US20100286139A1 - Amino pyrazole compound - Google Patents
Amino pyrazole compound Download PDFInfo
- Publication number
- US20100286139A1 US20100286139A1 US12/742,302 US74230209A US2010286139A1 US 20100286139 A1 US20100286139 A1 US 20100286139A1 US 74230209 A US74230209 A US 74230209A US 2010286139 A1 US2010286139 A1 US 2010286139A1
- Authority
- US
- United States
- Prior art keywords
- methyl
- chloro
- cells
- pharmaceutically acceptable
- pyridazin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- -1 Amino pyrazole compound Chemical class 0.000 title description 5
- 201000007224 Myeloproliferative neoplasm Diseases 0.000 claims abstract description 9
- 208000032839 leukemia Diseases 0.000 claims abstract description 7
- 206010006187 Breast cancer Diseases 0.000 claims abstract description 6
- 208000026310 Breast neoplasm Diseases 0.000 claims abstract description 6
- 208000034578 Multiple myelomas Diseases 0.000 claims abstract description 6
- 206010035226 Plasma cell myeloma Diseases 0.000 claims abstract description 6
- 206010060862 Prostate cancer Diseases 0.000 claims abstract description 6
- 208000000236 Prostatic Neoplasms Diseases 0.000 claims abstract description 6
- 208000005017 glioblastoma Diseases 0.000 claims abstract description 6
- 150000001875 compounds Chemical class 0.000 claims description 60
- SQSZANZGUXWJEA-UHFFFAOYSA-N Gandotinib Chemical compound N1C(C)=CC(NC2=NN3C(CC=4C(=CC(Cl)=CC=4)F)=C(C)N=C3C(CN3CCOCC3)=C2)=N1 SQSZANZGUXWJEA-UHFFFAOYSA-N 0.000 claims description 26
- 150000003839 salts Chemical class 0.000 claims description 22
- 102100033444 Tyrosine-protein kinase JAK2 Human genes 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 12
- 208000017733 acquired polycythemia vera Diseases 0.000 claims description 8
- 208000037244 polycythemia vera Diseases 0.000 claims description 8
- 208000014767 Myeloproliferative disease Diseases 0.000 claims description 6
- 239000008194 pharmaceutical composition Substances 0.000 claims description 6
- 208000024893 Acute lymphoblastic leukemia Diseases 0.000 claims description 5
- 208000014697 Acute lymphocytic leukaemia Diseases 0.000 claims description 5
- 208000032027 Essential Thrombocythemia Diseases 0.000 claims description 5
- 201000003793 Myelodysplastic syndrome Diseases 0.000 claims description 5
- 208000006664 Precursor Cell Lymphoblastic Leukemia-Lymphoma Diseases 0.000 claims description 5
- 239000003814 drug Substances 0.000 claims description 5
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 5
- 208000003476 primary myelofibrosis Diseases 0.000 claims description 5
- 208000011580 syndromic disease Diseases 0.000 claims description 5
- ALKRJHWAAXQKJM-UHFFFAOYSA-N 3-[(4-chloro-2-fluorophenyl)methyl]-2-methyl-n-(5-methyl-1h-pyrazol-3-yl)-8-(morpholin-4-ylmethyl)imidazo[1,2-b]pyridazin-6-amine;hydrochloride Chemical compound Cl.N1C(C)=CC(NC2=NN3C(CC=4C(=CC(Cl)=CC=4)F)=C(C)N=C3C(CN3CCOCC3)=C2)=N1 ALKRJHWAAXQKJM-UHFFFAOYSA-N 0.000 claims description 4
- 241000124008 Mammalia Species 0.000 claims description 4
- 239000003085 diluting agent Substances 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 208000037398 BCR-ABL1 negative atypical chronic myeloid leukemia Diseases 0.000 claims description 3
- 208000037379 Myeloid Chronic Atypical BCR-ABL Negative Leukemia Diseases 0.000 claims description 3
- 201000004892 atypical chronic myeloid leukemia Diseases 0.000 claims description 3
- 208000016595 therapy related acute myeloid leukemia and myelodysplastic syndrome Diseases 0.000 claims description 3
- 101000997832 Homo sapiens Tyrosine-protein kinase JAK2 Proteins 0.000 claims 2
- 206010028980 Neoplasm Diseases 0.000 abstract description 3
- JVVRJMXHNUAPHW-UHFFFAOYSA-N 1h-pyrazol-5-amine Chemical class NC=1C=CNN=1 JVVRJMXHNUAPHW-UHFFFAOYSA-N 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 98
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 87
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 45
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 34
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 28
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 26
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 24
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 24
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 21
- 239000002953 phosphate buffered saline Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 20
- 239000007787 solid Substances 0.000 description 19
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 17
- 239000012141 concentrate Substances 0.000 description 17
- 239000012091 fetal bovine serum Substances 0.000 description 17
- 108010019437 Janus Kinase 2 Proteins 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 16
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 14
- 239000012980 RPMI-1640 medium Substances 0.000 description 13
- 238000003756 stirring Methods 0.000 description 13
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 11
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 10
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 9
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 8
- 101000934996 Homo sapiens Tyrosine-protein kinase JAK3 Proteins 0.000 description 7
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 7
- 102100025387 Tyrosine-protein kinase JAK3 Human genes 0.000 description 7
- 238000003556 assay Methods 0.000 description 7
- 238000000423 cell based assay Methods 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 7
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 7
- 239000010410 layer Substances 0.000 description 7
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 6
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 6
- 102000003951 Erythropoietin Human genes 0.000 description 6
- 108090000394 Erythropoietin Proteins 0.000 description 6
- 102000000588 Interleukin-2 Human genes 0.000 description 6
- 108010002350 Interleukin-2 Proteins 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 6
- 239000000872 buffer Substances 0.000 description 6
- 229940105423 erythropoietin Drugs 0.000 description 6
- 239000002609 medium Substances 0.000 description 6
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000010992 reflux Methods 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 6
- 238000005160 1H NMR spectroscopy Methods 0.000 description 5
- 238000011534 incubation Methods 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 239000012224 working solution Substances 0.000 description 5
- GIMRDGMAHSBGHG-UHFFFAOYSA-N (4-chloro-2-fluorophenyl)-(6-chloro-2-methylimidazo[1,2-b]pyridazin-3-yl)methanone Chemical compound CC=1N=C2C=CC(Cl)=NN2C=1C(=O)C1=CC=C(Cl)C=C1F GIMRDGMAHSBGHG-UHFFFAOYSA-N 0.000 description 4
- WXZUHCAKLKTCGB-UHFFFAOYSA-N (4-chloro-2-fluorophenyl)-[6-chloro-2-methyl-8-(morpholin-4-ylmethyl)imidazo[1,2-b]pyridazin-3-yl]methanone Chemical compound C=1C(Cl)=NN2C(C(=O)C=3C(=CC(Cl)=CC=3)F)=C(C)N=C2C=1CN1CCOCC1 WXZUHCAKLKTCGB-UHFFFAOYSA-N 0.000 description 4
- FYZHQRGIHWWQLB-UHFFFAOYSA-N 2-chloro-1-(4-chloro-2-fluorophenyl)ethanone Chemical compound FC1=CC(Cl)=CC=C1C(=O)CCl FYZHQRGIHWWQLB-UHFFFAOYSA-N 0.000 description 4
- 230000001857 anti-mycotic effect Effects 0.000 description 4
- 239000002543 antimycotic Substances 0.000 description 4
- 230000003115 biocidal effect Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- NHXNBGBJOOYSEA-UHFFFAOYSA-N n'-(6-chloropyridazin-3-yl)-n,n-dimethylethanimidamide Chemical compound CN(C)C(C)=NC1=CC=C(Cl)N=N1 NHXNBGBJOOYSEA-UHFFFAOYSA-N 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- AQRLNPVMDITEJU-UHFFFAOYSA-N triethylsilane Chemical compound CC[SiH](CC)CC AQRLNPVMDITEJU-UHFFFAOYSA-N 0.000 description 4
- CXNIUSPIQKWYAI-UHFFFAOYSA-N xantphos Chemical compound C=12OC3=C(P(C=4C=CC=CC=4)C=4C=CC=CC=4)C=CC=C3C(C)(C)C2=CC=CC=1P(C=1C=CC=CC=1)C1=CC=CC=C1 CXNIUSPIQKWYAI-UHFFFAOYSA-N 0.000 description 4
- XXKYRXQRSRDCAR-UHFFFAOYSA-N 1-[(4-methoxyphenyl)methyl]-5-methylpyrazol-3-amine Chemical compound C1=CC(OC)=CC=C1CN1C(C)=CC(N)=N1 XXKYRXQRSRDCAR-UHFFFAOYSA-N 0.000 description 3
- 239000012114 Alexa Fluor 647 Substances 0.000 description 3
- YCAGGFXSFQFVQL-UHFFFAOYSA-N Endothion Chemical compound COC1=COC(CSP(=O)(OC)OC)=CC1=O YCAGGFXSFQFVQL-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 3
- 229940121730 Janus kinase 2 inhibitor Drugs 0.000 description 3
- 239000012979 RPMI medium Substances 0.000 description 3
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- PBAYDYUZOSNJGU-UHFFFAOYSA-N chelidonic acid Natural products OC(=O)C1=CC(=O)C=C(C(O)=O)O1 PBAYDYUZOSNJGU-UHFFFAOYSA-N 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000008098 formaldehyde solution Substances 0.000 description 3
- 239000008103 glucose Substances 0.000 description 3
- 150000003840 hydrochlorides Chemical class 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 229940054269 sodium pyruvate Drugs 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 238000003260 vortexing Methods 0.000 description 3
- VNTZQYCUWPBWSH-UHFFFAOYSA-N (4-chloro-2-fluorophenyl)-[6-chloro-2-methyl-8-(morpholin-4-ylmethyl)imidazo[1,2-b]pyridazin-3-yl]methanol Chemical compound C=1C(Cl)=NN2C(C(O)C=3C(=CC(Cl)=CC=3)F)=C(C)N=C2C=1CN1CCOCC1 VNTZQYCUWPBWSH-UHFFFAOYSA-N 0.000 description 2
- AQURFXLIZXOCLU-UHFFFAOYSA-N (4-methoxyphenyl)methylhydrazine Chemical compound COC1=CC=C(CNN)C=C1 AQURFXLIZXOCLU-UHFFFAOYSA-N 0.000 description 2
- FBZVZUSVGKOWHG-UHFFFAOYSA-N 1,1-dimethoxy-n,n-dimethylethanamine Chemical compound COC(C)(OC)N(C)C FBZVZUSVGKOWHG-UHFFFAOYSA-N 0.000 description 2
- OIGMDNONQJGUCF-UHFFFAOYSA-N 1-(4-chloro-2-fluorophenyl)ethanone Chemical compound CC(=O)C1=CC=C(Cl)C=C1F OIGMDNONQJGUCF-UHFFFAOYSA-N 0.000 description 2
- HXOQAJBRGYFLFH-UHFFFAOYSA-N 2-[[6-chloro-3-(4-chloro-2-fluorobenzoyl)-2-methylimidazo[1,2-b]pyridazin-8-yl]methyl]isoindole-1,3-dione Chemical compound CC=1N=C2C(CN3C(C4=CC=CC=C4C3=O)=O)=CC(Cl)=NN2C=1C(=O)C1=CC=C(Cl)C=C1F HXOQAJBRGYFLFH-UHFFFAOYSA-N 0.000 description 2
- DTXVKPOKPFWSFF-UHFFFAOYSA-N 3(S)-hydroxy-13-cis-eicosenoyl-CoA Chemical compound NC1=CC=C(Cl)N=N1 DTXVKPOKPFWSFF-UHFFFAOYSA-N 0.000 description 2
- CLUPSXPXWOYJEC-UHFFFAOYSA-N 3-[(4-chloro-2-fluorophenyl)methyl]-n-[1-[(4-methoxyphenyl)methyl]-5-methylpyrazol-3-yl]-2-methyl-8-(morpholin-4-ylmethyl)imidazo[1,2-b]pyridazin-6-amine Chemical compound C1=CC(OC)=CC=C1CN1C(C)=CC(NC2=NN3C(CC=4C(=CC(Cl)=CC=4)F)=C(C)N=C3C(CN3CCOCC3)=C2)=N1 CLUPSXPXWOYJEC-UHFFFAOYSA-N 0.000 description 2
- HINYAGKLTKBNMH-UHFFFAOYSA-N 4-[[6-chloro-3-[(4-chloro-2-fluorophenyl)methyl]-2-methylimidazo[1,2-b]pyridazin-8-yl]methyl]morpholine Chemical compound C=1C(Cl)=NN2C(CC=3C(=CC(Cl)=CC=3)F)=C(C)N=C2C=1CN1CCOCC1 HINYAGKLTKBNMH-UHFFFAOYSA-N 0.000 description 2
- NRMLZDPULIOORA-UHFFFAOYSA-N 4-[[6-chloro-3-[(4-chloro-2-fluorophenyl)methyl]-2-methylimidazo[1,2-b]pyridazin-8-yl]methyl]morpholine;hydrochloride Chemical compound Cl.C=1C(Cl)=NN2C(CC=3C(=CC(Cl)=CC=3)F)=C(C)N=C2C=1CN1CCOCC1 NRMLZDPULIOORA-UHFFFAOYSA-N 0.000 description 2
- FYTLHYRDGXRYEY-UHFFFAOYSA-N 5-Methyl-3-pyrazolamine Chemical compound CC=1C=C(N)NN=1 FYTLHYRDGXRYEY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- BVMQMWQPSXROEQ-UHFFFAOYSA-N [8-(aminomethyl)-6-chloro-2-methylimidazo[1,2-b]pyridazin-3-yl]-(4-chloro-2-fluorophenyl)methanone Chemical compound CC=1N=C2C(CN)=CC(Cl)=NN2C=1C(=O)C1=CC=C(Cl)C=C1F BVMQMWQPSXROEQ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 229940008099 dimethicone Drugs 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 239000012065 filter cake Substances 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000012458 free base Substances 0.000 description 2
- 239000003102 growth factor Substances 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- ZRSNZINYAWTAHE-UHFFFAOYSA-N p-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1 ZRSNZINYAWTAHE-UHFFFAOYSA-N 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 235000011181 potassium carbonates Nutrition 0.000 description 2
- LPNYRYFBWFDTMA-UHFFFAOYSA-N potassium tert-butoxide Chemical compound [K+].CC(C)(C)[O-] LPNYRYFBWFDTMA-UHFFFAOYSA-N 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000010791 quenching Methods 0.000 description 2
- 239000012679 serum free medium Substances 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 230000011664 signaling Effects 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- YBBRCQOCSYXUOC-UHFFFAOYSA-N sulfuryl dichloride Chemical compound ClS(Cl)(=O)=O YBBRCQOCSYXUOC-UHFFFAOYSA-N 0.000 description 2
- LAAOJPYAGIBKBK-UHFFFAOYSA-N tert-butyl n-[(4-methoxyphenyl)methylamino]carbamate Chemical compound COC1=CC=C(CNNC(=O)OC(C)(C)C)C=C1 LAAOJPYAGIBKBK-UHFFFAOYSA-N 0.000 description 2
- IWKLCYXLUROGIV-NTEUORMPSA-N tert-butyl n-[(e)-(4-methoxyphenyl)methylideneamino]carbamate Chemical compound COC1=CC=C(\C=N\NC(=O)OC(C)(C)C)C=C1 IWKLCYXLUROGIV-NTEUORMPSA-N 0.000 description 2
- UKSZBOKPHAQOMP-SVLSSHOZSA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 UKSZBOKPHAQOMP-SVLSSHOZSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- MOHYOXXOKFQHDC-UHFFFAOYSA-N 1-(chloromethyl)-4-methoxybenzene Chemical compound COC1=CC=C(CCl)C=C1 MOHYOXXOKFQHDC-UHFFFAOYSA-N 0.000 description 1
- FOZVXADQAHVUSV-UHFFFAOYSA-N 1-bromo-2-(2-bromoethoxy)ethane Chemical compound BrCCOCCBr FOZVXADQAHVUSV-UHFFFAOYSA-N 0.000 description 1
- WQINSVOOIJDOLJ-UHFFFAOYSA-N 2-(1,3-dioxoisoindol-2-yl)acetic acid Chemical compound C1=CC=C2C(=O)N(CC(=O)O)C(=O)C2=C1 WQINSVOOIJDOLJ-UHFFFAOYSA-N 0.000 description 1
- NSEQDDGTNOMRHQ-UHFFFAOYSA-N 2-[(4-methoxyphenyl)methyl]-5-methylpyrazol-3-amine Chemical compound C1=CC(OC)=CC=C1CN1C(N)=CC(C)=N1 NSEQDDGTNOMRHQ-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- 206010056867 Activated protein C resistance Diseases 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 208000007257 Budd-Chiari syndrome Diseases 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 101000617830 Homo sapiens Sterol O-acyltransferase 1 Proteins 0.000 description 1
- 102000042838 JAK family Human genes 0.000 description 1
- 108091082332 JAK family Proteins 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- 201000009454 Portal vein thrombosis Diseases 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 235000014443 Pyrus communis Nutrition 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 108010029477 STAT5 Transcription Factor Proteins 0.000 description 1
- 102100024481 Signal transducer and activator of transcription 5A Human genes 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 102100021993 Sterol O-acyltransferase 1 Human genes 0.000 description 1
- 101000697584 Streptomyces lavendulae Streptothricin acetyltransferase Proteins 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 206010047249 Venous thrombosis Diseases 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 239000008346 aqueous phase Substances 0.000 description 1
- 230000003305 autocrine Effects 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000002051 biphasic effect Effects 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000006552 constitutive activation Effects 0.000 description 1
- 230000037011 constitutive activity Effects 0.000 description 1
- 239000013058 crude material Substances 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000000925 erythroid effect Effects 0.000 description 1
- 210000003013 erythroid precursor cell Anatomy 0.000 description 1
- FCZCIXQGZOUIDN-UHFFFAOYSA-N ethyl 2-diethoxyphosphinothioyloxyacetate Chemical compound CCOC(=O)COP(=S)(OCC)OCC FCZCIXQGZOUIDN-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000005429 filling process Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 230000004077 genetic alteration Effects 0.000 description 1
- 231100000118 genetic alteration Toxicity 0.000 description 1
- 201000005787 hematologic cancer Diseases 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- DCLWNTIANRACSB-UHFFFAOYSA-N imidazo[1,2-b]pyridazin-6-amine Chemical compound N1=C(N)C=CC2=NC=CN21 DCLWNTIANRACSB-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- JMMWKPVZQRWMSS-UHFFFAOYSA-N isopropanol acetate Natural products CC(C)OC(C)=O JMMWKPVZQRWMSS-UHFFFAOYSA-N 0.000 description 1
- 229940011051 isopropyl acetate Drugs 0.000 description 1
- GWYFCOCPABKNJV-UHFFFAOYSA-N isovaleric acid Chemical compound CC(C)CC(O)=O GWYFCOCPABKNJV-UHFFFAOYSA-N 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- SKTCDJAMAYNROS-UHFFFAOYSA-N methoxycyclopentane Chemical compound COC1CCCC1 SKTCDJAMAYNROS-UHFFFAOYSA-N 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000007758 minimum essential medium Substances 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 238000012261 overproduction Methods 0.000 description 1
- WVPMIMFMIGMEHW-UHFFFAOYSA-N oxovanadium(2+);pentane-2,4-dione Chemical compound [V+2]=O.CC(=O)[CH-]C(C)=O.CC(=O)[CH-]C(C)=O WVPMIMFMIGMEHW-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102200087780 rs77375493 Human genes 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- DKACXUFSLUYRFU-UHFFFAOYSA-N tert-butyl n-aminocarbamate Chemical compound CC(C)(C)OC(=O)NN DKACXUFSLUYRFU-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000002103 transcriptional effect Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 1
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D487/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
- C07D487/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
- C07D487/04—Ortho-condensed systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/50—Pyridazines; Hydrogenated pyridazines
- A61K31/5025—Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D413/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
- C07D413/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
Definitions
- JAK2 Janus kinase 2
- JAK2 has a pivotal role in the erythropoietin (EPO) signaling pathway, including erythrocyte differentiation and Stat5 activation.
- EPO erythropoietin
- Recent studies have demonstrated that patients with chronic myeloproliferative disorders such as polycythemia vera, essential thrombocytosis, and myelosclerosis with myeloid metaplasia and thrombotic disorders such as activated protein C resistance, splanchnic vein thrombosis, Budd-Chiari Syndrome, and portal vein thrombosis frequently have acquired activating mutations in JAK2.
- mutant JAK2 leads to constitutive tyrosine phosphorylation activity, by an unknown mechanism.
- the constitutive activity of mutant JAK2 leads to increased levels of phosphorylated JAK2, pSTAT5, and STAT5 transcriptional activity, which leads to the pathogenesis of myeloproliferative disorders and leukemias, such as atypical chronic myeloid leukemia.
- JAK2 is activated by interleukin-6-depedent autocrine loop or other genetic alterations in solid and hematologic tumors, e.g., glioblastoma, breast cancer, multiple myeloma, prostate cancer, primary and secondary acute myeloid leukemia, T-lineage and B-lineage acute lymphoblastic leukemia, myelodysplasia syndrome.
- interleukin-6-depedent autocrine loop or other genetic alterations in solid and hematologic tumors, e.g., glioblastoma, breast cancer, multiple myeloma, prostate cancer, primary and secondary acute myeloid leukemia, T-lineage and B-lineage acute lymphoblastic leukemia, myelodysplasia syndrome.
- the present invention provides a novel amino pyrazole compound believed to have clinical use for treatment of myeloproliferative disorders in which the JAK2 signaling pathway is activated or in which JAK/STAT signaling is dysregulated.
- the present invention provides 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof.
- the present invention provides a method of treating chronic myeloproliferative disorders selected from the group consisting of polycythemia vera, essential thrombocytosis, and myelosclerosis with myeloid metaplasia in a mammal comprising administering to a mammal in need of such treatment an effective amount of 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof.
- the present invention also provides a method of treating glioblastoma, breast cancer, multiple myeloma, prostate cancer, and leukemias, such as atypical chronic myeloid leukemia, primary and secondary acute myeloid leukemia, T-lineage and B-lineage acute lymphoblastic leukemia, myelodysplasia syndrome, and myeloproliferative disorders in a patient comprising administering to a patient in need of such treatment an effective amount of 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof.
- leukemias such as atypical chronic myeloid leukemia, primary and secondary acute myeloid leukemia, T-lineage and B-lineage acute lymphoblastic leukemia, myelodysplasia syndrome, and myeloprolif
- the present invention also provides a pharmaceutical composition
- a pharmaceutical composition comprising 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
- This invention also provides 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, diluent or excipient in combination with another therapeutic ingredient.
- This invention also provides 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof for use as a medicament. Additionally, this invention provides use of 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating chronic myeloproliferative disorders.
- these chronic myeloproliferative disorders are selected from the group consisting of polycythemia vera, essential thrombocytosis, and myelosclerosis with myeloid metaplasia.
- this invention provides a pharmaceutical composition for treating chronic myeloproliferative disorders selected from the group consisting of polycythemia vera, essential thrombocytosis, and myelosclerosis with myeloid metaplasia comprising 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof as an active ingredient.
- the compound of the present invention is capable of forming salts.
- the compound of the present invention is an amine, and accordingly reacts with any of a number of inorganic and organic acids to form pharmaceutically acceptable acid addition salts.
- Such pharmaceutically acceptable acid addition salts and common methodology for preparing them are well known in the art. See, e.g., P. Stahl, et al., HANDBOOK OF PHARMACEUTICAL SALTS: PROPERTIES, SELECTION AND USE, (VCHA/Wiley-VCH, 2002); L. D. Bighley, S. M. Berge, D. C. Monkhouse, in “Encyclopedia of Pharmaceutical Technology’. Eds. J. Swarbrick and J. C.
- dimethicone during blending via a liquid addition system.
- JAK2 EPO-TF1/pSTAT5 cell-based assay mimics the constitutive activation of JAK2-STAT5 in erythroid progenitor cells, which drives the overproduction of red blood cells, a marker of polycythemia vera (PV).
- PV polycythemia vera
- TF-1 human erythroid leukemia
- RPMI-1640 was developed by Moore et. al. at Roswell Park Memorial Institute. The formulation is based on the RPMI-1630 series of media utilizing a bicarbonate buffering system and alterations in the amounts of amino acids and vitamins.) with 10% fetal bovine serum (FBS), 0.075% sodium bicarbonate, 1 mM sodium pyruvate, 1 ⁇ antibiotic/antimycotic (Invitrogen, Carlsbad, Calif.) and 0.45% glucose.
- FBS fetal bovine serum
- the medium is supplemented with GM-CSF (granulocyte-macrophage colony-stimulating factor) at a final concentration of 2 ng/mL. Cells are kept at 37° C.
- GM-CSF granulocyte-macrophage colony-stimulating factor
- RPMI 1640 RPMI 1640 with 0.075% sodium bicarbonate, 1 mM sodium pyruvate, 1 ⁇ antibiotic/antimycotic, and 0.45% glucose
- the diluted cells are added back to tissue culture flasks and incubated overnight at 37° C. Test compounds are prepared in 100% DMSO at 10 mM concentration.
- EPO Erythropoietin
- EPO medium is added into each well and the plate is vortexed.
- Cells are incubated in a 37° C. water bath for 20 min and mixed every 5 min during the incubation time.
- Final 10 point concentration-response range is 20 ⁇ M-1 nM at a final concentration of DMSO at 0.5% and EPO at 1.6 U/mL.
- 500 ⁇ L of 1% formaldehyde solution (made freshly with phosphate-buffered saline (PBS) and kept warm at 37° C.) is added to each well. Plates are sealed and inverted 8-10 times to mix. Plates are placed in a 37° C. water bath for 10 min.
- cell plates are spun at 1200 rpm for 5 min at room temperature (RT). The supernatant is aspirated, leaving 100 ⁇ L of cells (2 ⁇ 10 5 cells). The cells are vortexed and washed twice with 800 ⁇ L of PBS by repeating the spin steps and leaving 100 ⁇ L containing ⁇ 2 ⁇ 10 5 cells after the final wash. An aliquot of 800 ⁇ L of cold 90% methanol is added to the cells and placed at ⁇ 20° C. overnight. Plates are spun and methanol is removed. Cells are washed with FACS buffer (PBS with 5% FBS and 0.02% sodium azide).
- FACS buffer PBS with 5% FBS and 0.02% sodium azide
- IL-2 activates the JAK3 pathway in natural killer (NK) cells to drive the NK and CD8 lymphocyte proliferation. Therefore, IL-2 stimulated NK92/pSTAT5 cell-based assay enables the evaluation of the JAK3 cellular activity of JAK2 compounds in vitro.
- NK-92 (natural killer) cells are maintained in minimum essential medium (MEM) Alpha with 15% fetal bovine serum, 15% Horse Serum and 1 ⁇ antibiotic/antimycotic (Invitrogen, Carlsbad, Calif.). The medium is supplemented with IL-2 (R&D systems, Minneapolis, Minn.) for a final concentration of 4 ng/mL. Cells are kept at 37° C. with 5% CO 2 . Cells are starved in serum free medium to remove endogenous growth factors. NK-92 cells are counted and collected to seed 2 ⁇ 10 7 cells per 96-well plate at a density of 2 ⁇ 10 5 cells per well.
- MEM minimum essential medium
- IL-2 R&D systems, Minneapolis, Minn.
- the cells are rinsed twice with unsupplemented MEM Alpha (MEM Alpha) before suspending cells at a final concentration of 8 ⁇ 10 5 cells/mL in MEM Alpha with 0.6% serum (0.3% FBS, 0.3% horse serum).
- MEM Alpha unsupplemented MEM Alpha
- the diluted cells are added back to tissue culture flasks and incubated overnight at 37° C.
- Test compounds are prepared in 100% DMSO at 10 mM concentration.
- Compounds are serially diluted 1:3 with 100% DMSO in a 10 point-200 ⁇ concentration-response range (4 mM-200 nM).
- 2.5 ⁇ L of 200 ⁇ compound solution is added to 125 ⁇ L of 10% FBS complete RPMI 1640 medium for a 4 ⁇ concentration compound plate.
- serum-starved cells are collected and washed once with unsupplemented RPMI 1640 medium.
- Cells are suspended in 10% FBS complete RPMI 1640 medium for a final concentration of 8 ⁇ 10 5 cells/mL.
- An aliquot of 250 ⁇ L of diluted cells (2 ⁇ 10 5 cells) is added to each well in the 4 ⁇ concentration compound plate.
- Cells are mixed by vortexing and the plate is incubated in a 37° C. water bath for 10 min.
- a fresh 4 ⁇ working solution of IL-2 at 2 ng/mL is prepared using pre-warmed 10% FBS complete RPMI medium. After the cells are treated with compound for 10 min, 125 ⁇ L of IL-2 medium is added into each well. Cells are mixed by vortexing.
- the supernatant is aspirated, leaving 100 ⁇ L of cells (2 ⁇ 10 5 cells).
- the cells are vortexed and washed twice with 800 ⁇ L of PBS by repeating the spin steps and leaving 100 ⁇ L containing ⁇ 2 ⁇ 10 5 cells after the final wash.
- An aliquot of 800 ⁇ L of cold 90% methanol is added to the cells and placed at ⁇ 20° C. overnight. Plates are spun and methanol is removed. Cells are washed with FACS buffer (PBS with 5% FBS and 0.02% sodium azide).
- Cells are washed with PBS, and 50 ⁇ L of Cytofix® (BD Biosciences, San Jose, Calif.) is added to the cells. The cells are transferred to 96 well black tissue culture plates and sealed. The plates are spun down. Mean fluorescent intensity data are collected and analyzed using Cellomics Arrayscan® VTi. Compound treatment is compared to the vehicle to determine percent inhibition data. The MSR is determined to be 2.06. The relative IC 50 is calculated using a 4 parameter logistic curve fitting analysis with ActivityBase 4.0.
- the ratio of JAK3/JAK2 was determined to be 28.5 fold, which demonstrates 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine is a selective JAK2 inhibitor over JAK3.
- JAK2 target inhibition has been evaluated in Ba/F3 expressing JAK2 V617F by Western blot as reported in Wernig et al. (Wernig G, et al. Efficacy of TG 101348 , a selective JAK 2 inhibitor, in treatment of a murine model of JAK 2 V 617 F - induced polycythemia vera , Cancer Cell, April; 13(4):311-20).
- a medium throughput Cellomics assay was established to evaluate the JAK2 target inhibition in Ba/F3 cells expressing JAK2V617F. This assay enables the discovery of an effective therapeutic agent to treat disorders associated with JAK2V617F mutation.
- Ba/F3 (murine pro-B) cells expressing JAK2V617F maintained in RPMI 1640 with 10% FBS, 0.07% sodium bicarbonate, 1 mM sodium pyruvate, 1 ⁇ antibiotic/antimycotic (Invitrogen, Carlsbad, Calif.) and 0.45% glucose (Sigma, St Louis, Mo.). Cells are kept at 37° C. with 5% CO 2 .
- the test compound is prepared in 100% DMSO at 10 mM concentration.
- the compound is serially diluted 1:3 with 100% DMSO in a 10 point 200 ⁇ concentration-response range (4 mM-200 nM.).
- 2.5 ⁇ L of 200 ⁇ compound solution is added to 125 ⁇ L of complete RPMI 1640 media with 10% FBS for a 4 ⁇ concentration compound plate.
- cells are collected and washed twice with unsupplemented RPMI 1640. Cells are then suspended in 10% FBS completed RPMI medium for a final concentration of 4 ⁇ 10 5 /mL. Next, 500 mL of cells (2 ⁇ 10 5 cells) are transferred into 96 deep well plates. Finally, 2.5 ⁇ L (1:200 dilution) of compound stock solution are added to the cells and are incubated with cells in a 37° C. water bath for 60 min.
- a working solution of 2 mg/mL Hoechst (Acros Organics, Morris Plains, N.J.) is prepared with PBS. An aliquot of 200 ⁇ L is added to each well and cells are incubated at RT in the dark for 10 min. Cells are washed with PBS, and 50 ⁇ L of Cytofix® (BD Biosciences, San Jose, Calif.) is added to the cells. The cells are transferred to 96 well black tissue culture plates and sealed. The plates are spun down. Mean fluorescent intensity data are collected and analyzed using Cellomics Arrayscan® VTi. Compound treatment is compared to the vehicle to determine percent inhibition data. The relative IC 50 is calculated using a 4 parameter logistic curve fitting analysis with ActivityBase 4.0.
- the compounds of the present invention are preferably formulated as pharmaceutical compositions administered by a variety of routes. Most preferably, such compositions are for oral administration.
- Such pharmaceutical compositions and processes for preparing same are well known in the art. See, e.g., REMINGTON: THE SCIENCE AND PRACTICE OF PHARMACY (A. Gennaro, et al., eds., 19 th ed., Mack Publishing Co., 1995).
- the compounds of the present invention are generally effective over a wide dosage range.
- dosages per day normally fall within the range of about 1 mg to about 1000 mg total daily dose, preferably 500 mg to 1000 mg total daily dose, more preferably 600 mg to 1000 mg total daily dose.
- dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed.
- the above dosage range is not intended to limit the scope of the invention in any way. It will be understood that the amount of the compound actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound or compounds administered, the age, weight, and response of the individual patient, and the severity of the patient's symptoms.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Oncology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Hematology (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Plural Heterocyclic Compounds (AREA)
Abstract
The present invention provides amino pyrazole compounds useful in the treatment of chronic myeloproliferative disorders and various cancers, e.g., glioblastoma, breast cancer, multiple myeloma, prostate cancer, and leukemias.
Description
- Janus kinase 2 (JAK2) is a member of the tyrosine kinase family which is involved in cytokine signaling. JAK2 has a pivotal role in the erythropoietin (EPO) signaling pathway, including erythrocyte differentiation and Stat5 activation. Recent studies have demonstrated that patients with chronic myeloproliferative disorders such as polycythemia vera, essential thrombocytosis, and myelosclerosis with myeloid metaplasia and thrombotic disorders such as activated protein C resistance, splanchnic vein thrombosis, Budd-Chiari Syndrome, and portal vein thrombosis frequently have acquired activating mutations in JAK2. The mutation, a valine-to-phenylalanine substitution at amino acid position 617, leads to constitutive tyrosine phosphorylation activity, by an unknown mechanism. The constitutive activity of mutant JAK2 leads to increased levels of phosphorylated JAK2, pSTAT5, and STAT5 transcriptional activity, which leads to the pathogenesis of myeloproliferative disorders and leukemias, such as atypical chronic myeloid leukemia. In addition, JAK2 is activated by interleukin-6-depedent autocrine loop or other genetic alterations in solid and hematologic tumors, e.g., glioblastoma, breast cancer, multiple myeloma, prostate cancer, primary and secondary acute myeloid leukemia, T-lineage and B-lineage acute lymphoblastic leukemia, myelodysplasia syndrome.
- Various amino pyrazole tyrosine kinase inhibitors have been reported. See for example, WO06087538 and WO2007064797.
- However, there is still a need for further compounds that inhibit tyrosine kinases such as JAK2. The present invention provides a novel amino pyrazole compound believed to have clinical use for treatment of myeloproliferative disorders in which the JAK2 signaling pathway is activated or in which JAK/STAT signaling is dysregulated.
- The present invention provides 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof.
- The present invention provides a method of treating chronic myeloproliferative disorders selected from the group consisting of polycythemia vera, essential thrombocytosis, and myelosclerosis with myeloid metaplasia in a mammal comprising administering to a mammal in need of such treatment an effective amount of 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof.
- The present invention also provides a method of treating glioblastoma, breast cancer, multiple myeloma, prostate cancer, and leukemias, such as atypical chronic myeloid leukemia, primary and secondary acute myeloid leukemia, T-lineage and B-lineage acute lymphoblastic leukemia, myelodysplasia syndrome, and myeloproliferative disorders in a patient comprising administering to a patient in need of such treatment an effective amount of 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof.
- The present invention also provides a pharmaceutical composition comprising 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
- This invention also provides 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, diluent or excipient in combination with another therapeutic ingredient.
- This invention also provides 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof for use as a medicament. Additionally, this invention provides use of 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof in the manufacture of a medicament for treating chronic myeloproliferative disorders. In particular these chronic myeloproliferative disorders are selected from the group consisting of polycythemia vera, essential thrombocytosis, and myelosclerosis with myeloid metaplasia. Furthermore, this invention provides a pharmaceutical composition for treating chronic myeloproliferative disorders selected from the group consisting of polycythemia vera, essential thrombocytosis, and myelosclerosis with myeloid metaplasia comprising 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine or a pharmaceutically acceptable salt thereof as an active ingredient.
- It will be understood by the skilled reader that the compound of the present invention is capable of forming salts. The compound of the present invention is an amine, and accordingly reacts with any of a number of inorganic and organic acids to form pharmaceutically acceptable acid addition salts. Such pharmaceutically acceptable acid addition salts and common methodology for preparing them are well known in the art. See, e.g., P. Stahl, et al., HANDBOOK OF PHARMACEUTICAL SALTS: PROPERTIES, SELECTION AND USE, (VCHA/Wiley-VCH, 2002); L. D. Bighley, S. M. Berge, D. C. Monkhouse, in “Encyclopedia of Pharmaceutical Technology’. Eds. J. Swarbrick and J. C. Boylan, Vol. 13, Marcel Dekker, Inc., New York, Basel, Hong Kong 1995, pp. 453-499; S. M. Berge, et al., “Pharmaceutical Salts, “Journal of Pharmaceutical Sciences, Vol 66, No. 1, January 1977.
- The following preparations and examples are named using ChemDraw Ultra, Version 10.0.
- In a 1 L round bottom flask, combine 5-amino-3-methylpyrazole (22.8 g, 234.8 mmol) and N-methylpyrrolidone (200 mL). Cool flask to 0° C. and place under nitrogen. Add sodium hydroxide (9.39 g, 1.0 equivalent (equiv.)) to the flask and stir for 30 minutes (min). Add a solution of alpha-chloro-4-methoxytoluene (31 mL, 1.0 equiv.) in N-methylpyrrolidone (100 mL) to the flask drop-wise. Let the reaction warm to room temperature (RT) slowly overnight. Dilute the reaction with water, and extract with ethyl acetate (EA). Wash the organics with aqueous saturated sodium chloride. Concentrate in vacuo. Purify on a plug of silica (hexane→2:1 hexane:EA→3:2 hexane:EA→1:1 hexane:EA→1:2 hexane:EA→EA). Concentrate the desired fractions to give the title compound (10.8 g, 21%). LCMS (4 min)=218.0 (M+1).
- Add 4-methoxybenzaldehyde (400 g, 2.94 mol) over 20 min to a solution of tert-butyl carbazate (400 g, 2.94 mol) in toluene (750 mL) at 50° C. Heat to reflux over a period of 1 hour (h), collecting water in an azeotrope with the toluene. After no further water is collected, cool to 60° C. Add hexanes until the product precipitates from solution. Cool the bath further to 20° C. Collect the solids by filtration and dry using a nitrogen press to afford the title compound (750.5 g, 91%). 1H NMR [400 MHz, dimethyl sulfoxide-d6 (DMSO-d6)] δ 10.6-10.8 (bs, 1H), 7.88-8.0 (S, 1H), 7.5-7.55 (d, 2H), 6.95-7.0 (d, 2H), 1.45 (s, 9H). ES/MS (m/z): 249 [M-H].
- Add 10% palladium on carbon (water wet, 20 g) slurried in EA (100 mL) to a sealed pressure reactor via vacuum transfer. Rinse transfer line with a minimal amount of EA. Charge (E)-tert-butyl 2-(4-methoxybenzylidene)hydrazinecarboxylate (320 g, 1.28 mol) dissolved in tetrahydrofuran (THF, 1000 mL) via vacuum transfer and rinse line with a minimal amount of THF. Pressurize the reactor to 50 PSI with H2 and mix the contents of the reactor at 20±10° C. Continue the reaction, maintaining the hydrogen pressure at 50 PSI, until no further hydrogen uptake is observed. Filter the reaction solution to remove the catalyst and wash the catalyst filter-cake with THF (500 mL). Add the wash to the reaction filtrate. Concentrate the solution in vacuo to obtain the title compound (337 g, 86%) as an oil. 1H NMR (400 MHz, DMSO-d6) δ 8.1-8.3 (s, 1H), 7.1-7.3 (d, 2H), 6.8-6.9 (d, 2H), 4.4-4.6 (bs, 1H), 3.7-3.8 (s, 2H), 3.6-3.7 (s, 3H), 1.3-1.5 (s, 9H).
- To a solution of 4 N hydrogen chloride in dioxane (2000 mL, 8.00 mol HCl), add tert-butyl 2-(4-methoxybenzyl)hydrazinecarboxylate (324 g, 1.09 mol) dissolved in a minimal amount of dioxane, slowly over a period of 1 h. A precipitate gradually forms. Allow the solution to stir 16 h at 20±5° C. Collect the solids by filtration. Slurry the solids in heptane (2000 mL) and isolate the solids by filtration. Dry the solids using a nitrogen press to give the title compound (242.3 g, 1.08 mol, 98%). 1H NMR (400 MHz, DMSO-d6) δ 8.2-9.0 (bs, 5H), 7.3-7.4 (d, 2H), 6.8-7.0 (d, 2H), 4.0 (s, 2H), 3.7 (s, 3H).
- Combine potassium tert-butoxide (191.89 g, 1.71 mol) and THF (2000 mL) at 22° C. Mix until a homogeneous solution is obtained. Cool to 5° C. Add a premixed solution of acetonitrile (84.25 g, 2.05 mol) and methyl acetate (126.7 g, 1.71 mol) to the potassium tert-butoxide solution over 45 min maintaining a temperature less than 10° C. After the addition is complete, allow the reaction to warm to 20±5° C. and stir for about 2 h. Add (4-methoxybenzyl)hydrazine dihydrochloride (250 g) portion-wise to the reaction over about 5 min, followed by 4 N hydrogen chloride in dioxane (262.5 g, 1.00 mol) at a rate that maintains the temperature <30° C. When the addition is complete, allow to stir at 25±5° C. for about 16 h. Isolate the solids by filtration and wash with THF (500 mL). Slurry the crude solids in dichloromethane (DCM, 4 L) and water (2 L) adjusting the pH to >10 with 5 N NaOH. Allow the layers to settle and collect the organic phase. Wash the aqueous phase with DCM (2 L). Combine the organic phases and dry over anhydrous sodium sulfate and concentrate the solution to a solid in vacuo to afford 165 g of the crude. Heat the crude in isopropyl acetate (660 mL) to reflux to dissolve as many solids as possible. Cool to 33° C. and add hexane (600 mL) slowly over 1 h. Cool to 10° C. and maintain the temperature at 10° C. for 10 min. Isolate the solids by filtration, wash with hexane (200 mL), and dry using a nitrogen press to afford a mixture of the title compounds (91.5 g, 0.4 mol, 47%). 1H NMR (400 MHz, DMSO-d6) δ 7.2-7.3 (d, 2H), 6.7-6.9 (d, 2H), 5.1 (bs, 2H), 5.0 (s, 1H), 4.9 (s, 2H), 3.6-3.8 (s, 3H), 1.9 (s, 3H).
- Note: these intermediates can be separated by chromatography; however in this case, they are isolated as a mixture and can be used in the final sequence below which involves removal of the benzyl protection group resulting in the same product.
- In a 1 L round bottom flask combine 4′-chloro-2′-fluoroacetophenone (40 g, 231.8 mmol), heptane (120 mL), and methanol (16 mL). Cool to 0° C. and place under nitrogen. Dissolve sulfuryl chloride (21.5 mL, 1.15 equiv.) in heptane (120 mL) and charge to an addition funnel. Add drop-wise to the reaction over 60 min. Stir for 2.5 h at 0° C.; a white precipitate forms during this time. Charge the addition funnel with 1 M sodium bicarbonate (400 mL) then add to the reaction drop-wise. After all gas evolution stops, filter the biphasic suspension to collect the title compound (38.18 g, 80%) as white needles. 1H NMR (DMSO-d6) δ 5.00 (d, 2H, J=2.5 Hz), 7.43 (m, 1H), 7.63 (m, 1H), 7.89 (t, 1H, J=8.4 Hz).
- In a 2 L round bottom flask combine 3-chloro-6-pyridazinamine (43.2 g, 333.5 mmol), toluene (500 mL), and N,N-dimethylacetamide dimethyl acetal (67.8 mL, 1.25 equiv.). Attach a reflux condenser then heat to reflux for 2 h. Let cool to RT. Concentrate in vacuo. Triturate the crude material with hexanes and filter to isolate the title compound (60.4 g, 91%) as a light tan solid. MS=199.0 (M+1).
- In a round bottom flask combine (E)-N′-(6-chloropyridazin-3-yl)-N,N-dimethylacetimidamide (36.61 g, 184.3 mmol), 2-chloro-1-(4-chloro-2-fluorophenyl)ethanone (38.15 g, 1 equiv.), and dimethylformamide (150 mL). Place under nitrogen then heat at 120° C. for 4 h. Let cool to RT and stir overnight. Dilute with EA (1 L) and water (500 mL). Extract organics three times with water followed by aqueous saturated sodium chloride aqueous. Dry organics over anhydrous magnesium sulfate. Filter and concentrate in vacuo. Purify by silica plug (hexane→4:1 hexane:EA →3:1 hexane:EA→2:1 hexane:EA→1:1 hexane:EA) and isolate the title compound (33.8 g, 57%) as a light green solid. LCMS (4 min=324.0, 326.0, M+1).
- Combine (4-chloro-2-fluorophenyl)(6-chloro-2-methylimidazo[1,2-b]pyridazin-3-yl)methanone (5.6 g, 17.3 mmol), N-phthaloylglycine (6.0 g, 1.7 equiv.), acetonitrile (60 mL), water (15 mL), trifluoroacetic acid (0.26 mL, 0.2 equiv.), and silver nitrate (294 mg, 0.1 equiv.) in a round bottom flask with attached addition funnel and place under nitrogen. Heat to 70° C. and maintain at this temperature for 15 min. Dissolve ammonium persulfate (7.1 g, 1.8 equiv.) in water (15 mL) and charge to an addition funnel. Add drop-wise to the reaction flask over approximately 20 min. Heat reaction at 70° C. for 1 h. A precipitate forms during this time; filter via Buchner funnel to isolate the title compound crude (7.3 g, 87%) as an off-white solid. LCMS (4 min)=483.0, 485.0, M+1).
- Combine 2-((6-chloro-3-(4-chloro-2-fluorobenzoyl)-2-methylimidazo[1,2-b]pyridazin-8-yl)methyl)isoindoline-1,3-dione (7.30 g, 15.1 mmol), ethanol (200 mL), and hydrazine (1.45 mL, 3 equiv.) in a round bottom flask and place under nitrogen. Stir for 2 days at RT. Heat for 2 h at 50° C. then concentrate the reaction in vacuo. Dilute with EA. Wash the organics with 1N HCl (aq) to pull product into the aqueous layer. Make the aqueous layer basic with 1N NaOH (aq) and extract with EA. Wash the EA layer with aqueous saturated sodium chloride, and dry over anhydrous magnesium sulfate. Filter and concentrate in vacuo to give the title compound crude (1.2 g, 23%) as a light green solid. MS=355.0, 353.0 (M+1).
- Combine (8-(aminomethyl)-6-chloro-2-methylimidazo[1,2-b]pyridazin-3-yl)(4-chloro-2-fluorophenyl)methanone (1.15 g, 3.3 mmol), water (12 mL), potassium carbonate (495 mg, 1.1 equiv.), and 2-bromoethyl ether (0.47 mL, 1.1 equiv) in a 20 mL microwave reaction vessel. Seal with a crimp cap then heat in a microwave reactor at 120° C. for 20 min. Cool to RT and partition between EA and water. Wash EA layer with aqueous saturated sodium chloride, and dry over anhydrous magnesium sulfate. Filter and concentrate in vacuo. Purify on silica gel (4:1 hexane:EA→2:1 hexane:EA→1:1 hexane:EA) to give the title compound (0.43 g, 31%) as a light yellow foam. LCMS (4 min)=423.0, 425.0, M+1.
- Combine (4-chloro-2-fluorophenyl)(6-chloro-2-methyl-8-(morpholinomethyl)-imidazo[1,2-b]pyridazin-3-yl)methanone (0.43 g, 1.0 mmol) and methanol (15 mL) in a round bottom flask. Place under nitrogen and cool to 0° C. Add sodium borohydride (58 mg, 1.5 equiv.) in one portion. Stir for 5 min at this temperature then remove cooling bath and let warm to RT. After 15 min, quench the reaction with water then extract with EA. Wash the organics with water followed by aqueous saturated sodium chloride. Dry the organics over anhydrous magnesium sulfate. Filter and concentrate in vacuo to give the title compound (0.4 g, 93%). LCMS (4 min)=425.0, 427.0, M+1.
- Combine (4-chloro-2-fluorophenyl)(6-chloro-2-methyl-8-(morpholinomethyl)-imidazo[1,2-b]pyridazin-3-yl)methanol (0.4 g, 0.94 mmol), 1,2-dichloroethane (25 mL), triethylsilane (0.45 mL, 3 equiv.), and trifluoroacetic acid (0.57 mL, 8 equiv.) in a round bottom flask and place under nitrogen. Heat at 70° C. overnight. Concentrate reaction in vacuo. Load onto a Varian MegaElut® 10 gram SCX ion exchange cartridge (prewashed with methanol). Elute with methanol to remove non-basic impurities. Elute with 2 M ammonia in methanol. Concentrate in vacuo to give the title compound (0.36 g, 94%). LCMS (4 min)=409.0, 411.0, M+1.
- Combine 4-((6-chloro-3-(4-chloro-2-fluorobenzyl)-2-methylimidazo[1,2-b]pyridazin-8-yl)methyl)morpholin (0.36 g, 0.88 mmol), 1-(4-methoxybenzyl)-5-methyl-1H-pyrazol-3-amine (0.248 g, 1.3 equiv.), potassium carbonate (0.30 g, 2.5 equiv.), 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (0.076 g, 0.15 equiv.), water (2 mL), and 1,4-dioxane (20 mL) in a round bottom flask. Degas thoroughly with nitrogen then add bis(dibenzylideneacetone)palladium (0.10 g, 0.2 equiv.). Attach a reflux condenser and place under nitrogen. Heat the reaction at reflux overnight. Pass reaction through a Celite plug. Wash the plug with EA. Transfer to a separatory funnel and wash with water. Wash the organic layer with aqueous sodium chloride, and dry over anhydrous magnesium sulfate. Filter and concentrate in vacuo. Purify on silica gel (EA→10% methanol:EA) to give the title compound (0.447 g, 86%) as a pale yellow solid. LCMS (4 min)=590.2, 591.2, M+1.
-
- Combine 3-(4-chloro-2-fluorobenzyl)-N-(1-(4-methoxybenzyl)-5-methyl-1H-pyrazol-3-yl)-2-methyl-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine (0.447 g, 0.76 mmol) and trifluoroacetic acid (10 mL) in a 20 mL microwave reactor tube. Seal with a crimp cap then heat in a microwave reactor at 120° C. for 20 min. Partition between EA and water that is made basic with excess NaOH aqueous. Wash the organic phase three times with NaOH aqueous followed by aqueous saturated sodium chloride. Dry over anhydrous magnesium sulfate. Filter and concentrate in vacuo. Purify on silica gel (EA→10% methanol:EA) to give the title compound (0.246 g, 0.52 mmol) as a pale yellow solid. LCMS (8 min)=470.0, M+1.
-
- Combine 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine (0.1 g, 0.21 mmol) and 1,4-dioxane (10 mL) in a pear flask and place under nitrogen. Add hydrogen chloride (4 M in 1,4-dioxane, 0.053 mL, 1.0 equiv.) and let stir at RT under nitrogen for 1.5 h. Concentrate in vacuo then evaporate under vacuum from absolute ethanol two times. Dry overnight in a vacuum oven (60° C.) to give the title compound (0.11 g, 102%). LCMS (8 min)=470.0, M+1.
- Combine 6-chloropyridazin-3-amine (1.500 kg, 11.58 mol); 1,1-dimethoxy-N,N-dimethylethanamine (2.313 kg, 17.37 mol) and cyclopentyl methyl ether (8.25 L) then heat to 98° C. while distilling off the resulting methanol byproduct. After 4 h, the reaction mixture is cooled to ambient temperature and heptanes (11.2 L) is added to the reaction solution for crystallizing the product. The title compound is collected by filtration and is dried. (1.494 kg, 64.95%; mp=73° C.)
- Stir a mixture of heptanes (1.5 L), methanol (0.4 L), and 1-(4-chloro-2-fluorophenyl)ethanone (1 kg, 5.81 mol) with cooling to <5° C. Add sulfuryl chloride (0.608 L, 1.02 kg, 7.55 mol) as a heptanes (1.5 L) solution drop-wise to the mixture keeping the reaction temperature <15° C. during the addition. After 2 h quench the reaction at ambient temperature to a pH of 6 with sodium hydroxide (5N, 2.0 L). Extract the reaction mixture with methylene chloride (2 L) and concentrate the extract to form a white solid. Filter and dry the solid.
- Combine 2-chloro-1-(4-chloro-2-fluorophenyl)ethanone (1.5 kg, 5.44 mol), and (E)-N′-(6-chloropyridazin-3-yl)-N,N-dimethylacetimidamide (1.19 kg, 5.72 mol) in DMF (10.14 L) and heat at 120° C. for 5 h. After cooling, add water (30 L) and stir to crystallize the product. Collect the product by filtration and rinse the cake with water (2×12 L) and heptanes (2×10 L) then dry under vacuum to obtain title compound. (1.490 kg, 84.44%; mp=160° C., M+=324).
- Add ethanol (12 L), (4-chloro-2-fluorophenyl)(6-chloro-2-methylimidazo[1,2-b]pyridazin-3-yl)methanone (897.70 g, 2.77 mol) and bis(2,4-pentanedionato)-oxovanadium (IV) (146.81 g, 553.67 mmol) to a reaction vessel with a nitrogen atmosphere. Add an ethanol (6 L) solution of 4-methylmorpholine 4-oxide (3.89 kg, 33.21 mol) drop-wise over 150 min keeping the reaction temperature at 23-33° C.; then heat the reaction at 40° C. for 48 h. Cool the reaction and concentrate by removal of solvent (13 L). Filter the resulting mixture, rinse the filter cake with hexane (1 L) and then dry. (728 g, 66.25%; mp 145-147° C.; M+=423).
- At 26° C., combine triethylsilane (110 g, 946 mmol) and (4-chloro-2-fluorophenyl)(6-chloro-2-methyl-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-3-yl)methanone (50.1 g, 117.06 mmol) to form a solution. Add trifluoro acetic acid (150 mL, 1.98 mol) to the reaction mixture then heat at 78° C. for 24 h. Cool the reaction to ambient temperature and separate the mixture to remove the top layer. Dissolve the bottom layer with ethyl acetate (1 L) and adjust the pH to 11 with sodium hydroxide (4 N, 500 mL). Separate the organic layer and add HCl (4 M in ethyl ether) to the organic layer to form the HCl salt. Filter and dry the HCl salt. (100 g (96%); mp=237-238° C.; M+=409).
- Prepare active catalyst by combining palladium chloride (160 mg, 0.90 mmol) and 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene (1.10 g, 1.84 mmol) in DMF (25 mL) and warming to form a solution. Add the preformed catalyst to a solution of 3-methyl-1H-pyrazol-5-amine (3.0 g, 29.65 mmol), 4-((6-chloro-3-(4-chloro-2-fluorobenzyl)-2-methylimidazo[1,2-b]pyridazin-8-yl)methyl)morpholine hydrochloride (9.0 g, 20.19 mmol), potassium bicarbonate (6.0 g, 59.93 mmol) in DMF (65 mL) and heat to 150° C. for 1 h. Cool the reaction to 60° C. and add mercaptopropyl functionalized silica (500 mg) and stir for 1 h then filter to remove the silica. Cool to ambient temperature, add 2-methyltetrahydrofuran (125 mL) and extract with water to remove DMF. Add HCl to the organic solution to form the 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine hydrochloride salt. Add the HCl salt (1.1 g) to sodium hydroxide (10 mL, 1N) in n-butanol (10 mL) and stir. Filter the resulting mixture to obtain 0.22 g of the free base, imidazo[1,2-b]pyridazin-6-amine, 3-[(4-chloro-2-fluorophenyl)methyl]-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(4-morpholinylmethyl), (22% yield, M+1.=470).
- Optionally pass 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine and excipients through an appropriate screen. Combine and blend 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine, Pregelatinized Starch, and Pregelatinized Starch with 5% Dimethicone using an appropriate tumble bin (with or without intensifier bar) or other suitable mixing equipment. Alternately, add dimethicone during blending via a liquid addition system. Fill the blended powder into capsules using suitable encapsulation equipment. Monitor weight uniformity and appropriate in-process parameters during the filling process. Optionally dedust the final capsules or polish by either manual or automated processes.
- JAK2 EPO-TF1/pSTAT5 cell-based assay mimics the constitutive activation of JAK2-STAT5 in erythroid progenitor cells, which drives the overproduction of red blood cells, a marker of polycythemia vera (PV).
- TF-1 (human erythroid leukemia) cells are maintained in RPMI 1640 (RPMI-1640 was developed by Moore et. al. at Roswell Park Memorial Institute. The formulation is based on the RPMI-1630 series of media utilizing a bicarbonate buffering system and alterations in the amounts of amino acids and vitamins.) with 10% fetal bovine serum (FBS), 0.075% sodium bicarbonate, 1 mM sodium pyruvate, 1× antibiotic/antimycotic (Invitrogen, Carlsbad, Calif.) and 0.45% glucose. The medium is supplemented with GM-CSF (granulocyte-macrophage colony-stimulating factor) at a final concentration of 2 ng/mL. Cells are kept at 37° C. with 5% CO2. Cells are starved in serum free medium to remove endogenous growth factors. TF-1 cells are counted and cells are collected to seed 2×107 cells per 96-well plate at a density of 2×105 cells per well. The cells are rinsed twice with unsupplemented RPMI 1640 (RPMI 1640 with 0.075% sodium bicarbonate, 1 mM sodium pyruvate, 1× antibiotic/antimycotic, and 0.45% glucose) before suspending cells at a final concentration of 5×105 cells/mL in RPMI with 0.6% FBS. The diluted cells are added back to tissue culture flasks and incubated overnight at 37° C. Test compounds are prepared in 100% DMSO at 10 mM concentration. Compounds are serially diluted 1:3 with 100% DMSO in a 10 point-200× concentration-response range (4 mM-200 nM). In a separate 96 deep well plate 2.5 μL of 200× compound solution is added to 125 μL of complete RPMI 1640 media with 10% FBS for a 4× concentration compound plate.
- To perform the assay, serum-starved cells are collected and washed once with unsupplemented RPMI 1640 medium. Cells are suspended in 10% FBS complete RPMI medium for a final concentration of 8×105 cells/mL. An aliquot of 250 μL of diluted cells (2×105 cells) are added to each well in the 4× concentration compound plate. Cells are mixed by vortexing and the plate is incubated in a 37° C. water bath for 10 min. A fresh 4× working solution of Erythropoietin (EPO) at 6.4 Units/mL is prepared by using pre-warmed 10% FBS complete RPMI 1640 medium. After the cells are treated with compound for 10 min, 125 μL of EPO medium is added into each well and the plate is vortexed. Cells are incubated in a 37° C. water bath for 20 min and mixed every 5 min during the incubation time. Final 10 point concentration-response range is 20 μM-1 nM at a final concentration of DMSO at 0.5% and EPO at 1.6 U/mL. After cell treatment, 500 μL of 1% formaldehyde solution (made freshly with phosphate-buffered saline (PBS) and kept warm at 37° C.) is added to each well. Plates are sealed and inverted 8-10 times to mix. Plates are placed in a 37° C. water bath for 10 min. After incubation, cell plates are spun at 1200 rpm for 5 min at room temperature (RT). The supernatant is aspirated, leaving 100 μL of cells (2×105 cells). The cells are vortexed and washed twice with 800 μL of PBS by repeating the spin steps and leaving 100 μL containing ˜2×105 cells after the final wash. An aliquot of 800 μL of cold 90% methanol is added to the cells and placed at −20° C. overnight. Plates are spun and methanol is removed. Cells are washed with FACS buffer (PBS with 5% FBS and 0.02% sodium azide). An aliquot of 200 μL of 1 to 10 dilution of Mouse anti-pSTAT5 (pY694) Alexa Fluor 647® in fluorescence activated cell sorting (FACS) buffer is added to the cells. Cells are mixed well and incubated at RT in the dark for 2 h. Cells are washed once with PBS and 100 μL of cells are left. A working solution of 2 mg/mL Hoechst (Acros Organics, Morris Plains, N.J.) is prepared with PBS. An aliquot of 200 μL is added to each well and cells are incubated at RT in the dark for 10 min. Cells are washed with PBS, and 50 μL of Cytofix (BD Biosciences, San Jose, Calif.) is added to the cells. The cells are transferred to 96 well black tissue culture plates and sealed. The plates are spun down. Mean fluorescent intensity data are collected and analyzed using Cellomics Arrayscan® VTi. Compound treatment is compared to the vehicle to determine percent inhibition data. The minimum significant ratio (MSR) between two test compounds with different IC50s is determined to be 2.2. The relative IC50 is calculated using a 4 parameter logistic curve fitting analysis with ActivityBase 4.0. For 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine, the IC50=0.033 μM, n=4. The results of this assay demonstrate that 3-(4-chloro-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine is a potent JAK2 inhibitor.
- IL-2 activates the JAK3 pathway in natural killer (NK) cells to drive the NK and CD8 lymphocyte proliferation. Therefore, IL-2 stimulated NK92/pSTAT5 cell-based assay enables the evaluation of the JAK3 cellular activity of JAK2 compounds in vitro.
- NK-92 (natural killer) cells (ATCC, Manassas, Va.) are maintained in minimum essential medium (MEM) Alpha with 15% fetal bovine serum, 15% Horse Serum and 1× antibiotic/antimycotic (Invitrogen, Carlsbad, Calif.). The medium is supplemented with IL-2 (R&D systems, Minneapolis, Minn.) for a final concentration of 4 ng/mL. Cells are kept at 37° C. with 5% CO2. Cells are starved in serum free medium to remove endogenous growth factors. NK-92 cells are counted and collected to seed 2×107 cells per 96-well plate at a density of 2×105 cells per well. The cells are rinsed twice with unsupplemented MEM Alpha (MEM Alpha) before suspending cells at a final concentration of 8×105 cells/mL in MEM Alpha with 0.6% serum (0.3% FBS, 0.3% horse serum). The diluted cells are added back to tissue culture flasks and incubated overnight at 37° C. Test compounds are prepared in 100% DMSO at 10 mM concentration. Compounds are serially diluted 1:3 with 100% DMSO in a 10 point-200× concentration-response range (4 mM-200 nM). In a separate 96 deep well plate 2.5 μL of 200× compound solution is added to 125 μL of 10% FBS complete RPMI 1640 medium for a 4× concentration compound plate.
- To perform the assay, serum-starved cells are collected and washed once with unsupplemented RPMI 1640 medium. Cells are suspended in 10% FBS complete RPMI 1640 medium for a final concentration of 8×105 cells/mL. An aliquot of 250 μL of diluted cells (2×105 cells) is added to each well in the 4× concentration compound plate. Cells are mixed by vortexing and the plate is incubated in a 37° C. water bath for 10 min. A fresh 4× working solution of IL-2 at 2 ng/mL is prepared using pre-warmed 10% FBS complete RPMI medium. After the cells are treated with compound for 10 min, 125 μL of IL-2 medium is added into each well. Cells are mixed by vortexing. Cells are incubated in a 37° C. water bath for 20 min and mixed every 5 min during the incubation time. Final 10 point concentration-response range is 20 μM-1 nM at a final concentration of DMSO at 0.5% and IL-2 at 0.5 ng/mL. After cell treatment, 500 μL of 1% formaldehyde solution (made freshly with phosphate-buffered saline (PBS) and kept warm at 37° C.) is added to each well. Plates are sealed and inverted 8-10 times to mix. Plates are placed in a 37° C. water bath for 10 min. After incubation, cell plates are spun at 1200 rpm for 5 min at RT. The supernatant is aspirated, leaving 100 μL of cells (2×105 cells). The cells are vortexed and washed twice with 800 μL of PBS by repeating the spin steps and leaving 100 μL containing ˜2×105 cells after the final wash. An aliquot of 800 μL of cold 90% methanol is added to the cells and placed at −20° C. overnight. Plates are spun and methanol is removed. Cells are washed with FACS buffer (PBS with 5% FBS and 0.02% sodium azide). An aliquot of 200 μL of 1 to 10 dilution of Mouse anti-pSTAT5 (pY694) Alexa Fluor 647® in fluorescence activated cell sorting (FACS) buffer is added to the cells. Cells are mixed well and incubated at RT in the dark for 2 h. Cells are washed once with PBS and 100 uL of cells are left. A working solution of 2 mg/mL Hoechst (Acros Organics, Morris Plains, N.J.) is prepared with PBS. An aliquot of 200 μL is added to each well and cells are incubated at RT in the dark for 10 min. Cells are washed with PBS, and 50 μL of Cytofix® (BD Biosciences, San Jose, Calif.) is added to the cells. The cells are transferred to 96 well black tissue culture plates and sealed. The plates are spun down. Mean fluorescent intensity data are collected and analyzed using Cellomics Arrayscan® VTi. Compound treatment is compared to the vehicle to determine percent inhibition data. The MSR is determined to be 2.06. The relative IC50 is calculated using a 4 parameter logistic curve fitting analysis with ActivityBase 4.0. For 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine, the IC50=0.94 μM, n=4. The results of the JAK3 IL2-NK92-pSTAT5 cell-based assay demonstrate that 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo-[1,2-b]pyridazin-6-amine is a less potent inhibitor of JAK3 (when compared to the results of the JAK2 EPO-TF1/pSTAT5 cell based assay with an IC50=0.033 uM). From these results, the ratio of JAK3/JAK2, the IC50 was determined to be 28.5 fold, which demonstrates 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine is a selective JAK2 inhibitor over JAK3.
- JAK2 target inhibition has been evaluated in Ba/F3 expressing JAK2 V617F by Western blot as reported in Wernig et al. (Wernig G, et al. Efficacy of TG101348, a selective JAK2 inhibitor, in treatment of a murine model of JAK2V617F-induced polycythemia vera, Cancer Cell, April; 13(4):311-20). A medium throughput Cellomics assay was established to evaluate the JAK2 target inhibition in Ba/F3 cells expressing JAK2V617F. This assay enables the discovery of an effective therapeutic agent to treat disorders associated with JAK2V617F mutation.
- Ba/F3 (murine pro-B) cells expressing JAK2V617F maintained in RPMI 1640 with 10% FBS, 0.07% sodium bicarbonate, 1 mM sodium pyruvate, 1× antibiotic/antimycotic (Invitrogen, Carlsbad, Calif.) and 0.45% glucose (Sigma, St Louis, Mo.). Cells are kept at 37° C. with 5% CO2. The test compound is prepared in 100% DMSO at 10 mM concentration. The compound is serially diluted 1:3 with 100% DMSO in a 10 point 200× concentration-response range (4 mM-200 nM.). In a separate 96 deep well plate 2.5 μL of 200× compound solution is added to 125 μL of complete RPMI 1640 media with 10% FBS for a 4× concentration compound plate.
- To perform the assay, cells are collected and washed twice with unsupplemented RPMI 1640. Cells are then suspended in 10% FBS completed RPMI medium for a final concentration of 4×105/mL. Next, 500 mL of cells (2×105 cells) are transferred into 96 deep well plates. Finally, 2.5 μL (1:200 dilution) of compound stock solution are added to the cells and are incubated with cells in a 37° C. water bath for 60 min.
- After cell treatment, 500 μL of 1% formaldehyde solution (made freshly with phosphate-buffered saline (PBS) and kept warm at 37° C.) is added to each well. Plates are sealed and inverted 8-10 times to mix. Plates are placed in a 37° C. water bath for 10 min. After incubation, cell plates are spun at 1200 rpm for 5 min at RT. The supernatant is aspirated, leaving 100 μL of cells (2×105 cells). The cells are vortexed and washed twice with 800 μL of PBS by repeating the spin steps and leaving 100 μL containing ˜2×105 cells after the final wash. An aliquot of 800 μL of cold 90% methanol is added to the cells and placed at −20° C. overnight. Plates are spun and methanol is removed. Cells are washed with FACS buffer (PBS with 5% FBS and 0.0% sodium azide). An aliquot of 200 μL of 1 to 10 dilution of Mouse anti-pSTAT5 (pY694) Alexa Fluor 647® in fluorescence activated cell sorting (FACS) buffer is added to the cells. Cells are mixed well and incubated at RT in the dark for 2 h. Cells are washed once with PBS and 100 μL of cells are left. A working solution of 2 mg/mL Hoechst (Acros Organics, Morris Plains, N.J.) is prepared with PBS. An aliquot of 200 μL is added to each well and cells are incubated at RT in the dark for 10 min. Cells are washed with PBS, and 50 μL of Cytofix® (BD Biosciences, San Jose, Calif.) is added to the cells. The cells are transferred to 96 well black tissue culture plates and sealed. The plates are spun down. Mean fluorescent intensity data are collected and analyzed using Cellomics Arrayscan® VTi. Compound treatment is compared to the vehicle to determine percent inhibition data. The relative IC50 is calculated using a 4 parameter logistic curve fitting analysis with ActivityBase 4.0. For 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine, the IC50=0.03 μM. The results of this assay demonstrate that 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine effectively inhibits the JAK2V617F target in Ba/F3 cells expressing JAK2V617F gene.
- The compounds of the present invention are preferably formulated as pharmaceutical compositions administered by a variety of routes. Most preferably, such compositions are for oral administration. Such pharmaceutical compositions and processes for preparing same are well known in the art. See, e.g., REMINGTON: THE SCIENCE AND PRACTICE OF PHARMACY (A. Gennaro, et al., eds., 19th ed., Mack Publishing Co., 1995).
- The compounds of the present invention are generally effective over a wide dosage range. For example, dosages per day normally fall within the range of about 1 mg to about 1000 mg total daily dose, preferably 500 mg to 1000 mg total daily dose, more preferably 600 mg to 1000 mg total daily dose. In some instances dosage levels below the lower limit of the aforesaid range may be more than adequate, while in other cases still larger doses may be employed. The above dosage range is not intended to limit the scope of the invention in any way. It will be understood that the amount of the compound actually administered will be determined by a physician, in the light of the relevant circumstances, including the condition to be treated, the chosen route of administration, the actual compound or compounds administered, the age, weight, and response of the individual patient, and the severity of the patient's symptoms.
Claims (15)
1. 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine, or a pharmaceutically acceptable salt thereof.
2. A compound according to claim 1 which is 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine.
3. A compound according to claim 1 which is 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine hydrochloride.
4. A method of treating chronic myeloproliferative disorders selected from the group consisting of polycythemia vera, essential thrombocytosis, and myelosclerosis with myeloid metaplasia in a mammal comprising administering to a mammal in need of such treatment an effective amount of 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine, or a pharmaceutically acceptable salt thereof.
5. A method of treating glioblastoma, breast cancer, multiple myeloma, prostate cancer, and leukemias, such as atypical chronic myeloid leukemia, primary and secondary acute myeloid leukemia, T-lineage and B-lineage acute lymphoblastic leukemia, myelodysplasia syndrome, and myeloproliferative disorders in a patient comprising administering to a patient in need of such treatment an effective amount of 3-(4-chloro-2-fluorobenzyl)-2-methyl-N-(5-methyl-1H-pyrazol-3-yl)-8-(morpholinomethyl)imidazo[1,2-b]pyridazin-6-amine, or a pharmaceutically acceptable salt thereof.
6. A pharmaceutical composition comprising a compound according to claim 3 and a pharmaceutically acceptable carrier, diluent or excipient.
7. A compound according to claim 3 for use as a medicament.
8. A compound according to claim 3 for use in the treatment of glioblastoma, breast cancer, multiple myeloma, prostate cancer, and leukemias, T-lineage and B-lineage acute lymphoblastic leukemia, myelodysplasia syndrome, and myeloproliferative disorders.
9. A compound for use according to claim 8 , or a pharmaceutically acceptable salt thereof, in the treatment of chronic myeloproliferative disorders.
10. A method of treating conditions associated with activity of mutant JAK2 in a patient in need thereof, which comprises administering to said patient a compound according to claim 3 .
11. A pharmaceutical composition comprising a compound according to claim 1 , or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier, diluent or excipient.
12. A compound according to claim 1 , or a pharmaceutically acceptable salt thereof, for use as a medicament.
13. A compound according to claim 1 , or a pharmaceutically acceptable salt thereof, for use in the treatment of glioblastoma, breast cancer, multiple myeloma, prostate cancer, and leukemias, T-lineage and B-lineage acute lymphoblastic leukemia, myelodysplasia syndrome, and myeloproliferative disorders.
14. A compound for use according to claim 13 , or a pharmaceutically acceptable salt thereof, in the treatment of chronic myeloproliferative disorders.
15. A method of treating conditions associated with activity of mutant JAK2 in a patient in need thereof, which comprises administering to said patient a compound according to claim 1 , or a pharmaceutically acceptable salt thereof.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12/742,302 US20100286139A1 (en) | 2008-12-16 | 2009-12-08 | Amino pyrazole compound |
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US12285408P | 2008-12-16 | 2008-12-16 | |
| US12/742,302 US20100286139A1 (en) | 2008-12-16 | 2009-12-08 | Amino pyrazole compound |
| PCT/US2009/067056 WO2010074947A1 (en) | 2008-12-16 | 2009-12-08 | Amino pyrazole compound |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US20100286139A1 true US20100286139A1 (en) | 2010-11-11 |
Family
ID=41630090
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/742,302 Abandoned US20100286139A1 (en) | 2008-12-16 | 2009-12-08 | Amino pyrazole compound |
| US12/632,879 Expired - Fee Related US7897600B2 (en) | 2008-12-16 | 2009-12-08 | Amino pyrazole compound |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US12/632,879 Expired - Fee Related US7897600B2 (en) | 2008-12-16 | 2009-12-08 | Amino pyrazole compound |
Country Status (38)
| Country | Link |
|---|---|
| US (2) | US20100286139A1 (en) |
| EP (1) | EP2379557B1 (en) |
| JP (1) | JP5509217B2 (en) |
| KR (1) | KR101300458B1 (en) |
| CN (1) | CN102232075B (en) |
| AR (1) | AR074240A1 (en) |
| AU (1) | AU2009330503B2 (en) |
| BR (1) | BRPI0923048A2 (en) |
| CA (1) | CA2744714C (en) |
| CL (1) | CL2011001445A1 (en) |
| CO (1) | CO6331442A2 (en) |
| CR (1) | CR20110341A (en) |
| CY (1) | CY1113637T1 (en) |
| DK (1) | DK2379557T3 (en) |
| DO (1) | DOP2011000190A (en) |
| EA (1) | EA019554B1 (en) |
| EC (1) | ECSP11011132A (en) |
| ES (1) | ES2396617T3 (en) |
| HN (1) | HN2011001697A (en) |
| HR (1) | HRP20120918T1 (en) |
| IL (1) | IL213065A0 (en) |
| JO (1) | JO2833B1 (en) |
| MA (1) | MA32900B1 (en) |
| MX (1) | MX2011006441A (en) |
| MY (1) | MY158691A (en) |
| NZ (1) | NZ592641A (en) |
| PA (1) | PA8851101A1 (en) |
| PE (1) | PE20110549A1 (en) |
| PL (1) | PL2379557T3 (en) |
| PT (1) | PT2379557E (en) |
| SG (1) | SG172202A1 (en) |
| SI (1) | SI2379557T1 (en) |
| SV (1) | SV2011003949A (en) |
| TN (1) | TN2011000292A1 (en) |
| TW (1) | TWI440640B (en) |
| UA (1) | UA104743C2 (en) |
| WO (1) | WO2010074947A1 (en) |
| ZA (1) | ZA201103942B (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016024232A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor and/or a cdk 4/6 inhibitor |
| WO2016024231A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor and/or a pd-l1 inhibitor |
| WO2016024230A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, and/or a bcl-2 inhibitor |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8105633B2 (en) * | 2006-03-01 | 2012-01-31 | Spintec Engineering Gmbh | Method and apparatus for extraction of arthropod gland |
| GB2435646A (en) * | 2006-03-01 | 2007-09-05 | Spin Tec Engineering Gmbh | Apparatus and method of extraction of an arthropod gland |
| US20110121485A1 (en) * | 2006-10-30 | 2011-05-26 | Spintec Engineering Gmbh | Method and apparatus for the manufacture of a fiber |
| CN103458970A (en) * | 2011-03-07 | 2013-12-18 | 泰莱托恩基金会 | Tfeb phosphorylation inhibitors and uses thereof |
| BR112013032360A2 (en) * | 2011-06-15 | 2017-06-13 | Life And Brain Gmbh | glioblastoma inhibitor compounds and their use |
| SG10201805807PA (en) | 2012-06-26 | 2018-08-30 | Del Mar Pharmaceuticals | Methods for treating tyrosine-kinase-inhibitor-resistant malignancies in patients with genetic polymorphisms or ahi1 dysregulations or mutations employing dianhydrogalactitol, diacetyldianhydrogalactitol, dibromodulcitol, or analogs or derivatives thereof |
| PL400213A1 (en) | 2012-08-01 | 2014-02-03 | Celon Pharma Spólka Z Ograniczona Odpowiedzialnoscia | Imidazo [1,2-b] pyridazine-6-amine derivatives as JAK-2 kinase inhibitors |
| CN110191887B (en) * | 2016-11-17 | 2022-02-18 | 百时美施贵宝公司 | Imidazopyridazine modulators of IL-12, IL-23 and/or IFN-alpha |
| WO2018167283A1 (en) | 2017-03-17 | 2018-09-20 | INSERM (Institut National de la Santé et de la Recherche Médicale) | Methods for the diagnosis and treatment of pancreatic ductal adenocarcinoma associated neural remodeling |
| US20200088732A1 (en) | 2017-04-13 | 2020-03-19 | INSERM (Institut National de la Santé et de la Recherche Mèdicale) | Methods for the diagnosis and treatment of pancreatic ductal adenocarcinoma |
| KR102328682B1 (en) | 2018-08-27 | 2021-11-18 | 주식회사 대웅제약 | Novel heterocyclicamine derivatives and pharmaceutical composition comprising the same |
| WO2020092015A1 (en) | 2018-11-02 | 2020-05-07 | University Of Rochester | Therapeutic mitigation of epithelial infection |
| CN110305140B (en) | 2019-07-30 | 2020-08-04 | 上海勋和医药科技有限公司 | Dihydropyrrolopyrimidines selective JAK2 inhibitors |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070083044A1 (en) * | 2005-10-06 | 2007-04-12 | Schering Corporation | Pyrazolopyrimidines as protein kinase inhibitors |
| US20070191369A1 (en) * | 2005-11-30 | 2007-08-16 | Lauffer David J | Inhibitors of c-Met and uses thereof |
| US20080085909A1 (en) * | 2006-02-17 | 2008-04-10 | Pharmacopeia Drug Discovery, Inc. | Purinones and 1H-imidazopyridinones as PKC-theta inhibitors |
Family Cites Families (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| PL210066B1 (en) | 2000-12-21 | 2011-11-30 | Vertex Pharma | Pyrazole compounds useful as protein kinase inhibitors |
| JP2003137785A (en) * | 2001-08-23 | 2003-05-14 | Takeda Chem Ind Ltd | Jnk activation inhibitor |
| JP4556020B2 (en) | 2001-12-21 | 2010-10-06 | ジェンザイム・コーポレーション | Chemokine receptor-bound heterocyclic compounds with high efficacy |
| JP5001179B2 (en) | 2005-02-16 | 2012-08-15 | アストラゼネカ アクチボラグ | Chemical substance |
| EP1853602B1 (en) | 2005-02-16 | 2010-07-14 | AstraZeneca AB | Chemical compounds |
| ATE527253T1 (en) * | 2005-07-01 | 2011-10-15 | Irm Llc | PYRIMIDINE-SUBSTITUTED BENZIMIDAZOLE DERIVATIVES AS PROTEIN KINASE INHIBITORS |
| GB0515026D0 (en) * | 2005-07-21 | 2005-08-31 | Novartis Ag | Organic compounds |
| TWI333953B (en) * | 2005-10-06 | 2010-12-01 | Schering Corp | Pyrazolopyrimidines as protein kinase inhibitors |
| US20110021513A1 (en) | 2006-09-07 | 2011-01-27 | Biogen Idec Ma Inc. | Modulators of interleukin-1 receptor-associated kinase |
| MX2009004715A (en) * | 2006-10-30 | 2009-05-20 | Novartis Ag | Heterocyclic compounds as antiinflammatory agents. |
| CN101679429A (en) * | 2007-04-18 | 2010-03-24 | 阿斯利康(瑞典)有限公司 | 5-aminopyrazol-3-yl-3h-imidazo [4,5-b] pyridine derivatives and their use for the treatment of cancer |
| MX2009012612A (en) | 2007-05-23 | 2009-12-07 | Pharmacopeia Llc | Purinones and 1h-imidazopyridinones as pkc-theta inhibitors. |
| WO2009062059A2 (en) | 2007-11-08 | 2009-05-14 | Pharmacopeia, Inc. | Isomeric purinones and 1h-imidazopyridinones as pkc-theta inhibitors |
-
2009
- 2009-11-30 PA PA20098851101A patent/PA8851101A1/en unknown
- 2009-12-01 AR ARP090104627A patent/AR074240A1/en unknown
- 2009-12-01 JO JO2009459A patent/JO2833B1/en active
- 2009-12-04 TW TW098141606A patent/TWI440640B/en not_active IP Right Cessation
- 2009-12-08 WO PCT/US2009/067056 patent/WO2010074947A1/en not_active Ceased
- 2009-12-08 HR HRP20120918AT patent/HRP20120918T1/en unknown
- 2009-12-08 US US12/742,302 patent/US20100286139A1/en not_active Abandoned
- 2009-12-08 PT PT97958425T patent/PT2379557E/en unknown
- 2009-12-08 EA EA201170831A patent/EA019554B1/en not_active IP Right Cessation
- 2009-12-08 KR KR1020117013705A patent/KR101300458B1/en not_active Expired - Fee Related
- 2009-12-08 MX MX2011006441A patent/MX2011006441A/en active IP Right Grant
- 2009-12-08 DK DK09795842.5T patent/DK2379557T3/en active
- 2009-12-08 CN CN2009801481167A patent/CN102232075B/en not_active Expired - Fee Related
- 2009-12-08 MY MYPI2011002704A patent/MY158691A/en unknown
- 2009-12-08 US US12/632,879 patent/US7897600B2/en not_active Expired - Fee Related
- 2009-12-08 NZ NZ592641A patent/NZ592641A/en not_active IP Right Cessation
- 2009-12-08 UA UAA201107565A patent/UA104743C2/en unknown
- 2009-12-08 PE PE2011001082A patent/PE20110549A1/en not_active Application Discontinuation
- 2009-12-08 SG SG2011044161A patent/SG172202A1/en unknown
- 2009-12-08 CA CA2744714A patent/CA2744714C/en not_active Expired - Fee Related
- 2009-12-08 SI SI200930448T patent/SI2379557T1/en unknown
- 2009-12-08 ES ES09795842T patent/ES2396617T3/en active Active
- 2009-12-08 BR BRPI0923048A patent/BRPI0923048A2/en not_active IP Right Cessation
- 2009-12-08 PL PL09795842T patent/PL2379557T3/en unknown
- 2009-12-08 JP JP2011540809A patent/JP5509217B2/en not_active Expired - Fee Related
- 2009-12-08 AU AU2009330503A patent/AU2009330503B2/en not_active Ceased
- 2009-12-08 EP EP09795842A patent/EP2379557B1/en not_active Not-in-force
-
2011
- 2011-05-23 IL IL213065A patent/IL213065A0/en unknown
- 2011-05-27 ZA ZA2011/03942A patent/ZA201103942B/en unknown
- 2011-06-09 TN TN2011000292A patent/TN2011000292A1/en unknown
- 2011-06-14 MA MA33943A patent/MA32900B1/en unknown
- 2011-06-15 EC EC2011011132A patent/ECSP11011132A/en unknown
- 2011-06-15 CL CL2011001445A patent/CL2011001445A1/en unknown
- 2011-06-15 CO CO11074831A patent/CO6331442A2/en active IP Right Grant
- 2011-06-15 DO DO2011000190A patent/DOP2011000190A/en unknown
- 2011-06-16 SV SV2011003949A patent/SV2011003949A/en not_active Application Discontinuation
- 2011-06-16 HN HN2011001697A patent/HN2011001697A/en unknown
- 2011-06-17 CR CR20110341A patent/CR20110341A/en not_active Application Discontinuation
-
2012
- 2012-11-27 CY CY20121101146T patent/CY1113637T1/en unknown
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20070083044A1 (en) * | 2005-10-06 | 2007-04-12 | Schering Corporation | Pyrazolopyrimidines as protein kinase inhibitors |
| US20070191369A1 (en) * | 2005-11-30 | 2007-08-16 | Lauffer David J | Inhibitors of c-Met and uses thereof |
| US20080085909A1 (en) * | 2006-02-17 | 2008-04-10 | Pharmacopeia Drug Discovery, Inc. | Purinones and 1H-imidazopyridinones as PKC-theta inhibitors |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016024232A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor and/or a cdk 4/6 inhibitor |
| WO2016024231A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor and/or a pd-l1 inhibitor |
| WO2016024228A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, a pd-1 inhibitor and/or a pd-l1 inhibitor |
| WO2016024230A1 (en) | 2014-08-11 | 2016-02-18 | Acerta Pharma B.V. | Therapeutic combinations of a btk inhibitor, a pi3k inhibitor, a jak-2 inhibitor, and/or a bcl-2 inhibitor |
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US7897600B2 (en) | Amino pyrazole compound | |
| JP6698799B2 (en) | Bicyclic heterocycle as FGFR inhibitor | |
| CN115590854B (en) | Pyridazinyl thiazole carboxamides | |
| JP7337951B2 (en) | Nitrogen-containing aromatic heterocyclic amide derivatives for treating cancer | |
| KR102774784B1 (en) | Compounds and methods for inhibiting JAK | |
| TW201113285A (en) | Heterocyclic derivatives of pyrazol-4-yl-pyrrolo[2,3-d]pyrimidines as janus kinase inhibitors | |
| CA2669686A1 (en) | 7-substituted purine derivatives for immunosuppression | |
| HUP0401083A2 (en) | 4-amino-6-phenyl-pyrrolo [2,3-d] pyrimidine derivatives, pharmaceutical compositions containing them and process for the preparation of the compounds | |
| MX2015005428A (en) | Tricyclic fused thiophene derivatives as jak inhibitors. | |
| CN110891950B (en) | Triazine compound and pharmaceutically acceptable salt thereof | |
| CZ139097A3 (en) | 6-arylpyrido£2,3-d|pyrimidines and naphthyridines and pharmaceutical compositions based thereon | |
| JP6092376B2 (en) | Inhibitors of JAK1 and JAK2 | |
| CA3149846A1 (en) | Quinoline derivatives as protein kinase inhibitors | |
| HK1160109B (en) | Amino pyrazole compound |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |

