US20100251701A1 - Muffler - Google Patents
Muffler Download PDFInfo
- Publication number
- US20100251701A1 US20100251701A1 US12/742,269 US74226908A US2010251701A1 US 20100251701 A1 US20100251701 A1 US 20100251701A1 US 74226908 A US74226908 A US 74226908A US 2010251701 A1 US2010251701 A1 US 2010251701A1
- Authority
- US
- United States
- Prior art keywords
- muffler
- plates
- predetermined
- millimetres
- predetermined distance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N1/00—Silencing apparatus characterised by method of silencing
- F01N1/08—Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling
- F01N1/083—Silencing apparatus characterised by method of silencing by reducing exhaust energy by throttling or whirling using transversal baffles defining a tortuous path for the gases or successively throttling gas flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/922—Mixtures of carbon monoxide or hydrocarbons and nitrogen oxides
- B01D53/925—Simultaneous elimination of carbon monoxide or hydrocarbons and nitrogen oxides
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N2230/00—Combination of silencers and other devices
- F01N2230/04—Catalytic converters
Definitions
- This invention relates to a thermal emission-conversion muffler, particularly to such a device which reduces emitted toxic pollutants passing through the device.
- Noise and pollutants emitted from vehicles using internal combustion engines and devices such as exhaust stacks are an increasing issue.
- Engines, and other devices such as stacks utilise mufflers and catalytic converters to reduce the sound and toxic emissions.
- a muffler consists of an inlet pipe and an outlet pipe with a chamber between the inlet and outlet pipes.
- This chamber is the part of the muffler that reduces the noise of the exhaust gases by being a resonating chamber, which is tuned to cause destructive interference of the sound waves generated by the gas travelling through the exhaust system. This reduces the amount of noise emitted because of the exhaust gases.
- Mufflers can also result in increased engine efficiency, performance, power output and assist in reducing the wear and tear on the engine components by providing reduced backpressure.
- a muffler is typically designed to reduce exhaust noise of vehicles. They are normally installed as part of the exhaust system along the exhaust pipe.
- the exhaust system usually consists of tubing which conveys the waste exhaust gases away from the engine where they are created.
- catalytic converters can be used in engines or stacks and the like to reduce the toxicity of emissions. They are used most commonly in motor vehicle exhaust systems, but also in other devices with engines such as generator sets, forklifts, mining equipment, trucks, buses and trains.
- a catalytic converter provides an environment for a chemical reaction wherein toxic combustion by-products are converted to less toxic substances.
- Catalytic converters do have a number of drawbacks. They require a temperature above 400° C. to work effectively and therefore substantially increase toxic pollutants for about 15 minutes from a cold start. They are also damaged by misfire, rich fuel mixture, contaminated fuel, oil contamination, carbon contamination from short trip driving and various other factors that cause them to work ineffectively.
- the present invention provides a thermal emission-conversion muffler for reducing the toxic emissions output from the muffler, the muffler having an inlet pipe, an outlet pipe, and a body extending lengthwise between the inlet and outlet pipes, the muffler further having a plurality of plates disposed within the body, the plates extending in a sideways direction substantially between the side walls of the body and being of a predetermined length, and adjacent plates being at a predetermined distance from each other.
- the plates are arranged in a substantially stacked manner and are parallel as regards exhaust gas flow passing through the muffler.
- the plate geometry may be selected from the following list: substantially flat, substantially corrugated, substantially curvilinear, substantially U-shaped, substantially flattened tubes.
- the predetermined length of the plates is between 35 and 45 millimetres and the predetermined distance is between 2.0 and 4.0 millimetres. Even more preferably, the predetermined distance is between 2.5 and 3.5 millimetres.
- the predetermined length of the plates may be between 35 and 45 millimetres and the predetermined distance is between 5.0 and 7.0 millimetres. More preferably, the predetermined distance is between 5.5 and 6.5 millimetres.
- the thickness of the plates may be between 1 and 2 millimetres.
- the muffler may be used in conjunction with a catalytic converter.
- the present invention provides a thermal emission-conversion muffler for reducing the toxic emissions output from the muffler, the muffler having an inlet pipe, an outlet pipe, and a body extending lengthwise between the inlet and outlet pipes, the muffler further having a plurality of plates disposed within the body, the plates extending in a sideways direction substantially between the side walls of the body and being of a predetermined surface area and adjacent plates being at a predetermined distance from each other.
- the present invention provides a thermal emission-conversion muffler for reducing the toxic emissions output from the muffler, the muffler having an inlet pipe, an outlet pipe, and a body extending lengthwise between the inlet and outlet pipes, the muffler further having a series of sets of a plurality of plates disposed within the body, the plurality of plates being arranged in a stacked manner, the plates extending in a sideways direction substantially between the side walls of the body and being of a predetermined surface area and adjacent plates being at a predetermined distance from each other, the sets of plates being separated by a predetermined separation distance.
- the present invention provides a thermal emission-conversion muffler for reducing the toxic emissions output from the muffler, the muffler having an inlet pipe, an outlet pipe, and a body extending lengthwise between the inlet and outlet pipes, the muffler further having a series of sets of a plurality of plates disposed within the body, the plurality of plates being arranged in a stacked manner, the plates extending in a sideways direction substantially between the side walls of the body and being of a predetermined length and adjacent plates being at a predetermined distance from each other, the sets of plates being separated by a predetermined separation distance.
- Each set of stacked plates may have the same predetermined length, distance between the plates, and separation distance between the sets of plates.
- FIG. 1 is a schematic of a top plan view of a thermal emission-conversion muffler with a rectangular body enclosed within a muffler housing according to an embodiment of this invention
- FIG. 2 is a schematic of the end plan view of a thermal emission-conversion muffler with a rectangular body enclosed within a muffler housing according to an embodiment of this invention
- FIG. 3 is a schematic of one example of the plate configuration within the body of the muffler
- FIGS. 4-8 are schematics of alternative plate configurations for the body of the muffler of FIGS. 1 and 2 ;
- FIG. 9 is a cross-sectional view of the plate configuration along the axial length of the muffler body shown in FIG. 8 ;
- FIG. 10 is a schematic of three alternative plate configurations for placement within the body of the muffler of FIGS. 1 and 2 ;
- FIG. 11 is a schematic of a top plan view of a thermal emission-conversion muffler with a cylindrical body enclosed within a muffler housing according to an embodiment of this invention
- FIG. 12 is a schematic of the end plan view of a thermal emission-conversion muffler with a cylindrical body enclosed within a muffler housing according to an embodiment of this invention
- FIGS. 13 a and b shows schematics of two alternative plate configurations for the body of the muffler of FIGS. 11 and 12 ;
- FIG. 14 is a schematic cross-sectional view of the plate configuration having separated regions along the axial length of a rectangular or circular body for the body of the muffler of FIGS. 1 , 2 , 11 and 12 .
- FIGS. 1 and 2 show schematically the top and end plan views of a thermal emission-conversion muffler 10 enclosed within a muffler body 30 .
- the muffler 10 has an inlet pipe 20 , an outlet pipe 25 and a body 30 placed between these two pipes 20 , 25 .
- the body 30 is connected to the pipes 20 , 25 by tapered pipe sections 20 a , 25 a extending between the body 30 and each of the inlet pipe 20 and outlet pipes 25 . These tapered pipe sections 20 a , 25 a may transition into the body 30 with a predetermined radii of curvature. This measure will contribute to a more even gas flow through the muffler 10 .
- the body 30 is surrounded by a heat shield 15 with an air gap between the body and heat shield as is known in the art.
- the body 30 can be made in two parts and seam welded together 35.
- the body 30 and heat shield 15 of the rectangular mufflers 10 are constructed from two symmetrical halves.
- Internal to the body is a plurality of plates 45 held firmly within a holding device 40 .
- the plates 45 extend substantially the full sideways width of the body 30 .
- the plates shown in FIG. 3 are flattened tubes of a predetermined length and have a predetermined separation d between adjacent plates.
- the plates shown in FIG. 3 are rectangular with bull-nosed sides.
- the holding device 40 is configured to hold such a shape firmly in place to avoid any movement of the plates 45 .
- FIGS. 4-8 are end view schematics of alternative plate 40 configurations for the body 30 of the muffler 10 :
- FIG. 9 is a cross-sectional view along its axial length of the plate configuration shown in FIG. 8 , before the pre-formed holding device 40 is compressed to the reduced length shown in FIGS. 6 and 7 . As stated above, the plates are separated by a predetermined distance d.
- FIG. 10 is a schematic of three alternative configurations of plates 45 for placement within the body 30 of the muffler 10 .
- the shapes shown at FIGS. 10 a and b are corrugated versions of the plates 45 shown in FIGS. 3 and 4 respectively.
- the shapes shown in FIGS. 10 a,b,c can be placed in a body 30 with flat surfaces and no corrugations.
- the rectangular muffler bodies 30 can be constructed using flat plates with corrugated holding devices 40 on each side of the flat plates. The ends of the flat plates are inserted into the valleys of the corrugated holding devices 40 which are compressed to lock the plates 45 into position.
- the flat plates 45 can be inserted into each valley or every second valley depending on the predetermined distance d required between the plates 45 .
- Corrugated holding devices 40 of about 1.5 mm thickness can support the plates 45 being positioned at a distance of 3 mm to 6 mm apart. Alternatively, 3 mm thick corrugated holding devices 45 can be used to position the plates the desired thickness apart (eg 6 mm).
- the body 30 of the rectangular muffler 10 with the corrugated holding device 40 has a rectangular section on opposing sides to lock the plates 45 and corrugated holding device 40 into position.
- the mufflers 10 can also include a heat shield 15 that follows the shape of the rectangular or round muffler, as shown in FIGS. 11 and 12 .
- the heat shield 15 is open at each end to allow a flow of air between the muffler body 30 and the heat shield 15 .
- the heat shield as shown on the round muffler in FIGS. 11 and 12 has a plurality of retaining portions 53 at the ends of the heat shield which are V-shape bends that bend inwards towards the tapered pipe sections 20 a , 25 a of the muffler body 30 .
- the retaining portions 53 can be welded at the tip 54 of the retaining portions to the tapered pipe sections 20 a , 25 a of the muffler.
- the muffler 10 is the same as that shown in FIG. 1 .
- FIGS. 13 a and b shows two alternative plate configurations for the body 30 of the cylindrical muffler 10 which are equivalent to those for the rectangular muffler 10 shown in FIGS. 5 and 4 respectively.
- the rectangular and round mufflers 10 can be constructed using either flat tubes, one piece of corrugated plate with a flat surface or U-shaped plates.
- the rectangular muffler 10 can also be constructed using flat plates.
- FIG. 14 is a schematic of another embodiment of the invention. This figure shows a series of sets of stacked plates 45 as shown in the earlier figures, but in a separated configuration. The separation x n between subsequent sets of plates allows each set of stacked plates 45 to maintain the maximum increase in temperature along its axial length and prevents the outlet temperature of each set of stacked plates 45 from cooling. This allows the temperature of the exhaust gas at the outlet of the stacked plates to be controlled by maintaining or increasing the optimum length of the plates.
- FIG. 14 Two examples shown in FIG. 14 are:
- the exhaust gases flow through the muffler 10 and heat up the plates 45 , which in turn increases the temperature of the gas flow.
- the core temperature of the muffler body 30 can be, depending on the configuration utilised, increased between four to ten times greater than the exhaust gas temperature in a pipe of the same size. The increased temperature results in the break down and reduction of the toxic pollutants: HC, CO, NO x .
- the gases are not restricted (as they are for example by the restrictive passages in a baffled muffler or by the small restrictive passages in a catalytic converter) and therefore there is no power loss due to the slowing of the exhaust gases in some conventional muffler/catalytic converter systems.
- the hotter core temperature of the muffler 10 increases the gas speed by virtue of the hotter gas temperature. This results in more power being available to the vehicle engine but also greater fuel economy.
- One configuration of muffler 10 has plates 45 separated by a distance d of 2.5-3.5 mm and a length of between 35-45 mm.
- the muffler 10 with this configuration will be referred to as an “EV16”. It was found that the temperature of the EV16 muffler core was 8 times higher than the temperature of a typical exhaust pipe of the same diameter. Eg, the temperature of a typical exhaust pipe is about 100° C. while the temperature of the EV16 muffler core was about 800° C.
- the EV16 muffler was similar to the configuration shown in FIG. 14 : it was a series of 4 sets of stacked plates. The distance d between the plates 45 was 3 mm and the length of the plates was 40 mm. The separations x 1 ,x 2 etc between each set of stacked plates 45 was 10-50 mm.
- the gas emission was analysed by a Bosch gas analyser.
- the engine the muffler 10 was fitted to was a 2.4 litre Diesel 4 cylinder in a 1991 Toyota Hilux Utility with a peak RPM of 4700. Note: CO, HC, NO x are toxic emissions while O 2 and CO 2 are harmless emissions.
- the tests on the EV16 produced the following results (similar results were obtained for a petrol vehicle):
- Results show 78% lower CO emission, 60% lower NOx emissions and no change to HC emissions.
- the particulate (smoke) emissions reduced to the point that they were not visible. Therefore, this muffler 10 reduces the toxic emissions with carbureted, fuel injected or gas vehicles that do not use a catalytic converter as well as substantially reducing the exhaust smoke from diesel emissions. Further toxic emission reduction could have been obtained by increasing from four the number or sets of stacked plates.
- the EV16 also substantially reduces cold start emissions in vehicles without a catalytic converter or other emission control devices.
- Another muffler configuration has plates separated by a distance d of between 5.5 and 6.5 mm.
- the muffler with these plate distances will be referred to as an “EV8”. It was found that the temperature of the EV8 muffler core was 6 times higher than the temperature of a typical exhaust pipe of the same diameter. Eg, the temperature of a typical exhaust pipe is about 100° C. while the temperature of the EV8 muffler core was about 600° C.
- a distance d of less than 2.5 or greater than 3.5 millimetres reduced the temperature of the muffler core. It was also found that a plate length of longer than 40 mm reduces the outlet temperature of the muffler core, and the reduction in temperature continues the longer the plate is over 40 mm. This allows the muffler core to be tuned to a specific outlet temperature.
- the EV8 muffler 10 was 21 ⁇ 2 ⁇ 6 inches long with plates separated by a distance d of 6 mm and was fitted in front of a catalytic converter with no other modifications.
- the vehicle used was a 2004 Toyota Corolla Sportivo with a 1.8 litre 4 cylinder VTEC engine, with peak RPM of 8000, which uses a catalytic converter and runs on premium unleaded fuel.
- the results are shown in Tables 3 and 4.
- the catalytic converters were examined and it was found that substantially no damage had been sustained by the catalytic converter, as is usual with general vehicle use, indicating that the use of the EV8 muffler protects the catalytic converter from, for example, misfire, carbon contamination from excessive short trip driving, rich fuel mixture, high hydrocarbon (HC) emissions, oil contamination, contaminated fuel, high sulphur fuel, leaded fuel, engine coolant, chemical additives, silicone contamination from sealants and thermal shock. Any of these factors damage the catalytic converter and render it useless which increases pollution. Therefore, this device 10 could allow the fitting of a catalytic converter to carburetted vehicles to permit reduced toxic emissions without damaging the catalytic converter.
- HC hydrocarbon
- This device also assists in the operation of the catalytic converter which requires a temperature above 400° C. to work effectively which usually takes 15 minutes of engine running time to generate this temperature.
- the operation of the muffler 10 in front of the catalytic converter produces the optimum catalytic converter operating temperatures far quicker; it was found that the operating temperature of the catalytic converter was reached in 2 minutes by the EV8 muffler which substantially reduced cold start emissions.
- the length of the plates 45 is important in this regard to immediately produce the optimum temperature gas input to the catalytic converter and prevent the catalytic converter from exceeding its operating temperature. It was found that the temperature of the plates 45 was about 600° C. for the first 40 mm of the plates 45 , then dropped to about 300-400° C. at 125 mm.
- EV8 allows the catalytic converter to be moved 2.5 metres further away from the engine while producing the same results.
- the positioning of the muffler 10 in the exhaust system may have relevant effects.
- the muffler may be positioned into each primary pipe of the exhaust manifold/header which, by bringing the muffler closer to the exhaust port, allows the muffler to warm up more quickly and operate at a higher temperature, whereby it can work more efficiently in reducing emission of pollutants (both cold start emissions and operating emissions) and noise.
- the higher temperature of operation of the muffler when so positioned also increases the gas velocity through the muffler which has the upstream effect of increasing the level of gas scavenging and purging in the cylinder, thereby improving engine performance.
- the small size of the muffler 10 means that it can be fitted to any part of the exhaust system.
- the muffler 10 in order to achieve the benefits to the catalytic converter, the muffler 10 must be fitted before the catalytic converter.
- the device 10 also is beneficial in reducing the noise emitted from the outlet pipe 25 . This is a result of the sound waves entering through the inlet pipe 20 reducing in amplitude due to reflecting off the plates 45 inside the muffler body 30 . It was found in the tests that the EV mufflers reduced the exhaust noise by 5 db (36%) and increased the power by 3%. It was found that this power increase and noise reduction whether the exhaust system is a standard, restrictive or performance type.
- the muffler 10 may replace existing mufflers or used in conjunction with them to provide the extra noise reduction.
- the results indicated above also work for modern vehicles using restrictive exhaust systems. Additional mufflers 10 may be fitted along the exhaust system (eg at the middle or end) to increase the gas speed at these points to provide an increase in power.
- this muffler 10 does not have perforated tubing; moving parts; spiral, turbine or venturi shapes; sound absorption material; speakers, electronics or computers; electrical heating devices; require expensive metals; and does not work like conventional mufflers or catalytic converters.
- the device in use with an internal combustion engine, the device is equally suited to exhaust stacks and the like.
- the body of the muffler can be rectangular or cylindrical in cross-section.
- the plates may not necessarily be flat but could be corrugated, elliptical in cross section or any other suitable configuration.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Biomedical Technology (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Exhaust Gas After Treatment (AREA)
- Exhaust Silencers (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2007906183A AU2007906183A0 (en) | 2007-11-12 | Muffler | |
AU2007906183 | 2007-11-12 | ||
PCT/AU2008/001670 WO2009062233A1 (fr) | 2007-11-12 | 2008-11-12 | Pot d'échappement |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100251701A1 true US20100251701A1 (en) | 2010-10-07 |
Family
ID=40638232
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/742,269 Abandoned US20100251701A1 (en) | 2007-11-12 | 2008-11-12 | Muffler |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100251701A1 (fr) |
EP (1) | EP2220350A1 (fr) |
JP (1) | JP2011503411A (fr) |
CN (1) | CN101910572A (fr) |
AU (1) | AU2008323603A1 (fr) |
WO (1) | WO2009062233A1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10329985B2 (en) | 2017-06-27 | 2019-06-25 | Tenneco Automotive Operating Company Inc. | Impingement mixer for exhaust treatment |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US825010A (en) * | 1905-12-27 | 1906-07-03 | Benjamin W Snow | Muffler. |
US3739872A (en) * | 1971-05-27 | 1973-06-19 | Westinghouse Electric Corp | Gas turbine exhaust system |
US3819334A (en) * | 1970-10-27 | 1974-06-25 | Mitsui Mining & Smelting Co | Catalytic reaction apparatus for purifying waste gases containing carbon monoxide |
US4028275A (en) * | 1973-01-24 | 1977-06-07 | Mitsui Mining & Smelting Co., Ltd. | Process for preparing catalytic materials for purifying exhaust gas and catalytic materials prepared thereby |
US4182120A (en) * | 1973-03-20 | 1980-01-08 | Ethyl Corporation | Exhaust systems |
US4530418A (en) * | 1982-06-01 | 1985-07-23 | Currie Neil L | Automotive exhaust system |
US4598791A (en) * | 1983-03-17 | 1986-07-08 | Chillcotts Limited | Exhaust silencer |
US4832118A (en) * | 1986-11-24 | 1989-05-23 | Sundstrand Corporation | Heat exchanger |
US6096682A (en) * | 1995-11-23 | 2000-08-01 | Scambia Industrial Developments Ag | Process for the production of a catalyst body for the catalytic treatment of gas, catalyst body and catalytic converter |
US6475446B1 (en) * | 1996-05-31 | 2002-11-05 | Nissan Motor Co., Ltd. | Carrier body for exhaust gas catalysts |
US6533065B2 (en) * | 2000-12-19 | 2003-03-18 | Daniel Industries, Inc. | Noise silencer and method for use with an ultrasonic meter |
US6710013B1 (en) * | 1998-09-09 | 2004-03-23 | Babcock-Hitachi Kabushiki Kaisha | Exhaust emission control catalyst structure |
US6887067B2 (en) * | 2001-04-18 | 2005-05-03 | Alstom Technology Ltd | Catalytically operating burner |
US20060046113A1 (en) * | 2004-08-31 | 2006-03-02 | Sarnoff Corporation | Stacked reactor with microchannels |
US20070045044A1 (en) * | 2005-08-26 | 2007-03-01 | Sullivan John T | Flow-through mufflers with optional thermo-electric, sound cancellation, and tuning capabilities |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE815867C (de) * | 1949-07-09 | 1951-10-04 | Tydens Patenter Ab | Vorrichtung an Schalldaempfern fuer Verbrennungsmotoren, Kompressoren u. dgl. |
-
2008
- 2008-11-12 AU AU2008323603A patent/AU2008323603A1/en not_active Abandoned
- 2008-11-12 CN CN200880124481XA patent/CN101910572A/zh active Pending
- 2008-11-12 EP EP08849680A patent/EP2220350A1/fr not_active Withdrawn
- 2008-11-12 JP JP2010532382A patent/JP2011503411A/ja active Pending
- 2008-11-12 WO PCT/AU2008/001670 patent/WO2009062233A1/fr active Application Filing
- 2008-11-12 US US12/742,269 patent/US20100251701A1/en not_active Abandoned
Patent Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US825010A (en) * | 1905-12-27 | 1906-07-03 | Benjamin W Snow | Muffler. |
US3819334A (en) * | 1970-10-27 | 1974-06-25 | Mitsui Mining & Smelting Co | Catalytic reaction apparatus for purifying waste gases containing carbon monoxide |
US3739872A (en) * | 1971-05-27 | 1973-06-19 | Westinghouse Electric Corp | Gas turbine exhaust system |
US4028275A (en) * | 1973-01-24 | 1977-06-07 | Mitsui Mining & Smelting Co., Ltd. | Process for preparing catalytic materials for purifying exhaust gas and catalytic materials prepared thereby |
US4182120A (en) * | 1973-03-20 | 1980-01-08 | Ethyl Corporation | Exhaust systems |
US4530418A (en) * | 1982-06-01 | 1985-07-23 | Currie Neil L | Automotive exhaust system |
US4598791A (en) * | 1983-03-17 | 1986-07-08 | Chillcotts Limited | Exhaust silencer |
US4832118A (en) * | 1986-11-24 | 1989-05-23 | Sundstrand Corporation | Heat exchanger |
US6096682A (en) * | 1995-11-23 | 2000-08-01 | Scambia Industrial Developments Ag | Process for the production of a catalyst body for the catalytic treatment of gas, catalyst body and catalytic converter |
US6475446B1 (en) * | 1996-05-31 | 2002-11-05 | Nissan Motor Co., Ltd. | Carrier body for exhaust gas catalysts |
US6710013B1 (en) * | 1998-09-09 | 2004-03-23 | Babcock-Hitachi Kabushiki Kaisha | Exhaust emission control catalyst structure |
US6533065B2 (en) * | 2000-12-19 | 2003-03-18 | Daniel Industries, Inc. | Noise silencer and method for use with an ultrasonic meter |
US6887067B2 (en) * | 2001-04-18 | 2005-05-03 | Alstom Technology Ltd | Catalytically operating burner |
US20060046113A1 (en) * | 2004-08-31 | 2006-03-02 | Sarnoff Corporation | Stacked reactor with microchannels |
US20070045044A1 (en) * | 2005-08-26 | 2007-03-01 | Sullivan John T | Flow-through mufflers with optional thermo-electric, sound cancellation, and tuning capabilities |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10329985B2 (en) | 2017-06-27 | 2019-06-25 | Tenneco Automotive Operating Company Inc. | Impingement mixer for exhaust treatment |
Also Published As
Publication number | Publication date |
---|---|
EP2220350A1 (fr) | 2010-08-25 |
WO2009062233A1 (fr) | 2009-05-22 |
JP2011503411A (ja) | 2011-01-27 |
AU2008323603A1 (en) | 2009-05-22 |
CN101910572A (zh) | 2010-12-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6651773B1 (en) | Exhaust sound attenuation and control system | |
KR101223383B1 (ko) | 터보차저 이전의 배기 가스 이차 처리 | |
US8234859B2 (en) | Method of and apparatus for exhausting internal combustion engines | |
US20100251701A1 (en) | Muffler | |
KR101336050B1 (ko) | 차량의 배기시스템 | |
US20140318111A1 (en) | Decomposition tube for an engine | |
Feriyanto et al. | Comparison of metallic (FeCrAl) and Ceramic Catalytic Converter (CATCO) in reducing exhaust gas emission of gasoline engine fuelled by RON 95 to develop health environment | |
KR101158029B1 (ko) | 자동차 머플러 | |
KR200287758Y1 (ko) | 차량용 서브 머플러 | |
KR101365892B1 (ko) | 차량용 흡기계통의 흡기효율향상 흡기 덕트 장치 | |
US3713783A (en) | Catalytic muffler | |
KR100847966B1 (ko) | 자동차용 컨버터의 히트 실드 | |
KR100201570B1 (ko) | 자동차 내연기관에 배기가스 재연소장치 | |
KR100276246B1 (ko) | 자동차용 소음기 | |
AU2012100195A4 (en) | Method of and apparatus for enhancing air breathing (aspiration) and air flow of internal combustion engines increasing fuel efficiency and reducing emissions. (abbreviated as CATz) | |
WO2020121503A1 (fr) | Outil d'amélioration de l'efficacité de combustion | |
KR20010078435A (ko) | 내연기관의 배기가스의 정화장치 | |
KR100337503B1 (ko) | 자동차용 배기 시스템의 배기 매니폴드 조립체 | |
KR20220099867A (ko) | 내연기관 차량용 매연저감장치 | |
AU2009212948B2 (en) | Catalytic converter for internal combustion engine exhaust system | |
Chaudhari et al. | An Investigation on Application of Metallic Substrates and Emitubes for a Two-Stroke Three-Wheeler | |
CN201443429U (zh) | 一种排气消音器 | |
KR20120140433A (ko) | 온도센서 | |
KR20120106325A (ko) | 배기가스 정화 장치 | |
Jhunjhunwala et al. | INTERNATIONAL JOURNAL OF MECHANICAL ENGINEERING AND TECHNOLOGY (IJMET) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: IMPULSE ENGINE TECHNOLOGY PTY LIMITED, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHABRY, ALEXANDER;REEL/FRAME:024364/0234 Effective date: 20100510 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |