haplotype or set of haplotypes of the first plant, wherein the progeny plant comprises in its genome one or more haplotypes of interest of the first plant and at least one haplotype of interest of the second plant; and the progeny plant is used in activities related to germplasm improvement, non-limiting examples of which include line development, hybrid development, transgenic event selection, making breeding crosses, testing and advancing a plant through self fertilization, using plant or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plant or
  • the present invention includes a method for breeding of a crop plant, such as maize ( Zea mays ), soybean ( Glycine max ), cotton ( Gossypium hirsutum ), peanut ( Arachis hypogaea ), barley ( Hordeum vulgare ); oats ( Avena sativa ); orchard grass ( Dactylis glomerata ); rice ( Oryza sativa , including indica and japonica varieties); sorghum ( Sorghum bicolor ); sugar cane ( Saccharum sp); tall fescue ( Festuca arundinacea ); turfgrass species (e.g.
  • a crop plant such as maize ( Zea mays ), soybean ( Glycine max ), cotton ( Gossypium hirsutum ), peanut ( Arachis hypogaea ), barley ( Hordeum vulgare ); oats ( Avena sativa ); orchard grass ( Dactyl
  • oilseed crops include soybean, canola, oil seed rape, oil palm, sunflower, olive, corn, cottonseed, peanut, flaxseed, safflower, and coconut, with enhanced traits comprising at least one sequence of interest, further defined as conferring a preferred property selected from the group consisting of herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid,
  • Non-limiting examples of silage quality traits include brown midrib (BMR) traits, in vitro digestability of dry matter, leafiness, horny endosperm, crude protein, neutral detergent fiber, neutral detergent fiber digestability, starch content, starch availability, kernel texture, milk/ton, fat content of milk, readily available energy, soluble carbohydrate digestability, nonsoluble carbohydrate digestability, reduced phytate production, reduced waste production, and silage yield.
  • BMR brown midrib
  • Non-limiting examples of grain quality traits for biofuel yield include total biomass, fermentation yield, fermentation kinetics, total starch, extractable starch, starch morphology, phosphorous availability, waxy traits, glucose content, total oil content, germ oil content, endosperm oil content, fatty acid composition, kernel or seed morphology, amylose content, amylopectin content, protein composition and content (in particular, for end-use in animal feed following fractionation).
  • the present invention also provides for plants and parts thereof with compositions of preferred haplotypes as described herein.
  • FIG. 1 is an illustration depicting the 30 cM region resolved by high density fingerprinting that mapped to grain yield QTL on chromosome 4 in corn. Both favorable and unfavorable haplotypes were identified in this region, with the favorable haplotype corresponding to a 4.2 Bu/Acre advantage.
  • FIG. 2 depicts the marker fingerprint information for the inbreds with the favorable haplotype (5750 and 3323) and unfavorable haplotype (3140 and 90LDC2).
  • a third haplotype was identified in the two testers (7051 and WQDS7).
  • the markers shown in FIG. 3 were used to screen a corn germplasm set to determine the distribution of these three haplotypes and inform future breeding choices.
  • FIG. 3 is a flow chart illustrating the sequence of Automatic Model Picking (AMP), an algorithm that assists breeders with haplotype-based selection and, more specifically, enable pre-selection.
  • AMP Automatic Model Picking
  • polymorphism means the presence of one or more variations of a nucleic acid sequence at one or more loci in a population of one or more individuals. The variation may comprise but is not limited to one or more base changes, the insertion of one or more nucleotides or the deletion of one or more nucleotides.
  • a polymorphism includes a single nucleotide polymorphism (SNP), a simple sequence repeat (SSR) and indels, which are insertions and deletions.
  • a polymorphism may arise from random processes in nucleic acid replication, through mutagenesis, as a result of mobile genomic elements, from copy number variation and during the process of meiosis, such as unequal crossing over, genome duplication and chromosome breaks and fusions.
  • the variation can be commonly found or may exist at low frequency within a population, the former having greater utility in general plant breeding and the latter may be associated with rare but important phenotypic variation.
  • marker means a polymorphic nucleic acid sequence or nucleic acid feature.
  • a “polymorphism” is a variation among individuals in sequence, particularly in DNA sequence, or feature, such as a transcriptional profile or methylation pattern.
  • Useful polymorphisms include single nucleotide polymorphisms (SNPs), insertions or deletions in DNA sequence (Indels), simple sequence repeats of DNA sequence (SSRs) a restriction fragment length polymorphism, a haplotype, and a tag SNP.
  • a genetic marker, a gene, a DNA-derived sequence, a RNA-derived sequence, a promoter, a 5′ untranslated region of a gene, a 3′ untranslated region of a gene, microRNA, siRNA, a QTL, a satellite marker, a transgene, mRNA, ds mRNA, a transcriptional profile, and a methylation pattern may comprise polymorphisms.
  • a “marker” can be a detectable characteristic that can be used to discriminate between heritable differences between organisms.
  • Such characteristics may include genetic markers, protein composition, protein levels, oil composition, oil levels, carbohydrate composition, carbohydrate levels, fatty acid composition, fatty acid levels, amino acid composition, amino acid levels, biopolymers, pharmaceuticals, starch composition, starch levels, fermentable starch, fermentation yield, fermentation efficiency, energy yield, secondary compounds, metabolites, morphological characteristics, and agronomic characteristics.
  • marker assay means a method for detecting a polymorphism at a particular locus using a particular method, e.g. measurement of at least one phenotype (such as seed color, flower color, or other visually detectable trait), restriction fragment length polymorphism (RFLP), single base extension, electrophoresis, sequence alignment, allelic specific oligonucleotide hybridization (ASO), random amplified polymorphic DNA (RAPD), microarray-based technologies, and nucleic acid sequencing technologies, etc.
  • phenotype such as seed color, flower color, or other visually detectable trait
  • RFLP restriction fragment length polymorphism
  • ASO allelic specific oligonucleotide hybridization
  • RAPD random amplified polymorphic DNA
  • haplotype means a chromosomal region within a haplotype window defined by at least one polymorphic marker.
  • the unique marker fingerprint combinations in each haplotype window define individual haplotypes for that window.
  • changes in a haplotype, brought about by recombination for example may result in the modification of a haplotype so that it comprises only a portion of the original (parental) haplotype operably linked to the trait, for example, via physical linkage to a gene, QTL, or transgene. Any such change in a haplotype would be included in our definition of what constitutes a haplotype so long as the functional integrity of that genomic region is unchanged or improved.
  • haplotype window means a chromosomal region that is established by statistical analyses known to those of skill in the art and is in linkage disequilibrium. Thus, identity by state between two inbred individuals (or two gametes) at one or more marker loci located within this region is taken as evidence of identity-by-descent of the entire region.
  • Each haplotype window includes at least one polymorphic marker. Haplotype windows are mapped along each chromosome in the genome.
  • Haplotype windows are not fixed per se and, given the ever-increasing density of markers, this invention anticipates the number and size of haplotype windows to evolve, with the number of windows increasing and their respective sizes decreasing, thus resulting in an ever-increasing degree confidence in ascertaining identity by descent based on the identity by state at the marker loci.
  • genotype means the genetic component of the phenotype and it can be indirectly characterized using markers or directly characterized by nucleic acid sequencing. Suitable markers include a phenotypic character, a metabolic profile, a genetic marker, or some other type of marker.
  • a genotype may constitute an allele for at least one genetic marker locus or a haplotype for at least one haplotype window.
  • a genotype may represent a single locus and in others it may represent a genome-wide set of loci.
  • the genotype can reflect the sequence of a portion of a chromosome, an entire chromosome, a portion of the genome, and the entire genome.
  • phenotype means the detectable characteristics of a cell or organism which are a manifestation of gene expression.
  • haplotype effect estimate means a predicted effect estimate for a haplotype reflecting association with one or more phenotypic traits, wherein the associations can be made de novo or by leveraging historical haplotype-trait association data
  • breeding value means a calculation based on nucleic acid sequence effect estimates and nucleic acid sequence frequency values, the breeding value of a specific nucleic acid sequence relative to other nucleic acid sequences at the same locus (i.e., haplotype window), or across loci (i.e., haplotype windows), can also be determined. In other words, the change in population mean by fixing said nucleic acid sequence is determined.
  • breeding values provide the basis for comparing specific nucleic acid sequences for substitution effects. Also, in hybrid crops, the breeding value of nucleic acid sequences can be calculated in the context of the nucleic acid sequence in the tester used to produce the hybrid.
  • linkage refers to relative frequency at which types of gametes are produced in a cross. For example, if locus A has genes “A” or “a” and locus B has genes “B” or “b” and a cross between parent I with AABB and parent B with aabb will produce four possible gametes where the genes are segregated into AB, Ab, aB and ab. The null expectation is that there will be independent equal segregation into each of the four possible genotypes, i.e. with no linkage 1 ⁇ 4 of the gametes will of each genotype. Segregation of gametes into a genotypes differing from 1 ⁇ 4 are attributed to linkage.
  • linkage disequilibrium is defined in the context of the relative frequency of gamete types in a population of many individuals in a single generation. If the frequency of allele A is p, a is p′, B is q and b is q′, then the expected frequency (with no linkage disequilibrium) of genotype AB is pq, Ab is pq', aB is p′q and ab is p′q′. Any deviation from the expected frequency is called linkage disequilibrium. Two loci are said to be “genetically linked” when they are in linkage disequilibrium.
  • QTL quantitative trait locus
  • transgene means nucleic acid molecules in form of DNA, such as cDNA or genomic DNA, and RNA, such as mRNA or microRNA, which may be single or double stranded.
  • inbred means a line that has been bred for genetic homogeneity.
  • breeding methods to derive inbreds include pedigree breeding, recurrent selection, single-seed descent, backcrossing, and doubled haploids.
  • hybrid means a progeny of mating between at least two genetically dissimilar parents.
  • examples of mating schemes include single crosses, modified single cross, double modified single cross, three-way cross, modified three-way cross, and double cross, wherein at least one parent in a modified cross is the progeny of a cross between sister lines.
  • tester means a line used in a testcross with another line wherein the tester and the lines tested are from different germplasm pools.
  • a tester may be isogenic or nonisogenic.
  • corn means Zea mays or maize and includes all plant varieties that can be bred with corn, including wild maize species.
  • soybean means Glycine max and includes all plant varieties that can be bred with soybean, including wild soybean species.
  • canola means Brassica napus and B. campestris and includes all plant varieties than can be bred with canola, including wild Brassica species and other agricultural Brassica species.
  • elite line means any line that has resulted from breeding and selection for superior agronomic performance.
  • An elite plant is any plant from an elite line.
  • haplotypes are defined on the basis of one or more polymorphic markers within a given haplotype window, with haplotype windows being distributed throughout the crop's genome.
  • de novo and/or historical marker-phenotype association data are leveraged to infer haplotype effect estimates for one or more phenotypes for one or more of the haplotypes for a crop.
  • Haplotype effect estimates enable one skilled in the art to make breeding decisions by comparing haplotype effect estimates for two or more haplotypes.
  • Polymorphic markers, and respective map positions, of the present invention are provided in US Patent Applications 2005/0204780, 2005/0216545, 2005/0218305, and Ser. No. 11/504,538, which are incorporated herein by reference in their entirety.
  • haplotype effect estimates are coupled with haplotype frequency values to calculate a haplotype breeding value of a specific haplotype relative to other haplotypes at the same haplotype window, or across haplotype windows, for one or more phenotypic traits.
  • haplotype breeding values are used as a basis in comparing haplotypes for substitution effects.
  • the breeding value of haplotypes is calculated in the context of at least one haplotype in a tester used to produce a hybrid.
  • selection can be applied at one or more stages of a breeding program:
  • haplotype association study allows one to define the frequency and the type of the ancestral carrier haplotype.
  • An “association study” is a genetic experiment where one tests the level of departure from randomness between the segregation of alleles at one or more marker loci and the value of individual phenotype for one or more traits. Association studies can be done on quantitative or categorical traits, accounting or not for population structure and/or stratification.
  • associations between haplotypes and phenotypes for the determination of “haplotype effect estimates” can be conducted de novo, using mapping populations for the evaluation of one or more phenotypes, or using historical genotype and phenotype data.
  • a haplotype analysis is important in that it increases the statistical power of an analysis involving individual biallelic markers.
  • a haplotype frequency analysis the frequency of the possible haplotypes based on various combinations of the identified biallelic markers of the invention is determined.
  • the haplotype frequency is then compared for distinct populations and a reference population. In general, any method known in the art to test whether a trait and a genotype show a statistically significant correlation may be used.
  • Methods for determining the statistical significance of a correlation between a phenotype and a genotype, in this case a haplotype may be determined by any statistical test known in the art and with any accepted threshold of statistical significance being required. The application of particular methods and thresholds of significance are well within the skill of the ordinary practitioner of the art.
  • linkage disequilibrium is the level of departure from random association between two or more loci in a population and LD often persists over large chromosomal segments. Although it is possible for one to be concerned with the individual effect of each gene in the segment, for a practical plant breeding purpose the emphasis is typically on the average impact the region has for the trait(s) of interest when present in a line, hybrid or variety.
  • the amount of pair-wise LD is presented (using the r 2 statistic) against the distance in centiMorgan (cM, one hundredth of a Morgan, on average one recombination per meiosis, recombination is the result of the reciprocal exchange of chromatid segments between homologous chromosomes paired at meiosis, and it is usually observed through the association of alleles at linked loci from different grandparents in the progeny) between the markers for a reference germplasm set of 149 soybean elite US varieties and 1168 SNP loci (Table 1), and in 465 corn elite US inbreds and 1231 SNP loci (Table 2).
  • a 200 data points moving average curve is also drawn to indicate the presence of LD between loci as close as 5 cM.
  • Tables 1 and 2 illustrate the set of haplotype windows designated in the genomes of soy and corn, respectively. Also indicated is the set of polymorphic markers that define each window which resolve the haplotypes, based on marker fingerprint.
  • Corn inbreds were divided based on heterotic group: female and male, wherein germplasm used as females in hybrid crosses was developed from B73 and germplasm used as males in hybrid crosses was developed from Iodent.
  • females are most commonly used as the recipients of pollen from the males because the females typically produce higher quality ears which result in greater seed set for hybrid seed production; where as males are more commonly used as pollen donors because they are better pollen donors than ear producers.
  • Haplotype windows in the corn genome based on 465 elite lines and 1231 SNP markers. Haplotype windows in each chromosome are identified and the markers (disclosed in US Patent Applications 2005/0218305 and serial no. 11/504,538 which are incorporated herein by reference in their entirety) within each window are described.
  • haplotype windows in the soybean genome based on 149 elite lines and 1168 SNP markers.
  • Haplotype windows in each chromosome are identified and the markers (disclosed in US Patent Applications 2005/0204780 and 2005/0216545, incorporated herein by reference in their entirety) within each window are described.
  • a haplotype region is defined as a chromosome segment that persists over multiple generations of breeding and that is carried by one or more breeding lines.
  • a haplotype window is about 20 centiMorgans.
  • an exemplary haplotype window is about 1 to 5 centiMorgans or, in another example, even less than 1 centiMorgan. This segment is identified based on the one or more linked marker loci it contains, and the common haplotype identity at these loci in two lines gives a high degree of confidence of the identity by descent of the entire subjacent chromosome segment carried by these lines.
  • Markers are then grouped based on their proximity. This grouping may be arbitrary (e.g. “start from one end of the chromosome and include all markers that are within 10 cM of the first marker included in the segment, before starting the next segment”) or based on some statistical analysis (e.g. “define segment breakpoints based on LD patterns between adjacent loci”).
  • identity by state (IBS) at the marker locus is a good predictor of identity by descent (IBD) at the chromosomal region surrounding the marker locus.
  • IBD identity by descent
  • IBS identity by state
  • haplotype frequency is determined by simple counting if considering a set of inbred individuals.
  • estimation methods that employ computing techniques like the Expectation/Maximization (EM) algorithm are required if individuals genotyped are heterozygous at more than one locus in the segment and linkage phase is unknown (Excoffier et al. 1995 Mol. Biol. Evol. 12: 921-927; Li et al. 2002 Biostatistics).
  • EM Expectation/Maximization
  • a method based on the EM algorithm (Dempster et al. 1977 J. R. Stat. Soc. Ser. B 39:1-38) leading to maximum-likelihood estimates of haplotype frequencies under the assumption of Hardy-Weinberg proportions (random mating) is used (Excoffier et al. 1995 Mol. Biol. Evol. 12: 921-927).
  • Alternative approaches are known in the art that for association studies: genome-wide association studies, candidate region association studies and candidate gene association studies (Li et al. 2006 BMC Bioinformatics 7:258).
  • the polymorphic markers of the present invention may be incorporated in any map of genetic markers of a plant genome in order to perform genome-wide association studies.
  • the present invention comprises methods to detect an association between at least one haplotype in a crop plant and a preferred trait, including a transgene, or a multiple trait index and calculate a haplotype effect estimate based on this association.
  • the calculated haplotype effect estimates are used to make decisions in a breeding program.
  • the calculated haplotype effect estimates are used in conjunction with the frequency of the at least one haplotype to calculate a haplotype breeding value that will be used to make decisions in a breeding program.
  • a multiple trait index (MTI) is a numerical entity that is calculated through the combination of single trait values in a formula. Most often calculated as a linear combination of traits or normalized derivations of traits, it can also be the result of more sophisticated calculations (for example, use of ratios between traits). This MTI is used in genetic analysis as if it were a trait.
  • haplotype effect estimates are computed.
  • haplotype effect estimates For the reference soybean and corn germplasm sets, the haplotype effect estimates for a set of relevant traits are listed in Tables 3 and 4, respectively. These haplotype effect estimates form the basis of ranking haplotypes for the purpose of decision-making in a breeding program.
  • haplotypes are ranked using a haplotype breeding value calculation, based on the difference between the haplotype effect and the population mean, wherein the population mean is the summation of the products of each haplotype's frequency and effect estimate where haplotype frequencies are corrected based on the set of haplotypes included in the analysis.
  • the haplotype breeding value calculation is employed to determine the effect of fixing a new haplotype, as would be the case in germplasm introgression or a transgenic event.
  • any given chromosome segment can be represented in a given population by a number of haplotypes that can vary from 1 (region is fixed), to the size of the population times the ploidy level of that species (2 in a diploid species), in a population in which every chromosome has a different haplotype.
  • Identity-by-descent among haplotype carried by multiple individuals in a non-fixed population will result in an intermediate number of haplotype and possibly a differing frequency among the different haplotypes.
  • New haplotypes may arise through recombination at meiosis between existing haplotypes in heterozygous progenitors.
  • the frequency of each haplotype may be estimated by several means known to one versed in the art (e.g.
  • this breeding value corresponds to the change in mean for the trait(s) of interest of that population between its original state of haplotype distribution at the window and a final state at which haplotype “h i ” encounters itself at a frequency of 100%.
  • haplotype breeding value of h i in this population is calculated as:
  • haplotypes that are rare in the population in which effects are estimated tend to be less precisely estimated, this difference of confidence may lead to adjustment in the calculation. For example one can ignore the effects of rare haplotypes, by calculating breeding value of better known haplotype after adjusting the frequency of these (by dividing it by the sum of frequency of the better known haplotypes). One could also provide confidence intervals for the breeding value of each haplotypes.
  • the present invention provides methods and compositions to determine the distribution of superior, or preferred, haplotypes in a germplasm collection in order to inform decisions pertaining to breeding and germplasm improvement activities.
  • the following 230 Monsanto commercially released corn inbreds were fingerprinted: 01CWI6, 01DHD10, 01DHD16, 01DKD2, 01HFI3, 01HGI2, 01HGI4, 10IBH2, 01INL1, 01IUL6, 08DKS5, 08HAI5, 08SED1, 09DKD39A, 09DSQ1, 09DSS1, 09IDR9, 16IBL1, 16IDH1, 16IUL13, 16IUL2, 16IUL6, 16SEQ1, 17DHD16, 17DUD5, 17IFI2, 17IFI6, 17INI19, 17INI20, 17INI30, 17IVI7, 17QFB1, 18DHZ5, 19DAA1, 19DKS4, 19HGZ1, 1SF20790, 21GDM1_O, 22DHD11, 2MSBA7, 2OF32B52, 3112
  • the preferred haplotypes were determined on the basis of haplotype effect estimates for the following key phenotypic traits: yield, moisture, plant height, and test weight. For each trait, a list of preferred haplotypes was generated according to ascending criteria; for example, the best 50, the best 40, and so on to the best 5 haplotypes. This germplasm collection was then surveyed to determine the distribution of those haplotypes in elite inbreds.
  • preferred haplotypes are determined by evaluating trait ratios, given that certain phenotypic traits are negatively correlated with yield and, in corn, it is advantageous to select for positive yield and negative plant height or negative moisture.
  • Exemplary trait ratios include greater than 2 or less than zero, greater than 3 or less than zero, and so on, wherein yield is positive and either plant height or moisture is negative.
  • a preferred haplotype is one with a trait ratio of greater than 5 or less than zero (bu/acre:inches or bu/acre:% moisture, respectively), wherein yield is positive and either plant height or moisture is negative.
  • the following 485 preferred haplotypes were identified in female corn inbreds: 1240330, 1240341, 1240365, 1240373, 1240335, 1244963, 1244954, 1244998, 1245002, 1242131, 1242134, 1242136, 1245111, 1240904, 1240906, 1244818, 1244826, 1242719, 1242728, 1242731, 1242738, 1242720, 1242721, 1241220, 1241234, 1244641, 1244644, 1244657, 1244635, 1238977, 1238987, 1239022, 1239028, 1245360, 1245372, 1245362, 1245368, 1242928, 1242929, 1243964, 1240029, 1241366, 1241347, 1241350, 1243703, 1243714, 1243717, 1243724
  • the greatest number of said preferred yield-plant height trait ratio haplotypes occurring in a commercially released female inbred is 117, wherein the inbred is 83DIQ8 and the 117 preferred haplotypes are: 1239058, 1239068, 1239148, 1239210, 1239245, 1239271, 1239340, 1239353, 1239411, 1239490, 1239653, 1239846, 1239866, 1240029, 1240114, 1240175, 1240181, 1240263, 1240281, 1240415, 1240454, 1240484, 1240572, 1240596, 1240670, 1240679, 1240709, 1240800, 1240881, 1240906, 1240924, 1240935, 1241088, 1241099, 1241220, 1241447, 1241458, 1241471, 1241564, 1241580, 1241786, 1241818, 1241838,
  • the greatest number of said yield-moisture trait ratio preferred haplotypes occurring in commercially released female inbreds is 168, wherein the 168 preferred haplotypes in 87DUA5 are: 1238906, 1239022, 1239034, 1239062, 1239074, 1239147, 1239156, 1239247, 1239271, 1239320, 1239325, 1239335, 1239341, 1239365, 1239416, 1239542, 1239572, 1239653, 1239657, 1239748, 1239842, 1239870, 1239969, 1239976, 1239981, 1240029, 1240106, 1240109, 1240113, 1240246, 1240250, 1240259, 1240265, 1240335, 1240415, 1240419, 1240481, 1240598, 1240615, 1240666, 1240670, 1240676, 1240687,
  • the greatest number of said preferred yield-plant height trait ratio haplotypes occurring in a commercially released male inbred is 127, wherein the inbred is 5750 and the 127 preferred haplotypes are: 1238926, 1238983, 1239037, 1239059, 1239096, 1239147, 1239159, 1239244, 1239278, 1239313, 1239339, 1239405, 1239497, 1239536, 1239569, 1239573, 1239713, 1239740, 1239874, 1239987, 1240109, 1240176, 1240199, 1240241, 1240259, 1240280, 1240331, 1240421, 1240490, 1240575, 1240671, 1240707, 1240713, 1240723, 1240882, 1240902, 1240972, 1241036, 1241112, 1241159, 1241215, 1241430, 12414
  • the greatest number of said preferred yield-moisture trait ratio haplotypes occurring in a commercially released male inbred is 176, wherein the inbred is 19HGZ1 and the 176 preferred haplotypes are: 1238927, 1238986, 1239043, 1239059, 1239147, 1239172, 1239226, 1239246, 1239273, 1239315, 1239336, 1239357, 1239419, 1239532, 1239569, 1239666, 1239737, 1239750, 1239846, 1239856, 1239871, 1239981, 1240009, 1240031, 1240041, 1240109, 1240113, 1240117, 1240171, 1240174, 1240241, 1240252, 1240266, 1240289, 1240354, 1240424, 1240485, 1240574, 1240601, 1240617, 1240665, 1240669, 12406
  • the preferred haplotypes were determined on the basis of haplotype effect estimates for the following key phenotypic traits: yield, maturity, lodging, and plant height. For each trait, a list of preferred haplotypes was generated according to ascending criteria; for example, the best 50, the best 40, and so on to the best 5 haplotypes. This germplasm collection was then surveyed to determine the distribution of those haplotypes in elite varieties. The results for the commercially released soybean varieties evaluated for these four key phenotypic traits are summarized in Table 8. The commercially released soybean varieties containing the greatest number of preferred haplotypes known to this date to exist in nature are described in Table 9.
  • preferred haplotypes are determined by evaluating trait ratios, given that certain phenotypic traits are negatively correlated with yield and, in soybean, it is advantageous to select for positive yield and negative plant height or negative maturity.
  • Exemplary trait ratios include greater than 2 or less than zero, greater than 3 or less than zero, and so on, wherein yield is positive and either plant height or maturity is negative.
  • a preferred haplotype is one with a trait ratio of greater than 5 or less than zero (bu/acre:inches or bu/acre:days, respectively), wherein yield is positive and either plant height or maturity is negative.
  • the greatest number of said preferred haplotypes occurring in a commercially released soybean variety is 97, wherein the line is AG3802 and the 97 preferred haplotypes are: 1263544, 1263589, 1263620, 1263660, 1263665, 1263680, 1263701, 1263725, 1263775, 1263781, 1263805, 1263806, 1263825, 1263895, 1263968, 1263992, 1264050, 1264060, 1264068, 1264070, 1264150, 1264184, 1264189, 1264281, 1264332, 1264371, 1264391, 1264439, 1264446, 1264483, 1264531, 1264540, 1264557, 1264597, 1264624, 1264634, 1264700, 1264738, 1264766, 1264920, 1264942, and 1264953.
  • the greatest number of said preferred haplotypes occurring in commercially released soybean varieties is 63, wherein the 63 preferred haplotypes for A5547 are: 1261751, 1261810, 1261839, 1261857, 1261929, 1261948, 1262110, 1262151, 1262223, 1262241, 1262259, 1262384, 1262391, 1262410, 1262440, 1262505, 1262522, 1262620, 1262628, 1262773, 1262783, 1262829, 1263015, 1263027, 1263028, 1263041, 1263103, 1263157, 1263170, 1263191, 1263206, 1263273, 1263289, 1263297, 1263329, 1263377, 1263396, 1263403, 1263455, 1263543, 1263606, 1263630, 1263641, 1264049, 1264148, 1264161, 1264176, 12
  • a haplotype comprises at least one polymorphic marker. Changes in a haplotype, brought about by recombination for example, may result in the modification of a haplotype so that it comprises only a portion of the original (parental) haplotype operably linked to the trait, for example, via physical linkage to a gene, QTL, or transgene. Any such change in a haplotype would be included in our definition of what constitutes a haplotype so long as the functional integrity of that genomic region is unchanged or improved.
  • haplotype The functional integrity of a haplotype is considered to be unchanged if its haplotype effect estimate is not negative with respect to yield, or is not positive with respect to maturity, or is null with respect to maturity, or amongst the best 50 percent with respect to a phenotypic trait, transgene, and/or a multiple trait index when compared to any other haplotype at the same chromosome segment in a set of germplasm (breeding germplasm, breeding population, collection of elite inbred lines, population of random mating individuals, biparental cross), or amongst the best 50, percent with respect to a phenotypic trait, transgene, and/or a multiple trait index when compared to any other haplotype across the entire genome in a set of germplasm, or the haplotype being present with a frequency of 75 percent or more in a breeding population or a set of germplasm provides evidence of its high value, or any combination of these.
  • haplotype is defined as preferred if it is amongst the best 25 percent with respect to a phenotypic trait, transgene, and/or a multiple trait index when compared to any other haplotype across the entire genome in a set of germplasm, or the haplotype being present with a frequency of 75 percent or more in a breeding population or a set of germplasm provides evidence of its high value, or any combination of these.
  • a unique aspect of this invention is the combination of high-density fingerprinting to identify large segments of DNA, wherever they occur in a set of germplasm, as being indicative of the conservation of genetic identity of all intervening genes from a common progenitor.
  • conserved genetic segments, or haplotype windows are coincident with segments in which QTL have been identified it is possible to deduce with high probability that QTL inferences can be extrapolated to other germplasm having an identical haplotype in that haplotype window.
  • This a priori information provides the basis to select for favorable QTLs prior to QTL mapping within a given population.
  • plant breeding decisions could comprise:
  • haplotype windows are coincident with segments in which genes have been identified it is possible to deduce with high probability that gene inferences can be extrapolated to other germplasm having an identical genotype, or haplotype, in that haplotype window.
  • This a priori information provides the basis to select for favorable genes or gene alleles on the basis of haplotype identification within a given population.
  • plant breeding decisions could comprise:
  • the a priori information on the frequency of favorable haplotypes in breeding populations enables pre-selection. That is, the present invention provides methods for pre-selection, consisting of the selection of parental lines, based on historical haplotype-phenotype association information, for the purpose of driving favorable allele frequency for multiple traits simultaneously.
  • pre-selection breeders predict the phenotypic contribution for multiple traits of any line based on that line's fingerprint information, which corresponds to a composition of pre-defined haplotypes.
  • This multi-trait haplotype selection approach economizes a breeding program by initiating selection at the initial stage of choosing parental crosses and it also reduces the need for costly, time-consuming phenotyping of progeny.
  • a preferred haplotype provides a preferred property to a parent plant and to the progeny of the parent when selected by a marker means or phenotypic means.
  • the method of the present invention provides for selection of preferred haplotypes, or haplotypes of interest, and the accumulation of these haplotypes in a breeding population.
  • haplotypes and associations of haplotypes to one or more phenotypic traits provide the basis for making breeding decisions and germplasm improvement activities.
  • breeding decisions include progeny selection, parent selection, and recurrent selection for at least one haplotype.
  • breeding decisions relating to development of plants for commercial release comprise advancing plants for testing, advancing plants for purity, purification of sublines during development, inbred development, variety development, and hybrid development.
  • breeding decisions and germplasm improvement activities comprise transgenic event selection, making breeding crosses, testing and advancing a plant through self-fertilization, using plants or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plants or parts thereof for mutagenesis.
  • this invention enables indirect selection through selection decisions for at least one phenotype based on at least one numerical value that is correlated, either positively or negatively, with one or more other phenotypic traits. For example, a selection decision for any given haplotype effectively results in selection for multiple phenotypic traits that are associated with the haplotype.
  • nucleic acids underlying haplotypes of interest may be expressed in plant cells by operably linking them to a promoter functional in plants.
  • nucleic acids underlying haplotypes of interest may have their expression modified by double-stranded RNA-mediated gene suppression, also known as RNA interference (“RNAi”), which includes suppression mediated by small interfering RNAs (“siRNA”), trans-acting small interfering RNAs (“ta-siRNA”), or microRNAs (“miRNA”). Examples of RNAi methodology suitable for use in plants are described in detail in U.S. patent application publications 2006/0200878 and 2007/0011775.
  • Transformation methods for the introduction of expression units into plants are known in the art and include electroporation as illustrated in U.S. Pat. No. 5,384,253; microprojectile bombardment as illustrated in U.S. Pat. Nos. 5,015,580; 5,550,318; 5,538,880; 6,160,208; 6,399,861; and 6,403,865; protoplast transformation as illustrated in U.S. Pat. No. 5,508,184; and Agrobacterium-mediated transformation as illustrated in U.S. Pat. Nos. 5,635,055; 5,824,877; 5,591,616; 5,981,840; and 6,384,301.
  • Another preferred embodiment of the present invention is to build additional value by selecting a composition of haplotypes wherein each haplotype has a haplotype effect estimate that is not negative with respect to yield, or is not positive with respect to maturity, or is null with respect to maturity, or amongst the best 50 percent with respect to a phenotypic trait, transgene, and/or a multiple trait index when compared to any other haplotype at the same chromosome segment in a set of germplasm, or amongst the best 50 percent with respect to a phenotypic trait, transgene, and/or a multiple trait index when compared to any other haplotype across the entire genome in a set of germplasm, or the haplotype being present with a frequency of 75 percent or more in a breeding population or a set of germplasm provides evidence of its high value, or any combination of these.
  • This invention anticipates a stacking of haplotypes from multiple windows into plants or lines by crossing parent plants or lines containing different haplotype regions.
  • the value of the plant or line comprising in its genome stacked haplotype regions is estimated by a composite breeding value, which depends on a combination of the value of the traits and the value of the haplotype(s) to which the traits are linked.
  • the present invention further anticipates that the composite breeding value of a plant or line is improved by modifying the components of one or each of the haplotypes.
  • the present invention anticipates that additional value can be built into the composite breeding value of a plant or line by selection of at least one recipient haplotype with a preferred haplotype effect estimate or, in conjunction with the haplotype frequency, breeding value to which one or any of the other haplotypes are linked, or by selection of plants or lines for stacking haplotypes by breeding.
  • Genomic regions defined as haplotype windows include genetic information that contribute to one or more phenotypic traits of the plant. Variations in the genetic information at one or more loci can result in variation of one or more phenotypic traits, wherein the value of the phenotype can be measured.
  • the genetic mapping of the haplotype windows allows for a determination of linkage across haplotypes.
  • a haplotype of interest has a DNA sequence that is novel in the genome of the progeny plant and can in itself serve as a genetic marker for the haplotype of interest. Notably, this marker can also be used as an identifier for a gene or QTL.
  • haplotype of interest may provide a means to select for plants that have the linked haplotype region. Selection can be performed by screening for tolerance to an applied phytotoxic chemical, such as an herbicide or antibiotic, or to pathogen resistance. Selection may be performed using phenotypic selection means, such as, a morphological phenotype that is easy to observe such as seed color, seed germination characteristic, seedling growth characteristic, leaf appearance, plant architecture, plant height, and flower and fruit morphology.
  • the present invention also provides for the screening of progeny plants haplotypes of interest and using haplotype effect estimates as the basis for selection for use in a breeding program to enhance the accumulation of preferred haplotypes.
  • the method includes: a) providing a breeding population comprising at least two plants wherein the genome of the breeding population comprises a plurality of haplotype windows and each of the plurality of haplotype windows comprises at least one haplotype; and b) associating a haplotype effect estimate for one or more traits for two or more haplotypes from one or more of the plurality of haplotype windows, wherein the haplotype effect estimate can then be used to calculate a breeding value that is a function of the estimated effect for any given phenotypic trait and the frequency of each of the at least two haplotypes; and c) ranking one or more of the haplotypes on the basis of a value, wherein the value is a haplotype effect estimate, a haplotype frequency, or a breeding value and wherein the value is the basis for
  • the present invention contemplates that haplotypes of interest are selected from a large population of plants, and the selected haplotypes can have a synergistic breeding value in the germplasm of a crop plant. Additionally, this invention provides for using the selected haplotypes in the described breeding methods to accumulate other beneficial and preferred haplotype regions and to be maintained in a breeding population to enhance the overall germplasm of the crop plant.
  • Crop plants considered for use in the method include but are not limited to maize ( Zea mays ), soybean ( Glycine max ), cotton ( Gossypium hirsutum ), peanut ( Arachis hypogaea ), barley ( Hordeum vulgare ); oats ( Avena sativa ); orchard grass ( Dactylis glomerata ); rice ( Oryza sativa , including indica and japonica varieties); sorghum ( Sorghum bicolor ); sugar cane ( Saccharum sp); tall fescue ( Festuca arundinacea ); turfgrass species (e.g.
  • oilseed crops include soybean, canola, oil seed rape, oil palm, sunflower, olive, corn, cottonseed, peanut, flaxseed, safflower, and coconut.
  • Plants of the present invention can be part of or generated from a breeding program.
  • the choice of breeding method depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of cultivar used commercially (e.g., F 1 hybrid cultivar, pureline cultivar, etc).
  • a cultivar is a race or variety of a plant species that has been created or selected intentionally and maintained through cultivation.
  • a breeding program can be enhanced using marker assisted selection (MAS) on the progeny of any cross.
  • MAS marker assisted selection
  • nucleic acid markers of the present invention can be used in a MAS (breeding) program.
  • any commercial and non-commercial cultivars can be utilized in a breeding program. Factors such as, for example, emergence vigor, vegetative vigor, stress tolerance, disease resistance, branching, flowering, seed set, seed size, seed density, standability, and threshability etc. will generally dictate the choice.
  • breeding method can be used to transfer one or a few favorable genes for a highly heritable trait into a desirable cultivar. This approach has been used extensively for breeding disease-resistant cultivars. Various recurrent selection techniques are used to improve quantitatively inherited traits controlled by numerous genes.
  • Breeding lines can be tested and compared to appropriate standards in environments representative of the commercial target area(s) for two or more generations. The best lines are candidates for new commercial cultivars; those still deficient in traits may be used as parents to produce new populations for further selection.
  • hybrid seed can be produced by manual crosses between selected male-fertile parents or by using male sterility systems. Additional data on parental lines, as well as the phenotype of the hybrid, influence the breeder's decision whether to continue to with the specific hybrid cross.
  • Pedigree breeding and recurrent selection breeding methods can be used to develop cultivars from breeding populations. Breeding programs combine desirable traits from two or more cultivars or various broad-based sources into breeding pools from which cultivars are developed by selfing and selection of desired phenotypes. New cultivars can be evaluated to determine which have commercial potential.
  • Backcross breeding has been used to transfer genes for a simply inherited, highly heritable trait into a desirable homozygous cultivar or inbred line, which is the recurrent parent.
  • the source of the trait to be transferred is called the donor parent.
  • individuals possessing the phenotype of the donor parent are selected and repeatedly crossed (backcrossed) to the recurrent parent.
  • the resulting plant is expected to have most attributes of the recurrent parent (e.g., cultivar) and, in addition, the desirable trait transferred from the donor parent.
  • the single-seed descent procedure in the strict sense refers to planting a segregating population, harvesting a sample of one seed per plant, and using the one-seed sample to plant the next generation.
  • the plants from which lines are derived will each trace to different F 2 individuals.
  • the number of plants in a population declines each generation due to failure of some seeds to germinate or some plants to produce at least one seed. As a result, not all of the F 2 plants originally sampled in the population will be represented by a progeny when generation advance is completed.
  • DH plants provide an invaluable tool to plant breeders, particularly for generating inbred lines and quantitative genetics studies.
  • DH populations have been particularly useful in QTL mapping, cytoplasmic conversions, and trait introgression.
  • the initial step involves the haploidization of the plant which results in the production of a population comprising haploid seed.
  • Non-homozygous lines are crossed with an inducer parent, resulting in the production of haploid seed.
  • Seed that has a haploid embryo, but normal triploid endosperm advances to the second stage. That is, haploid seed and plants are any plant with a haploid embryo, independent of the ploidy level of the endosperm.
  • telomere doubling After selecting haploid seeds from the population, the selected seeds undergo chromosome doubling to produce doubled haploid seeds.
  • a spontaneous chromosome doubling in a cell lineage will lead to normal gamete production or the production of unreduced gametes from haploid cell lineages.
  • Application of a chemical compound, such as colchicine can be used to increase the rate of diploidization.
  • Colchicine binds to tubulin and prevents its polymerization into microtubules, thus arresting mitosis at metaphase, can be used to increase the rate of diploidization, i.e. doubling of the chromosome number
  • These chimeric plants are self-pollinated to produce diploid (doubled haploid) seed. This DH seed is cultivated and subsequently evaluated and used in hybrid testcross production.
  • the methods of the present invention can be used for breeding any non-human organism.
  • the methods of the present invention can be used in breeding mammals, such as mice, swine, and cattle, and birds, such as poultry livestock.
  • the methods of the present invention apply to any organism with a recombinant genome.
  • a key benefit of associating traits at the haplotype, rather than marker, level is the degree of resolution achieved.
  • An initial QTL analysis from two different breeding crosses projects (herein denoted 1 and 2) were yield tested at 8 locations.
  • a QTL was identified for grain yield on Chromosome 4 located approximately between 48 and 78 cM.
  • the estimated QTL effect was similar in magnitude (4.2 Bu/Acre) for both projects.
  • the genomic region from the inbred 5750 increased grain yield relative to the genomic region from the inbred 3140 when tested on the inbred 7051.
  • the genomic region from the inbred 3323 increased grain yield relative to the genomic region from the inbred 90LDC2 when tested on the inbred WQDS7.
  • the current breeding methodology uses this type of information (marker-QTL associations) to do recurrent selection within each population (project) independently.
  • haplotype rather than marker, based approach further resolved the QTL.
  • Examination of the high density fingerprint information reveals that the favorable inbreds (5750 and 3323) have the same haplotype for the entire 30 cM region based on 40 SNP markers in this region ( FIGS. 1 , 2 ).
  • the unfavorable inbreds (3140 and 90LDC2) have the same haplotype, but a different haplotype relative to the favorable inbreds.
  • the two testers WQDS7 and 7051
  • WQDS7 and 7051 also have the same haplotype, but it is a different variant from the favorable and unfavorable inbred haplotypes. Therefore, at the genetic level, the same genetic comparison was tested in both populations and resulted in the same relative value of the 2 different haplotypes being compared.
  • the hypothesized inference space can be expanded to include other lines that have the same haplotype. Searching the current database of lines in the reference germplasm that have high density SNP fingerprints ( FIG. 2 ), 4 other lines (2 have 1 SNP locus with a different genotype) are considered to have the same unfavorable haplotype, while 22 other potential testers have the same haplotypes (with one line have 1 SNP locus with a different genotype).
  • This new inference space defines the selection rules that could be applied to the breeding program within this set of germplasm.
  • a primary innovation of the present invention is the ability to simultaneously select for multiple traits and target regions throughout the genome. Furthermore, this invention leverages historical marker-phenotype information, enabling pre-selection.
  • a key aspect of predictive haplotype-assisted selection is the ability to rank haplotypes.
  • This example includes a subset of 10 preferred haplotypes, across 10 haplotype windows, for yield from elite temperate female corn inbreds that have been ranked using haplotype breeding value calculations.
  • the haplotype effect estimates for each of the haplotypes for six different phenotypic traits is shown in Table 10. This example illustrates the application of breeding values in decisions relating to germplasm improvement.
  • Haplotype window Haplotype YLD MST PHT TWT STLP RTLP 12953 1241745 1.352 0.2151 1.459 ⁇ 0.2599 0.2232 0.416 12982 1242692 0.9621 0.07775 0.03957 ⁇ 0.03569 ⁇ 0.06116 ⁇ 0.1129 12990 1242935 0.9671 0.04194 0.05432 ⁇ 0.02923 ⁇ 0.1668 0.1005 12996 1243070 1.155 0.0853 0.1127 ⁇ 0.03878 ⁇ 0.07303 ⁇ 0.06234 12999 1243137 1.07 0.06604 0.04864 ⁇ 0.1115 ⁇ 0.021 ⁇ 0.00063 13007 1243531 1.072 0.1053 0.2309 ⁇ 0.04918 0 ⁇ 0.09158 13015 1243877 1.264 0.07502 0.7479 ⁇ 0.02212 0.05377 0.
  • haplotype corresponds to answering the question: by how much will the mean of the germplasm change by changing the frequency of this haplotype from its current value to fixation? This depends on the effects and frequency of other haplotypes in the same window.
  • a correction factor needs to be used, which corresponds to the sum of frequencies of the haplotypes retained, and haplotype frequencies are adjusted by dividing them with this correction factor (Table 11).
  • Haplotype Corrected frequency in Correction haplotype Haplotype germplasm Factor frequency 1241745 0.017391 0.384783 0.045198 1242692 0.096774 0.75914 0.127479 1242935 0.262366 0.722581 0.363095 1243070 0.037118 0.473799 0.078341 1243137 0.078603 0.362445 0.216867 1243531 0.097614 0.295011 0.330882 1243877 0.0671 0.448052 0.149758 1244818 0.021786 0.400871 0.054348 1245282 0.04086 0.548387 0.07451 1245725 0.083691 0.461373 0.181395
  • the next step in ranking haplotypes is to calculate the haplotype breeding value by calculating the difference of the population mean and the haplotype effect estimate, wherein the population mean is the sum of the products of each haplotype's corrected frequency and estimated effect (Table 12).
  • the result listed in Table 13 represents the average effect of fixing that haplotype and the breeding value for each trait.
  • a weighted sum of breeding values for the multiple traits is obtained for each haplotype.
  • haplotype estimation pre-selection can be applied to a breeding program. This enables breeders, through marker-assisted selection on pre-determined significant haplotypes, to make genetic gain before new lines and breeding crosses are tested in the field. Breeders start pre-selection projects by selecting a list of crosses and building models based on the haplotypes carried by each parental line in the cross. One approach is to manually select haplotypes, but this hampers the breeders' ability to sort through a large number of possible crosses. There may also be inconsistencies in the way haplotypes are selected from cross to cross and there may be a need to restrain the choice of too many genomic regions in the model. For instance, if the model is too complex, predictive ability, and potential genetic gain, will likely be compromised.
  • AMP Automatic Model Picking
  • the first step is to establish the cutoff for significance for haplotypes for different traits.
  • the p-value for significance of the difference between the haplotypes from each parent at a window is calculated using an unpaired t test.
  • the next step is to establish the p-value cutoff as a pre-requisite for inclusion into the model.
  • the yield p-value cutoff is set as the lowest among all of the traits across all of the breeding populations (e.g., 0.15).
  • the p-value cutoff is determined based on the perceived weaknesses of any given breeding cross (e.g., when both parents of a breeding cross are know to have stalk problems, it is probably wise to include more haplotypes that are expected to increase stalk strength).
  • BLUP Best Linear Unbiased Predictions
  • the breeding cross BLUP is the weighted average of the parental w BLUPs (weighted according to the relative contribution of the parents to the cross: e.g., 50% for both parents of an F2, 25% and 75% for the donor and recurrent parents of a BC 1, respectively).
  • Each breeding cross is subsequently be compared to a population of breeding crosses based on the means and standard deviations of BLUP values for each trait in that population and, from this benchmarking, p-value cutoffs may be chosen (Tables 14 and 15).
  • Hybrid BLUP p value cutoff for Moisture.
  • Hybrid BLUP p value cutoff for test weight.
  • a major concern for breeders using selection models is the negative correlation between yield and other phenotypic traits, such as moisture and plant height.
  • This AMP strategy directly addresses this issue by using trait ratios that allow a breeder to simultaneously select for high yield and low moisture (or plant height).
  • the trait ratio is chosen to either exceed a certain level (e.g., 5 Bushels/acre for each additional percent of moisture) or be less than zero, which ensures higher yield and lower moisture (or plant height).
  • model complexity is estimated. If the model exceeds the complexity cutoff, the p-value cutoff is then decreased and the model is re-built; this cycle will be repeated until the model complexity is appropriate ( FIG. 3 ).
  • prediction capabilities improve and computational capabilities are enhanced, one skilled in the art can anticipate a greater number of haplotypes to be included in pre-selection models.
  • the full gain (at fixation for all favorable haplotypes) for each trait is calculated by adding half of the difference of haplotype effects across all of the selected haplotype windows.
  • the frequency-adjusted predicted gain is obtained based on the expected allele frequency once the pre-selection process is complete; as model complexity increases, the average frequency across selected haplotypes will decrease for a given pre-selection protocol. Based on frequency-adjusted predicted gain, an additional optimization step can be included to either increase or decrease the importance of secondary traits in the model.
  • This algorithm represents a powerful tool for breeders. Those skilled in the art can appreciate the benefits of a model selection tool that “self-corrects” for complexity, thus maintaining predictive ability. This type of tool is easily implemented in an existing computer-based breeding package that contains genotype, phenotype, and pedigree information for a set of germplasm.
  • the present invention provides haplotype information that enables a breeder to make informed breeding decisions.
  • the methods and compositions of the present invention enable the determination of the genotype of one or more plants, using markers underlying at least one haplotype window, and the resulting fingerprint is used to identify the haplotypic composition of the haplotype window which is subsequently associated with one or more haplotype effect estimates for one or more phenotypic traits as disclosed herein.
  • This information is valuable in decision-making for a breeder because it enables a selection decision to be based on estimated phenotype without having to phenotype the plant per se. Further, it is preferred to make decisions based on genotype rather than phenotype due the fact phenotype is influenced by multiple biotic and abiotic factors that can confound evaluation of any given trait and performance prediction.
  • one or more haplotypes are determined by genotyping one or more plants using markers for one or more haplotype windows.
  • the breeder is able to correspond the haplotypes with their respective haplotype effect estimates for one or more phenotypes of interest and make a decision based on the preferred haplotype. Plants comprising one or more preferred haplotypes are then advanced in the breeding program.
  • advancement decisions in line development breeding are traditionally made based on phenotype, wherein decisions are made between two or more plants showing segregation for one or more phenotypic traits.
  • An advantage of the present invention is the ability to make decisions based on haplotypes wherein a priori information is leveraged, enabling “predictive breeding.”
  • sublines are evaluated for segregation at one or more marker loci. Individuals segregating at one or more haplotype windows can be identified unambiguously using genotyping and, for any given haplotype window, individuals comprising the preferred haplotype are selected.
  • the selection decision is based on a haplotype effect estimate, a haplotype frequency, or a breeding value.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Biotechnology (AREA)
  • Physiology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mycology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

The present invention relates to breeding methods to enhance the germplasm of a plant. The methods describe the identification and accumulation of preferred haplotype genomic regions in the germplasm of breeding populations of maize (Zea mays) and soybean (Glycine max). The invention also relates to maize and soybean plants comprising preferred haplotypes.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. Provisional Application Ser. No. 60/837,864 (filed Aug. 15, 2006), which is incorporated herein by reference in its entirety.
  • FIELD OF THE INVENTION
  • This invention relates to the field of plant breeding, in particular to methods to facilitating informed germplasm improvement activities within a breeding program by defining haplotypes within pre-determined chromosomal windows within a genome and associating the haplotypes with haplotype effect estimates for one or more traits, wherein the associations can be made de novo or by leveraging historical marker-trait association data. Accordingly, the methods of the present invention enable decisions related to germplasm improvement activities to be made by ranking haplotypes based on numerical values, wherein the values represent the haplotype effect estimates, haplotype frequency, and/or breeding values. Herein, breeding values are calculated based on haplotype effect estimates and haplotype frequency, wherein the haplotype breeding value represents the effect of fixing a particular haplotype in a population, thus providing the basis for ranking haplotypes.
  • BACKGROUND OF THE INVENTION
  • Breeding has advanced from selection for economically important traits in plants and animals based on phenotypic records of an individual and its relatives to the application of molecular genetics to identify genomic regions that contain valuable genetic traits. Inclusion of genetic markers in breeding programs has accelerated the genetic accumulation of valuable traits into a germplasm compared to that achieved based on phenotypic data only. Herein, “germplasm” includes breeding germplasm, breeding populations, collection of elite inbred lines, populations of random mating individuals, and biparental crosses. Genetic marker alleles (an “allele” is an alternative sequence at a locus) are used to identify plants that contain a desired genotype at multiple loci, and that are expected to transfer the desired genotype, along with a desired phenotype to their progeny. Genetic marker alleles are used to identify plants that contain the desired genotype at one marker locus, several loci, or a haplotype, and that would be expected to transfer the desired genotype, along with a desired phenotype to their progeny. This process has been widely referenced and has served to greatly economize plant breeding by accelerating the fixation of advantageous alleles and also eliminating the need for phenotyping every generation.
  • Recent years have seen tremendous advances in the application of marker-assisted breeding techniques, on both the development of markers and the association of markers with phenotypes, or quantitative trait loci (QTL) mapping. Examples of DNA markers are Restriction Fragment Length Polymorphisms (RFLP), Amplified Fragment Length Polymorphisms (AFLP), Simple Sequence Repeats (SSR), Single Nucleotide Polymorphisms (SNP), Insertion/Deletion Polymorphisms (Indels), Variable Number Tandem Repeats (VNTR), and Random Amplified Polymorphic DNA (RAPD), and others known to those skilled in the art. Marker discovery and development in crops provides the initial framework for applications to marker-assisted breeding activities (U.S. Pat. No. 5,437,697; US Patent Applications 2005/0204780, 2005/0216545, 2005/0218305, and Ser. No. 11/504,538). The resulting “genetic map” is the representation of the relative position of characterized loci (DNA markers or any other locus for which alleles can be identified) along the chromosomes. The measure of distance on this map is relative to the frequency of crossover events between sister chromatids at meiosis. As a set, polyallelic markers serve as a useful tool for fingerprinting plants to inform the degree of identity of lines or varieties (U.S. Pat. No. 6,207,367). These markers form the basis for determining associations with phenotype and can be used to drive genetic gain. The implementation of marker-assisted selection is dependent on the ability to detect underlying genetic differences between individuals.
  • Because of ALLELIC differences in these molecular markers, QTL can be identified by statistical evaluation of the genotypes and phenotypes of segregating populations. Processes to map QTL are well-described (WO 90/04651; U.S. Pat. Nos. 5,492,547, 5,981,832, 6,455,758; reviewed in Flint-Garcia et al. 2003 Ann. Rev. Plant Biol. 54:357-374). Using markers to infer phenotype in these cases results in the economization of a breeding program by substitution of costly, time-intensive phenotyping with genotyping. Further, breeding programs can be designed to explicitly drive the frequency of specific, favorable phenotypes by targeting particular genotypes (U.S. Pat. No. 6,399,855). Fidelity of these associations may be monitored continuously to ensure maintained predictive ability and, thus, informed breeding decisions (US Patent Application 2005/0015827).
  • This process has evolved to the application of markers as a tool for the selection of “new and superior plants” via introgression of preferred genomic regions as determined by statistical analyses (U.S. Pat. No. 6,219,964). Marker-assisted introgression involves the transfer of a chromosomal region, defined by one or more markers, from one germplasm to a second germplasm. The initial step in that process is the localization of the genomic region or transgene by gene mapping, which is the process of determining the position of a gene or genomic region relative to other genes and genetic markers through linkage analysis. The basic principle for linkage mapping is that the closer together two genes are on a chromosome, the more likely they are to be inherited together. Briefly, a cross is generally made between two genetically compatible but divergent parents relative to the traits of interest. Genetic markers can then be used to follow the segregation of these traits in the progeny from the cross, often a backcross (BC1), F2, or recombinant inbred population.
  • It is well recognized that common QTL mapping procedures provide low resolution placement of inferred QTL loci on the genetic map (e.g., Buntjer et al. 2005 Trends Plant Sci. 10:466-471; Morgante et al. 2003 Curr. Op. Biotech. 14:214-219). This is attributable to two, basic underlying facts. First, QTL identification is a low-power activity, requiring that information from a large number of progeny be leveraged to achieve a significant confidence that any observed differences in the expression of a quantitative trait amongst classes of progeny must be due to linkage of a trait locus to the genetic marker that provided the basis for DIFFERENTIATING classes of progeny. Second, the progeny generation usually employed in QTL mapping is of relatively recent derivation from the F1 generation, the point where genetic mechanisms could first act to allow linked alleles to begin the slow approach to linkage EQUILIBRIUM. The consequence of these two facts is that identified QTL can be placed only with a reasonable confidence of existing within a segment of DNA as large as 20-30 cM.
  • Further, other limitations of traditional QTL mapping research include the fact that inferences are restricted to the particular parents of the mapping population and the genes or gene combinations of these parental varieties. There has long been interest in extrapolating the QTL inferences BEYOND the original mapping population in an attempt to leverage the genetic insight to broad sets of germplasm, including elite and unimproved germplasm sources. However, there are a number of biological reasons why such broad inferences are likely to be invalid (Paterson 1995 Genome Res. 5:321-333; Slate 2005 Mol. Ecol. 14:363-379; Breseghello et al. 2006 Crop Sci. 46:1323-1330), with the major limitation being the lack of knowledge of identity by descent at a specific genomic region (Bunter et al. 2005 Trends Plant Sci. 10:466-471).
  • It has long been recognized that genes and genomic sequences may be identical by state (i.e., identical by independent origins) or identical by descent (i.e., through historical inheritance from a common progenitor) which has tremendous bearing on studies of linkage disequilibrium and, ultimately, mapping studies (Nordberg et al. 2002 Trends Gen. 18:83-90). Historically, genetic markers were not appropriate for distinguishing identical in state or by descent. However, newer classes of markers, such as SNPs (single nucleotide polymorphisms), are more diagnostic of origin. The likelihood that a particular SNP allele is derived from independent origins in the extant populations of a particular species is very low. Polymorphisms occurring in linked genes are randomly assorted at a slow, but predictable rate, described by the decay of linkage disequilibrium or, alternatively, the approach of linkage equilibrium. Consequences of this well-established scientific discovery are that long stretches of coding DNA, defined by a specific combination of polymorphisms, are very unique and extremely improbable of existing in duplication except through linkage disequilibrium, which is indicative of recent co-ancestry from a common progenitor. The probability that a particular genomic region, as defined by some combination of alleles, indicates absolute identity of the entire intervening genetic sequence is dependent on the number of linked polymorphisms in this genomic region, barring the occurrence of recent mutations in the interval. Herein, such genomic regions are referred to as haplotype windows. Each haplotype within that window is defined by specific combinations of alleles; the greater the number of alleles, the greater the number of potential haplotypes, and the greater the certainty that identity by state is a result of identity by descent at that region. During the development of new lines, ancestral haplotypes are maintained through the process and are typically thought of as ‘linkage blocks’ that are inherited as a unit through a pedigree. Further, if a specific haplotype has a known effect, or phenotype, it is possible to extrapolate its effect in other lines with the same haplotype, as determined using one or more diagnostic markers for that haplotype window.
  • There have been contributions in the public domain around analyses to define haplotype blocks from a plurality of markers and the methodology is well known to anyone skilled in the art (e.g., U.S. Pat. No. 6,844,154; U.S. Pat. No. 6,909,971; U.S. Pat. No. 6,920,398; U.S. Pat. No. 6,969,589; U.S. Pat. No. 7,041,447). In human populations, statistical analyses, such as association studies, have been employed to determine haplotype-phenotype associations, which is useful for informing clinical decisions (Li et al. 2006 BMC Bioinformatics 7:258; U.S. Pat. No. 6,931,326; U.S. Pat. No. 6,969,589). In mice, the resolution of haplotype structure (Frazer et al. 2004 Genome Res. 14:1493-1500; Wiltshire et al. 2003 Proc. Natl. Acad. Sci. 100:3380-3385) has also enabled enhanced QTL mapping for inbred lines (Pletcher et al. 2004 PLoS Biol. 2:e393; McClurg et al. 2006 BMC Bioinformatics 7:61).
  • The present invention allows researchers to address the biological limitations of known methods of QTL mapping and incorporates pedigree information such that the invention enables an improved approach to predictive breeding, based on both an improved approach to traditional QTL mapping coupled with high density fingerprinting. This combination of information allows the correspondence of the deductive inferences about linkage between marker alleles and phenotype with the ability to reliably predict where the same parental linkages exist elsewhere in the germplasm pool. Thus, the present invention provides a means to predict across a broad group of germplasm, comprising multiple populations, where the prior inferences of genotype-phenotype associations are applicable. Further, the present invention allows such inferences to be made for multiple traits, a key feature lacking in previous inventions.
  • In another aspect, there is a need in the art of plant breeding to identify haplotypes beyond the context of specific traits or regions. In the present invention, haplotype windows are defined across the genome in order to enable comparisons between two or more haplotypes within and between windows, wherein the haplotypes are associated with one or more traits to establish an estimated effect. As a result, haplotypes associated with improved performance with respect to an phenotypic trait or multiple traits are targeted for selection and it is possible to then select for these genomic regions simultaneously. Assessing haplotypes at a genome level generates a greater density of haplotypes and facilitates the identification of preferred haplotypes that might be overlooked with smaller-scale haplotype analyses. Herein, the traits may be nontransgenic or transgenic in nature.
  • The present invention allows one skilled in the art to estimate haplotype effects using associations, based on historical data or de novo mapping, between genetic markers and one or more phenotypic traits. In conjunction with haplotype frequencies, haplotype effect estimates can also be used to calculate haplotype breeding values for a group of haplotypes. In the context of a specified set of haplotypes, a calculated set of breeding values can be used to ranking haplotypes both within and between windows. In the context of evaluating the effect of substituting a specific region in the genome, either by introgression or a transgenic event, haplotype breeding values provide for comparing haplotypes across windows for substitution effects. Both rankings of haplotype effects and breeding values allow one skilled in the art to make selections for the purpose of germplasm improvement activities.
  • SUMMARY OF THE INVENTION
  • The present Invention includes and provides a method for improving plant germplasm by accumulation of haplotypes of interest in a germplasm comprising determining haplotype windows in the genome, defining at least two haplotypes within those windows based on one or more polymorphic markers, and associating the haplotypes with their specific effects, and using the haplotype effect estimates to direct breeding decisions. These haplotype effect estimates can be derived using historical marker-trait associations or de novo from mapping populations. The haplotype effect estimates for one or more traits provide the basis for making decisions in a breeding program. This invention also provides an alternative basis for decision-making using breeding value calculations based on the estimated effect and frequency of haplotypes, within and between haplotype windows, in the germplasm. Haplotype breeding values are used to rank a specified set of haplotypes, either within or across windows. Haplotype breeding values also provide the basis for ranking haplotypes, by evaluating the effect of fixing a haplotype by introgression or a transgenic event.
  • In the present invention, haplotype effect estimates and/or breeding values for one or more traits of interest provide the basis for determining one or more haplotypes of interest in comparisons of two or more haplotypes. With this a priori information, breeding selections are conducted on a haplotype, rather than marker, basis, wherein a first plant is crossed with a SECOND plant that contains at least one haplotype that is different from the first plant haplotype or haplotypes; and at least one progeny plant is selected by detecting the haplotype or set of haplotypes of the first plant, wherein the progeny plant comprises in its genome one or more haplotypes of interest of the first plant and at least one haplotype of interest of the second plant; and the progeny plant is used in activities related to germplasm improvement, non-limiting examples of which include line development, hybrid development, transgenic event selection, making breeding crosses, testing and advancing a plant through self fertilization, using plant or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plant or parts thereof for mutagenesis.
  • The present invention includes a method for breeding of a crop plant, such as maize (Zea mays), soybean (Glycine max), cotton (Gossypium hirsutum), peanut (Arachis hypogaea), barley (Hordeum vulgare); oats (Avena sativa); orchard grass (Dactylis glomerata); rice (Oryza sativa, including indica and japonica varieties); sorghum (Sorghum bicolor); sugar cane (Saccharum sp); tall fescue (Festuca arundinacea); turfgrass species (e.g. species: Agrostis stolonifera, Poa pratensis, Stenotaphrum secundatum); wheat (Triticum aestivum), and alfalfa (Medicago sativa), members of the genus Brassica, broccoli, cabbage, carrot, cauliflower, Chinese cabbage, cucumber, dry bean, eggplant, fennel, garden beans, gourd, leek, lettuce, melon, okra, onion, pea, pepper, pumpkin, radish, spinach, squash, sweet corn, tomato, watermelon, ornamental plants, and other fruit, vegetable, tuber, oilseed, and root crops, wherein oilseed crops include soybean, canola, oil seed rape, oil palm, sunflower, olive, corn, cottonseed, peanut, flaxseed, safflower, and coconut, with enhanced traits comprising at least one sequence of interest, further defined as conferring a preferred property selected from the group consisting of herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, increased nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, other phenotypic traits, traits for industrial uses, or traits for improved consumer appeal, wherein the traits may be nontransgenic or transgenic.
  • Non-limiting examples of silage quality traits include brown midrib (BMR) traits, in vitro digestability of dry matter, leafiness, horny endosperm, crude protein, neutral detergent fiber, neutral detergent fiber digestability, starch content, starch availability, kernel texture, milk/ton, fat content of milk, readily available energy, soluble carbohydrate digestability, nonsoluble carbohydrate digestability, reduced phytate production, reduced waste production, and silage yield.
  • Non-limiting examples of grain quality traits for biofuel yield include total biomass, fermentation yield, fermentation kinetics, total starch, extractable starch, starch morphology, phosphorous availability, waxy traits, glucose content, total oil content, germ oil content, endosperm oil content, fatty acid composition, kernel or seed morphology, amylose content, amylopectin content, protein composition and content (in particular, for end-use in animal feed following fractionation).
  • The present invention also provides for plants and parts thereof with compositions of preferred haplotypes as described herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present teachings in any way.
  • FIG. 1 is an illustration depicting the 30 cM region resolved by high density fingerprinting that mapped to grain yield QTL on chromosome 4 in corn. Both favorable and unfavorable haplotypes were identified in this region, with the favorable haplotype corresponding to a 4.2 Bu/Acre advantage.
  • FIG. 2 depicts the marker fingerprint information for the inbreds with the favorable haplotype (5750 and 3323) and unfavorable haplotype (3140 and 90LDC2). A third haplotype was identified in the two testers (7051 and WQDS7). The markers shown in FIG. 3 were used to screen a corn germplasm set to determine the distribution of these three haplotypes and inform future breeding choices.
  • FIG. 3 is a flow chart illustrating the sequence of Automatic Model Picking (AMP), an algorithm that assists breeders with haplotype-based selection and, more specifically, enable pre-selection.
  • DETAILED DESCRIPTION
  • The definitions and methods provided define the present invention and guide those of ordinary skill in the art in the practice of the present invention. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. Definitions of common terms in molecular biology may also be found in Rieger et al., Glossary of Genetics: Classical and Molecular, 5th edition, Springer-Verlag: New York, 1991; and Lewin, Genes V, Oxford University Press: New York, 1994. The nomenclature for DNA bases as set forth at 37 CFR §1.822 is used.
  • As used herein, “polymorphism” means the presence of one or more variations of a nucleic acid sequence at one or more loci in a population of one or more individuals. The variation may comprise but is not limited to one or more base changes, the insertion of one or more nucleotides or the deletion of one or more nucleotides. A polymorphism includes a single nucleotide polymorphism (SNP), a simple sequence repeat (SSR) and indels, which are insertions and deletions. A polymorphism may arise from random processes in nucleic acid replication, through mutagenesis, as a result of mobile genomic elements, from copy number variation and during the process of meiosis, such as unequal crossing over, genome duplication and chromosome breaks and fusions. The variation can be commonly found or may exist at low frequency within a population, the former having greater utility in general plant breeding and the latter may be associated with rare but important phenotypic variation.
  • As used herein, “marker” means a polymorphic nucleic acid sequence or nucleic acid feature. A “polymorphism” is a variation among individuals in sequence, particularly in DNA sequence, or feature, such as a transcriptional profile or methylation pattern. Useful polymorphisms include single nucleotide polymorphisms (SNPs), insertions or deletions in DNA sequence (Indels), simple sequence repeats of DNA sequence (SSRs) a restriction fragment length polymorphism, a haplotype, and a tag SNP. A genetic marker, a gene, a DNA-derived sequence, a RNA-derived sequence, a promoter, a 5′ untranslated region of a gene, a 3′ untranslated region of a gene, microRNA, siRNA, a QTL, a satellite marker, a transgene, mRNA, ds mRNA, a transcriptional profile, and a methylation pattern may comprise polymorphisms. In a broader aspect, a “marker” can be a detectable characteristic that can be used to discriminate between heritable differences between organisms. Examples of such characteristics may include genetic markers, protein composition, protein levels, oil composition, oil levels, carbohydrate composition, carbohydrate levels, fatty acid composition, fatty acid levels, amino acid composition, amino acid levels, biopolymers, pharmaceuticals, starch composition, starch levels, fermentable starch, fermentation yield, fermentation efficiency, energy yield, secondary compounds, metabolites, morphological characteristics, and agronomic characteristics.
  • As used herein, “marker assay” means a method for detecting a polymorphism at a particular locus using a particular method, e.g. measurement of at least one phenotype (such as seed color, flower color, or other visually detectable trait), restriction fragment length polymorphism (RFLP), single base extension, electrophoresis, sequence alignment, allelic specific oligonucleotide hybridization (ASO), random amplified polymorphic DNA (RAPD), microarray-based technologies, and nucleic acid sequencing technologies, etc.
  • As used herein, the term “haplotype” means a chromosomal region within a haplotype window defined by at least one polymorphic marker. The unique marker fingerprint combinations in each haplotype window define individual haplotypes for that window. Further, changes in a haplotype, brought about by recombination for example, may result in the modification of a haplotype so that it comprises only a portion of the original (parental) haplotype operably linked to the trait, for example, via physical linkage to a gene, QTL, or transgene. Any such change in a haplotype would be included in our definition of what constitutes a haplotype so long as the functional integrity of that genomic region is unchanged or improved.
  • As used herein, the term “haplotype window” means a chromosomal region that is established by statistical analyses known to those of skill in the art and is in linkage disequilibrium. Thus, identity by state between two inbred individuals (or two gametes) at one or more marker loci located within this region is taken as evidence of identity-by-descent of the entire region. Each haplotype window includes at least one polymorphic marker. Haplotype windows are mapped along each chromosome in the genome. Haplotype windows are not fixed per se and, given the ever-increasing density of markers, this invention anticipates the number and size of haplotype windows to evolve, with the number of windows increasing and their respective sizes decreasing, thus resulting in an ever-increasing degree confidence in ascertaining identity by descent based on the identity by state at the marker loci.
  • As used herein, “genotype” means the genetic component of the phenotype and it can be indirectly characterized using markers or directly characterized by nucleic acid sequencing. Suitable markers include a phenotypic character, a metabolic profile, a genetic marker, or some other type of marker. A genotype may constitute an allele for at least one genetic marker locus or a haplotype for at least one haplotype window. In some embodiments, a genotype may represent a single locus and in others it may represent a genome-wide set of loci. In another embodiment, the genotype can reflect the sequence of a portion of a chromosome, an entire chromosome, a portion of the genome, and the entire genome.
  • As used herein, “phenotype” means the detectable characteristics of a cell or organism which are a manifestation of gene expression.
  • As used herein, “haplotype effect estimate” means a predicted effect estimate for a haplotype reflecting association with one or more phenotypic traits, wherein the associations can be made de novo or by leveraging historical haplotype-trait association data
  • As used herein, “breeding value” means a calculation based on nucleic acid sequence effect estimates and nucleic acid sequence frequency values, the breeding value of a specific nucleic acid sequence relative to other nucleic acid sequences at the same locus (i.e., haplotype window), or across loci (i.e., haplotype windows), can also be determined. In other words, the change in population mean by fixing said nucleic acid sequence is determined. In addition, in the context of evaluating the effect of substituting a specific region in the genome, either by introgression or a transgenic event, breeding values provide the basis for comparing specific nucleic acid sequences for substitution effects. Also, in hybrid crops, the breeding value of nucleic acid sequences can be calculated in the context of the nucleic acid sequence in the tester used to produce the hybrid.
  • As used herein, “linkage” refers to relative frequency at which types of gametes are produced in a cross. For example, if locus A has genes “A” or “a” and locus B has genes “B” or “b” and a cross between parent I with AABB and parent B with aabb will produce four possible gametes where the genes are segregated into AB, Ab, aB and ab. The null expectation is that there will be independent equal segregation into each of the four possible genotypes, i.e. with no linkage ¼ of the gametes will of each genotype. Segregation of gametes into a genotypes differing from ¼ are attributed to linkage.
  • As used herein, “linkage disequilibrium” is defined in the context of the relative frequency of gamete types in a population of many individuals in a single generation. If the frequency of allele A is p, a is p′, B is q and b is q′, then the expected frequency (with no linkage disequilibrium) of genotype AB is pq, Ab is pq', aB is p′q and ab is p′q′. Any deviation from the expected frequency is called linkage disequilibrium. Two loci are said to be “genetically linked” when they are in linkage disequilibrium.
  • As used herein, “quantitative trait locus (QTL)” means a locus that controls to some degree numerically representable traits that are usually continuously distributed.
  • As used herein, the term “transgene” means nucleic acid molecules in form of DNA, such as cDNA or genomic DNA, and RNA, such as mRNA or microRNA, which may be single or double stranded.
  • As used herein, the term “inbred” means a line that has been bred for genetic homogeneity. Without limitation, examples of breeding methods to derive inbreds include pedigree breeding, recurrent selection, single-seed descent, backcrossing, and doubled haploids.
  • As used herein, the term “hybrid” means a progeny of mating between at least two genetically dissimilar parents. Without limitation, examples of mating schemes include single crosses, modified single cross, double modified single cross, three-way cross, modified three-way cross, and double cross, wherein at least one parent in a modified cross is the progeny of a cross between sister lines.
  • As used herein, the term “tester” means a line used in a testcross with another line wherein the tester and the lines tested are from different germplasm pools. A tester may be isogenic or nonisogenic.
  • As used herein, the term “corn” means Zea mays or maize and includes all plant varieties that can be bred with corn, including wild maize species.
  • As used herein, the term “soybean” means Glycine max and includes all plant varieties that can be bred with soybean, including wild soybean species.
  • As used herein, the term “canola” means Brassica napus and B. campestris and includes all plant varieties than can be bred with canola, including wild Brassica species and other agricultural Brassica species.
  • As used herein, the term “elite line” means any line that has resulted from breeding and selection for superior agronomic performance. An elite plant is any plant from an elite line.
  • In the present invention, haplotypes are defined on the basis of one or more polymorphic markers within a given haplotype window, with haplotype windows being distributed throughout the crop's genome. In another aspect, de novo and/or historical marker-phenotype association data are leveraged to infer haplotype effect estimates for one or more phenotypes for one or more of the haplotypes for a crop. Haplotype effect estimates enable one skilled in the art to make breeding decisions by comparing haplotype effect estimates for two or more haplotypes. Polymorphic markers, and respective map positions, of the present invention are provided in US Patent Applications 2005/0204780, 2005/0216545, 2005/0218305, and Ser. No. 11/504,538, which are incorporated herein by reference in their entirety.
  • In yet another aspect, haplotype effect estimates are coupled with haplotype frequency values to calculate a haplotype breeding value of a specific haplotype relative to other haplotypes at the same haplotype window, or across haplotype windows, for one or more phenotypic traits. In other words, the change in population mean by fixing the haplotype is determined. In still another aspect, in the context of evaluating the effect of substituting a specific region in the genome, either by introgression or a transgenic event, haplotype breeding values are used as a basis in comparing haplotypes for substitution effects. Further, in hybrid crops, the breeding value of haplotypes is calculated in the context of at least one haplotype in a tester used to produce a hybrid. Once the value of haplotypes at a given haplotype window are determined and high density fingerprinting information is available on specific varieties or lines, selection can be applied to these genomic regions using at least one marker in the at least one haplotype.
  • In the present invention, selection can be applied at one or more stages of a breeding program:
  • a) Among genetically distinct populations, herein defined as “breeding populations,” as a pre-selection method to increase the selection index and drive the frequency of favorable haplotypes among breeding populations, wherein pre-selection is defined as selection among populations based on at least one haplotype for use as parents in breeding crosses, and leveraging of marker-trait association identified in previous breeding crosses.
  • b) Among segregating progeny from a breeding population, to increase the frequency of the favorable haplotypes for the purpose of line or variety development.
  • c) Among segregating progeny from a breeding population, to increase the frequency of the favorable haplotypes prior to QTL mapping within this breeding population.
  • d) For hybrid crops, among parental lines from different heterotic groups to predict the performance potential of different hybrids.
  • Conversely, mapping can be performed based on haplotypes, versus markers alone (Fan et al. 2006 Genetics). A haplotype is a segment of DNA in the genome of an organism that is assumed to be identical by descent for different individuals when the knowledge of identity by state at one or more loci is the same in the different individuals, and that the regional amount of linkage disequilibrium in the vicinity of that segment on the physical or genetic map is high. A haplotype can be tracked through populations and its statistical association with a given trait can be analyzed. By searching the target space for a QTL association across multiple QTL mapping populations that have parental lines with genomic regions that are identical by descent, the effective population size associated with QTL mapping is increased. The increased sample size results in more recombinant progeny which increases the precision of estimating the QTL position.
  • Thus, a haplotype association study allows one to define the frequency and the type of the ancestral carrier haplotype. An “association study” is a genetic experiment where one tests the level of departure from randomness between the segregation of alleles at one or more marker loci and the value of individual phenotype for one or more traits. Association studies can be done on quantitative or categorical traits, accounting or not for population structure and/or stratification. In the present invention, associations between haplotypes and phenotypes for the determination of “haplotype effect estimates” can be conducted de novo, using mapping populations for the evaluation of one or more phenotypes, or using historical genotype and phenotype data.
  • A haplotype analysis is important in that it increases the statistical power of an analysis involving individual biallelic markers. In a first stage of a haplotype frequency analysis, the frequency of the possible haplotypes based on various combinations of the identified biallelic markers of the invention is determined. The haplotype frequency is then compared for distinct populations and a reference population. In general, any method known in the art to test whether a trait and a genotype show a statistically significant correlation may be used.
  • Methods for determining the statistical significance of a correlation between a phenotype and a genotype, in this case a haplotype, may be determined by any statistical test known in the art and with any accepted threshold of statistical significance being required. The application of particular methods and thresholds of significance are well within the skill of the ordinary practitioner of the art.
  • In plant breeding populations, linkage disequilibrium (LD) is the level of departure from random association between two or more loci in a population and LD often persists over large chromosomal segments. Although it is possible for one to be concerned with the individual effect of each gene in the segment, for a practical plant breeding purpose the emphasis is typically on the average impact the region has for the trait(s) of interest when present in a line, hybrid or variety.
  • In the present invention, the amount of pair-wise LD is presented (using the r2 statistic) against the distance in centiMorgan (cM, one hundredth of a Morgan, on average one recombination per meiosis, recombination is the result of the reciprocal exchange of chromatid segments between homologous chromosomes paired at meiosis, and it is usually observed through the association of alleles at linked loci from different grandparents in the progeny) between the markers for a reference germplasm set of 149 soybean elite US varieties and 1168 SNP loci (Table 1), and in 465 corn elite US inbreds and 1231 SNP loci (Table 2). A 200 data points moving average curve is also drawn to indicate the presence of LD between loci as close as 5 cM. Tables 1 and 2 illustrate the set of haplotype windows designated in the genomes of soy and corn, respectively. Also indicated is the set of polymorphic markers that define each window which resolve the haplotypes, based on marker fingerprint. Corn inbreds were divided based on heterotic group: female and male, wherein germplasm used as females in hybrid crosses was developed from B73 and germplasm used as males in hybrid crosses was developed from Iodent. Female inbreds, herein referred to as “females,” and male inbreds, herein referred to as “males,” when mated with one another create hybrid vigor. In hybrid corn production, females are most commonly used as the recipients of pollen from the males because the females typically produce higher quality ears which result in greater seed set for hybrid seed production; where as males are more commonly used as pollen donors because they are better pollen donors than ear producers.
  • TABLE 1
    Characterization of haplotype windows in the corn genome based on 465
    elite lines and 1231 SNP markers. Haplotype windows in each chromosome are identified
    and the markers (disclosed in US Patent Applications 2005/0218305 and serial no.
    11/504,538 which are incorporated herein by reference in their entirety) within each
    window are described.
    HAPLOTYPE MARKER START END
    CHROMOSOME WINDOW ID MARKER NAME ORDER POSITION POSITION POSITION
    1 13051 Q-NC0111829 1 0.3 0.3 2.6
    1 13051 Q-NC0110465 2 0.9 0.3 2.6
    1 13051 Q-NC0024027 3 1 0.3 2.6
    1 13051 Q-NC0015697 4 1.4 0.3 2.6
    1 13051 Q-NC0002640 5 2.6 0.3 2.6
    1 13051 Q-NC0021554 6 2.6 0.3 2.6
    1 13051 Q-NC0021713 7 2.6 0.3 2.6
    1 13037 Q-NC0019086 1 5.7 5.7 10.3
    1 13037 Q-NC0033261 2 5.8 5.7 10.3
    1 13037 Q-NC0147181 3 6.7 5.7 10.3
    1 13037 Q-NC0147202 4 6.7 5.7 10.3
    1 13037 Q-NC0148452 5 6.7 5.7 10.3
    1 13037 Q-NC0111443 6 10.3 5.7 10.3
    1 13016 Q-NC0043992 1 13.2 13.2 13.2
    1 13031 Q-NC0154927 1 18.5 18.5 23
    1 13031 Q-NC0036199 2 20.6 18.5 23
    1 13031 Q-NC0043185 3 22.6 18.5 23
    1 13031 Q-NC0068027 4 23 18.5 23
    1 12941 Q-NC0001369 1 24.3 24.3 27.6
    1 12941 Q-NC0110473 2 24.6 24.3 27.6
    1 12941 Q-NC0025418 3 26.4 24.3 27.6
    1 12941 Q-NC0147302 4 27.6 24.3 27.6
    1 12886 Q-NC0028164 1 30.1 30.1 34.5
    1 12886 Q-NC0105051 2 31.4 30.1 34.5
    1 12886 Q-NC0107227 3 34.1 30.1 34.5
    1 12886 Q-NC0003563 4 34.5 30.1 34.5
    1 13047 Q-NC0038710 1 43.8 43.8 46
    1 13047 Q-NC0036685 2 45.8 43.8 46
    1 13047 Q-NC0029694 3 46 43.8 46
    1 12911 Q-NC0003429 1 49.5 49.5 51.3
    1 12911 Q-NC0052741 2 49.5 49.5 51.3
    1 12911 Q-NC0049734 3 49.9 49.5 51.3
    1 12911 Q-NC0000524 4 50.3 49.5 51.3
    1 12911 Q-NC0004409 5 50.3 49.5 51.3
    1 12911 Q-NC0043571 6 50.3 49.5 51.3
    1 12911 Q-NC0038720 7 50.5 49.5 51.3
    1 12911 Q-NC0148102 8 50.5 49.5 51.3
    1 12911 Q-NC0009213 9 51.3 49.5 51.3
    1 12911 Q-NC0035417 10 51.3 49.5 51.3
    1 12921 Q-NC0105076 1 54.1 54.1 58.4
    1 12921 Q-NC0105856 2 54.8 54.1 58.4
    1 12921 Q-NC0152452 3 56.8 54.1 58.4
    1 12921 Q-NC0113273 4 58.2 54.1 58.4
    1 12921 Q-NC0078549 5 58.4 54.1 58.4
    1 12921 Q-NC0080697 6 58.4 54.1 58.4
    1 13050 Q-NC0042173 1 60.2 60.2 60.2
    1 12909 Q-NC0029329 1 65.8 65.8 70.2
    1 12909 Q-NC0039205 2 65.8 65.8 70.2
    1 12909 Q-NC0039840 3 65.8 65.8 70.2
    1 12909 Q-NC0000116 4 66 65.8 70.2
    1 12909 Q-NC0009159 5 66 65.8 70.2
    1 12909 Q-NC0040189 6 66.4 65.8 70.2
    1 12909 Q-NC0004442 7 67.7 65.8 70.2
    1 12909 Q-NC0057022 8 70.1 65.8 70.2
    1 12909 Q-NC0014299 9 70.2 65.8 70.2
    1 12909 Q-NC0033819 10 70.2 65.8 70.2
    1 13065 Q-NC0018320 1 72.4 72.4 75.4
    1 13065 Q-NC0018281 2 72.5 72.4 75.4
    1 13065 Q-NC0009578 3 73.5 72.4 75.4
    1 13065 Q-NC0104670 4 73.7 72.4 75.4
    1 13065 Q-NC0146543 5 73.7 72.4 75.4
    1 13065 Q-NC0155962 6 73.7 72.4 75.4
    1 13065 Q-NC0016876 7 74.9 72.4 75.4
    1 13065 Q-NC0039067 8 75.4 72.4 75.4
    1 13066 Q-NC0039812 1 77.8 77.8 82.1
    1 13066 Q-NC0105022 2 79.5 77.8 82.1
    1 13066 Q-NC0077749 3 79.6 77.8 82.1
    1 13066 Q-NC0077750 4 79.6 77.8 82.1
    1 13066 Q-NC0110365 5 81.9 77.8 82.1
    1 13066 Q-NC0009449 6 82 77.8 82.1
    1 13066 Q-NC0033372 7 82 77.8 82.1
    1 13066 Q-NC0105925 8 82.1 77.8 82.1
    1 13066 Q-NC0113462 9 82.1 77.8 82.1
    1 12964 Q-NC0148156 1 83.2 83.2 84.6
    1 12964 Q-NC0033533 2 84.3 83.2 84.6
    1 12964 Q-NC0036506 3 84.6 83.2 84.6
    1 12964 Q-NC0043559 4 84.6 83.2 84.6
    1 13070 Q-NC0111854 1 91.4 91.4 96.4
    1 13070 Q-NC0035579 2 94.5 91.4 96.4
    1 13070 Q-NC0019256 3 96.4 91.4 96.4
    1 12929 Q-NC0025863 1 96.7 96.7 101.6
    1 12929 Q-NC0069524 2 99.9 96.7 101.6
    1 12929 Q-NC0016873 3 101 96.7 101.6
    1 12929 Q-NC0015205 4 101.5 96.7 101.6
    1 12929 Q-NC0109095 5 101.6 96.7 101.6
    1 13056 Q-NC0057735 1 102.5 102.5 103.7
    1 13056 Q-NC0011522 2 103.1 102.5 103.7
    1 13056 Q-NC0005280 3 103.2 102.5 103.7
    1 13056 Q-NC0053351 4 103.3 102.5 103.7
    1 13056 Q-NC0153831 5 103.5 102.5 103.7
    1 13056 Q-NC0028351 6 103.7 102.5 103.7
    1 13056 Q-NC0038741 7 103.7 102.5 103.7
    1 13056 Q-NC0039702 8 103.7 102.5 103.7
    1 13056 Q-NC0066981 9 103.7 102.5 103.7
    1 13056 Q-NC0069188 10 103.7 102.5 103.7
    1 12985 Q-NC0043901 1 104.2 104.2 109.2
    1 12985 Q-NC0005215 2 104.8 104.2 109.2
    1 12985 Q-NC0008984 3 105.5 104.2 109.2
    1 12985 Q-NC0110353 4 105.5 104.2 109.2
    1 12985 Q-NC0014644 5 107.8 104.2 109.2
    1 12985 Q-NC0029829 6 108 104.2 109.2
    1 12985 Q-NC0107044 7 108 104.2 109.2
    1 12985 Q-NC0144090 8 108.6 104.2 109.2
    1 12985 Q-NC0111828 9 109.2 104.2 109.2
    1 12938 Q-NC0053983 1 109.4 109.4 113.6
    1 12938 Q-NC0113263 2 110.1 109.4 113.6
    1 12938 Q-NC0008901 3 110.8 109.4 113.6
    1 12938 Q-NC0143254 4 110.9 109.4 113.6
    1 12938 Q-NC0030198 5 111 109.4 113.6
    1 12938 Q-NC0080733 6 111 109.4 113.6
    1 12938 Q-NC0104474 7 111 109.4 113.6
    1 12938 Q-NC0033728 8 113.3 109.4 113.6
    1 12938 Q-NC0029506 9 113.6 109.4 113.6
    1 12861 Q-NC0002688 1 114.6 114.6 118.8
    1 12861 Q-NC0060430 2 114.8 114.6 118.8
    1 12861 Q-NC0004176 3 116.3 114.6 118.8
    1 12861 Q-NC0106144 4 116.3 114.6 118.8
    1 12861 Q-NC0145573 5 116.3 114.6 118.8
    1 12861 Q-NC0050366 6 118.7 114.6 118.8
    1 12861 Q-NC0039351 7 118.8 114.6 118.8
    1 12861 Q-NC0143864 8 118.8 114.6 118.8
    1 12861 Q-NC0146461 9 118.8 114.6 118.8
    1 13081 Q-NC0107701 1 121 121 126
    1 13081 Q-NC0035132 2 121.5 121 126
    1 13081 Q-NC0036448 3 124.4 121 126
    1 13081 Q-NC0034627 4 126 121 126
    1 13081 Q-NC0035547 5 126 121 126
    1 13081 Q-NC0039531 6 126 121 126
    1 12989 Q-NC0111780 1 126.1 126.1 130.7
    1 12989 Q-NC0107077 2 130.7 126.1 130.7
    1 13018 Q-NC0111987 1 132.8 132.8 137.4
    1 13018 Q-NC0108768 2 132.9 132.8 137.4
    1 13018 Q-NC0008719 3 137.1 132.8 137.4
    1 13018 Q-NC0154883 4 137.4 132.8 137.4
    1 13091 Q-NC0024096 1 145.2 145.2 146.1
    1 13091 Q-NC0155887 2 145.3 145.2 146.1
    1 13091 Q-NC0023774 3 146.1 145.2 146.1
    1 12895 Q-NC0147024 1 153.2 153.2 154.5
    1 12895 Q-NC0107621 2 153.5 153.2 154.5
    1 12895 Q-NC0012090 3 154.5 153.2 154.5
    1 12940 Q-NC0036863 1 159.8 159.8 164
    1 12940 Q-NC0041280 2 161.4 159.8 164
    1 12940 Q-NC0050719 3 161.4 159.8 164
    1 12940 Q-NC0081537 4 161.4 159.8 164
    1 12940 Q-NC0111027 5 161.4 159.8 164
    1 12940 Q-NC0111052 6 162.2 159.8 164
    1 12940 Q-NC0109328 7 162.9 159.8 164
    1 12940 Q-NC0042754 8 164 159.8 164
    1 13011 Q-NC0033373 1 166.5 166.5 171.5
    1 13011 Q-NC0070305 2 166.5 166.5 171.5
    1 13011 Q-NC0021568 3 167.1 166.5 171.5
    1 13011 Q-NC0070702 4 167.1 166.5 171.5
    1 13011 Q-NC0038475 5 168.3 166.5 171.5
    1 13011 Q-NC0004453 6 169.3 166.5 171.5
    1 13011 Q-NC0009626 7 169.6 166.5 171.5
    1 13011 Q-NC0113254 8 170.7 166.5 171.5
    1 13011 Q-NC0072095 9 171.5 166.5 171.5
    1 12866 Q-NC0069565 1 172.1 172.1 176.9
    1 12866 Q-NC0105648 2 172.2 172.1 176.9
    1 12866 Q-NC0067728 3 173.7 172.1 176.9
    1 12866 Q-NC0109882 4 174.1 172.1 176.9
    1 12866 Q-NC0004981 5 174.6 172.1 176.9
    1 12866 Q-NC0036410 6 175.6 172.1 176.9
    1 12866 Q-NC0034903 7 175.9 172.1 176.9
    1 12866 Q-NC0069344 8 176.9 172.1 176.9
    1 12971 Q-NC0108030 1 179.2 179.2 183.9
    1 12971 Q-NC0027567 2 179.4 179.2 183.9
    1 12971 Q-NC0040039 3 180.6 179.2 183.9
    1 12971 Q-NC0016724 4 180.8 179.2 183.9
    1 12971 Q-NC0106296 5 181 179.2 183.9
    1 12971 Q-NC0004909 6 182.1 179.2 183.9
    1 12971 Q-NC0005098 7 183.9 179.2 183.9
    1 12998 Q-NC0032240 1 185.3 185.3 185.3
    1 13046 Q-NC0039502 1 195.5 195.5 200
    1 13046 Q-NC0111626 2 196.4 195.5 200
    1 13046 Q-NC0008982 3 198.4 195.5 200
    1 13046 Q-NC0031993 4 199.4 195.5 200
    1 13046 Q-NC0040427 5 199.4 195.5 200
    1 13046 Q-NC0033427 6 199.8 195.5 200
    1 13046 Q-NC0148362 7 200 195.5 200
    1 13015 Q-NC0113311 1 201.5 201.5 205.9
    1 13015 Q-NC0016674 2 202.2 201.5 205.9
    1 13015 Q-NC0035891 3 202.2 201.5 205.9
    1 13015 Q-NC0066464 4 202.2 201.5 205.9
    1 13015 Q-NC0147205 5 202.2 201.5 205.9
    1 13015 Q-NC0013584 6 204.4 201.5 205.9
    1 13015 Q-NC0111792 7 205.8 201.5 205.9
    1 13015 Q-NC0031264 8 205.9 201.5 205.9
    1 12878 Q-NC0035961 1 206.7 206.7 208.9
    1 12878 Q-NC0039896 2 207.6 206.7 208.9
    1 12878 Q-NC0009701 3 207.9 206.7 208.9
    1 12878 Q-NC0014038 4 207.9 206.7 208.9
    1 12878 Q-NC0016059 5 207.9 206.7 208.9
    1 12878 Q-NC0039486 6 207.9 206.7 208.9
    1 12878 Q-NC0153437 7 207.9 206.7 208.9
    1 12878 Q-NC0110452 8 208.9 206.7 208.9
    1 12880 Q-NC0009082 1 212.7 212.7 212.7
    1 12992 Q-NC0015344 1 221.1 221.1 221.1
    1 12923 Q-NC0111218 1 229.4 229.4 229.4
    1 13045 Q-NC0146570 1 237 237 240.7
    1 13045 Q-NC0008996 2 238.1 237 240.7
    1 13045 Q-NC0013490 3 240.7 237 240.7
    1 12910 Q-NC0030840 1 245.1 245.1 245.1
    1 12945 Q-NC0002635 1 254.8 254.8 256.5
    1 12945 Q-NC0016137 2 256.3 254.8 256.5
    1 12945 Q-NC0005177 3 256.5 254.8 256.5
    2 12905 Q-NC0031064 1 2.9 2.9 7
    2 12905 Q-NC0009867 2 3.3 2.9 7
    2 12905 Q-NC0015766 3 7 2.9 7
    2 12882 Q-NC0005133 1 9.7 9.7 10.1
    2 12882 Q-NC0009766 2 10.1 9.7 10.1
    2 13012 Q-NC0033786 1 15.2 15.2 19.7
    2 13012 Q-NC0104447 2 15.2 15.2 19.7
    2 13012 Q-NC0106295 3 15.2 15.2 19.7
    2 13012 Q-NC0143411 4 15.4 15.2 19.7
    2 13012 Q-NC0106352 5 15.8 15.2 19.7
    2 13012 Q-NC0106678 6 18.3 15.2 19.7
    2 13012 Q-NC0082235 7 19.7 15.2 19.7
    2 12879 Q-NC0003388 1 27.5 27.5 30.7
    2 12879 Q-NC0076912 2 27.5 27.5 30.7
    2 12879 Q-NC0002814 3 27.9 27.5 30.7
    2 12879 Q-NC0024116 4 28.3 27.5 30.7
    2 12879 Q-NC0002945 5 30.7 27.5 30.7
    2 12879 Q-NC0016074 6 30.7 27.5 30.7
    2 12968 Q-NC0080031 1 33.1 33.1 35.9
    2 12968 Q-NC0080035 2 33.1 33.1 35.9
    2 12968 Q-NC0004265 3 33.9 33.1 35.9
    2 12968 Q-NC0050315 4 34 33.1 35.9
    2 12968 Q-NC0019127 5 35.5 33.1 35.9
    2 12968 Q-NC0009706 6 35.9 33.1 35.9
    2 12884 Q-NC0107479 1 42.3 42.3 46.8
    2 12884 Q-NC0109140 2 44.8 42.3 46.8
    2 12884 Q-NC0048553 3 46.8 42.3 46.8
    2 13042 Q-NC0078243 1 48.8 48.8 48.8
    2 12893 Q-NC0020105 1 64.6 64.6 68.5
    2 12893 Q-NC0106391 2 65.8 64.6 68.5
    2 12893 Q-NC0002812 3 65.9 64.6 68.5
    2 12893 Q-NC0080704 4 68.5 64.6 68.5
    2 12893 Q-NC0080705 5 68.5 64.6 68.5
    2 13032 Q-NC0009364 1 71.6 71.6 74.8
    2 13032 Q-NC0032200 2 71.6 71.6 74.8
    2 13032 Q-NC0004697 3 74.8 71.6 74.8
    2 13032 Q-NC0104946 4 74.8 71.6 74.8
    2 13054 Q-NC0042242 1 77 77 81.8
    2 13054 Q-NC0015022 2 77.3 77 81.8
    2 13054 Q-NC0111617 3 78.2 77 81.8
    2 13054 Q-NC0036323 4 80.4 77 81.8
    2 13054 Q-NC0148248 5 81.4 77 81.8
    2 13054 Q-NC0153250 6 81.8 77 81.8
    2 12927 Q-NC0016297 1 85 85 89.6
    2 12927 Q-NC0110133 2 85 85 89.6
    2 12927 Q-NC0011466 3 86.2 85 89.6
    2 12927 Q-NC0049430 4 87.7 85 89.6
    2 12927 Q-NC0105002 5 88.6 85 89.6
    2 12927 Q-NC0108493 6 88.6 85 89.6
    2 12927 Q-NC0146518 7 89.4 85 89.6
    2 12927 Q-NC0104479 8 89.6 85 89.6
    2 12932 Q-NC0053463 1 93.1 93.1 94.7
    2 12932 Q-NC0027319 2 93.2 93.1 94.7
    2 12932 Q-NC0021092 3 93.4 93.1 94.7
    2 12932 Q-NC0107090 4 93.4 93.1 94.7
    2 12932 Q-NC0057604 5 94 93.1 94.7
    2 12932 Q-NC0005467 6 94.3 93.1 94.7
    2 12932 Q-NC0105696 7 94.3 93.1 94.7
    2 12932 Q-NC0082768 8 94.4 93.1 94.7
    2 12932 Q-NC0146130 9 94.6 93.1 94.7
    2 12932 Q-NC0019874 10 94.7 93.1 94.7
    2 13004 Q-NC0002468 1 94.9 94.9 99.2
    2 13004 Q-NC0032601 2 94.9 94.9 99.2
    2 13004 Q-NC0013347 3 96 94.9 99.2
    2 13004 Q-NC0079826 4 96 94.9 99.2
    2 13004 Q-NC0060879 5 97.7 94.9 99.2
    2 13004 Q-NC0000066 6 98.3 94.9 99.2
    2 13004 Q-NC0107911 7 99.2 94.9 99.2
    2 13004 Q-NC0107948 8 99.2 94.9 99.2
    2 13071 Q-NC0106729 1 100.2 100.2 103.9
    2 13071 Q-NC0106407 2 101.3 100.2 103.9
    2 13071 Q-NC0112226 3 101.5 100.2 103.9
    2 13071 Q-NC0112229 4 101.5 100.2 103.9
    2 13071 Q-NC0108607 5 102.1 100.2 103.9
    2 13071 Q-NC0153941 6 102.1 100.2 103.9
    2 13071 Q-NC0053097 7 102.6 100.2 103.9
    2 13071 Q-NC0107736 8 102.8 100.2 103.9
    2 13071 Q-NC0000551 9 103.6 100.2 103.9
    2 13071 Q-NC0059782 10 103.9 100.2 103.9
    2 12865 Q-NC0057210 1 104.1 104.1 107.6
    2 12865 Q-NC0000366 2 104.9 104.1 107.6
    2 12865 Q-NC0151288 3 107.6 104.1 107.6
    2 12949 Q-NC0082458 1 112.4 112.4 116.7
    2 12949 Q-NC0031289 2 114.8 112.4 116.7
    2 12949 Q-NC0108013 3 115.3 112.4 116.7
    2 12949 Q-NC0111475 4 115.7 112.4 116.7
    2 12949 Q-NC0044080 5 116.7 112.4 116.7
    2 12907 Q-NC0022775 1 118.1 118.1 120.4
    2 12907 Q-NC0104954 2 120.4 118.1 120.4
    2 12907 Q-NC0107850 3 120.4 118.1 120.4
    2 12988 Q-NC0084632 1 124.1 124.1 128.8
    2 12988 Q-NC0084633 2 124.6 124.1 128.8
    2 12988 Q-NC0000069 3 125.1 124.1 128.8
    2 12988 Q-NC0082265 4 125.8 124.1 128.8
    2 12988 Q-NC0109393 5 127.1 124.1 128.8
    2 12988 Q-NC0029138 6 127.6 124.1 128.8
    2 12988 Q-NC0147676 7 127.6 124.1 128.8
    2 12988 Q-NC0040472 8 128.8 124.1 128.8
    2 12988 Q-NC0041850 9 128.8 124.1 128.8
    2 13087 Q-NC0009102 1 130 130 130
    2 13087 Q-NC0024089 2 130 130 130
    2 12873 Q-NC0009818 1 136.5 136.5 141.4
    2 12873 Q-NC0105556 2 139.5 136.5 141.4
    2 12873 Q-NC0031474 3 141.4 136.5 141.4
    2 13022 Q-NC0002878 1 145.1 145.1 147.6
    2 13022 Q-NC0005088 2 147.6 145.1 147.6
    2 13043 Q-NC0035297 1 150.7 150.7 151.1
    2 13043 Q-NC0155994 2 151.1 150.7 151.1
    2 12891 Q-NC0019267 1 157.5 157.5 157.5
    2 13027 Q-NC0043579 1 163.8 163.8 167.3
    2 13027 Q-NC0147548 2 163.8 163.8 167.3
    2 13027 Q-NC0005214 3 164.3 163.8 167.3
    2 13027 Q-NC0014467 4 167.3 163.8 167.3
    2 12947 Q-NC0003241 1 169.8 169.8 174.2
    2 12947 Q-NC0008930 2 174.2 169.8 174.2
    2 12947 Q-NC0029041 3 174.2 169.8 174.2
    2 13062 Q-NC0023748 1 181.9 181.9 185.5
    2 13062 Q-NC0104359 2 182.5 181.9 185.5
    2 13062 Q-NC0035238 3 185.5 181.9 185.5
    2 13062 Q-NC0110974 4 185.5 181.9 185.5
    2 12997 Q-NC0107149 1 190.1 190.1 191.5
    2 12997 Q-NC0076792 2 190.8 190.1 191.5
    2 12997 Q-NC0011740 3 190.9 190.1 191.5
    2 12997 Q-NC0000735 4 191.5 190.1 191.5
    2 12997 Q-NC0077782 5 191.5 190.1 191.5
    3 12904 Q-NC0020971 1 13.9 13.9 18.5
    3 12904 Q-NC0106389 2 14.2 13.9 18.5
    3 12904 Q-NC0002719 3 18.5 13.9 18.5
    3 12870 Q-NC0008911 1 19.9 19.9 24.6
    3 12870 Q-NC0051614 2 19.9 19.9 24.6
    3 12870 Q-NC0106276 3 20 19.9 24.6
    3 12870 Q-NC0104528 4 24.6 19.9 24.6
    3 12946 Q-NC0048700 1 31.3 31.3 31.3
    3 12919 Q-NC0032137 1 40.2 40.2 40.6
    3 12919 Q-NC0019963 2 40.6 40.2 40.6
    3 13084 Q-NC0000423 1 49.9 49.9 54.4
    3 13084 Q-NC0106329 2 53.9 49.9 54.4
    3 13084 Q-NC0004821 3 54.4 49.9 54.4
    3 12897 Q-NC0049293 1 69.9 69.9 69.9
    3 13036 Q-NC0108727 1 77.4 77.4 77.4
    3 12996 Q-NC0004599 1 82.9 82.9 83.5
    3 12996 Q-NC0021154 2 82.9 82.9 83.5
    3 12996 Q-NC0147768 3 82.9 82.9 83.5
    3 12996 Q-NC0028923 4 83.1 82.9 83.5
    3 12996 Q-NC0147511 5 83.1 82.9 83.5
    3 12996 Q-NC0024631 6 83.2 82.9 83.5
    3 12996 Q-NC0105291 7 83.2 82.9 83.5
    3 12996 Q-NC0106515 8 83.2 82.9 83.5
    3 12996 Q-NC0110326 9 83.2 82.9 83.5
    3 12996 Q-NC0021190 10 83.5 82.9 83.5
    3 13007 Q-NC0010220 1 83.6 83.6 88
    3 13007 Q-NC0012017 2 85.7 83.6 88
    3 13007 Q-NC0008685 3 86.5 83.6 88
    3 13007 Q-NC0143268 4 86.5 83.6 88
    3 13007 Q-NC0016729 5 86.8 83.6 88
    3 13007 Q-NC0145322 6 87.1 83.6 88
    3 13007 Q-NC0002207 7 87.9 83.6 88
    3 13007 Q-NC0009468 8 88 83.6 88
    3 12913 Q-NC0031647 1 89.5 89.5 94.5
    3 12913 Q-NC0144001 2 91.9 89.5 94.5
    3 12913 Q-NC0040104 3 92.2 89.5 94.5
    3 12913 Q-NC0106440 4 92.3 89.5 94.5
    3 12913 Q-NC0035187 5 93.9 89.5 94.5
    3 12913 Q-NC0039003 6 94 89.5 94.5
    3 12913 Q-NC0146158 7 94 89.5 94.5
    3 12913 Q-NC0039785 8 94.5 89.5 94.5
    3 12913 Q-NC0082153 9 94.5 89.5 94.5
    3 12913 Q-NC0082160 10 94.5 89.5 94.5
    3 12982 Q-NC0146230 1 96.2 96.2 100.6
    3 12982 Q-NC0008900 2 97.6 96.2 100.6
    3 12982 Q-NC0010933 3 99.3 96.2 100.6
    3 12982 Q-NC0031720 4 99.7 96.2 100.6
    3 12982 Q-NC0107671 5 100.6 96.2 100.6
    3 13092 Q-NC0009739 1 102.2 102.2 106.3
    3 13092 Q-NC0022590 2 104 102.2 106.3
    3 13092 Q-NC0104504 3 104 102.2 106.3
    3 13092 Q-NC0013092 4 105.4 102.2 106.3
    3 13092 Q-NC0108089 5 106.3 102.2 106.3
    3 13038 Q-NC0154505 1 109.3 109.3 112.4
    3 13038 Q-NC0154509 2 109.3 109.3 112.4
    3 13038 Q-NC0154511 3 109.3 109.3 112.4
    3 13038 Q-NC0155689 4 109.3 109.3 112.4
    3 13038 Q-NC0155708 5 109.3 109.3 112.4
    3 13038 Q-NC0153431 6 110.6 109.3 112.4
    3 13038 Q-NC0144126 7 111.6 109.3 112.4
    3 13038 Q-NC0055894 8 112.4 109.3 112.4
    3 13038 Q-NC0144823 9 112.4 109.3 112.4
    3 13038 Q-NC0145616 10 112.4 109.3 112.4
    3 12948 Q-NC0024395 1 116 116 120.6
    3 12948 Q-NC0079081 2 117.1 116 120.6
    3 12948 Q-NC0111959 3 117.6 116 120.6
    3 12948 Q-NC0023890 4 119.5 116 120.6
    3 12948 Q-NC0106349 5 120.6 116 120.6
    3 12942 Q-NC0002905 1 123.9 123.9 128.2
    3 12942 Q-NC0009173 2 124.2 123.9 128.2
    3 12942 Q-NC0011320 3 124.2 123.9 128.2
    3 12942 Q-NC0144788 4 125.7 123.9 128.2
    3 12942 Q-NC0008922 5 128.2 123.9 128.2
    3 12990 Q-NC0040232 1 139.8 139.8 141
    3 12990 Q-NC0031450 2 139.9 139.8 141
    3 12990 Q-NC0015954 3 141 139.8 141
    3 12990 Q-NC0034494 4 141 139.8 141
    3 13000 Q-NC0039763 1 145.4 145.4 150.2
    3 13000 Q-NC0041040 2 145.4 145.4 150.2
    3 13000 Q-NC0077118 3 145.9 145.4 150.2
    3 13000 Q-NC0015865 4 147.5 145.4 150.2
    3 13000 Q-NC0004013 5 148.1 145.4 150.2
    3 13000 Q-NC0036694 6 148.1 145.4 150.2
    3 13000 Q-NC0036695 7 148.1 145.4 150.2
    3 13000 Q-NC0017494 8 148.4 145.4 150.2
    3 13000 Q-NC0147952 9 150.2 145.4 150.2
    3 12931 Q-NC0043810 1 151.9 151.9 155.3
    3 12931 Q-NC0028736 2 152.7 151.9 155.3
    3 12931 Q-NC0029390 3 152.7 151.9 155.3
    3 12931 Q-NC0021772 4 154.1 151.9 155.3
    3 12931 Q-NC0105966 5 154.6 151.9 155.3
    3 12931 Q-NC0146188 6 154.6 151.9 155.3
    3 12931 Q-NC0054742 7 155.3 151.9 155.3
    3 13085 Q-NC0111204 1 161.4 161.4 164.2
    3 13085 Q-NC0143174 2 161.4 161.4 164.2
    3 13085 Q-NC0071496 3 161.7 161.4 164.2
    3 13085 Q-NC0069529 4 163.2 161.4 164.2
    3 13085 Q-NC0108630 5 163.5 161.4 164.2
    3 13085 Q-NC0004371 6 164.2 161.4 164.2
    3 13085 Q-NC0040437 7 164.2 161.4 164.2
    3 12951 Q-NC0009473 1 168.4 168.4 171.3
    3 12951 Q-NC0031216 2 171.3 168.4 171.3
    3 12875 Q-NC0021603 1 175.6 175.6 177.1
    3 12875 Q-NC0110780 2 176.8 175.6 177.1
    3 12875 Q-NC0055817 3 177.1 175.6 177.1
    3 12860 Q-NC0112487 1 182.9 182.9 187.5
    3 12860 Q-NC0112491 2 182.9 182.9 187.5
    3 12860 Q-NC0056939 3 183.6 182.9 187.5
    3 12860 Q-NC0032026 4 183.9 182.9 187.5
    3 12860 Q-NC0154169 5 184.3 182.9 187.5
    3 12860 Q-NC0146497 6 187.4 182.9 187.5
    3 12860 Q-NC0155987 7 187.4 182.9 187.5
    3 12860 Q-NC0028145 8 187.5 182.9 187.5
    3 12860 Q-NC0143969 9 187.5 182.9 187.5
    3 13044 Q-NC0009079 1 194.2 194.2 198.7
    3 13044 Q-NC0110756 2 197.4 194.2 198.7
    3 13044 Q-NC0010232 3 198.7 194.2 198.7
    3 13033 Q-NC0019414 1 204.2 204.2 208
    3 13033 Q-NC0040000 2 207.1 204.2 208
    3 13033 Q-NC0003970 3 208 204.2 208
    3 12978 Q-NC0104796 1 212.1 212.1 212.1
    3 13055 Q-NC0014041 1 217.6 217.6 218.7
    3 13055 Q-NC0077802 2 218.7 217.6 218.7
    4 13019 Q-NC0012340 1 0.5 0.5 1.8
    4 13019 Q-NC0009523 2 0.9 0.5 1.8
    4 13019 Q-NC0055502 3 1.8 0.5 1.8
    4 13079 Q-NC0002739 1 11.8 11.8 11.8
    4 13024 Q-NC0009057 1 21.7 21.7 21.9
    4 13024 Q-NC0069221 2 21.9 21.7 21.9
    4 12912 Q-NC0105666 1 30.4 30.4 34.4
    4 12912 Q-NC0110069 2 34.4 30.4 34.4
    4 12912 Q-NC0111464 3 34.4 30.4 34.4
    4 13029 Q-NC0019003 1 45.3 45.3 49.9
    4 13029 Q-NC0034133 2 49.8 45.3 49.9
    4 13029 Q-NC0034130 3 49.9 45.3 49.9
    4 12888 Q-NC0024647 1 52.5 52.5 53
    4 12888 Q-NC0143419 2 53 52.5 53
    4 12974 Q-NC0037062 1 59.7 59.7 64.3
    4 12974 Q-NC0001122 2 61.4 59.7 64.3
    4 12974 Q-NC0012012 3 61.4 59.7 64.3
    4 12974 Q-NC0034325 4 63.7 59.7 64.3
    4 12974 Q-NC0023529 5 64.3 59.7 64.3
    4 13083 Q-NC0015735 1 65.5 65.5 68.4
    4 13083 Q-NC0069795 2 65.5 65.5 68.4
    4 13083 Q-NC0042575 3 65.9 65.5 68.4
    4 13083 Q-NC0028441 4 67.1 65.5 68.4
    4 13083 Q-NC0038855 5 67.1 65.5 68.4
    4 13083 Q-NC0034462 6 67.8 65.5 68.4
    4 13083 Q-NC0040371 7 67.8 65.5 68.4
    4 13083 Q-NC0070730 8 67.8 65.5 68.4
    4 13083 Q-NC0010305 9 68.4 65.5 68.4
    4 13083 Q-NC0035683 10 68.4 65.5 68.4
    4 12987 Q-NC0008936 1 68.6 68.6 73.5
    4 12987 Q-NC0038900 2 69.3 68.6 73.5
    4 12987 Q-NC0009603 3 69.5 68.6 73.5
    4 12987 Q-NC0033483 4 69.5 68.6 73.5
    4 12987 Q-NC0031791 5 70.1 68.6 73.5
    4 12987 Q-NC0020481 6 71 68.6 73.5
    4 12987 Q-NC0108120 7 71.5 68.6 73.5
    4 12987 Q-NC0034464 8 73.5 68.6 73.5
    4 12987 Q-NC0151401 9 73.5 68.6 73.5
    4 12963 Q-NC0033667 1 73.7 73.7 76
    4 12963 Q-NC0036528 2 74 73.7 76
    4 12963 Q-NC0002585 3 74.4 73.7 76
    4 12963 Q-NC0015574 4 74.4 73.7 76
    4 12963 Q-NC0005451 5 74.8 73.7 76
    4 12963 Q-NC0015096 6 74.8 73.7 76
    4 12963 Q-NC0003351 7 76 73.7 76
    4 12963 Q-NC0015247 8 76 73.7 76
    4 12963 Q-NC0037514 9 76 73.7 76
    4 12963 Q-NC0153424 10 76 73.7 76
    4 12900 Q-NC0004924 1 76.3 76.3 79.8
    4 12900 Q-NC0113163 2 76.3 76.3 79.8
    4 12900 Q-NC0014666 3 77.8 76.3 79.8
    4 12900 Q-NC0020374 4 77.8 76.3 79.8
    4 12900 Q-NC0068131 5 77.8 76.3 79.8
    4 12900 Q-NC0078135 6 77.8 76.3 79.8
    4 12900 Q-NC0000415 7 78.9 76.3 79.8
    4 12900 Q-NC0040351 8 78.9 76.3 79.8
    4 12900 Q-NC0153429 9 78.9 76.3 79.8
    4 12900 Q-NC0106099 10 79.8 76.3 79.8
    4 12959 Q-NC0039640 1 81 81 82.7
    4 12959 Q-NC0003532 2 81.3 81 82.7
    4 12959 Q-NC0003533 3 81.3 81 82.7
    4 12959 Q-NC0037473 4 81.3 81 82.7
    4 12959 Q-NC0080475 5 82 81 82.7
    4 12959 Q-NC0084527 6 82 81 82.7
    4 12959 Q-NC0027345 7 82.5 81 82.7
    4 12959 Q-NC0143732 8 82.5 81 82.7
    4 12959 Q-NC0104667 9 82.7 81 82.7
    4 12959 Q-NC0104906 10 82.7 81 82.7
    4 13061 Q-NC0106797 1 82.9 82.9 85.2
    4 13061 Q-NC0104785 2 83.9 82.9 85.2
    4 13061 Q-NC0035294 3 85.2 82.9 85.2
    4 13082 Q-NC0037873 1 88.3 88.3 92.4
    4 13082 Q-NC0038782 2 90.4 88.3 92.4
    4 13082 Q-NC0069570 3 92.4 88.3 92.4
    4 12862 Q-NC0002474 1 93.6 93.6 95.2
    4 12862 Q-NC0005018 2 94.8 93.6 95.2
    4 12862 Q-NC0038087 3 94.8 93.6 95.2
    4 12862 Q-NC0105550 4 94.8 93.6 95.2
    4 12862 Q-NC0106845 5 94.8 93.6 95.2
    4 12862 Q-NC0032557 6 95.1 93.6 95.2
    4 12862 Q-NC0040744 7 95.2 93.6 95.2
    4 13006 Q-NC0105197 1 99.9 99.9 104.7
    4 13006 Q-NC0003695 2 104.2 99.9 104.7
    4 13006 Q-NC0077408 3 104.3 99.9 104.7
    4 13006 Q-NC0003964 4 104.4 99.9 104.7
    4 13006 Q-NC0040117 5 104.4 99.9 104.7
    4 13006 Q-NC0107840 6 104.4 99.9 104.7
    4 13006 Q-NC0003274 7 104.7 99.9 104.7
    4 13006 Q-NC0009280 8 104.7 99.9 104.7
    4 13006 Q-NC0040534 9 104.7 99.9 104.7
    4 13060 Q-NC0070043 1 105.7 105.7 109.2
    4 13060 Q-NC0009620 2 109.2 105.7 109.2
    4 13105 Q-NC0036240 1 112 112 115.7
    4 13105 Q-NC0036239 2 112.1 112 115.7
    4 13105 Q-NC0110078 3 115.7 112 115.7
    4 12976 Q-NC0039511 1 121.5 121.5 125.9
    4 12976 Q-NC0106491 2 125.9 121.5 125.9
    4 12881 Q-NC0023289 1 126.7 126.7 130.2
    4 12881 Q-NC0030070 2 127 126.7 130.2
    4 12881 Q-NC0151518 3 127 126.7 130.2
    4 12881 Q-NC0112809 4 127.5 126.7 130.2
    4 12881 Q-NC0028933 5 127.6 126.7 130.2
    4 12881 Q-NC0029886 6 127.8 126.7 130.2
    4 12881 Q-NC0008979 7 127.9 126.7 130.2
    4 12881 Q-NC0050947 8 127.9 126.7 130.2
    4 12881 Q-NC0037471 9 128.7 126.7 130.2
    4 12881 Q-NC0070533 10 130.2 126.7 130.2
    4 13088 Q-NC0081351 1 131.7 131.7 136.7
    4 13088 Q-NC0035451 2 133.5 131.7 136.7
    4 13088 Q-NC0084088 3 134.5 131.7 136.7
    4 13088 Q-NC0036646 4 134.7 131.7 136.7
    4 13088 Q-NC0005295 5 135.1 131.7 136.7
    4 13088 Q-NC0071156 6 136.7 131.7 136.7
    4 13088 Q-NC0071158 7 136.7 131.7 136.7
    4 13088 Q-NC0147097 8 136.7 131.7 136.7
    4 13088 Q-NC0147712 9 136.7 131.7 136.7
    4 13088 Q-NC0147919 10 136.7 131.7 136.7
    4 12972 Q-NC0039477 1 137.5 137.5 141.5
    4 12972 Q-NC0040357 2 137.5 137.5 141.5
    4 12972 Q-NC0067159 3 137.6 137.5 141.5
    4 12972 Q-NC0030877 4 138 137.5 141.5
    4 12972 Q-NC0031964 5 138 137.5 141.5
    4 12972 Q-NC0071447 6 138.3 137.5 141.5
    4 12972 Q-NC0030745 7 139 137.5 141.5
    4 12972 Q-NC0004170 8 139.4 137.5 141.5
    4 12972 Q-NC0108170 9 141.1 137.5 141.5
    4 12972 Q-NC0028162 10 141.5 137.5 141.5
    4 12936 Q-NC0038447 1 141.8 141.8 144.7
    4 12936 Q-NC0104901 2 142 141.8 144.7
    4 12936 Q-NC0104975 3 142 141.8 144.7
    4 12936 Q-NC0110764 4 142 141.8 144.7
    4 12936 Q-NC0079199 5 144.3 141.8 144.7
    4 12936 Q-NC0009491 6 144.6 141.8 144.7
    4 12936 Q-NC0012711 7 144.7 141.8 144.7
    4 12936 Q-NC0017828 8 144.7 141.8 144.7
    4 12936 Q-NC0038053 9 144.7 141.8 144.7
    4 12936 Q-NC0054601 10 144.7 141.8 144.7
    4 12950 Q-NC0048567 1 146.9 146.9 148.9
    4 12950 Q-NC0104484 2 147.3 146.9 148.9
    4 12950 Q-NC0020933 3 147.5 146.9 148.9
    4 12950 Q-NC0020934 4 147.5 146.9 148.9
    4 12950 Q-NC0024422 5 147.5 146.9 148.9
    4 12950 Q-NC0018439 6 147.9 146.9 148.9
    4 12950 Q-NC0036534 7 147.9 146.9 148.9
    4 12950 Q-NC0111505 8 148.2 146.9 148.9
    4 12950 Q-NC0109767 9 148.9 146.9 148.9
    4 13005 Q-NC0027877 1 152.5 152.5 156.4
    4 13005 Q-NC0035950 2 153.3 152.5 156.4
    4 13005 Q-NC0030576 3 153.8 152.5 156.4
    4 13005 Q-NC0028579 4 155.7 152.5 156.4
    4 13005 Q-NC0105818 5 155.8 152.5 156.4
    4 13005 Q-NC0034250 6 156.3 152.5 156.4
    4 13005 Q-NC0031931 7 156.4 152.5 156.4
    4 13005 Q-NC0051079 8 156.4 152.5 156.4
    4 12903 Q-NC0037175 1 161.2 161.2 165.1
    4 12903 Q-NC0008860 2 162 161.2 165.1
    4 12903 Q-NC0037601 3 162.2 161.2 165.1
    4 12903 Q-NC0032049 4 162.6 161.2 165.1
    4 12903 Q-NC0104453 5 163.2 161.2 165.1
    4 12903 Q-NC0034767 6 165.1 161.2 165.1
    4 12903 Q-NC0112744 7 165.1 161.2 165.1
    4 12930 Q-NC0110455 1 169.4 169.4 173.6
    4 12930 Q-NC0009398 2 173.5 169.4 173.6
    4 12930 Q-NC0003224 3 173.6 169.4 173.6
    4 12930 Q-NC0003226 4 173.6 169.4 173.6
    4 13069 Q-NC0003152 1 176.6 176.6 181
    4 13069 Q-NC0004445 2 176.6 176.6 181
    4 13069 Q-NC0017900 3 179.3 176.6 181
    4 13069 Q-NC0036635 4 179.7 176.6 181
    4 13069 Q-NC0009066 5 181 176.6 181
    4 12995 Q-NC0030985 1 181.9 181.9 186.7
    4 12995 Q-NC0148181 2 183 181.9 186.7
    4 12995 Q-NC0050788 3 184.1 181.9 186.7
    4 12995 Q-NC0043794 4 186.2 181.9 186.7
    4 12995 Q-NC0147037 5 186.2 181.9 186.7
    4 12995 Q-NC0112943 6 186.4 181.9 186.7
    4 12995 Q-NC0030211 7 186.7 181.9 186.7
    4 12995 Q-NC0043121 8 186.7 181.9 186.7
    4 13040 Q-NC0040159 1 190 190 190.6
    4 13040 Q-NC0035338 2 190.6 190 190.6
    5 12887 Q-NC0024265 1 1.8 1.8 1.8
    5 12887 Q-NC0031790 2 1.8 1.8 1.8
    5 12887 Q-NC0143354 3 1.8 1.8 1.8
    5 13048 Q-NC0015899 1 10.1 10.1 14.8
    5 13048 Q-NC0143251 2 11.6 10.1 14.8
    5 13048 Q-NC0014633 3 11.7 10.1 14.8
    5 13048 Q-NC0004808 4 12.3 10.1 14.8
    5 13048 Q-NC0036565 5 14.7 10.1 14.8
    5 13048 Q-NC0069592 6 14.8 10.1 14.8
    5 12863 Q-NC0104988 1 15.9 15.9 17.1
    5 12863 Q-NC0105613 2 16.6 15.9 17.1
    5 12863 Q-NC0107858 3 17.1 15.9 17.1
    5 12889 Q-NC0011193 1 29.3 29.3 32.1
    5 12889 Q-NC0108373 2 29.5 29.3 32.1
    5 12889 Q-NC0000091 3 30.2 29.3 32.1
    5 12889 Q-NC0079071 4 30.7 29.3 32.1
    5 12889 Q-NC0055976 5 32.1 29.3 32.1
    5 12958 Q-NC0153131 1 34.4 34.4 36.2
    5 12958 Q-NC0030023 2 35.6 34.4 36.2
    5 12958 Q-NC0005275 3 36 34.4 36.2
    5 12958 Q-NC0020668 4 36.2 34.4 36.2
    5 12920 Q-NC0038726 1 40.1 40.1 40.2
    5 12920 Q-NC0079943 2 40.2 40.1 40.2
    5 12977 Q-NC0012935 1 45.7 45.7 49
    5 12977 Q-NC0109403 2 46.7 45.7 49
    5 12977 Q-NC0020401 3 48 45.7 49
    5 12977 Q-NC0030899 4 48 45.7 49
    5 12977 Q-NC0016527 5 49 45.7 49
    5 12973 Q-NC0037588 1 60.1 60.1 63.5
    5 12973 Q-NC0016762 2 60.6 60.1 63.5
    5 12973 Q-NC0009490 3 61 60.1 63.5
    5 12973 Q-NC0109342 4 61.7 60.1 63.5
    5 12973 Q-NC0054720 5 62 60.1 63.5
    5 12973 Q-NC0018546 6 63.5 60.1 63.5
    5 13001 Q-NC0009668 1 65.2 65.2 70
    5 13001 Q-NC0019333 2 65.8 65.2 70
    5 13001 Q-NC0111388 3 66.6 65.2 70
    5 13001 Q-NC0111398 4 67.7 65.2 70
    5 13001 Q-NC0143216 5 67.7 65.2 70
    5 13001 Q-NC0113139 6 68.6 65.2 70
    5 13001 Q-NC0077545 7 69.4 65.2 70
    5 13001 Q-NC0030270 8 70 65.2 70
    5 12933 Q-NC0106912 1 71.2 71.2 75.3
    5 12933 Q-NC0146546 2 71.2 71.2 75.3
    5 12933 Q-NC0108957 3 71.9 71.2 75.3
    5 12933 Q-NC0109411 4 71.9 71.2 75.3
    5 12933 Q-NC0008797 5 72 71.2 75.3
    5 12933 Q-NC0057859 6 72.4 71.2 75.3
    5 12933 Q-NC0023808 7 73.8 71.2 75.3
    5 12933 Q-NC0051419 8 73.8 71.2 75.3
    5 12933 Q-NC0019187 9 74.1 71.2 75.3
    5 12933 Q-NC0028807 10 75.3 71.2 75.3
    5 12896 Q-NC0082146 1 75.4 75.4 79.8
    5 12896 Q-NC0080028 2 76.6 75.4 79.8
    5 12896 Q-NC0105612 3 79 75.4 79.8
    5 12896 Q-NC0107061 4 79 75.4 79.8
    5 12896 Q-NC0107549 5 79 75.4 79.8
    5 12896 Q-NC0110919 6 79 75.4 79.8
    5 12896 Q-NC0111346 7 79 75.4 79.8
    5 12896 Q-NC0147574 8 79 75.4 79.8
    5 12896 Q-NC0154691 9 79 75.4 79.8
    5 12896 Q-NC0146415 10 79.8 75.4 79.8
    5 12961 Q-NC0031886 1 80.4 80.4 85
    5 12961 Q-NC0077644 2 80.4 80.4 85
    5 12961 Q-NC0105854 3 81.2 80.4 85
    5 12961 Q-NC0018230 4 81.3 80.4 85
    5 12961 Q-NC0048328 5 81.3 80.4 85
    5 12961 Q-NC0022796 6 81.5 80.4 85
    5 12961 Q-NC0027874 7 81.5 80.4 85
    5 12961 Q-NC0078535 8 83.9 80.4 85
    5 12961 Q-NC0040366 9 84.1 80.4 85
    5 12961 Q-NC0033249 10 85 80.4 85
    5 12991 Q-NC0035956 1 85.1 85.1 88.4
    5 12991 Q-NC0154498 2 85.2 85.1 88.4
    5 12991 Q-NC0145634 3 85.4 85.1 88.4
    5 12991 Q-NC0110554 4 87.4 85.1 88.4
    5 12991 Q-NC0040571 5 88.4 85.1 88.4
    5 13058 Q-NC0028110 1 90.2 90.2 93.9
    5 13058 Q-NC0027864 2 93.9 90.2 93.9
    5 13058 Q-NC0053792 3 93.9 90.2 93.9
    5 12908 Q-NC0111999 1 96.9 96.9 99.4
    5 12908 Q-NC0018153 2 97 96.9 99.4
    5 12908 Q-NC0051711 3 97 96.9 99.4
    5 12908 Q-NC0048616 4 98.2 96.9 99.4
    5 12908 Q-NC0033305 5 98.9 96.9 99.4
    5 12908 Q-NC0108101 6 98.9 96.9 99.4
    5 12908 Q-NC0036432 7 99.2 96.9 99.4
    5 12908 Q-NC0012480 8 99.4 96.9 99.4
    5 13035 Q-NC0104850 1 102.8 102.8 106.6
    5 13035 Q-NC0017678 2 103.8 102.8 106.6
    5 13035 Q-NC0009297 3 104.1 102.8 106.6
    5 13035 Q-NC0003338 4 106.2 102.8 106.6
    5 13035 Q-NC0038972 5 106.2 102.8 106.6
    5 13035 Q-NC0003054 6 106.6 102.8 106.6
    5 13035 Q-NC0106000 7 106.6 102.8 106.6
    5 13035 Q-NC0106300 8 106.6 102.8 106.6
    5 13035 Q-NC0154432 9 106.6 102.8 106.6
    5 12925 Q-NC0107238 1 114.7 114.7 118.8
    5 12925 Q-NC0008807 2 118.8 114.7 118.8
    5 13063 Q-NC0005480 1 120 120 125
    5 13063 Q-NC0016868 2 122.6 120 125
    5 13063 Q-NC0017125 3 122.6 120 125
    5 13063 Q-NC0083876 4 124 120 125
    5 13063 Q-NC0106716 5 125 120 125
    5 13104 Q-NC0009434 1 125.2 125.2 129.7
    5 13104 Q-NC0010131 2 129.7 125.2 129.7
    5 13014 Q-NC0105970 1 132.7 132.7 133.4
    5 13014 Q-NC0035377 2 132.8 132.7 133.4
    5 13014 Q-NC0031731 3 133.4 132.7 133.4
    5 13106 Q-NC0081212 1 138.2 138.2 139.5
    5 13106 Q-NC0154899 2 138.6 138.2 139.5
    5 13106 Q-NC0085514 3 139.5 138.2 139.5
    5 12980 Q-NC0002353 1 144.7 144.7 148.1
    5 12980 Q-NC0041824 2 144.7 144.7 148.1
    5 12980 Q-NC0111944 3 148.1 144.7 148.1
    5 12980 Q-NC0143380 4 148.1 144.7 148.1
    5 13008 Q-NC0000390 1 159.5 159.5 159.8
    5 13008 Q-NC0110484 2 159.5 159.5 159.8
    5 13008 Q-NC0104963 3 159.8 159.5 159.8
    5 12965 Q-NC0104717 1 171.2 171.2 175.8
    5 12965 Q-NC0109853 2 173.9 171.2 175.8
    5 12965 Q-NC0012417 3 175.2 171.2 175.8
    5 12965 Q-NC0000015 4 175.3 171.2 175.8
    5 12965 Q-NC0146137 5 175.8 171.2 175.8
    5 13074 Q-NC0025270 1 177.8 177.8 181.5
    5 13074 Q-NC0111504 2 181 177.8 181.5
    5 13074 Q-NC0031084 3 181.5 177.8 181.5
    6 13013 Q-NC0014417 1 25 25 29.5
    6 13013 Q-NC0105014 2 28.8 25 29.5
    6 13013 Q-NC0106341 3 29.5 25 29.5
    6 13010 Q-NC0066735 1 34.3 34.3 38.4
    6 13010 Q-NC0079529 2 34.3 34.3 38.4
    6 13010 Q-NC0013985 3 35.4 34.3 38.4
    6 13010 Q-NC0003284 4 36.4 34.3 38.4
    6 13010 Q-NC0069630 5 36.5 34.3 38.4
    6 13010 Q-NC0105714 6 36.7 34.3 38.4
    6 13010 Q-NC0029780 7 38.3 34.3 38.4
    6 13010 Q-NC0002870 8 38.4 34.3 38.4
    6 13010 Q-NC0003210 9 38.4 34.3 38.4
    6 13010 Q-NC0025657 10 38.4 34.3 38.4
    6 12944 Q-NC0110607 1 38.7 38.7 43.2
    6 12944 Q-NC0027095 2 38.8 38.7 43.2
    6 12944 Q-NC0110850 3 39.3 38.7 43.2
    6 12944 Q-NC0025201 4 39.4 38.7 43.2
    6 12944 Q-NC0147740 5 39.4 38.7 43.2
    6 12944 Q-NC0000439 6 39.9 38.7 43.2
    6 12944 Q-NC0036067 7 41 38.7 43.2
    6 12944 Q-NC0036073 8 41 38.7 43.2
    6 12944 Q-NC0147437 9 41.2 38.7 43.2
    6 12944 Q-NC0070260 10 43.2 38.7 43.2
    6 12979 Q-NC0108586 1 43.5 43.5 48
    6 12979 Q-NC0037981 2 44.2 43.5 48
    6 12979 Q-NC0030176 3 48 43.5 48
    6 13002 Q-NC0106121 1 49.2 49.2 53.4
    6 13002 Q-NC0038040 2 52.1 49.2 53.4
    6 13002 Q-NC0067323 3 52.1 49.2 53.4
    6 13002 Q-NC0034523 4 53.2 49.2 53.4
    6 13002 Q-NC0034054 5 53.4 49.2 53.4
    6 12966 Q-NC0106527 1 56.4 56.4 60.5
    6 12966 Q-NC0004463 2 56.5 56.4 60.5
    6 12966 Q-NC0060751 3 56.6 56.4 60.5
    6 12966 Q-NC0057758 4 57.5 56.4 60.5
    6 12966 Q-NC0108212 5 57.5 56.4 60.5
    6 12966 Q-NC0069870 6 57.8 56.4 60.5
    6 12966 Q-NC0011591 7 60.5 56.4 60.5
    6 13101 Q-NC0110712 1 64.8 64.8 69.7
    6 13101 Q-NC0146195 2 66 64.8 69.7
    6 13101 Q-NC0059008 3 66.2 64.8 69.7
    6 13101 Q-NC0009134 4 66.3 64.8 69.7
    6 13101 Q-NC0105586 5 66.3 64.8 69.7
    6 13101 Q-NC0105497 6 67.6 64.8 69.7
    6 13101 Q-NC0015059 7 69.1 64.8 69.7
    6 13101 Q-NC0003277 8 69.4 64.8 69.7
    6 13101 Q-NC0030942 9 69.7 64.8 69.7
    6 12871 Q-NC0148039 1 70.2 70.2 75.1
    6 12871 Q-NC0008833 2 70.9 70.2 75.1
    6 12871 Q-NC0151453 3 75.1 70.2 75.1
    6 12999 Q-NC0008838 1 77.7 77.7 79.6
    6 12999 Q-NC0014694 2 77.8 77.7 79.6
    6 12999 Q-NC0005064 3 78.1 77.7 79.6
    6 12999 Q-NC0005066 4 78.1 77.7 79.6
    6 12999 Q-NC0019518 5 78.5 77.7 79.6
    6 12999 Q-NC0014128 6 78.8 77.7 79.6
    6 12999 Q-NC0077031 7 78.8 77.7 79.6
    6 12999 Q-NC0005081 8 79.3 77.7 79.6
    6 12999 Q-NC0000557 9 79.6 77.7 79.6
    6 12999 Q-NC0082021 10 79.6 77.7 79.6
    6 13030 Q-NC0108196 1 79.8 79.8 83.8
    6 13030 Q-NC0066737 2 81.9 79.8 83.8
    6 13030 Q-NC0070996 3 81.9 79.8 83.8
    6 13030 Q-NC0084789 4 82.2 79.8 83.8
    6 13030 Q-NC0145427 5 82.2 79.8 83.8
    6 13030 Q-NC0013638 6 83.5 79.8 83.8
    6 13030 Q-NC0113381 7 83.8 79.8 83.8
    6 12952 Q-NC0037517 1 84.9 84.9 85.5
    6 12952 Q-NC0028203 2 85 84.9 85.5
    6 12952 Q-NC0004030 3 85.5 84.9 85.5
    6 12952 Q-NC0040364 4 85.5 84.9 85.5
    6 13102 Q-NC0019772 1 92.4 92.4 96.7
    6 13102 Q-NC0110972 2 93.2 92.4 96.7
    6 13102 Q-NC0019588 3 96.7 92.4 96.7
    6 13003 Q-NC0037947 1 97.6 97.6 102.4
    6 13003 Q-NC0067075 2 98.9 97.6 102.4
    6 13003 Q-NC0005319 3 99.1 97.6 102.4
    6 13003 Q-NC0081445 4 101.8 97.6 102.4
    6 13003 Q-NC0030771 5 102.4 97.6 102.4
    6 12994 Q-NC0017860 1 103.5 103.5 106.6
    6 12994 Q-NC0146215 2 106.6 103.5 106.6
    6 13023 Q-NC0029924 1 109.2 109.2 109.2
    6 13068 Q-NC0031684 1 114.5 114.5 118.1
    6 13068 Q-NC0031026 2 118 114.5 118.1
    6 13068 Q-NC0107449 3 118.1 114.5 118.1
    6 13100 Q-NC0017761 1 120.6 120.6 120.8
    6 13100 Q-NC0023358 2 120.8 120.6 120.8
    6 12894 Q-NC0003201 1 127.9 127.9 132.9
    6 12894 Q-NC0016017 2 128.4 127.9 132.9
    6 12894 Q-NC0028185 3 130.1 127.9 132.9
    6 12894 Q-NC0060514 4 131.2 127.9 132.9
    6 12894 Q-NC0032509 5 132.9 127.9 132.9
    6 12918 Q-NC0002782 1 133.5 133.5 136
    6 12918 Q-NC0053636 2 136 133.5 136
    6 12981 Q-NC0009667 1 139.1 139.1 140.5
    6 12981 Q-NC0021433 2 140.5 139.1 140.5
    6 12917 Q-NC0032368 1 144.3 144.3 145.8
    6 12917 Q-NC0032370 2 144.3 144.3 145.8
    6 12917 Q-NC0037555 3 144.7 144.3 145.8
    6 12917 Q-NC0043724 4 145 144.3 145.8
    6 12917 Q-NC0021734 5 145.4 144.3 145.8
    6 12917 Q-NC0037790 6 145.4 144.3 145.8
    6 12917 Q-NC0027223 7 145.8 144.3 145.8
    7 13034 Q-NC0143819 1 7.1 7.1 7.1
    7 13034 Q-NC0147609 2 7.1 7.1 7.1
    7 12902 Q-NC0143514 1 29 29 33.3
    7 12902 Q-NC0058637 2 33.3 29 33.3
    7 13052 Q-NC0011865 1 43.5 43.5 43.9
    7 13052 Q-NC0003924 2 43.9 43.5 43.9
    7 13052 Q-NC0107497 3 43.9 43.5 43.9
    7 13096 Q-NC0016644 1 48.6 48.6 51.3
    7 13096 Q-NC0009409 2 51.2 48.6 51.3
    7 13096 Q-NC0084006 3 51.2 48.6 51.3
    7 13096 Q-NC0060906 4 51.3 48.6 51.3
    7 13096 Q-NC0070341 5 51.3 48.6 51.3
    7 12864 Q-NC0009304 1 56 56 58.5
    7 12864 Q-NC0108168 2 56 56 58.5
    7 12864 Q-NC0066143 3 57.1 56 58.5
    7 12864 Q-NC0042164 4 57.4 56 58.5
    7 12864 Q-NC0031370 5 57.7 56 58.5
    7 12864 Q-NC0146122 6 57.8 56 58.5
    7 12864 Q-NC0107775 7 58.3 56 58.5
    7 12864 Q-NC0002225 8 58.5 56 58.5
    7 12864 Q-NC0033755 9 58.5 56 58.5
    7 12864 Q-NC0147613 10 58.5 56 58.5
    7 12969 Q-NC0030674 1 60.2 60.2 62.5
    7 12969 Q-NC0056253 2 60.4 60.2 62.5
    7 12969 Q-NC0146556 3 60.4 60.2 62.5
    7 12969 Q-NC0027428 4 60.8 60.2 62.5
    7 12969 Q-NC0033507 5 61.8 60.2 62.5
    7 12969 Q-NC0035633 6 61.8 60.2 62.5
    7 12969 Q-NC0036486 7 61.8 60.2 62.5
    7 12969 Q-NC0028094 8 61.9 60.2 62.5
    7 12969 Q-NC0000558 9 62.2 60.2 62.5
    7 12969 Q-NC0050490 10 62.5 60.2 62.5
    7 13041 Q-NC0030511 1 62.8 62.8 64.4
    7 13041 Q-NC0039064 2 62.8 62.8 64.4
    7 13041 Q-NC0105086 3 62.8 62.8 64.4
    7 13041 Q-NC0108360 4 62.8 62.8 64.4
    7 13041 Q-NC0034215 5 63.1 62.8 64.4
    7 13041 Q-NC0155984 6 63.1 62.8 64.4
    7 13041 Q-NC0033769 7 64 62.8 64.4
    7 13041 Q-NC0034121 8 64.1 62.8 64.4
    7 13041 Q-NC0078294 9 64.2 62.8 64.4
    7 13041 Q-NC0004299 10 64.4 62.8 64.4
    7 12883 Q-NC0155766 1 65.6 65.6 70.1
    7 12883 Q-NC0009073 2 65.9 65.6 70.1
    7 12883 Q-NC0019507 3 65.9 65.6 70.1
    7 12883 Q-NC0106910 4 65.9 65.6 70.1
    7 12883 Q-NC0110477 5 65.9 65.6 70.1
    7 12883 Q-NC0068424 6 66.2 65.6 70.1
    7 12883 Q-NC0068426 7 66.5 65.6 70.1
    7 12883 Q-NC0034688 8 69.4 65.6 70.1
    7 12883 Q-NC0066422 9 69.4 65.6 70.1
    7 12883 Q-NC0147598 10 70.1 65.6 70.1
    7 13025 Q-NC0033620 1 75.7 75.7 80.7
    7 13025 Q-NC0068434 2 76.5 75.7 80.7
    7 13025 Q-NC0039598 3 77.9 75.7 80.7
    7 13025 Q-NC0029362 4 78.4 75.7 80.7
    7 13025 Q-NC0145922 5 80.5 75.7 80.7
    7 13025 Q-NC0057013 6 80.7 75.7 80.7
    7 13020 Q-NC0048425 1 88.3 88.3 91.3
    7 13020 Q-NC0035408 2 89.5 88.3 91.3
    7 13020 Q-NC0005051 3 91.3 88.3 91.3
    7 12939 Q-NC0038914 1 96.6 96.6 99.7
    7 12939 Q-NC0009240 2 98.5 96.6 99.7
    7 12939 Q-NC0022958 3 98.5 96.6 99.7
    7 12939 Q-NC0028932 4 99 96.6 99.7
    7 12939 Q-NC0068149 5 99 96.6 99.7
    7 12939 Q-NC0155829 6 99 96.6 99.7
    7 12939 Q-NC0033952 7 99.4 96.6 99.7
    7 12939 Q-NC0105642 8 99.4 96.6 99.7
    7 12939 Q-NC0034583 9 99.5 96.6 99.7
    7 12939 Q-NC0031547 10 99.7 96.6 99.7
    7 12890 Q-NC0004302 1 99.8 99.8 104.6
    7 12890 Q-NC0070392 2 99.8 99.8 104.6
    7 12890 Q-NC0070402 3 99.8 99.8 104.6
    7 12890 Q-NC0081460 4 99.8 99.8 104.6
    7 12890 Q-NC0004093 5 100 99.8 104.6
    7 12890 Q-NC0031157 6 100 99.8 104.6
    7 12890 Q-NC0153856 7 101.7 99.8 104.6
    7 12890 Q-NC0078828 8 102 99.8 104.6
    7 12890 Q-NC0015995 9 104.6 99.8 104.6
    7 12890 Q-NC0016008 10 104.6 99.8 104.6
    7 13076 Q-NC0144299 1 104.9 104.9 107
    7 13076 Q-NC0145260 2 104.9 104.9 107
    7 13076 Q-NC0018284 3 105.8 104.9 107
    7 13076 Q-NC0039773 4 106.1 104.9 107
    7 13076 Q-NC0015161 5 106.4 104.9 107
    7 13076 Q-NC0040335 6 107 104.9 107
    7 13028 Q-NC0009674 1 112.1 112.1 116.1
    7 13028 Q-NC0030029 2 112.7 112.1 116.1
    7 13028 Q-NC0018565 3 115.2 112.1 116.1
    7 13028 Q-NC0027069 4 116.1 112.1 116.1
    7 12898 Q-NC0003218 1 117.9 117.9 117.9
    7 12922 Q-NC0009872 1 123.8 123.8 126.9
    7 12922 Q-NC0148208 2 126.9 123.8 126.9
    7 12935 Q-NC0112796 1 130.1 130.1 131.2
    7 12935 Q-NC0004953 2 131.2 130.1 131.2
    7 12934 Q-NC0015974 1 135.9 135.9 138.5
    7 12934 Q-NC0110771 2 138.5 135.9 138.5
    7 12915 Q-NC0009843 1 149.2 149.2 154.2
    7 12915 Q-NC0011659 2 150.9 149.2 154.2
    7 12915 Q-NC0011664 3 150.9 149.2 154.2
    7 12915 Q-NC0146593 4 152.9 149.2 154.2
    7 12915 Q-NC0155473 5 152.9 149.2 154.2
    7 12915 Q-NC0155475 6 154.2 149.2 154.2
    7 12960 Q-NC0143371 1 156.6 156.6 161.1
    7 12960 Q-NC0151568 2 161.1 156.6 161.1
    7 12962 Q-NC0078091 1 164.6 164.6 169.3
    7 12962 Q-NC0146620 2 165.7 164.6 169.3
    7 12962 Q-NC0038317 3 165.8 164.6 169.3
    7 12962 Q-NC0036490 4 166.9 164.6 169.3
    7 12962 Q-NC0028596 5 168.9 164.6 169.3
    7 12962 Q-NC0038499 6 169.3 164.6 169.3
    7 12867 Q-NC0106258 1 170.9 170.9 173.9
    7 12867 Q-NC0021038 2 171.4 170.9 173.9
    7 12867 Q-NC0071624 3 171.7 170.9 173.9
    7 12867 Q-NC0004142 4 173.9 170.9 173.9
    7 12867 Q-NC0019704 5 173.9 170.9 173.9
    8 12924 Q-NC0024672 1 33.6 33.6 38.1
    8 12924 Q-NC0019198 2 38.1 33.6 38.1
    8 12892 Q-NC0038724 1 39.6 39.6 41.7
    8 12892 Q-NC0040299 2 41.2 39.6 41.7
    8 12892 Q-NC0003792 3 41.7 39.6 41.7
    8 12954 Q-NC0029842 1 51.6 51.6 56.5
    8 12954 Q-NC0027580 2 51.7 51.6 56.5
    8 12954 Q-NC0008934 3 51.8 51.6 56.5
    8 12954 Q-NC0034552 4 51.8 51.6 56.5
    8 12954 Q-NC0107937 5 52.6 51.6 56.5
    8 12954 Q-NC0105809 6 53.4 51.6 56.5
    8 12954 Q-NC0005266 7 56.5 51.6 56.5
    8 12914 Q-NC0111628 1 57.3 57.3 60.1
    8 12914 Q-NC0026720 2 58.7 57.3 60.1
    8 12914 Q-NC0037392 3 60 57.3 60.1
    8 12914 Q-NC0027485 4 60.1 57.3 60.1
    8 12885 Q-NC0079080 1 65.8 65.8 70.7
    8 12885 Q-NC0053899 2 65.9 65.8 70.7
    8 12885 Q-NC0154174 3 69 65.8 70.7
    8 12885 Q-NC0010347 4 69.2 65.8 70.7
    8 12885 Q-NC0104368 5 70 65.8 70.7
    8 12885 Q-NC0104862 6 70 65.8 70.7
    8 12885 Q-NC0105974 7 70 65.8 70.7
    8 12885 Q-NC0151503 8 70 65.8 70.7
    8 12885 Q-NC0020099 9 70.5 65.8 70.7
    8 12885 Q-NC0081269 10 70.7 65.8 70.7
    8 13078 Q-NC0029015 1 71.1 71.1 72.9
    8 13078 Q-NC0051919 2 71.1 71.1 72.9
    8 13078 Q-NC0107396 3 71.1 71.1 72.9
    8 13078 Q-NC0022765 4 72.4 71.1 72.9
    8 13078 Q-NC0009659 5 72.9 71.1 72.9
    8 12937 Q-NC0051048 1 78.9 78.9 83.9
    8 12937 Q-NC0082612 2 78.9 78.9 83.9
    8 12937 Q-NC0027361 3 79.6 78.9 83.9
    8 12937 Q-NC0011760 4 80.3 78.9 83.9
    8 12937 Q-NC0145200 5 80.3 78.9 83.9
    8 12937 Q-NC0145999 6 80.3 78.9 83.9
    8 12937 Q-NC0108315 7 80.4 78.9 83.9
    8 12937 Q-NC0009254 8 83.9 78.9 83.9
    8 13053 Q-NC0013946 1 84 84 88.5
    8 13053 Q-NC0015146 2 84 84 88.5
    8 13053 Q-NC0077568 3 84 84 88.5
    8 13053 Q-NC0147465 4 84 84 88.5
    8 13053 Q-NC0009835 5 84.5 84 88.5
    8 13053 Q-NC0018342 6 84.9 84 88.5
    8 13053 Q-NC0020912 7 85.2 84 88.5
    8 13053 Q-NC0110378 8 85.5 84 88.5
    8 13053 Q-NC0155968 9 87.9 84 88.5
    8 13053 Q-NC0108631 10 88.5 84 88.5
    8 12975 Q-NC0110331 1 89.1 89.1 93.9
    8 12975 Q-NC0144363 2 91.1 89.1 93.9
    8 12975 Q-NC0112082 3 92 89.1 93.9
    8 12975 Q-NC0056860 4 92.1 89.1 93.9
    8 12975 Q-NC0021895 5 92.2 89.1 93.9
    8 12975 Q-NC0032337 6 92.7 89.1 93.9
    8 12975 Q-NC0048562 7 92.7 89.1 93.9
    8 12975 Q-NC0082295 8 93.7 89.1 93.9
    8 12975 Q-NC0020514 9 93.9 89.1 93.9
    8 12869 Q-NC0004504 1 95.6 95.6 97.2
    8 12869 Q-NC0104858 2 96.2 95.6 97.2
    8 12869 Q-NC0155749 3 96.2 95.6 97.2
    8 12869 Q-NC0012023 4 96.4 95.6 97.2
    8 12869 Q-NC0104389 5 97.1 95.6 97.2
    8 12869 Q-NC0152566 6 97.2 95.6 97.2
    8 13072 Q-NC0105835 1 104 104 108.5
    8 13072 Q-NC0027300 2 108.5 104 108.5
    8 13072 Q-NC0031025 3 108.5 104 108.5
    8 13072 Q-NC0082386 4 108.5 104 108.5
    8 13103 Q-NC0110684 1 111.2 111.2 115.6
    8 13103 Q-NC0112497 2 111.7 111.2 115.6
    8 13103 Q-NC0010392 3 115.4 111.2 115.6
    8 13103 Q-NC0012656 4 115.6 111.2 115.6
    8 13103 Q-NC0020546 5 115.6 111.2 115.6
    8 12928 Q-NC0008831 1 116.3 116.3 118.6
    8 12928 Q-NC0153229 2 116.4 116.3 118.6
    8 12928 Q-NC0153243 3 116.4 116.3 118.6
    8 12928 Q-NC0143432 4 117.9 116.3 118.6
    8 12928 Q-NC0020537 5 118.6 116.3 118.6
    8 12956 Q-NC0004586 1 125.1 125.1 125.1
    8 12956 Q-NC0031630 2 125.1 125.1 125.1
    8 13098 Q-NC0003008 1 130.7 130.7 134.5
    8 13098 Q-NC0005592 2 134.5 130.7 134.5
    8 12993 Q-NC0013100 1 138.8 138.8 139.7
    8 12993 Q-NC0027810 2 139.4 138.8 139.7
    8 12993 Q-NC0107286 3 139.7 138.8 139.7
    8 12993 Q-NC0108962 4 139.7 138.8 139.7
    8 13059 Q-NC0145077 1 149.2 149.2 149.2
    8 13059 Q-NC0145298 2 149.2 149.2 149.2
    8 13059 Q-NC0154802 3 149.2 149.2 149.2
    8 12872 Q-NC0014566 1 155.1 155.1 156.3
    8 12872 Q-NC0008757 2 156.3 155.1 156.3
    8 13057 Q-NC0000561 1 168.3 168.3 169.9
    8 13057 Q-NC0060573 2 169.9 168.3 169.9
    9 12906 Q-NC0014476 1 0.8 0.8 0.8
    9 12906 Q-NC0014479 2 0.8 0.8 0.8
    9 12943 Q-NC0054684 1 8.3 8.3 8.3
    9 13073 Q-NC0020781 1 16 16 19.6
    9 13073 Q-NC0112118 2 16 16 19.6
    9 13073 Q-NC0002735 3 17.6 16 19.6
    9 13073 Q-NC0113434 4 19.6 16 19.6
    9 13067 Q-NC0049557 1 25.7 25.7 25.7
    9 12986 Q-NC0012830 1 33.1 33.1 36.6
    9 12986 Q-NC0148121 2 36.6 33.1 36.6
    9 13009 Q-NC0025198 1 45.7 45.7 46.5
    9 13009 Q-NC0029745 2 45.7 45.7 46.5
    9 13009 Q-NC0041796 3 46.5 45.7 46.5
    9 12955 Q-NC0029436 1 51.5 51.5 51.5
    9 12868 Q-NC0028095 1 59.4 59.4 63.4
    9 12868 Q-NC0010643 2 60.6 59.4 63.4
    9 12868 Q-NC0055759 3 62.1 59.4 63.4
    9 12868 Q-NC0004049 4 62.5 59.4 63.4
    9 12868 Q-NC0107905 5 63.4 59.4 63.4
    9 12877 Q-NC0080382 1 65 65 66.5
    9 12877 Q-NC0018302 2 65.1 65 66.5
    9 12877 Q-NC0145117 3 65.9 65 66.5
    9 12877 Q-NC0145814 4 65.9 65 66.5
    9 12877 Q-NC0031233 5 66.5 65 66.5
    9 12877 Q-NC0055370 6 66.5 65 66.5
    9 12877 Q-NC0107095 7 66.5 65 66.5
    9 12877 Q-NC0109526 8 66.5 65 66.5
    9 12877 Q-NC0144042 9 66.5 65 66.5
    9 12877 Q-NC0153885 10 66.5 65 66.5
    9 12926 Q-NC0029832 1 66.6 66.6 68.5
    9 12926 Q-NC0144850 2 67 66.6 68.5
    9 12926 Q-NC0004407 3 67.2 66.6 68.5
    9 12926 Q-NC0086681 4 67.5 66.6 68.5
    9 12926 Q-NC0113113 5 67.5 66.6 68.5
    9 12926 Q-NC0025961 6 68.5 66.6 68.5
    9 12926 Q-NC0104195 7 68.5 66.6 68.5
    9 12926 Q-NC0106345 8 68.5 66.6 68.5
    9 12926 Q-NC0106748 9 68.5 66.6 68.5
    9 12926 Q-NC0106791 10 68.5 66.6 68.5
    9 12970 Q-NC0031039 1 70.9 70.9 75.9
    9 12970 Q-NC0009397 2 72.6 70.9 75.9
    9 12970 Q-NC0029595 3 73.1 70.9 75.9
    9 12970 Q-NC0021430 4 74.2 70.9 75.9
    9 12970 Q-NC0028354 5 75.2 70.9 75.9
    9 12970 Q-NC0002611 6 75.9 70.9 75.9
    9 12957 Q-NC0112189 1 76.2 76.2 80.1
    9 12957 Q-NC0020851 2 76.3 76.2 80.1
    9 12957 Q-NC0020048 3 77.5 76.2 80.1
    9 12957 Q-NC0153427 4 77.5 76.2 80.1
    9 12957 Q-NC0153921 5 77.5 76.2 80.1
    9 12957 Q-NC0003231 6 78.7 76.2 80.1
    9 12957 Q-NC0111177 7 80.1 76.2 80.1
    9 12874 Q-NC0014826 1 81.8 81.8 84.5
    9 12874 Q-NC0008937 2 81.9 81.8 84.5
    9 12874 Q-NC0110272 3 82.9 81.8 84.5
    9 12874 Q-NC0002383 4 83.3 81.8 84.5
    9 12874 Q-NC0053284 5 83.3 81.8 84.5
    9 12874 Q-NC0061433 6 83.3 81.8 84.5
    9 12874 Q-NC0110125 7 83.4 81.8 84.5
    9 12874 Q-NC0003425 8 84.5 81.8 84.5
    9 12874 Q-NC0038548 9 84.5 81.8 84.5
    9 12874 Q-NC0105297 10 84.5 81.8 84.5
    9 13093 Q-NC0004123 1 84.6 84.6 87.3
    9 13093 Q-NC0031490 2 84.6 84.6 87.3
    9 13093 Q-NC0078438 3 84.6 84.6 87.3
    9 13093 Q-NC0013086 4 87.3 84.6 87.3
    9 13026 Q-NC0081074 1 90.4 90.4 91.7
    9 13026 Q-NC0145318 2 91 90.4 91.7
    9 13026 Q-NC0108275 3 91.6 90.4 91.7
    9 13026 Q-NC0110293 4 91.7 90.4 91.7
    9 13075 Q-NC0004890 1 98.4 98.4 102.1
    9 13075 Q-NC0106442 2 98.4 98.4 102.1
    9 13075 Q-NC0041196 3 101.5 98.4 102.1
    9 13075 Q-NC0042348 4 101.8 98.4 102.1
    9 13075 Q-NC0018417 5 102.1 98.4 102.1
    9 13090 Q-NC0066389 1 105.5 105.5 110.5
    9 13090 Q-NC0066390 2 105.5 105.5 110.5
    9 13090 Q-NC0036022 3 107.9 105.5 110.5
    9 13090 Q-NC0016689 4 110.4 105.5 110.5
    9 13090 Q-NC0018446 5 110.4 105.5 110.5
    9 13090 Q-NC0035380 6 110.4 105.5 110.5
    9 13090 Q-NC0110938 7 110.5 105.5 110.5
    9 13099 Q-NC0020368 1 114.4 114.4 117.7
    9 13099 Q-NC0151505 2 114.5 114.4 117.7
    9 13099 Q-NC0029176 3 116 114.4 117.7
    9 13099 Q-NC0110800 4 117.7 114.4 117.7
    9 12899 Q-NC0035729 1 120.3 120.3 122.7
    9 12899 Q-NC0039475 2 122.7 120.3 122.7
    9 13021 Q-NC0042929 1 130 130 133.5
    9 13021 Q-NC0111292 2 131.1 130 133.5
    9 13021 Q-NC0009407 3 133.5 130 133.5
    9 13021 Q-NC0026895 4 133.5 130 133.5
    9 13049 Q-NC0083647 1 136.7 136.7 136.7
    9 13097 Q-NC0077194 1 147.7 147.7 147.7
    9 13094 Q-NC0049286 1 153 153 153.2
    9 13094 Q-NC0147417 2 153.2 153 153.2
    10 13086 Q-NC0020088 1 8.6 8.6 8.6
    10 13077 Q-NC0153632 1 24.1 24.1 24.1
    10 12984 Q-NC0020502 1 30.3 30.3 32.2
    10 12984 Q-NC0009645 2 32.1 30.3 32.2
    10 12984 Q-NC0104672 3 32.2 30.3 32.2
    10 13089 Q-NC0111004 1 36.7 36.7 40.8
    10 13089 Q-NC0111682 2 36.7 36.7 40.8
    10 13089 Q-NC0154801 3 40 36.7 40.8
    10 13089 Q-NC0008956 4 40.8 36.7 40.8
    10 13080 Q-NC0016045 1 43.7 43.7 47.3
    10 13080 Q-NC0028604 2 43.7 43.7 47.3
    10 13080 Q-NC0005255 3 45 43.7 47.3
    10 13080 Q-NC0004887 4 45.2 43.7 47.3
    10 13080 Q-NC0155598 5 45.2 43.7 47.3
    10 13080 Q-NC0000531 6 45.3 43.7 47.3
    10 13080 Q-NC0029123 7 45.3 43.7 47.3
    10 13080 Q-NC0111212 8 45.9 43.7 47.3
    10 13080 Q-NC0143762 9 46.7 43.7 47.3
    10 13080 Q-NC0025218 10 47.3 43.7 47.3
    10 13039 Q-NC0051974 1 48.3 48.3 53
    10 13039 Q-NC0109648 2 49.1 48.3 53
    10 13039 Q-NC0109058 3 49.2 48.3 53
    10 13039 Q-NC0109866 4 49.2 48.3 53
    10 13039 Q-NC0112238 5 49.2 48.3 53
    10 13039 Q-NC0005140 6 51 48.3 53
    10 13039 Q-NC0012984 7 51.3 48.3 53
    10 13039 Q-NC0105175 8 51.6 48.3 53
    10 13039 Q-NC0143388 9 51.6 48.3 53
    10 13039 Q-NC0009350 10 53 48.3 53
    10 13017 Q-NC0009755 1 54.2 54.2 58.9
    10 13017 Q-NC0002285 2 55.4 54.2 58.9
    10 13017 Q-NC0039275 3 55.4 54.2 58.9
    10 13017 Q-NC0104512 4 57.3 54.2 58.9
    10 13017 Q-NC0022717 5 57.8 54.2 58.9
    10 13017 Q-NC0003206 6 58.6 54.2 58.9
    10 13017 Q-NC0003640 7 58.9 54.2 58.9
    10 12953 Q-NC0111360 1 61.2 61.2 64.8
    10 12953 Q-NC0009295 2 61.3 61.2 64.8
    10 12953 Q-NC0002940 3 61.4 61.2 64.8
    10 12953 Q-NC0109090 4 61.5 61.2 64.8
    10 12953 Q-NC0084196 5 63.6 61.2 64.8
    10 12953 Q-NC0016730 6 63.8 61.2 64.8
    10 12953 Q-NC0031358 7 64.2 61.2 64.8
    10 12953 Q-NC0107941 8 64.3 61.2 64.8
    10 12953 Q-NC0112090 9 64.8 61.2 64.8
    10 13095 Q-NC0018392 1 71.5 71.5 75.8
    10 13095 Q-NC0027447 2 75.6 71.5 75.8
    10 13095 Q-NC0081776 3 75.8 71.5 75.8
    10 12983 Q-NC0030134 1 79.4 79.4 79.4
    10 12901 Q-NC0011115 1 90 90 92.1
    10 12901 Q-NC0070905 2 92.1 90 92.1
    10 12876 Q-NC0067173 1 98 98 102.2
    10 12876 Q-NC0154948 2 102.2 98 102.2
    10 13064 Q-NC0143657 1 103.5 103.5 108.3
    10 13064 Q-NC0009486 2 105.5 103.5 108.3
    10 13064 Q-NC0109723 3 108.3 103.5 108.3
    10 12916 Q-NC0008954 1 112 112 114.6
    10 12916 Q-NC0107333 2 113.1 112 114.6
    10 12916 Q-NC0109666 3 113.1 112 114.6
    10 12916 Q-NC0151488 4 114.6 112 114.6
    10 12967 Q-NC0008643 1 119.1 119.1 123.3
    10 12967 Q-NC0111488 2 123.3 119.1 123.3
  • TABLE 2
    Characterization of haplotype windows in the soybean genome based on 149 elite
    lines and 1168 SNP markers. Haplotype windows in each chromosome are identified and
    the markers (disclosed in US Patent Applications 2005/0204780 and 2005/0216545,
    incorporated herein by reference in their entirety) within each window are described.
    HAPLOTYPE MARKER MARKER START END
    CHROMOSOME WINDOW ID NAME ORDER POSITION POSITION POSITION
    1 13610 Q-NS0092678 1 0 0 3
    1 13610 Q-NS0092617 2 0.4 0 3
    1 13610 Q-NS0101549 3 1.4 0 3
    1 13610 Q-NS0127917 4 1.4 0 3
    1 13610 Q-NS0120003 5 1.8 0 3
    1 13610 Q-NS0118494 6 3 0 3
    1 13610 Q-NS0124158 7 3 0 3
    1 13659 Q-NS0101025 1 11.3 11.3 16.2
    1 13659 Q-NS0101038 2 11.3 11.3 16.2
    1 13659 Q-NS0127234 3 11.3 11.3 16.2
    1 13659 Q-NS0129173 4 11.3 11.3 16.2
    1 13659 Q-NS0097228 5 16.2 11.3 16.2
    1 13828 Q-NS0123726 1 17.9 17.9 22.1
    1 13828 Q-NS0096824 2 18.8 17.9 22.1
    1 13828 Q-NS0096307 3 22.1 17.9 22.1
    1 13828 Q-NS0120370 4 22.1 17.9 22.1
    1 13688 Q-NS0121738 1 23.1 23.1 26.2
    1 13688 Q-NS0118969 2 25.1 23.1 26.2
    1 13688 Q-NS0120079 3 25.1 23.1 26.2
    1 13688 Q-NS0124450 4 25.1 23.1 26.2
    1 13688 Q-NS0126493 5 25.1 23.1 26.2
    1 13688 Q-NS0094900 6 26.2 23.1 26.2
    1 13748 Q-NS0100189 1 28.6 28.6 32
    1 13748 Q-NS0115741 2 32 28.6 32
    1 13865 Q-NS0098951 1 35 35 38.3
    1 13865 Q-NS0125096 2 36.2 35 38.3
    1 13865 Q-NS0117863 3 38.3 35 38.3
    1 13865 Q-NS0122151 4 38.3 35 38.3
    1 13673 Q-NS0119049 1 47.5 47.5 51.5
    1 13673 Q-NS0115450 2 47.9 47.5 51.5
    1 13673 Q-NS0129555 3 47.9 47.5 51.5
    1 13673 Q-NS0135427 4 48.1 47.5 51.5
    1 13673 Q-NS0093252 5 51.1 47.5 51.5
    1 13673 Q-NS0120948 6 51.1 47.5 51.5
    1 13673 Q-NS0119584 7 51.5 47.5 51.5
    1 13716 Q-NS0119795 1 53.3 53.3 55.2
    1 13716 Q-NS0124652 2 55.2 53.3 55.2
    1 13842 Q-NS0093775 1 64.1 64.1 66.8
    1 13842 Q-NS0136063 2 66.8 64.1 66.8
    1 13632 Q-NS0116003 1 70 70 73.9
    1 13632 Q-NS0121329 2 70 70 73.9
    1 13632 Q-NS0097011 3 70.4 70 73.9
    1 13632 Q-NS0136255 4 73.9 70 73.9
    1 13740 Q-NS0125407 1 78.4 78.4 83.3
    1 13740 Q-NS0115925 2 79.9 78.4 83.3
    1 13740 Q-NS0117865 3 79.9 78.4 83.3
    1 13740 Q-NS0118789 4 83.3 78.4 83.3
    1 13707 Q-NS0115445 1 90 90 90
    1 13707 Q-NS0127094 2 90 90 90
    1 13786 Q-NS0099886 1 95.9 95.9 98.4
    1 13786 Q-NS0101558 2 97.4 95.9 98.4
    1 13786 Q-NS0121865 3 98.4 95.9 98.4
    1 13833 Q-NS0100425 1 110.8 110.8 112
    1 13833 Q-NS0098341 2 112 110.8 112
    2 13718 Q-NS0092792 1 0.4 0.4 3.7
    2 13718 Q-NS0135783 2 3.7 0.4 3.7
    2 13758 Q-NS0093345 1 22.5 22.5 23.2
    2 13758 Q-NS0098139 2 23.2 22.5 23.2
    2 13572 Q-NS0096933 1 34.8 34.8 38.8
    2 13572 Q-NS0094031 2 38.8 34.8 38.8
    2 13624 Q-NS0126797 1 39.9 39.9 44
    2 13624 Q-NS0096219 2 40.3 39.9 44
    2 13624 Q-NS0125781 3 42.4 39.9 44
    2 13624 Q-NS0102988 4 44 39.9 44
    2 13624 Q-NS0120970 5 44 39.9 44
    2 13796 Q-NS0097413 1 48.1 48.1 48.1
    2 13818 Q-NS0124916 1 56.5 56.5 57.7
    2 13818 Q-NS0128764 2 56.5 56.5 57.7
    2 13818 Q-NS0099649 3 57.7 56.5 57.7
    2 13776 Q-NS0128262 1 62.1 62.1 62.1
    2 13776 Q-NS0135057 2 62.1 62.1 62.1
    2 13855 Q-NS0094352 1 67.6 67.6 67.6
    2 13861 Q-NS0103318 1 73.5 73.5 76.6
    2 13861 Q-NS0119250 2 73.7 73.5 76.6
    2 13861 Q-NS0122142 3 73.7 73.5 76.6
    2 13861 Q-NS0119892 4 76.6 73.5 76.6
    2 13689 Q-NS0094025 1 82.3 82.3 86
    2 13689 Q-NS0136630 2 83 82.3 86
    2 13689 Q-NS0093040 3 85.3 82.3 86
    2 13689 Q-NS0098210 4 86 82.3 86
    2 13689 Q-NS0100393 5 86 82.3 86
    2 13689 Q-NS0102832 6 86 82.3 86
    2 13689 Q-NS0114305 7 86 82.3 86
    2 13639 Q-NS0119402 1 88.4 88.4 93.2
    2 13639 Q-NS0137326 2 93.2 88.4 93.2
    2 13767 Q-NS0115399 1 103.9 103.9 106.7
    2 13767 Q-NS0123688 2 103.9 103.9 106.7
    2 13767 Q-NS0124925 3 104.3 103.9 106.7
    2 13767 Q-NS0113961 4 105.8 103.9 106.7
    2 13767 Q-NS0117731 5 106.3 103.9 106.7
    2 13767 Q-NS0121937 6 106.3 103.9 106.7
    2 13767 Q-NS0121929 7 106.7 103.9 106.7
    2 13589 Q-NS0115045 1 115.4 115.4 115.4
    2 13589 Q-NS0130507 2 115.4 115.4 115.4
    2 13862 Q-NS0099483 1 120.6 120.6 120.6
    3 13676 Q-NS0095629 1 3.8 3.8 8.5
    3 13676 Q-NS0135494 2 8.5 3.8 8.5
    3 13859 Q-NS0103206 1 10.6 10.6 11
    3 13859 Q-NS0120038 2 10.6 10.6 11
    3 13859 Q-NS0124701 3 11 10.6 11
    3 13761 Q-NS0099457 1 16.1 16.1 16.1
    3 13761 Q-NS0099713 2 16.1 16.1 16.1
    3 13761 Q-NS0101568 3 16.1 16.1 16.1
    3 13761 Q-NS0118537 4 16.1 16.1 16.1
    3 13761 Q-NS0129433 5 16.1 16.1 16.1
    3 13722 Q-NS0116069 1 25 25 29.8
    3 13722 Q-NS0130106 2 29.4 25 29.8
    3 13722 Q-NS0128396 3 29.8 25 29.8
    3 13715 Q-NS0127872 1 31.8 31.8 31.8
    3 13849 Q-NS0137810 1 37.9 37.9 39.3
    3 13849 Q-NS0138025 2 39.3 37.9 39.3
    3 13680 Q-NS0115007 1 43.5 43.5 45.2
    3 13680 Q-NS0119972 2 43.5 43.5 45.2
    3 13680 Q-NS0120592 3 43.5 43.5 45.2
    3 13680 Q-NS0124149 4 43.5 43.5 45.2
    3 13680 Q-NS0135644 5 43.5 43.5 45.2
    3 13680 Q-NS0118628 6 45.2 43.5 45.2
    3 13626 Q-NS0098544 1 50.1 50.1 55
    3 13626 Q-NS0129502 2 50.1 50.1 55
    3 13626 Q-NS0100204 3 51.3 50.1 55
    3 13626 Q-NS0102351 4 51.3 50.1 55
    3 13626 Q-NS0126363 5 51.3 50.1 55
    3 13626 Q-NS0126717 6 51.3 50.1 55
    3 13626 Q-NS0098843 7 53.8 50.1 55
    3 13626 Q-NS0115031 8 55 50.1 55
    3 13626 Q-NS0129945 9 55 50.1 55
    3 13629 Q-NS0102924 1 55.4 55.4 55.4
    3 13850 Q-NS0123576 1 71.4 71.4 74.2
    3 13850 Q-NS0103052 2 74.2 71.4 74.2
    3 13646 Q-NS0097691 1 84.9 84.9 87.3
    3 13646 Q-NS0124550 2 87.3 84.9 87.3
    3 13701 Q-NS0093020 1 96.9 96.9 101.2
    3 13701 Q-NS0103626 2 99.1 96.9 101.2
    3 13701 Q-NS0103742 3 99.1 96.9 101.2
    3 13701 Q-NS0129472 4 99.1 96.9 101.2
    3 13701 Q-NS0125388 5 99.7 96.9 101.2
    3 13701 Q-NS0119893 6 100.3 96.9 101.2
    3 13701 Q-NS0119938 7 100.3 96.9 101.2
    3 13701 Q-NS0121650 8 100.3 96.9 101.2
    3 13701 Q-NS0122057 9 100.3 96.9 101.2
    3 13701 Q-NS0104071 10 101.2 96.9 101.2
    3 13737 Q-NS0096110 1 103.5 103.5 103.5
    3 13725 Q-NS0123951 1 110.6 110.6 115.6
    3 13725 Q-NS0100940 2 112.6 110.6 115.6
    3 13725 Q-NS0118018 3 113.6 110.6 115.6
    3 13725 Q-NS0095558 4 115.6 110.6 115.6
    3 13655 Q-NS0122225 1 117 117 117
    3 13752 Q-NS0103909 1 126.6 126.6 130.6
    3 13752 Q-NS0134693 2 130.6 126.6 130.6
    3 13669 Q-NS0136661 1 132.7 132.7 133.8
    3 13669 Q-NS0120054 2 133.4 132.7 133.8
    3 13669 Q-NS0093291 3 133.8 132.7 133.8
    3 13669 Q-NS0097611 4 133.8 132.7 133.8
    3 13669 Q-NS0103125 5 133.8 132.7 133.8
    3 13669 Q-NS0116590 6 133.8 132.7 133.8
    3 13741 Q-NS0094097 1 138.8 138.8 139.2
    3 13741 Q-NS0114874 2 138.8 138.8 139.2
    3 13741 Q-NS0115159 3 138.8 138.8 139.2
    3 13741 Q-NS0127432 4 138.8 138.8 139.2
    3 13741 Q-NS0097878 5 139.2 138.8 139.2
    3 13717 Q-NS0097078 1 150.2 150.2 151.3
    3 13717 Q-NS0115022 2 150.2 150.2 151.3
    3 13717 Q-NS0118268 3 150.2 150.2 151.3
    3 13717 Q-NS0102044 4 151.3 150.2 151.3
    3 13717 Q-NS0137989 5 151.3 150.2 151.3
    4 13809 Q-NS0097943 1 0 0 0
    4 13864 Q-NS0114876 1 5.1 5.1 10
    4 13864 Q-NS0115398 2 5.1 5.1 10
    4 13864 Q-NS0128006 3 5.1 5.1 10
    4 13864 Q-NS0128286 4 7.4 5.1 10
    4 13864 Q-NS0126057 5 8.3 5.1 10
    4 13864 Q-NS0097763 6 8.7 5.1 10
    4 13864 Q-NS0120344 7 8.7 5.1 10
    4 13864 Q-NS0094035 8 10 5.1 10
    4 13757 Q-NS0119793 1 11.8 11.8 11.8
    4 13585 Q-NS0092597 1 19 19 19.4
    4 13585 Q-NS0121753 2 19.4 19 19.4
    4 13585 Q-NS0135269 3 19.4 19 19.4
    4 13751 Q-NS0128418 1 24.1 24.1 24.1
    4 13628 Q-NS0100939 1 32.4 32.4 33.6
    4 13628 Q-NS0122451 2 32.4 32.4 33.6
    4 13628 Q-NS0103121 3 33.6 32.4 33.6
    4 13687 Q-NS0118936 1 41.5 41.5 45.6
    4 13687 Q-NS0122458 2 41.5 41.5 45.6
    4 13687 Q-NS0102629 3 44.8 41.5 45.6
    4 13687 Q-NS0103927 4 44.8 41.5 45.6
    4 13687 Q-NS0124687 5 44.8 41.5 45.6
    4 13687 Q-NS0126961 6 44.8 41.5 45.6
    4 13687 Q-NS0098239 7 45.2 41.5 45.6
    4 13687 Q-NS0093253 8 45.6 41.5 45.6
    4 13747 Q-NS0119674 1 47.7 47.7 51.6
    4 13747 Q-NS0128628 2 47.7 47.7 51.6
    4 13747 Q-NS0098444 3 48.1 47.7 51.6
    4 13747 Q-NS0128393 4 51.6 47.7 51.6
    4 13784 Q-NS0100200 1 53.6 53.6 53.6
    4 13784 Q-NS0113972 2 53.6 53.6 53.6
    4 13739 Q-NS0100304 1 69 69 73.1
    4 13739 Q-NS0123567 2 73.1 69 73.1
    4 13712 Q-NS0093333 1 76.6 76.6 80.8
    4 13712 Q-NS0134715 2 80.8 76.6 80.8
    4 13853 Q-NS0136358 1 91.2 91.2 92.4
    4 13853 Q-NS0116010 2 92.4 91.2 92.4
    4 13804 Q-NS0127436 1 110.6 110.6 114.7
    4 13804 Q-NS0102719 2 113.5 110.6 114.7
    4 13804 Q-NS0121437 3 113.5 110.6 114.7
    4 13804 Q-NS0120511 4 113.9 110.6 114.7
    4 13804 Q-NS0103916 5 114.7 110.6 114.7
    4 13804 Q-NS0122402 6 114.7 110.6 114.7
    4 13807 Q-NS0093229 1 125.6 125.6 125.6
    4 13798 Q-NS0124735 1 132.1 132.1 132.1
    4 13831 Q-NS0101355 1 138.6 138.6 139
    4 13831 Q-NS0119353 2 138.6 138.6 139
    4 13831 Q-NS0128057 3 138.6 138.6 139
    4 13831 Q-NS0116504 4 139 138.6 139
    5 13825 Q-NS0135209 1 0 0 0.2
    5 13825 Q-NS0135791 2 0 0 0.2
    5 13825 Q-NS0137720 3 0.2 0 0.2
    5 13613 Q-NS0094787 1 6 6 10.3
    5 13613 Q-NS0095037 2 9.1 6 10.3
    5 13613 Q-NS0096065 3 9.1 6 10.3
    5 13613 Q-NS0115071 4 9.1 6 10.3
    5 13613 Q-NS0116035 5 9.1 6 10.3
    5 13613 Q-NS0102722 6 9.9 6 10.3
    5 13613 Q-NS0123078 7 9.9 6 10.3
    5 13613 Q-NS0125565 8 9.9 6 10.3
    5 13613 Q-NS0130504 9 9.9 6 10.3
    5 13613 Q-NS0096316 10 10.3 6 10.3
    5 13830 Q-NS0103750 1 10.7 10.7 12.9
    5 13830 Q-NS0124929 2 12.4 10.7 12.9
    5 13830 Q-NS0100555 3 12.9 10.7 12.9
    5 13830 Q-NS0100959 4 12.9 10.7 12.9
    5 13830 Q-NS0119950 5 12.9 10.7 12.9
    5 13830 Q-NS0121934 6 12.9 10.7 12.9
    5 13848 Q-NS0143014 1 16.4 16.4 18.5
    5 13848 Q-NS0101671 2 18.5 16.4 18.5
    5 13848 Q-NS0101672 3 18.5 16.4 18.5
    5 13848 Q-NS0129284 4 18.5 16.4 18.5
    5 13652 Q-NS0096897 1 21.7 21.7 21.7
    5 13652 Q-NS0096931 2 21.7 21.7 21.7
    5 13788 Q-NS0113766 1 27.1 27.1 28.6
    5 13788 Q-NS0128011 2 27.1 27.1 28.6
    5 13788 Q-NS0128679 3 27.1 27.1 28.6
    5 13788 Q-NS0102713 4 28.6 27.1 28.6
    5 13788 Q-NS0102714 5 28.6 27.1 28.6
    5 13714 Q-NS0096121 1 43 43 43
    5 13615 Q-NS0098536 1 50.1 50.1 54.9
    5 13615 Q-NS0098306 2 50.5 50.1 54.9
    5 13615 Q-NS0094224 3 53.8 50.1 54.9
    5 13615 Q-NS0135800 4 53.8 50.1 54.9
    5 13615 Q-NS0094172 5 54.9 50.1 54.9
    5 13615 Q-NS0099900 6 54.9 50.1 54.9
    5 13615 Q-NS0103417 7 54.9 50.1 54.9
    5 13615 Q-NS0115642 8 54.9 50.1 54.9
    5 13615 Q-NS0123196 9 54.9 50.1 54.9
    5 13615 Q-NS0124052 10 54.9 50.1 54.9
    5 13598 Q-NS0094180 1 55.6 55.6 60.5
    5 13598 Q-NS0100930 2 57.8 55.6 60.5
    5 13598 Q-NS0136594 3 59.6 55.6 60.5
    5 13598 Q-NS0099350 4 59.8 55.6 60.5
    5 13598 Q-NS0128324 5 59.8 55.6 60.5
    5 13598 Q-NS0119989 6 60.5 55.6 60.5
    5 13710 Q-NS0095012 1 61.2 61.2 64.1
    5 13710 Q-NS0093594 2 64.1 61.2 64.1
    5 13711 Q-NS0115460 1 67.5 67.5 71.8
    5 13711 Q-NS0119496 2 67.9 67.5 71.8
    5 13711 Q-NS0119590 3 67.9 67.5 71.8
    5 13711 Q-NS0125448 4 68.3 67.5 71.8
    5 13711 Q-NS0126706 5 68.3 67.5 71.8
    5 13711 Q-NS0093190 6 71.8 67.5 71.8
    5 13711 Q-NS0097813 7 71.8 67.5 71.8
    5 13711 Q-NS0103150 8 71.8 67.5 71.8
    5 13584 Q-NS0099531 1 80.3 80.3 84
    5 13584 Q-NS0119675 2 82.5 80.3 84
    5 13584 Q-NS0094114 3 84 80.3 84
    5 13584 Q-NS0121655 4 84 80.3 84
    5 13777 Q-NS0118422 1 87.4 87.4 90.8
    5 13777 Q-NS0099417 2 87.7 87.4 90.8
    5 13777 Q-NS0103945 3 87.7 87.4 90.8
    5 13777 Q-NS0116582 4 87.7 87.4 90.8
    5 13777 Q-NS0125754 5 87.7 87.4 90.8
    5 13777 Q-NS0092676 6 88.1 87.4 90.8
    5 13777 Q-NS0124537 7 88.7 87.4 90.8
    5 13777 Q-NS0095211 8 90.8 87.4 90.8
    5 13777 Q-NS0097307 9 90.8 87.4 90.8
    5 13574 Q-NS0093250 1 95.7 95.7 98.9
    5 13574 Q-NS0119710 2 96.5 95.7 98.9
    5 13574 Q-NS0099454 3 97.6 95.7 98.9
    5 13574 Q-NS0102630 4 97.6 95.7 98.9
    5 13574 Q-NS0102913 5 98.9 95.7 98.9
    5 13574 Q-NS0102915 6 98.9 95.7 98.9
    5 13579 Q-NS0102168 1 106.7 106.7 107.8
    5 13579 Q-NS0123728 2 106.7 106.7 107.8
    5 13579 Q-NS0129943 3 106.7 106.7 107.8
    5 13579 Q-NS0092723 4 107.4 106.7 107.8
    5 13579 Q-NS0098177 5 107.8 106.7 107.8
    5 13579 Q-NS0101121 6 107.8 106.7 107.8
    5 13579 Q-NS0127343 7 107.8 106.7 107.8
    6 13576 Q-NS0102060 1 0.2 0.2 1
    6 13576 Q-NS0100402 2 0.6 0.2 1
    6 13576 Q-NS0115649 3 0.6 0.2 1
    6 13576 Q-NS0121429 4 0.6 0.2 1
    6 13576 Q-NS0129808 5 1 0.2 1
    6 13726 Q-NS0119618 1 5.7 5.7 7.2
    6 13726 Q-NS0094170 2 7.2 5.7 7.2
    6 13679 Q-NS0129030 1 25.1 25.1 27.2
    6 13679 Q-NS0115157 2 26.8 25.1 27.2
    6 13679 Q-NS0117895 3 26.8 25.1 27.2
    6 13679 Q-NS0129008 4 26.8 25.1 27.2
    6 13679 Q-NS0127084 5 27.2 25.1 27.2
    6 13582 Q-NS0125775 1 30.3 30.3 32.9
    6 13582 Q-NS0130788 2 30.3 30.3 32.9
    6 13582 Q-NS0093984 3 32.9 30.3 32.9
    6 13582 Q-NS0096925 4 32.9 30.3 32.9
    6 13832 Q-NS0102865 1 36.6 36.6 36.6
    6 13832 Q-NS0115923 2 36.6 36.6 36.6
    6 13832 Q-NS0119410 3 36.6 36.6 36.6
    6 13832 Q-NS0121338 4 36.6 36.6 36.6
    6 13832 Q-NS0121413 5 36.6 36.6 36.6
    6 13832 Q-NS0125467 6 36.6 36.6 36.6
    6 13780 Q-NS0125773 1 47.3 47.3 47.3
    6 13593 Q-NS0136566 1 67.8 67.8 69.7
    6 13593 Q-NS0118671 2 69.3 67.8 69.7
    6 13593 Q-NS0130775 3 69.7 67.8 69.7
    6 13778 Q-NS0114019 1 77.7 77.7 80.2
    6 13778 Q-NS0126986 2 79.8 77.7 80.2
    6 13778 Q-NS0123339 3 80.2 77.7 80.2
    6 13696 Q-NS0129403 1 90.6 90.6 90.6
    6 13815 Q-NS0128383 1 95.7 95.7 96.5
    6 13815 Q-NS0122122 2 96.5 95.7 96.5
    6 13815 Q-NS0126047 3 96.5 95.7 96.5
    6 13815 Q-NS0126800 4 96.5 95.7 96.5
    6 13665 Q-NS0098575 1 107.4 107.4 111.6
    6 13665 Q-NS0125835 2 107.4 107.4 111.6
    6 13665 Q-NS0115145 3 110.8 107.4 111.6
    6 13665 Q-NS0100501 4 111.6 107.4 111.6
    6 13665 Q-NS0102058 5 111.6 107.4 111.6
    6 13665 Q-NS0102300 6 111.6 107.4 111.6
    6 13665 Q-NS0102838 7 111.6 107.4 111.6
    6 13665 Q-NS0113988 8 111.6 107.4 111.6
    6 13665 Q-NS0114720 9 111.6 107.4 111.6
    6 13665 Q-NS0116250 10 111.6 107.4 111.6
    6 13820 Q-NS0098582 1 115.5 115.5 115.5
    7 13685 Q-NS0103153 1 0 0 2
    7 13685 Q-NS0118498 2 0 0 2
    7 13685 Q-NS0127563 3 0 0 2
    7 13685 Q-NS0135911 4 0 0 2
    7 13685 Q-NS0121512 5 2 0 2
    7 13685 Q-NS0131156 6 2 0 2
    7 13700 Q-NS0129617 1 5.7 5.7 10.3
    7 13700 Q-NS0103494 2 9.4 5.7 10.3
    7 13700 Q-NS0103496 3 9.4 5.7 10.3
    7 13700 Q-NS0125563 4 10.3 5.7 10.3
    7 13586 Q-NS0118654 1 14.4 14.4 16.4
    7 13586 Q-NS0104106 2 14.8 14.4 16.4
    7 13586 Q-NS0119615 3 14.8 14.4 16.4
    7 13586 Q-NS0126820 4 14.8 14.4 16.4
    7 13586 Q-NS0138064 5 15.9 14.4 16.4
    7 13586 Q-NS0100721 6 16.4 14.4 16.4
    7 13586 Q-NS0125981 7 16.4 14.4 16.4
    7 13656 Q-NS0119113 1 23.8 23.8 27.6
    7 13656 Q-NS0137732 2 27.6 23.8 27.6
    7 13745 Q-NS0092931 1 40.3 40.3 43.6
    7 13745 Q-NS0121692 2 41.4 40.3 43.6
    7 13745 Q-NS0130304 3 43.4 40.3 43.6
    7 13745 Q-NS0093980 4 43.6 40.3 43.6
    7 13729 Q-NS0127022 1 55.1 55.1 58.8
    7 13729 Q-NS0128455 2 55.1 55.1 58.8
    7 13729 Q-NS0094867 3 56.9 55.1 58.8
    7 13729 Q-NS0114918 4 56.9 55.1 58.8
    7 13729 Q-NS0115235 5 56.9 55.1 58.8
    7 13729 Q-NS0116059 6 56.9 55.1 58.8
    7 13729 Q-NS0100518 7 58.4 55.1 58.8
    7 13729 Q-NS0118021 8 58.4 55.1 58.8
    7 13729 Q-NS0094165 9 58.8 55.1 58.8
    7 13729 Q-NS0101015 10 58.8 55.1 58.8
    7 13753 Q-NS0092749 1 60.4 60.4 62.2
    7 13753 Q-NS0102633 2 60.8 60.4 62.2
    7 13753 Q-NS0096535 3 62.2 60.4 62.2
    7 13596 Q-NS0119248 1 71.2 71.2 71.2
    7 13596 Q-NS0120307 2 71.2 71.2 71.2
    7 13607 Q-NS0124199 1 78.3 78.3 80.6
    7 13607 Q-NS0093201 2 79.9 78.3 80.6
    7 13607 Q-NS0137459 3 80.6 78.3 80.6
    7 13730 Q-NS0101545 1 84.9 84.9 88.5
    7 13730 Q-NS0119241 2 84.9 84.9 88.5
    7 13730 Q-NS0093125 3 87.8 84.9 88.5
    7 13730 Q-NS0097856 4 88.5 84.9 88.5
    7 13590 Q-NS0121458 1 90.4 90.4 95.1
    7 13590 Q-NS0101422 2 92.1 90.4 95.1
    7 13590 Q-NS0102042 3 93.3 90.4 95.1
    7 13590 Q-NS0096207 4 95.1 90.4 95.1
    7 13590 Q-NS0097326 5 95.1 90.4 95.1
    7 13590 Q-NS0099217 6 95.1 90.4 95.1
    7 13774 Q-NS0097320 1 95.5 95.5 98
    7 13774 Q-NS0093998 2 98 95.5 98
    7 13774 Q-NS0099778 3 98 95.5 98
    7 13774 Q-NS0119657 4 98 95.5 98
    7 13774 Q-NS0122140 5 98 95.5 98
    7 13799 Q-NS0102358 1 101.3 101.3 104.9
    7 13799 Q-NS0116413 2 101.3 101.3 104.9
    7 13799 Q-NS0119886 3 101.3 101.3 104.9
    7 13799 Q-NS0121993 4 101.3 101.3 104.9
    7 13799 Q-NS0130102 5 101.3 101.3 104.9
    7 13799 Q-NS0122580 6 102.5 101.3 104.9
    7 13799 Q-NS0124022 7 103.7 101.3 104.9
    7 13799 Q-NS0124976 8 104.1 101.3 104.9
    7 13799 Q-NS0125451 9 104.1 101.3 104.9
    7 13799 Q-NS0116555 10 104.9 101.3 104.9
    7 13763 Q-NS0129726 1 105.7 105.7 108.9
    7 13763 Q-NS0116550 2 106.9 105.7 108.9
    7 13763 Q-NS0118234 3 106.9 105.7 108.9
    7 13763 Q-NS0101563 4 108.9 105.7 108.9
    7 13763 Q-NS0129188 5 108.9 105.7 108.9
    8 13591 Q-NS0098300 1 12.4 12.4 15.2
    8 13591 Q-NS0127931 2 12.4 12.4 15.2
    8 13591 Q-NS0128616 3 12.4 12.4 15.2
    8 13591 Q-NS0117725 4 13.6 12.4 15.2
    8 13591 Q-NS0118420 5 13.6 12.4 15.2
    8 13591 Q-NS0122753 6 13.6 12.4 15.2
    8 13591 Q-NS0125948 7 13.6 12.4 15.2
    8 13591 Q-NS0127510 8 13.6 12.4 15.2
    8 13591 Q-NS0122067 9 14.8 12.4 15.2
    8 13591 Q-NS0118665 10 15.2 12.4 15.2
    8 13571 Q-NS0127348 1 15.6 15.6 15.6
    8 13845 Q-NS0095317 1 22 22 22
    8 13856 Q-NS0126526 1 30.3 30.3 30.3
    8 13621 Q-NS0103262 1 38.2 38.2 42.7
    8 13621 Q-NS0102805 2 42.7 38.2 42.7
    8 13713 Q-NS0097658 1 47.4 47.4 50.7
    8 13713 Q-NS0098274 2 50.3 47.4 50.7
    8 13713 Q-NS0122141 3 50.3 47.4 50.7
    8 13713 Q-NS0138091 4 50.7 47.4 50.7
    8 13611 Q-NS0092580 1 54.5 54.5 58.9
    8 13611 Q-NS0096186 2 58.9 54.5 58.9
    8 13634 Q-NS0103570 1 66.5 66.5 71.5
    8 13634 Q-NS0125446 2 66.9 66.5 71.5
    8 13634 Q-NS0118503 3 69.2 66.5 71.5
    8 13634 Q-NS0130503 4 69.2 66.5 71.5
    8 13634 Q-NS0094846 5 71.5 66.5 71.5
    8 13843 Q-NS0100709 1 71.9 71.9 73.8
    8 13843 Q-NS0102926 2 71.9 71.9 73.8
    8 13843 Q-NS0114715 3 71.9 71.9 73.8
    8 13843 Q-NS0118680 4 71.9 71.9 73.8
    8 13843 Q-NS0124014 5 71.9 71.9 73.8
    8 13843 Q-NS0126939 6 71.9 71.9 73.8
    8 13843 Q-NS0121360 7 73.8 71.9 73.8
    8 13744 Q-NS0118909 1 78 78 80.1
    8 13744 Q-NS0126697 2 80.1 78 80.1
    8 13732 Q-NS0123385 1 89 89 91.5
    8 13732 Q-NS0124275 2 91.5 89 91.5
    8 13821 Q-NS0115372 1 97.7 97.7 102.1
    8 13821 Q-NS0118272 2 97.7 97.7 102.1
    8 13821 Q-NS0125762 3 97.7 97.7 102.1
    8 13821 Q-NS0131146 4 102.1 97.7 102.1
    8 13705 Q-NS0119058 1 104.1 104.1 107.3
    8 13705 Q-NS0119069 2 107.3 104.1 107.3
    8 13635 Q-NS0097123 1 112.8 112.8 116.7
    8 13635 Q-NS0098200 2 112.8 112.8 116.7
    8 13635 Q-NS0125799 3 115.9 112.8 116.7
    8 13635 Q-NS0119717 4 116.7 112.8 116.7
    8 13602 Q-NS0092799 1 127.2 127.2 127.2
    8 13734 Q-NS0118682 1 139.1 139.1 144
    8 13734 Q-NS0122106 2 140.3 139.1 144
    8 13734 Q-NS0099487 3 141.1 139.1 144
    8 13734 Q-NS0128284 4 141.1 139.1 144
    8 13734 Q-NS0135210 5 144 139.1 144
    9 13773 Q-NS0094289 1 2.2 2.2 2.9
    9 13773 Q-NS0096286 2 2.2 2.2 2.9
    9 13773 Q-NS0097663 3 2.9 2.2 2.9
    9 13797 Q-NS0092853 1 13.5 13.5 13.5
    9 13577 Q-NS0093625 1 25.4 25.4 27
    9 13577 Q-NS0119357 2 27 25.4 27
    9 13728 Q-NS0118923 1 31.7 31.7 33.7
    9 13728 Q-NS0096018 2 33.7 31.7 33.7
    9 13641 Q-NS0102076 1 45.3 45.3 45.3
    9 13653 Q-NS0099037 1 52.7 52.7 54.8
    9 13653 Q-NS0125846 2 54.8 52.7 54.8
    9 13772 Q-NS0118297 1 63.1 63.1 63.5
    9 13772 Q-NS0115731 2 63.5 63.1 63.5
    9 13772 Q-NS0119916 3 63.5 63.1 63.5
    9 13772 Q-NS0126153 4 63.5 63.1 63.5
    9 13698 Q-NS0114310 1 69 69 71.4
    9 13698 Q-NS0119715 2 69 69 71.4
    9 13698 Q-NS0130220 3 69 69 71.4
    9 13698 Q-NS0103038 4 70.3 69 71.4
    9 13698 Q-NS0103043 5 70.3 69 71.4
    9 13698 Q-NS0103137 6 70.3 69 71.4
    9 13698 Q-NS0102480 7 70.7 69 71.4
    9 13698 Q-NS0118662 8 70.7 69 71.4
    9 13698 Q-NS0121771 9 70.7 69 71.4
    9 13698 Q-NS0099654 10 71.4 69 71.4
    9 13592 Q-NS0092560 1 72.8 72.8 77.2
    9 13592 Q-NS0100727 2 73.9 72.8 77.2
    9 13592 Q-NS0100733 3 73.9 72.8 77.2
    9 13592 Q-NS0119594 4 73.9 72.8 77.2
    9 13592 Q-NS0120227 5 73.9 72.8 77.2
    9 13592 Q-NS0103000 6 77.2 72.8 77.2
    9 13592 Q-NS0104136 7 77.2 72.8 77.2
    9 13592 Q-NS0123823 8 77.2 72.8 77.2
    9 13822 Q-NS0118897 1 80.6 80.6 83.2
    9 13822 Q-NS0122349 2 80.6 80.6 83.2
    9 13822 Q-NS0130920 3 80.6 80.6 83.2
    9 13822 Q-NS0124601 4 83.2 80.6 83.2
    9 13764 Q-NS0103749 1 88.3 88.3 91.3
    9 13764 Q-NS0096829 2 89 88.3 91.3
    9 13764 Q-NS0099746 3 89 88.3 91.3
    9 13764 Q-NS0123747 4 89 88.3 91.3
    9 13764 Q-NS0125408 5 89 88.3 91.3
    9 13764 Q-NS0126598 6 89 88.3 91.3
    9 13764 Q-NS0128378 7 89 88.3 91.3
    9 13764 Q-NS0098902 8 89.7 88.3 91.3
    9 13764 Q-NS0099529 9 89.7 88.3 91.3
    9 13764 Q-NS0097798 10 91.3 88.3 91.3
    9 13817 Q-NS0137477 1 93.7 93.7 93.9
    9 13817 Q-NS0095322 2 93.9 93.7 93.9
    9 13817 Q-NS0136101 3 93.9 93.7 93.9
    9 13783 Q-NS0093385 1 98.8 98.8 103.7
    9 13783 Q-NS0093976 2 98.8 98.8 103.7
    9 13783 Q-NS0098982 3 98.8 98.8 103.7
    9 13783 Q-NS0135390 4 98.8 98.8 103.7
    9 13783 Q-NS0128617 5 103.7 98.8 103.7
    9 13731 Q-NS0095345 1 106.4 106.4 106.4
    9 13800 Q-NS0125281 1 114.3 114.3 115.9
    9 13800 Q-NS0118716 2 115.9 114.3 115.9
    9 13637 Q-NS0128026 1 121.9 121.9 122.6
    9 13637 Q-NS0136087 2 122.6 121.9 122.6
    9 13771 Q-NS0134935 1 128.1 128.1 131.5
    9 13771 Q-NS0095549 2 128.5 128.1 131.5
    9 13771 Q-NS0098169 3 128.5 128.1 131.5
    9 13771 Q-NS0116281 4 128.7 128.1 131.5
    9 13771 Q-NS0123870 5 128.7 128.1 131.5
    9 13771 Q-NS0094475 6 129.2 128.1 131.5
    9 13771 Q-NS0127833 7 131.5 128.1 131.5
    10 13723 Q-NS0113936 1 3.6 3.6 5.8
    10 13723 Q-NS0114153 2 3.6 3.6 5.8
    10 13723 Q-NS0119880 3 3.6 3.6 5.8
    10 13723 Q-NS0120346 4 3.6 3.6 5.8
    10 13723 Q-NS0102833 5 4 3.6 5.8
    10 13723 Q-NS0122064 6 4 3.6 5.8
    10 13723 Q-NS0127907 7 4 3.6 5.8
    10 13723 Q-NS0120032 8 4.4 3.6 5.8
    10 13723 Q-NS0129380 9 4.4 3.6 5.8
    10 13723 Q-NS0094318 10 5.8 3.6 5.8
    10 13619 Q-NS0103508 1 10.6 10.6 14
    10 13619 Q-NS0115254 2 10.6 10.6 14
    10 13619 Q-NS0103020 3 12.6 10.6 14
    10 13619 Q-NS0101266 4 13.3 10.6 14
    10 13619 Q-NS0125414 5 13.3 10.6 14
    10 13619 Q-NS0101200 6 14 10.6 14
    10 13619 Q-NS0103639 7 14 10.6 14
    10 13619 Q-NS0125552 8 14 10.6 14
    10 13619 Q-NS0128596 9 14 10.6 14
    10 13785 Q-NS0103500 1 20 20 23
    10 13785 Q-NS0092681 2 23 20 23
    10 13785 Q-NS0103490 3 23 20 23
    10 13622 Q-NS0122178 1 30.6 30.6 32.6
    10 13622 Q-NS0124951 2 30.6 30.6 32.6
    10 13622 Q-NS0137560 3 32.6 30.6 32.6
    10 13677 Q-NS0122466 1 39.3 39.3 39.3
    10 13609 Q-NS0100002 1 47.5 47.5 47.5
    10 13609 Q-NS0120004 2 47.5 47.5 47.5
    10 13857 Q-NS0099994 1 55.9 55.9 59.5
    10 13857 Q-NS0093271 2 58.7 55.9 59.5
    10 13857 Q-NS0095620 3 59.5 55.9 59.5
    10 13671 Q-NS0097162 1 72.5 72.5 74.3
    10 13671 Q-NS0097165 2 72.5 72.5 74.3
    10 13671 Q-NS0124883 3 72.5 72.5 74.3
    10 13671 Q-NS0100243 4 74.3 72.5 74.3
    10 13580 Q-NS0093353 1 98.9 98.9 99.3
    10 13580 Q-NS0100433 2 99.3 98.9 99.3
    10 13580 Q-NS0120122 3 99.3 98.9 99.3
    10 13746 Q-NS0124477 1 110.4 110.4 110.4
    10 13746 Q-NS0130660 2 110.4 110.4 110.4
    11 13738 Q-NS0102362 1 33 33 38
    11 13738 Q-NS0102871 2 33 33 38
    11 13738 Q-NS0101258 3 33.4 33 38
    11 13738 Q-NS0102684 4 33.4 33 38
    11 13738 Q-NS0119532 5 33.4 33 38
    11 13738 Q-NS0117716 6 38 33 38
    11 13583 Q-NS0100652 1 38.4 38.4 42.2
    11 13583 Q-NS0103073 2 38.4 38.4 42.2
    11 13583 Q-NS0119574 3 38.4 38.4 42.2
    11 13583 Q-NS0127728 4 38.4 38.4 42.2
    11 13583 Q-NS0129721 5 38.4 38.4 42.2
    11 13583 Q-NS0093520 6 39.1 38.4 42.2
    11 13583 Q-NS0124702 7 42.2 38.4 42.2
    11 13604 Q-NS0099639 1 43.5 43.5 47.1
    11 13604 Q-NS0093290 2 45.3 43.5 47.1
    11 13604 Q-NS0102656 3 47.1 43.5 47.1
    11 13750 Q-NS0119842 1 49.8 49.8 53.9
    11 13750 Q-NS0124584 2 49.8 49.8 53.9
    11 13750 Q-NS0095258 3 53.9 49.8 53.9
    11 13706 Q-NS0120298 1 55.9 55.9 58.7
    11 13706 Q-NS0103255 2 56.4 55.9 58.7
    11 13706 Q-NS0119106 3 56.4 55.9 58.7
    11 13706 Q-NS0119663 4 56.4 55.9 58.7
    11 13706 Q-NS0124762 5 56.4 55.9 58.7
    11 13706 Q-NS0125528 6 56.4 55.9 58.7
    11 13706 Q-NS0101020 7 58.7 55.9 58.7
    11 13706 Q-NS0101779 8 58.7 55.9 58.7
    11 13706 Q-NS0115345 9 58.7 55.9 58.7
    11 13706 Q-NS0115490 10 58.7 55.9 58.7
    11 13691 Q-NS0098838 1 60 60 62.5
    11 13691 Q-NS0122116 2 62.5 60 62.5
    11 13691 Q-NS0127464 3 62.5 60 62.5
    11 13826 Q-NS0097342 1 67.6 67.6 67.6
    11 13651 Q-NS0095603 1 75.9 75.9 78.1
    11 13651 Q-NS0100443 2 75.9 75.9 78.1
    11 13651 Q-NS0125951 3 75.9 75.9 78.1
    11 13651 Q-NS0129473 4 78.1 75.9 78.1
    11 13651 Q-NS0130101 5 78.1 75.9 78.1
    11 13686 Q-NS0101264 1 92.7 92.7 95.4
    11 13686 Q-NS0097285 2 93.1 92.7 95.4
    11 13686 Q-NS0102282 3 93.1 92.7 95.4
    11 13686 Q-NS0114731 4 95.4 92.7 95.4
    11 13630 Q-NS0120342 1 98.7 98.7 98.7
    11 13627 Q-NS0127549 1 111.1 111.1 111.1
    12 13801 Q-NS0118525 1 0 0 1.4
    12 13801 Q-NS0094896 2 1.4 0 1.4
    12 13709 Q-NS0102036 1 7.9 7.9 8.3
    12 13709 Q-NS0126300 2 7.9 7.9 8.3
    12 13709 Q-NS0092748 3 8.3 7.9 8.3
    12 13709 Q-NS0096662 4 8.3 7.9 8.3
    12 13709 Q-NS0102486 5 8.3 7.9 8.3
    12 13709 Q-NS0113966 6 8.3 7.9 8.3
    12 13709 Q-NS0115910 7 8.3 7.9 8.3
    12 13709 Q-NS0119246 8 8.3 7.9 8.3
    12 13709 Q-NS0119576 9 8.3 7.9 8.3
    12 13709 Q-NS0125455 10 8.3 7.9 8.3
    12 13647 Q-NS0096983 1 8.7 8.7 12.2
    12 13647 Q-NS0118149 2 11.4 8.7 12.2
    12 13647 Q-NS0127482 3 12.2 8.7 12.2
    12 13851 Q-NS0096191 1 18.8 18.8 21.8
    12 13851 Q-NS0096518 2 21.8 18.8 21.8
    12 13851 Q-NS0115081 3 21.8 18.8 21.8
    12 13781 Q-NS0126302 1 24.8 24.8 28.6
    12 13781 Q-NS0104050 2 25.2 24.8 28.6
    12 13781 Q-NS0118536 3 28.6 24.8 28.6
    12 13668 Q-NS0124644 1 30.2 30.2 30.2
    12 13573 Q-NS0095592 1 44.4 44.4 48.8
    12 13573 Q-NS0102848 2 47 44.4 48.8
    12 13573 Q-NS0122160 3 48.8 44.4 48.8
    12 13720 Q-NS0126422 1 50.9 50.9 55.7
    12 13720 Q-NS0119895 2 53.3 50.9 55.7
    12 13720 Q-NS0116502 3 53.7 50.9 55.7
    12 13720 Q-NS0096504 4 54.2 50.9 55.7
    12 13720 Q-NS0093247 5 55.3 50.9 55.7
    12 13720 Q-NS0119245 6 55.7 50.9 55.7
    12 13575 Q-NS0135192 1 63.7 63.7 65.4
    12 13575 Q-NS0124278 2 65 63.7 65.4
    12 13575 Q-NS0125101 3 65.4 63.7 65.4
    12 13625 Q-NS0096273 1 80.1 80.1 80.1
    12 13625 Q-NS0115806 2 80.1 80.1 80.1
    12 13625 Q-NS0125805 3 80.1 80.1 80.1
    12 13816 Q-NS0102910 1 86 86 89.1
    12 13816 Q-NS0103457 2 86 86 89.1
    12 13816 Q-NS0114554 3 86 86 89.1
    12 13816 Q-NS0104178 4 89.1 86 89.1
    12 13816 Q-NS0124144 5 89.1 86 89.1
    12 13816 Q-NS0126713 6 89.1 86 89.1
    12 13816 Q-NS0127437 7 89.1 86 89.1
    12 13816 Q-NS0129406 8 89.1 86 89.1
    12 13636 Q-NS0121640 1 91.9 91.9 93.1
    12 13636 Q-NS0125159 2 91.9 91.9 93.1
    12 13636 Q-NS0129803 3 91.9 91.9 93.1
    12 13636 Q-NS0100477 4 92.3 91.9 93.1
    12 13636 Q-NS0118058 5 92.3 91.9 93.1
    12 13636 Q-NS0115491 6 92.7 91.9 93.1
    12 13636 Q-NS0115737 7 93.1 91.9 93.1
    12 13636 Q-NS0122471 8 93.1 91.9 93.1
    12 13708 Q-NS0101012 1 99.6 99.6 104.1
    12 13708 Q-NS0116075 2 99.6 99.6 104.1
    12 13708 Q-NS0128274 3 99.6 99.6 104.1
    12 13708 Q-NS0103451 4 104.1 99.6 104.1
    12 13708 Q-NS0118034 5 104.1 99.6 104.1
    12 13708 Q-NS0128459 6 104.1 99.6 104.1
    12 13657 Q-NS0101552 1 120.9 120.9 120.9
    12 13678 Q-NS0102573 1 127.7 127.7 128.4
    12 13678 Q-NS0103760 2 127.7 127.7 128.4
    12 13678 Q-NS0103506 3 128.4 127.7 128.4
    12 13803 Q-NS0101550 1 135.9 135.9 135.9
    13 13672 Q-NS0118927 1 1.1 1.1 4.5
    13 13672 Q-NS0104048 2 1.5 1.1 4.5
    13 13672 Q-NS0115455 3 1.5 1.1 4.5
    13 13672 Q-NS0121436 4 1.5 1.1 4.5
    13 13672 Q-NS0128623 5 1.5 1.1 4.5
    13 13672 Q-NS0129014 6 1.5 1.1 4.5
    13 13672 Q-NS0130036 7 4.5 1.1 4.5
    13 13806 Q-NS0099503 1 8.1 8.1 12.2
    13 13806 Q-NS0129821 2 8.1 8.1 12.2
    13 13806 Q-NS0092979 3 12.2 8.1 12.2
    13 13735 Q-NS0127932 1 21.4 21.4 24.5
    13 13735 Q-NS0092810 2 23.6 21.4 24.5
    13 13735 Q-NS0103030 3 24 21.4 24.5
    13 13735 Q-NS0103033 4 24 21.4 24.5
    13 13735 Q-NS0094174 5 24.5 21.4 24.5
    13 13614 Q-NS0119974 1 26.5 26.5 30.8
    13 13614 Q-NS0124313 2 26.5 26.5 30.8
    13 13614 Q-NS0095551 3 30.8 26.5 30.8
    13 13614 Q-NS0135554 4 30.8 26.5 30.8
    13 13633 Q-NS0127031 1 31.6 31.6 36.6
    13 13633 Q-NS0099781 2 33.6 31.6 36.6
    13 13633 Q-NS0119495 3 36.6 31.6 36.6
    13 13829 Q-NS0093552 1 40.3 40.3 41.9
    13 13829 Q-NS0103479 2 41.5 40.3 41.9
    13 13829 Q-NS0103075 3 41.9 40.3 41.9
    13 13684 Q-NS0124935 1 45.7 45.7 49.6
    13 13684 Q-NS0093837 2 48.1 45.7 49.6
    13 13684 Q-NS0119927 3 49.1 45.7 49.6
    13 13684 Q-NS0097173 4 49.6 45.7 49.6
    13 13793 Q-NS0116174 1 51.4 51.4 53.3
    13 13793 Q-NS0119285 2 51.4 51.4 53.3
    13 13793 Q-NS0122022 3 51.4 51.4 53.3
    13 13793 Q-NS0129930 4 51.4 51.4 53.3
    13 13793 Q-NS0097434 5 51.8 51.4 53.3
    13 13793 Q-NS0098681 6 52.6 51.4 53.3
    13 13793 Q-NS0098848 7 52.6 51.4 53.3
    13 13793 Q-NS0093819 8 53.3 51.4 53.3
    13 13600 Q-NS0101743 1 59.2 59.2 59.6
    13 13600 Q-NS0118028 2 59.2 59.2 59.6
    13 13600 Q-NS0119602 3 59.2 59.2 59.6
    13 13600 Q-NS0123186 4 59.6 59.2 59.6
    13 13760 Q-NS0119484 1 65 65 67.4
    13 13760 Q-NS0100545 2 66.2 65 67.4
    13 13760 Q-NS0118889 3 66.2 65 67.4
    13 13760 Q-NS0104052 4 67.4 65 67.4
    13 13760 Q-NS0104054 5 67.4 65 67.4
    13 13760 Q-NS0113986 6 67.4 65 67.4
    13 13760 Q-NS0115630 7 67.4 65 67.4
    13 13760 Q-NS0121909 8 67.4 65 67.4
    13 13760 Q-NS0125744 9 67.4 65 67.4
    13 13760 Q-NS0128732 10 67.4 65 67.4
    13 13721 Q-NS0101382 1 71.4 71.4 75.5
    13 13721 Q-NS0125229 2 71.4 71.4 75.5
    13 13721 Q-NS0123719 3 72.2 71.4 75.5
    13 13721 Q-NS0100551 4 75.5 71.4 75.5
    13 13649 Q-NS0097084 1 79 79 79
    13 13794 Q-NS0121334 1 85.1 85.1 90.1
    13 13794 Q-NS0126308 2 85.1 85.1 90.1
    13 13794 Q-NS0114875 3 88.6 85.1 90.1
    13 13794 Q-NS0120375 4 88.6 85.1 90.1
    13 13794 Q-NS0126996 5 88.6 85.1 90.1
    13 13794 Q-NS0125887 6 88.7 85.1 90.1
    13 13794 Q-NS0093157 7 89.6 85.1 90.1
    13 13794 Q-NS0100436 8 89.6 85.1 90.1
    13 13794 Q-NS0126793 9 89.6 85.1 90.1
    13 13794 Q-NS0120123 10 90.1 85.1 90.1
    13 13810 Q-NS0101783 1 90.3 90.3 92.6
    13 13810 Q-NS0119535 2 90.3 90.3 92.6
    13 13810 Q-NS0124571 3 90.3 90.3 92.6
    13 13810 Q-NS0135251 4 92.6 90.3 92.6
    13 13599 Q-NS0119254 1 102.1 102.1 106
    13 13599 Q-NS0137093 2 106 102.1 106
    13 13650 Q-NS0100069 1 114.2 114.2 114.6
    13 13650 Q-NS0115394 2 114.2 114.2 114.6
    13 13650 Q-NS0115503 3 114.2 114.2 114.6
    13 13650 Q-NS0100947 4 114.6 114.2 114.6
    13 13638 Q-NS0119669 1 119.3 119.3 119.3
    13 13581 Q-NS0130052 1 127.3 127.3 127.7
    13 13581 Q-NS0099186 2 127.7 127.3 127.7
    13 13581 Q-NS0099329 3 127.7 127.3 127.7
    13 13581 Q-NS0102272 4 127.7 127.3 127.7
    13 13581 Q-NS0103825 5 127.7 127.3 127.7
    13 13595 Q-NS0096970 1 133.2 133.2 134.1
    13 13595 Q-NS0100088 2 134.1 133.2 134.1
    14 13692 Q-NS0101742 1 2.4 2.4 4
    14 13692 Q-NS0129138 2 2.4 2.4 4
    14 13692 Q-NS0093116 3 4 2.4 4
    14 13692 Q-NS0129925 4 4 2.4 4
    14 13648 Q-NS0103486 1 19.8 19.8 19.8
    14 13743 Q-NS0119002 1 30.1 30.1 30.2
    14 13743 Q-NS0128406 2 30.1 30.1 30.2
    14 13743 Q-NS0101863 3 30.2 30.1 30.2
    14 13743 Q-NS0113878 4 30.2 30.1 30.2
    14 13743 Q-NS0115066 5 30.2 30.1 30.2
    14 13743 Q-NS0118060 6 30.2 30.1 30.2
    14 13743 Q-NS0120015 7 30.2 30.1 30.2
    14 13743 Q-NS0123168 8 30.2 30.1 30.2
    14 13743 Q-NS0125714 9 30.2 30.1 30.2
    14 13743 Q-NS0130283 10 30.2 30.1 30.2
    14 13566 Q-NS0119165 1 31 31 33.5
    14 13566 Q-NS0099024 2 32.4 31 33.5
    14 13566 Q-NS0103446 3 32.4 31 33.5
    14 13566 Q-NS0123724 4 32.4 31 33.5
    14 13566 Q-NS0136439 5 32.4 31 33.5
    14 13566 Q-NS0101901 6 33.5 31 33.5
    14 13566 Q-NS0115556 7 33.5 31 33.5
    14 13566 Q-NS0115795 8 33.5 31 33.5
    14 13566 Q-NS0116115 9 33.5 31 33.5
    14 13566 Q-NS0122146 10 33.5 31 33.5
    14 13631 Q-NS0103932 1 54.1 54.1 57.8
    14 13631 Q-NS0125270 2 55.3 54.1 57.8
    14 13631 Q-NS0092556 3 57.8 54.1 57.8
    14 13631 Q-NS0116551 4 57.8 54.1 57.8
    14 13839 Q-NS0096193 1 61.5 61.5 63.1
    14 13839 Q-NS0103482 2 62.3 61.5 63.1
    14 13839 Q-NS0124990 3 62.3 61.5 63.1
    14 13839 Q-NS0103213 4 62.7 61.5 63.1
    14 13839 Q-NS0123569 5 63.1 61.5 63.1
    14 13775 Q-NS0096079 1 68.5 68.5 68.5
    14 13792 Q-NS0137954 1 82.5 82.5 87
    14 13792 Q-NS0126475 2 82.9 82.5 87
    14 13792 Q-NS0093197 3 86.6 82.5 87
    14 13792 Q-NS0096225 4 86.6 82.5 87
    14 13792 Q-NS0098853 5 86.6 82.5 87
    14 13792 Q-NS0136699 6 86.6 82.5 87
    14 13792 Q-NS0094891 7 87 82.5 87
    14 13814 Q-NS0092561 1 90.3 90.3 90.3
    14 13695 Q-NS0113929 1 103 103 103
    14 13695 Q-NS0115535 2 103 103 103
    14 13695 Q-NS0121511 3 103 103 103
    14 13827 Q-NS0097006 1 110.6 110.6 112.9
    14 13827 Q-NS0136544 2 112.9 110.6 112.9
    14 13791 Q-NS0103853 1 116.6 116.6 121
    14 13791 Q-NS0131014 2 116.6 116.6 121
    14 13791 Q-NS0124319 3 118.2 116.6 121
    14 13791 Q-NS0123708 4 121 116.6 121
    14 13612 Q-NS0114317 1 124.3 124.3 124.3
    15 13694 Q-NS0100932 1 0.7 0.7 0.7
    15 13694 Q-NS0100968 2 0.7 0.7 0.7
    15 13694 Q-NS0101546 3 0.7 0.7 0.7
    15 13694 Q-NS0127102 4 0.7 0.7 0.7
    15 13694 Q-NS0129174 5 0.7 0.7 0.7
    15 13670 Q-NS0114321 1 17.7 17.7 20.5
    15 13670 Q-NS0129515 2 17.7 17.7 20.5
    15 13670 Q-NS0120337 3 20.1 17.7 20.5
    15 13670 Q-NS0103503 4 20.5 17.7 20.5
    15 13670 Q-NS0103505 5 20.5 17.7 20.5
    15 13670 Q-NS0130033 6 20.5 17.7 20.5
    15 13675 Q-NS0098051 1 23.4 23.4 23.8
    15 13675 Q-NS0118672 2 23.8 23.4 23.8
    15 13847 Q-NS0129598 1 28.9 28.9 30.8
    15 13847 Q-NS0093272 2 30.8 28.9 30.8
    15 13704 Q-NS0095530 1 36.3 36.3 36.7
    15 13704 Q-NS0129004 2 36.7 36.3 36.7
    15 13802 Q-NS0114039 1 45 45 49.4
    15 13802 Q-NS0095959 2 47.9 45 49.4
    15 13802 Q-NS0098993 3 48.7 45 49.4
    15 13802 Q-NS0116137 4 48.7 45 49.4
    15 13802 Q-NS0125102 5 48.7 45 49.4
    15 13802 Q-NS0136761 6 48.7 45 49.4
    15 13802 Q-NS0114689 7 49.1 45 49.4
    15 13802 Q-NS0137544 8 49.4 45 49.4
    15 13852 Q-NS0092743 1 53.1 53.1 55.9
    15 13852 Q-NS0098176 2 53.8 53.1 55.9
    15 13852 Q-NS0128125 3 53.8 53.1 55.9
    15 13852 Q-NS0096612 4 55.5 53.1 55.9
    15 13852 Q-NS0129790 5 55.5 53.1 55.9
    15 13852 Q-NS0135595 6 55.9 53.1 55.9
    15 13852 Q-NS0137415 7 55.9 53.1 55.9
    15 13779 Q-NS0100078 1 60.3 60.3 62.7
    15 13779 Q-NS0130730 2 60.3 60.3 62.7
    15 13779 Q-NS0101482 3 61.6 60.3 62.7
    15 13779 Q-NS0103971 4 62.7 60.3 62.7
    15 13608 Q-NS0124956 1 69.7 69.7 69.7
    15 13844 Q-NS0137136 1 75.2 75.2 75.2
    15 13681 Q-NS0095234 1 80.7 80.7 80.7
    15 13858 Q-NS0099762 1 91.7 91.7 96.4
    15 13858 Q-NS0118867 2 91.7 91.7 96.4
    15 13858 Q-NS0122348 3 95.6 91.7 96.4
    15 13858 Q-NS0125459 4 96.4 91.7 96.4
    15 13808 Q-NS0098451 1 96.8 96.8 100.4
    15 13808 Q-NS0103775 2 98.3 96.8 100.4
    15 13808 Q-NS0120097 3 98.4 96.8 100.4
    15 13808 Q-NS0121400 4 98.4 96.8 100.4
    15 13808 Q-NS0122765 5 98.4 96.8 100.4
    15 13808 Q-NS0126718 6 98.4 96.8 100.4
    15 13808 Q-NS0129938 7 98.4 96.8 100.4
    15 13808 Q-NS0092721 8 98.9 96.8 100.4
    15 13808 Q-NS0119398 9 100.4 96.8 100.4
    15 13808 Q-NS0124986 10 100.4 96.8 100.4
    15 13759 Q-NS0136946 1 104.6 104.6 109.5
    15 13759 Q-NS0095623 2 106 104.6 109.5
    15 13759 Q-NS0116018 3 109.5 104.6 109.5
    15 13854 Q-NS0136706 1 112.2 112.2 115.8
    15 13854 Q-NS0123722 2 115 112.2 115.8
    15 13854 Q-NS0123945 3 115 112.2 115.8
    15 13854 Q-NS0125745 4 115 112.2 115.8
    15 13854 Q-NS0118445 5 115.8 112.2 115.8
    15 13568 Q-NS0137568 1 122.7 122.7 122.7
    16 13749 Q-NS0093510 1 3 3 5.3
    16 13749 Q-NS0114259 2 3.3 3 5.3
    16 13749 Q-NS0103498 3 3.7 3 5.3
    16 13749 Q-NS0114021 4 3.7 3 5.3
    16 13749 Q-NS0124013 5 3.7 3 5.3
    16 13749 Q-NS0126790 6 5.3 3 5.3
    16 13618 Q-NS0118859 1 15.1 15.1 18.3
    16 13618 Q-NS0119102 2 15.5 15.1 18.3
    16 13618 Q-NS0120377 3 15.5 15.1 18.3
    16 13618 Q-NS0096500 4 17.6 15.1 18.3
    16 13618 Q-NS0103114 5 17.6 15.1 18.3
    16 13618 Q-NS0119813 6 17.6 15.1 18.3
    16 13618 Q-NS0095810 7 18.3 15.1 18.3
    16 13618 Q-NS0114582 8 18.3 15.1 18.3
    16 13645 Q-NS0093934 1 22.3 22.3 25.6
    16 13645 Q-NS0095368 2 22.3 22.3 25.6
    16 13645 Q-NS0101368 3 22.3 22.3 25.6
    16 13645 Q-NS0115192 4 22.3 22.3 25.6
    16 13645 Q-NS0115515 5 22.3 22.3 25.6
    16 13645 Q-NS0113745 6 22.7 22.3 25.6
    16 13645 Q-NS0124203 7 23.5 22.3 25.6
    16 13645 Q-NS0120012 8 25.6 22.3 25.6
    16 13703 Q-NS0136618 1 33.8 33.8 38.4
    16 13703 Q-NS0136363 2 38.4 33.8 38.4
    16 13674 Q-NS0118063 1 40.1 40.1 40.9
    16 13674 Q-NS0097029 2 40.7 40.1 40.9
    16 13674 Q-NS0121903 3 40.9 40.1 40.9
    16 13813 Q-NS0135069 1 45.4 45.4 45.4
    16 13697 Q-NS0135056 1 50.9 50.9 54
    16 13697 Q-NS0098172 2 54 50.9 54
    16 13860 Q-NS0123031 1 58 58 58
    16 13588 Q-NS0101018 1 66.7 66.7 67.1
    16 13588 Q-NS0103722 2 66.7 66.7 67.1
    16 13588 Q-NS0128699 3 67.1 66.7 67.1
    16 13588 Q-NS0137274 4 67.1 66.7 67.1
    16 13819 Q-NS0119586 1 81.4 81.4 82.8
    16 13819 Q-NS0092616 2 82.8 81.4 82.8
    16 13736 Q-NS0102238 1 87.3 87.3 87.3
    16 13736 Q-NS0113752 2 87.3 87.3 87.3
    16 13736 Q-NS0114439 3 87.3 87.3 87.3
    16 13736 Q-NS0119225 4 87.3 87.3 87.3
    16 13736 Q-NS0119881 5 87.3 87.3 87.3
    16 13736 Q-NS0126813 6 87.3 87.3 87.3
    16 13736 Q-NS0128829 7 87.3 87.3 87.3
    16 13762 Q-NS0129591 1 95.9 95.9 96.6
    16 13762 Q-NS0095308 2 96.6 95.9 96.6
    16 13617 Q-NS0114263 1 101.2 101.2 103.2
    16 13617 Q-NS0113979 2 101.6 101.2 103.2
    16 13617 Q-NS0115738 3 103.2 101.2 103.2
    16 13617 Q-NS0124958 4 103.2 101.2 103.2
    16 13836 Q-NS0099221 1 108.2 108.2 110.7
    16 13836 Q-NS0102880 2 110.7 108.2 110.7
    16 13836 Q-NS0119281 3 110.7 108.2 110.7
    16 13724 Q-NS0101394 1 117.8 117.8 120
    16 13724 Q-NS0097666 2 120 117.8 120
    16 13724 Q-NS0103710 3 120 117.8 120
    16 13644 Q-NS0124590 1 130.2 130.2 134.1
    16 13644 Q-NS0098438 2 134.1 130.2 134.1
    16 13654 Q-NS0116125 1 139.1 139.1 141.5
    16 13654 Q-NS0125770 2 140.7 139.1 141.5
    16 13654 Q-NS0103497 3 141.5 139.1 141.5
    16 13654 Q-NS0103755 4 141.5 139.1 141.5
    16 13654 Q-NS0119653 5 141.5 139.1 141.5
    16 13658 Q-NS0125713 1 145.3 145.3 148.3
    16 13658 Q-NS0121770 2 148.3 145.3 148.3
    16 13834 Q-NS0102717 1 150.9 150.9 150.9
    17 13690 Q-NS0100100 1 19.6 19.6 20.7
    17 13690 Q-NS0117852 2 20.4 19.6 20.7
    17 13690 Q-NS0092907 3 20.7 19.6 20.7
    17 13570 Q-NS0094904 1 26.2 26.2 26.2
    17 13570 Q-NS0127879 2 26.2 26.2 26.2
    17 13719 Q-NS0134725 1 34.4 34.4 39
    17 13719 Q-NS0092843 2 34.8 34.4 39
    17 13719 Q-NS0115362 3 35.2 34.4 39
    17 13719 Q-NS0114274 4 36.9 34.4 39
    17 13719 Q-NS0097373 5 39 34.4 39
    17 13683 Q-NS0125264 1 48.7 48.7 50.7
    17 13683 Q-NS0125160 2 50.7 48.7 50.7
    17 13623 Q-NS0100428 1 54.5 54.5 59.4
    17 13623 Q-NS0137719 2 54.5 54.5 59.4
    17 13623 Q-NS0126724 3 55.9 54.5 59.4
    17 13623 Q-NS0119237 4 58.2 54.5 59.4
    17 13623 Q-NS0119597 5 58.2 54.5 59.4
    17 13623 Q-NS0123284 6 58.6 54.5 59.4
    17 13623 Q-NS0100080 7 59.4 54.5 59.4
    17 13663 Q-NS0124919 1 60.2 60.2 60.2
    17 13840 Q-NS0100914 1 71.8 71.8 71.8
    17 13835 Q-NS0115497 1 79.8 79.8 81
    17 13835 Q-NS0101797 2 81 79.8 81
    17 13835 Q-NS0122094 3 81 79.8 81
    17 13835 Q-NS0127404 4 81 79.8 81
    17 13835 Q-NS0129282 5 81 79.8 81
    17 13768 Q-NS0122335 1 88 88 92.5
    17 13768 Q-NS0098167 2 90 88 92.5
    17 13768 Q-NS0116559 3 91 88 92.5
    17 13768 Q-NS0094805 4 92.5 88 92.5
    17 13594 Q-NS0125185 1 94 94 94
    17 13727 Q-NS0100921 1 102.3 102.3 105.3
    17 13727 Q-NS0123506 2 102.3 102.3 105.3
    17 13727 Q-NS0097952 3 105.3 102.3 105.3
    17 13597 Q-NS0118907 1 109.7 109.7 109.7
    17 13603 Q-NS0101484 1 123.9 123.9 128.3
    17 13603 Q-NS0122182 2 123.9 123.9 128.3
    17 13603 Q-NS0126989 3 123.9 123.9 128.3
    17 13603 Q-NS0093160 4 124.6 123.9 128.3
    17 13603 Q-NS0097367 5 126.4 123.9 128.3
    17 13603 Q-NS0095677 6 127.8 123.9 128.3
    17 13603 Q-NS0101343 7 128.3 123.9 128.3
    17 13756 Q-NS0124051 1 129.5 129.5 129.5
    17 13770 Q-NS0135189 1 141 141 143.3
    17 13770 Q-NS0093254 2 143.3 141 143.3
    17 13770 Q-NS0096077 3 143.3 141 143.3
    18 13606 Q-NS0095567 1 0 0 0
    18 13606 Q-NS0125535 2 0 0 0
    18 13606 Q-NS0129407 3 0 0 0
    18 13667 Q-NS0124300 1 5.4 5.4 9.5
    18 13667 Q-NS0096741 2 9.5 5.4 9.5
    18 13616 Q-NS0117743 1 10.8 10.8 14.9
    18 13616 Q-NS0119006 2 10.8 10.8 14.9
    18 13616 Q-NS0119814 3 10.8 10.8 14.9
    18 13616 Q-NS0092838 4 14.9 10.8 14.9
    18 13661 Q-NS0121992 1 23.1 23.1 26.8
    18 13661 Q-NS0103247 2 23.5 23.1 26.8
    18 13661 Q-NS0103250 3 23.5 23.1 26.8
    18 13661 Q-NS0115306 4 23.9 23.1 26.8
    18 13661 Q-NS0095507 5 25.6 23.1 26.8
    18 13661 Q-NS0101434 6 25.6 23.1 26.8
    18 13661 Q-NS0095508 7 26 23.1 26.8
    18 13661 Q-NS0126290 8 26.8 23.1 26.8
    18 13846 Q-NS0093331 1 37.5 37.5 37.5
    18 13766 Q-NS0115464 1 44.5 44.5 47.9
    18 13766 Q-NS0104043 2 44.9 44.5 47.9
    18 13766 Q-NS0114001 3 44.9 44.5 47.9
    18 13766 Q-NS0127459 4 44.9 44.5 47.9
    18 13766 Q-NS0095584 5 45.7 44.5 47.9
    18 13766 Q-NS0096189 6 47.9 44.5 47.9
    18 13766 Q-NS0126809 7 47.9 44.5 47.9
    18 13823 Q-NS0120593 1 51.2 51.2 51.6
    18 13823 Q-NS0121444 2 51.6 51.2 51.6
    18 13782 Q-NS0124055 1 61.1 61.1 63.5
    18 13782 Q-NS0102047 2 61.5 61.1 63.5
    18 13782 Q-NS0114007 3 61.5 61.1 63.5
    18 13782 Q-NS0116014 4 61.5 61.1 63.5
    18 13782 Q-NS0120132 5 61.5 61.1 63.5
    18 13782 Q-NS0123650 6 61.5 61.1 63.5
    18 13782 Q-NS0122352 7 63.5 61.1 63.5
    18 13824 Q-NS0129428 1 70.8 70.8 73.4
    18 13824 Q-NS0100480 2 71.8 70.8 73.4
    18 13824 Q-NS0102647 3 71.8 70.8 73.4
    18 13824 Q-NS0114029 4 71.8 70.8 73.4
    18 13824 Q-NS0118026 5 71.8 70.8 73.4
    18 13824 Q-NS0122115 6 71.8 70.8 73.4
    18 13824 Q-NS0126826 7 71.8 70.8 73.4
    18 13824 Q-NS0129940 8 71.8 70.8 73.4
    18 13824 Q-NS0130969 9 71.8 70.8 73.4
    18 13824 Q-NS0095650 10 73.4 70.8 73.4
    18 13837 Q-NS0136158 1 74.1 74.1 76.8
    18 13837 Q-NS0119638 2 74.6 74.1 76.8
    18 13837 Q-NS0123806 3 74.6 74.1 76.8
    18 13837 Q-NS0128093 4 74.6 74.1 76.8
    18 13837 Q-NS0099376 5 76.8 74.1 76.8
    18 13863 Q-NS0136956 1 82.2 82.2 82.2
    18 13769 Q-NS0131055 1 88.9 88.9 89.7
    18 13769 Q-NS0129118 2 89.7 88.9 89.7
    18 13567 Q-NS0127007 1 99.9 99.9 99.9
    18 13742 Q-NS0125975 1 105.5 105.5 107.1
    18 13742 Q-NS0100454 2 107.1 105.5 107.1
    18 13643 Q-NS0097194 1 116.3 116.3 116.3
    18 13754 Q-NS0097882 1 123.1 123.1 126.8
    18 13754 Q-NS0130724 2 125.8 123.1 126.8
    18 13754 Q-NS0092851 3 126.8 123.1 126.8
    19 13790 Q-NS0101360 1 1.9 1.9 6.3
    19 13790 Q-NS0102889 2 4.9 1.9 6.3
    19 13790 Q-NS0116066 3 6.3 1.9 6.3
    19 13805 Q-NS0115656 1 7.9 7.9 12.5
    19 13805 Q-NS0121932 2 7.9 7.9 12.5
    19 13805 Q-NS0127429 3 7.9 7.9 12.5
    19 13805 Q-NS0098803 4 9.9 7.9 12.5
    19 13805 Q-NS0122058 5 12.1 7.9 12.5
    19 13805 Q-NS0115437 6 12.5 7.9 12.5
    19 13795 Q-NS0093343 1 16.4 16.4 16.4
    19 13578 Q-NS0122808 1 22.2 22.2 26.4
    19 13578 Q-NS0118342 2 25.6 22.2 26.4
    19 13578 Q-NS0119097 3 26.4 22.2 26.4
    19 13578 Q-NS0119605 4 26.4 22.2 26.4
    19 13578 Q-NS0122173 5 26.4 22.2 26.4
    19 13664 Q-NS0094222 1 29.4 29.4 31.6
    19 13664 Q-NS0115155 2 29.7 29.4 31.6
    19 13664 Q-NS0121598 3 29.7 29.4 31.6
    19 13664 Q-NS0096602 4 30.1 29.4 31.6
    19 13664 Q-NS0129719 5 30.1 29.4 31.6
    19 13664 Q-NS0103240 6 31.6 29.4 31.6
    19 13664 Q-NS0125285 7 31.6 29.4 31.6
    19 13765 Q-NS0103459 1 39.7 39.7 40.5
    19 13765 Q-NS0102576 2 40.5 39.7 40.5
    19 13765 Q-NS0121601 3 40.5 39.7 40.5
    19 13660 Q-NS0093513 1 44.9 44.9 48.1
    19 13660 Q-NS0103113 2 45.1 44.9 48.1
    19 13660 Q-NS0126786 3 45.1 44.9 48.1
    19 13660 Q-NS0102170 4 48.1 44.9 48.1
    19 13662 Q-NS0123570 1 53.3 53.3 53.3
    19 13601 Q-NS0097418 1 58.9 58.9 62.9
    19 13601 Q-NS0124192 2 58.9 58.9 62.9
    19 13601 Q-NS0129426 3 58.9 58.9 62.9
    19 13601 Q-NS0114884 4 61.9 58.9 62.9
    19 13601 Q-NS0092615 5 62.9 58.9 62.9
    19 13601 Q-NS0094157 6 62.9 58.9 62.9
    19 13702 Q-NS0097927 1 65.8. 65.8 70.8
    19 13702 Q-NS0102506 2 65.8 65.8 70.8
    19 13702 Q-NS0104025 3 65.8 65.8 70.8
    19 13702 Q-NS0116157 4 70.8 65.8 70.8
    19 13565 Q-NS0103321 1 71.6 71.6 76
    19 13565 Q-NS0121433 2 71.6 71.6 76
    19 13565 Q-NS0101555 3 75.6 71.6 76
    19 13565 Q-NS0119135 4 75.6 71.6 76
    19 13565 Q-NS0100967 5 76 71.6 76
    19 13565 Q-NS0103141 6 76 71.6 76
    19 13811 Q-NS0121684 1 79.6 79.6 83.4
    19 13811 Q-NS0121806 2 80.2 79.6 83.4
    19 13811 Q-NS0104111 3 80.3 79.6 83.4
    19 13811 Q-NS0103773 4 80.4 79.6 83.4
    19 13811 Q-NS0124595 5 83 79.6 83.4
    19 13811 Q-NS0121755 6 83.4 79.6 83.4
    19 13789 Q-NS0094370 1 89.9 89.9 91.7
    19 13789 Q-NS0119073 2 90.9 89.9 91.7
    19 13789 Q-NS0123372 3 90.9 89.9 91.7
    19 13789 Q-NS0115621 4 91.3 89.9 91.7
    19 13789 Q-NS0129904 5 91.3 89.9 91.7
    19 13789 Q-NS0125418 6 91.7 89.9 91.7
    19 13642 Q-NS0100661 1 96.7 96.7 99.8
    19 13642 Q-NS0124579 2 97.5 96.7 99.8
    19 13642 Q-NS0102003 3 99.8 96.7 99.8
    19 13642 Q-NS0125760 4 99.8 96.7 99.8
    19 13640 Q-NS0100925 1 104.2 104.2 107.8
    19 13640 Q-NS0115516 2 104.2 104.2 107.8
    19 13640 Q-NS0123200 3 104.2 104.2 107.8
    19 13640 Q-NS0125532 4 104.2 104.2 107.8
    19 13640 Q-NS0094373 5 107.8 104.2 107.8
    19 13640 Q-NS0099203 6 107.8 104.2 107.8
    19 13569 Q-NS0092963 1 111.1 111.1 111.1
    19 13841 Q-NS0094048 1 116.2 116.2 120.7
    19 13841 Q-NS0135805 2 116.9 116.2 120.7
    19 13841 Q-NS0136435 3 117.7 116.2 120.7
    19 13841 Q-NS0094057 4 120.3 116.2 120.7
    19 13841 Q-NS0126722 5 120.3 116.2 120.7
    19 13841 Q-NS0093509 6 120.7 116.2 120.7
    19 13733 Q-NS0097606 1 121.8 121.8 125.1
    19 13733 Q-NS0098213 2 125.1 121.8 125.1
    19 13733 Q-NS0099578 3 125.1 121.8 125.1
    20 13693 Q-NS0103077 1 0.7 0.7 4.2
    20 13693 Q-NS0119065 2 0.7 0.7 4.2
    20 13693 Q-NS0125098 3 0.7 0.7 4.2
    20 13693 Q-NS0127757 4 0.7 0.7 4.2
    20 13693 Q-NS0127888 5 0.7 0.7 4.2
    20 13693 Q-NS0124715 6 2.7 0.7 4.2
    20 13693 Q-NS0099970 7 4.2 0.7 4.2
    20 13682 Q-NS0096558 1 6.5 6.5 11.1
    20 13682 Q-NS0100944 2 6.5 6.5 11.1
    20 13682 Q-NS0120072 3 6.5 6.5 11.1
    20 13682 Q-NS0103764 4 7.3 6.5 11.1
    20 13682 Q-NS0100097 5 7.7 6.5 11.1
    20 13682 Q-NS0095320 6 8.1 6.5 11.1
    20 13682 Q-NS0100457 7 9.1 6.5 11.1
    20 13682 Q-NS0121926 8 10.1 6.5 11.1
    20 13682 Q-NS0103646 9 11.1 6.5 11.1
    20 13666 Q-NS0115418 1 12.3 12.3 17.2
    20 13666 Q-NS0126785 2 12.7 12.3 17.2
    20 13666 Q-NS0093126 3 13.2 12.3 17.2
    20 13666 Q-NS0103045 4 14.6 12.3 17.2
    20 13666 Q-NS0116259 5 14.6 12.3 17.2
    20 13666 Q-NS0129134 6 14.6 12.3 17.2
    20 13666 Q-NS0093925 7 15 12.3 17.2
    20 13666 Q-NS0128634 8 15.4 12.3 17.2
    20 13666 Q-NS0092589 9 17.2 12.3 17.2
    20 13699 Q-NS0118785 1 19.9 19.9 24.2
    20 13699 Q-NS0102039 2 20.7 19.9 24.2
    20 13699 Q-NS0102090 3 20.7 19.9 24.2
    20 13699 Q-NS0103167 4 24.2 19.9 24.2
    20 13699 Q-NS0103180 5 24.2 19.9 24.2
    20 13755 Q-NS0103818 1 29.7 29.7 29.7
    20 13620 Q-NS0136539 1 39.9 39.9 44.7
    20 13620 Q-NS0092605 2 44.4 39.9 44.7
    20 13620 Q-NS0121801 3 44.7 39.9 44.7
    20 13812 Q-NS0092790 1 50.6 50.6 54.5
    20 13812 Q-NS0093326 2 53 50.6 54.5
    20 13812 Q-NS0114538 3 53.3 50.6 54.5
    20 13812 Q-NS0118690 4 53.3 50.6 54.5
    20 13812 Q-NS0125400 5 53.3 50.6 54.5
    20 13812 Q-NS0126994 6 53.3 50.6 54.5
    20 13812 Q-NS0124654 7 54.5 50.6 54.5
    20 13787 Q-NS0122456 1 56.9 56.9 59.1
    20 13787 Q-NS0120011 2 59.1 56.9 59.1
    20 13838 Q-NS0135986 1 62.3 62.3 66.8
    20 13838 Q-NS0127310 2 66.8 62.3 66.8
    20 13605 Q-NS0099767 1 75.4 75.4 75.4
    20 13587 Q-NS0096899 1 89.5 89.5 89.9
    20 13587 Q-NS0129792 2 89.5 89.5 89.9
    20 13587 Q-NS0125389 3 89.9 89.5 89.9
  • In one embodiment, a haplotype region is defined as a chromosome segment that persists over multiple generations of breeding and that is carried by one or more breeding lines. In one aspect, depending on the extent of LD, one example of a haplotype window is about 20 centiMorgans. In another aspect, depending on marker density, an exemplary haplotype window is about 1 to 5 centiMorgans or, in another example, even less than 1 centiMorgan. This segment is identified based on the one or more linked marker loci it contains, and the common haplotype identity at these loci in two lines gives a high degree of confidence of the identity by descent of the entire subjacent chromosome segment carried by these lines.
  • In another aspect of the present invention, it is useful to specify what the preferred haplotypes are and what their frequency is in the germplasm for a given crop. Thus, one would obtain or generate a molecular marker survey of the germplasm under consideration for breeding and/or propagation of a transformation event. This marker survey provides a fingerprint of each line. These markers are assumed to have their approximate genomic map position known. Tables 3 and 4 list haplotype effect estimates, haplotype frequencies, and haplotype fingerprint for the reference germplasm of soybean and corn, respectively. Haplotype frequency values are not fixed and will change over time as the breeding populations undergo selection. To simplify downstream analyses, quality assurance and missing data estimations steps may need to be implemented at this stage to produce a complete and accurate data matrix (marker genotype by line). Error detections and missing data estimations may require the use of parent-offspring tests, LD between marker loci, interval mapping, re-genotyping, etc.
  • Lengthy table referenced here
    US20100293673A1-20101118-T00001
    Please refer to the end of the specification for access instructions.
  • Lengthy table referenced here
    US20100293673A1-20101118-T00002
    Please refer to the end of the specification for access instructions.
  • Markers are then grouped based on their proximity. This grouping may be arbitrary (e.g. “start from one end of the chromosome and include all markers that are within 10 cM of the first marker included in the segment, before starting the next segment”) or based on some statistical analysis (e.g. “define segment breakpoints based on LD patterns between adjacent loci”).
  • When considering a large set of lines, wherein multiple lines have the same allele at a marker locus, it is necessary to ascertain whether identity by state (IBS) at the marker locus is a good predictor of identity by descent (IBD) at the chromosomal region surrounding the marker locus. “Identity by descent” (IBD) characterizes two loci/segment of DNA that are carried by two or more individuals and were all derived from the same ancestor. “Identity by state” (IBS) characterizes two loci/segments of DNA that are carried by two or more individuals and have the same observable alleles at those loci. A good indication that a number of marker loci in a segment are enough to characterize IBD for the segment is that they can predict the allele present at other marker loci within the segment.
  • To estimate the frequency of a haplotype, the base reference germplasm has to be defined (collection of elite inbred lines, population of random mating individuals, etc.) and a representative sample (or the entire population) has to be genotyped. For example, in one aspect, haplotype frequency is determined by simple counting if considering a set of inbred individuals. In another aspect, estimation methods that employ computing techniques like the Expectation/Maximization (EM) algorithm are required if individuals genotyped are heterozygous at more than one locus in the segment and linkage phase is unknown (Excoffier et al. 1995 Mol. Biol. Evol. 12: 921-927; Li et al. 2002 Biostatistics). Preferably, a method based on the EM algorithm (Dempster et al. 1977 J. R. Stat. Soc. Ser. B 39:1-38) leading to maximum-likelihood estimates of haplotype frequencies under the assumption of Hardy-Weinberg proportions (random mating) is used (Excoffier et al. 1995 Mol. Biol. Evol. 12: 921-927). Alternative approaches are known in the art that for association studies: genome-wide association studies, candidate region association studies and candidate gene association studies (Li et al. 2006 BMC Bioinformatics 7:258). The polymorphic markers of the present invention may be incorporated in any map of genetic markers of a plant genome in order to perform genome-wide association studies.
  • The present invention comprises methods to detect an association between at least one haplotype in a crop plant and a preferred trait, including a transgene, or a multiple trait index and calculate a haplotype effect estimate based on this association. In one aspect, the calculated haplotype effect estimates are used to make decisions in a breeding program. In another aspect, the calculated haplotype effect estimates are used in conjunction with the frequency of the at least one haplotype to calculate a haplotype breeding value that will be used to make decisions in a breeding program. A multiple trait index (MTI) is a numerical entity that is calculated through the combination of single trait values in a formula. Most often calculated as a linear combination of traits or normalized derivations of traits, it can also be the result of more sophisticated calculations (for example, use of ratios between traits). This MTI is used in genetic analysis as if it were a trait.
  • In one embodiment, historical data are used to determine associations between haplotypes and traits and haplotype effect estimates are computed. For the reference soybean and corn germplasm sets, the haplotype effect estimates for a set of relevant traits are listed in Tables 3 and 4, respectively. These haplotype effect estimates form the basis of ranking haplotypes for the purpose of decision-making in a breeding program. In one aspect, haplotypes are ranked using a haplotype breeding value calculation, based on the difference between the haplotype effect and the population mean, wherein the population mean is the summation of the products of each haplotype's frequency and effect estimate where haplotype frequencies are corrected based on the set of haplotypes included in the analysis. In another aspect, the haplotype breeding value calculation is employed to determine the effect of fixing a new haplotype, as would be the case in germplasm introgression or a transgenic event.
  • In the present invention, any given chromosome segment can be represented in a given population by a number of haplotypes that can vary from 1 (region is fixed), to the size of the population times the ploidy level of that species (2 in a diploid species), in a population in which every chromosome has a different haplotype. Identity-by-descent among haplotype carried by multiple individuals in a non-fixed population will result in an intermediate number of haplotype and possibly a differing frequency among the different haplotypes. New haplotypes may arise through recombination at meiosis between existing haplotypes in heterozygous progenitors. The frequency of each haplotype may be estimated by several means known to one versed in the art (e.g. by direct counting, or by using an EM algorithm). Let us assume that “k” different haplotypes, identified as “hi” (1=1, . . . , k), are known, that their frequency in the population is “fi” (i=1, . . . , k), and for each of these haplotypes we have an effect estimate “Esti” (i=1, . . . , k). If we call the “haplotype breeding value” (BVi) the effect on that population of fixing that haplotype, then this breeding value corresponds to the change in mean for the trait(s) of interest of that population between its original state of haplotype distribution at the window and a final state at which haplotype “hi” encounters itself at a frequency of 100%.
  • The haplotype breeding value of hi in this population is calculated as:
  • BV i = Est i - i = 1 k Est i f i
  • One skilled in the art will recognize that haplotypes that are rare in the population in which effects are estimated tend to be less precisely estimated, this difference of confidence may lead to adjustment in the calculation. For example one can ignore the effects of rare haplotypes, by calculating breeding value of better known haplotype after adjusting the frequency of these (by dividing it by the sum of frequency of the better known haplotypes). One could also provide confidence intervals for the breeding value of each haplotypes.
  • The present invention anticipates that any particular haplotype breeding value will change according to the population for which it is calculated, as a function of difference of haplotype frequencies. The term “population” will thus assume different meanings, below are two examples of special cases. In one aspect, a population is a single inbred in which one intends to replace its current haplotype hj by a new haplotype hi, in this case BVi=Esti-Estj. In another aspect, a “population” is a F2 population in'which the two parental haplotype hi and hj are originally present in equal frequency (50%), in which case BVi=½ (Esti-Estj).
  • These statistical approaches enable haplotype effect estimates to inform breeding decisions in multiple contexts. Other statistical approaches to calculate breeding values are known to those skilled in the art and can be used in substitution without departing from the spirit and scope of this invention.
  • Further, the present invention provides methods and compositions to determine the distribution of superior, or preferred, haplotypes in a germplasm collection in order to inform decisions pertaining to breeding and germplasm improvement activities. The following 230 Monsanto commercially released corn inbreds were fingerprinted: 01CWI6, 01DHD10, 01DHD16, 01DKD2, 01HFI3, 01HGI2, 01HGI4, 10IBH2, 01INL1, 01IUL6, 08DKS5, 08HAI5, 08SED1, 09DKD39A, 09DSQ1, 09DSS1, 09IDR9, 16IBL1, 16IDH1, 16IUL13, 16IUL2, 16IUL6, 16SEQ1, 17DHD16, 17DUD5, 17IFI2, 17IFI6, 17INI19, 17INI20, 17INI30, 17IVI7, 17QFB1, 18DHZ5, 19DAA1, 19DKS4, 19HGZ1, 1SF20790, 21GDM1_O, 22DHD11, 2MSBA7, 2OF32B52, 3112, 3323, 3327, 34M837, 35CXZ3, 35ZXZ1, 3AZA1, 3IBZ2, 3IIH6, 49DKD4, 49DKQ1, 49IBI1, 4FCF1, 4GCG1, 4IDH1, 4SCQ3, 53DWD7A, 53DWQ1, 54DZD3, 54IUH1, 54MDC1, 5727, 5750, 5DJD2, 5GCG3, 51 DB3, 63CZC3W, 6950, 6DHD01, 6F545, 6F905, 6LDZ81, 7051, 7145, 7180, 7403, 7520W, 7571W, 7638, 7640, 7647, 7680, 7739Y, 7740, 7749, 7797, 7804, 7823, 7832, 7DCD2C, 7DCD5D, 80DJD5, 80DKD4, 80DKD5, 801DM2, 83D1Q8, 83DNQ2, 83DOD5, 83DUD7, 83HGI8, 83IDI1, 83IDI3, 83INI14, 83INL2, 83SDD2, 86INI2, 86ISI26, 86ISI27, 86ISI5, 87ATD2, 87DFQ3, 87DIA4, 87DUA3, 87DUA5, 87DUA6, 87DUD3, 87IDI1, 87IDI2, 87IDI5, 87III19, 87ITI5, 87IZI8, 87LCC5, 89AHA1, 89AHD12, 89DRD5, 8F286, 8M116, 90DJD28, 90DKD11, 90IDR1, 90LBV1, 90LDC2, 90LDI1, 91AHB1, 91DHA1, 91DUA1, 91DUD5, 91DUQ1, 91DUQ2, 91DZB3, 91III18, 91INH2, 91INZ2, 91ISI5, 91QZA1, 93DKS3, 93QBS5, 94AHA8, 94DUD2, 94IGI6A, 94INK1A, 94INK1B, 94IYI3B, 94IZI11, 94IZI14, 94XCI5, C3DKS03, C3IDI02, C3IFI118, C31WI114, E2UBW1, EP67B26, F351, FBF79R2, GF6150, GM9215, HTV3A2, LH127, LH163, LH168, LH169, LH172, LH176, LH185, LH195, LH200, LH218, LH227, LH229, LH235, LH236, LH239, LH244, LH245, LH246, LH247, LH249, LH254, LH256, LH257, LH258, LH261, LH262, LH268, LH273, LH277, LH279, LH283, LH284, LH287, LH287BT1-1, LH290, LH295, LH302, LH303, LH304, LH305, LH310, LH311, LH320, LH321, LH322, LH324, LH331, LH332, LH350, LH360, LH370, MDF-13A, RDBQ2, SYNBA2, WDHQ11, WDHQ2, WKDL5, WKDL7, WQCD10, WQDS2, WQDS7. The preferred haplotypes were determined on the basis of haplotype effect estimates for the following key phenotypic traits: yield, moisture, plant height, and test weight. For each trait, a list of preferred haplotypes was generated according to ascending criteria; for example, the best 50, the best 40, and so on to the best 5 haplotypes. This germplasm collection was then surveyed to determine the distribution of those haplotypes in elite inbreds.
  • The results for female and male corn inbreds evaluated for these four key phenotypic traits are summarized in Table 5.
  • TABLE 5
    Distribution of preferred haplotypes in a set of elite
    corn germplasm, composed of 230 Monsanto commercially
    released inbreds, divided by heterotic group.
    Yield Moisture Plant height Test weight
    female male female male female male female male
    5 2 2 0 0 3 4 3 3
    10 4 3 0 4 5 4 6 4
    20 7 6 8 5 5 6 6 4
    30 10 8 11 7 5 6 10 4
    40 15 11 15 7 11 9 15 4
    50 16 13 18 12 14 11 18 12
    Listed are maximum number of haplotypes in a single inbred for each criterion (e.g., of top 5 haplotypes, of top 10, and so on) present in this germplasm for each trait.
  • Further, it is of interest to determine the distribution of these preferred haplotypes in a set of germplasm for the implementation of both pre-selection and marker-assisted selection in order to drive the fixation of preferred haplotype compositions in breeding programs and other activities related to germplasm improvement. The commercially released corn female inbreds containing the greatest number of preferred haplotypes known to this date to exist in nature are described in Table 6. The commercially released corn male inbreds containing the greatest number of preferred haplotypes known to this date to exist in nature are described in Table 7.
  • TABLE 6
    List of the commercially released female inbreds that contain the
    maximum number of preferred haplotypes for each superiority “class” for
    four different phenotypic traits (yield, moisture, plant height, and test weight).
    Name Preferred haplotypes present Total preferred haplotypes
    YIELD 2:5
    LH236 1241745, 1245282 1241745, 1245282, 1243877, 1243070,
    LH310 1241745, 1245282 1245725
    LH311 1241745, 1245282
    YIELD 4:10
    7DCD2C 1242692, 1243137, 1243531, 1245725 1241745, 1245282, 1243877, 1243070,
    1245725, 1243531, 1243137, 1244818,
    1242935, 1242692
    YIELD 7:20
    LH311 1241745, 1242555, 1242764, 1241745, 1245282, 1243877, 1243070,
    1243209, 1243921, 1245051, 1245725, 1243531, 1243137, 1244818,
    1245282 1242935, 1242692, 1243209, 1239247,
    1242639, 1245002, 1242764, 1245051,
    1242555, 1241471, 1243921, 1245245
    YIELD 10:30
    80DJD5 1238977, 1240194, 1241428, 1241745, 1245282, 1243877, 1243070,
    1241471, 1241584, 1242555, 1245725, 1243531, 1243137, 1244818,
    1243209, 1243531, 1243724, 1245725 1242935, 1242692, 1243209, 1239247,
    1242639, 1245002, 1242764, 1245051,
    1242555, 1241471, 1243921, 1245245,
    1239097, 1244707, 1240716, 1243724,
    1240194, 1238977, 1239277, 1241428,
    1241344, 1241584
    YIELD 15:40
    80DJD5 1238977, 1239269, 1240194, 1241745, 1245282, 1243877, 1243070,
    1240798, 1241428, 1241471, 1245725, 1243531, 1243137, 1244818,
    1241584, 1242169, 1242555, 1242935, 1242692, 1243209, 1239247,
    1242655, 1243209, 1243531, 1242639, 1245002, 1242764, 1245051,
    1243724, 1244582, 1245725 1242555, 1241471, 1243921, 1245245,
    1239097, 1244707, 1240716, 1243724,
    1240194, 1238977, 1239277, 1241428,
    1241344, 1241584, 1243419, 1240798,
    1239269, 1241694, 1244582, 1244051,
    1242655, 1244350, 1240495, 1242169
    YIELD 16:50
    80DJD5 1238977, 1239269, 1239572, 1241745, 1245282, 1243877, 1243070,
    1240194, 1240798, 1241428, 1245725, 1243531, 1243137, 1244818,
    1241471, 1241584, 1242169, 1242935, 1242692, 1243209, 1239247,
    1242555, 1242655, 1243209, 1242639, 1245002, 1242764, 1245051,
    1243531, 1243724, 1244582, 1245725 1242555, 1241471, 1243921, 1245245,
    1239097, 1244707, 1240716, 1243724,
    1240194, 1238977, 1239277, 1241428,
    1241344, 1241584, 1243419, 1240798,
    1239269, 1241694, 1244582, 1244051,
    1242655, 1244350, 1240495, 1242169,
    1241828, 1243958, 1241430, 1239542,
    1240734, 1244381, 1239572, 1243540,
    1239335, 1240910
    MOISTURE 8:20
    89AHD12 1239271, 1239569, 1239759, 1242746, 1241485, 1245310, 1240420,
    1240800, 1241485, 1243051, 1240492, 1239759, 1239569, 1243417,
    1243218, 1245744 1244049, 1240800, 1245000, 1240365,
    89DRD5 1239271, 1239569, 1240420, 1241593, 1245744, 1243051, 1243218,
    1240800, 1241485, 1243218, 1239271, 1243882, 1243381, 1243320
    1245000, 1245744
    94DUD2 1239271, 1239569, 1240420,
    1240800, 1241485, 1243218,
    1245000, 1245744
    MOISTURE 11:30
    83DNQ2 1239271, 1239569, 1240420, 1242746, 1241485, 1245310, 1240420,
    1240800, 1242655, 1243146, 1240492, 1239759, 1239569, 1243417,
    1243218, 1243920, 1245179, 1244049, 1240800, 1245000, 1240365,
    1245720, 1245744 1241593, 1245744, 1243051, 1243218,
    89AHD12 1239271, 1239569, 1239759, 1239271, 1243882, 1243381, 1243320,
    1240800, 1241485, 1242720, 1242721, 1245179, 1245720, 1243989,
    1243051, 1243218, 1243420, 1242655, 1243920, 1242720, 1243146,
    1243920, 1245744 1243420, 1245823
    MOISTURE 15:40
    91DUQ2 1239271, 1239569, 1240598, 1242746, 1241485, 1245310, 1240420,
    1240800, 1241485, 1241721, 1240492, 1239759, 1239569, 1243417,
    1242688, 1243051, 1243218, 1244049, 1240800, 1245000, 1240365,
    1243858, 1243920, 1244067, 1241593, 1245744, 1243051, 1243218,
    1245179, 1245720, 1245744 1239271, 1243882, 1243381, 1243320,
    1242721, 1245179, 1245720, 1243989,
    1242655, 1243920, 1242720, 1243146,
    1243420, 1245823, 1240901, 1241721,
    1240014, 1241038, 1242688, 1244169,
    1244067, 1243858, 1244914, 1240598
    MOISTURE 18:50
    89AHD12 1239271, 1239321, 1239569, 1242746, 1241485, 1245310, 1240420,
    1239759, 1240282, 1240598, 1240492, 1239759, 1239569, 1243417,
    1240800, 1241485, 1242720, 1244049, 1240800, 1245000, 1240365,
    1243051, 1243218, 1243362, 1241593, 1245744, 1243051, 1243218,
    1243420, 1243920, 1244272, 1239271, 1243882, 1243381, 1243320,
    1244583, 1245072, 1245744 1242721, 1245179, 1245720, 1243989,
    91DUQ2 1239271, 1239569, 1240282, 1242655, 1243920, 1242720, 1243146,
    1240598, 1240800, 1241485, 1243420, 1245823, 1240901, 1241721,
    1241721, 1242688, 1243051, 1240014, 1241038, 1242688, 1244169,
    1243218, 1243858, 1243920, 1244067, 1243858, 1244914, 1240598,
    1244067, 1244272, 1244583, 1244272, 1244583, 1243362, 1240747,
    1245179, 1245720, 1245744 1241848, 1239321, 1240272, 1245072,
    1240282, 1240573
    PLANT HEIGHT 3:5
    93DKS3 1239494, 1242654, 1240622, 1242654, 1241736, 1239494,
    1245298 1245298
    LH245 1240622, 1242654,
    1245298
    PLANT HEIGHT 5:10
    01DHD10 1242272, 1242654, 1242686, 1240622, 1242654, 1241736, 1239494,
    1244689, 1245298 1245298, 1239848, 1240909, 1244689,
    49DKD4 1242272, 1242654, 1242686, 1242686, 1242272
    1244689, 1245298
    83SDD2 1242272, 1242654, 1242686,
    1244689, 1245298
    93DKS3 1239494, 1242654, 1242686,
    1244689, 1245298
    PLANT HEIGHT 5:20
    01DHD10 1242272, 1242654, 1242686, 1240622, 1242654, 1241736, 1239494,
    1244689, 1245298 1245298, 1239848, 1240909, 1244689,
    49DKD4 1242272, 1242654, 1242686, 1242686, 1242272, 1240417, 1240747,
    1244689, 1245298 1244365, 1243882, 1243938, 1243725,
    83SDD2 1242272, 1242654, 1242686, 1244689 1243920, 1239423, 1244699, 1241274
    1245298
    93DKS3 1239494, 1242654, 1242686,
    1244689, 1245298
    PLANT HEIGHT 5:30
    01DHD10 1242272, 1242654, 1242686, 1240622, 1242654, 1241736, 1239494,
    1244689, 1245298 1245298, 1239848, 1240909, 1244689,
    49DKD4 1242272, 1242654, 1242686, 1242686, 1242272, 1240417, 1240747,
    1244689, 1245298 1244365, 1243882, 1243938, 1243725,
    83SDD2 1242272, 1242654, 1242686, 1244689 1243920, 1239423, 1244699, 1241274,
    1245298 1239868, 1241848, 1241565, 1243566,
    93DKS3 1239494, 1242654, 1242686, 1240481, 1244846, 1242341, 1245643,
    1244689, 1245298 1241796, 1244356
    PLANT HEIGHT 11:40
    49DKD4 1239868, 1240481, 1241274, 1240622, 1242654, 1241736, 1239494,
    1242272, 1242654, 1242686, 1245298, 1239848, 1240909, 1244689,
    1243920, 1244050, 1244113, 1242686, 1242272, 1240417, 1240747,
    1244689, 1244365, 1243882, 1243938, 1243725,
    1245298 1243920, 1239423, 1244699, 1241274,
    83SDD2 1239868, 1240481, 1240747, 1239868, 1241848, 1241565, 1243566,
    1241274, 1242272, 1242654, 1240481, 1244846, 1242341, 1245643,
    1242686, 1243920, 1244050, 1241796, 1244356, 1241746, 1244050,
    1244689, 1241531, 1242570, 1244113, 1245075,
    1245298 1245676, 1240726, 1242368, 1241784
    87DUA5 1240481, 1240726, 1240909,
    1241274, 1241746, 1242570,
    1242654, 1242686, 1244365,
    1244699, 1245075
    87DUA6 1240481, 1240726, 1241274,
    1241746, 1242368, 1242570,
    1242654, 1242686, 1244365,
    1244699,
    1245298
    PLANT HEIGHT 14:50
    87DUA5 1240038, 1240481, 1240598, 1240622, 1242654, 1241736, 1239494,
    1240726, 1240909, 1241274, 1245298, 1239848, 1240909, 1244689,
    1241746, 1242570, 1242654, 1242686, 1242272, 1240417, 1240747,
    1242686, 1244272, 1244365, 1244365, 1243882, 1243938, 1243725,
    1244699, 1245075 1243920, 1239423, 1244699, 1241274,
    87DUA6 1240038, 1240481, 1240598, 1239868, 1241848, 1241565, 1243566,
    1240726, 1241274, 1241746, 1240481, 1244846, 1242341, 1245643,
    1242368, 1242570, 1242654, 1241796, 1244356, 1241746, 1244050,
    1242686, 1244272, 1244365, 1241531, 1242570, 1244113, 1245075,
    1244699, 1245298 1245676, 1240726, 1242368, 1241784,
    94AHA8 1239327, 1240038, 1240481, 1244272, 1240038, 1239330, 1245014,
    1240598, 1240726, 1241848, 1239327, 1243554, 1240248, 1240598,
    1242341, 1242570, 1242654, 1241718, 1240348
    1242686, 1243725, 1243938,
    1244272, 1244699
    TEST WEIGHT 3:5
    87DUA3 1239172, 1240420, 1244276 1239172, 1240420, 1244276, 1240365,
    1240353
    TEST WEIGHT 6:10
    87DUA6 1239172, 1239490, 1240420, 1239172, 1240420, 1244276, 1240365,
    1241219, 1242131, 1244365 1240353, 1241219, 1239490, 1243351,
    1242131, 1244365
    TEST WEIGHT 6:20
    87DUA6 1239172, 1239490, 1240420, 1239172, 1240420, 1244276, 1240365,
    1241219, 1242131, 1244365 1240353, 1241219, 1239490, 1243351,
    1242131, 1244365, 1242728, 1242929,
    1242400, 1240422, 1239330, 1240240,
    1244998, 1242746, 1242338, 1243554
    TEST WEIGHT 10:30
    19DKS4 1239330, 1239344, 1239490, 1239172, 1240420, 1244276, 1240365,
    1239569, 1240240, 1242929, 1240353, 1241219, 1239490, 1243351,
    1243554, 1244168, 1244998, 1245720 1242131, 1244365, 1242728, 1242929,
    1242400, 1240422, 1239330, 1240240,
    1244998, 1242746, 1242338, 1243554,
    1240016, 1245720, 1244635, 1239344,
    1242367, 1242512, 1239253, 1239569,
    1244168, 1244171
    TEST WEIGHT 15:40
    87DUA6 1239172, 1239325, 1239416, 1239172, 1240420, 1244276, 1240365,
    1239490, 1239569, 1240420, 1240353, 1241219, 1239490, 1243351,
    1240681, 1240726, 1241219, 1242131, 1244365, 1242728, 1242929,
    1242131, 1242338, 1242424, 1242400, 1240422, 1239330, 1240240,
    1243873, 1244171, 1244365 1244998, 1242746, 1242338, 1243554,
    1240016, 1245720, 1244635, 1239344,
    1242367, 1242512, 1239253, 1239569,
    1244168, 1244171, 1239416, 1240681,
    1243596, 1239325, 1242424, 1243873,
    1240726, 1240718, 1241487, 1238959
    TEST WEIGHT 18:50
    3AZA1 1239172, 1239325, 1239416, 1239172, 1240420, 1244276, 1240365,
    1239490, 1239569, 1240420, 1240353, 1241219, 1239490, 1243351,
    1240726, 1241219, 1241706, 1242131, 1244365, 1242728, 1242929,
    1242131, 1242338, 1242367, 1242400, 1240422, 1239330, 1240240,
    1242424, 1242686, 1243873, 1244998, 1242746, 1242338, 1243554,
    1244059, 1244171, 1245919 1240016, 1245720, 1244635, 1239344,
    87DUA6 1239172, 1239325, 1239416, 1242367, 1242512, 1239253, 1239569,
    1239490, 1239569, 1240420, 1244168, 1244171, 1239416, 1240681,
    1240681, 1240726, 1241219, 1243596, 1239325, 1242424, 1243873,
    1241706, 1242131, 1242338, 1240726, 1240718, 1241487, 1238959,
    1242424, 1242686, 1243873, 1241736, 1244113, 1240906, 1243854,
    1244171, 1244365, 1245919 1241706, 1242662, 1242686, 1244059,
    1241442, 1245919
  • TABLE 7
    List of the commercially released male inbreds that contain the maximum
    number of preferred haplotypes for each superiority “class” for four different phenotypic
    traits (yield, moisture, plant height, and test weight).
    Name Preferred haplotypes present Total preferred haplotypes
    YIELD 2:5
    LH262 1239500, 1243877 1240437, 1244921, 1239500, 1242504,
    3140 1242504, 1243877 1243877
    34CDK2 1239500, 1243877
    LH185 1239500, 1243877
    LH254 1239500, 1243877
    LH256 1239500, 1243877
    LH258 1239500, 1243877
    LH279 1239500, 1242504
    LH287 1239500, 1243877
    LH287BT1-1 1239500, 1243877
    LH350 1239500, 1243877
    MDF-13A 1239500, 1243877
    PA2121 1240437, 1244921
    PA3003 1240437, 1244921
    PZ7012 1240437, 1244921
    PZ7149 1240437, 1244921
    SH7202 1240437, 1244921
    YIELD 3:10
    34CDK2 1239500, 1240805, 1243877 1240437, 1244921, 1239500, 1242504,
    4GCG1 1239419, 1240280, 1240805 1243877, 1240280, 1243378, 1240805,
    LH254 1239500, 1243378, 1243877 1245695, 1239419
    LH350 1239500, 1240805, 1243877
    MDF-13A 1239500, 1243378, 1243877
    YIELD 6:20
    MDF-13A 1238927, 1239500, 1241957, 1240437, 1244921, 1239500, 1242504,
    1242383, 1243378, 1243877 1243877, 1240280, 1243378, 1240805,
    1245695, 1239419, 1238927, 1240824,
    1244751, 1242383, 1244958, 1245723,
    1241440, 1245503, 1241364, 1241957
    YIELD 8:30
    19HGZ1 1238927, 1239043, 1239273, 1240437, 1244921, 1239500, 1242504,
    1239419, 1240424, 1240824, 1242383, 1243877, 1240280, 1243378, 1240805,
    1245503 1245695, 1239419, 1238927, 1240824,
    1244751, 1242383, 1244958, 1245723,
    1241440, 1245503, 1241364, 1241957,
    123 273, 1241211, 1242153, 1240424,
    1243448, 1238980, 1242540, 1239043,
    1241410, 1244018
    YIELD 11:40
    19HGZ1 1238927, 1239043, 1239273, 1240437, 1244921, 1239500, 1242504,
    1239419, 1240041, 1240266, 1243877, 1240280, 1243378, 1240805,
    1240424, 1240824, 1242383, 1245695, 1239419, 1238927, 1240824,
    1243787, 1245503 1244751, 1242383, 1244958, 1245723,
    1241440, 1245503, 1241364, 1241957,
    123 273, 1241211, 1242153, 1240424,
    1243448, 1238980, 1242540, 1239043,
    1241410, 1244018, 1240701, 1244097,
    1239740, 1243704, 1240041, 1242667,
    1245003, 1242567, 1240266, 1243787
    YIELD 13:50
    19HGZ1 1238927, 1239043, 1239172, 1240437, 1244921, 1239500, 1242504,
    1239273, 1239419, 1240041, 1243877, 1240280, 1243378, 1240805,
    1240266, 1240424, 1240824, 1245695, 1239419, 1238927, 1240824,
    1242383, 1243787, 1245503 1244751, 1242383, 1244958, 1245723,
    1241440, 1245503, 1241364, 1241957,
    123 273, 1241211, 1242153, 1240424,
    1243448, 1238980, 1242540, 1239043,
    1241410, 1244018, 1240701, 1244097,
    1239740, 1243704, 1240041, 1242667,
    1245003, 1242567, 1240266, 1243787,
    1242636, 1245927, 1241224, 1242665,
    1241195, 1240251, 1239172, 1244508,
    1240253, 1241110
    MOISTURE 4:10
    86ISI5 1242556, 1244950, 1243377, 1242879, 1241721, 1244978, 1245717,
    1244778 1242556, 1244950, 1241235, 1240902,
    1243377, 1244778
    MOISTURE 5:20
    2MSBA7 1239982, 1241235, 1241586, 1242879, 1241721, 1244978, 1245717,
    1241721, 1244878 1242556, 1244950, 1241235, 1240902,
    86ISI5 1242556, 1243377, 1244529, 1243377, 1244778, 1241213, 1241586,
    1244778, 1244950 1242344, 1240804, 1244529, 1244878,
    87LCC5 1239982, 1240902, 1241586, 1239982, 1242571, 1244976, 1241714
    1242556, 1244976
    SYNBA2 1239982, 1241235, 1241586,
    1241721, 1244878
    MOISTURE 7:30
    LH176 1239982, 1240902, 1241095, 1242879, 1241721, 1244978, 1245717,
    1241606, 1243377, 1244507, 1242556, 1244950, 1241235, 1240902,
    1244529 1243377, 1244778, 1241213, 1241586,
    LH295 1239982, 1240804, 1240902, 1242344, 1240804, 1244529, 1244878,
    1241095, 1241606, 1243377, 1239982, 1242571, 1244976, 1241714,
    1244507 1242285, 1241606, 1245670, 1241241,
    1243263, 1245889, 1241095, 1241577,
    1243398, 1244507
    MOISTURE 7:40
    LH176 1239982, 1240902, 1241095, 1242879, 1241721, 1244978, 1245717,
    1241606, 1243377, 1244507, 1242556, 1244950, 1241235, 1240902,
    1244529 1243377, 1244778, 1241213, 1241586,
    LH295 1239982, 1240804, 1240902, 1242344, 1240804, 1244529, 1244878,
    1241095, 1241606, 1243377, 1239982, 1242571, 1244976, 1241714,
    1244507 1242285, 1241606, 1245670, 1241241,
    1243263, 1245889, 1241095, 1241577,
    1243398, 1244507, 1240882, 1243118,
    1239897, 1242971, 1245130, 1243499,
    1241490, 1244486, 1245883, 1241958
    MOISTURE 12:50
    86IS15 1240036, 1240968, 1241606, 1242879, 1241721, 1244978, 1245717,
    1241958, 1242556, 1242713, 1242556, 1244950, 1241235, 1240902,
    1243118, 1243377, 1243865, 1243377, 1244778, 1241213, 1241586,
    1244529, 1244778, 1244950 1242344, 1240804, 1244529, 1244878,
    1239982, 1242571, 1244976, 1241714,
    1242285, 1241606, 1245670, 1241241,
    1243263, 1245889, 1241095, 1241577,
    1243398, 1244507, 1240882, 1243118,
    1239897, 1242971, 1245130, 1243499,
    1241490, 1244486, 1245883, 1241958,
    1239361, 1245894, 1240968, 1242713,
    1240036, 1242040, 1239883, 1240487,
    1243865, 1243242
    PLANT HEIGHT 4:5
    3140 1239420, 1240760, 1242162, 1239420, 1242162, 1242662, 1242335,
    1242662 1240760
    LH168 1239420, 1240760, 1242162,
    1242662
    LH295 1239420, 1240760, 1242162,
    1242662
    PLANT HEIGHT 4:10
    3140 1239420, 1240760, 1242162, 1239420, 1242162, 1242662, 1242335,
    1242662 1240760, 1242879, 1241832, 1242358,
    LH168 1239420, 1240760, 1242162, 1242687, 1244302
    1242662
    LH172 1239420, 1240760, 1242358,
    1242662
    LH277 1239420, 1240760, 1242358,
    1242662
    LH295 1239420, 1240760, 1242162,
    1242662
    LH322 1239420, 1240760, 1242358,
    1242662
    PLANT HEIGHT 6:20
    LH295 1239361, 1239420, 1240760, 1239420, 1242162, 1242662, 1242335,
    1241349, 1242162, 1242662 1240760, 1242879, 1241832, 1242358,
    1242687, 1244302, 1239494, 1240264,
    1239361, 1242369, 1243789, 1245719,
    1241349, 1242714, 1240439, 1239164
    PLANT HEIGHT 6:30
    LH254 1240264, 1241412, 1242687, 1239420, 1242162, 1242662, 1242335,
    1243210, 1243789, 1245719 1240760, 1242879, 1241832, 1242358,
    LH295 1239361, 1239420, 1240760, 1242687, 1244302, 1239494, 1240264,
    1241349, 1242162, 1242662 1239361, 1242369, 1243789, 1245719,
    1241349, 1242714, 1240439, 1239164,
    1239990, 1239061, 1243210, 1241610,
    1245642, 1238912, 1240040, 1241412,
    1242371, 1245006
    PLANT HEIGHT 9:40
    LH295 1239361, 1239420, 1239501, 1239420, 1242162, 1242662, 1242335,
    1240031, 1240760, 1241349, 1240760, 1242879, 1241832, 1242358,
    1242162, 1242662, 1245929 1242687, 1244302, 1239494, 1240264,
    1239361, 1242369, 1243789, 1245719,
    1241349, 1242714, 1240439, 1239164,
    1239990, 1239061, 1243210, 1241610,
    1245642, 1238912, 1240040, 1241412,
    1242371, 1245006, 1242344, 1239501,
    1239370, 1239843, 1244784, 1240031,
    1241099, 1243727, 1245929, 1240687
    PLANT HEIGHT 11:50
    LH172 1239370, 1239420, 1239501, 1239420, 1242162, 1242662, 1242335,
    1239578, 1239843, 1240760, 1240760, 1242879, 1241832, 1242358,
    1242358, 1242658, 1242662, 1242687, 1244302, 1239494, 1240264,
    1242692, 1245929 1239361, 1242369, 1243789, 1245719,
    LH277 1239370, 1239420, 1239578, 1241349, 1242714, 1240439, 1239164,
    1239843, 1240249, 1240760, 1239990, 1239061, 1243210, 1241610,
    1242358, 1242658, 1242662, 1245642, 1238912, 1240040, 1241412,
    1242692, 1245929 1242371, 1245006, 1242344, 1239501,
    LH295 1239361, 1239420, 1239501, 1239370, 1239843, 1244784, 1240031,
    1240031, 1240760, 1241349, 1241099, 1243727, 1245929, 1240687,
    1242162, 1242662, 1242692, 1240249, 1243213, 1240271, 1238993,
    1243377, 1245929 1239578, 1245372, 1243377, 1242692,
    1245121, 1242658
    TEST WEIGHT 3:5
    LH185 1243269, 1239739, 1241036 1244555, 1243269, 1239739, 1243708,
    LH321 1244555, 1243269, 1239739 1241036
    TEST WEIGHT 4:10
    4GCG1 1241036, 1241468, 1242162, 1244555, 1243269, 1239739, 1243708,
    1243269 1241036, 1244878, 1244529, 1240820,
    LH321 1239739, 1242162, 1243269, 1242162, 1241468
    1244555
    TEST WEIGHT 4:20
    4GCG1 1241036, 1241468, 1242162, 1244555, 1243269, 1239739, 1243708,
    1243269 1241036, 1244878, 1244529, 1240820,
    LH321 1239739, 1242162, 1243269, 1242162, 1241468, 1239003, 1240431,
    1244555 1240018, 1241714, 1241721, 1243058,
    1245769, 1244918, 1239002, 1240331
    TEST WEIGHT 4:30
    4GCG1 1241036, 1241468, 1242162, 1244555, 1243269, 1239739, 1243708,
    1243269 1241036, 1244878, 1244529, 1240820,
    LH321 1239739, 1242162, 1243269, 1242162, 1241468, 1239003, 1240431,
    1244555 1240018, 1241714, 1241721, 1243058,
    1245769, 1244918, 1239002, 1240331,
    1239048, 1244778, 1240013, 1244637,
    1245257, 1244973, 1244379, 1242662,
    1240042, 1244302
    TEST WEIGHT 4:40
    4GCG1 1241036, 1241468, 1242162, 1244555, 1243269, 1239739, 1243708,
    1243269 1241036, 1244878, 1244529, 1240820,
    LH321 1239739, 1242162, 1243269, 1242162, 1241468, 1239003, 1240431,
    1244555 1240018, 1241714, 1241721, 1243058,
    1245769, 1244918, 1239002, 1240331,
    1239048, 1244778, 1240013, 1244637,
    1245257, 1244973, 1244379, 1242662,
    1240042, 1244302, 1240031, 1242713,
    1241610, 1245072, 1241430, 1242369,
    1239987, 1241966, 1245118, 1244207
    TEST WEIGHT 12:50
    LH295 1239161, 1240018, 1240031, 1244555, 1243269, 1239739, 1243708,
    1241430, 1241588, 1242162, 1241036, 1244878, 1244529, 1240820,
    1242662, 1242713, 1244207, 1242162, 1241468, 1239003, 1240431,
    1244555, 1245710, 1245773 1240018, 1241714, 1241721, 1243058,
    1245769, 1244918, 1239002, 1240331,
    1239048, 1244778, 1240013, 1244637,
    1245257, 1244973, 1244379, 1242662,
    1240042, 1244302, 1240031, 1242713,
    1241610, 1245072, 1241430, 1242369,
    1239987, 1241966, 1245118, 1244207,
    1244279, 1245648, 1244352, 1240910,
    1239161, 1244226, 1245710, 1241588,
    1245773, 1245198
  • In another embodiment, preferred haplotypes are determined by evaluating trait ratios, given that certain phenotypic traits are negatively correlated with yield and, in corn, it is advantageous to select for positive yield and negative plant height or negative moisture. Exemplary trait ratios include greater than 2 or less than zero, greater than 3 or less than zero, and so on, wherein yield is positive and either plant height or moisture is negative. In one aspect, a preferred haplotype is one with a trait ratio of greater than 5 or less than zero (bu/acre:inches or bu/acre:% moisture, respectively), wherein yield is positive and either plant height or moisture is negative. For a preferred yield-plant height trait ratio, the following 485 preferred haplotypes were identified in female corn inbreds: 1240330, 1240341, 1240365, 1240373, 1240335, 1244963, 1244954, 1244998, 1245002, 1242131, 1242134, 1242136, 1245111, 1240904, 1240906, 1244818, 1244826, 1242719, 1242728, 1242731, 1242738, 1242720, 1242721, 1241220, 1241234, 1244641, 1244644, 1244657, 1244635, 1238977, 1238987, 1239022, 1239028, 1245360, 1245372, 1245362, 1245368, 1242928, 1242929, 1243964, 1240029, 1241366, 1241347, 1241350, 1243703, 1243714, 1243717, 1243724, 1243705, 1243710, 1239181, 1239198, 1239210, 1242381, 1242367, 1242368, 1244274, 1244285, 1244276, 1244525, 1244526, 1244527, 1244531, 1243862, 1243873, 1239490, 1239496, 1244516, 1240415, 1240416, 1241563, 1241564, 1241567, 1243917, 1243918, 1241406, 1239845, 1239846, 1239848, 1240428, 1240454, 1240420, 1240422, 1240679, 1240681, 1240687, 1244774, 1240798, 1240811, 1240800, 1240964, 1240977, 1240971, 1243373, 1243382, 1243375, 1245130, 1245120, 1239147, 1239148, 1240261, 1240263, 1240264, 1240265, 1240266, 1242866, 1242878, 1242881, 1242869, 1240252, 1239338, 1239340, 1239341, 1243999, 1244000, 1244001, 1243110, 1243120, 1243112, 1243116, 1243118, 1239652, 1239653, 1243796, 1243790, 1239532, 1239542, 1239533, 1239539, 1242230, 1242220, 1242221, 1242225, 1242227, 1244500, 1244501, 1239981, 1244168, 1244169, 1240495, 1240484, 1242688, 1242692, 1245718, 1245720, 1244300, 1244316, 1244305, 1241580, 1241603, 1241428, 1241447, 1241450, 1241430, 1241436, 1242932, 1242942, 1242934, 1242935, 1242938, 1243209, 1243218, 1240932, 1240935, 1245511, 1240241, 1240242, 1240246, 1239406, 1238934, 1244187, 1244189, 1244190, 1240670, 1243051, 1243070, 1243080, 1243059, 1243540, 1243596, 1243538, 1242065, 1242095, 1242067, 1242115, 1242072, 1240119, 1241885, 1241906, 1241924, 1245917, 1245918, 1245923, 1242628, 1243967, 1243970, 1243972, 1243974, 1239572, 1239583, 1239574, 1239623, 1245562, 1245575, 1245564, 1245595, 1245565, 1241099, 1241108, 1241112, 1241124, 1241638, 1241632, 1241633, 1241634, 1243417, 1243429, 1243436, 1243444, 1243419, 1243420, 1240194, 1240181, 1240184, 1240922, 1240924, 1240926, 1245090, 1245089, 1242986, 1242995, 1243001, 1242988, 1243018, 1243036, 1243042, 1242994, 1244006, 1244007, 1244008, 1244009, 1244095, 1244097, 1239866, 1239867, 1242537, 1242546, 1242550, 1242539, 1242540, 1242543, 1242545, 1245411, 1245422, 1245413, 1245447, 1242785, 1242797, 1242787, 1242792, 1241025, 1241035, 1241038, 1241045, 1241071, 1241030, 1241969, 1241960, 1242952, 1242954, 1244874, 1244875, 1240270, 1240281, 1240282, 1244220, 1244202, 1244235, 1240714, 1244914, 1245916, 1243855, 1243858, 1245929, 1245930, 1242663, 1243607, 1243608, 1243609, 1242149, 1242150, 1242151, 1242156, 1245199, 1244602, 1244596, 1239058, 1241872, 1242632, 1242644, 1242633, 1242639, 1242507, 1242510, 1243273, 1243274, 1243261, 1244106, 1244115, 1244118, 1241706, 1245881, 1245882, 1243346, 1243347, 1243348, 1243351, 1243352, 1243355, 1242982, 1245072, 1245073, 1245074, 1240007, 1240016, 1240014, 1243847, 1243623, 1243632, 1241461, 1241471, 1241474, 1241487, 1243315, 1243320, 1243322, 1242169, 1242179, 1245828, 1245846, 1245822, 1245824, 1239328, 1243135, 1243137, 1243174, 1243979, 1241284, 1241307, 1241278, 1239904, 1239915, 1245245, 1244077, 1244079, 1244081, 1244082, 1241088, 1240589, 1240602, 1240590, 1240596, 1244196, 1244198, 1242055, 1242062, 1242034, 1242037, 1240174, 1240175, 1244692, 1245772, 1239065, 1239074, 1239066, 1239068, 1242252, 1242289, 1242253, 1239655, 1239671, 1239674, 1239687, 1239662, 1239663, 1244023, 1244013, 1239269, 1239271, 1239273, 1239277, 1240881, 1240884, 1245794, 1242970, 1240709, 1240710, 1240712, 1239972, 1239978, 1241786, 1241790, 1240572, 1240573, 1240576, 1240580, 1239759, 1239761, 1239809, 1245274, 1245277, 1245281, 1245282, 1241165, 1244700, 1242555, 1242557, 1242560, 1240718, 1242338, 1241826, 1241838, 1239344, 1239353, 1239376, 1239348, 1245744, 1245745, 1244048, 1244049, 1244050, 1244053, 1245207, 1245208, 1245210, 1245659, 1245676, 1245662, 1245663, 1240112, 1240113, 1240114, 1240257, 1240259, 1243987, 1243989, 1245760, 1245761, 1241458, 1241459, 1245189, 1245192, 1241818, 1241819, 1239244, 1239253, 1239245, 1239425, 1239411, 1239413, 1240616, 1240621, 1242214, 1242216, 1245554, 1245555, 1242713, 1245637, 1245643, 1245298, 1245308, 1245326, 1244360, 1244381, 1244410, 1243933, 1243938, 1243926, 1241746, 1245763, 1245764, 1245765, 1245766, 1245768, and 1245769. To date, the greatest number of said preferred yield-plant height trait ratio haplotypes occurring in a commercially released female inbred is 117, wherein the inbred is 83DIQ8 and the 117 preferred haplotypes are: 1239058, 1239068, 1239148, 1239210, 1239245, 1239271, 1239340, 1239353, 1239411, 1239490, 1239653, 1239846, 1239866, 1240029, 1240114, 1240175, 1240181, 1240263, 1240281, 1240415, 1240454, 1240484, 1240572, 1240596, 1240670, 1240679, 1240709, 1240800, 1240881, 1240906, 1240924, 1240935, 1241088, 1241099, 1241220, 1241447, 1241458, 1241471, 1241564, 1241580, 1241786, 1241818, 1241838, 1241872, 1241885, 1242115, 1242136, 1242149, 1242169, 1242214, 1242253, 1242338, 1242367, 1242510, 1242550, 1242639, 1242663, 1242692, 1242785, 1242869, 1242928, 1242934, 1242954, 1242970, 1242982, 1242988, 1243051, 1243112, 1243135, 1243218, 1243261, 1243315, 1243346, 1243375, 1243420, 1243607, 1243623, 1243790, 1243862, 1243917, 1243967, 1243979, 1243987, 1243999, 1244009, 1244013, 1244048, 1244077, 1244095, 1244106, 1244190, 1244274, 1244316, 1244501, 1244525, 1244644, 1244954, 1244998, 1245074, 1245120, 1245189, 1245208, 1245274, 1245298, 1245360, 1245411, 1245554, 1245564, 1245637, 1245662, 1245744, 1245760, 1245763, 1245772, 1245794, 1245881, and 1245929.
  • For a preferred yield-moisture trait ratio, the following 676 preferred haplotypes were identified in female corn inbreds: 1240341, 1240348, 1240353, 1240365, 1240373, 1240386, 1240335, 1244946, 1244963, 1244948, 1244998, 1245007, 1245011, 1245014, 1245051, 1242130, 1242131, 1242132, 1242134, 1245110, 1245111, 1245112, 1245114, 1240910, 1240904, 1240909, 1244805, 1244815, 1244818, 1244826, 1244846, 1242719, 1242728, 1242731, 1242734, 1242738, 1242721, 1242764, 1241207, 1241219, 1241220, 1241234, 1244631, 1244641, 1244643, 1244644, 1244657, 1244633, 1244635, 1238977, 1238987, 1238988, 1239022, 1239028, 1245362, 1242931, 1243958, 1243959, 1245709, 1240029, 1241344, 1241346, 1241347, 1243714, 1243717, 1243724, 1243705, 1243710, 1239155, 1239172, 1239156, 1239181, 1239158, 1239198, 1239210, 1242365, 1242367, 1242400, 1242368, 1244274, 1244285, 1244276, 1244526, 1244527, 1243862, 1243871, 1243873, 1243877, 1243863, 1243882, 1243904, 1239494, 1239496, 1240415, 1240416, 1241563, 1241565, 1241567, 1241568, 1243917, 1243918, 1241406, 1241407, 1239842, 1239845, 1239846, 1239848, 1244582, 1240428, 1240419, 1240451, 1240454, 1240679, 1240681, 1240687, 1244774, 1244776, 1244780, 1240811, 1240813, 1240800, 1240964, 1240977, 1240966, 1241001, 1240971, 1243373, 1243382, 1243375, 1245118, 1245120, 1245125, 1239147, 1239148, 1241605, 1241621, 1241607, 1241608, 1240261, 1240262, 1240263, 1240264, 1240265, 1240266, 1242881, 1242869, 1245557, 1245558, 1240248, 1240250, 1240252, 1240254, 1239340, 1239341, 1243999, 1244000, 1244001, 1244502, 1244504, 1239968, 1239969, 1244063, 1244064, 1244065, 1241571, 1241573, 1244900, 1244901, 1244902, 1244907, 1243110, 1243120, 1243112, 1243116, 1239652, 1239653, 1243786, 1243796, 1243797, 1239542, 1239533, 1239539, 1239540, 1242219, 1242220, 1242221, 1242225, 1242226, 1242227, 1239981, 1239985, 1244168, 1244171, 1240481, 1240492, 1240493, 1240495, 1240484, 1242686, 1242690, 1242691, 1242692, 1245718, 1245720, 1245721, 1245725, 1244300, 1244316, 1244305, 1241580, 1241593, 1241584, 1241585, 1241428, 1241438, 1241442, 1241447, 1241430, 1241436, 1242932, 1242942, 1242934, 1242935, 1243209, 1243215, 1243216, 1240932, 1240935, 1245511, 1245513, 1240241, 1240242, 1240246, 1241694, 1241696, 1241697, 1239403, 1239405, 1238906, 1238916, 1238934, 1238959, 1244187, 1244189, 1239312, 1239321, 1239320, 1240668, 1240670, 1240671, 1240106, 1240107, 1243051, 1243070, 1243080, 1243056, 1243057, 1243059, 1243531, 1243540, 1243554, 1243566, 1243596, 1243538, 1242065, 1242115, 1240118, 1241885, 1241906, 1241887, 1241924, 1244892, 1244894, 1245404, 1239034, 1243489, 1244887, 1244888, 1245918, 1245919, 1245923, 1242628, 1242629, 1243968, 1243970, 1243972, 1243974, 1239572, 1239582, 1239583, 1239585, 1239574, 1239623, 1239577, 1245562, 1245575, 1245584, 1245564, 1245595, 1245565, 1242424, 1242432, 1241112, 1241124, 1241626, 1241634, 1243428, 1243436, 1243444, 1243419, 1240179, 1240192, 1240194, 1240184, 1240923, 1240924, 1240925, 1240926, 1245081, 1245090, 1245085, 1245087, 1245089, 1242986, 1242995, 1243001, 1242988, 1243018, 1243036, 1243042, 1242994, 1244438, 1244439, 1244440, 1244441, 1244006, 1244007, 1244009, 1244095, 1244096, 1244097, 1242537, 1242546, 1242550, 1242540, 1242543, 1242545, 1245411, 1245422, 1245413, 1245447, 1242797, 1242787, 1242790, 1241035, 1241045, 1241027, 1241071, 1241030, 1240036, 1241956, 1241958, 1241960, 1242952, 1242954, 1244872, 1244875, 1244200, 1244220, 1244202, 1244235, 1240713, 1240714, 1244918, 1245914, 1245916, 1239856, 1243854, 1245927, 1245929, 1245930, 1242662, 1242675, 1243608, 1243609, 1243610, 1242161, 1242150, 1242151, 1242155, 1242156, 1245197, 1245199, 1245200, 1245203, 1244588, 1244602, 1244596, 1239058, 1239059, 1239062, 1239868, 1239870, 1239876, 1241870, 1241871, 1241874, 1240676, 1240677, 1242632, 1242642, 1242633, 1242639, 1242640, 1242497, 1242512, 1243259, 1243273, 1243274, 1243261, 1243292, 1244118, 1244119, 1244131, 1244108, 1244113, 1241699, 1241702, 1241706, 1245881, 1245882, 1245883, 1245885, 1243362, 1243351, 1243352, 1243355, 1242982, 1242983, 1245073, 1245075, 1245076, 1245077, 1240016, 1240664, 1240665, 1240666, 1243846, 1243847, 1243632, 1243652, 1241461, 1241471, 1241473, 1241485, 1241487, 1241531, 1242654, 1242655, 1243318, 1243322, 1242169, 1242171, 1242172, 1245819, 1245828, 1245846, 1245822, 1245823, 1245824, 1239325, 1239327, 1239328, 1239330, 1243135, 1243146, 1243149, 1243137, 1243977, 1243979, 1243981, 1241271, 1241284, 1241273, 1241307, 1241274, 1241278, 1239893, 1239915, 1239895, 1245237, 1245251, 1245238, 1245245, 1244077, 1244079, 1244080, 1244082, 1244083, 1240108, 1240109, 1240699, 1241093, 1241094, 1241090, 1240598, 1240601, 1240590, 1244196, 1244197, 1244198, 1242055, 1242033, 1242062, 1242034, 1242037, 1242039, 1244690, 1244691, 1244692, 1245773, 1239065, 1239074, 1239066, 1239067, 1239097, 1239068, 1242250, 1242261, 1242272, 1242289, 1242253, 1239666, 1239671, 1239674, 1239675, 1239657, 1239662, 1239663, 1244023, 1244013, 1244017, 1239269, 1239280, 1239271, 1239277, 1245180, 1245889, 1245891, 1240881, 1240884, 1244881, 1239335, 1240709, 1240710, 1239972, 1239974, 1239976, 1239979, 1241784, 1241798, 1241787, 1240582, 1240573, 1240576, 1240580, 1239748, 1239761, 1239778, 1239809, 1245274, 1245277, 1245279, 1245282, 1241155, 1241165, 1241177, 1244697, 1244707, 1244699, 1244700, 1244705, 1242555, 1242568, 1242570, 1242557, 1240716, 1240726, 1240734, 1240747, 1240718, 1242330, 1242341, 1242338, 1241848, 1241828, 1239344, 1239353, 1239365, 1239376, 1239348, 1245742, 1245747, 1244051, 1244053, 1245207, 1245209, 1245210, 1245659, 1245676, 1245661, 1245662, 1245663, 1245799, 1245802, 1240112, 1240113, 1240257, 1240259, 1243987, 1243988, 1243989, 1245759, 1245760, 1245761, 1241458, 1241459, 1245189, 1245190, 1245192, 1243614, 1241818, 1241819, 1239244, 1239262, 1239245, 1239247, 1239416, 1239423, 1240615, 1240616, 1240619, 1240621, 1240622, 1242214, 1242216, 1245554, 1245555, 1245272, 1245273, 1242711, 1242712, 1242713, 1245637, 1245308, 1245299, 1244349, 1244360, 1244365, 1244350, 1244381, 1244410, 1244356, 1243920, 1243938, 1243921, 1243951, 1241736, 1241745, 1241746, 1241718, 1245763, 1245764, 1245765, 1245768, and 1245769. To date, the greatest number of said yield-moisture trait ratio preferred haplotypes occurring in commercially released female inbreds is 168, wherein the 168 preferred haplotypes in 87DUA5 are: 1238906, 1239022, 1239034, 1239062, 1239074, 1239147, 1239156, 1239247, 1239271, 1239320, 1239325, 1239335, 1239341, 1239365, 1239416, 1239542, 1239572, 1239653, 1239657, 1239748, 1239842, 1239870, 1239969, 1239976, 1239981, 1240029, 1240106, 1240109, 1240113, 1240246, 1240250, 1240259, 1240265, 1240335, 1240415, 1240419, 1240481, 1240598, 1240615, 1240666, 1240670, 1240676, 1240687, 1240699, 1240713, 1240726, 1240800, 1240881, 1240909, 1240924, 1240935, 1240966, 1241030, 1241090, 1241094, 1241155, 1241220, 1241274, 1241347, 1241406, 1241436, 1241459, 1241485, 1241567, 1241573, 1241580, 1241607, 1241626, 1241694, 1241699, 1241746, 1241819, 1241874, 1241924, 1241958, 1242033, 1242065, 1242132, 1242156, 1242172, 1242214, 1242226, 1242253, 1242338, 1242367, 1242424, 1242537, 1242570, 1242629, 1242640, 1242654, 1242686, 1242712, 1242734, 1242934, 1242954, 1242982, 1242988, 1243059, 1243110, 1243135, 1243274, 1243322, 1243375, 1243489, 1243540, 1243608, 1243846, 1243862, 1243917, 1243959, 1243968, 1243979, 1243987, 1244001, 1244006, 1244013, 1244083, 1244097, 1244119, 1244171, 1244187, 1244196, 1244220, 1244274, 1244300, 1244365, 1244438, 1244504, 1244527, 1244588, 1244644, 1244692, 1244699, 1244815, 1244875, 1244887, 1244900, 1244948, 1245051, 1245075, 1245110, 1245120, 1245192, 1245199, 1245210, 1245251, 1245272, 1245274, 1245299, 1245404, 1245411, 1245554, 1245557, 1245562, 1245662, 1245709, 1245742, 1245759, 1245763, 1245773, 1245799, 1245822, 1245881, 1245889, 1245916, 1245919, and 1245929; and the 168 preferred haplotypes in LH244 and are: 1238916, 1238988, 1239034, 1239058, 1239097, 1239147, 1239198, 1239245, 1239269, 1239312, 1239325, 1239335, 1239341, 1239344, 1239403, 1239623, 1239652, 1239663, 1239748, 1239842, 1239856, 1239868, 1239895, 1239968, 1239974, 1239985, 1240016, 1240029, 1240036, 1240106, 1240109, 1240112, 1240118, 1240194, 1240254, 1240257, 1240266, 1240386, 1240415, 1240451, 1240493, 1240615, 1240666, 1240668, 1240677, 1240679, 1240699, 1240709, 1240714, 1240734, 1240800, 1240881, 1240925, 1240932, 1240966, 1241071, 1241093, 1241112, 1241155, 1241207, 1241284, 1241436, 1241458, 1241531, 1241571, 1241585, 1241621, 1241696, 1241699, 1241818, 1241870, 1241887, 1241956, 1242132, 1242151, 1242216, 1242219, 1242261, 1242330, 1242497, 1242568, 1242629, 1242642, 1242654, 1242662, 1242691, 1242711, 1242764, 1242787, 1242932, 1242952, 1242983, 1243018, 1243057, 1243120, 1243146, 1243209, 1243292, 1243352, 1243375, 1243428, 1243489, 1243538, 1243614, 1243652, 1243786, 1243846, 1243854, 1243882, 1243917, 1243951, 1243959, 1243972, 1243981, 1243987, 1244001, 1244017, 1244065, 1244080, 1244095, 1244108, 1244187, 1244196, 1244202, 1244274, 1244305, 1244410, 1244439, 1244502, 1244588, 1244631, 1244690, 1244707, 1244776, 1244872, 1244887, 1244892, 1244946, 1245051, 1245073, 1245090, 1245112, 1245120, 1245192, 1245207, 1245238, 1245272, 1245274, 1245362, 1245404, 1245413, 1245511, 1245554, 1245557, 1245584, 1245637, 1245659, 1245709, 1245720, 1245742, 1245759, 1245763, 1245799, 1245828, 1245885, 1245889, 1245914, and 1245927.
  • For a preferred yield-plant height trait ratio, the following 707 preferred haplotypes were identified in male corn inbreds: 1240342, 1240346, 1240331, 1240352, 1240354, 1240334, 1244957, 1244947, 1244971, 1244973, 1244988, 1244950, 1244951, 1245009, 1245034, 1245038, 1245003, 1245006, 1242130, 1242134, 1242135, 1242136, 1245111, 1245112, 1240910, 1240911, 1240902, 1240903, 1244815, 1244810, 1242730, 1242720, 1242722, 1242724, 1241217, 1241208, 1241209, 1241241, 1241211, 1241215, 1244640, 1244632, 1238986, 1239002, 1239003, 1238980, 1238983, 1238985, 1245370, 1245361, 1245362, 1245367, 1245368, 1242928, 1243959, 1243961, 1245709, 1245710, 1245711, 1245714, 1245717, 1240033, 1241350, 1243712, 1243715, 1243721, 1243755, 1243708, 1243710, 1239164, 1239167, 1239172, 1239159, 1242375, 1242366, 1242387, 1242372, 1242373, 1244274, 1244285, 1244277, 1244278, 1244279, 1243133, 1243134, 1244540, 1244529, 1243863, 1243865, 1243866, 1239505, 1239491, 1239494, 1239495, 1239497, 1239569, 1239570, 1242968, 1242969, 1240707, 1244517, 1244519, 1241563, 1241566, 1244159, 1244160, 1244161, 1241409, 1241411, 1241412, 1239842, 1239844, 1239845, 1244582, 1244583, 1244586, 1240431, 1240418, 1240437, 1240421, 1240424, 1240679, 1240682, 1240684, 1244774, 1244778, 1244780, 1244781, 1240824, 1240835, 1240802, 1240803, 1240804, 1240972, 1243373, 1243386, 1243392, 1243401, 1243378, 1243381, 1245133, 1245154, 1245122, 1245124, 1239147, 1241610, 1240265, 1242880, 1242881, 1242874, 1240248, 1240250, 1239339, 1239343, 1244001, 1244502, 1244504, 1244505, 1244064, 1244065, 1241571, 1241572, 1241573, 1241574, 1241577, 1244900, 1244901, 1244905, 1244907, 1243110, 1243112, 1243113, 1243116, 1243118, 1239654, 1243795, 1243788, 1243825, 1243789, 1243790, 1243792, 1239532, 1239534, 1239536, 1239540, 1242237, 1242221, 1242222, 1242224, 1239739, 1239740, 1239981, 1239990, 1239982, 1239985, 1239987, 1244170, 1244175, 1240481, 1240490, 1240513, 1240518, 1240484, 1240485, 1240488, 1242696, 1242700, 1242689, 1245728, 1245736, 1245725, 1244300, 1244301, 1244304, 1241581, 1241437, 1241440, 1241452, 1241430, 1241431, 1241433, 1241434, 1242943, 1242934, 1242935, 1242938, 1243224, 1243232, 1243214, 1240935, 1240937, 1245521, 1245530, 1245513, 1245514, 1245516, 1240241, 1240243, 1240245, 1239405, 1239406, 1238917, 1238922, 1238926, 1238927, 1238933, 1238938, 1238910, 1244507, 1244508, 1244509, 1244187, 1244188, 1244189, 1244190, 1244191, 1244192, 1244194, 1239312, 1239313, 1239315, 1239316, 1240669, 1240671, 1245499, 1245500, 1245502, 1245503, 1244272, 1244273, 1243070, 1243052, 1243057, 1243058, 1243546, 1243553, 1243592, 1243539, 1242074, 1242066, 1242069, 1242073, 1240117, 1240152, 1240124, 1241899, 1244891, 1244895, 1245405, 1245406, 1245408, 1239043, 1239048, 1239035, 1239037, 1243505, 1243490, 1243510, 1243511, 1243493, 1243495, 1244889, 1244890, 1245917, 1245923, 1243968, 1243969, 1243970, 1243974, 1239573, 1239603, 1239576, 1239577, 1245572, 1245574, 1245598, 1245565, 1245568, 1245569, 1242424, 1242433, 1242444, 1242451, 1242455, 1242426, 1242428, 1242431, 1241112, 1241121, 1241106, 1241627, 1241651, 1241634, 1243417, 1243430, 1243431, 1243447, 1243448, 1243421, 1240196, 1240197, 1240199, 1240182, 1240923, 1240924, 1240926, 1242989, 1243033, 1242994, 1245296, 1245297, 1244007, 1244008, 1244095, 1244097, 1244098, 1244099, 1244101, 1242538, 1245420, 1245437, 1245416, 1245417, 1242795, 1242800, 1242786, 1241036, 1241037, 1241046, 1241048, 1241062, 1241029, 1241030, 1240036, 1240046, 1240037, 1240072, 1240082, 1240041, 1240042, 1241967, 1241970, 1241971, 1241974, 1241958, 1241961, 1242954, 1242956, 1242960, 1244872, 1240280, 1240289, 1240293, 1240275, 1240276, 1244216, 1244218, 1244204, 1244207, 1240713, 1240714, 1244923, 1244913, 1244914, 1244915, 1244917, 1245915, 1239856, 1243857, 1245928, 1245930, 1242664, 1242666, 1242667, 1243609, 1243612, 1243613, 1242163, 1242151, 1242153, 1242157, 1245197, 1245200, 1244588, 1244607, 1244589, 1244592, 1244593, 1239059, 1239877, 1239883, 1239869, 1239889, 1239871, 1239873, 1239874, 1239876, 1241880, 1241874, 1241875, 1241876, 1242649, 1242635, 1242638, 1242639, 1242640, 1242508, 1242513, 1242498, 1242502, 1242503, 1242504, 1243269, 1243282, 1243285, 1243262, 1243263, 1243264, 1244110, 1244112, 1244113, 1241700, 1241702, 1245882, 1245883, 1245884, 1245885, 1245886, 1243346, 1243356, 1243349, 1243350, 1243351, 1245072, 1245074, 1245076, 1245814, 1245815, 1240008, 1240011, 1240012, 1240013, 1240666, 1243846, 1243847, 1243848, 1243850, 1240638, 1240640, 1240647, 1240630, 1240652, 1240633, 1243623, 1243646, 1243629, 1241475, 1241462, 1241490, 1241468, 1242655, 1242656, 1243326, 1243321, 1243322, 1242170, 1242197, 1242208, 1242175, 1245838, 1245862, 1245827, 1239326, 1243157, 1243138, 1243142, 1241282, 1239893, 1239903, 1239895, 1239934, 1239897, 1245250, 1245257, 1245245, 1244080, 1240108, 1240109, 1240699, 1240700, 1240599, 1240601, 1240603, 1240590, 1240593, 1240596, 1241949, 1241950, 1242040, 1242034, 1242036, 1239234, 1239226, 1239228, 1240175, 1240176, 1245782, 1245775, 1239065, 1239082, 1239066, 1239096, 1239102, 1239068, 1239123, 1242262, 1242251, 1242271, 1242278, 1242285, 1242293, 1242309, 1242311, 1242256, 1242257, 1244444, 1244456, 1244461, 1244445, 1244486, 1244449, 1239676, 1239686, 1239659, 1239713, 1244020, 1244014, 1244015, 1244017, 1244018, 1239278, 1239281, 1239273, 1245180, 1245181, 1245899, 1245891, 1245893, 1245894, 1240882, 1240887, 1240889, 1241820, 1241821, 1241822, 1245795, 1245796, 1245797, 1242970, 1242973, 1242974, 1242975, 1240709, 1240711, 1241794, 1241802, 1241787, 1241788, 1241790, 1240581, 1240573, 1240574, 1240575, 1240580, 1239758, 1239749, 1239810, 1245275, 1245276, 1245277, 1241195, 1241159, 1244712, 1244713, 1244715, 1244698, 1244729, 1244751, 1244702, 1242567, 1242556, 1242561, 1240727, 1240742, 1240775, 1240723, 1242344, 1242331, 1242332, 1241838, 1241828, 1241829, 1239353, 1239370, 1239347, 1239389, 1245743, 1245744, 1245745, 1245747, 1245750, 1244049, 1245208, 1245211, 1245214, 1245216, 1245665, 1245666, 1245810, 1245801, 1245802, 1245805, 1240258, 1240259, 1243992, 1245190, 1242780, 1242781, 1243615, 1239244, 1239251, 1239434, 1244934, 1244935, 1244936, 1244937, 1244940, 1244941, 1240618, 1245554, 1245555, 1245272, 1245273, 1242711, 1242712, 1245648, 1245649, 1245640, 1245641, 1245642, 1245644, 1245645, 1245310, 1245299, 1245301, 1245303, 1245305, 1244350, 1244370, 1244379, 1241721, 1241730, 1241712, 1241713, 1241714, 1245764, and 1245765. To date, the greatest number of said preferred yield-plant height trait ratio haplotypes occurring in a commercially released male inbred is 127, wherein the inbred is 5750 and the 127 preferred haplotypes are: 1238926, 1238983, 1239037, 1239059, 1239096, 1239147, 1239159, 1239244, 1239278, 1239313, 1239339, 1239405, 1239497, 1239536, 1239569, 1239573, 1239713, 1239740, 1239874, 1239987, 1240109, 1240176, 1240199, 1240241, 1240259, 1240280, 1240331, 1240421, 1240490, 1240575, 1240671, 1240707, 1240713, 1240723, 1240882, 1240902, 1240972, 1241036, 1241112, 1241159, 1241215, 1241430, 1241475, 1241572, 1241581, 1241634, 1241712, 1241788, 1241821, 1241970, 1242069, 1242135, 1242153, 1242175, 1242222, 1242309, 1242387, 1242433, 1242502, 1242561, 1242649, 1242712, 1242780, 1242874, 1242928, 1242935, 1242954, 1242969, 1243113, 1243134, 1243214, 1243269, 1243447, 1243493, 1243615, 1243623, 1243710, 1243792, 1243847, 1243863, 1243969, 1244001, 1244007, 1244015, 1244049, 1244064, 1244080, 1244095, 1244159, 1244188, 1244272, 1244279, 1244301, 1244350, 1244445, 1244509, 1244593, 1244702, 1244774, 1244905, 1244913, 1244935, 1245006, 1245074, 1245180, 1245190, 1245208, 1245273, 1245277, 1245297, 1245303, 1245367, 1245406, 1245416, 1245500, 1245554, 1245598, 1245644, 1245710, 1245743, 1245764, 1245795, 1245815, 1245884, 1245915, 1245917, and 1245928.
  • For a preferred yield-moisture trait ratio, the following 973 preferred haplotypes were identified in male corn inbreds: 1244629, 1240342, 1240346, 1240331, 1240349, 1240354, 1240334, 1240336, 1240337, 1244955, 1244957, 1244958, 1244964, 1244971, 1244973, 1244948, 1244976, 1244951, 1245015, 1245034; 1245038, 1245002, 1245003, 1245006, 1242130, 1242131, 1242133, 1242134, 1242135, 1245111, 1245112, 1240910, 1240911, 1240904, 1240909, 1244815, 1244806, 1244808, 1244811, 1242730, 1242720, 1242724; 1241217, 1241224, 1241226, 1241208, 1241241, 1241211, 1241212, 1241215, 1244632, 1244658, 1244634, 1244635, 1244637, 1244639, 1238986, 1238993, 1238978, 1239002, 1239003, 1238980, 1238982, 1238983, 1238985, 1245370, 1245361, 1245362, 1245363, 1245367, 1245368, 1242928, 1242929, 1242931, 1243958, 1243959, 1243962, 1245709, 1245710, 1245711, 1245714, 1240031, 1240033, 1241356, 1241345, 1241349, 1241350, 1243712, 1243715, 1243721, 1243704, 1243727, 1243755, 1243710, 1243711, 1239167, 1239171, 1239172, 1239156, 1239159, 1239209, 1242375, 1242379, 1242383, 1242366, 1242385, 1242387, 1242410, 1242371, 1242372, 1242373, 1244285, 1244275, 1244276, 1244279, 1243133, 1243134, 1244534, 1244555, 1244529, 1244530, 1244531, 1243877, 1243864, 1243901, 1243865, 1243866, 1243867, 1239500, 1239501, 1239506, 1239508, 1239491, 1239493, 1239494, 1239497, 1239569, 1239570, 1242968, 1242969, 1240707, 1244515, 1244516, 1244519, 1241565, 1241567, 1243917, 1243918, 1244159, 1244160, 1244161, 1244164, 1244166, 1241406, 1241415, 1241417, 1241407, 1241408, 1241409, 1241410, 1241411, 1239842, 1239843, 1239845, 1239846, 1244582, 1244584, 1244587, 1240431, 1240437, 1240439, 1240421, 1240424, 1240679, 1240680, 1240682, 1240684, 1240685, 1240687, 1244783, 1244784, 1244779, 1244781, 1240812, 1240820, 1240824, 1240835, 1240802, 1240803, 1240964, 1240998, 1240967, 1241015, 1243373, 1243383, 1243386, 1243392, 1243399, 1243376, 1243381, 1245131, 1245133, 1245119, 1245122, 1245124, 1245126, 1239147, 1239149, 1239150, 1241605, 1241609, 1241610, 1240262, 1240263, 1240264, 1240265, 1240266, 1242881, 1242870, 1242871, 1242874, 1245557, 1240248, 1240249, 1240250, 1240251, 1240252, 1240253, 1239342, 1244000, 1244001, 1244502, 1244503, 1244504, 1244505, 1241571, 1241572, 1241573, 1241574, 1244900, 1244902, 1244903, 1244906, 1244907, 1243110, 1243122, 1243112, 1243115, 1243116, 1243117, 1243795, 1243787, 1243788, 1243825, 1243789, 1243790, 1243792, 1239532, 1239533, 1239559, 1239534, 1239536, 1239537, 1242237, 1242220, 1242221, 1242222, 1242224, 1242226, 1239737, 1239738, 1239739, 1239740, 1239745, 1239981, 1239990, 1239983, 1239985, 1239987, 1244168, 1244180, 1244169, 1244170, 1244175, 1240481, 1240490, 1240521, 1240484, 1240485, 1240487, 1240488, 1242696, 1242687, 1242688, 1242689, 1242690, 1242691, 1245719, 1245724, 1245725, 1244300, 1244311, 1244301, 1244302, 1244304, 1241591, 1241583, 1241584, 1241588, 1241437, 1241440, 1241441, 1241432, 1241433, 1241434, 1242943, 1242933, 1242935, 1242938, 1243218, 1243210, 1243234, 1243211, 1243242, 1243213, 1243214, 1243217, 1240948, 1240933, 1240934, 1240937, 1245530, 1245513, 1245516, 1240241, 1240243, 1239403, 1239404, 1239406, 1238917, 1238922, 1238926, 1238907, 1238927, 1238933, 1238938, 1238908, 1238909, 1238912, 1244508, 1244509, 1244187, 1244188, 1244189, 1244190, 1244192, 1244801, 1244802, 1244803, 1239313, 1239314, 1239315, 1239316, 1240668, 1240669, 1240670, 1240671, 1245499, 1245500, 1245502, 1245503, 1245505, 1244272, 1244273, 1243068, 1243070, 1243052, 1243081, 1243054, 1243546, 1243553, 1243534, 1243535, 1243592, 1243539, 12420740242077, 1242066, 1242069, 1242071, 1242073, 1240127, 1240117, 1240142, 1240152, 1240120, 1240123, 1240124, 1241899, 1244891, 1244894, 1244895, 1245405, 1245406, 1245407, 1245408, 1239034, 1239043, 1239048, 1239035, 1239037, 1243502, 1243505, 1243510, 1243493, 1243495, 1244888, 1244889, 1244890, 1245917, 1245920, 1245923, 1243967, 1243968, 1243969, 1243970, 1243974, 1239581, 1239590, 1239573, 1239603, 1239624, 1239577, 1239578, 1245572, 1245574, 1245589, 1245598, 1245565, 1245566, 1245567, 1245569, 1242424, 1242433, 1242444, 1242451, 1242426, 1242464, 1242427, 1242428, 1242431, 1241099, 1241110, 1241112, 1241121, 1241124, 1241101, 1241102, 1241106, 1241107, 1241635, 1241637, 1241627, 1241647, 1241651, 1241629, 1243417, 1243441, 1243447, 1243448, 1243463, 1243424, 1240189, 1240196, 1240197, 1240180, 1240184, 1240185, 1240922, 1240923, 1240924, 1245091, 1245083, 1245087, 1242987, 1242989, 1243033, 1242992, 1242994, 1245296, 1245297, 1244438, 1244439, 1244440, 1244441, 1244007, 1244095, 1244097, 1244098, 1244101, 1242537, 1242548, 1242538, 1242540, 1242541, 1242542, 1245420, 1245412, 1242795, 1242800, 1242786, 1242793, 1241037, 1241046, 1241048, 1241062, 1241029, 1241030, 1241031, 1240036, 1240037, 1240072, 1240082, 1240041, 1240042, 1240043, 1241971, 1241974, 1241957, 1241983, 1241958, 1241961, 1242953, 1242954, 1242955, 1242956, 1242960, 1244872, 1240279, 1240280, 1240289, 1240293, 1240272, 1240274, 1240275, 1244211, 1244216, 1244218, 1244201, 1244226, 1244202, 1244238, 1244203, 1240713, 1240714, 1244921, 1244913, 1244915, 1244917, 1244918, 1244919, 1239856, 1239857, 1239859, 1243855, 1243857, 1243859, 1245927, 1245928, 1245929, 1245930, 1245931, 1242662, 1242663, 1242664, 1242665, 1242666, 1242667, 1243607, 1243608, 1243609, 1243612, 1243613, 1242159, 1242162, 1242163, 1242151, 1242152, 1242153, 1242154, 1242157, 1245197, 1245198, 1245199, 1245200, 1245203, 1244588, 1244606, 1244607, 1244589, 1244590, 1244591, 1244592, 1244593, 1239058, 1239059, 1239060, 1239061, 1239885, 1239871, 1239873, 1239874, 1239876, 1241880, 1241871, 1241873, 1241874, 1241876, 1240676, 1240677, 1240678, 1242649, 1242633, 1242635, 1242636, 1242637, 1242638, 1242639, 1242640, 1242506, 1242508, 1242513, 1242498, 1242502, 1242503, 1242504, 1243277, 1243282, 1243285, 1243262, 1243264, 1243265, 1244115, 1244116, 1244107, 1244130, 1244110, 1244112, 1244113, 1241699, 1241700, 1241702, 1245882, 1245883, 1245885, 1243356, 1243347, 1243348, 1243349, 1243350, 1243351, 1243352, 1242982, 1242984, 1244003, 1244004, 1245073, 1245074, 1245075, 1245076, 1245814, 1245816, 1240018, 1240009, 1240011, 1240012, 1240665, 1240666, 1243846, 1243847, 1243848, 1243850, 1242681, 1242682, 1240638, 1240640, 1240641, 1240655, 1243623, 1243633, 1243624, 1243662, 1243628, 1243629, 1241472, 1241475, 1241462, 1241482, 1241520, 1241468, 1242654, 1242656, 1242658, 1242659, 1243328, 1243340, 1243317, 1243320, 1243321, 1243322, 1242170, 1242197, 1245838, 1245862, 1245824, 1245827, 1239326, 1239327, 1243157, 1243170, 1243172, 1243138, 1243185, 1243139, 1241282, 1241288, 1241289, 1241300, 1241306, 1241274, 1239902, 1239904, 1239914, 1239895, 1239934, 1239897, 1245250, 1245251, 1245253, 1245255, 1245238, 1245257, 1245239, 1245245, 1244077, 1244078, 1244080, 1244081, 1244082, 1240108, 1240109, 1240701, 1241093, 1241094, 1241088, 1241089, 1241090, 1240589, 1240599, 1240601, 1240603, 1240593, 1240596, 1240597, 1241950, 1241951, 1241952, 1242037, 1242039, 1239237, 1239240, 1239224, 1239226, 1239228, 1240174, 1240175, 1240176, 1245782, 1245773, 1245775, 1239066, 1239098, 1239068, 1239069, 1239123, 1242262, 1242271, 1242278, 1242293, 1242311, 1242256, 1242257, 1244444, 1244456, 1244461, 1244467, 1244449, 1239666, 1239656, 1239676, 1239686, 1239659, 1239713, 1244020, 1244012, 1244015, 1244017, 1244018, 1244019, 1239278, 1239281, 1239270, 1239272, 1239273, 1245179, 1245180, 1245181, 1245899, 1245892, 1240881, 1240884, 1240886, 1241821, 1241822, 1245794, 1245795, 1245796, 1242981, 1242971, 1242972, 1242974, 1242976, 1239334, 1239336, 1241794, 1241802, 1241787, 1241788, 1241790, 1240581, 1240573, 1240574, 1240575, 1240576, 1240580, 1239758, 1239749, 1239750, 1239751, 1239810, 1245275, 1245276, 1245277, 1245278, 1241157, 1241195, 1241159, 1244712, 1244713, 1244698, 1244729, 1244700, 1244751, 1244702, 1242567, 1242561, 1240742, 1240752, 1240760, 1240719, 1240720, 1240775, 1240723, 1242340, 1242344, 1242331, 1242358, 1242332, 1242335, 1242337, 1241828, 1241830, 1241832, 1239353, 1239357, 1239370, 1239347, 1239389, 1245743, 1245744, 1245745, 1245749, 1245750, 1244048, 1244053, 1244055, 1245208, 1245211, 1245212, 1245214, 1245216, 1245660, 1245661, 1245695, 1245665, 1245801, 1245804, 1245805, 1240112, 1240113, 1240114, 1240115, 1243992, 1243993, 1245190, 1245192, 1242779, 1242781, 1243616, 1243617, 1239244, 1239245, 1239246, 1239248, 1239416, 1239430, 1239434, 1239419, 1239420, 1239424, 1242708, 1242709, 1240169, 1240171, 1244935, 1244936, 1244937, 1244940, 1244941, 1240617, 1240618, 1242214, 1242215, 1242216, 1245554, 1245555, 1245272, 1245273, 1242714, 1242715, 1242717, 1245648, 1245649, 1245638, 1245640, 1245642, 1245645, 1245310, 1245299, 1245301, 1245303, 1245305, 1244350, 1244370, 1244379, 1244354, 1243921, 1243922, 1243924, 1241713, 1241714, 1245764, and 1245769. To date, the greatest number of said preferred yield-moisture trait ratio haplotypes occurring in a commercially released male inbred is 176, wherein the inbred is 19HGZ1 and the 176 preferred haplotypes are: 1238927, 1238986, 1239043, 1239059, 1239147, 1239172, 1239226, 1239246, 1239273, 1239315, 1239336, 1239357, 1239419, 1239532, 1239569, 1239666, 1239737, 1239750, 1239846, 1239856, 1239871, 1239981, 1240009, 1240031, 1240041, 1240109, 1240113, 1240117, 1240171, 1240174, 1240241, 1240252, 1240266, 1240289, 1240354, 1240424, 1240485, 1240574, 1240601, 1240617, 1240665, 1240669, 1240676, 1240680, 1240707, 1240713, 1240720, 1240824, 1240881, 1240911, 1240933, 1241046, 1241088, 1241102, 1241157, 1241226, 1241289, 1241345, 1241408, 1241572, 1241583, 1241629, 1241700, 1241787, 1241821, 1241828, 1241871, 1241951, 1241974, 1242066, 1242130, 1242154, 1242215, 1242221, 1242271, 1242332, 1242383, 1242427, 1242503, 1242537, 1242633, 1242654, 1242663, 1242682, 1242690, 1242708, 1242714, 1242720, 1242786, 1242928, 1242935, 1242954, 1242969, 1242974, 1242982, 1242989, 1243068, 1243115, 1243134, 1243138, 1243211, 1243317, 1243349, 1243386, 1243502, 1243534, 1243608, 1243727, 1243787, 1243847, 1243855, 1243864, 1243917, 1243921, 1243958, 1243967, 1244000, 1244004, 1244007, 1244080, 1244110, 1244159, 1244175, 1244188, 1244218, 1244273, 1244300, 1244350, 1244438, 1244456, 1244505, 1244509, 1244515, 1244582, 1244590, 1244629, 1244634, 1244700, 1244784, 1244802, 1244808, 1244889, 1244891, 1244903, 1244913, 1244936, 1244964, 1245002, 1245073, 1245111, 1245119, 1245180, 1245190, 1245203, 1245211, 1245238, 1245273, 1245276, 1245296, 1245299, 1245361, 1245407, 1245412, 1245503, 1245555, 1245557, 1245565, 1245648, 1245724, 1245764, 1245773, 1245796, 1245814, 1245824, 1245885 and 1245931.
  • In addition, the following 81 Monsanto commercially released soybean varieties were fingerprinted: A5547, A3244, A3904, A2553, A5959, AG2101, A0868, AG4702, A4459, A3469, AG2903, AG3302, AG3502, AP1275, AGA22802, D10326-52, AG3003, H6255RR, AG0901, AG4902, AG0801, CX284C, AG2703, A2824, AG3201, AG5501, DKB03-51, AG1602, CSR3322, DKB32-51, AG2905, CSRX922, DKB23-51, DKB28-51, AG3902, A4324, CSR3403, DKB31-51, AG4403, DKB37-51, AG1401, AG1701, AG2403, D10325-51, AG4201, AG3903, AG4603, DKB46-51, AG5301, CSRS3433, DKB38-52, DKB20-52, DKB28-52, DKB36-52, AG1102, AG2106, AG2107, AG3101, AG3602, AG3802, AG3905, AG5605, AG5905, AG3202, AG1501, AG2405, AG2801, AG2203, DKB34-51, DKB58-51, DKB07-52, 26-02R, A3525, EX927A, EXP125A, EXP2702REN, WP25920, CSR2104, CX075, DKB16-51, A19788. The preferred haplotypes were determined on the basis of haplotype effect estimates for the following key phenotypic traits: yield, maturity, lodging, and plant height. For each trait, a list of preferred haplotypes was generated according to ascending criteria; for example, the best 50, the best 40, and so on to the best 5 haplotypes. This germplasm collection was then surveyed to determine the distribution of those haplotypes in elite varieties. The results for the commercially released soybean varieties evaluated for these four key phenotypic traits are summarized in Table 8. The commercially released soybean varieties containing the greatest number of preferred haplotypes known to this date to exist in nature are described in Table 9.
  • TABLE 8
    Distribution of preferred haplotypes in a set of elite soybean
    germplasm, composed of 81 commercially released soybean
    varieties. Listed are maximum number of haplotypes in a
    single variety for each criterion (e.g., of top 5 haplotypes, of
    top 10, and so on) present in this germplasm for each trait.
    Yield Maturity Lodging Plant height
    5 2 4 2 3
    10 2 4 4 4
    20 6 4 6 6
    30 6 7 8 8
    40 6 10 10 10
    50 6 10 13 11
  • TABLE 9
    List of the commercially released soybean varieties that contain the
    maximum number of preferred haplotypes for each superiority
    “class” for four different phenotypic traits (yield, moisture,
    lodging, and plant height).
    Name Preferred haplotypes present Total preferred haplotypes
    YIELD 2:5
    A3244 1263534, 1262082 1262140, 1263534, 1262082,
    AG3502 1263534, 1262082 1262411, 1263994
    CX284C 1262140, 1262082
    DKB36- 1263534, 1262082
    52
    WP25920 1263534, 1262082
    YIELD 2:10
    A3244 1263534, 1262082 1262140, 1263534, 1262082,
    AG3502 1263534, 1262082 1262411, 1263994, 1264220,
    CX284C 1262140, 1262082 1264704, 1262403, 1263084,
    DKB36- 1263534, 1262082 1264607
    52
    WP25920 1263534, 1262082
    YIELD 6:20
    A4324 1263544, 1262066, 1264076, 1262140, 1263534, 1262082,
    1263534, 1264607, 1264257 1262411, 1263994, 1264220,
    AG2903 1263544, 1262066, 1262082, 1264704, 1262403, 1263084,
    1264607, 1264220, 1264702 1264607, 1264076, 1262066,
    AG3101 1263544, 1262066, 1262082, 1262410, 1264390, 1263544,
    1264076, 1264607, 1264220 1263999, 1264257, 1261823,
    AG4403 1262066, 1262082, 1261823, 1264702, 1264603
    1264607, 1264220, 1264257
    YIELD 6:30
    A4324 1263544, 1262066, 1264076, 1262140, 1263534, 1262082,
    1263534, 1264607, 1264257 1262411, 1263994, 1264220,
    AG2903 1263544, 1262066, 1262082, 1264704, 1262403, 1263084,
    1264607, 1264220, 1264702 1264607, 1264076, 1262066,
    AG3101 1263544, 1262066, 1262082, 1262410, 1264390, 1263544,
    1264076, 1264607, 1264220 1263999, 1264257, 1261823,
    AG4403 1262066, 1262082, 1261823, 1264702, 1264603, 1263717,
    1264607, 1264220, 1264257 1264740, 1263391, 1262138,
    1262086, 1264237, 1264188,
    1264473, 1262143, 1261808
    YIELD 6:40
    A4324 1263544, 1262066, 1264076, 1262140, 1263534, 1262082,
    1263534, 1264607, 1264257 1262411, 1263994, 1264220,
    AG2903 1263544, 1262066, 1262082, 1264704, 1262403, 1263084,
    1264607, 1264220, 1264702 1264607, 1264076, 1262066,
    AG3101 1263544, 1262066, 1262082, 1262410, 1264390, 1263544,
    1264076, 1264607, 1264220 1263999, 1264257, 1261823,
    AG4403 1262066, 1262082, 1261823, 1264702, 1264603, 1263717,
    1264607, 1264220, 1264257 1264740, 1263391, 1262138,
    1262086, 1264237, 1264188,
    1264473, 1262143, 1261808,
    1262894, 1264610, 1262441,
    1264701, 1263533, 1262106,
    1264638, 1264078, 1263993,
    1262139
    YIELD 6:50
    A4324 1263544, 1262066, 1264076, 1262140, 1263534, 1262082,
    1263534, 1264607, 1264257 1262411, 1263994, 1264220,
    AG2903 1263544, 1262066, 1262082, 1264704, 1262403, 1263084,
    1264607, 1264220, 1264702 1264607, 1264076, 1262066,
    AG3101 1263544, 1262066, 1262082, 1262410, 1264390, 1263544,
    1264076, 1264607, 1264220 1263999, 1264257, 1261823,
    AG4403 1262066, 1262082, 1261823, 1264702, 1264603, 1263717,
    1264607, 1264220, 1264257 1264740, 1263391, 1262138,
    1262086, 1264237, 1264188,
    1264473, 1262143, 1261808,
    1262894, 1264610, 1262441,
    1264701, 1263533, 1262106,
    1264638, 1264078, 1263993,
    1262139, 1262984, 1263155,
    1262487, 1263696, 1262884,
    1264703, 1264551, 1264379
    1262220, 1263150
    MATURITY 4:5
    AG0901 1262081, 1263532, 1264608, 1264608, 1264243, 1263532,
    1262142, 1262142, 1262081
    AG1401 1262081, 1263532, 1264608,
    1262142
    MATURITY 4:10
    AG0901 1262081, 1263532, 1264608, 1264608, 1264243, 1263532,
    1262142, 1262142, 1262081, 1261912
    AG1401 1262081, 1263532, 1264608, 1264707, 1262065, 1261923,
    1262142 1262490
    AP1275 1262081, 1263532, 1264608,
    1264707
    DKB03- 1262081, 1263532, 1264608,
    51 1262065
    MATURITY 4:20
    AG0901 1262081, 1263532, 1264608, 1264608, 1264243, 1263532,
    1262142, 1262142, 1262081, 1261912,
    AG1401 1262081, 1263532, 1264608, 1264707, 1262065, 1261923,
    1262142 1262490, 1264754, 1263996,
    AP1275 1262081, 1263532, 1264608, 1262494, 1263165, 1263627,
    1264707 1261816, 126368, 1263703,
    DKB03- 1262081, 1263532, 1264608, 1262321, 1262761, 1263984,
    51 1262065 126316, 1264739
    MATURITY 7:30
    A0868 1262081, 1263532, 1261816, 1264608, 1264243, 1263532,
    1262761, 1264608, 1262142, 1262081, 1261912,
    1262321, 1263296 1264707, 1262065, 1261923,
    AG0901 1262081, 1263532, 1262316, 1262490, 1264754, 1263996,
    1262761, 1264608, 1262142, 1262494, 1263165, 1263627,
    1263296 1261816, 1263168, 1263703,
    AG1401 1262081, 1263532, 1262761, 1262321, 1262761, 1263984,
    1264608, 1262142, 1263165, 1262316, 1264739, 1264239,
    1263296 1263708, 1263709, 1264232,
    1263296, 1262407, 1264226
    MATURITY 10:40
    AG0901 1262081, 1264726, 1263532, 1264608, 1264243, 1263532,
    1262316, 1262761, 1264608, 1262142, 1262081, 1261912,
    1264737, 1262142, 1262704, 1264707, 1262065, 1261923,
    1263296 1262490, 1264754, 1263996,
    1262494, 1263165, 1263627,
    1261816, 1263168, 1263703,
    1262321, 1262761, 1263984,
    1262316, 1264739, 1264239,
    1263708, 1263709, 1264232,
    1263296, 1262407, 1264226,
    1264755, 1263710, 1262883,
    1264587, 1264737, 1262704,
    1262428, 1264081, 1264726,
    1264748
    MATURITY 10:50
    AG0901 1262081, 1264726, 1263532, 1264608, 1264243, 1263532,
    1262316, 1262761, 1264608, 1262142, 1262081, 1261912,
    1264737, 1262142, 1262704, 1264707, 1262065, 1261923,
    1263296 1262490, 1264754, 1263996,
    1262494, 1263165, 1263627,
    1261816, 1263168, 1263703,
    1262321, 1262761, 1263984,
    1262316, 1264739, 1264239,
    1263708, 1263709, 1264232,
    1263296, 1262407, 1264226,
    1264755, 1263710, 1262883,
    1264587, 1264737, 1262704,
    1262428, 1264081, 1264726,
    1264748, 1263161, 1262324,
    1263299, 1263535, 1261807,
    1262329, 1263317, 1262962,
    1263779, 1263645
    LODGING 2:5
    A4459 1261887, 1264287 1262671, 1264471, 1261887,
    A5959 1262675, 1264287 1262675, 1264287
    AG0901 1262671, 1264471
    AG4403 1262671, 1264471
    AG4902 1264471, 1262675
    DKB23- 1262671, 1264471
    51
    DKB58- 1264471, 1262675
    51
    LODGING 4:10
    26-02R 1264236, 1264608, 1264471, 1262671, 1264471, 1261887,
    1263477 1262675, 1264287, 1262108,
    AG0901 1264236, 1264608, 1264471, 1264282, 1264608, 1263477,
    1262671 1264236
    DKB25- 1264236, 1264608, 1264471,
    51 1264282
    LODGING 6:20
    AG0901 1263695, 1264236, 1264608, 1262671, 1264471, 1261887,
    1264471, 1262671, 1261807 1262675, 1264287, 1262108,
    DKB25- 1263695, 1262099, 1264236, 1264282, 1264608, 1263477,
    51 1264608, 1264471, 1264282 1264236, 1263866, 1263843,
    1262099, 1263848, 1263833,
    1263695, 1262837, 1263710,
    1264309, 1261807
    LODGING 8:30
    AG0901 1263604, 1263695, 1264236, 1262671, 1264471, 1261887,
    1264608, 1264471, 1262671, 1262675, 1264287, 1262108,
    1262239, 1261807 1264282, 1264608, 1263477,
    AG1701 1263604, 1263695, 1262099, 1264236, 1263866, 1263843,
    1264608, 1264471, 1262132, 1262099, 1263848, 1263833,
    1262239, 1261807 1263695, 1262837, 1263710,
    1264309, 1261807, 1264240,
    1264189, 1263604, 1261923,
    1264298, 1262239, 1262132,
    1263161, 1264265, 1264564
    LODGING 10:40
    AG0901 1262081, 1263604, 1263695, 1262671, 1264471, 1261887,
    1264785, 1264236, 1264608, 1262675, 1264287, 1262108,
    1264471, 1262671, 1262239, 1264282, 1264608, 1263477,
    1261807 1264236, 1263866, 1263843,
    AG1701 1262081, 1263604, 1263695, 1262099, 1263848, 1263833,
    1264785, 1262099, 1264608, 1263695, 1262837, 1263710,
    1264471, 1262132, 1262239, 1264309, 1261807, 1264240,
    1261807 1264189, 1263604, 1261923,
    1264298, 1262239, 1262132,
    1263161, 1264265, 1264564,
    1263138, 1263173, 1264232,
    1262678, 1264785, 1264250,
    1262081, 1262989, 1264527,
    1263535
    LODGING 13:50
    AG1701 1262081, 1262581, 1263604, 1262671, 1264471, 1261887,
    1263695, 1264785, 1262099, 1262675, 1264287, 1262108,
    1264075, 1264608, 1262551, 1264282, 1264608, 1263477,
    1264471, 1262132, 1262239, 1264236, 1263866, 1263843,
    1261807 1262099, 1263848, 1263833,
    1263695, 1262837, 1263710,
    1264309, 1261807, 1264240,
    1264189, 1263604, 1261923,
    1264298, 1262239, 1262132,
    1263161, 1264265, 1264564,
    1263138, 1263173, 1264232,
    1262678, 1264785, 1264250,
    1262081, 1262989, 1264527,
    1263535, 1264825, 1264075,
    1262581, 1262491, 1263921,
    1262823, 1263455, 1262551,
    1262787, 1264754
    PLANT HEIGHT 3:5
    AG4902 1264471, 1262675, 1263161 1264471, 1262675, 1263161,
    DKB26- 1264471, 1263161, 1264608 1264608, 1264287
    52
    DKB28- 1264471, 1263161, 1264608
    52
    PLANT HEIGHT 4:10
    26-02R 1262081, 1263532, 1264608, 1264471, 1262675, 1263161,
    1264471 1264608, 1264287, 1263710,
    A0868 1262081, 1263532, 1264608, 1264226, 1262136, 1262081,
    1264471 1263532
    A5959 1262081, 1263532, 1264287,
    1262675
    AG0801 1262081, 1263532, 1264608,
    1264471
    AG0901 1262081, 1263532, 1264608,
    1264471
    AG1102 1262081, 1263532, 1264608,
    1264471
    AG1401 1262081, 1263532, 1264608,
    1264471
    AG1701 1262081, 1263532, 1264608,
    1264471
    AP1275 1262081, 1263532, 1264608,
    1264471
    DKB03- 1262081, 1263532, 1264608,
    51 1264471
    DKB07- 1262081, 1263532, 1264226,
    52 1264608
    DKB58- 1262081, 1263532, 1264471,
    51 1262675
    PLANT HEIGHT 6:20
    A0868 1262081, 1263532, 1264280, 1264471, 1262675, 1263161,
    1262099, 1264608, 1264471 1264608, 1264287, 1263710,
    AG1401 1262081, 1263532, 1264280, 1264226, 1262136, 1262081,
    1262099, 1264608, 1264471 1263532, 1262678, 1264281,
    AG1701 1262081, 1263532, 1264280, 1264250, 1264296, 1262099,
    1262099, 1264608, 1264471 1263031, 1263697, 1264280,
    1263996, 1264292
    PLANT HEIGHT 8:30
    AG1401 1262081, 1264585, 1263532, 1264471, 1262675, 1263161,
    1264280, 1262099, 1264608, 1264608, 1264287, 1263710,
    1264471, 1262240 1264226, 1262136, 1262081,
    1263532, 1262678, 1264281,
    1264250, 1264296, 1262099,
    1263031, 1263697, 1264280,
    1263996, 1264292, 1262494,
    1264223, 1264243, 1262146,
    1262108, 1262240, 1264585,
    1264251, 1261887, 1262246
    PLANT HEIGHT 10:40
    AG1401 1262081, 1264585, 1263532, 1264471, 1262675, 1263161,
    1264280, 1262099, 1264608, 1264608, 1264287, 1263710,
    1264471, 1262240, 1264843, 1264226, 1262136, 1262081,
    1261807 1263532, 1262678, 1264281,
    1264250, 1264296, 1262099,
    1263031, 1263697, 1264280,
    1263996, 1264292, 1262494,
    1264223, 1264243, 1262146
    1262108, 1262240, 1264585,
    1264251, 1261887, 1262246,
    1262490, 1261807, 1263352,
    1263866, 1262426, 1263478,
    1262568, 1262912, 1264843,
    1262523
    PLANT HEIGHT 11:50
    AG0901 1262081, 1262523, 1263532, 1264471, 1262675, 1263161,
    1264280, 1264223, 1263364, 1264608, 1264287, 1263710,
    1264608, 1264471, 1262671, 1264226, 1262136, 1262081,
    1264843, 1261807 1263532, 1262678, 1264281,
    1264250, 1264296, 1262099,
    1263031, 1263697, 1264280,
    1263996, 1264292, 1262494,
    1264223, 1264243, 1262146,
    1262108, 1262240, 1264585,
    1264251, 1261887, 1262246,
    1262490, 1261807, 1263352,
    1263866, 1262426, 1263478,
    1262568, 1262912, 1264843,
    1262523, 1264282, 1261923,
    1262065, 1262671, 1261917,
    1263477, 1263318, 1264167,
    1264316, 1263364
  • In another embodiment, preferred haplotypes are determined by evaluating trait ratios, given that certain phenotypic traits are negatively correlated with yield and, in soybean, it is advantageous to select for positive yield and negative plant height or negative maturity. Exemplary trait ratios include greater than 2 or less than zero, greater than 3 or less than zero, and so on, wherein yield is positive and either plant height or maturity is negative. In one aspect, a preferred haplotype is one with a trait ratio of greater than 5 or less than zero (bu/acre:inches or bu/acre:days, respectively), wherein yield is positive and either plant height or maturity is negative. For a preferred yield-plant height trait ratio, the following 666 preferred haplotypes were identified in soybean varieties: 1261747, 1261748, 1261750, 1261751, 1261757, 1261765, 1261769, 1261778, 1261782, 1261783, 1261791, 1261800, 1261801, 1261802, 1261803, 1261808, 1261810, 1261814, 1261818, 1261819, 1261822, 1261823, 1261836, 1261837, 1261840, 1261849, 1261857, 1261858, 1261863, 1261867, 1261872, 1261877, 1261881, 1261883, 1261910, 1261915, 1261916, 1261918, 1261919, 1261920, 1261926, 1261931, 1261944, 1261948, 1261949, 1261952, 1261963, 1261987, 1261988, 1261992, 1261993, 1261997, 1262002, 1262004, 1262007, 1262010, 1262017, 1262021, 1262022, 1262026, 1262032, 1262039, 1262040, 1262047, 1262068, 1262070, 1262086, 1262088, 1262097, 1262098, 1262106, 1262109, 1262110, 1262132, 1262134, 1262135, 1262142, 1262152, 1262217, 1262218, 1262222, 1262223, 1262239, 1262255, 1262256, 1262258, 1262260, 1262262, 1262268, 1262270, 1262271, 1262276, 1262279, 262286, 1262312, 1262313, 1262314, 1262315, 1262316, 1262320, 1262323, 1262324, 1262325, 1262326, 1262342, 1262351, 1262352, 1262355, 1262356, 1262357, 1262365, 1262366, 1262371, 1262376, 1262380, 1262383, 1262384, 1262390, 1262391, 1262394, 1262397, 1262404, 1262406, 1262407, 1262410, 1262411, 1262420, 1262426, 1262428, 1262430, 1262447, 1262451, 1262452, 1262465, 1262477, 1262478, 1262479, 1262480, 1262490, 1262495, 1262506, 1262508, 1262510, 1262511, 1262512, 1262520, 1262522, 1262524, 1262527, 1262528, 1262529, 1262530, 1262531, 1262533, 1262534, 1262536, 1262540, 1262543, 1262549, 1262550, 1262551, 1262563, 1262569, 1262575, 1262587, 1262623, 1262626, 1262627, 1262629, 1262633, 1262641, 1262642, 1262646, 1262675, 1262681, 1262685, 1262695, 1262696, 1262698, 1262725, 1262726, 1262727, 1262728, 1262737, 1262743, 1262745, 1262746, 1262749, 1262751, 1262753, 1262763, 1262766, 1262767, 1262773, 1262774, 1262778, 1262781, 1262787, 1262790, 1262791, 1262793, 1262794, 1262803, 1262806, 1262810, 1262811, 1262814, 1262822, 1262824, 1262825, 1262828, 1262829, 1262830, 1262839, 1262840, 1262845, 1262849, 1262865, 1262868, 1262869, 1262877, 1262881, 1262882, 1262883, 1262884, 1262887, 1262888, 1262892, 1262893, 1262894, 1262899, 1262901, 1262909, 1262910, 1262912, 1262915, 1262952, 1262954, 1262961, 1262962, 1262981, 1262985, 1262987, 1262988, 1262989, 1262991, 1262993, 1263004, 1263005, 1263008, 1263014, 1263015, 1263016, 1263017, 1263021, 1263022, 1263029, 1263030, 1263031, 1263041, 1263043, 1263044, 1263045, 1263048, 1263053, 1263054, 1263061, 1263063, 1263064, 1263067, 1263071, 1263072, 1263078, 1263079, 1263084, 1263087, 1263088, 1263091, 1263100, 1263102, 1263103, 1263104, 1263107, 1263108, 1263110, 1263111, 1263115, 1263120, 1263124, 1263128, 1263129, 1263131, 1263132, 1263133, 1263134, 1263135, 1263137, 1263139, 1263140, 1263142, 1263143, 1263170, 1263172, 1263173, 1263178, 1263182, 1263183, 1263184, 1263185, 1263209, 1263210, 1263225, 1263228, 1263233, 1263234, 1263236, 1263240, 1263242, 1263243, 1263244, 1263247, 1263248, 1263265, 1263271, 1263273, 1263274, 1263281, 1263283, 1263285, 1263286, 1263287, 1263288, 1263291, 1263296, 1263299, 1263304, 1263306, 1263309, 1263310, 1263314, 1263315, 1263319, 1263320, 1263323, 1263325, 1263370, 1263371, 1263377, 1263381, 1263386, 1263392, 1263397, 1263402, 1263405, 1263406, 1263418, 1263419, 1263421, 1263423, 1263425, 1263428, 1263434, 1263454, 1263455, 1263464, 1263472, 1263475, 1263477, 1263499, 1263500, 1263504, 1263505, 1263509, 1263510, 1263511, 1263515, 1263543, 1263544, 1263545, 1263546, 1263550, 1263553, 1263560, 1263589, 1263593, 1263603, 1263604, 1263606, 1263608, 1263620, 1263632, 1263633, 1263642, 1263645, 1263647, 1263649, 1263650, 1263652, 1263657, 1263660, 1263661, 1263662, 1263665, 1263667, 1263669, 1263674, 1263675, 1263678, 1263680, 1263681, 1263682, 1263701, 1263709, 1263711, 1263712, 1263715, 1263716, 1263718, 1263720, 1263721, 1263725, 1263727, 1263728, 1263731, 1263732, 1263738, 1263742, 1263744, 1263745, 1263746, 1263774, 1263775, 1263776, 1263781, 1263782, 1263786, 1263804, 1263805, 1263806, 1263810, 1263811, 1263812, 1263813, 1263814, 1263815, 1263820, 1263823, 1263825, 1263831, 1263832, 1263834, 1263842, 1263843, 1263849, 1263866, 1263871, 1263874, 1263894, 1263895, 1263898, 1263899, 1263906, 1263908, 1263911, 1263913, 1263915, 1263966, 1263967, 1263968, 1263969, 1263970, 1263974, 1263976, 1263984, 1263992, 1263994, 1264016, 1264018, 1264020, 1264022, 1264028, 1264050, 1264055, 1264058, 1264060, 1264064, 1264067, 1264068, 1264069, 1264070, 1264071, 1264072, 1264075, 1264077, 1264078, 1264079, 1264080, 1264084, 1264091, 1264097, 1264111, 1264115, 1264123, 1264124, 1264149, 1264150, 1264161, 1264163, 1264164, 1264183, 1264184, 1264185, 1264188, 1264189, 1264190, 1264191, 1264194, 1264195, 1264197, 1264202, 1264204, 1264209, 1264215, 1264217, 1264223, 1264236, 1264237, 1264247, 1264249, 1264261, 1264265, 1264268, 1264272, 1264278, 1264281, 1264282, 1264285, 1264287, 1264290, 1264293, 1264298, 1264300, 1264301, 1264302, 1264308, 1264314, 1264316, 1264331, 1264332, 1264336, 1264339, 1264350, 1264351, 1264362, 1264364, 1264366, 1264370, 1264371, 1264374, 1264376, 1264377, 1264379, 1264382, 1264383, 1264390, 1264391, 1264392, 1264398, 1264401, 1264403, 1264404, 1264407, 1264408, 1264413, 1264415, 1264439, 1264441, 1264446, 1264447, 1264448, 1264451, 1264452, 1264458, 1264459, 1264460, 1264463, 1264464, 1264466, 1264468, 1264478, 1264483, 1264484, 1264485, 1264493, 1264494, 1264529, 1264531, 1264537, 1264540, 1264543, 1264548, 1264550, 1264551, 1264552, 1264554, 1264556, 1264557, 1264558, 1264589, 1264592, 1264597, 1264599, 1264601, 1264624, 1264634, 1264635, 1264643, 1264646, 1264648, 1264659, 1264699, 1264700, 1264701, 1264704, 1264716, 1264737, 1264738, 1264740, 1264743, 1264744, 1264748, 1264754, 1264757, 1264766, 1264768, 1264775, 1264776, 1264777, 1264786, 1264788, 1264789, 1264792, 1264793, 1264795, 1264799, 1264801, 1264802, 1264844, 1264913, 1264919, 1264920, 1264921 1264922, 1264924, 1264930, 1264932, 1264935, 1264937, 1264938, 1264939, 1264942, 1264943, 1264950, 1264953, 1264954, and 1264955. To date, the greatest number of said preferred haplotypes occurring in a commercially released soybean variety is 97, wherein the line is AG3802 and the 97 preferred haplotypes are: 1263544, 1263589, 1263620, 1263660, 1263665, 1263680, 1263701, 1263725, 1263775, 1263781, 1263805, 1263806, 1263825, 1263895, 1263968, 1263992, 1264050, 1264060, 1264068, 1264070, 1264150, 1264184, 1264189, 1264281, 1264332, 1264371, 1264391, 1264439, 1264446, 1264483, 1264531, 1264540, 1264557, 1264597, 1264624, 1264634, 1264700, 1264738, 1264766, 1264920, 1264942, and 1264953.
  • For a preferred yield-maturity trait ratio, the following 490 preferred haplotypes were identified in soybean varieties: 1261748, 1261751, 1261753, 1261765, 1261766, 1261769, 1261791, 1261793, 1261794, 1261805, 1261810, 1261818, 1261819, 1261823, 1261837, 1261839, 1261857, 1261858, 1261863, 1261864, 1261867, 1261872, 1261877, 1261890, 1261892, 1261895, 1261896, 1261910, 1261911, 1261916, 1261920, 1261926, 1261929, 1261931, 1261933, 1261942, 1261943, 1261947, 1261948, 1261949, 1261955, 1261961, 1261968, 1261991, 1261993, 1261997, 1262040, 1262084, 1262087, 1262094, 1262099, 1262105, 1262107, 1262109, 1262110, 1262132, 1262133; 1262134, 1262140, 1262151, 1262181, 1262183, 1262189, 1262190, 1262202, 1262208, 1262222, 1262223, 1262239, 1262241, 1262255, 1262257, 1262259, 1262261, 1262262, 1262263, 1262268, 1262276, 1262279, 1262286, 1262312, 1262315, 1262317, 1262320, 1262325, 1262326, 1262331, 1262333, 1262335, 1262342, 1262383, 1262384, 1262385, 1262388, 1262389, 1262390, 1262391, 1262393, 1262397, 1262401, 1262404, 1262405, 1262409, 1262410, 1262411, 1262412, 1262415, 1262420, 1262426, 1262440, 1262447, 1262450, 1262451, 1262452, 1262453, 1262457; 1262465, 1262480, 1262490, 1262495, 1262505, 1262506, 1262509, 1262510, 1262517, 1262520, 1262522, 1262524, 1262549, 1262550, 1262553, 1262573, 1262575, 1262587, 1262617, 1262618, 1262619, 1262620, 1262622, 1262623, 1262626, 1262628, 1262632, 1262633, 1262634, 1262636, 1262642, 1262646, 1262656, 1262726, 1262728, 1262747, 1262751, 1262753, 1262763, 1262766, 1262767, 1262773, 1262783, 1262787, 1262789, 1262794, 1262796, 1262798, 1262799, 1262807, 1262810, 1262814, 1262822, 1262824, 1262825, 1262829, 1262830, 1262840, 1262845, 1262864, 1262868, 1262876, 1262877, 1262881, 1262882, 1262888, 1262893, 1262899, 1262907, 1262911, 1262914, 1262916, 1262917, 1262953, 1262959, 1262960, 1263014, 1263015, 1263016, 1263017, 1263027, 1263028, 1263029, 1263040, 1263041, 1263043, 1263046, 1263048, 1263067, 1263068, 1263069, 1263079, 1263084, 1263093, 1263102, 1263103, 1263108, 1263111, 1263113, 1263115, 1263120, 1263121, 1263129, 1263131, 1263133, 1263134, 1263139, 1263140, 1263152, 1263157, 1263165, 1263168, 1263169, 1263170, 1263172, 1263173, 1263174, 1263182, 1263183, 1263191, 1263206, 1263207, 1263234, 1263240, 1263242, 1263245, 1263246, 1263273, 1263274, 1263283, 1263285, 1263287, 1263289, 1263297, 1263304, 1263310, 1263315, 1263323, 1263329, 1263371, 1263377, 1263386, 1263396, 1263397, 1263403, 1263419, 1263421, 1263428, 1263434, 1263454, 1263455, 1263472, 1263474, 1263477, 1263499, 1263504, 1263509, 1263510, 1263511, 1263515, 1263537, 1263539, 1263543, 1263545, 1263552, 1263555, 1263560, 1263589, 1263594, 1263597, 1263603, 1263604, 1263606, 1263608, 1263611, 1263624, 1263630, 1263631, 1263636, 1263640, 1263641, 1263644, 1263647, 1263649, 1263652, 1263662, 1263665, 1263672, 1263696, 1263711, 1263715, 1263716, 1263719, 1263721, 1263722, 1263723, 1263727, 1263744, 1263746, 1263810, 1263811, 1263812, 1263814, 1263815, 1263832, 1263834, 1263836, 1263843, 1263848, 1263849, 1263854, 1263866, 1263907, 1263910, 1263912, 1263913, 1263918, 1263921, 1263924, 1263966, 1263973, 1263983, 1263984, 1263993, 1264033, 1264034, 1264049, 1264055, 1264060, 1264064, 1264072, 1264077, 1264078, 1264084, 1264089, 1264090, 1264094, 1264111, 1264123, 1264148, 1264150, 1264152, 1264153, 1264155, 1264160, 1264161, 1264164, 1264176, 1264177, 1264178, 1264182, 1264183, 1264188, 1264189, 1264190, 1264191, 1264193, 1264194, 1264195, 1264199, 1264201, 1264202, 1264206, 1264222, 1264223, 1264225, 1264239, 1264240, 1264244, 1264247, 1264254, 1264257, 1264261, 1264265, 1264268, 1264272, 1264278, 1264282, 1264286, 1264289, 1264290, 1264295, 1264296, 1264298, 1264300, 1264303, 1264308, 1264311, 1264331, 1264332, 1264333, 1264338, 1264339, 1264377, 1264383, 1264392, 1264400, 1264405, 1264415, 1264441, 1264445, 1264446, 1264447, 1264448, 1264460, 1264464, 1264468, 1264478, 1264480, 1264481, 1264482, 1264484, 1264490, 1264532, 1264533, 1264538, 1264539, 1264543, 1264550, 1264552, 1264588, 1264597, 1264599, 1264601, 1264636, 1264642, 1264643, 1264646, 1264658, 1264693, 1264707, 1264710, 1264729, 1264738, 1264743, 1264746, 1264748, 1264754, 1264755, 1264757, 1264766, 1264768, 1264771, 1264777, 1264782, 1264787, 1264788, 1264789, 1264802, 1264848, 1264849, 1264851, 1264853, 1264856, 1264857, 1264858, 1264860, 1264869, 1264874, 1264877, 1264883, 1264904, 1264910, 1264913, 1264919, 1264924, 1264930, 1264934, 1264937, 1264939, 1264947, 1264953, 1264955, and 1264956. To date, the greatest number of said preferred haplotypes occurring in commercially released soybean varieties is 63, wherein the 63 preferred haplotypes for A5547 are: 1261751, 1261810, 1261839, 1261857, 1261929, 1261948, 1262110, 1262151, 1262223, 1262241, 1262259, 1262384, 1262391, 1262410, 1262440, 1262505, 1262522, 1262620, 1262628, 1262773, 1262783, 1262829, 1263015, 1263027, 1263028, 1263041, 1263103, 1263157, 1263170, 1263191, 1263206, 1263273, 1263289, 1263297, 1263329, 1263377, 1263396, 1263403, 1263455, 1263543, 1263606, 1263630, 1263641, 1264049, 1264148, 1264161, 1264176, 1264183, 1264189, 1264199, 1264225, 1264240, 1264300, 1264446, 1264490, 1264550, 1264636, 1264693, 1264766, 1264789, 1264848, 1264919, and 1264955; and the 63 preferred haplotypes for AP1275 are: 1261791, 1261857, 1261890, 1261910, 1261926, 1262105, 1262132, 1262239, 1262312, 1262388, 1262401, 1262506, 1262553, 1262619, 1262773, 1262783, 1262824, 1262881, 1262953, 1262959, 1263015, 1263028, 1263040, 1263067, 1263157, 1263206, 1263273, 1263472, 1263499, 1263539, 1263543, 1263589, 1263594, 1263604, 1263640, 1263652, 1263662, 1263723, 1263810, 1263832, 1263910, 1263966, 1263983, 1264033, 1264049, 1264111, 1264148, 1264160, 1264183, 1264188, 1264201, 1264225, 1264247, 1264295, 1264331, 1264448, 1264597, 1264693, 1264707, 1264766, 1264848, 1264904, and 1264930.
  • In a preferred embodiment of the present invention, a haplotype comprises at least one polymorphic marker. Changes in a haplotype, brought about by recombination for example, may result in the modification of a haplotype so that it comprises only a portion of the original (parental) haplotype operably linked to the trait, for example, via physical linkage to a gene, QTL, or transgene. Any such change in a haplotype would be included in our definition of what constitutes a haplotype so long as the functional integrity of that genomic region is unchanged or improved. The functional integrity of a haplotype is considered to be unchanged if its haplotype effect estimate is not negative with respect to yield, or is not positive with respect to maturity, or is null with respect to maturity, or amongst the best 50 percent with respect to a phenotypic trait, transgene, and/or a multiple trait index when compared to any other haplotype at the same chromosome segment in a set of germplasm (breeding germplasm, breeding population, collection of elite inbred lines, population of random mating individuals, biparental cross), or amongst the best 50, percent with respect to a phenotypic trait, transgene, and/or a multiple trait index when compared to any other haplotype across the entire genome in a set of germplasm, or the haplotype being present with a frequency of 75 percent or more in a breeding population or a set of germplasm provides evidence of its high value, or any combination of these. Further, for the purpose of this invention a haplotype is defined as preferred if it is amongst the best 25 percent with respect to a phenotypic trait, transgene, and/or a multiple trait index when compared to any other haplotype across the entire genome in a set of germplasm, or the haplotype being present with a frequency of 75 percent or more in a breeding population or a set of germplasm provides evidence of its high value, or any combination of these.
  • A unique aspect of this invention is the combination of high-density fingerprinting to identify large segments of DNA, wherever they occur in a set of germplasm, as being indicative of the conservation of genetic identity of all intervening genes from a common progenitor. In cases where conserved genetic segments, or haplotype windows, are coincident with segments in which QTL have been identified it is possible to deduce with high probability that QTL inferences can be extrapolated to other germplasm having an identical haplotype in that haplotype window. This a priori information provides the basis to select for favorable QTLs prior to QTL mapping within a given population.
  • For example, plant breeding decisions could comprise:
      • a) Selection among breeding populations to determine which populations have the highest frequency of favorable haplotypes, wherein haplotypes are designated as favorable based on coincidence with previous QTL mapping; or
      • b) Selection of progeny containing the favorable haplotypes in breeding populations prior to, or in substitution for, QTL mapping within that population, wherein selection could be done at any stage of breeding and at any generation of a selection; or
      • c) Prediction of progeny performance for specific breeding crosses; or
      • d) Selection of lines for germplasm improvement activities based on the favorable haplotypes, including line development, hybrid development, selection among transgenic events based on the breeding value of the haplotype that the transgene was inserted into, making breeding crosses, testing and advancing a plant through self fertilization, using plant or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plant or parts thereof for mutagenesis.
  • An additional unique aspect of this invention and the combination of high-density fingerprinting and the designation of haplotype windows is the ability to select for specific genes or gene alleles. For example, in cases where haplotype windows are coincident with segments in which genes have been identified it is possible to deduce with high probability that gene inferences can be extrapolated to other germplasm having an identical genotype, or haplotype, in that haplotype window. This a priori information provides the basis to select for favorable genes or gene alleles on the basis of haplotype identification within a given population. For example, plant breeding decisions could comprise:
      • a) Selection among breeding populations to determine which populations have the highest frequency of favorable haplotypes, wherein haplotypes are designated as favorable based on coincidence with previous gene mapping; or
      • b) Selection of progeny containing the favorable haplotypes in breeding populations, wherein selection is effectively enabled at the gene level, wherein selection could be done at any stage of breeding and at any generation of a selection; or
      • c) Prediction of progeny performance for specific breeding crosses; or
      • d) Selection of lines for germplasm improvement activities based on the favorable haplotypes, including line development, hybrid development, selection among transgenic events based on the breeding value of the haplotype that the transgene was inserted into, making breeding crosses, testing and advancing a plant through self fertilization, using plant or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plant or parts thereof for mutagenesis.
  • Further, in another preferred embodiment of this invention, the a priori information on the frequency of favorable haplotypes in breeding populations enables pre-selection. That is, the present invention provides methods for pre-selection, consisting of the selection of parental lines, based on historical haplotype-phenotype association information, for the purpose of driving favorable allele frequency for multiple traits simultaneously. In pre-selection, breeders predict the phenotypic contribution for multiple traits of any line based on that line's fingerprint information, which corresponds to a composition of pre-defined haplotypes. This multi-trait haplotype selection approach economizes a breeding program by initiating selection at the initial stage of choosing parental crosses and it also reduces the need for costly, time-consuming phenotyping of progeny.
  • A preferred haplotype provides a preferred property to a parent plant and to the progeny of the parent when selected by a marker means or phenotypic means. The method of the present invention provides for selection of preferred haplotypes, or haplotypes of interest, and the accumulation of these haplotypes in a breeding population.
  • In the present invention, haplotypes and associations of haplotypes to one or more phenotypic traits provide the basis for making breeding decisions and germplasm improvement activities. Non-limiting examples of breeding decisions include progeny selection, parent selection, and recurrent selection for at least one haplotype. In another aspect, breeding decisions relating to development of plants for commercial release comprise advancing plants for testing, advancing plants for purity, purification of sublines during development, inbred development, variety development, and hybrid development. In yet other aspects, breeding decisions and germplasm improvement activities comprise transgenic event selection, making breeding crosses, testing and advancing a plant through self-fertilization, using plants or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plants or parts thereof for mutagenesis.
  • In another embodiment, this invention enables indirect selection through selection decisions for at least one phenotype based on at least one numerical value that is correlated, either positively or negatively, with one or more other phenotypic traits. For example, a selection decision for any given haplotype effectively results in selection for multiple phenotypic traits that are associated with the haplotype.
  • In still another embodiment, the present invention acknowledges that preferred haplotypes identified by the methods presented herein may be advanced as candidate genes for inclusion in expression constructs, i.e., transgenes. Nucleic acids underlying haplotypes of interest may be expressed in plant cells by operably linking them to a promoter functional in plants. In another aspect, nucleic acids underlying haplotypes of interest may have their expression modified by double-stranded RNA-mediated gene suppression, also known as RNA interference (“RNAi”), which includes suppression mediated by small interfering RNAs (“siRNA”), trans-acting small interfering RNAs (“ta-siRNA”), or microRNAs (“miRNA”). Examples of RNAi methodology suitable for use in plants are described in detail in U.S. patent application publications 2006/0200878 and 2007/0011775.
  • Methods are known in the art for assembling and introducing constructs into a cell in such a manner that the nucleic acid molecule for a trait is transcribed into a functional mRNA molecule that is translated and expressed as a protein product. For the practice of the present invention, conventional compositions and methods for preparing and using constructs and host cells are well known to one skilled in the art, see for example, Molecular Cloning: A Laboratory Manual, 3rd edition Volumes 1, 2, and 3 (2000) J. F. Sambrook, D. W. Russell, and N. Irwin, Cold Spring Harbor Laboratory Press. Methods for making transformation constructs particularly suited to plant transformation include, without limitation, those described in U.S. Pat. Nos. 4,971,908, 4,940,835, 4,769,061 and 4,757,011, all of which are herein incorporated by reference in their entirety. Transformation methods for the introduction of expression units into plants are known in the art and include electroporation as illustrated in U.S. Pat. No. 5,384,253; microprojectile bombardment as illustrated in U.S. Pat. Nos. 5,015,580; 5,550,318; 5,538,880; 6,160,208; 6,399,861; and 6,403,865; protoplast transformation as illustrated in U.S. Pat. No. 5,508,184; and Agrobacterium-mediated transformation as illustrated in U.S. Pat. Nos. 5,635,055; 5,824,877; 5,591,616; 5,981,840; and 6,384,301.
  • Another preferred embodiment of the present invention is to build additional value by selecting a composition of haplotypes wherein each haplotype has a haplotype effect estimate that is not negative with respect to yield, or is not positive with respect to maturity, or is null with respect to maturity, or amongst the best 50 percent with respect to a phenotypic trait, transgene, and/or a multiple trait index when compared to any other haplotype at the same chromosome segment in a set of germplasm, or amongst the best 50 percent with respect to a phenotypic trait, transgene, and/or a multiple trait index when compared to any other haplotype across the entire genome in a set of germplasm, or the haplotype being present with a frequency of 75 percent or more in a breeding population or a set of germplasm provides evidence of its high value, or any combination of these.
  • This invention anticipates a stacking of haplotypes from multiple windows into plants or lines by crossing parent plants or lines containing different haplotype regions. The value of the plant or line comprising in its genome stacked haplotype regions is estimated by a composite breeding value, which depends on a combination of the value of the traits and the value of the haplotype(s) to which the traits are linked. The present invention further anticipates that the composite breeding value of a plant or line is improved by modifying the components of one or each of the haplotypes. Additionally, the present invention anticipates that additional value can be built into the composite breeding value of a plant or line by selection of at least one recipient haplotype with a preferred haplotype effect estimate or, in conjunction with the haplotype frequency, breeding value to which one or any of the other haplotypes are linked, or by selection of plants or lines for stacking haplotypes by breeding.
  • Another embodiment of this invention is a method for enhancing breeding populations by accumulation of one or more preferred haplotypes in a set of germplasm. Genomic regions defined as haplotype windows include genetic information that contribute to one or more phenotypic traits of the plant. Variations in the genetic information at one or more loci can result in variation of one or more phenotypic traits, wherein the value of the phenotype can be measured. The genetic mapping of the haplotype windows allows for a determination of linkage across haplotypes. A haplotype of interest has a DNA sequence that is novel in the genome of the progeny plant and can in itself serve as a genetic marker for the haplotype of interest. Notably, this marker can also be used as an identifier for a gene or QTL. For example, in the event of multiple traits or trait effects associated with the haplotype, only one marker would be necessary for selection purposes. Additionally, the haplotype of interest may provide a means to select for plants that have the linked haplotype region. Selection can be performed by screening for tolerance to an applied phytotoxic chemical, such as an herbicide or antibiotic, or to pathogen resistance. Selection may be performed using phenotypic selection means, such as, a morphological phenotype that is easy to observe such as seed color, seed germination characteristic, seedling growth characteristic, leaf appearance, plant architecture, plant height, and flower and fruit morphology.
  • The present invention also provides for the screening of progeny plants haplotypes of interest and using haplotype effect estimates as the basis for selection for use in a breeding program to enhance the accumulation of preferred haplotypes. The method includes: a) providing a breeding population comprising at least two plants wherein the genome of the breeding population comprises a plurality of haplotype windows and each of the plurality of haplotype windows comprises at least one haplotype; and b) associating a haplotype effect estimate for one or more traits for two or more haplotypes from one or more of the plurality of haplotype windows, wherein the haplotype effect estimate can then be used to calculate a breeding value that is a function of the estimated effect for any given phenotypic trait and the frequency of each of the at least two haplotypes; and c) ranking one or more of the haplotypes on the basis of a value, wherein the value is a haplotype effect estimate, a haplotype frequency, or a breeding value and wherein the value is the basis for determining whether a haplotype is a preferred haplotype, or haplotype of interest; and d) utilizing the ranking as the basis for decision-making in a breeding program; and e) at least one progeny plant is selected on the basis of the presence of the respective markers associated with the haplotypes of interest, wherein the progeny plant comprises in its genome at least a portion of the haplotype or haplotypes of interest of the first plant and at least one preferred haplotype of the second plant; and f) using the progeny plant in activities related to germplasm improvement wherein the activities are selected from the group consisting of line and variety development, hybrid development, transgenic event selection, making breeding crosses, testing and advancing a plant through self fertilization, using plant or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plant or parts thereof for mutagenesis.
  • Using this method, the present invention contemplates that haplotypes of interest are selected from a large population of plants, and the selected haplotypes can have a synergistic breeding value in the germplasm of a crop plant. Additionally, this invention provides for using the selected haplotypes in the described breeding methods to accumulate other beneficial and preferred haplotype regions and to be maintained in a breeding population to enhance the overall germplasm of the crop plant.
  • Crop plants considered for use in the method include but are not limited to maize (Zea mays), soybean (Glycine max), cotton (Gossypium hirsutum), peanut (Arachis hypogaea), barley (Hordeum vulgare); oats (Avena sativa); orchard grass (Dactylis glomerata); rice (Oryza sativa, including indica and japonica varieties); sorghum (Sorghum bicolor); sugar cane (Saccharum sp); tall fescue (Festuca arundinacea); turfgrass species (e.g. species: Agrostis stolonifera, Poa pratensis, Stenotaphrum secundatum); wheat (Triticum aestivum), and alfalfa (Medicago sativa), members of the genus Brassica, broccoli, cabbage, carrot, cauliflower, Chinese cabbage, cucumber, dry bean, eggplant, fennel, garden beans, gourd, leek, lettuce, melon, okra, onion, pea, pepper, pumpkin, radish, spinach, squash, sweet corn, tomato, watermelon, ornamental plants, and other fruit, vegetable, tuber, oilseed, and root crops, wherein oilseed crops include soybean, canola, oil seed rape, oil palm, sunflower, olive, corn, cottonseed, peanut, flaxseed, safflower, and coconut.
  • Plants of the present invention can be part of or generated from a breeding program. The choice of breeding method depends on the mode of plant reproduction, the heritability of the trait(s) being improved, and the type of cultivar used commercially (e.g., F1 hybrid cultivar, pureline cultivar, etc). A cultivar is a race or variety of a plant species that has been created or selected intentionally and maintained through cultivation.
  • Selected, non-limiting approaches for breeding the plants of the present invention are set forth below. A breeding program can be enhanced using marker assisted selection (MAS) on the progeny of any cross. It is understood that nucleic acid markers of the present invention can be used in a MAS (breeding) program. It is further understood that any commercial and non-commercial cultivars can be utilized in a breeding program. Factors such as, for example, emergence vigor, vegetative vigor, stress tolerance, disease resistance, branching, flowering, seed set, seed size, seed density, standability, and threshability etc. will generally dictate the choice.
  • For highly heritable traits, a choice of superior individual plants evaluated at a single location will be effective, whereas for traits with low heritability, selection should be based on mean values obtained from replicated evaluations of families of related plants. Popular selection methods commonly include pedigree selection, modified pedigree selection, mass selection, and recurrent selection. In a preferred aspect, a backcross or recurrent breeding program is undertaken.
  • The complexity of inheritance influences choice of the breeding method. Backcross breeding can be used to transfer one or a few favorable genes for a highly heritable trait into a desirable cultivar. This approach has been used extensively for breeding disease-resistant cultivars. Various recurrent selection techniques are used to improve quantitatively inherited traits controlled by numerous genes.
  • Breeding lines can be tested and compared to appropriate standards in environments representative of the commercial target area(s) for two or more generations. The best lines are candidates for new commercial cultivars; those still deficient in traits may be used as parents to produce new populations for further selection.
  • For hybrid crops, the development of new elite hybrids requires the development and selection of elite inbred lines, the crossing of these lines and selection of superior hybrid crosses. The hybrid seed can be produced by manual crosses between selected male-fertile parents or by using male sterility systems. Additional data on parental lines, as well as the phenotype of the hybrid, influence the breeder's decision whether to continue to with the specific hybrid cross.
  • Pedigree breeding and recurrent selection breeding methods can be used to develop cultivars from breeding populations. Breeding programs combine desirable traits from two or more cultivars or various broad-based sources into breeding pools from which cultivars are developed by selfing and selection of desired phenotypes. New cultivars can be evaluated to determine which have commercial potential.
  • Backcross breeding has been used to transfer genes for a simply inherited, highly heritable trait into a desirable homozygous cultivar or inbred line, which is the recurrent parent. The source of the trait to be transferred is called the donor parent. After the initial cross, individuals possessing the phenotype of the donor parent are selected and repeatedly crossed (backcrossed) to the recurrent parent. The resulting plant is expected to have most attributes of the recurrent parent (e.g., cultivar) and, in addition, the desirable trait transferred from the donor parent.
  • The single-seed descent procedure in the strict sense refers to planting a segregating population, harvesting a sample of one seed per plant, and using the one-seed sample to plant the next generation. When the population has been advanced from the F2 to the desired level of inbreeding, the plants from which lines are derived will each trace to different F2 individuals. The number of plants in a population declines each generation due to failure of some seeds to germinate or some plants to produce at least one seed. As a result, not all of the F2 plants originally sampled in the population will be represented by a progeny when generation advance is completed.
  • The doubled haploid (DH) approach achieves isogenic plants in a shorter time frame. DH plants provide an invaluable tool to plant breeders, particularly for generating inbred lines and quantitative genetics studies. For breeders, DH populations have been particularly useful in QTL mapping, cytoplasmic conversions, and trait introgression. Moreover, there is value in testing and evaluating homozygous lines for plant breeding programs. All of the genetic variance is among progeny in a breeding cross, which improves selection gain.
  • Most research and breeding applications rely on artificial methods of DH production. The initial step involves the haploidization of the plant which results in the production of a population comprising haploid seed. Non-homozygous lines are crossed with an inducer parent, resulting in the production of haploid seed. Seed that has a haploid embryo, but normal triploid endosperm, advances to the second stage. That is, haploid seed and plants are any plant with a haploid embryo, independent of the ploidy level of the endosperm.
  • After selecting haploid seeds from the population, the selected seeds undergo chromosome doubling to produce doubled haploid seeds. A spontaneous chromosome doubling in a cell lineage will lead to normal gamete production or the production of unreduced gametes from haploid cell lineages. Application of a chemical compound, such as colchicine, can be used to increase the rate of diploidization. Colchicine binds to tubulin and prevents its polymerization into microtubules, thus arresting mitosis at metaphase, can be used to increase the rate of diploidization, i.e. doubling of the chromosome number These chimeric plants are self-pollinated to produce diploid (doubled haploid) seed. This DH seed is cultivated and subsequently evaluated and used in hybrid testcross production.
  • Descriptions of other breeding methods that are commonly used for different traits and crops can be found in one of several reference books (Allard, “Principles of Plant Breeding,” John Wiley & Sons, NY, U. of CA, Davis, Calif., 50-98, 1960; Simmonds, “Principles of crop improvement,” Longman, Inc., NY, 369-399, 1979; Sneep and Hendriksen, “Plant breeding perspectives,” Wageningen (ed), Center for Agricultural Publishing and Documentation, 1979; Fehr, In: Soybeans: Improvement, Production and Uses, 2nd Edition, Monograph., 16:249, 1987; Fehr, “Principles of variety development,” Theory and Technique, (Vol. 1) and Crop Species Soybean (Vol. 2), Iowa State Univ., Macmillan Pub. Co., NY, 360-376, 1987).
  • In another aspect, the methods of the present invention can be used for breeding any non-human organism. Specifically, the methods of the present invention can be used in breeding mammals, such as mice, swine, and cattle, and birds, such as poultry livestock. The methods of the present invention apply to any organism with a recombinant genome.
  • EXAMPLES
  • The following examples are included to demonstrate aspects of the invention. It should be appreciated by those of skill in the art that the techniques disclosed in the examples which follow represent techniques discovered by the inventors to function well in the practice of the invention, and thus can be considered to constitute preferred modes forits practice. However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific aspects which are disclosed and still obtain a like or similar result without departing from the spirit and scope of the invention.
  • Example 1 An Example of Haplotype-Trait Association Analysis: Grain Yield QTL on Chromosome 4 in Corn
  • A key benefit of associating traits at the haplotype, rather than marker, level is the degree of resolution achieved. An initial QTL analysis from two different breeding crosses projects (herein denoted 1 and 2) were yield tested at 8 locations. A QTL was identified for grain yield on Chromosome 4 located approximately between 48 and 78 cM. The estimated QTL effect was similar in magnitude (4.2 Bu/Acre) for both projects. In the project 1, the genomic region from the inbred 5750 increased grain yield relative to the genomic region from the inbred 3140 when tested on the inbred 7051. In the project 2, the genomic region from the inbred 3323 increased grain yield relative to the genomic region from the inbred 90LDC2 when tested on the inbred WQDS7. The current breeding methodology uses this type of information (marker-QTL associations) to do recurrent selection within each population (project) independently.
  • Application of a haplotype, rather than marker, based approach further resolved the QTL. Examination of the high density fingerprint information, reveals that the favorable inbreds (5750 and 3323) have the same haplotype for the entire 30 cM region based on 40 SNP markers in this region (FIGS. 1, 2). In addition, the unfavorable inbreds (3140 and 90LDC2) have the same haplotype, but a different haplotype relative to the favorable inbreds. The two testers (WQDS7 and 7051) also have the same haplotype, but it is a different variant from the favorable and unfavorable inbred haplotypes. Therefore, at the genetic level, the same genetic comparison was tested in both populations and resulted in the same relative value of the 2 different haplotypes being compared.
  • Utilizing these haplotypes as the search target, the hypothesized inference space can be expanded to include other lines that have the same haplotype. Searching the current database of lines in the reference germplasm that have high density SNP fingerprints (FIG. 2), 4 other lines (2 have 1 SNP locus with a different genotype) are considered to have the same unfavorable haplotype, while 22 other potential testers have the same haplotypes (with one line have 1 SNP locus with a different genotype). This new inference space defines the selection rules that could be applied to the breeding program within this set of germplasm.
  • Example 2 Use of Breeding Values for Informing Decisions in a Breeding Program
  • A primary innovation of the present invention is the ability to simultaneously select for multiple traits and target regions throughout the genome. Furthermore, this invention leverages historical marker-phenotype information, enabling pre-selection.
  • A key aspect of predictive haplotype-assisted selection is the ability to rank haplotypes. This example includes a subset of 10 preferred haplotypes, across 10 haplotype windows, for yield from elite temperate female corn inbreds that have been ranked using haplotype breeding value calculations. The haplotype effect estimates for each of the haplotypes for six different phenotypic traits is shown in Table 10. This example illustrates the application of breeding values in decisions relating to germplasm improvement.
  • TABLE 10
    Haplotype effect estimates for six traits in 10 haplotypes from 10 different
    haplotype windows based on historical haplotype-phenotype associations.
    Haplotype
    window Haplotype YLD MST PHT TWT STLP RTLP
    12953 1241745 1.352 0.2151 1.459 −0.2599 0.2232 0.416
    12982 1242692 0.9621 0.07775 0.03957 −0.03569 −0.06116 −0.1129
    12990 1242935 0.9671 0.04194 0.05432 −0.02923 −0.1668 0.1005
    12996 1243070 1.155 0.0853 0.1127 −0.03878 −0.07303 −0.06234
    12999 1243137 1.07 0.06604 0.04864 −0.1115 −0.021 −0.00063
    13007 1243531 1.072 0.1053 0.2309 −0.04918 0 −0.09158
    13015 1243877 1.264 0.07502 0.7479 −0.02212 0.05377 0.4506
    13056 1244818 1.049 −0.04826 0.1025 −0.03896 0.0773 0.2719
    13078 1245282 1.758 0.02896 0.1952 −0.1369 −0.04367 0.1156
    13092 1245725 1.09 0.197 0.4063 −0.06211 −0.1563 0.02841
    YLD = yield (bushels/acre), MST = moisture (%), PHT = plant height (inches), TWT = test weight (lbs/bushel), STLP = stalk lodging (% of row; counts of total plants in row that are lodged), RTLP = root lodging (% of row; counts of total plants in row that are lodged).
  • Inferring the breeding value of a haplotype corresponds to answering the question: by how much will the mean of the germplasm change by changing the frequency of this haplotype from its current value to fixation? This depends on the effects and frequency of other haplotypes in the same window. When analyzing a subset of haplotypes, a correction factor needs to be used, which corresponds to the sum of frequencies of the haplotypes retained, and haplotype frequencies are adjusted by dividing them with this correction factor (Table 11).
  • TABLE 11
    Calculation of adjusted haplotype frequency.
    Haplotype Corrected
    frequency in Correction haplotype
    Haplotype germplasm Factor frequency
    1241745 0.017391 0.384783 0.045198
    1242692 0.096774 0.75914 0.127479
    1242935 0.262366 0.722581 0.363095
    1243070 0.037118 0.473799 0.078341
    1243137 0.078603 0.362445 0.216867
    1243531 0.097614 0.295011 0.330882
    1243877 0.0671 0.448052 0.149758
    1244818 0.021786 0.400871 0.054348
    1245282 0.04086 0.548387 0.07451
    1245725 0.083691 0.461373 0.181395
  • The next step in ranking haplotypes is to calculate the haplotype breeding value by calculating the difference of the population mean and the haplotype effect estimate, wherein the population mean is the sum of the products of each haplotype's corrected frequency and estimated effect (Table 12). The result listed in Table 13 represents the average effect of fixing that haplotype and the breeding value for each trait. In order to find the multiple trait score of any given haplotype, a weighted sum of breeding values for the multiple traits is obtained for each haplotype. For this example, the following trait weights were used: YLD: 60% (+); MST: 15% (−); STLP: 9% (−); PHT: 8% (−); TWT: 4% (+); RTLP: 4% (−); the sign of each trait's correlation with yield is indicated in parentheses. The resulting index is shown in Table 13. Haplotype 1245282, of window 13078, clearly is the most desirable. Interestingly, for all of the other haplotypes in this analysis, the ranking based on breeding values for all 6 traits is different from a simple ranking of the yield effect estimates. That is, a selection strategy based on yield alone may not produce the best overall plant. This finding reiterates the importance of considering multiple traits in selection models, particularly in light of the negative correlation between yield and many phenotypic traits.
  • TABLE 12
    Calculation of population mean for each trait, wherein the population mean is
    the sum of the products of each haplotype's frequency and effect estimate.
    Haplotype YLD mean MST mean PHT mean TWT mean STLP mean RTLP mean
    1241745 −0.090837853 −0.043306192 −0.0827 0.007891638 −0.062215853 −0.070758814
    1242692 0.014551841 −0.015110453 0.014922295 −0.000895269 0.017879405 −0.004469858
    1242935 0.121041369 0.002742946 0.03235881 0.000743887 −0.017505446 0.036984851
    1243070 0.107389862 −0.010304101 0.0093003 0.01050318 0.04445318 0.058784931
    1243137 −0.008991506 −0.01716759 0.038747651 −0.012664398 0.009967952 0.011827682
    1243531 0.476469265 0.026092059 0.055694853 −0.041073309 0 −0.009946765
    1243877 0.137087923 0.009745411 0.020751981 0.016647971 −0.016325256 0.031501304
    1244818 0.084271739 0.019438859 0.030198261 0.022125924 −0.045735109 −0.100301848
    1245282 −0.049701765 0.030483529 0.027517227 −0.004194745 0.021528059 0.049876863
    1245725 −0.286935116 −0.029174977 −0.046871888 0.023150336 0.00831414 −0.009225116
    YLD = yield (bushels/acre), MST = moisture (%), PHT = plant height (inches), TWT = test weight (lbs/bushel), STLP = stalk lodging (% of row; counts of total plants in row that are lodged), RTLP = root lodging (% of row; counts of total plants in row that are lodged).
  • TABLE 13
    Calculation of breeding value (BV) for each trait and calculation of breeding index.
    Haplotype YLD BV MST BV PHT BV TWT BV STLP BV RTLP BV Index
    1241745 1.442837853 0.258406192 1.5417 −0.267791638 0.285415853 0.486758814 0.647736338
    1242692 0.947548159 0.092860453 0.024647705 −0.034794731 −0.079039405 −0.108430142 0.562686974
    1242935 0.846058631 0.039197054 0.02196119 −0.029973887 −0.149294554 0.063515149 0.509695674
    1243070 1.047610138 0.095604101 0.1033997 −0.04928318 −0.11748318 −0.121124931 0.619400648
    1243137 1.078991506 0.08320759 0.009892349 −0.098835602 −0.030967952 −0.012459482 0.633454448
    1243531 0.595530735 0.079207941 0.175205147 −0.008106691 0 −0.081633235 0.3343619
    1243877 1.126912077 0.065274589 0.727148019 −0.038767971 0.070095256 0.419098696 0.583560977
    1244818 0.964728261 −0.067698859 0.072301739 −0.061085924 0.123035109 0.372201848 0.554802976
    1245282 1.807701765 −0.001523529 0.167682773 −0.132705255 −0.065198059 0.065723137 1.069365656
    1245725 1.376935116 0.226174977 0.453171888 −0.085260336 −0.16461414 0.037635116 0.765880527
    YLD = yield (bushels/acre), MST = moisture (%), PHT = plant height (inches), TWT = test weight (lbs/bushel), STLP = stalk lodging (% of row; counts of total plants in row that are lodged), RTLP = root lodging (% of row; counts of total plants in row that are lodged).
  • One skilled in the art can recognize the tremendous advantage of having these indices available for a set of germplasm in a breeding program. In particular, these values enable pre-selection, the next generation of marker-assisted selection. Pre-selection further economizes breeding by not only removing the need for phenotyping but by enabling screening inbred lines for multiple traits prior to actually making breeding crosses. Further, knowing a priori which chromosomal regions in which lines are favorable not only allows more informed breeding decisions but capitalizes on historical marker-phenotype data in an entirely new and highly beneficial manner.
  • Example 3 Implementation of Pre-Selection in a Breeding Program Via Automatic Model Picking
  • With haplotype estimation, pre-selection can be applied to a breeding program. This enables breeders, through marker-assisted selection on pre-determined significant haplotypes, to make genetic gain before new lines and breeding crosses are tested in the field. Breeders start pre-selection projects by selecting a list of crosses and building models based on the haplotypes carried by each parental line in the cross. One approach is to manually select haplotypes, but this hampers the breeders' ability to sort through a large number of possible crosses. There may also be inconsistencies in the way haplotypes are selected from cross to cross and there may be a need to restrain the choice of too many genomic regions in the model. For instance, if the model is too complex, predictive ability, and potential genetic gain, will likely be compromised. To control for model complexity and also meet high-throughput requirement, an Automatic Model Picking (AMP) algorithm has been developed for two-way and three-way crosses. This process involves (1) establishing the cutoff for picking up significant haplotypes; (2) selection of significant haplotypes from different traits into the model; (3) handling negative correlations between certain traits; and (4) optimization of the model using model complexity (FIG. 3).
  • The first step is to establish the cutoff for significance for haplotypes for different traits. The p-value for significance of the difference between the haplotypes from each parent at a window is calculated using an unpaired t test. The next step is to establish the p-value cutoff as a pre-requisite for inclusion into the model. The yield p-value cutoff is set as the lowest among all of the traits across all of the breeding populations (e.g., 0.15). For all other traits, the p-value cutoff is determined based on the perceived weaknesses of any given breeding cross (e.g., when both parents of a breeding cross are know to have stalk problems, it is probably wise to include more haplotypes that are expected to increase stalk strength). An approach to predict strengths or weaknesses of a breeding cross is to use Best Linear Unbiased Predictions (BLUP's) calculated on the parental lines using phenotypic data (see Bernardo, Breeding for Quantitative Traits in Plants, Stemma Press, Woodbury, Minn., 2002). How the average of the parental BLUPs for any trait in a cross compares to the same metric in other crosses will provide an indication of the relative advantage of that cross. The breeding cross BLUP is the weighted average of the parental w BLUPs (weighted according to the relative contribution of the parents to the cross: e.g., 50% for both parents of an F2, 25% and 75% for the donor and recurrent parents of a BC 1, respectively). Each breeding cross is subsequently be compared to a population of breeding crosses based on the means and standard deviations of BLUP values for each trait in that population and, from this benchmarking, p-value cutoffs may be chosen (Tables 14 and 15).
  • TABLE 14
    Hybrid BLUP p value cutoff for Moisture.
    p-value
    Hybrid BLUP Distribution cutoff
    mean + 2 * std < hybrid BLUP 0.15
    mean + std < hybrid BLUP < mean + 2 * std 0.12
    mean < hybrid BLUP < mean + std 0.1
    mean − std < hybrid BLUP < mean 0.09
    mean − 2 * std < hybrid BLUP < mean − std 0.07
    hybrid BLUP < mean − 2 * std 0.04
    BLUP = best linear unbiased prediction,
    std = standard deviation.
  • TABLE 15
    Hybrid BLUP p value cutoff for test weight.
    p-value
    Hybrid BLUP Distribution cutoff
    mean + 2 * std < hybrid BLUP 0.001
    mean + std < hybrid BLUP < mean + 2 * std 0.01
    mean < hybrid BLUP < mean + std 0.03
    mean − std < hybrid BLUP < mean 0.04
    mean − 2 * std < hybrid BLUP < mean − std 0.06
    hybrid BLUP < mean − 2 * std 0.09
    BLUP = best linear unbiased prediction,
    std = standard deviation.
  • A major concern for breeders using selection models is the negative correlation between yield and other phenotypic traits, such as moisture and plant height. This AMP strategy directly addresses this issue by using trait ratios that allow a breeder to simultaneously select for high yield and low moisture (or plant height). The trait ratio is chosen to either exceed a certain level (e.g., 5 Bushels/acre for each additional percent of moisture) or be less than zero, which ensures higher yield and lower moisture (or plant height).
  • The breeder is then able to initiate model building. Significant haplotype window's for each trait are sequentially selected in the following order: yield, moisture, plant height, stalk lodging, test weight, and root lodging. Also, negative correlations are considered for yield and moisture and for yield and plant height. Polymorphic markers are selected for each set of parents for each of the significant haplotype windows. Based on the resulting model, model complexity is estimated. If the model exceeds the complexity cutoff, the p-value cutoff is then decreased and the model is re-built; this cycle will be repeated until the model complexity is appropriate (FIG. 3).
  • In order to understand the number of haplotype windows that will be assumed using this algorithm, assume a model complexity cutoff of 7.5. Model complexity is represented as −log 10 (probability of a perfect F1 gamete). In the case of one 12 cM region, assuming 15% recombination for the sake of simplicity, the probability of a perfect gamete is: 0.5*0.85=0.425. The model complexity is represented by: −log 10(0.425)=0.37. Thus, the number of possible independent regions is: n=7.5/0.372=20.2. Therefore, in this case, selection will be performed on between 10 and 25 regions. As prediction capabilities improve and computational capabilities are enhanced, one skilled in the art can anticipate a greater number of haplotypes to be included in pre-selection models.
  • Once the final model is obtained, the full gain (at fixation for all favorable haplotypes) for each trait is calculated by adding half of the difference of haplotype effects across all of the selected haplotype windows. The frequency-adjusted predicted gain is obtained based on the expected allele frequency once the pre-selection process is complete; as model complexity increases, the average frequency across selected haplotypes will decrease for a given pre-selection protocol. Based on frequency-adjusted predicted gain, an additional optimization step can be included to either increase or decrease the importance of secondary traits in the model.
  • This algorithm represents a powerful tool for breeders. Those skilled in the art can appreciate the benefits of a model selection tool that “self-corrects” for complexity, thus maintaining predictive ability. This type of tool is easily implemented in an existing computer-based breeding package that contains genotype, phenotype, and pedigree information for a set of germplasm.
  • Example 4 Use of Haplotype Effect Estimates in Making Breeding Decisions
  • The present invention provides haplotype information that enables a breeder to make informed breeding decisions. The methods and compositions of the present invention enable the determination of the genotype of one or more plants, using markers underlying at least one haplotype window, and the resulting fingerprint is used to identify the haplotypic composition of the haplotype window which is subsequently associated with one or more haplotype effect estimates for one or more phenotypic traits as disclosed herein. This information is valuable in decision-making for a breeder because it enables a selection decision to be based on estimated phenotype without having to phenotype the plant per se. Further, it is preferred to make decisions based on genotype rather than phenotype due the fact phenotype is influenced by multiple biotic and abiotic factors that can confound evaluation of any given trait and performance prediction.
  • In one aspect, one or more haplotypes are determined by genotyping one or more plants using markers for one or more haplotype windows. The breeder is able to correspond the haplotypes with their respective haplotype effect estimates for one or more phenotypes of interest and make a decision based on the preferred haplotype. Plants comprising one or more preferred haplotypes are then advanced in the breeding program.
  • In one aspect, advancement decisions in line development breeding are traditionally made based on phenotype, wherein decisions are made between two or more plants showing segregation for one or more phenotypic traits. An advantage of the present invention is the ability to make decisions based on haplotypes wherein a priori information is leveraged, enabling “predictive breeding.” In this aspect, during line development breeding for a crop plant, sublines are evaluated for segregation at one or more marker loci. Individuals segregating at one or more haplotype windows can be identified unambiguously using genotyping and, for any given haplotype window, individuals comprising the preferred haplotype are selected. In preferred aspects, the selection decision is based on a haplotype effect estimate, a haplotype frequency, or a breeding value.
  • All publications and published patent documents cited in this specification are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • As various modifications could be made in the constructions and methods herein described and illustrated without departing from the scope of the invention, it is intended that all matter contained in the foregoing description or shown in the accompanying drawings shall be interpreted as illustrative rather than limiting. The breadth and scope of the present invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims appended hereto and their equivalents.
  • LENGTHY TABLES
    The patent application contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (http://seqdata.uspto.gov/?pageRequest=docDetail&DocID=US20100293673A1). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).

Claims (175)

1. A method of plant breeding comprising
delineating at least one haplotype window comprising at least two haplotypes within the genome of a plant;
associating each of the at least two haplotypes with at least one numerical value related to one or more phenotypic traits; and
making a plant breeding decision based on the at least one numerical value.
2. The method of claim 1, wherein the plant is a crop plant selected from the group consisting of a forage crop, oilseed crop, grain crop, fruit crop, ornamental plants, vegetable crop, fiber crop, spice crop, nut crop, turf crop, sugar crop, beverage crop, tuber crop, root crop, and forest crop.
3. The method of claim 1, wherein the phenotypic trait is selected from the group consisting of herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, enhanced nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, sterility, other agronomic traits, traits for industrial uses, or traits for improved consumer appeal.
4. The method of claim 1, wherein the at least one numerical value is a haplotype effect estimate.
5. The method of claim 1, wherein the at least one numerical value is a haplotype frequency.
6. The method of claim 1, wherein the at least one numerical value is a breeding value.
7. The method of claim 1, wherein the plant breeding decision comprises selecting among breeding populations based on the at least one numerical value
8. The method of claim 1, wherein the plant breeding decision comprises selecting progeny in one or more breeding populations based on the at least one numerical value.
9. The method of claim 1, wherein the plant breeding decision comprises predicting progeny performance of parental lines and selecting parental lines based on the predicted progeny performance.
10. The method of claim 1, wherein the plant breeding decision comprises advancing lines in germplasm improvement activities based on the at least one numerical value.
11. The method of claim 10, wherein the germplasm improvement activities are selected from the group consisting of line and variety development, hybrid development, transgenic event selection, making breeding crosses, testing and advancing a plant through self fertilization, purification of lines or sublines, using plant or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plant or parts thereof for mutagenesis.
12. The method of claim 1, wherein the plant breeding decision comprises selecting for at least one phenotypic trait based on the at least one numerical value associated with another phenotypic trait.
13. A method of plant breeding comprising
providing at least two plants having a plurality of haplotype windows, each of the plurality of haplotype windows comprising at least two haplotypes;
determining a haplotype effect estimate for at least one phenotypic trait for each of the at least two haplotypes through marker-phenotypic trait associations; and
making plant breeding decisions based on the determined haplotype effect estimate for the at least one phenotypic trait.
14. The method of claim 13, wherein the plant is a crop plant selected from the group consisting of a forage crop, oilseed crop, grain crop, fruit crop, ornamental plants, vegetable crop, fiber crop, spice crop, nut crop, turf crop, sugar crop, beverage crop, tuber crop, root crop, and forest crop.
15. The method of claim 13, wherein the phenotypic trait is selected from the group consisting of herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, enhanced nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, sterility, other agronomic traits, traits for industrial uses, or traits for improved consumer appeal.
16. The method of claim 13, wherein the plant breeding decision comprises selecting among breeding populations based on one or more determined haplotype effect estimates.
17. The method of claim 13, wherein the plant breeding decision comprises selecting among progeny in one or more breeding populations based on one or more determined haplotype effect estimates.
18. The method of claim 13, wherein the plant breeding decision comprises selecting predicting progeny performance of parental lines based on one or more determined haplotype effect estimates and selecting among parental lines based on the predicted progeny performance.
19. The method of claim 13, wherein the plant breeding decision comprises advancing lines in germplasm improvement activities based on one or more determined haplotype effect estimates.
20. The method of claim 19, wherein the germplasm improvement activities are selected from the group consisting of line and variety development, hybrid development, transgenic event selection, making breeding crosses, testing and advancing a plant through self fertilization, using plant or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plant or parts thereof for mutagenesis.
21. The method of claim 13, wherein the plant breeding decision comprises selecting for a phenotypic trait based on one or more determined haplotype effect estimates associated with at least one other phenotypic trait.
22. A method of plant breeding comprising
establishing a fingerprint map defining a plurality of haplotype windows within the genome of at least two plants;
associating a QTL allele with known map location with a phenotypic trait; and
assaying at least one other plant for presence of the QTL allele using at least one marker for at least one of the plurality of haplotype windows to predict expression of the phenotypic trait.
23. The method of claim 22, wherein the plant is a crop plant selected from the group consisting of a forage crop, oilseed crop, grain crop, fruit crop, ornamental plants, vegetable crop, fiber crop, spice crop, nut crop, turf crop, sugar crop, beverage crop, tuber crop, root crop, and forest crop.
24. The method of claim 22, wherein the phenotypic trait is selected from the group consisting of herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, enhanced nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, sterility, other agronomic traits, traits for industrial uses, or traits for improved consumer appeal.
25. The method of claim 22, wherein the marker is selected from the group consisting of a genetic marker, a haplotype, a nucleic acid sequence, a transcriptional profile, a metabolic profile, a nutrient composition profile, a protein expression profile, and a phenotypic character.
26. The method of claim 22, wherein the method further comprises selecting among breeding populations based on the predicted expression of the phenotypic trait.
27. The method of claim 22, wherein the method further comprises selecting among progeny in one or more breeding populations based on the predicted expression.
28. The method of claim 22, wherein the method further comprises predicting progeny performance of parental lines based on the predicted expression and selecting among parental lines based on the predicted progeny performance.
29. The method of claim 22, wherein the method further comprises advancing lines in germplasm improvement activities based on the predicted expression of the phenotypic trait.
30. The method of claim 29, wherein the germplasm improvement activities are selected from the group consisting of line and variety development, hybrid development, transgenic event selection, making breeding crosses, testing and advancing a plant through self fertilization, using plant or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plant or parts thereof for mutagenesis.
31. The method of claim 22, wherein the method plant breeding decision comprises selecting for a phenotypic trait based on one or more determined haplotype effect estimates associated with at least one other phenotypic trait.
32. A method of marker assisted breeding comprising
providing a breeding population comprising at least two plants;
associating at least one phenotypic trait with at least two haplotypes within at least one haplotype window in the genome of the breeding population, wherein the haplotype window is defined by at least one marker; and
assaying for the presence of the at least one marker to predict expression of at least one phenotypic trait in a progeny plant of the breeding population.
33. The method of claim 32, wherein the plant is a crop plant selected from the group consisting of a forage crop, oilseed crop, grain crop, fruit crop, ornamental plants, vegetable crop, fiber crop, spice crop, nut crop, turf crop, sugar crop, beverage crop, tuber crop, root crop, and forest crop.
34. The method of claim 32, wherein the phenotypic trait is selected from the group consisting of herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, enhanced nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, sterility, other agronomic traits, traits for industrial uses, or traits for improved consumer appeal.
35. The method of claim 32, wherein the marker is selected from the group consisting of a genetic marker, a haplotype, a nucleic acid sequence, a transcriptional profile, a metabolic profile, a nutrient composition profile, a protein expression profile, and a phenotypic character.
36. The method of claim 32, wherein the method further comprises selecting among breeding populations based on the predicted expression.
37. The method of claim 32, wherein the method further comprises selecting among progeny in breeding populations based on the predicted expression.
38. The method of claim 32, wherein the method further comprises predicting progeny performance based on the predicted expression and selecting among parental lines based on the predicted progeny performance.
39. The method of claim 32, wherein the method further comprises advancing lines in germplasm improvement activities based on the predicted expression.
40. The method of claim 39, wherein the germplasm improvement activities are selected from the group consisting of line and variety development, hybrid development, transgenic event selection, making breeding crosses, testing and advancing a plant through self fertilization, using plant or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plant or parts thereof for mutagenesis.
41. The method of claim 40, wherein the method plant breeding decision comprises selecting for a phenotypic trait based on one or more determined haplotype effect estimates associated with at least one other phenotypic trait.
42. A method of selecting a breeding population for use in a breeding program comprising
providing at least two distinct breeding populations;
using a plurality of breeding values for at least one phenotypic trait for at least two haplotypes within at least one haplotype window for the breeding populations;
selecting at least one breeding population based on at least one breeding value.
43. The method of claim 42, wherein the breeding populations comprise crop plants selected from the group consisting of a forage crop, oilseed crop, grain crop, fruit crop, ornamental plants, vegetable crop, fiber crop, spice crop, nut crop, turf crop, sugar crop, beverage crop, tuber crop, root crop, and forest crop.
44. The method of claim 42, wherein the breeding value is calculated for at least one phenotypic trait selected from the group consisting of herbicide tolerance, disease resistance, insect or pest resistance, altered fatty acid, protein or carbohydrate metabolism, increased grain yield, increased oil, enhanced nutritional content, increased growth rates, enhanced stress tolerance, preferred maturity, enhanced organoleptic properties, altered morphological characteristics, sterility, other agronomic traits, traits for industrial uses, or traits for improved consumer appeal.
45. The method of claim 42, wherein the breeding population is used in germplasm improvement activities
46. The method of claim 45, wherein the germplasm improvement activities are selected from the group consisting of line and variety development, hybrid development, transgenic event selection, making breeding crosses, testing and advancing a plant through self fertilization, using plant or parts thereof for transformation, using plants or parts thereof for candidates for expression constructs, and using plant or parts thereof for mutagenesis.
47. A method of identifying a specific haplotype within a haplotype window of a breeding population, comprising
a) providing a plurality of marker loci across a haplotype window in a sequential order;
b) detecting the allelic state of each of the plurality of marker loci in an individual of the breeding population; and
c) identifying the specific haplotype by the allelic state of each of the plurality of marker loci in the same sequential order.
48. The method of claim 47, wherein the populations comprise a plant that is a crop plant selected from the group consisting of a forage crop, oilseed crop, grain crop, fruit crop, ornamental plants, vegetable crop, fiber crop, spice crop, nut crop, turf crop, sugar crop, beverage crop, tuber crop, root crop, and forest crop.
49. A corn plant, comprising at least 3 haplotypes selected from the group consisting of haplotypes 1241745, 1245282, 1243877, 1243070, 1245725, 1243531, 1243137, 1244818, 1242935, 1242692, 1243209, 1239247, 1242639, 1245002, 1242764, 1245051, 1242555, 1241471, 1243921, 1245245, 4239097, 1244707, 1240716, 1243724, 1240194, 1238977, 1239277, 1241428, 1241344, 1241584, 1243419, 1240798, 1239269, 1241694, 1244582, 1244051, 1242655, 1244350, 1240495, 1242169, 1241828, 1243958, 1241430, 1239542, 1240734, 1244381, 1239572, 1243540, 1239335, and 1240910.
50. A corn plant of claim 49, comprising at least 3 haplotypes selected from the group consisting of haplotypes 1241745, 1245282, 1243877, 1243070, and 1245725.
51. A corn plant of claim 49, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1241745, 1245282, 1243877, 1243070, 1245725, 1243531, 1243137, 1244818, 1242935, 1242692, 1243209, 1239247, 1242639, 1245002, 1242764, 1245051, 1242555, 1241471, 1243921, 1245245, 1239097, 1244707, 1240716, 1243724, 1240194, 1238977, 1239277, 1241428, 1241344, 1241584, 1243419, 1240798, 1239269, 1241694, 1244582, 1244051, 1242655, 1244350, 1240495, 1242169, 1241828, 1243958, 1241430, 1239542, 1240734, 1244381, 1239572, 1243540, 1239335, and 1240910.
52. A corn plant of claim 51, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1241745, 1245282, 1243877, 1243070, 1245725, 1243531, 1243137, 1244818, 1242935, and 1242692.
53. A corn plant of claim 49, comprising at least 8 haplotypes selected from the group consisting of haplotypes 1241745, 1245282, 1243877, 1243070, 1245725, 1243531, 1243137, 1244818, 1242935, 1242692, 1243209, 1239247, 1242639, 1245002, 1242764, 1245051, 1242555, 1241471, 1243921, 1245245, 1239097, 1244707, 1240716, 1243724, 1240194, 1238977, 1239277, 1241428, 1241344, 1241584, 1243419, 1240798, 1239269, 1241694, 1244582, 1244051, 1242655, 1244350, 1240495, 1242169, 1241828, 1243958, 1241430, 1239542, 1240734, 1244381, 1239572, 1243540, 1239335, and 1240910.
54. A corn plant of claim 53, comprising at least 8 haplotypes selected from the group consisting of haplotypes 1241745, 1245282, 1243877, 1243070, 1245725, 1243531, 1243137, 1244818, 1242935, 1242692, 1243209, 1239247, 1242639, 1245002, 1242764, 1245051, 1242555, 1241471, 1243921, and 1245245.
55. A corn plant of claim 49, comprising at least 11 haplotypes selected from the group consisting of haplotypes 1241745, 1245282, 1243877, 1243070, 1245725, 1243531, 1243137, 1244818, 1242935, 1242692, 1243209, 1239247, 1242639, 1245002, 1242764, 1245051, 1242555, 1241471, 1243921, 1245245, 1239097, 1244707, 1240716, 1243724, 1240194, 1238977, 1239277, 1241428, 1241344, 1241584, 1243419, 1240798, 1239269, 1241694, 1244582, 1244051, 1242655, 1244350, 1240495, 1242169, 1241828, 1243958, 1241430, 1239542, 1240734, 1244381, 1239572, 1243540, 1239335, and 1240910.
56. A corn plant of claim 55, comprising at least 11 haplotypes selected from the group consisting of haplotypes 1241745, 1245282, 1243877, 1243070, 1245725, 1243531, 1243137, 1244818, 1242935, 1242692, 1243209, 1239247, 1242639, 1245002, 1242764, 1245051, 1242555, 1241471, 1243921, 1245245, 1239097, 1244707, 1240716, 1243724, 1240194, 1238977, 1239277, 1241428, 1241344, and 1241584.
57. A corn plant of claim 49, comprising at least 16 haplotypes selected from the group consisting of haplotypes 1241745, 1245282, 1243877, 1243070, 1245725, 1243531, 1243137, 1244818, 1242935, 1242692, 1243209, 1239247, 1242639, 1245002, 1242764, 1245051, 1242555, 1241471, 1243921, 1245245, 1239097, 1244707, 1240716, 1243724, 1240194, 1238977, 1239277, 1241428, 1241344, 1241584, 1243419, 1240798, 1239269, 1241694, 1244582, 1244051, 1242655, 1244350, 1240495, 1242169, 1241828, 1243958, 1241430, 1239542, 1240734, 1244381, 1239572, 1243540, 1239335, and 1240910.
58. A corn plant of claim 57, comprising at least 16 haplotypes selected from the group consisting of haplotypes 1241745, 1245282, 1243877, 1243070, 1245725, 1243531, 1243137, 1244818, 1242935, 1242692, 1243209, 1239247, 1242639, 1245002, 1242764, 1245051, 1242555, 1241471, 1243921, 1245245, 1239097, 1244707, 1240716, 1243724, 1240194, 1238977, 1239277, 1241428, 1241344, 1241584, 1243419, 1240798, 1239269, 1241694, 1244582, 1244051, 1242655, 1244350, 1240495, and 1242169.
59. A corn plant of claim 49, comprising at least 17 haplotypes selected from the group consisting of haplotypes 1241745, 1245282, 1243877, 1243070, 1245725, 1243531, 1243137, 1244818, 1242935, 1242692, 1243209, 1239247, 1242639, 1245002, 1242764, 1245051, 1242555, 1241471, 1243921, 1245245, 1239097, 1244707, 1240716, 1243724, 1240194, 1238977, 1239277, 1241428, 1241344, 1241584, 1243419, 1240798, 1239269, 1241694, 1244582, 1244051, 1242655, 1244350, 1240495, 1242169, 1241828, 1243958, 1241430, 1239542, 1240734, 1244381, 1239572, 1243540, 1239335, and 1240910.
60. A corn plant, comprising at least one haplotype selected from the group consisting of haplotypes 1242746, 1241485, 1245310, 1240420, 1240492, 1239759, 1239569, 1243417, 1244049, 1240800, 1245000, 1240365, 1241593, 1245744, 1243051, 1243218, 1239271, 1243882, 1243381, 1243320, 1242721, 1245179, 1245720, 1243989, 1242655, 1243920, 1242720, 1243146, 1243420, 1245823, 1240901, 1241721, 1240014, 1241038, 1242688, 1244169, 1244067, 1243858, 1244914, 1240598, 1244272, 1244583, 1243362, 1240747, 1241848, 1239321, 1240272, 1245072, 1240282, and 1240573.
61. A corn plant of claim 60, comprising at least one haplotype selected from the group consisting of haplotypes 1242746, 1241485, 1245310, 1240420, 1240492, 1239759, 1239569, 1243417, 1244049, and 1240800.
62. A corn plant of claim 61, comprising at least one haplotype selected from the group consisting of haplotypes 1242746, 1241485, 1245310, 1240420, and 1240492.
63. A corn plant of claim 60, comprising at least 9 haplotypes selected from the group consisting of haplotypes 1242746, 1241485, 1245310, 1240420, 1240492, 1239759, 1239569, 1243417, 1244049, 1240800, 1245000, 1240365, 1241593, 1245744, 1243051, 1243218, 1239271, 1243882, 1243381, 1243320, 1242721, 1245179, 1245720, 1243989, 1242655, 1243920, 1242720, 1243146, 1243420, 1245823, 1240901, 1241721, 1240014, 1241038, 1242688, 1244169, 1244067, 1243858, 1244914, 1240598, 1244272, 1244583, 1243362, 1240747, 1241848, 1239321, 1240272, 1245072, 1240282, and 1240573.
64. A corn plant of claim 63, comprising at least 9 haplotypes selected from the group consisting of haplotypes 1242746, 1241485, 1245310, 1240420, 1240492, 1239759, 1239569, 1243417, 1244049, 1240800, 1245000, 1240365, 1241593, 1245744, 1243051, 1243218, 1239271, 1243882, 1243381, and 1243320.
65. A corn plant of claim 60, comprising at least 12 haplotypes selected from the group consisting of haplotypes 1242746, 1241485, 1245310, 1240420, 1240492, 1239759, 1239569, 1243417, 1244049, 1240800, 1245000, 1240365, 1241593, 1245744, 1243051, 1243218, 1239271, 1243882, 1243381, 1243320, 1242721, 1245179, 1245720, 1243989, 1242655, 1243920, 1242720, 1243146, 1243420, 1245823, 1240901, 1241721, 1240014, 1241038, 1242688, 1244169, 1244067, 1243858, 1244914, 1240598, 1244272, 1244583, 1243362, 1240747, 1241848, 1239321, 1240272, 1245072, 1240282, and 1240573.
66. A corn plant of claim 65, comprising at least 12 haplotypes selected from the group consisting of haplotypes 1242746, 1241485, 1245310, 1240420, 1240492, 1239759, 1239569, 1243417, 1244049, 1240800, 1245000, 1240365, 1241593, 1245744, 1243051, 1243218, 1239271, 1243882, 1243381, 1243320, 1242721, 1245179, 1245720, 1243989, 1242655, 1243920, 1242720, 1243146, 1243420, and 1245823.
67. A corn plant of claim 60, comprising at least 16 haplotypes selected from the group consisting of haplotypes 1242746, 1241485, 1245310, 1240420, 1240492, 1239759, 1239569, 1243417, 1244049, 1240800, 1245000, 1240365, 1241593, 1245744, 1243051, 1243218, 1239271, 1243882, 1243381, 1243320, 1242721, 1245179, 1245720, 1243989, 1242655, 1243920, 1242720, 1243146, 1243420, 1245823, 1240901, 1241721, 1240014, 1241038, 1242688, 1244169, 1244067, 1243858, 1244914, 1240598, 1244272, 1244583, 1243362, 1240747, 1241848, 1239321, 1240272, 1245072, 1240282, and 1240573.
68. A corn plant of claim 67, comprising at least 16 haplotypes selected from the group consisting of haplotypes 1242746, 1241485, 1245310, 1240420, 1240492, 1239759, 1239569, 1243417, 1244049, 1240800, 1245000, 1240365, 1241593, 1245744, 1243051, 1243218, 1239271, 1243882, 1243381, 1243320, 1242721, 1245179, 1245720, 1243989, 1242655, 1243920, 1242720, 1243146, 1243420, 1245823, 1240901, 1241721, 1240014, 1241038, 1242688, 1244169, 1244067, 1243858, 1244914, and 1240598.
69. A corn plant of claim 60, comprising at least 19 haplotypes selected from the group consisting of haplotypes 1242746, 1241485, 1245310, 1240420, 1240492, 1239759, 1239569, 1243417, 1244049, 1240800, 1245000, 1240365, 1241593, 1245744, 1243051, 1243218, 1239271, 1243882, 1243381, 1243320, 1242721, 1245179, 1245720, 1243989, 1242655, 1243920, 1242720, 1243146, 1243420, 1245823, 1240901, 1241721, 1240014, 1241038, 1242688, 1244169, 1244067, 1243858, 1244914, 1240598, 1244272, 1244583, 1243362, 1240747, 1241848, 1239321, 1240272, 1245072, 1240282, and 1240573.
70. A corn plant, comprising at least 4 haplotypes selected from the group consisting of haplotypes 1240622, 1242654, 1241736, 1239494, 1245298, 1239848, 1240909, 1244689, 1242686, 1242272, 1240417, 1240747, 1244365, 1243882, 1243938, 1243725, 1243920, 1239423, 1244699, 1241274, 1239868, 1241848, 1241565, 1243566, 1240481, 1244846, 1242341, 1245643, 1241796, 1244356, 1241746, 1244050, 1241531, 1242570, 1244113, 1245075, 1245676, 1240726, 1242368, 1241784, 1244272, 1240038, 1239330, 1245014, 1239327, 1243554, 1240248, 1240598, 1241718, and 1240348.
71. A corn plant of claim 70, comprising at least 4 haplotypes selected from the group consisting of haplotypes 1240622, 1242654, 1241736, 1239494, and 1245298.
72. A corn plant of claim 70, comprising at least 6 haplotypes selected from the group consisting of haplotypes 1240622, 1242654, 1241736, 1239494, 1245298, 1239848, 1240909, 1244689, 1242686, 1242272, 1240417, 1240747, 1244365, 1243882, 1243938, 1243725, 1243920, 1239423, 1244699, 1241274, 1239868, 1241848, 1241565, 1243566, 1240481, 1244846, 1242341, 1245643, 1241796, 1244356, 1241746, 1244050, 1241531, 1242570, 1244113, 1245075, 1245676, 1240726, 1242368, 1241784, 1244272, 1240038, 1239330, 1245014, 1239327, 1243554, 1240248, 1240598, 1241718, and 1240348.
73. A corn plant of claim 72, comprising at least 6 haplotypes selected from the group consisting of haplotypes 1240622, 1242654, 1241736, 1239494, 1245298, 1239848, 1240909, 1244689, 1242686, 1242272, 1240417, 1240747, 1244365, 1243882, 1243938, 1243725, 1243920, 1239423, 1244699, 1241274, 1239868, 1241848, 1241565, 1243566, 1240481, 1244846, 1242341, 1245643, 1241796, and 1244356.
74. A corn plant of claim 73, comprising at least 6 haplotypes selected from the group consisting of haplotypes 1240622, 1242654, 1241736, 1239494, 1245298, 1239848, 1240909, 1244689, 1242686, 1242272, 1240417, 1240747, 1244365, 1243882, 1243938, 1243725, 1243920, 1239423, 1244699, and 1241274.
75. A corn plant of claim 74, comprising at least 6 haplotypes selected from the group consisting of haplotypes 1240622, 1242654, 1241736, 1239494, 1245298, 1239848, 1240909, 1244689, 1242686, and 1242272.
76. A corn plant of claim 70, comprising at least 12 haplotypes selected from the group consisting of haplotypes 1240622, 1242654, 1241736, 1239494, 1245298, 1239848, 1240909, 1244689, 1242686, 1242272, 1240417, 1240747, 1244365, 1243882, 1243938, 1243725, 1243920, 1239423, 1244699, 1241274, 1239868, 1241848, 1241565, 1243566, 1240481, 1244846, 1242341, 1245643, 1241796, 1244356, 1241746, 1244050, 1241531, 1242570, 1244113, 1245075, 1245676, 1240726, 1242368, 1241784, 1244272, 1240038, 1239330, 1245014, 1239327, 1243554, 1240248, 1240598, 1241718, and 1240348.
77. A corn plant of claim 76, comprising at least 12 haplotypes selected from the group consisting of haplotypes 1240622, 1242654, 1241736, 1239494, 1245298, 1239848, 1240909, 1244689, 1242686, 1242272, 1240417, 1240747, 1244365, 1243882, 1243938, 1243725, 1243920, 1239423, 1244699, 1241274, 1239868, 1241848, 1241565, 1243566, 1240481, 1244846, 1242341, 1245643, 1241796, 1244356, 1241746, 1244050, 1241531, 1242570, 1244113, 1245075, 1245676, 1240726, 1242368, and 1241784.
78. A corn plant of claim 70, comprising at least 15 haplotypes selected from the group consisting of haplotypes 1240622, 1242654, 1241736, 1239494, 1245298, 1239848, 1240909, 1244689, 1242686, 1242272, 1240417, 1240747, 1244365, 1243882, 1243938, 1243725, 1243920, 1239423, 1244699, 1241274, 1239868, 1241848, 1241565, 1243566, 1240481, 1244846, 1242341, 1245643, 1241796, 1244356, 1241746, 1244050, 1241531, 1242570, 1244113, 1245075, 1245676, 1240726, 1242368, 1241784, 1244272, 1240038, 1239330, 1245014, 1239327, 1243554, 1240248, 1240598, 1241718, and 1240348.
79. A corn plant, comprising at least 4 haplotypes selected from the group consisting of haplotypes 1239172, 1240420, 1244276, 1240365, 1240353, 1241219, 1239490, 1243351, 1242131, 1244365, 1242728, 1242929, 1242400, 1240422, 1239330, 1240240, 1244998, 1242746, 1242338, 1243554, 1240016, 1245720, 1244635, 1239344, 1242367, 1242512, 1239253, 1239569, 1244168, 1244171, 1239416, 1240681, 1243596, 1239325, 1242424, 1243873, 1240726, 1240718, 1241487, 1238959, 1241736, 1244113, 1240906, 1243854, 1241706, 1242662, 1242686, 1244059, 1241442, and 1245919.
80. A corn plant of claim 79, comprising at least 4 haplotypes selected from the group consisting of haplotypes 1239172, 1240420, 1244276, 1240365, and 1240353.
81. A corn plant of claim 79, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1239172, 1240420, 1244276, 1240365, 1240353, 1241219, 1239490, 1243351, 1242131, 1244365, 1242728, 1242929, 1242400, 1240422, 1239330, 1240240, 1244998, 1242746, 1242338, 1243554, 1240016, 1245720, 1244635, 1239344, 1242367, 1242512, 1239253, 1239569, 1244168, 1244171, 1239416, 1240681, 1243596, 1239325, 1242424, 1243873, 1240726, 1240718, 1241487, 1238959, 1241736, 1244113, 1240906, 1243854, 1241706, 1242662, 1242686, 1244059, 1241442, and 1245919.
82. A corn plant of claim 81, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1239172, 1240420, 1244276, 1240365, 1240353, 1241219, 1239490, 1243351, 1242131, 1244365, 1242728, 1242929, 1242400, 1240422, 1239330, 1240240, 1244998, 1242746, 1242338, and 1243554.
83. A corn plant of claim 82, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1239172, 1240420, 1244276, 1240365, 1240353, 1241219, 1239490, 1243351, 1242131, and 1244365.
84. A corn plant of claim 79, comprising at least 11 haplotypes selected from the group consisting of haplotypes 1239172, 1240420, 1244276, 1240365, 1240353, 1241219, 1239490, 1243351, 1242131, 1244365, 1242728, 1242929, 1242400, 1240422, 1239330, 1240240, 1244998, 1242746, 1242338, 1243554, 1240016, 1245720, 1244635, 1239344, 1242367, 1242512, 1239253, 1239569, 1244168, 1244171, 1239416, 1240681, 1243596, 1239325, 1242424, 1243873, 1240726, 1240718, 1241487, 1238959, 1241736, 1244113, 1240906, 1243854, 1241706, 1242662, 1242686, 1244059, 1241442, and 1245919.
85. A corn plant of claim 84, comprising at least 11 haplotypes selected from the group consisting of haplotypes 1239172, 1240420, 1244276, 1240365, 1240353, 1241219, 1239490, 1243351, 1242131, 1244365, 1242728, 1242929, 1242400, 1240422, 1239330, 1240240, 1244998, 1242746, 1242338, 1243554, 1240016, 1245720, 1244635, 1239344, 1242367, 1242512, 1239253, 1239569, 1244168, and 1244171.
86. A corn plant of claim 79, comprising at least 16 haplotypes selected from the group consisting of haplotypes 1239172, 1240420, 1244276, 1240365, 1240353, 1241219, 1239490, 1243351, 1242131, 1244365, 1242728, 1242929, 1242400, 1240422, 1239330, 1240240, 1244998, 1242746, 1242338, 1243554, 1240016, 1245720, 1244635, 1239344, 1242367, 1242512, 1239253, 1239569, 1244168, 1244171, 1239416, 1240681, 1243596, 1239325, 1242424, 1243873, 1240726, 1240718, 1241487, 1238959, 1241736, 1244113, 1240906, 1243854, 1241706, 1242662, 1242686, 1244059, 1241442, and 1245919.
87. A corn plant of claim 86, comprising at least 16 haplotypes selected from the group consisting of haplotypes 1239172, 1240420, 1244276, 1240365, 1240353, 1241219, 1239490, 1243351, 1242131, 1244365, 1242728, 1242929, 1242400, 1240422, 1239330, 1240240, 1244998, 1242746, 1242338, 1243554, 1240016, 1245720, 1244635, 1239344, 1242367, 1242512, 1239253, 1239569, 1244168, 1244171, 1239416, 1240681, 1243596, 1239325, 1242424, 1243873, 1240726, 1240718, 1241487, and 1238959.
88. A corn plant of claim 79, comprising at least 19 haplotypes selected from the group consisting of haplotypes 1239172, 1240420, 1244276, 1240365, 1240353, 1241219, 1239490, 1243351, 1242131, 1244365, 1242728, 1242929, 1242400, 1240422, 1239330, 1240240, 1244998, 1242746, 1242338, 1243554, 1240016, 1245720, 1244635, 1239344, 1242367, 1242512, 1239253, 1239569, 1244168, 1244171, 1239416, 1240681, 1243596, 1239325, 1242424, 1243873, 1240726, 1240718, 1241487, 1238959, 1241736, 1244113, 1240906, 1243854, 1241706, 1242662, 1242686, 1244059, 1241442, and 1245919.
89. A corn plant, comprising at least one haplotype that is preferred for a yield-plant height ratio that is greater than 3 or negative, wherein yield is positive and plant height is negative.
90. A corn plant of claim 89, comprising at least 118 haplotypes selected from the group consisting of haplotypes 1240330, 1240341, 1240365, 1240373, 1240335, 1244963, 1244954, 1244998, 1245002, 1242131, 1242134, 1242136, 1245111, 1240904, 1240906, 1244818, 1244826, 1242719, 1242728, 1242731, 1242738, 1242720, 1242721, 1241220, 1241234, 1244641, 1244644, 1244657, 1244635, 1238977, 1238987, 1239022, 1239028, 1245360, 1245372, 1245362, 1245368, 1242928, 1242929, 1243964, 1240029, 1241366, 1241347, 1241350, 1243703, 1243714, 1243717, 1243724, 1243705, 1243710, 1239181, 1239198, 1239210, 1242381, 1242367, 1242368, 1244274, 1244285, 1244276, 1244525, 1244526, 1244527, 1244531, 1243862, 1243873, 1239490, 1239496, 1244516, 1240415, 1240416, 1241563, 1241564, 1241567, 1243917, 1243918, 1241406, 1239845, 1239846, 1239848, 1240428, 1240454, 1240420, 1240422, 1240679, 1240681, 1240687, 1244774, 1240798, 1240811, 1240800, 1240964, 1240977, 1240971, 1243373, 1243382, 1243375, 1245130, 1245120, 1239147, 1239148, 1240261, 1240263, 1240264, 1240265, 1240266, 1242866, 1242878, 1242881, 1242869, 1240252, 1239338, 1239340, 1239341, 1243999, 1244000, 1244001, 1243110, 1243120, 1243112, 1243116, 1243118, 1239652, 1239653, 1243796, 1243790, 1239532, 1239542, 1239533, 1239539, 1242230, 1242220, 1242221, 1242225, 1242227, 1244500, 1244501, 1239981, 1244168, 1244169, 1240495, 1240484, 1242688, 1242692, 1245718, 1245720, 1244300, 1244316, 1244305, 1241580, 1241603, 1241428, 1241447, 1241450, 1241430, 1241436, 1242932, 1242942, 1242934, 1242935, 1242938, 1243209, 1243218, 1240932, 1240935, 1245511, 1240241, 1240242, 1240246, 1239406, 1238934, 1244187, 1244189, 1244190, 1240670, 1243051, 1243070, 1243080, 1243059, 1243540, 1243596, 1243538, 1242065, 1242095, 1242067, 1242115, 1242072, 1240119, 1241885, 1241906, 1241924, 1245917, 1245918, 1245923, 1242628, 1243967, 1243970, 1243972, 1243974, 1239572, 1239583, 1239574, 1239623, 1245562, 1245575, 1245564, 1245595, 1245565, 1241099, 1241108, 1241112, 1241124, 1241638, 1241632, 1241633, 1241634, 1243417, 1243429, 1243436, 1243444, 1243419, 1243420, 1240194, 1240181, 1240184, 1240922, 1240924, 1240926, 1245090, 1245089, 1242986, 1242995, 1243001, 1242988, 1243018, 1243036, 1243042, 1242994, 1244006, 1244007, 1244008, 1244009, 1244095, 1244097, 1239866, 1239867, 1242537, 1242546, 1242550, 1242539, 1242540, 1242543, 1242545, 1245411, 1245422, 1245413, 1245447, 1242785, 1242797, 1242787, 1242792, 1241025, 1241035, 1241038, 1241045, 1241071, 1241030, 1241969, 1241960, 1242952, 1242954, 1244874, 1244875, 1240270, 1240281, 1240282, 1244220, 1244202, 1244235, 1240714, 1244914, 1245916, 1243855, 1243858, 1245929, 1245930, 1242663, 1243607, 1243608, 1243609, 1242149, 1242150, 1242151, 1242156, 1245199, 1244602, 1244596, 1239058, 1241872, 1242632, 1242644, 1242633, 1242639, 1242507, 1242510, 1243273, 1243274, 1243261, 1244106, 1244115, 1244118, 1241706, 1245881, 1245882, 1243346, 1243347, 1243348, 1243351, 1243352, 1243355, 1242982, 1245072, 1245073, 1245074, 1240007, 1240016, 1240014, 1243847, 1243623, 1243632, 1241461, 1241471, 1241474, 1241487, 1243315, 1243320, 1243322, 1242169, 1242179, 1245828, 1245846, 1245822, 1245824, 1239328, 1243135, 1243137, 1243174, 1243979, 1241284, 1241307, 1241278, 1239904, 1239915, 1245245, 1244077, 1244079, 1244081, 1244082, 1241088, 1240589, 1240602, 1240590, 1240596, 1244196, 1244198, 1242055, 1242062, 1242034, 1242037, 1240174, 1240175, 1244692, 1245772, 1239065, 1239074, 1239066, 1239068, 1242252, 1242289, 1242253, 1239655, 1239671, 1239674, 1239687, 1239662, 1239663, 1244023, 1244013, 1239269, 1239271, 1239273, 1239277, 1240881, 1240884, 1245794, 1242970, 1240709, 1240710, 1240712, 1239972, 1239978, 1241786, 1241790, 1240572, 1240573, 1240576, 1240580, 1239759, 1239761, 1239809, 1245274, 1245277, 1245281, 1245282, 1241165, 1244700, 1242555, 1242557, 1242560, 1240718, 1242338, 1241826, 1241838, 1239344, 1239353, 1239376, 1239348, 1245744, 1245745, 1244048, 1244049, 1244050, 1244053, 1245207, 1245208, 1245210, 1245659, 1245676, 1245662, 1245663, 1240112, 1240113, 1240114, 1240257, 1240259, 1243987, 1243989, 1245760, 1245761, 1241458, 1241459, 1245189, 1245192, 1241818, 1241819, 1239244, 1239253, 1239245, 1239425, 1239411, 1239413, 1240616, 1240621, 1242214, 1242216, 1245554, 1245555, 1242713, 1245637, 1245643, 1245298, 1245308, 1245326, 1244360, 1244381, 1244410, 1243933, 1243938, 1243926, 1241746, 1245763, 1245764, 1245765, 1245766, 1245768, and 1245769.
91. A corn plant, comprising at least one haplotype that is preferred for a yield-moisture ratio that is greater than 3 or negative, wherein yield is positive and moisture is negative.
92. A corn plant of claim 91, comprising at least 169 haplotypes selected from the group consisting of haplotypes 1240341, 1240348, 1240353, 1240365, 1240373, 1240386, 1240335, 1244946, 1244963, 1244948, 1244998, 1245007, 1245011, 1245014, 1245051, 1242130, 1242131, 1242132, 1242134, 1245110, 1245111, 1245112, 1245114, 1240910, 1240904, 1240909, 1244805, 1244815, 1244818, 1244826, 1244846, 1242719, 1242728, 1242731, 1242734, 1242738, 1242721, 1242764, 1241207, 1241219, 1241220, 1241234, 1244631, 1244641, 1244643, 1244644, 1244657, 1244633, 1244635, 1238977, 1238987, 1238988, 1239022, 1239028, 1245362, 1242931, 1243958, 1243959, 1245709, 1240029, 1241344, 1241346, 1241347, 1243714, 1243717, 1243724, 1243705, 1243710, 1239155, 1239172, 1239156, 1239181, 1239158, 1239198, 1239210, 1242365, 1242367, 1242400, 1242368, 1244274, 1244285, 1244276, 1244526, 1244527, 1243862, 1243871, 1243873, 1243877, 1243863, 1243882, 1243904, 1239494, 1239496, 1240415, 1240416, 1241563, 1241565, 1241567, 1241568, 1243917, 1243918, 1241406, 1241407, 1239842, 1239845, 1239846, 1239848, 1244582, 1240428, 1240419, 1240451, 1240454, 1240679, 1240681, 1240687, 1244774, 1244776, 1244780, 1240811, 1240813, 1240800, 1240964, 1240977, 1240966, 1241001, 1240971, 1243373, 1243382, 1243375, 1245118, 1245120, 1245125, 1239147, 1239148, 1241605, 1241621, 1241607, 1241608, 1240261, 1240262, 1240263, 1240264, 1240265, 1240266, 1242881, 1242869, 1245557, 1245558, 1240248, 1240250, 1240252, 1240254, 1239340, 1239341, 1243999, 1244000, 1244001, 1244502, 1244504, 1239968, 1239969, 1244063, 1244064, 1244065, 1241571, 1241573, 1244900, 1244901, 1244902, 1244907, 1243110, 1243120, 1243112, 1243116, 1239652, 1239653, 1243786, 1243796, 1243797, 1239542, 1239533, 1239539, 1239540, 1242219, 1242220, 1242221, 1242225, 1242226, 1242227, 1239981, 1239985, 1244168, 1244171, 1240481, 1240492, 1240493, 1240495, 1240484, 1242686, 1242690, 1242691, 1242692, 1245718, 1245720, 1245721, 1245725, 1244300, 1244316, 1244305, 1241580, 1241593, 1241584, 1241585, 1241428, 1241438, 1241442, 1241447, 1241430, 1241436, 1242932, 1242942, 1242934, 1242935, 1243209, 1243215, 1243216, 1240932, 1240935, 1245511, 1245513, 1240241, 1240242, 1240246, 1241694, 1241696, 1241697, 1239403, 1239405, 1238906, 1238916, 1238934, 1238959, 1244187, 1244189, 1239312, 1239321, 1239320, 1240668, 1240670, 1240671, 1240106, 1240107, 1243051, 1243070, 1243080, 1243056, 1243057, 1243059, 1243531, 1243540, 1243554, 1243566, 1243596, 1243538, 1242065, 1242115, 1240118, 1241885, 1241906, 1241887, 1241924, 1244892, 1244894, 1245404, 1239034, 1243489, 1244887, 1244888, 1245918, 1245919, 1245923, 1242628, 1242629, 1243968, 1243970, 1243972, 1243974, 1239572, 1239582, 1239583, 1239585, 1239574, 1239623, 1239577, 1245562, 1245575, 1245584, 1245564, 1245595, 1245565, 1242424, 1242432, 1241112, 1241124, 1241626, 1241634, 1243428, 1243436, 1243444, 1243419, 1240179, 1240192, 1240194, 1240184, 1240923, 1240924, 1240925, 1240926, 1245081, 1245090, 1245085, 1245087, 1245089, 1242986, 1242995, 1243001, 1242988, 1243018, 1243036, 1243042, 1242994, 1244438, 1244439, 1244440, 1244441, 1244006, 1244007, 1244009, 1244095, 1244096, 1244097, 1242537, 1242546, 1242550, 1242540, 1242543, 1242545, 1245411, 1245422, 1245413, 1245447, 1242797, 1242787, 1242790, 1241035, 1241045, 1241027, 1241071, 1241030, 1240036, 1241956, 1241958, 1241960, 1242952, 1242954, 1244872, 1244875, 1244200, 1244220, 1244202, 1244235, 1240713, 1240714, 1244918, 1245914, 1245916, 1239856, 1243854, 1245927, 1245929, 1245930, 1242662, 1242675, 1243608, 1243609, 1243610, 1242161, 1242150, 1242151, 1242155, 1242156, 1245197, 1245199, 1245200, 1245203, 1244588, 1244602, 1244596, 1239058, 1239059, 1239062, 1239868, 1239870, 1239876, 1241870, 1241871, 1241874, 1240676, 1240677, 1242632, 1242642, 1242633, 1242639, 1242640, 1242497, 1242512, 1243259, 1243273, 1243274, 1243261, 1243292, 1244118, 1244119, 1244131, 1244108, 1244113, 1241699, 1241702, 1241706, 1245881, 1245882, 1245883, 1245885, 1243362, 1243351, 1243352, 1243355, 1242982, 1242983, 1245073, 1245075, 1245076, 1245077, 1240016, 1240664, 1240665, 1240666, 1243846, 1243847, 1243632, 1243652, 1241461, 1241471, 1241473, 1241485, 1241487, 1241531, 1242654, 1242655, 1243318, 1243322, 1242169, 1242171, 1242172, 1245819, 1245828, 1245846, 1245822, 1245823, 1245824, 1239325, 1239327, 1239328, 1239330, 1243135, 1243146, 1243149, 1243137, 1243977, 1243979, 1243981, 1241271, 1241284, 1241273, 1241307, 1241274, 1241278, 1239893, 1239915, 1239895, 1245237, 1245251, 1245238, 1245245, 1244077, 1244079, 1244080, 1244082, 1244083, 1240108, 1240109, 1240699, 1241093, 1241094, 1241090, 1240598, 1240601, 1240590, 1244196, 1244197, 1244198, 1242055, 1242033, 1242062, 1242034, 1242037, 1242039, 1244690, 1244691, 1244692, 1245773, 1239065, 1239074, 1239066, 1239067, 1239097, 1239068, 1242250, 1242261, 1242272, 1242289, 1242253, 1239666, 1239671, 1239674, 1239675, 1239657, 1239662, 1239663, 1244023, 1244013, 1244017, 1239269, 1239280, 1239271, 1239277, 1245180, 1245889, 1245891, 1240881, 1240884, 1244881, 1239335, 1240709, 1240710, 1239972, 1239974, 1239976, 1239979, 1241784, 1241798, 1241787, 1240582, 1240573, 1240576, 1240580, 1239748, 1239761, 1239778, 1239809, 1245274, 1245277, 1245279, 1245282, 1241155, 1241165, 1241177, 1244697, 1244707, 1244699, 1244700, 1244705, 1242555, 1242568, 1242570, 1242557, 1240716, 1240726, 1240734, 1240747, 1240718, 1242330, 1242341, 1242338, 1241848, 1241828, 1239344, 1239353, 1239365, 1239376, 1239348, 1245742, 1245747, 1244051, 1244053, 1245207, 1245209, 1245210, 1245659, 1245676, 1245661, 1245662, 1245663, 1245799, 1245802, 1240112, 1240113, 1240257, 1240259, 1243987, 1243988, 1243989, 1245759, 1245760, 1245761, 1241458, 1241459, 1245189, 1245190, 1245192, 1243614, 1241818, 1241819, 1239244, 1239262, 1239245, 1239247, 1239416, 1239423, 1240615, 1240616, 1240619, 1240621, 1240622, 1242214, 1242216, 1245554, 1245555, 1245272, 1245273, 1242711, 1242712, 1242713, 1245637, 1245308, 1245299, 1244349, 1244360, 1244365, 1244350, 1244381, 1244410, 1244356, 1243920, 1243938, 1243921, 1243951, 1241736, 1241745, 1241746, 1241718, 1245763, 1245764, 1245765, 1245768, and 1245769.
93. A corn plant, comprising at least 3 haplotypes selected from the group consisting of haplotypes 1240437, 1244921, 1239500, 1242504, 1243877, 1240280, 1243378, 1240805, 1245695, 1239419, 1238927, 1240824, 1244751, 1242383, 1244958, 1245723, 1241440, 1245503, 1241364, 1241957, 123 273, 1241211, 1242153, 1240424, 1243448, 1238980, 1242540, 1239043, 1241410, 1244018, 1240701, 1244097, 1239740, 1243704, 1240041, 1242667, 1245003, 1242567, 1240266, 1243787, 1242636, 1245927, 1241224, 1242665, 1241195, 1240251, 1239172, 1244508, 1240253, and 1241110.
94. A corn plant of claim 93, comprising at least 3 haplotypes selected from the group consisting of haplotypes 1240437, 1244921, 1239500, 1242504, and 1243877.
95. A corn plant of claim 93, comprising at least 4 haplotypes selected from the group consisting of haplotypes 1240437, 1244921, 1239500, 1242504, 1243877, 1240280, 1243378, 1240805, 1245695, 1239419, 1238927, 1240824, 1244751, 1242383, 1244958, 1245723, 1241440, 1245503, 1241364, 1241957, 123 273, 1241211, 1242153, 1240424, 1243448, 1238980, 1242540, 1239043, 1241410, 1244018, 1240701, 1244097, 1239740, 1243704, 1240041, 1242667, 1245003, 1242567, 1240266, 1243787, 1242636, 1245927, 1241224, 1242665, 1241195, 1240251, 1239172, 1244508, 1240253, and 1241110.
96. A corn plant of claim 95, comprising at least 4 haplotypes selected from the group consisting of haplotypes 1240437, 1244921, 1239500, 1242504, 1243877, 1240280, 1243378, 1240805, 1245695, and 1239419.
97. A corn plant of claim 93, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1240437, 1244921, 1239500, 1242504, 1243877, 1240280, 1243378, 1240805, 1245695, 1239419, 1238927, 1240824, 1244751, 1242383, 1244958, 1245723, 1241440, 1245503, 1241364, 1241957, 123 273, 1241211, 1242153, 1240424, 1243448, 1238980, 1242540, 1239043, 1241410, 1244018, 1240701, 1244097, 1239740, 1243704, 1240041, 1242667, 1245003, 1242567, 1240266, 1243787, 1242636, 1245927, 1241224, 1242665, 1241195, 1240251, 1239172, 1244508, 1240253, and 1241110.
98. A corn plant of claim 97, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1240437, 1244921, 1239500, 1242504, 1243877, 1240280, 1243378, 1240805, 1245695, 1239419, 1238927, 1240824, 1244751, 1242383, 1244958, 1245723, 1241440, 1245503, 1241364, and 1241957.
99. A corn plant of claim 93, comprising at least 9 haplotypes selected from the group consisting of haplotypes 1240437, 1244921, 1239500, 1242504, 1243877, 1240280, 1243378, 1240805, 1245695, 1239419, 1238927, 1240824, 1244751, 1242383, 1244958, 1245723, 1241440, 1245503, 1241364, 1241957, 123 273, 1241211, 1242153, 1240424, 1243448, 1238980, 1242540, 1239043, 1241410, 1244018, 1240701, 1244097, 1239740, 1243704, 1240041, 1242667, 1245003, 1242567, 1240266, 1243787, 1242636, 1245927, 1241224, 1242665, 1241195, 1240251, 1239172, 1244508, 1240253, and 1241110.
100. A corn plant of claim 99, comprising at least 9 haplotypes selected from the group consisting of haplotypes 1240437, 1244921, 1239500, 1242504, 1243877, 1240280, 1243378, 1240805, 1245695, 1239419, 1238927, 1240824, 1244751, 1242383, 1244958, 1245723, 1241440, 1245503, 1241364, 1241957, 123 273, 1241211, 1242153, 1240424, 1243448, 1238980, 1242540, 1239043, 1241410, and 1244018.
101. A corn plant of claim 93, comprising at least 12 haplotypes selected from the group consisting of haplotypes 1240437, 1244921, 1239500, 1242504, 1243877, 1240280, 1243378, 1240805, 1245695, 1239419, 1238927, 1240824, 1244751, 1242383, 1244958, 1245723, 1241440, 1245503, 1241364, 1241957, 123 273, 1241211, 1242153, 1240424, 1243448, 1238980, 1242540, 1239043, 1241410, 1244018, 1240701, 1244097, 1239740, 1243704, 1240041, 1242667, 1245003, 1242567, 1240266, 1243787, 1242636, 1245927, 1241224, 1242665, 1241195, 1240251, 1239172, 1244508, 1240253, and 1241110.
102. A corn plant of claim 101, comprising at least 12 haplotypes selected from the group consisting of haplotypes 1240437, 1244921, 1239500, 1242504, 1243877, 1240280, 1243378, 1240805, 1245695, 1239419, 1238927, 1240824, 1244751, 1242383, 1244958, 1245723, 1241440, 1245503, 1241364, 1241957, 123 273, 1241211, 1242153, 1240424, 1243448, 1238980, 1242540, 1239043, 1241410, 1244018, 1240701, 1244097, 1239740, 1243704, 1240041, 1242667, 1245003, 1242567, 1240266, and 1243787.
103. A corn plant of claim 93, comprising at least 14 haplotypes selected from the group consisting of haplotypes 1240437, 1244921, 1239500, 1242504, 1243877, 1240280, 1243378, 1240805, 1245695, 1239419, 1238927, 1240824, 1244751, 1242383, 1244958, 1245723, 1241440, 1245503, 1241364, 1241957, 123 273, 1241211, 1242153, 1240424, 1243448, 1238980, 1242540, 1239043, 1241410, 1244018, 1240701, 1244097, 1239740, 1243704, 1240041, 1242667, 1245003, 1242567, 1240266, 1243787, 1242636, 1245927, 1241224, 1242665, 1241195, 1240251, 1239172, 1244508, 1240253, and 1241110.
104. A corn plant, comprising at least one haplotype selected from the group consisting of haplotypes 1242879, 1241721, 1244978, 1245717, 1242556, 1244950, 1241235, 1240902, 1243377, 1244778, 1241213, 1241586, 1242344, 1240804, 1244529, 1244878, 1239982, 1242571, 1244976, 1241714, 1242285, 1241606, 1245670, 1241241, 1243263, 1245889, 1241095, 1241577, 1243398, 1244507, 1240882, 1243118, 1239897, 1242971, 1245130, 1243499, 1241490, 1244486, 1245883, 1241958, 1239361, 1245894, 1240968, 1242713, 1240036, 1242040, 1239883, 1240487, 1243865, and 1243242.
105. A corn plant of claim 104, comprising at least one haplotype selected from the group consisting of haplotypes 1242879, 1241721, 1244978, 1245717, and 1242556.
106. A corn plant of claim 104, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1242879, 1241721, 1244978, 1245717, 1242556, 1244950, 1241235, 1240902, 1243377, 1244778, 1241213, 1241586, 1242344, 1240804, 1244529, 1244878, 1239982, 1242571, 1244976, 1241714, 1242285, 1241606, 1245670, 1241241, 1243263, 1245889, 1241095, 1241577, 1243398, 1244507, 1240882, 1243118, 1239897, 1242971, 1245130, 1243499, 1241490, 1244486, 1245883, 1241958, 1239361, 1245894, 1240968, 1242713, 1240036, 1242040, 1239883, 1240487, 1243865, and 1243242.
107. A corn plant of claim 106, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1242879, 1241721, 1244978, 1245717, 1242556, 1244950, 1241235, 1240902, 1243377, and 1244778.
108. A corn plant of claim 104, comprising at least 6 haplotypes selected from the group consisting of haplotypes 1242879, 1241721, 1244978, 1245717, 1242556, 1244950, 1241235, 1240902, 1243377, 1244778, 1241213, 1241586, 1242344, 1240804, 1244529, 1244878, 1239982, 1242571, 1244976, 1241714, 1242285, 1241606, 1245670, 1241241, 1243263, 1245889, 1241095, 1241577, 1243398, 1244507, 1240882, 1243118, 1239897, 1242971, 1245130, 1243499, 1241490, 1244486, 1245883, 1241958, 1239361, 1245894, 1240968, 1242713, 1240036, 1242040, 1239883, 1240487, 1243865, and 1243242.
109. A corn plant of claim 108, comprising at least 6 haplotypes selected from the group consisting of haplotypes 1242879, 1241721, 1244978, 1245717, 1242556, 1244950, 1241235, 1240902, 1243377, 1244778, 1241213, 1241586, 1242344, 1240804, 1244529, 1244878, 1239982, 1242571, 1244976, and 1241714.
110. A corn plant of claim 104, comprising at least 8 haplotypes selected from the group consisting of haplotypes 1242879, 1241721, 1244978, 1245717, 1242556, 1244950, 1241235, 1240902, 1243377, 1244778, 1241213, 1241586, 1242344, 1240804, 1244529, 1244878, 1239982, 1242571, 1244976, 1241714, 1242285, 1241606, 1245670, 1241241, 1243263, 1245889, 1241095, 1241577, 1243398, 1244507, 1240882, 1243118, 1239897, 1242971, 1245130, 1243499, 1241490, 1244486, 1245883, 1241958, 1239361, 1245894, 1240968, 1242713, 1240036, 1242040, 1239883, 1240487, 1243865, and 1243242.
111. A corn plant of claim 110, comprising at least 8 haplotypes selected from the group consisting of haplotypes 1242879, 1241721, 1244978, 1245717, 1242556, 1244950, 1241235, 1240902, 1243377, 1244778, 1241213, 1241586, 1242344, 1240804, 1244529, 1244878, 1239982, 1242571, 1244976, 1241714, 1242285, 1241606, 1245670, 1241241, 1243263, 1245889, 1241095, 1241577, 1243398, 1244507, 1240882, 1243118, 1239897, 1242971, 1245130, 1243499, 1241490, 1244486, 1245883, and 1241958.
112. A corn plant of claim 111, comprising at least 8 haplotypes selected from the group consisting of haplotypes 1242879, 1241721, 1244978, 1245717, 1242556, 1244950, 1241235, 1240902, 1243377, 1244778, 1241213, 1241586, 1242344, 1240804, 1244529, 1244878, 1239982, 1242571, 1244976, 1241714, 1242285, 1241606, 1245670, 1241241, 1243263, 1245889, 1241095, 1241577, 1243398, and 1244507.
113. A corn plant of claim 104, comprising at least 13 haplotypes selected from the group consisting of haplotypes 1242879, 1241721, 1244978, 1245717, 1242556, 1244950, 1241235, 1240902, 1243377, 1244778, 1241213, 1241586, 1242344, 1240804, 1244529, 1244878, 1239982, 1242571, 1244976, 1241714, 1242285, 1241606, 1245670, 1241241, 1243263, 1245889, 1241095, 1241577, 1243398, 1244507, 1240882, 1243118, 1239897, 1242971, 1245130, 1243499, 1241490, 1244486, 1245883, 1241958, 1239361, 1245894, 1240968, 1242713, 1240036, 1242040, 1239883, 1240487, 1243865, and 1243242.
114. A corn plant, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1239420, 1242162, 1242662, 1242335, 1240760, 1242879, 1241832, 1242358, 1242687, 1244302, 1239494, 1240264, 1239361, 1242369, 1243789, 1245719, 1241349, 1242714, 1240439, 1239164, 1239990, 1239061, 1243210, 1241610, 1245642, 1238912, 1240040, 1241412, 1242371, 1245006, 1242344, 1239501, 1239370, 1239843, 1244784, 1240031, 1241099, 1243727, 1245929, 1240687, 1240249, 1243213, 1240271, 1238993, 1239578, 1245372, 1243377, 1242692, 1245121, and 1242658.
115. A corn plant of claim 114, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1239420, 1242162, 1242662, 1242335, 1240760, 1242879, 1241832, 1242358, 1242687, and 1244302.
116. A corn plant of claim 115, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1239420, 1242162, 1242662, 1242335, and 1240760.
117. A corn plant of claim 114, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1239420, 1242162, 1242662, 1242335, 1240760, 1242879, 1241832, 1242358, 1242687, 1244302, 1239494, 1240264, 1239361, 1242369, 1243789, 1245719, 1241349, 1242714, 1240439, 1239164, 1239990, 1239061, 1243210, 1241610, 1245642, 1238912, 1240040, 1241412, 1242371, 1245006, 1242344, 1239501, 1239370, 1239843, 1244784, 1240031, 1241099, 1243727, 1245929, 1240687, 1240249, 1243213, 1240271, 1238993, 1239578, 1245372, 1243377, 1242692, 1245121, and 1242658.
118. A corn plant of claim 117, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1239420, 1242162, 1242662, 1242335, 1240760, 1242879, 1241832, 1242358, 1242687, 1244302, 1239494, 1240264, 1239361, 1242369, 1243789, 1245719, 1241349, 1242714, 1240439, 1239164, 1239990, 1239061, 1243210, 1241610, 1245642, 1238912, 1240040, 1241412, 1242371, and 1245006.
119. A corn plant of claim 118, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1239420, 1242162, 1242662, 1242335, 1240760, 1242879, 1241832, 1242358, 1242687, 1244302, 1239494, 1240264, 1239361, 1242369, 1243789, 1245719, 1241349, 1242714, 1240439, and 1239164.
120. A corn plant of claim 114, comprising at least 10 haplotypes selected from the group consisting of haplotypes 1239420, 1242162, 1242662, 1242335, 1240760, 1242879, 1241832, 1242358, 1242687, 1244302, 1239494, 1240264, 1239361, 1242369, 1243789, 1245719, 1241349, 1242714, 1240439, 1239164, 1239990, 1239061, 1243210, 1241610, 1245642, 1238912, 1240040, 1241412, 1242371, 1245006, 1242344, 1239501, 1239370, 1239843, 1244784, 1240031, 1241099, 1243727, 1245929, 1240687, 1240249, 1243213, 1240271, 1238993, 1239578, 1245372, 1243377, 1242692, 1245121, and 1242658.
121. A corn plant of claim 120, comprising at least 10 haplotypes selected from the group consisting of haplotypes 1239420, 1242162, 1242662, 1242335, 1240760, 1242879, 1241832, 1242358, 1242687, 1244302, 1239494, 1240264, 1239361, 1242369, 1243789, 1245719, 1241349, 1242714, 1240439, 1239164, 1239990, 1239061, 1243210, 1241610, 1245642, 1238912, 1240040, 1241412, 1242371, 1245006, 1242344, 1239501, 1239370, 1239843, 1244784, 1240031, 1241099, 1243727, 1245929, and 1240687.
122. A corn plant of claim 114, comprising at least 12 haplotypes selected from the group consisting of haplotypes 1239420, 1242162, 1242662, 1242335, 1240760, 1242879, 1241832, 1242358, 1242687, 1244302, 1239494, 1240264, 1239361, 1242369, 1243789, 1245719, 1241349, 1242714, 1240439, 1239164, 1239990, 1239061, 1243210, 1241610, 1245642, 1238912, 1240040, 1241412, 1242371, 1245006, 1242344, 1239501, 1239370, 1239843, 1244784, 1240031, 1241099, 1243727, 1245929, 1240687, 1240249, 1243213, 1240271, 1238993, 1239578, 1245372, 1243377, 1242692, 1245121, and 1242658.
123. A corn plant, comprising at least 4 haplotypes selected from the group consisting of haplotypes 1244555, 1243269, 1239739, 1243708, 1241036, 1244878, 1244529, 1240820, 1242162, 1241468, 1239003, 1240431, 1240018, 1241714, 1241721, 1243058, 1245769, 1244918, 1239002, 1240331, 1239048, 1244778, 1240013, 1244637, 1245257, 1244973, 1244379, 1242662, 1240042, 1244302, 1240031, 1242713, 1241610, 1245072, 1241430, 1242369, 1239987, 1241966, 1245118, 1244207, 1244279, 1245648, 1244352, 1240910, 1239161, 1244226, 1245710, 1241588, 1245773, and 1245198.
124. A corn plant of claim 123, comprising at least 4 haplotypes selected from the group consisting of haplotypes 1244555, 1243269, 1239739, 1243708, and 1241036.
125. A corn plant of claim 123, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1244555, 1243269, 1239739, 1243708, 1241036, 1244878, 1244529, 1240820, 1242162, 1241468, 1239003, 1240431, 1240018, 1241714, 1241721, 1243058, 1245769, 1244918, 1239002, 1240331, 1239048, 1244778, 1240013, 1244637, 1245257, 1244973, 1244379, 1242662, 1240042, 1244302, 1240031, 1242713, 1241610, 1245072, 1241430, 1242369, 1239987, 1241966, 1245118, 1244207, 1244279, 1245648, 1244352, 1240910, 1239161, 1244226, 1245710, 1241588, 1245773, and 1245198.
126. A corn plant of claim 125, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1244555, 1243269, 1239739, 1243708, 1241036, 1244878, 1244529, 1240820, 1242162, 1241468, 1239003, 1240431, 1240018, 1241714, 1241721, 1243058, 1245769, 1244918, 1239002, 1240331, 1239048, 1244778, 1240013, 1244637, 1245257, 1244973, 1244379, 1242662, 1240042, 1244302, 1240031, 1242713, 1241610, 1245072, 1241430, 1242369, 1239987, 1241966, 1245118, and 1244207.
127. A corn plant of claim 126, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1244555, 1243269, 1239739, 1243708, 1241036, 1244878, 1244529, 1240820, 1242162, 1241468, 1239003, 1240431, 1240018, 1241714, 1241721, 1243058, 1245769, 1244918, 1239002, 1240331, 1239048, 1244778, 1240013, 1244637, 1245257, 1244973, 1244379, 1242662, 1240042, and 1244302.
128. A corn plant of claim 127, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1244555, 1243269, 1239739, 1243708, 1241036, 1244878, 1244529, 1240820, 1242162, 1241468, 1239003, 1240431, 1240018, 1241714, 1241721, 1243058, 1245769, 1244918, 1239002, and 1240331.
129. A corn plant of claim 128, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1244555, 1243269, 1239739, 1243708, 1241036, 1244878, 1244529, 1240820, 1242162, and 1241468.
130. A corn plant of claim 123, comprising at least 13 haplotypes selected from the group consisting of haplotypes 1244555, 1243269, 1239739, 1243708, 1241036, 1244878, 1244529, 1240820, 1242162, 1241468, 1239003, 1240431, 1240018, 1241714, 1241721, 1243058, 1245769, 1244918, 1239002, 1240331, 1239048, 1244778, 1240013, 1244637, 1245257, 1244973, 1244379, 1242662, 1240042, 1244302, 1240031, 1242713, 1241610, 1245072, 1241430, 1242369, 1239987, 1241966, 1245118, 1244207, 1244279, 1245648, 1244352, 1240910, 1239161, 1244226, 1245710, 1241588, 1245773, and 1245198.
131. A corn plant, comprising at least one haplotype that is preferred for a yield-plant height ratio that is greater than 3 or negative, wherein yield is positive and plant height is negative.
132. A corn plant of claim 131, comprising at least 128 haplotypes selected from the group consisting of haplotypes 1240342, 1240346, 1240331, 1240352, 1240354, 1240334, 1244957, 1244947, 1244971, 1244973, 1244988, 1244950, 1244951, 1245009, 1245034, 1245038, 1245003, 1245006, 1242130, 1242134, 1242135, 1242136, 1245111, 1245112, 1240910, 1240911, 1240902, 1240903, 1244815, 1244810, 1242730, 1242720, 1242722, 1242724, 1241217, 1241208, 1241209, 1241241, 1241211, 1241215, 1244640, 1244632, 1238986, 1239002, 1239003, 1238980, 1238983, 1238985, 1245370, 1245361, 1245362, 1245367, 1245368, 1242928, 1243959, 1243961, 1245709, 1245710, 1245711, 1245714, 1245717, 1240033, 1241350, 1243712, 1243715, 1243721, 1243755, 1243708, 1243710, 1239164, 1239167, 1239172, 1239159, 1242375, 1242366, 1242387, 1242372, 1242373, 1244274, 1244285, 1244277, 1244278, 1244279, 1243133, 1243134, 1244540, 1244529, 1243863, 1243865, 1243866, 1239505, 1239491, 1239494, 1239495, 1239497, 1239569, 1239570, 1242968, 1242969, 1240707, 1244517, 1244519, 1241563, 1241566, 1244159, 1244160, 1244161, 1241409, 1241411, 1241412, 1239842, 1239844, 1239845, 1244582, 1244583, 1244586, 1240431, 1240418, 1240437, 1240421, 1240424, 1240679, 1240682, 1240684, 1244774, 1244778, 1244780, 1244781, 1240824, 1240835, 1240802, 1240803, 1240804, 1240972, 1243373, 1243386, 1243392, 1243401, 1243378, 1243381, 1245133, 1245154, 1245122, 1245124, 1239147, 1241610, 1240265, 1242880, 1242881, 1242874, 1240248, 1240250, 1239339, 1239343, 1244001, 1244502, 1244504, 1244505, 1244064, 1244065, 1241571, 1241572, 1241573, 1241574, 1241577, 1244900, 1244901, 1244905, 1244907, 1243110, 1243112, 1243113, 1243116, 1243118, 1239654, 1243795, 1243788, 1243825, 1243789, 1243790, 1243792, 1239532, 1239534, 1239536, 1239540, 1242237, 1242221, 1242222, 1242224, 1239739, 1239740, 1239981, 1239990, 1239982, 1239985, 1239987, 1244170, 1244175, 1240481, 1240490, 1240513, 1240518, 1240484, 1240485, 1240488, 1242696, 1242700, 1242689, 1245728, 1245736, 1245725, 1244300, 1244301, 1244304, 1241581, 1241437, 1241440, 1241452, 1241430, 1241431, 1241433, 1241434, 1242943, 1242934, 1242935, 1242938, 1243224, 1243232, 1243214, 1240935, 1240937, 1245521, 1245530, 1245513, 1245514, 1245516, 1240241, 1240243, 1240245, 1239405, 1239406, 1238917, 1238922, 1238926, 1238927, 1238933, 1238938, 1238910, 1244507, 1244508, 1244509, 1244187, 1244188, 1244189, 1244190, 1244191, 1244192, 1244194, 1239312, 1239313, 1239315, 1239316, 1240669, 1240671, 1245499, 1245500, 1245502, 1245503, 1244272, 1244273, 1243070, 1243052, 1243057, 1243058, 1243546, 1243553, 1243592, 1243539, 1242074, 1242066, 1242069, 1242073, 1240117, 1240152, 1240124, 1241899, 1244891, 1244895, 1245405, 1245406, 1245408, 1239043, 1239048, 1239035, 1239037, 1243505, 1243490, 1243510, 1243511, 1243493, 1243495, 1244889, 1244890, 1245917, 1245923, 1243968, 1243969, 1243970, 1243974, 1239573, 1239603, 1239576, 1239577, 1245572, 1245574, 1245598, 1245565, 1245568, 1245569, 1242424, 1242433, 1242444, 1242451, 1242455, 1242426, 1242428, 1242431, 1241112, 1241121, 1241106, 1241627, 1241651, 1241634, 1243417, 1243430, 1243431, 1243447, 1243448, 1243421, 1240196, 1240197, 1240199, 1240182, 1240923, 1240924, 1240926, 1242989, 1243033, 1242994, 1245296, 1245297, 1244007, 1244008, 1244095, 1244097, 1244098, 1244099, 1244101, 1242538, 1245420, 1245437, 1245416, 1245417, 1242795, 1242800, 1242786, 1241036, 1241037, 1241046, 1241048, 1241062, 1241029, 1241030, 1240036, 1240046, 1240037, 1240072, 1240082, 1240041, 1240042, 1241967, 1241970, 1241971, 1241974, 1241958, 1241961, 1242954, 1242956, 1242960, 1244872, 1240280, 1240289, 1240293, 1240275, 1240276, 1244216, 1244218, 1244204, 1244207, 1240713, 1240714, 1244923, 1244913, 1244914, 1244915, 1244917, 1245915, 1239856, 1243857, 1245928, 1245930, 1242664, 1242666, 1242667, 1243609, 1243612, 1243613, 1242163, 1242151, 1242153, 1242157, 1245197, 1245200, 1244588, 1244607, 1244589, 1244592, 1244593, 1239059, 1239877, 1239883, 1239869, 1239889, 1239871, 1239873, 1239874, 1239876, 1241880, 1241874, 1241875, 1241876, 1242649, 1242635, 1242638, 1242639, 1242640, 1242508, 1242513, 1242498, 1242502, 1242503, 1242504, 1243269, 1243282, 1243285, 1243262, 1243263, 1243264, 1244110, 1244112, 1244113, 1241700, 1241702, 1245882, 1245883, 1245884, 1245885, 1245886, 1243346, 1243356, 1243349, 1243350, 1243351, 1245072, 1245074, 1245076, 1245814, 1245815, 1240008, 1240011, 1240012, 1240013, 1240666, 1243846, 1243847, 1243848, 1243850, 1240638, 1240640, 1240647, 1240630, 1240652, 1240633, 1243623, 1243646, 1243629, 1241475, 1241462, 1241490, 1241468, 1242655, 1242656, 1243326, 1243321, 1243322, 1242170, 1242197, 1242208, 1242175, 1245838, 1245862, 1245827, 1239326, 1243157, 1243138, 1243142, 1241282, 1239893, 1239903, 1239895, 1239934, 1239897, 1245250, 1245257, 1245245, 1244080, 1240108, 1240109, 1240699, 1240700, 1240599, 1240601, 1240603, 1240590, 1240593, 1240596, 1241949, 1241950, 1242040, 1242034, 1242036, 1239234, 1239226, 1239228, 1240175, 1240176, 1245782, 1245775, 1239065, 1239082, 1239066, 1239096, 1239102, 1239068, 1239123, 1242262, 1242251, 1242271, 1242278, 1242285, 1242293, 1242309, 1242311, 1242256, 1242257, 1244444, 1244456, 1244461, 1244445, 1244486, 1244449, 1239676, 1239686, 1239659, 1239713, 1244020, 1244014, 1244015, 1244017, 1244018, 1239278, 1239281, 1239273, 1245180, 1245181, 1245899, 1245891, 1245893, 1245894, 1240882, 1240887, 1240889, 1241820, 1241821, 1241822, 1245795, 1245796, 1245797, 1242970, 1242973, 1242974, 1242975, 1240709, 1240711, 1241794, 1241802, 1241787, 1241788, 1241790, 1240581, 1240573, 1240574, 1240575, 1240580, 1239758, 1239749, 1239810, 1245275, 1245276, 1245277, 1241195, 1241159, 1244712, 1244713, 1244715, 1244698, 1244729, 1244751, 1244702, 1242567, 1242556, 1242561, 1240727, 1240742, 1240775, 1240723, 1242344, 1242331, 1242332, 1241838, 1241828, 1241829, 1239353, 1239370, 1239347, 1239389, 1245743, 1245744, 1245745, 1245747, 1245750, 1244049, 1245208, 1245211, 1245214, 1245216, 1245665, 1245666, 1245810, 1245801, 1245802, 1245805, 1240258, 1240259, 1243992, 1245190, 1242780, 1242781, 1243615, 1239244, 1239251, 1239434, 1244934, 1244935, 1244936, 1244937, 1244940, 1244941, 1240618, 1245554, 1245555, 1245272, 1245273, 1242711, 1242712, 1245648, 1245649, 1245640, 1245641, 1245642, 1245644, 1245645, 1245310, 1245299, 1245301, 1245303, 1245305, 1244350, 1244370, 1244379, 1241721, 1241730, 1241712, 1241713, 1241714, 1245764, and 1245765.
133. A corn plant, comprising at least one haplotype that is preferred for a yield-moisture ratio that is greater than 3 or negative, wherein yield is positive and moisture is negative.
134. A corn plant of claim 133, comprising at least 177 haplotypes selected from the group consisting of haplotypes 1244629, 1240342, 1240346, 1240331, 1240349, 1240354, 1240334, 1240336, 1240337, 1244955, 1244957, 1244958, 1244964, 1244971, 1244973, 1244948, 1244976, 1244951, 1245015, 1245034, 1245038, 1245002, 1245003, 1245006, 1242130, 1242131, 1242133, 1242134, 1242135, 1245111, 1245112, 1240910, 1240911, 1240904, 1240909, 1244815, 1244806, 1244808, 1244811, 1242730, 1242720, 1242724, 1241217, 1241224, 1241226, 1241208, 1241241, 1241211, 1241212, 1241215, 1244632, 1244658, 1244634, 1244635, 1244637, 1244639, 1238986, 1238993, 1238978, 1239002, 1239003, 1238980, 1238982, 1238983, 1238985, 1245370, 1245361, 1245362, 1245363, 1245367, 1245368, 1242928, 1242929, 1242931, 1243958, 1243959, 1243962, 1245709, 1245710, 1245711, 1245714, 1240031, 1240033, 1241356, 1241345, 1241349, 1241350, 1243712, 1243715, 1243721, 1243704, 1243727, 1243755, 1243710, 1243711, 1239167, 1239171, 1239172, 1239156, 1239159, 1239209, 1242375, 1242379, 1242383, 1242366, 1242385, 1242387, 1242410, 1242371, 1242372, 1242373, 1244285, 1244275, 1244276, 1244279, 1243133, 1243134, 1244534, 1244555, 1244529, 1244530, 1244531, 1243877, 1243864, 1243901, 1243865, 1243866, 1243867, 1239500, 1239501, 1239506, 1239508, 1239491, 1239493, 1239494, 1239497, 1239569, 1239570, 1242968, 1242969, 1240707, 1244515, 1244516, 1244519, 1241565, 1241567, 1243917, 1243918, 1244159, 1244160, 1244161, 1244164, 1244166, 1241406, 1241415, 1241417, 1241407, 1241408, 1241409, 1241410, 1241411, 1239842, 1239843, 1239845, 1239846, 1244582, 1244584, 1244587, 1240431, 1240437, 1240439, 1240421, 1240424, 1240679, 1240680, 1240682, 1240684, 1240685, 1240687, 1244783, 1244784, 1244779, 1244781, 1240812, 1240820, 1240824, 1240835, 1240802, 1240803, 1240964, 1240998, 1240967, 1241015, 1243373, 1243383, 1243386, 1243392, 1243399, 1243376, 1243381, 1245131, 1245133, 1245119, 1245122, 1245124, 1245126, 1239147, 1239149, 1239150, 1241605, 1241609, 1241610, 1240262, 1240263, 1240264, 1240265, 1240266, 1242881, 1242870, 1242871, 1242874, 1245557, 1240248, 1240249, 1240250, 1240251, 1240252, 1240253, 1239342, 1244000, 1244001, 1244502, 1244503, 1244504, 1244505, 1241571, 1241572, 1241573, 1241574, 1244900, 1244902, 1244903, 1244906, 1244907, 1243110, 1243122, 1243112, 1243115, 1243116, 1243117, 1243795, 1243787, 1243788, 1243825, 1243789, 1243790, 1243792, 1239532, 1239533, 1239559, 1239534, 1239536, 1239537, 1242237, 1242220, 1242221, 1242222, 1242224, 1242226, 1239737, 1239738, 1239739, 1239740, 1239745, 1239981, 1239990, 1239983, 1239985, 1239987, 1244168, 1244180, 1244169, 1244170, 1244175, 1240481, 1240490, 1240521, 1240484, 1240485, 1240487, 1240488, 1242696, 1242687, 1242688, 1242689, 1242690, 1242691, 1245719, 1245724, 1245725, 1244300, 1244311, 1244301, 1244302, 1244304, 1241591, 1241583, 1241584, 1241588, 1241437, 1241440, 1241441, 1241432, 1241433, 1241434, 1242943, 1242933, 1242935, 1242938, 1243218, 1243210, 1243234, 1243211, 1243242, 1243213, 1243214, 1243217, 1240948, 1240933, 1240934, 1240937, 1245530, 1245513, 1245516, 1240241, 1240243, 1239403, 1239404, 1239406, 1238917, 1238922, 1238926, 1238907, 1238927, 1238933, 1238938, 1238908, 1238909, 1238912, 1244508, 1244509, 1244187, 1244188, 1244189, 1244190, 1244192, 1244801, 1244802, 1244803, 1239313, 1239314, 1239315, 1239316, 1240668, 1240669, 1240670, 1240671, 1245499, 1245500, 1245502, 1245503, 1245505, 1244272, 1244273, 1243068, 1243070, 1243052, 1243081, 1243054, 1243546, 1243553, 1243534, 1243535, 1243592, 1243539, 1242074, 1242077, 1242066, 1242069, 1242071, 1242073, 1240127, 1240117, 1240142, 1240152, 1240120, 1240123, 1240124, 1241899, 1244891, 1244894, 1244895, 1245405, 1245406, 1245407, 1245408, 1239034, 1239043, 1239048, 1239035, 1239037, 1243502, 1243505, 1243510, 1243493, 1243495, 1244888, 1244889, 1244890, 1245917, 1245920, 1245923, 1243967, 1243968, 1243969, 1243970, 1243974, 1239581, 1239590, 1239573, 1239603, 1239624, 1239577, 1239578, 1245572, 1245574, 1245589, 1245598, 1245565, 1245566, 1245567, 1245569, 1242424, 1242433, 1242444, 1242451, 1242426, 1242464, 1242427, 1242428, 1242431, 1241099, 1241110, 1241112, 1241121, 1241124, 1241101, 1241102, 1241106, 1241107, 1241635, 1241637, 1241627, 1241647, 1241651, 1241629, 1243417, 1243441, 1243447, 1243448, 1243463, 1243424, 1240189, 1240196, 1240197, 1240180, 1240184, 1240185; 1240922, 1240923, 1240924, 1245091, 1245083, 1245087, 1242987, 1242989, 1243033, 1242992, 1242994, 1245296, 1245297, 1244438, 1244439, 1244440, 1244441, 1244007, 1244095, 1244097, 1244098, 1244101, 1242537, 1242548, 1242538, 1242540, 1242541, 1242542, 1245420, 1245412, 1242795, 1242800, 1242786, 1242793, 1241037, 1241046, 1241048, 1241062, 1241029, 1241030, 1241031, 1240036, 1240037, 1240072, 1240082, 1240041, 1240042, 1240043, 1241971, 1241974, 1241957, 1241983, 1241958, 1241961, 1242953, 1242954, 1242955, 1242956, 1242960, 1244872, 1240279, 1240280, 1240289, 1240293, 1240272, 1240274, 1240275, 1244211, 1244216, 1244218, 1244201, 1244226, 1244202, 1244238, 1244203, 1240713, 1240714, 1244921, 1244913, 1244915, 1244917, 1244918, 1244919, 1239856, 1239857, 1239859, 1243855, 1243857, 1243859, 1245927, 1245928, 1245929, 1245930, 1245931, 1242662, 1242663, 1242664, 1242665, 1242666, 1242667, 1243607, 1243608, 1243609, 1243612, 1243613, 1242159, 1242162, 1242163, 1242151, 1242152, 1242153, 1242154, 1242157, 1245197, 1245198, 1245199, 1245200, 1245203, 1244588, 1244606, 1244607, 1244589, 1244590, 1244591, 1244592, 1244593, 1239058, 1239059, 1239060, 1239061, 1239885, 1239871, 1239873, 1239874, 1239876, 1241880, 1241871, 1241873, 1241874, 1241876, 1240676, 1240677, 1240678, 1242649, 1242633, 1242635, 1242636, 1242637, 1242638, 1242639, 1242640, 1242506, 1242508, 1242513, 1242498, 1242502, 1242503, 1242504, 1243277, 1243282, 1243285, 1243262, 1243264, 1243265, 1244115, 1244116, 1244107, 1244130, 1244110, 1244112, 1244113, 1241699, 1241700, 1241702, 1245882, 1245883, 1245885, 1243356, 1243347, 1243348, 1243349, 1243350, 1243351, 1243352, 1242982, 1242984, 1244003, 1244004, 1245073, 1245074, 1245075, 1245076, 1245814, 1245816, 1240018, 1240009, 1240011, 1240012, 1240665, 1240666, 1243846, 1243847, 1243848, 1243850, 1242681, 1242682, 1240638, 1240640, 1240641, 1240655, 1243623, 1243633, 1243624, 1243662, 1243628, 1243629, 1241472, 1241475, 1241462, 1241482, 1241520, 1241468, 1242654, 1242656, 1242658, 1242659, 1243328, 1243340, 1243317, 1243320, 1243321, 1243322, 1242170, 1242197, 1245838, 1245862, 1245824, 1245827, 1239326, 1239327, 1243157, 1243170, 1243172, 1243138, 1243185, 1243139, 1241282, 1241288, 1241289, 1241300, 1241306, 1241274, 1239902, 1239904, 1239914, 1239895, 1239934, 1239897, 1245250, 1245251, 1245253, 1245255, 1245238, 1245257, 1245239, 1245245, 1244077, 1244078, 1244080, 1244081, 1244082, 1240108, 1240109, 1240701, 1241093, 1241094, 1241088, 1241089, 1241090, 1240589, 1240599, 1240601, 1240603, 1240593, 1240596, 1240597, 1241950, 1241951, 1241952, 1242037, 1242039, 1239237, 1239240, 1239224, 1239226, 1239228, 1240174, 1240175, 1240176, 1245782, 1245773, 1245775, 1239066, 1239098, 1239068, 1239069, 1239123, 1242262, 1242271, 1242278, 1242293, 1242311, 1242256, 1242257, 1244444, 1244456, 1244461, 1244467, 1244449, 1239666, 1239656, 1239676, 1239686, 1239659, 1239713, 1244020, 1244012, 1244015, 1244017, 1244018, 1244019, 1239278, 1239281, 1239270, 1239272, 1239273, 1245179, 1245180, 1245181, 1245899, 1245892, 1240881, 1240884, 1240886, 1241821, 1241822, 1245794, 1245795, 1245796, 1242981, 1242971, 1242972, 1242974, 1242976, 1239334, 1239336, 1241794, 1241802, 1241787, 1241788, 1241790, 1240581, 1240573, 1240574, 1240575, 1240576, 1240580, 1239758, 1239749, 1239750, 1239751, 1239810, 1245275, 1245276, 1245277, 1245278, 1241157, 1241195, 1241159, 1244712, 1244713, 1244698, 1244729, 1244700, 1244751, 1244702, 1242567, 1242561, 1240742, 1240752, 1240760, 1240719, 1240720, 1240775, 1240723, 1242340, 1242344, 1242331, 1242358, 1242332, 1242335, 1242337, 1241828, 1241830, 1241832, 1239353, 1239357, 1239370, 1239347, 1239389, 1245743, 1245744, 1245745, 1245749, 1245750, 1244048, 1244053, 1244055, 1245208, 1245211, 1245212, 1245214, 1245216, 1245660, 1245661, 1245695, 1245665, 1245801, 1245804, 1245805, 1240112, 1240113, 1240114, 1240115, 1243992, 1243993, 1245190, 1245192, 1242779, 1242781, 1243616, 1243617, 1239244, 1239245, 1239246, 1239248, 1239416, 1239430, 1239434, 1239419, 1239420, 1239424, 1242708, 1242709, 1240169, 1240171, 1244935, 1244936, 1244937, 1244940, 1244941, 1240617, 1240618, 1242214, 1242215, 1242216, 1245554, 1245555, 1245272, 1245273, 1242714, 1242715, 1242717, 1245648, 1245649, 1245638, 1245640, 1245642, 1245645, 1245310, 1245299, 1245301, 1245303, 1245305, 1244350, 1244370, 1244379, 1244354, 1243921, 1243922, 1243924, 1241713, 1241714, 1245764, and 1245769.
135. A soybean plant, comprising at least 3 haplotypes selected from the group consisting of haplotypes 1262140, 1263534, 1262082, 1262411, 1263994, 1264220, 1264704, 1262403, 1263084, 1264607, 1264076, 1262066, 1262410, 1264390, 1263544, 1263999, 1264257, 1261823, 1264702, 1264603, 1263717, 1264740, 1263391, 1262138, 1262086, 1264237, 1264188, 1264473, 1262143, 1261808, 1262894, 1264610, 1262441, 1264701, 1263533, 1262106, 1264638, 1264078, 1263993, 1262139, 1262984, 1263155, 1262487, 1263696, 1262884, 1264703, 1264551, 1264379, 1262220, and 1263150.
136. A soybean plant of claim 135, comprising at least 3 haplotypes selected from the group consisting of haplotypes 1262140, 1263534, 1262082, 1262411, 1263994, 1264220, 1264704, 1262403, 1263084, and 1264607.
137. A soybean plant of claim 136, comprising at least 3 haplotypes selected from the group consisting of haplotypes 1262140, 1263534, 1262082, 1262411, and 1263994.
138. A soybean plant of claim 135, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1262140, 1263534, 1262082, 1262411, 1263994, 1264220, 1264704, 1262403, 1263084, 1264607, 1264076, 1262066, 1262410, 1264390, 1263544, 1263999, 1264257, 1261823, 1264702, 1264603, 1263717, 1264740, 1263391, 1262138, 1262086, 1264237, 1264188, 1264473, 1262143, 1261808, 1262894, 1264610, 1262441, 1264701, 1263533, 1262106, 1264638, 1264078, 1263993, 1262139, 1262984, 1263155, 1262487, 1263696, 1262884, 1264703, 1264551, 1264379, 1262220, and 1263150.
139. A soybean plant of claim 138, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1262140, 1263534, 1262082, 1262411, 1263994, 1264220, 1264704, 1262403, 1263084, 1264607, 1264076, 1262066, 1262410, 1264390, 1263544, 1263999, 1264257, 1261823, 1264702, 1264603, 1263717, 1264740, 1263391, 1262138, 1262086, 1264237, 1264188, 1264473, 1262143, 1261808, 1262894, 1264610, 1262441, 1264701, 1263533, 1262106, 1264638, 1264078, 1263993, and 1262139.
140. A soybean plant of claim 139, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1262140, 1263534, 1262082, 1262411, 1263994, 1264220, 1264704, 1262403, 1263084, 1264607, 1264076, 1262066, 1262410, 1264390, 1263544, 1263999, 1264257, 1261823, 1264702, 1264603, 1263717, 1264740, 1263391, 1262138, 1262086, 1264237, 1264188, 1264473, 1262143, and 1261808.
141. A soybean plant of claim 140, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1262140, 1263534, 1262082, 1262411, 1263994, 1264220, 1264704, 1262403, 1263084, 1264607, 1264076, 1262066, 1262410, 1264390, 1263544, 1263999, 1264257, 1261823, 1264702, and 1264603.
142. A soybean plant, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1264608, 1264243, 1263532, 1262142, 1262081, 1261912, 1264707, 1262065, 1261923, 1262490, 1264754, 1263996, 1262494, 1263165, 1263627, 1261816, 1263168, 1263703, 1262321, 1262761, 1263984, 1262316, 1264739, 1264239, 1263708, 1263709, 1264232, 1263296, 1262407, 1264226, 1264755, 1263710, 1262883, 1264587, 1264737, 1262704, 1262428, 1264081, 1264726, 1264748, 1263161, 1262324, 1263299, 1263535, 1261807, 1262329, 1263317, 1262962, 1263779, and 1263645.
143. A soybean plant of claim 142, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1264608, 1264243, 1263532, 1262142, 1262081, 1261912, 1264707, 1262065, 1261923, 1262490, 1264754, 1263996, 1262494, 1263165, 1263627, 1261816, 1263168, 1263703, 1262321, 1262761.
144. A soybean plant of claim 143, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1264608, 1264243, 1263532, 1262142, 1262081, 1261912, 1264707, 1262065, 1261923, and 1262490.
145. A soybean plant of claim 144, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1264608, 1264243, 1263532, 1262142, and 1262081.
146. A soybean plant of claim 140, comprising at least 8 haplotypes selected from the group consisting of haplotypes 1264608, 1264243, 1263532, 1262142, 1262081, 1261912, 1264707, 1262065, 1261923, 1262490, 1264754, 1263996, 1262494, 1263165, 1263627, 1261816, 1263168, 1263703, 1262321, 1262761, 1263984, 1262316, 1264739, 1264239, 1263708, 1263709, 1264232, 1263296, 1262407, 1264226, 1264755, 1263710, 1262883, 1264587, 1264737, 1262704, 1262428, 1264081, 1264726, 1264748, 1263161, 1262324, 1263299, 1263535, 1261807, 1262329, 1263317, 1262962, 1263779, and 1263645.
147. A soybean plant of claim 146, comprising at least 8 haplotypes selected from the group consisting of haplotypes 1264608, 1264243, 1263532, 1262142, 1262081, 1261912, 1264707, 1262065, 1261923, 1262490, 1264754, 1263996, 1262494, 1263165, 1263627, 1261816, 1263168, 1263703, 1262321, 1262761, 1263984, 1262316, 1264739, 1264239, 1263708, 1263709, 1264232, 1263296, 1262407, and 1264226.
148. A soybean plant of claim 140, comprising at least 11 haplotypes selected from the group consisting of haplotypes 1264608, 1264243, 1263532, 1262142, 1262081, 1261912, 1264707, 1262065, 1261923, 1262490, 1264754, 1263996, 1262494, 1263165, 1263627, 1261816, 1263168, 1263703, 1262321, 1262761, 1263984, 1262316, 1264739, 1264239, 1263708, 1263709, 1264232, 1263296, 1262407, 1264226, 1264755, 1263710, 1262883, 1264587, 1264737, 1262704, 1262428, 1264081, 1264726, 1264748, 1263161, 1262324, 1263299, 1263535, 1261807, 1262329, 1263317, 1262962, 1263779, and 1263645.
149. A soybean plant of claim 148, comprising at least 11 haplotypes selected from the group consisting of haplotypes 1264608, 1264243, 1263532, 1262142, 1262081, 1261912, 1264707, 1262065, 1261923, 1262490, 1264754, 1263996, 1262494, 1263165, 1263627, 1261816, 1263168, 1263703, 1262321, 1262761, 1263984, 1262316, 1264739, 1264239, 1263708, 1263709, 1264232, 1263296, 1262407, 1264226, 1264755, 1263710, 1262883, 1264587, 1264737, 1262704, 1262428, 1264081, 1264726, and 1264748.
150. A soybean plant, comprising at least 3 haplotypes selected from the group consisting of haplotypes 1262671, 1264471, 1261887, 1262675, 1264287, 1262108, 1264282, 1264608, 1263477, 1264236, 1263866, 1263843, 1262099, 1263848, 1263833, 1263695, 1262837, 1263710, 1264309, 1261807, 1264240, 1264189, 1263604, 1261923, 1264298, 1262239, 1262132, 1263161, 1264265, 1264564, 1263138, 1263173, 1264232, 1262678, 1264785, 1264250, 1262081, 1262989, 1264527, 1263535, 1264825, 1264075, 1262581, 1262491, 1263921, 1262823, 1263455, 1262551, 1262787, and 1264754.
151. A soybean plant of claim 150, comprising at least 3 haplotypes selected from the group consisting of haplotypes 1262671, 1264471, 1261887, 1262675, and 1264287.
152. A soybean plant of claim 150, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1262671, 1264471, 1261887, 1262675, 1264287, 1262108, 1264282, 1264608, 1263477, 1264236, 1263866, 1263843, 1262099, 1263848, 1263833, 1263695, 1262837, 1263710, 1264309, 1261807, 1264240, 1264189, 1263604, 1261923, 1264298, 1262239, 1262132, 1263161, 1264265, 1264564, 1263138, 1263173, 1264232, 1262678, 1264785, 1264250, 1262081, 1262989, 1264527, 1263535, 1264825, 1264075, 1262581, 1262491, 1263921, 1262823, 1263455, 1262551, 1262787, and 1264754.
153. A soybean plant of claim 152, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1262671, 1264471, 1261887, 1262675, 1264287, 1262108, 1264282, 1264608, 1263477, and 1264236.
154. A soybean plant of claim 150, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1262671, 1264471, 1261887, 1262675, 1264287, 1262108, 1264282, 1264608, 1263477, 1264236, 1263866, 1263843, 1262099, 1263848, 1263833, 1263695, 1262837, 1263710, 1264309, 1261807, 1264240, 1264189, 1263604, 1261923, 1264298, 1262239, 1262132, 1263161, 1264265, 1264564, 1263138, 1263173, 1264232, 1262678, 1264785, 1264250, 1262081, 1262989, 1264527, 1263535, 1264825, 1264075, 1262581, 1262491, 1263921, 1262823, 1263455, 1262551, 1262787, and 1264754.
155. A soybean plant of claim 154, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1262671, 1264471, 1261887, 1262675, 1264287, 1262108, 1264282, 1264608, 1263477, 1264236, 1263866, 1263843, 1262099, 1263848, 1263833, 1263695, 1262837, 1263710, 1264309, and 1261807.
156. A soybean plant of claim 150, comprising at least 9 haplotypes selected from the group consisting of haplotypes 1262671, 1264471, 1261887, 1262675, 1264287, 1262108, 1264282, 1264608, 1263477, 1264236, 1263866, 1263843, 1262099, 1263848, 1263833, 1263695, 1262837, 1263710, 1264309, 1261807, 1264240, 1264189, 1263604, 1261923, 1264298, 1262239, 1262132, 1263161, 1264265, 1264564, 1263138, 1263173, 1264232, 1262678, 1264785, 1264250, 1262081, 1262989, 1264527, 1263535, 1264825, 1264075, 1262581, 1262491, 1263921, 1262823, 1263455, 1262551, 1262787, and 1264754.
157. A soybean plant of claim 156, comprising at least 9 haplotypes selected from the group consisting of haplotypes 1262671, 1264471, 1261887, 1262675, 1264287, 1262108, 1264282, 1264608, 1263477, 1264236, 1263866, 1263843, 1262099, 1263848, 1263833, 1263695, 1262837, 1263710, 1264309, 1261807, 1264240, 1264189, 1263604, 1261923, 1264298, 1262239, 1262132, 1263161, 1264265, and 1264564.
158. A soybean plant of claim 150, comprising at least 11 haplotypes selected from the group consisting of haplotypes 1262671, 1264471, 1261887, 1262675, 1264287, 1262108, 1264282, 1264608, 1263477, 1264236, 1263866, 1263843, 1262099, 1263848, 1263833, 1263695, 1262837, 1263710, 1264309, 1261807, 1264240, 1264189, 1263604, 1261923, 1264298, 1262239, 1262132, 1263161, 1264265, 1264564, 1263138, 1263173, 1264232, 1262678, 1264785, 1264250, 1262081, 1262989, 1264527, 1263535, 1264825, 1264075, 1262581, 1262491, 1263921, 1262823, 1263455, 1262551, 1262787, and 1264754.
159. A soybean plant of claim 158, comprising at least 11 haplotypes selected from the group consisting of haplotypes 1262671, 1264471, 1261887, 1262675, 1264287, 1262108, 1264282, 1264608, 1263477, 1264236, 1263866, 1263843, 1262099, 1263848, 1263833, 1263695, 1262837, 1263710, 1264309, 1261807, 1264240, 1264189, 1263604, 1261923, 1264298, 1262239, 1262132, 1263161, 1264265, 1264564, 1263138, 1263173, 1264232, 1262678, 1264785, 1264250, 1262081, 1262989, 1264527, and 1263535.
160. A soybean plant of claim 150, comprising at least 14 haplotypes selected from the group consisting of haplotypes 1262671, 1264471, 1261887, 1262675, 1264287, 1262108, 1264282, 1264608, 1263477, 1264236, 1263866, 1263843, 1262099, 1263848, 1263833, 1263695, 1262837, 1263710, 1264309, 1261807, 1264240, 1264189, 1263604, 1261923, 1264298, 1262239, 1262132, 1263161, 1264265, 1264564, 1263138, 1263173, 1264232, 1262678, 1264785, 1264250, 1262081, 1262989, 1264527, 1263535, 1264825, 1264075, 1262581, 1262491, 1263921, 1262823, 1263455, 1262551, 1262787, and 1264754.
161. A soybean plant, comprising at least 4 haplotypes selected from the group consisting of haplotypes 1264471, 1262675, 1263161, 1264608, 1264287, 1263710, 1264226, 1262136, 1262081, 1263532, 1262678, 1264281, 1264250, 1264296, 1262099, 1263031, 1263697, 1264280, 1263996, 1264292, 1262494, 1264223, 1264243, 1262146, 1262108, 1262240, 1264585, 1264251, 1261887, 1262246, 1262490, 1261807, 1263352, 1263866, 1262426, 1263478, 1262568, 1262912, 1264843, 1262523, 1264282, 1261923, 1262065, 1262671, 1261917, 1263477, 1263318, 1264167, 1264316, and 1263364.
162. A soybean plant of claim 161, comprising at least 4 haplotypes selected from the group consisting of haplotypes 1264471, 1262675, 1263161, 1264608, and 1264287.
163. A soybean plant of claim 161, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1264471, 1262675, 1263161, 1264608, 1264287, 1263710, 1264226, 1262136, 1262081, 1263532, 1262678, 1264281, 1264250, 1264296, 1262099, 1263031, 1263697, 1264280, 1263996, 1264292, 1262494, 1264223, 1264243, 1262146, 1262108, 1262240, 1264585, 1264251, 1261887, 1262246, 1262490, 1261807, 1263352, 1263866, 1262426, 1263478, 1262568, 1262912, 1264843, 1262523, 1264282, 1261923, 1262065, 1262671, 1261917, 1263477, 1263318, 1264167, 1264316, and 1263364.
164. A soybean plant of claim 163, comprising at least 5 haplotypes selected from the group consisting of haplotypes 1264471, 1262675, 1263161, 1264608, 1264287, 1263710, 1264226, 1262136, 1262081, and 1263532.
165. A soybean plant of claim 161, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1264471, 1262675, 1263161, 1264608, 1264287, 1263710, 1264226, 1262136, 1262081, 1263532, 1262678, 1264281, 1264250, 1264296, 1262099, 1263031, 1263697, 1264280, 1263996, 1264292, 1262494, 1264223, 1264243, 1262146, 1262108, 1262240, 1264585, 1264251, 1261887, 1262246, 1262490, 1261807, 1263352, 1263866, 1262426, 1263478, 1262568, 1262912, 1264843, 1262523, 1264282, 1261923, 1262065, 1262671, 1261917, 1263477, 1263318, 1264167, 1264316, and 1263364.
166. A soybean plant of claim 165, comprising at least 7 haplotypes selected from the group consisting of haplotypes 1264471, 1262675, 1263161, 1264608, 1264287, 1263710, 1264226, 1262136, 1262081, 1263532, 1262678, 1264281, 1264250, 1264296, 1262099, 1263031, 1263697, 1264280, 1263996, and 1264292.
167. A soybean plant of claim 161, comprising at least 9 haplotypes selected from the group consisting of haplotypes 1264471, 1262675, 1263161, 1264608, 1264287, 1263710, 1264226, 1262136, 1262081, 1263532, 1262678, 1264281, 1264250, 1264296, 1262099, 1263031, 1263697, 1264280, 1263996, 1264292, 1262494, 1264223, 1264243, 1262146, 1262108, 1262240, 1264585, 1264251, 1261887, 1262246, 1262490, 1261807, 1263352, 1263866, 1262426, 1263478, 1262568, 1262912, 1264843, 1262523, 1264282, 1261923, 1262065, 1262671, 1261917, 1263477, 1263318, 1264167, 1264316, and 1263364.
168. A soybean plant of claim 167, comprising at least 9 haplotypes selected from the group consisting of haplotypes 1264471, 1262675, 1263161, 1264608, 1264287, 1263710, 1264226, 1262136, 1262081, 1263532, 1262678, 1264281, 1264250, 1264296, 1262099, 1263031, 1263697, 1264280, 1263996, 1264292, 1262494, 1264223, 1264243, 1262146, 1262108, 1262240, 1264585, 1264251, 1261887, and 1262246.
169. A soybean plant of claim 161, comprising at least 11 haplotypes selected from the group consisting of haplotypes 1264471, 1262675, 1263161, 1264608, 1264287, 1263710, 1264226, 1262136, 1262081, 1263532, 1262678, 1264281, 1264250, 1264296, 1262099, 1263031, 1263697, 1264280, 1263996, 1264292, 1262494, 1264223, 1264243, 1262146, 1262108, 1262240, 1264585, 1264251, 1261887, 1262246, 1262490, 1261807, 1263352, 1263866, 1262426, 1263478, 1262568, 1262912, 1264843, 1262523, 1264282, 126.1923, 1262065, 1262671, 1261917, 1263477, 1263318, 1264167, 1264316, and 1263364.
170. A soybean plant of claim 169, comprising at least 11 haplotypes selected from the group consisting of haplotypes 1264471, 1262675, 1263161, 1264608, 1264287, 1263710, 1264226, 1262136, 1262081, 1263532, 1262678, 1264281, 1264250, 1264296, 1262099, 1263031, 1263697, 1264280, 1263996, 1264292, 1262494, 1264223, 1264243, 1262146, 1262108, 1262240, 1264585, 1264251, 1261887, 1262246, 1262490, 1261807, 1263352, 1263866, 1262426, 1263478, 1262568, 1262912, 1264843, and 1262523.
171. A soybean plant of claim 161, comprising at least 12 haplotypes selected from the group consisting of haplotypes 1264471, 1262675, 1263161, 1264608, 1264287, 1263710, 1264226, 1262136, 1262081, 1263532, 1262678, 1264281, 1264250, 1264296, 1262099, 1263031, 1263697, 1264280, 1263996, 1264292, 1262494, 1264223, 1264243, 1262146, 1262108, 1262240, 1264585, 1264251, 1261887, 1262246, 1262490, 1261807, 1263352, 1263866, 1262426, 1263478, 1262568, 1262912, 1264843, 1262523, 1264282, 1261923, 1262065, 1262671, 1261917, 1263477, 1263318, 1264167, 1264316, and 1263364.
172. A soybean plant, comprising at least one haplotype that is preferred for a yield-plant height ratio that is greater than 3 or negative, wherein yield is positive and plant height is negative.
173. A soybean plant of claim 172, comprising at least 98 haplotypes selected from the group, consisting of haplotypes 1261747, 1261748, 1261750, 1261751, 1261757, 1261765, 1261769, 1261778, 1261782, 1261783, 1261791, 1261800, 1261801, 1261802, 1261803, 1261808, 1261810, 1261814, 1261818, 1261819, 1261822, 1261823, 1261836, 1261837, 1261840, 1261849, 1261857, 1261858, 1261863, 1261867, 1261872, 1261877, 1261881, 1261883, 1261910, 1261915, 1261916, 1261918, 1261919, 1261920, 1261926, 1261931, 1261944, 1261948, 1261949, 1261952, 1261963, 1261987, 1261988, 1261992, 1261993, 1261997, 1262002, 1262004, 1262007, 1262010, 1262017, 1262021, 1262022, 1262026, 1262032, 1262039, 1262040, 1262047, 1262068, 1262070, 1262086, 1262088, 1262097, 1262098, 1262106, 1262109, 1262110, 1262132, 1262134, 1262135, 1262142, 1262152, 1262217, 1262218, 1262222, 1262223, 1262239, 1262255, 1262256, 1262258, 1262260, 1262262, 1262268, 1262270, 1262271, 1262276, 1262279, 1262286, 1262312, 1262313, 1262314, 1262315, 1262316, 1262320, 1262323, 1262324, 1262325, 1262326, 1262342, 1262351, 1262352, 1262355, 1262356, 1262357, 1262365, 1262366, 1262371, 1262376, 1262380, 1262383, 1262384, 1262390, 1262391, 1262394, 1262397, 1262404, 1262406, 1262407, 1262410, 1262411, 1262420, 1262426, 1262428, 1262430, 1262447, 1262451, 1262452, 1262465, 1262477, 1262478, 1262479, 1262480, 1262490, 1262495, 1262506, 1262508, 1262510, 1262511, 1262512, 1262520, 1262522, 1262524, 1262527, 1262528, 1262529, 1262530, 1262531, 1262533, 1262534, 1262536, 1262540, 1262543, 1262549, 1262550, 1262551, 1262563, 1262569, 1262575, 1262587, 1262623, 1262626, 1262627, 1262629, 1262633, 1262641, 1262642, 1262646, 1262675, 1262681, 1262685, 1262695, 1262696, 1262698, 1262725, 1262726, 1262727, 1262728, 1262737, 1262743, 1262745, 1262746, 1262749, 1262751, 1262753, 1262763, 1262766, 1262767, 1262773, 1262774, 1262778, 1262781, 1262787, 1262790, 1262791, 1262793, 1262794, 1262803, 1262806, 1262810, 1262811, 1262814, 1262822, 1262824, 1262825, 1262828, 1262829, 1262830, 1262839, 1262840, 1262845, 1262849, 1262865, 1262868, 1262869, 1262877, 1262881, 1262882, 1262883, 1262884, 1262887, 1262888, 1262892, 1262893, 1262894, 1262899, 1262901, 1262909, 1262910, 1262912, 1262915, 1262952, 1262954, 1262961, 1262962, 1262981, 1262985, 1262987, 1262988, 1262989, 1262991, 1262993, 1263004, 1263005, 1263008, 1263014, 1263015, 1263016, 1263017, 1263021, 1263022, 1263029, 1263030, 1263031, 1263041, 1263043, 1263044, 1263045, 1263048, 1263053, 1263054, 1263061, 1263063, 1263064, 1263067, 1263071, 1263072, 1263078, 1263079, 1263084, 1263087, 1263088, 1263091, 1263100, 1263102, 1263103, 1263104, 1263107, 1263108, 1263110, 1263111, 1263115, 1263120, 1263124, 1263128, 1263129, 1263131, 1263132, 1263133, 1263134, 1263135, 1263137, 1263139, 1263140, 1263142, 1263143, 1263170, 1263172, 1263173, 1263178, 1263182, 1263183, 1263184, 1263185, 1263209, 1263210, 1263225, 1263228, 1263233, 1263234, 1263236, 1263240, 1263242, 1263243, 1263244, 1263247, 1263248, 1263265, 1263271, 1263273, 1263274, 1263281, 1263283, 1263285, 1263286, 1263287, 1263288, 1263291, 1263296, 1263299, 1263304, 1263306, 1263309, 1263310, 1263314, 1263315, 1263319, 1263320, 1263323, 1263325, 1263370, 1263371, 1263377, 1263381, 1263386, 1263392, 1263397, 1263402, 1263405, 1263406, 1263418, 1263419, 1263421, 1263423, 1263425, 1263428, 1263434, 1263454, 1263455, 1263464, 1263472, 1263475, 1263477, 1263499, 1263500, 1263504, 1263505, 1263509, 1263510, 1263511, 1263515, 1263543, 1263544, 1263545, 1263546, 1263550, 1263553, 1263560, 1263589, 1263593, 1263603, 1263604, 1263606, 1263608, 1263620, 1263632, 1263633, 1263642, 1263645, 1263647, 1263649, 1263650, 1263652, 1263657, 1263660, 1263661, 1263662, 1263665, 1263667, 1263669, 1263674, 1263675, 1263678, 1263680, 1263681, 1263682, 1263701, 1263709, 1263711, 1263712, 1263715, 1263716, 1263718, 1263720, 1263721, 1263725, 1263727, 1263728, 1263731, 1263732, 1263738, 1263742, 1263744, 1263745, 1263746, 1263774, 1263775, 1263776, 1263781, 1263782, 1263786, 1263804, 1263805, 1263806, 1263810, 1263811, 1263812, 1263813, 1263814, 1263815, 1263820, 1263823, 1263825, 1263831, 1263832, 1263834, 1263842, 1263843, 1263849, 1263866, 1263871, 1263874, 1263894, 1263895, 1263898, 1263899, 1263906, 1263908, 1263911, 1263913, 1263915, 1263966, 1263967, 1263968, 1263969, 1263970, 1263974, 1263976, 1263984, 1263992, 1263994, 1264016, 1264018, 1264020, 1264022, 1264028, 1264050, 1264055, 1264058, 1264060, 1264064, 1264067, 1264068, 1264069, 1264070, 1264071, 1264072, 1264075, 1264077, 1264078, 1264079, 1264080, 1264084, 1264091, 1264097, 1264111, 1264115, 1264123, 1264124, 1264149, 1264150, 1264161, 1264163, 1264164, 1264183, 1264184, 1264185, 1264188, 1264189, 1264190, 1264191, 1264194, 1264195, 1264197, 1264202, 1264204, 1264209, 1264215, 1264217, 1264223, 1264236, 1264237, 1264247, 1264249, 1264261, 1264265, 1264268, 1264272, 1264278, 1264281, 1264282, 1264285, 1264287, 1264290, 1264293, 1264298, 1264300, 1264301, 1264302, 1264308, 1264314, 1264316, 1264331, 1264332, 1264336, 1264339, 1264350, 1264351, 1264362, 1264364, 1264366, 1264370, 1264371, 1264374, 1264376, 1264377, 1264379, 1264382, 1264383, 1264390, 1264391, 1264392, 1264398, 1264401, 1264403, 1264404, 1264407, 1264408, 1264413, 1264415, 1264439, 1264441, 1264446, 1264447, 1264448, 1264451, 1264452, 1264458, 1264459, 1264460, 1264463, 1264464, 1264466, 1264468, 1264478, 1264483, 1264484, 1264485, 1264493, 1264494, 1264529, 1264531, 1264537, 1264540, 1264543, 1264548, 1264550, 1264551, 1264552, 1264554, 1264556, 1264557, 1264558, 1264589, 1264592, 1264597, 1264599, 1264601, 1264624, 1264634, 1264635, 1264643, 1264646, 1264648, 1264659, 1264699, 1264700, 1264701, 1264704, 1264716, 1264737, 1264738, 1264740, 1264743, 1264744, 1264748, 1264754, 1264757, 1264766, 1264768, 1264775, 1264776, 1264777, 1264786, 1264788, 1264789, 1264792, 1264793, 1264795, 1264799, 1264801, 1264802, 1264844, 1264913, 1264919, 1264920, 1264921 1264922, 1264924, 1264930, 1264932, 1264935, 1264937, 1264938, 1264939, 1264942, 1264943, 1264950, 1264953, 1264954, and 1264955.
174. A soybean plant, comprising at least one haplotype that is preferred for a yield-maturity ratio that is greater than 3 or negative, wherein yield is positive and maturity is negative.
175. A soybean plant of claim 174, comprising at least 64 haplotypes selected from the group consisting of haplotypes 1261748, 1261751, 1261753, 1261765, 1261766, 1261769, 1261791, 1261793, 1261794, 1261805, 1261810, 1261818, 1261819, 1261823, 1261837, 1261839, 1261857, 1261858, 1261863, 1261864, 1261867, 1261872, 1261877, 1261890, 1261892, 1261895, 1261896, 1261910, 1261911, 1261916, 1261920, 1261926, 1261929, 1261931, 1261933, 1261942, 1261943, 1261947, 1261948, 1261949, 1261955, 1261961, 1261968, 1261991, 1261993, 1261997, 1262040, 1262084, 1262087, 1262094, 1262099, 1262105, 1262107, 1262109, 1262110, 1262132, 1262133, 1262134, 1262140, 1262151, 1262181, 1262183, 1262189, 1262190, 1262202, 1262208, 1262222, 1262223, 1262239, 1262241, 1262255, 1262257, 1262259, 1262261, 1262262, 1262263, 1262268, 1262276, 1262279, 1262286, 1262312, 1262315, 1262317, 1262320, 1262325, 1262326, 1262331, 1262333, 1262335, 1262342, 1262383, 1262384, 1262385, 1262388, 1262389, 1262390, 1262391, 1262393, 1262397, 1262401, 1262404, 1262405, 1262409, 1262410, 1262411, 1262412, 1262415, 1262420, 1262426, 1262440, 1262447, 1262450, 1262451, 1262452, 1262453, 1262457, 1262465, 1262480, 1262490, 1262495, 1262505, 1262506, 1262509, 1262510, 1262517, 1262520, 1262522, 1262524, 1262549, 1262550, 1262553, 1262573, 1262575, 1262587, 1262617, 1262618, 1262619, 1262620, 1262622, 1262623, 1262626, 1262628, 1262632, 1262633, 1262634, 1262636, 1262642, 1262646, 1262656, 1262726, 1262728, 1262747, 1262751, 1262753, 1262763, 1262766, 1262767, 1262773, 1262783, 1262787, 1262789, 1262794, 1262796, 1262798, 1262799, 1262807, 1262810, 1262814, 1262822, 1262824, 1262825, 1262829, 1262830, 1262840, 1262845, 1262864, 1262868, 1262876, 1262877, 1262881, 1262882, 1262888, 1262893, 1262899, 1262907, 1262911, 1262914, 1262916, 1262917, 1262953, 1262959, 1262960, 1263014, 1263015, 1263016, 1263017, 1263027, 1263028, 1263029, 1263040, 1263041, 1263043, 1263046, 1263048, 1263067, 1263068, 1263069, 1263079, 1263084, 1263093, 1263102, 1263103, 1263108, 1263111, 1263113, 1263115, 1263120, 1263121, 1263129, 1263131, 1263133, 1263134, 1263139, 1263140, 1263152, 1263157, 1263165, 1263168, 1263169, 1263170, 1263172, 1263173, 1263174, 1263182, 1263183, 1263191, 1263206, 1263207, 1263234, 1263240, 1263242, 1263245, 1263246, 1263273, 1263274, 1263283, 1263285, 1263287, 1263289, 1263297, 1263304, 1263310, 1263315, 1263323, 1263329, 1263371, 1263377, 1263386, 1263396, 1263397, 1263403, 1263419, 1263421, 1263428, 1263434, 1263454, 1263455, 1263472, 1263474, 1263477, 1263499, 1263504, 1263509, 1263510, 1263511, 1263515, 1263537, 1263539, 1263543, 1263545, 1263552, 1263555, 1263560, 1263589, 1263594, 1263597, 1263603, 1263604, 1263606, 1263608, 1263611, 1263624, 1263630, 1263631, 1263636, 1263640, 1263641, 1263644, 1263647, 1263649, 1263652, 1263662, 1263665, 1263672, 1263696, 1263711, 1263715, 1263716, 1263719, 1263721, 1263722, 1263723, 1263727, 1263744, 1263746, 1263810, 1263811, 1263812, 1263814, 1263815, 1263832, 1263834, 1263836, 1263843, 1263848, 1263849, 1263854, 1263866, 1263907, 1263910, 1263912, 1263913, 1263918, 1263921, 1263924, 1263966, 1263973, 1263983, 1263984, 1263993, 1264033, 1264034, 1264049, 1264055, 1264060, 1264064, 1264072, 1264077, 1264078, 1264084, 1264089, 1264090, 1264094, 1264111, 1264123, 1264148, 1264150, 1264152, 1264153, 1264155, 1264160, 1264161, 1264164, 1264176, 1264177, 1264178, 1264182, 1264183, 1264188, 1264189, 1264190, 1264191, 1264193, 1264194, 1264195, 1264199, 1264201, 1264202, 1264206, 1264222, 1264223, 1264225, 1264239, 1264240, 1264244, 1264247, 1264254, 1264257, 1264261, 1264265, 1264268, 1264272, 1264278, 1264282, 1264286, 1264289, 1264290, 1264295, 1264296, 1264298, 1264300, 1264303, 1264308, 1264311, 1264331, 1264332, 1264333, 1264338, 1264339, 1264377, 1264383, 1264392, 1264400, 1264405, 1264415, 1264441, 1264445, 1264446, 1264447, 1264448, 1264460, 1264464, 1264468, 1264478, 1264480, 1264481, 1264482, 1264484, 1264490, 1264532, 1264533, 1264538, 1264539, 1264543, 1264550, 1264552, 1264588, 1264597, 1264599, 1264601, 1264636, 1264642, 1264643, 1264646, 1264658, 1264693, 1264707, 1264710, 1264729, 1264738, 1264743, 1264746, 1264748, 1264754, 1264755, 1264757, 1264766, 1264768, 1264771, 1264777, 1264782, 1264787, 1264788, 1264789, 1264802, 1264848, 1264849, 1264851, 1264853, 1264856, 1264857, 1264858, 1264860, 1264869, 1264874, 1264877, 1264883, 1264904, 1264910, 1264913, 1264919, 1264924, 1264930, 1264934, 1264937, 1264939, 1264947, 1264953, 1264955, and 1264956, wherein the haplotypes are preferred haplotypes for a yield-maturity ratio that is greater than 5 or negative, wherein yield is positive and maturity is negative.
US12/376,998 2006-08-15 2007-08-15 Compositions and Methods of Plant Breeding Using High Density Marker Information Abandoned US20100293673A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/376,998 US20100293673A1 (en) 2006-08-15 2007-08-15 Compositions and Methods of Plant Breeding Using High Density Marker Information

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US83786406P 2006-08-15 2006-08-15
US12/376,998 US20100293673A1 (en) 2006-08-15 2007-08-15 Compositions and Methods of Plant Breeding Using High Density Marker Information
PCT/US2007/018101 WO2008021413A1 (en) 2006-08-15 2007-08-15 Compositions and methods of plant breeding using high density marker information

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/018101 A-371-Of-International WO2008021413A1 (en) 2006-08-15 2007-08-15 Compositions and methods of plant breeding using high density marker information

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/440,713 Continuation US10455783B2 (en) 2006-08-15 2012-04-05 Compositions and methods of plant breeding using high density marker information

Publications (1)

Publication Number Publication Date
US20100293673A1 true US20100293673A1 (en) 2010-11-18

Family

ID=38759231

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/376,998 Abandoned US20100293673A1 (en) 2006-08-15 2007-08-15 Compositions and Methods of Plant Breeding Using High Density Marker Information
US13/440,713 Active 2028-06-22 US10455783B2 (en) 2006-08-15 2012-04-05 Compositions and methods of plant breeding using high density marker information

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/440,713 Active 2028-06-22 US10455783B2 (en) 2006-08-15 2012-04-05 Compositions and methods of plant breeding using high density marker information

Country Status (8)

Country Link
US (2) US20100293673A1 (en)
EP (1) EP2056667A1 (en)
CN (1) CN101528029A (en)
AR (1) AR063688A1 (en)
BR (1) BRPI0716748A2 (en)
CA (1) CA2660526A1 (en)
CL (1) CL2007002394A1 (en)
WO (1) WO2008021413A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080256660A1 (en) * 2007-03-28 2008-10-16 Jonathan Jenkinson Utility of SNP markers associated with major soybean plant maturity and growth habit genomic regions
US20110283385A1 (en) * 2010-05-11 2011-11-17 Monsanto Technology Llc Plants and seeds of corn variety cv032267
WO2012075125A1 (en) * 2010-11-30 2012-06-07 Syngenta Participations Ag Methods for increasing genetic gain in a breeding population
WO2014205038A1 (en) * 2013-06-20 2014-12-24 Elwha Llc Rapid breeding of plants
US9018479B2 (en) 2011-05-05 2015-04-28 Monsanto Technology Llc Plants and seeds of hybrid corn variety CH482678
WO2015103430A1 (en) * 2013-12-31 2015-07-09 Dow Agrosciences Llc Selection based on optimal haploid value to create elite lines
US9681615B2 (en) 2013-06-20 2017-06-20 Elwha Llc Rapid breeding of plants
US10323255B2 (en) * 2007-08-29 2019-06-18 Monsanto Technology Llc Methods and compositions for gray leaf spot resistance in corn
US20190266214A1 (en) * 2018-02-26 2019-08-29 United Microelectronics Corp. Analyzing method and analyzing system for manufacturing data

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR0312609A (en) * 2002-07-11 2005-07-26 Monsanto Technolgoy Llc High yield grain plants with increased oil plus seed protein
CN101801992A (en) 2007-05-31 2010-08-11 孟山都技术公司 soybean polymorphisms and methods of genotyping
AR066922A1 (en) 2007-06-08 2009-09-23 Monsanto Technology Llc METHODS OF MOLECULAR IMPROVEMENT OF THE GERMOPLASMA OF A PLANT BY DIRECTED SEQUENCING
CN103798134A (en) * 2014-02-21 2014-05-21 云南省热带作物科学研究所 Method for creating new germplasms of macadimia nuts
CN104560975A (en) * 2015-01-04 2015-04-29 中国科学院东北地理与农业生态研究所 Soybean flowering date QTL chromosome mapping interval as well as obtaining method and application thereof
CR20180164A (en) * 2015-08-18 2018-09-04 Monsanto Technology Llc METHODS TO PRODUCE COTTON PLANTS WITH IMPROVED DROUGHT TOLERANCE AND COMPOSITIONS OF THESE
EP3199642A1 (en) 2016-02-01 2017-08-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Plant breeding using high throughput sequencing
EP3518656A4 (en) * 2016-09-30 2020-09-30 Monsanto Technology LLC Method for selecting target sites for site-specific genome modification in plants

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304719A (en) * 1992-02-03 1994-04-19 Pioneer Hi-Bred International, Inc. Inbred corn line PHT47
US20060135758A1 (en) * 2004-08-31 2006-06-22 Kunsheng Wu Soybean polymorphisms and methods of genotyping
US20060141495A1 (en) * 2004-09-01 2006-06-29 Kunsheng Wu Polymorphic markers and methods of genotyping corn

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535060A (en) 1983-01-05 1985-08-13 Calgene, Inc. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use
EP0146589A4 (en) 1983-05-26 1987-04-29 Plant Resources Inst Process for genetic mapping and cross-breeding thereon for plants.
US4757011A (en) 1983-09-30 1988-07-12 E. I. Du Pont De Nemours And Company Herbicide resistant tobacco
US4940835A (en) 1985-10-29 1990-07-10 Monsanto Company Glyphosate-resistant plants
US5015580A (en) * 1987-07-29 1991-05-14 Agracetus Particle-mediated transformation of soybean plants and lines
ATE87032T1 (en) 1986-12-05 1993-04-15 Ciba Geigy Ag IMPROVED METHOD OF TRANSFORMING PLANT PROTOPLASTS.
US4971908A (en) 1987-05-26 1990-11-20 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthase
US5416011A (en) 1988-07-22 1995-05-16 Monsanto Company Method for soybean transformation and regeneration
WO1990004651A1 (en) 1988-10-19 1990-05-03 Whitehead Institute For Biomedical Research Mapping quantitative traits using genetic markers
US7705215B1 (en) 1990-04-17 2010-04-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5550318A (en) 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
CA2074355C (en) 1990-01-22 2008-10-28 Ronald C. Lundquist Method of producing fertile transgenic corn plants
US5484956A (en) 1990-01-22 1996-01-16 Dekalb Genetics Corporation Fertile transgenic Zea mays plant comprising heterologous DNA encoding Bacillus thuringiensis endotoxin
US6403865B1 (en) 1990-08-24 2002-06-11 Syngenta Investment Corp. Method of producing transgenic maize using direct transformation of commercially important genotypes
US5384253A (en) 1990-12-28 1995-01-24 Dekalb Genetics Corporation Genetic transformation of maize cells by electroporation of cells pretreated with pectin degrading enzymes
US5492547B1 (en) 1993-09-14 1998-06-30 Dekalb Genetics Corp Process for predicting the phenotypic trait of yield in maize
US5591616A (en) 1992-07-07 1997-01-07 Japan Tobacco, Inc. Method for transforming monocotyledons
US5437697A (en) 1992-07-07 1995-08-01 E. I. Du Pont De Nemours And Company Method to identify genetic markers that are linked to agronomically important genes
US5635055A (en) 1994-07-19 1997-06-03 Exxon Research & Engineering Company Membrane process for increasing conversion of catalytic cracking or thermal cracking units (law011)
US5639944A (en) * 1996-05-10 1997-06-17 Asgrow Seed Company Soybean cultivar 91119238595
US5981840A (en) 1997-01-24 1999-11-09 Pioneer Hi-Bred International, Inc. Methods for agrobacterium-mediated transformation
US6219964B1 (en) 1997-03-20 2001-04-24 E. I. Du Pont De Nemours And Company Method for identifying genetic marker loci associated with trait loci
EP1042507B1 (en) * 1997-12-22 2008-04-09 Pioneer-Hi-Bred International, Inc. Qtl mapping in plant breeding populations
AU6277599A (en) * 1998-10-01 2000-04-17 Monsanto Company Methods for breeding for and screening of soybean plants with enhanced yields, and soybean plants with enhanced yields
EP1141346A2 (en) 1999-01-14 2001-10-10 Monsanto Co. Soybean transformation method
NL1011819C2 (en) * 1999-04-16 2000-10-17 Zaden Enza Method for obtaining a plant with a durable resistance to a pathogen.
US6162971A (en) * 1999-10-28 2000-12-19 Asgrow Seed Company Llc Soybean cultivar 9597972420
US6225534B1 (en) * 1999-11-04 2001-05-01 Asgrow Seed Company Llc Soybean cultivar 9521427112273
AU2591501A (en) * 1999-12-30 2001-07-16 Pioneer Hi-Bred International, Inc. Mqm mapping using haplotyped putative qtl-alleles: a simple approach for mappingqtl's in plant breeding populations
US6844154B2 (en) 2000-04-04 2005-01-18 Polygenyx, Inc. High throughput methods for haplotyping
US6931326B1 (en) 2000-06-26 2005-08-16 Genaissance Pharmaceuticals, Inc. Methods for obtaining and using haplotype data
US6452071B1 (en) * 2000-11-01 2002-09-17 Asgrow Seed Co. Llc Soybean cultivar 9469069618964
AU785425B2 (en) 2001-03-30 2007-05-17 Genetic Technologies Limited Methods of genomic analysis
US7041447B2 (en) 2001-04-09 2006-05-09 St. Jude Children's Hospital, Inc. Haplotyping method for multiple distal nucleotide polymorphisms
US6909971B2 (en) 2001-06-08 2005-06-21 Licentia Oy Method for gene mapping from chromosome and phenotype data
WO2002101631A1 (en) 2001-06-08 2002-12-19 President And Fellows Of Harvard College Haplotype determination
CN1849064A (en) 2003-07-07 2006-10-18 先锋高级育种国际公司 QTL 'mapping as-you-go'
US20060200878A1 (en) 2004-12-21 2006-09-07 Linda Lutfiyya Recombinant DNA constructs and methods for controlling gene expression
US8404927B2 (en) 2004-12-21 2013-03-26 Monsanto Technology Llc Double-stranded RNA stabilized in planta
US20080083042A1 (en) 2006-08-14 2008-04-03 David Butruille Maize polymorphisms and methods of genotyping

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5304719A (en) * 1992-02-03 1994-04-19 Pioneer Hi-Bred International, Inc. Inbred corn line PHT47
US20060135758A1 (en) * 2004-08-31 2006-06-22 Kunsheng Wu Soybean polymorphisms and methods of genotyping
US20060141495A1 (en) * 2004-09-01 2006-06-29 Kunsheng Wu Polymorphic markers and methods of genotyping corn

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080256660A1 (en) * 2007-03-28 2008-10-16 Jonathan Jenkinson Utility of SNP markers associated with major soybean plant maturity and growth habit genomic regions
US8847006B2 (en) * 2007-03-28 2014-09-30 Monsanto Technology Llc Utility of SNP markers associated with major soybean plant maturity and growth habit genomic regions
US10760095B2 (en) 2007-08-29 2020-09-01 Monsanto Technology Llc Methods and compositions for gray leaf spot resistance in corn
US10323255B2 (en) * 2007-08-29 2019-06-18 Monsanto Technology Llc Methods and compositions for gray leaf spot resistance in corn
US20110283385A1 (en) * 2010-05-11 2011-11-17 Monsanto Technology Llc Plants and seeds of corn variety cv032267
US8319074B2 (en) * 2010-05-11 2012-11-27 Monsanto Technology Llc Plants and seeds of corn variety CV032267
WO2012075125A1 (en) * 2010-11-30 2012-06-07 Syngenta Participations Ag Methods for increasing genetic gain in a breeding population
US9018479B2 (en) 2011-05-05 2015-04-28 Monsanto Technology Llc Plants and seeds of hybrid corn variety CH482678
US9681615B2 (en) 2013-06-20 2017-06-20 Elwha Llc Rapid breeding of plants
WO2014205038A1 (en) * 2013-06-20 2014-12-24 Elwha Llc Rapid breeding of plants
EP3089580A4 (en) * 2013-12-31 2017-09-20 Dow AgroSciences LLC Selection based on optimal haploid value to create elite lines
AU2014373666B2 (en) * 2013-12-31 2017-09-21 Corteva Agriscience Llc Selection based on optimal haploid value to create elite lines
WO2015103430A1 (en) * 2013-12-31 2015-07-09 Dow Agrosciences Llc Selection based on optimal haploid value to create elite lines
US11744199B2 (en) 2013-12-31 2023-09-05 Corteva Agriscience Llc Selection based on optimal haploid value to create elite lines
US20190266214A1 (en) * 2018-02-26 2019-08-29 United Microelectronics Corp. Analyzing method and analyzing system for manufacturing data
US10482153B2 (en) * 2018-02-26 2019-11-19 United Microelectronics Corp. Analyzing method and analyzing system for manufacturing data

Also Published As

Publication number Publication date
CA2660526A1 (en) 2008-02-21
WO2008021413A1 (en) 2008-02-21
US20130276173A1 (en) 2013-10-17
CN101528029A (en) 2009-09-09
US10455783B2 (en) 2019-10-29
EP2056667A1 (en) 2009-05-13
BRPI0716748A2 (en) 2013-09-17
CL2007002394A1 (en) 2008-01-18
AR063688A1 (en) 2009-02-11

Similar Documents

Publication Publication Date Title
US10455783B2 (en) Compositions and methods of plant breeding using high density marker information
US10844399B2 (en) Methods and compositions for Goss&#39; Wilt resistance in corn
Scott et al. Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding
Frascaroli et al. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines
US20100037342A1 (en) Methods and compositions for breeding plants with enhanced yield
Álvarez et al. The use of association genetics approaches in plant breeding
Zhang et al. Efficacy of pyramiding elite alleles for dynamic development of plant height in common wheat
US20170022574A1 (en) Molecular markers associated with haploid induction in zea mays
Yue et al. Heterotic prediction of hybrid performance based on genome-wide SNP markers and the phenotype of parental inbred lines in heading Chinese cabbage (Brassica rapa L. ssp. pekinensis)
CN113846178A (en) SNP molecular marker closely linked with major QTL of sweet corn grain size and application thereof
US20130040826A1 (en) Methods for trait mapping in plants
CN110423838B (en) Molecular marker closely linked with major QTL (quantitative trait locus) segment related to corn seed storage tolerance and application thereof
US20140137278A1 (en) Methods and compositions for producing nematode resistant cotton plants
US20100269216A1 (en) Network population mapping
Vengadessan Genetic and qtl analyses of sink size traits in pearl millet (Pennisetum glaucum (L.) R. Br.)
Karn Evaluation of teosinte genetic diversity for agronomic and domestication traits in maize
Nyombayire A study of heterotic grouping, gene action and genotype x environment interactions of mid-altitude and highland maize inbred lines in Rwanda.
Hai Analysis of genetic diversity among current spring wheat varieties and breeding for improved yield stability of wheat (Triticum aestivum L.)
US20160050864A1 (en) Methods for Producing Soybean Plants with Improved Fungi Resistance and Compositions Thereof
CHULA Morphological and Molecular Characterization of Fennel Genotypes

Legal Events

Date Code Title Description
AS Assignment

Owner name: MONSANTO TECHNOLOGY LLC, MISSOURI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BULL, JASON;BUTRUILLE, DAVID;EATHINGTON, SAM;AND OTHERS;SIGNING DATES FROM 20071003 TO 20071015;REEL/FRAME:022236/0303

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION