US20100208085A1 - Digital camera for processing and printing images - Google Patents
Digital camera for processing and printing images Download PDFInfo
- Publication number
- US20100208085A1 US20100208085A1 US12/769,643 US76964310A US2010208085A1 US 20100208085 A1 US20100208085 A1 US 20100208085A1 US 76964310 A US76964310 A US 76964310A US 2010208085 A1 US2010208085 A1 US 2010208085A1
- Authority
- US
- United States
- Prior art keywords
- jul
- ink
- actuator
- image
- nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000007639 printing Methods 0.000 title claims abstract description 22
- 238000012545 processing Methods 0.000 title claims abstract description 17
- 238000013507 mapping Methods 0.000 claims description 4
- 239000000976 ink Substances 0.000 description 259
- 238000000034 method Methods 0.000 description 158
- 238000004519 manufacturing process Methods 0.000 description 88
- 238000003672 processing method Methods 0.000 description 54
- 230000033001 locomotion Effects 0.000 description 31
- 238000010276 construction Methods 0.000 description 29
- 239000000463 material Substances 0.000 description 25
- 230000008569 process Effects 0.000 description 19
- 230000007246 mechanism Effects 0.000 description 17
- 230000008901 benefit Effects 0.000 description 15
- 238000005516 engineering process Methods 0.000 description 13
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 13
- 239000004810 polytetrafluoroethylene Substances 0.000 description 13
- 230000009467 reduction Effects 0.000 description 12
- 230000035882 stress Effects 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000000049 pigment Substances 0.000 description 11
- 239000003086 colorant Substances 0.000 description 8
- 238000013461 design Methods 0.000 description 8
- 230000002441 reversible effect Effects 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- 230000005684 electric field Effects 0.000 description 7
- 239000012943 hotmelt Substances 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- 239000004094 surface-active agent Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 235000009899 Agrostemma githago Nutrition 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000008859 change Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- 239000000975 dye Substances 0.000 description 6
- 238000010304 firing Methods 0.000 description 6
- 229910001172 neodymium magnet Inorganic materials 0.000 description 6
- 238000000926 separation method Methods 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 230000003321 amplification Effects 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000005686 electrostatic field Effects 0.000 description 5
- 239000011521 glass Substances 0.000 description 5
- 150000002576 ketones Chemical class 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 235000021251 pulses Nutrition 0.000 description 5
- 240000000254 Agrostemma githago Species 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000000696 magnetic material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 238000001465 metallisation Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- -1 polytetrafluoroethylene Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 229920001971 elastomer Polymers 0.000 description 3
- 238000007641 inkjet printing Methods 0.000 description 3
- 229910052746 lanthanum Inorganic materials 0.000 description 3
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 3
- 229910000734 martensite Inorganic materials 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000004530 micro-emulsion Substances 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 238000012805 post-processing Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000001052 transient effect Effects 0.000 description 3
- 229910003321 CoFe Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 229910001329 Terfenol-D Inorganic materials 0.000 description 2
- 229910010380 TiNi Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052770 Uranium Inorganic materials 0.000 description 2
- 244000178320 Vaccaria pyramidata Species 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 239000003139 biocide Substances 0.000 description 2
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000003906 humectant Substances 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000002715 modification method Methods 0.000 description 2
- 239000002991 molded plastic Substances 0.000 description 2
- 229910001000 nickel titanium Inorganic materials 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 101150048848 ART10 gene Proteins 0.000 description 1
- 241001164374 Calyx Species 0.000 description 1
- 101710113783 Candidapepsin-3 Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102100041023 Coronin-2A Human genes 0.000 description 1
- 229910052692 Dysprosium Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 101000748858 Homo sapiens Coronin-2A Proteins 0.000 description 1
- 101001106523 Homo sapiens Regulator of G-protein signaling 1 Proteins 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 102100021269 Regulator of G-protein signaling 1 Human genes 0.000 description 1
- 229910001117 Tb alloy Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000002322 conducting polymer Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000002059 diagnostic imaging Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- KBQHZAAAGSGFKK-UHFFFAOYSA-N dysprosium atom Chemical compound [Dy] KBQHZAAAGSGFKK-UHFFFAOYSA-N 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229920005570 flexible polymer Polymers 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 1
- 238000007645 offset printing Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- ZBSCCQXBYNSKPV-UHFFFAOYSA-N oxolead;oxomagnesium;2,4,5-trioxa-1$l^{5},3$l^{5}-diniobabicyclo[1.1.1]pentane 1,3-dioxide Chemical compound [Mg]=O.[Pb]=O.[Pb]=O.[Pb]=O.O1[Nb]2(=O)O[Nb]1(=O)O2 ZBSCCQXBYNSKPV-UHFFFAOYSA-N 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005591 polysilicon Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000012899 standard injection Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17513—Inner structure
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/78—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data
- G06F21/79—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer to assure secure storage of data in semiconductor storage media, e.g. directly-addressable memories
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/70—Protecting specific internal or peripheral components, in which the protection of a component leads to protection of the entire computer
- G06F21/86—Secure or tamper-resistant housings
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K1/00—Methods or arrangements for marking the record carrier in digital fashion
- G06K1/12—Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching
- G06K1/121—Methods or arrangements for marking the record carrier in digital fashion otherwise than by punching by printing code marks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K19/00—Record carriers for use with machines and with at least a part designed to carry digital markings
- G06K19/06—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
- G06K19/06009—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking
- G06K19/06037—Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code with optically detectable marking multi-dimensional coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06K—GRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K7/00—Methods or arrangements for sensing record carriers, e.g. for reading patterns
- G06K7/10—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
- G06K7/14—Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation using light without selection of wavelength, e.g. sensing reflected white light
- G06K7/1404—Methods for optical code recognition
- G06K7/1408—Methods for optical code recognition the method being specifically adapted for the type of code
- G06K7/1417—2D bar codes
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F7/00—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
- G07F7/08—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F7/00—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
- G07F7/08—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
- G07F7/086—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means by passive credit-cards adapted therefor, e.g. constructive particularities to avoid counterfeiting, e.g. by inclusion of a physical or chemical security-layer
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07F—COIN-FREED OR LIKE APPARATUS
- G07F7/00—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus
- G07F7/08—Mechanisms actuated by objects other than coins to free or to actuate vending, hiring, coin or paper currency dispensing or refunding apparatus by coded identity card or credit card or other personal identification means
- G07F7/12—Card verification
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/56—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using storage elements with more than two stable states represented by steps, e.g. of voltage, current, phase, frequency
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/0035—User-machine interface; Control console
- H04N1/00405—Output means
- H04N1/00408—Display of information to the user, e.g. menus
- H04N1/0044—Display of information to the user, e.g. menus for image preview or review, e.g. to help the user position a sheet
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/21—Intermediate information storage
- H04N1/2104—Intermediate information storage for one or a few pictures
- H04N1/2112—Intermediate information storage for one or a few pictures using still video cameras
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N1/00—Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
- H04N1/21—Intermediate information storage
- H04N1/2104—Intermediate information storage for one or a few pictures
- H04N1/2112—Intermediate information storage for one or a few pictures using still video cameras
- H04N1/2154—Intermediate information storage for one or a few pictures using still video cameras the still video camera incorporating a hardcopy reproducing device, e.g. a printer
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment
- H04N5/262—Studio circuits, e.g. for mixing, switching-over, change of character of image, other special effects ; Cameras specially adapted for the electronic generation of special effects
- H04N5/2628—Alteration of picture size, shape, position or orientation, e.g. zooming, rotation, rolling, perspective, translation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/135—Nozzles
- B41J2/165—Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
- B41J2/16585—Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles for paper-width or non-reciprocating print heads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17596—Ink pumps, ink valves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2202/00—Embodiments of or processes related to ink-jet or thermal heads
- B41J2202/01—Embodiments of or processes related to ink-jet heads
- B41J2202/21—Line printing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2221/00—Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/21—Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F2221/2129—Authenticate client device independently of the user
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N2101/00—Still video cameras
Definitions
- the present invention relates to digital cameras and in particular, the onboard processing and printing of images captured by the camera.
- the present invention provides a digital camera for sensing and storing an image, the camera comprising:
- an image sensor with a charge coupled device (CCD) for capturing image data relating to a sensed image, and an auto exposure setting for adjusting the image data captured by the CCD in response to the lighting conditions at image capture; and,
- CCD charge coupled device
- the image processor is adapted to use information from the auto exposure setting relating to the lighting conditions at image capture when processing the image data from the CCD.
- the processing can comprise re-mapping image colours so they appear deeper and richer when the exposure setting indicates low light conditions and re-mapping image colours to be brighter and more saturated when the auto exposure setting indicates bright light conditions.
- FIG. 1 is a block diagram of a digital camera of the preferred embodiment
- FIG. 2 illustrates a form of print roll ready for purchase by a consumer
- FIG. 3 illustrates a perspective view, partly in section, of an alternative form of a print roll
- FIG. 4 is a left side exploded perspective view of the print roll of FIG. 3 ;
- FIG. 5 is a right side exploded perspective view of a single print roll.
- the preferred embodiment is preferable implemented through suitable programming of a hand held camera device such as that described in the present applicant's application entitled “A Digital Image Printing Camera with Image Processing Capability”, the content of which is hereby specifically incorporated by cross reference and the details of which, and other related applications are set out in the tables below.
- the aforementioned patent specification discloses a camera system, hereinafter known as an “Artcam” type camera, wherein sensed images can be directly printed out by an Artcam portable camera unit. Further, the aforementioned specification discloses means and methods for performing various manipulations on images captured by the camera sensing device leading to the production of various effects in any output image. The manipulations are disclosed to be highly flexible in nature and can be implemented through the insertion into the Artcam of cards having encoded thereon various instructions for the manipulation of images, the cards hereinafter being known as Artcards.
- the Artcam further has significant onboard processing power by an Artcam Central Processor unit (ACP) which is interconnected to a memory device for the storage of important data and images.
- ACP Artcam Central Processor unit
- the Artcam has an auto exposure sensor for determining the light level associated with the captured image.
- This auto exposure sensor is utilised to process the image in accordance with the set light value so as to enhance portions of the image.
- the area image sensor includes a means for determining the light conditions when capturing an image.
- the area image sensor adjusts the dynamic range of values captured by the CCD in accordance with the detected level sensor.
- the captured image is transferred to the Artcam central processor and stored in the memory store.
- Intensity information, as determined by the area image sensor, is also forwarded top the ACP. This information is utilised by the Artcam central processor to manipulate the stored image to enhance certain effects.
- Artcam 20 is illustrated in which auto exposure setting information 1 is utilised in conjunction with stored image 2 to process the image by utilising ACP 3 .
- the processed image is returned to the memory store 2 for later printing out on printer 4 or printed directly.
- a number of processing steps can be undertaken in accordance with the determined light conditions.
- the image pixel colours are selectively re-mapped so as to make the image colours stronger, deeper and richer.
- the image colours can be processed to make them brighter and more saturated.
- the re-colouring of the image can be undertaken by conversion of the image to a hue-saturation-value (HSV) format and an alteration of pixel values in accordance with requirements.
- HSV hue-saturation-value
- the pixel values can then be output converted to the required output colour format of printing.
- the Artcard inserted could have a number of manipulations applied to the image which are specific to the auto-exposure setting. For example, clip arts containing candles etc could be inserted in a dark image and large suns inserted in bright images.
- the Artcam prints the images onto media stored in a replaceable print roll 5 .
- the operation of the camera device is such that when a series of images is printed on a first surface of the print roll, the corresponding backing surface has a ready made postcard which can be immediately dispatched at the nearest post office box within the jurisdiction. In this way, personalized postcards can be created.
- a modified form of print roll which can be constructed mostly from injection moulded plastic pieces suitably snapped fitted together.
- the modified form of print roll has a high ink storage capacity in addition to a somewhat simplified construction.
- the print media onto which the image is to be printed is wrapped around a plastic sleeve former for simplified construction.
- the ink media reservoir has a series of air vents which are constructed so as to minimise the opportunities for the ink flow out of the air vents.
- a rubber seal is provided for the ink outlet holes with the rubber seal being pierced on insertion of the print roll into a camera system.
- the print roll includes a print media ejection slot and the ejection slot includes a surrounding moulded surface which provides and assists in the accurate positioning of the print media ejection slot relative to the printhead within the printing or camera system.
- FIG. 3 there is illustrated a single point roll unit 5 in an assembled form with a partial cutaway showing internal portions of the print roll.
- FIG. 4 and FIG. 5 illustrate left and right side exploded perspective views respectively.
- the print roll 5 is constructed around the internal core portion 6 which contains an internal ink supply. Outside of the core portion 6 is provided a former 7 around which is wrapped a paper or film supply 8 .
- the bottom cover piece 10 includes a slot 11 through which the output of the print media 12 for interconnection with the camera system.
- Two pinch rollers 13 , 14 are provided to pinch the paper against a drive pinch roller 15 so they together provide for a decurling of the paper around the roller 15 .
- the decurling acts to negate the strong curl that may be imparted to the paper from being stored in the form of print roll for an extended period of time.
- the rollers 13 , 14 are provided to form a snap fit with end portions of the cover base portion 10 and the roller 15 which includes a cogged end 16 for driving, snap fits into the upper cover piece 9 so as to pinch the paper 12 firmly between.
- the cover pieces 9 , 10 includes an end protuberance or lip 17 .
- the end lip 17 is provided for accurately alignment of the exit hole of the paper with a corresponding printing heat platen structure within the camera system. In this way, accurate alignment or positioning of the exiting paper relative to an adjacent printhead is provided for full guidance of the paper to the printhead.
- the present invention is best utilized in the Artcam device, the details of which are set out in the following paragraphs.
- the embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.
- thermal inkjet The most significant problem with thermal inkjet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal inkjet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.
- piezoelectric inkjet The most significant problem with piezoelectric inkjet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewide print heads with 19,200 nozzles.
- the inkjet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications.
- new inkjet technologies have been created.
- the target features include:
- inkjet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems
- the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing.
- the print head is 100 mm long, with a width which depends upon the inkjet type.
- the smallest print head designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm.
- the print heads each contain 19,200 nozzles plus data and control circuitry.
- Ink is supplied to the back of the print head by injection molded plastic ink channels.
- the molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool.
- Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer.
- the print head is connected to the camera circuitry by tape automated bonding.
- Actuator mechanism (18 types) Basic operation mode (7 types) Auxiliary mechanism (8 types) Actuator amplification or modification method (17 types) Actuator motion (19 types) Nozzle refill method (4 types) Method of restricting back-flow through inlet (10 types) Nozzle clearing method (9 types) Nozzle plate construction (9 types) Drop ejection direction (5 types) Ink type (7 types)
- inkjet configurations can readily be derived from these 45 examples by substituting alternative configurations along one or more of the 11 axes.
- Most of the IJ01 to IJ45 examples can be made into inkjet print heads with characteristics superior to any currently available inkjet technology.
- Suitable applications include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.
- Piezoelectric A piezoelectric crystal such as lead Low power consumption lanthanum zirconate (PZT) is electrically Many ink types can be used activated, and either expands, shears, or Fast operation bends to apply pressure to the ink, High efficiency ejecting drops.
- Electro-strictive An electric field is used to activate Low power consumption electrostriction in relaxor materials such Many ink types can be used as lead lanthanum zirconate titanate Low thermal expansion (PLZT) or lead magnesium niobate Electric field strength required (PMN). (approx. 3.5 V/ ⁇ m) can be generated without difficulty Does not require electrical poling Ferroelectric An electric field is used to induce a Low power consumption phase transition between the Many ink types can be used antiferroelectric (AFE) and ferroelectric Fast operation ( ⁇ 1 ⁇ s) (FE) phase.
- AFE antiferroelectric
- FE ferroelectric Fast operation
- Perovskite materials such as Relatively high longitudinal tin modified lead lanthanum zirconate strain titanate (PLZSnT) exhibit large strains of High efficiency up to 1% associated with the AFE to FE Electric field strength of phase transition. around 3 V/ ⁇ m can be readily provided
- Electrostatic Conductive plates are separated by a Low power consumption plates compressible or fluid dielectric (usually Many ink types can be used air). Upon application of a voltage, the Fast operation plates attract each other and displace ink, causing drop ejection.
- the conductive plates may be in a comb or honeycomb structure, or stacked to increase the surface area and therefore the force.
- Electrostatic A strong electric field is applied to the Low current consumption pull on ink ink, whereupon electrostatic attraction Low temperature accelerates the ink towards the print medium.
- Permanent An electromagnet directly attracts a Low power consumption magnet electro- permanent magnet, displacing ink and Many ink types can be used magnetic causing drop ejection.
- Rare earth Fast operation magnets with a field strength around 1 High efficiency Tesla can be used.
- Examples are: Easy extension from single Samarium Cobalt (SaCo) and magnetic nozzles to pagewidth print materials in the neodymium iron boron heads family (NdFeB, NdDyFeBNb, NdDyFeB, etc) Soft magnetic A solenoid induced a magnetic field in a Low power consumption core electro- soft magnetic core or yoke fabricated Many ink types can be used magnetic from a ferrous material such as Fast operation electroplated iron alloys such as CoNiFe High efficiency [1], CoFe, or NiFe alloys. Typically, the Easy extension from single soft magnetic material is in two parts, nozzles to pagewidth print which are normally held apart by a heads spring.
- Magneto- The actuator uses the giant Many ink types can be used striction magnetostrictive effect of materials such Fast operation as Terfenol-D (an alloy of terbium, Easy extension from single dysprosium and iron developed at the nozzles to pagewidth print Naval Ordnance Laboratory, hence Ter- heads Fe-NOL).
- the High force is available actuator should be pre-stressed to approx. 8 MPa.
- Surface tension Ink under positive pressure is held in a Low power consumption reduction nozzle by surface tension. The surface Simple construction tension of the ink is reduced below the No unusual materials required bubble threshold, causing the ink to in fabrication egress from the nozzle.
- CMOS compatible voltages and currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print heads
- High CTE A material with a very high coefficient High force can be generated thermoelastic of thermal expansion (CTE) such as PTFE is a candidate for low actuator polytetrafluoroethylene (PTFE) is used.
- CTE thermoelastic of thermal expansion
- PTFE polytetrafluoroethylene
- a Many ink types can be used 50 ⁇ m long PTFE bend actuator with Simple planar fabrication polysilicon heater and 15 mW power Small chip area required for input can provide 180 ⁇ N force and 10 ⁇ m each actuator deflection.
- Actuator motions include: Fast operation 1) Bend High efficiency 2) Push CMOS compatible voltages 3) Buckle and currents 4) Rotate Easy extension from single nozzles to pagewidth print heads Conductive A polymer with a high coefficient of High force can be generated polymer thermal expansion (such as PTFE) is Very low power consumption thermoelastic doped with conducting substances to Many ink types can be used actuator increase its conductivity to about 3 Simple planar fabrication orders of magnitude below that of Small chip area required for copper. The conducting polymer each actuator expands when resistively heated.
- conducting dopants include: High efficiency 1) Carbon nanotubes CMOS compatible voltages 2) Metal fibers and currents 3) Conductive polymers such as doped Easy extension from single polythiophene nozzles to pagewidth print 4) Carbon granules heads Shape memory A shape memory alloy such as TiNi (also High force is available alloy known as Nitinol - Nickel Titanium alloy (stresses of hundreds of MPa) developed at the Naval Ordnance Large strain is available (more Laboratory) is thermally switched than 3%) between its weak martensitic state and its High corrosion resistance high stiffness austenic state. The shape Simple construction of the actuator in its martensitic state is Easy extension from single deformed relative to the austenic shape.
- Linear Magnetic Linear magnetic actuators include the Linear Magnetic actuators can Actuator Linear Induction Actuator (LIA), Linear be constructed with high Permanent Magnet Synchronous thrust, long travel, and high Actuator (LPMSA), Linear Reluctance efficiency using planar Synchronous Actuator (LRSA), Linear semiconductor fabrication Switched Reluctance Actuator (LSRA), techniques and the Linear Stepper Actuator (LSA).
- LIA Linear Induction Actuator
- LRSA Linear Synchronous Actuator
- LSRA Linear semiconductor fabrication Switched Reluctance Actuator
- LSA Linear Stepper Actuator
- the drops to be printed are selected by Very simple print head pull on ink some manner (e.g. thermally induced fabrication can be used surface tension reduction of pressurized
- the drop selection means does ink). Selected drops are separated from not need to provide the energy the ink in the nozzle by a strong electric required to separate the drop field. from the nozzle Magnetic pull on
- the drops to be printed are selected by Very simple print head ink some manner (e.g. thermally induced fabrication can be used surface tension reduction of pressurized
- the drop selection means does ink). Selected drops are separated from not need to provide the energy the ink in the nozzle by a strong required to separate the drop magnetic field acting on the magnetic from the nozzle ink.
- Shutter The actuator moves a shutter to block ink High speed (>50 KHz) flow to the nozzle.
- the ink pressure is operation can be achieved due pulsed at a multiple of the drop ejection to reduced refill time frequency. Drop timing can be very accurate
- the actuator energy can be very low
- Shuttered grill The actuator moves a shutter to block ink Actuators with small travel can flow through a grill to the nozzle.
- the be used shutter movement need only be equal to Actuators with small force can the width of the grill holes.
- High speed (>50 KHz) operation can be achieved Pulsed magnetic A pulsed magnetic field attracts an ‘ink Extremely low energy pull on ink pusher’ at the drop ejection frequency.
- the provide a refill pulse, Ink pressure phase and amplitude must 658 A2 and related pressure actuator selects which drops are to be allowing higher be carefully controlled patent applications (including fired by selectively blocking or enabling operating speed Acoustic reflections in the ink chamber IJ08, IJ13, IJ15, IJ17 acoustic nozzles.
- the ink pressure oscillation The actuators may operate must be designed for IJ18, IJ19, IJ21 stimulation) may be achieved by vibrating the with much lower energy print head, or preferably by an Acoustic lenses can be used to actuator in the ink supply. focus the sound on the nozzles Media
- the print head is placed in close Low power Precision assembly required Silverbrook, EP 0771 proximity proximity to the print medium.
- Selected High accuracy Paper fibers may cause problems 658 A2 and related drops protrude from the print head Simple print head construction Cannot print on rough substrates patent applications further than unselected drops, and contact the print medium. The drop soaks into the medium fast enough to cause drop separation. Transfer Drops are printed to a transfer roller High accuracy Bulky Silverbrook, EP 0771 roller instead of straight to the print medium. Wide range of print substrates Expensive 658 A2 and related A transfer roller can also be used for can be used Complex construction patent applications proximity drop separation.
- Ink can be dried on the Tektronix hot melt transfer roller piezoelectric inkjet Any of the IJ series Electrostatic An electric field is used to accelerate Low power Field strength required for separation of Silverbrook, EP 0771 selected drops towards the print Simple print head construction small drops is near or above 658 A2 and related medium.
- air breakdown patent applications Tone-Jet Direct A magnetic field is used to accelerate Low power Requires magnetic ink Silverbrook, EP 0771 magnetic selected drops of magnetic ink towards Simple print head construction Requires strong magnetic field 658 A2 and related field the print medium.
- patent applications Cross The print head is placed in a constant Does not require magnetic Requires external magnet IJ06, IJ16 magnetic magnetic field.
- the Lorenz force in a materials to be integrated in Current densities may be high, resulting field current carrying wire is used to move the print head manufacturing in electromigration problems the actuator.
- process Pulsed A pulsed magnetic field is used to Very low power operation is Complex print head construction IJ10 magnetic cyclically attract a paddle, which pushes possible Magnetic materials required in field on the ink.
- a small actuator moves a Small print head size print head catch, which selectively prevents the paddle from moving.
- the actuator directly drives the drop ejection process. Differential An actuator material expands more on Provides greater travel in a expansion bend one side than on the other.
- the reduced print head area actuator expansion may be thermal, piezoelectric,
- the bend actuator converts a magnetostrictive, or other mechanism. high force low travel actuator mechanism to high travel, lower force mechanism.
- Transient bend A trilayer bend actuator where the two Very good temperature actuator outside layers are identical. This cancels stability bend due to ambient temperature and High speed, as a new drop can residual stress.
- the actuator only be fired before heat dissipates responds to transient heating of one side Cancels residual stress of or the other.
- Actuator stack A series of thin actuators are stacked. Increased travel This can be appropriate where actuators Reduced drive voltage require high electric field strength, such as electrostatic and piezoelectric actuators. Multiple Multiple smaller actuators are used Increases the force available actuators simultaneously to move the ink. Each from an actuator actuator need provide only a portion of Multiple actuators can be the force required.
- Linear Spring A linear spring is used to transform a Matches low travel actuator motion with small travel and high force with higher travel requirements into a longer travel, lower force motion. Non-contact method of motion transformation Reverse spring The actuator loads a spring. When the Better coupling to the ink actuator is turned off, the spring releases.
- Coiled actuator A bend actuator is coiled to provide Increases travel greater travel in a reduced chip area. Reduces chip area Planar implementations are relatively easy to fabricate. Flexure bend A bend actuator has a small region near Simple means of increasing actuator the fixture point, which flexes much travel of a bend actuator more readily than the remainder of the actuator. The actuator flexing is effectively converted from an even coiling to an angular bend, resulting in greater travel of the actuator tip. Gears Gears can be used to increase travel at Low force, low travel actuators the expense of duration.
- Circular gears can be used rack and pinion, ratchets, and other Can be fabricated using gearing methods can be used.
- standard surface MEMS processes Catch The actuator controls a small catch.
- the Very low actuator energy catch either enables or disables Very small actuator size movement of an ink pusher that is controlled in a bulk manner.
- Buckle plate A buckle plate can be used to change a Very fast movement slow actuator into a fast motion. It can achievable also convert a high force, low travel actuator into a high travel, medium force motion.
- Tapered A tapered magnetic pole can increase Linearizes the magnetic magnetic pole travel at the expense of force.
- a lever and fulcrum is used to transform Matches low travel actuator a motion with small travel and high force with higher travel requirements into a motion with longer travel and Fulcrum area has no linear lower force.
- the lever can also reverse movement, and can be used for the direction of travel.
- a fluid seal Rotary impeller
- the actuator is connected to a rotary High mechanical advantage impeller.
- a small angular deflection of The ratio of force to travel of the actuator results in a rotation of the the actuator can be matched to impeller vanes, which push the ink the nozzle requirements by against stationary vanes and out of the varying the number of impeller nozzle.
- Actuator motion Description Advantages Volume The volume of the actuator changes, Simple construction in the case expansion pushing the ink in all directions.
- Thermal ink jet Linear, normal
- the actuator moves in a direction normal Efficient coupling to ink drops to chip surface to the print head surface.
- the nozzle is ejected normal to the surface typically in the line of movement.
- Linear, parallel The actuator moves parallel to the print Suitable for planar fabrication to chip surface head surface. Drop ejection may still be normal to the surface.
- Rotary The actuator causes the rotation of some Rotary levers may be used to element, such a grill or impeller increase travel Small chip area requirements Bend The actuator bends when energized. This A very small change in may be due to differential thermal dimensions can be converted expansion, piezoelectric expansion, to a large motion. magnetostriction, or other form of relative dimensional change. Swivel The actuator swivels around a central Allows operation where the net pivot. This motion is suitable where linear force on the paddle is there are opposite forces applied to zero opposite sides of the paddle, e.g. Lorenz Small chip area requirements force. Straighten The actuator is normally bent, and Can be used with shape straightens when energized.
- the actuator bends in one direction when One actuator can be used to one element is energized, and bends the power two nozzles. other way when another element is Reduced chip size. energized. Not sensitive to ambient temperature Shear Energizing the actuator causes a shear Can increase the effective motion in the actuator material. travel of piezoelectric actuators Radial The actuator squeezes an ink reservoir, Relatively easy to fabricate constriction forcing ink from a constricted nozzle. single nozzles from glass tubing as macroscopic structures Coil/uncoil A coiled actuator uncoils or coils more Easy to fabricate as a planar tightly. The motion of the free end of the VLSI process actuator ejects the ink.
- Linear, normal High fabrication complexity may be IJ01, IJ02, IJ04, IJ07 to chip surface required to achieve perpendicular motion IJ11, IJ14 Linear, parallel Fabrication complexity IJ12, IJ13, IJ15, IJ33, to chip surface Friction IJ34, IJ35, IJ36 Stiction Membrane push Fabrication complexity 1982 Howkins U.S. Pat. No.
- Actuator size 4,459,601 Difficulty of integration in a VLSI process
- Rotary Device complexity IJ05, IJ08, IJ13, IJ28 May have friction at a pivot point Bend Requires the actuator to be made from at 1970 Kyser et al U.S. Pat. No. least two distinct layers, or to have a 3,946,398 thermal difference across the actuator 1973 Stemme U.S. Pat. No.
- Nozzle refill method Description Advantages Disadvantages Examples Surface After the actuator is energized, it Fabrication simplicity Low speed Thermal inkjet tension typically returns rapidly to its normal Operational simplicity Surface tension force relatively small Piezoelectric inkjet position. This rapid return sucks in air compared to actuator force IJ01-IJ07, IJ10-IJ14 through the nozzle opening. The ink Long refill time usually dominates the IJ16, IJ20, IJ22-IJ45 surface tension at the nozzle then exerts total repetition rate a small force restoring the meniscus to a minimum area.
- Shuttered Ink to the nozzle chamber is provided at High speed Requires common ink pressure oscillator IJ08, IJ13, IJ15, IJ17 oscillating a pressure that oscillates at twice the Low actuator energy, as the May not be suitable for pigmented inks IJ18, IJ19, IJ21 ink drop ejection frequency.
- the shutter is opened for 3 close the shutter, instead of half cycles: drop ejection, actuator ejecting the ink drop return, and refill.
- Tektronix hot melt Piezoelectric ink jet creates eddies which restrict the flow Reduces crosstalk print heads). through the inlet.
- the slower refill process is unrestricted, and does not result in eddies.
- Flexible In this method recently disclosed by Significantly reduces back- Not applicable to most inkjet Canon flap Canon, the expanding actuator (bubble) flow for edge-shooter thermal configurations restricts pushes on a flexible flap that restricts the ink jet devices Increased fabrication complexity inlet inlet. Inelastic deformation of polymer flap results in creep over extended use Inlet filter A filter is located between the ink inlet Additional advantage of ink Restricts refill rate IJ04, IJ12, IJ24, IJ27 and the nozzle chamber.
- the filter has a filtration May result in complex construction IJ29, IJ30 multitude of small holes or slots, Ink filter may be fabricated restricting ink flow.
- the filter also with no additional process removes particles which may block the steps nozzle.
- Small inlet The ink inlet channel to the nozzle Design simplicity Restricts refill rate IJ02, IJ37, IJ44 compared chamber has a substantially smaller cross May result in a relatively large chip area to nozzle section than that of the nozzle, resulting Only partially effective in easier ink egress out of the nozzle than out of the inlet.
- Inlet A secondary actuator controls the Increases speed of the ink-jet Requires separate refill actuator and IJ09 shutter position of a shutter, closing off the ink print head operation drive circuit inlet when the main actuator is energized.
- the inlet The method avoids the problem of inlet Back-flow problem is Requires careful design to minimize the IJ01, IJ03, IJ05, IJ06 is back-flow by arranging the ink-pushing eliminated negative pressure behind the paddle IJ07, IJ10, IJ11, IJ14 located surface of the actuator between the inlet IJ16, IJ22, IJ23, IJ25 behind and the nozzle.
- Nozzle Clearing method Description Advantages Normal nozzle All of the nozzles are fired periodically, No added complexity on the firing before the ink has a chance to dry.
- the nozzle firing is usually performed during a special clearing cycle, after first moving the print head to a cleaning station. Extra power to In systems which heat the ink, but do not Can be highly effective if the ink heater boil it under normal situations, nozzle heater is adjacent to the nozzle clearing can be achieved by over- powering the heater and boiling ink at the nozzle. Rapid The actuator is fired in rapid succession.
- Nozzle clearing A microfabricated plate is pushed against Can clear severely clogged plate the nozzles.
- the plate has a post for nozzles every nozzle.
- the array of posts Ink pressure
- the pressure of the ink is temporarily May be effective where other pulse increased so that ink streams from all of methods cannot be used the nozzles. This may be used in conjunction with actuator energizing.
- Print head wiper A flexible ‘blade’ is wiped across the Effective for planar print head print head surface.
- the blade is usually surfaces fabricated from a flexible polymer, e.g. Low cost rubber or synthetic elastomer.
- a separate heater is provided at the Can be effective where other boiling heater nozzle although the normal drop e- nozzle clearing methods ection mechanism does not require it. cannot be used
- the heaters do not require individual Can be implemented at no drive circuits, as many nozzles can be additional cost in some inkjet cleared simultaneously, and no imaging configurations is required.
- Nozzle Clearing method Disadvantages Examples Normal nozzle May not be sufficient to displace dried ink
- Electroformed A nozzle plate is separately fabricated Fabrication simplicity nickel from electroformed nickel, and bonded to the print head chip. Laser ablated or Individual nozzle holes are ablated by an No masks required drilled polymer intense UV laser in a nozzle plate, which Can be quite fast is typically a polymer such as polyimide Some control over nozzle or polysulphone profile is possible Equipment required is relatively low cost Silicon micro- A separate nozzle plate is High accuracy is attainable machined micromachined from single crystal silicon, and bonded to the print head wafer. Glass capillaries Fine glass capillaries are drawn from No expensive equipment glass tubing.
- the nozzle plate is deposited as a layer High accuracy ( ⁇ 1 ⁇ m) surface micro- using standard VLSI deposition Monolithic machined using techniques. Nozzles are etched in the Low cost VLSI nozzle plate using VLSI lithography and Existing processes can be used lithographic etching. processes Monolithic, The nozzle plate is a buried etch stop in High accuracy ( ⁇ 1 ⁇ m) etched through the wafer. Nozzle chambers are etched in Monolithic substrate the front of the wafer, and the wafer is Low cost thinned from the back side.
- Nozzles are No differential expansion then etched in the etch stop layer.
- No nozzle plate Various methods have been tried to No nozzles to become clogged eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms Trough Each drop ejector has a trough through Reduced manufacturing which a paddle moves. There is no complexity nozzle plate.
- Edge Ink flow is along the surface of the chip, Simple construction (‘edge shooter’) and ink drops are ejected from the chip No silicon etching required edge.
- Good heat sinking via substrate Mechanically strong Ease of chip handing Surface Ink flow is along the surface of the chip, No bulk silicon etching (‘roof shooter’) and ink drops are ejected from the chip required surface, normal to the plane of the chip.
- Silicon can make an effective heat sink Mechanical strength Through chip, Ink flow is through the chip, and ink High ink flow forward drops are ejected from the front surface Suitable for pagewidth print (‘up shooter’) of the chip.
- Aqueous, dye Water based ink which typically Environmentally friendly contains: water, dye, surfactant, No odor humectant, and biocide. Modern ink dyes have high water- fastness, light fastness
- Aqueous, Water based ink which typically Environmentally friendly pigment contains: water, pigment, surfactant, No odor humectant, and biocide.
- Reduced bleed Pigments have an advantage in reduced Reduced wicking bleed, wicking and strikethrough.
- Reduced strikethrough Methyl Ethyl MEK is a highly volatile solvent used for Very fast drying Ketone (MEK) industrial printing on difficult surfaces Prints on various substrates such as aluminum cans.
- Alcohol Alcohol based inks can be used where Fast drying (ethanol, 2- the printer must operate at temperatures Operates at sub-freezing butanol, and below the freezing point of water. An temperatures others) example of this is in-camera consumer Reduced paper cockle photographic printing.
- Low cost Phase change The ink is solid at room temperature, and No drying time-ink instantly (hot melt) is melted in the print head before jetting. freezes on the print medium Hot melt inks are usually wax based, Almost any print medium can with a melting point around 80° C. After be used jetting the ink freezes almost instantly No paper cockle occurs upon contacting the print medium or a No wicking occurs transfer roller.
- Oil Oil based inks are extensively used in High solubility medium for offset printing. They have advantages in some dyes improved characteristics on paper Does not cockle paper (especially no wicking or cockle). Oil Does not wick through paper soluble dies and pigments are required.
- Microemulsion A microemulsion is a stable, self forming Stops ink bleed emulsion of oil, water, and surfactant. High dye solubility The characteristic drop size is less than Water, oil, and amphiphilic 100 nm, and is determined by the soluble dies can be used preferred curvature of the surfactant.
- Ink temperature may be above the curie 4,820,346 point of permanent magnets All IJ series ink jets Ink heaters consume power Long warm-up time Oil High viscosity: this is a significant All IJ series ink jets limitation for use in inkjets, which usually require a low viscosity. Some short chain and multi-branched oils have a sufficiently low viscosity. Slow drying Microemulsion Viscosity higher than water All IJ series ink jets Cost is slightly higher than water based ink High surfactant concentration required (around 5%)
- the present application may utilize advanced semiconductor fabrication techniques in the construction of large arrays of ink jet printers. Suitable manufacturing techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
- the present application may utilize an ink delivery system to the ink jet head.
- Delivery systems relating to the supply of ink to a series of ink jet nozzles are described in the following Australian provisional patent specifications, the disclosure of which are hereby incorporated by cross-reference.
- the serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
- the present application may utilize advanced semiconductor microelectromechanical techniques in the construction of large arrays of ink jet printers. Suitable microelectromechanical techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
- the present application may include the utilization of a disposable camera system such as those described in the following Australian provisional patent specifications incorporated here by cross-reference.
- the serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
- present application may include the utilization of a data distribution system such as that described in the following Australian provisional patent specifications incorporated here by cross-reference.
- the serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
- the present application may include the utilization of camera and data processing techniques such as an Artcam type device as described in the following Australian provisional patent specifications incorporated here by cross-reference.
- the serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Health & Medical Sciences (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Particle Formation And Scattering Control In Inkjet Printers (AREA)
Abstract
A digital camera for processing and printing an image is provided having an image sensor for capturing image data from images sensed at an auto exposure setting, an image processor for processing the image to produce processed data, a printer for printing the processed data, and an interface for receiving a cartridge having postcard media and memory storing information regarding a size of each postcard. The image processor produces the processed data using the auto exposure setting and the information regarding the size of each postcard read from the cartridge memory.
Description
- The present application is a continuation of U.S. application Ser. No. 10/831,234 filed on Apr. 26, 2004, which is a Continuation-in-Part of U.S. application Ser. No. 09/112,743 filed on Jul. 10, 1998, now issued U.S. Pat. No. 6,727,951 all of which are herein incorporated by reference.
- The present invention relates to digital cameras and in particular, the onboard processing and printing of images captured by the camera.
- Recently, digital cameras have become increasingly popular. These cameras normally operate by means of imaging a desired image utilising a charge coupled device (CCD) array and storing the imaged scene on an electronic storage medium for later down loading onto a computer system for subsequent manipulation and printing out. Normally, when utilising a computer system to print out an image, sophisticated software may available to manipulate the image in accordance with requirements.
- Unfortunately such systems require significant post processing of a captured image and normally present the image in an orientation to which it was taken, relying on the post processing process to perform any necessary or required modifications of the captured image. Further, much of the environmental information available when the picture was taken is lost.
- It is an object of the present invention to provide for the utilisation of exposure information in an image specific manner.
- Accordingly, the present invention provides a digital camera for sensing and storing an image, the camera comprising:
- an image sensor with a charge coupled device (CCD) for capturing image data relating to a sensed image, and an auto exposure setting for adjusting the image data captured by the CCD in response to the lighting conditions at image capture; and,
- an image processor for processing image data from the CCD and storing the processed data; wherein,
- the image processor is adapted to use information from the auto exposure setting relating to the lighting conditions at image capture when processing the image data from the CCD.
- Utilising the auto exposure setting to determine an advantageous re-mapping of colours within the image allows the processor to produce an amended image having colours within an image transformed to account of the auto exposure setting. The processing can comprise re-mapping image colours so they appear deeper and richer when the exposure setting indicates low light conditions and re-mapping image colours to be brighter and more saturated when the auto exposure setting indicates bright light conditions.
- Notwithstanding any other forms which may fall within the scope of the present invention, preferred forms of the invention will now be described, by way of example only, with reference to the accompanying drawings which:
-
FIG. 1 is a block diagram of a digital camera of the preferred embodiment; -
FIG. 2 illustrates a form of print roll ready for purchase by a consumer; -
FIG. 3 illustrates a perspective view, partly in section, of an alternative form of a print roll; -
FIG. 4 is a left side exploded perspective view of the print roll ofFIG. 3 ; and, -
FIG. 5 is a right side exploded perspective view of a single print roll. - The preferred embodiment is preferable implemented through suitable programming of a hand held camera device such as that described in the present applicant's application entitled “A Digital Image Printing Camera with Image Processing Capability”, the content of which is hereby specifically incorporated by cross reference and the details of which, and other related applications are set out in the tables below.
- The aforementioned patent specification discloses a camera system, hereinafter known as an “Artcam” type camera, wherein sensed images can be directly printed out by an Artcam portable camera unit. Further, the aforementioned specification discloses means and methods for performing various manipulations on images captured by the camera sensing device leading to the production of various effects in any output image. The manipulations are disclosed to be highly flexible in nature and can be implemented through the insertion into the Artcam of cards having encoded thereon various instructions for the manipulation of images, the cards hereinafter being known as Artcards. The Artcam further has significant onboard processing power by an Artcam Central Processor unit (ACP) which is interconnected to a memory device for the storage of important data and images.
- In the preferred embodiment, the Artcam has an auto exposure sensor for determining the light level associated with the captured image. This auto exposure sensor is utilised to process the image in accordance with the set light value so as to enhance portions of the image.
- Preferably, the area image sensor includes a means for determining the light conditions when capturing an image. The area image sensor adjusts the dynamic range of values captured by the CCD in accordance with the detected level sensor. The captured image is transferred to the Artcam central processor and stored in the memory store. Intensity information, as determined by the area image sensor, is also forwarded top the ACP. This information is utilised by the Artcam central processor to manipulate the stored image to enhance certain effects.
- Turning now to
FIG. 1 , Artcam 20 is illustrated in which auto exposure setting information 1 is utilised in conjunction with storedimage 2 to process the image by utilising ACP 3. The processed image is returned to thememory store 2 for later printing out on printer 4 or printed directly. - A number of processing steps can be undertaken in accordance with the determined light conditions. Where the auto exposure setting 1 indicates that the image was taken in a low light condition, the image pixel colours are selectively re-mapped so as to make the image colours stronger, deeper and richer.
- Where the auto exposure information indicates that highlight conditions were present when the image was taken, the image colours can be processed to make them brighter and more saturated. The re-colouring of the image can be undertaken by conversion of the image to a hue-saturation-value (HSV) format and an alteration of pixel values in accordance with requirements. The pixel values can then be output converted to the required output colour format of printing.
- Of course, many different re-colouring techniques may be utilised. Preferably, the techniques are clearly illustrated on the pre-requisite Artcard inserted into the reader. Alternatively, the image processing algorithms can be automatically applied and hard-wired into the camera for utilization in certain conditions.
- Alternatively, the Artcard inserted could have a number of manipulations applied to the image which are specific to the auto-exposure setting. For example, clip arts containing candles etc could be inserted in a dark image and large suns inserted in bright images.
- Referring now to
FIGS. 2 to 5 , the Artcam prints the images onto media stored in a replaceable print roll 5. In some preferred embodiments, the operation of the camera device is such that when a series of images is printed on a first surface of the print roll, the corresponding backing surface has a ready made postcard which can be immediately dispatched at the nearest post office box within the jurisdiction. In this way, personalized postcards can be created. - It would be evident that when utilising the postcard system as illustrated
FIG. 2 only predetermined image sizes are possible as the synchronization between the backing postcard portion and the front image must be maintained. This can be achieved by utilising the memory portions of the authentication chip stored within the print roll 5 to store details of the length of each postcard backing format sheet. This can be achieved by either having each postcard the same size or by storing each size within the print rolls on-board print chip memory. - In an alternative embodiment, there is provided a modified form of print roll which can be constructed mostly from injection moulded plastic pieces suitably snapped fitted together. The modified form of print roll has a high ink storage capacity in addition to a somewhat simplified construction. The print media onto which the image is to be printed is wrapped around a plastic sleeve former for simplified construction. The ink media reservoir has a series of air vents which are constructed so as to minimise the opportunities for the ink flow out of the air vents. Further, a rubber seal is provided for the ink outlet holes with the rubber seal being pierced on insertion of the print roll into a camera system. Further, the print roll includes a print media ejection slot and the ejection slot includes a surrounding moulded surface which provides and assists in the accurate positioning of the print media ejection slot relative to the printhead within the printing or camera system.
- Turning to
FIG. 3 there is illustrated a single point roll unit 5 in an assembled form with a partial cutaway showing internal portions of the print roll.FIG. 4 andFIG. 5 illustrate left and right side exploded perspective views respectively. The print roll 5 is constructed around theinternal core portion 6 which contains an internal ink supply. Outside of thecore portion 6 is provided a former 7 around which is wrapped a paper or film supply 8. Around the paper supply it is constructed two cover pieces 9, 10 which snap together around the print roll so as to form a covering unit as illustrated inFIG. 3 . The bottom cover piece 10 includes a slot 11 through which the output of the print media 12 for interconnection with the camera system. - Two pinch rollers 13, 14 are provided to pinch the paper against a drive pinch roller 15 so they together provide for a decurling of the paper around the roller 15. The decurling acts to negate the strong curl that may be imparted to the paper from being stored in the form of print roll for an extended period of time. The rollers 13, 14 are provided to form a snap fit with end portions of the cover base portion 10 and the roller 15 which includes a cogged end 16 for driving, snap fits into the upper cover piece 9 so as to pinch the paper 12 firmly between.
- The cover pieces 9, 10 includes an end protuberance or lip 17. The end lip 17 is provided for accurately alignment of the exit hole of the paper with a corresponding printing heat platen structure within the camera system. In this way, accurate alignment or positioning of the exiting paper relative to an adjacent printhead is provided for full guidance of the paper to the printhead.
- It would be appreciated by a person skilled in the art that numerous variations and/or modifications may be made to the present invention as shown in the specific embodiment without departing from the spirit or scope of the invention as broadly described. The present embodiment is, therefore, to be considered in all respects to be illustrative and not restrictive.
- The present invention is best utilized in the Artcam device, the details of which are set out in the following paragraphs.
- The embodiments of the invention use an ink jet printer type device. Of course many different devices could be used. However presently popular ink jet printing technologies are unlikely to be suitable.
- The most significant problem with thermal inkjet is power consumption. This is approximately 100 times that required for high speed, and stems from the energy-inefficient means of drop ejection. This involves the rapid boiling of water to produce a vapor bubble which expels the ink. Water has a very high heat capacity, and must be superheated in thermal inkjet applications. This leads to an efficiency of around 0.02%, from electricity input to drop momentum (and increased surface area) out.
- The most significant problem with piezoelectric inkjet is size and cost. Piezoelectric crystals have a very small deflection at reasonable drive voltages, and therefore require a large area for each nozzle. Also, each piezoelectric actuator must be connected to its drive circuit on a separate substrate. This is not a significant problem at the current limit of around 300 nozzles per print head, but is a major impediment to the fabrication of pagewide print heads with 19,200 nozzles.
- Ideally, the inkjet technologies used meet the stringent requirements of in-camera digital color printing and other high quality, high speed, low cost printing applications. To meet the requirements of digital photography, new inkjet technologies have been created. The target features include:
- low power (less than 10 Watts)
- high resolution capability (1,600 dpi or more)
- photographic quality output
- low manufacturing cost
- small size (pagewidth times minimum cross section)
- high speed (<2 seconds per page).
- All of these features can be met or exceeded by the inkjet systems described below with differing levels of difficulty. 45 different inkjet technologies have been developed by the Assignee to give a wide range of choices for high volume manufacture. These technologies form part of separate applications assigned to the present Assignee as set out in the table below.
- The inkjet designs shown here are suitable for a wide range of digital printing systems, from battery powered one-time use digital cameras, through to desktop and network printers, and through to commercial printing systems
- For ease of manufacture using standard process equipment, the print head is designed to be a monolithic 0.5 micron CMOS chip with MEMS post processing. For color photographic applications, the print head is 100 mm long, with a width which depends upon the inkjet type. The smallest print head designed is IJ38, which is 0.35 mm wide, giving a chip area of 35 square mm. The print heads each contain 19,200 nozzles plus data and control circuitry.
- Ink is supplied to the back of the print head by injection molded plastic ink channels. The molding requires 50 micron features, which can be created using a lithographically micromachined insert in a standard injection molding tool. Ink flows through holes etched through the wafer to the nozzle chambers fabricated on the front surface of the wafer. The print head is connected to the camera circuitry by tape automated bonding.
- The following table is a guide to cross-referenced patent applications filed concurrently herewith and discussed hereinafter with the reference being utilized in subsequent tables when referring to a particular case:
-
Docket No. Reference Title IJ01US 6,227,652 Radiant Plunger Ink Jet Printer IJ02US 6,213,588 Electrostatic Ink Jet Printer IJ03US 6,213,589 Planar Thermoelastic Bend Actuator Ink Jet IJ04US 6,231,163 Stacked Electrostatic Ink Jet Printer IJ05US 6,247,795 Reverse Spring Lever Ink Jet Printer IJ06US 6,394,581 Paddle Type Ink Jet Printer IJ07US 6,244,691 Permanent Magnet Electromagnetic Ink Jet Printer IJ08US 6,257,704 Planar Swing Grill Electromagnetic Ink Jet Printer IJ09US 6,416,168 Pump Action Refill Ink Jet Printer IJ10US 6,220,694 Pulsed Magnetic Field Ink Jet Printer IJ11US 6,257,705 Two Plate Reverse Firing Electromagnetic Ink Jet Printer IJ12US 6,247,794 Linear Stepper Actuator Ink Jet Printer IJ13US 6,234,610 Gear Driven Shutter Ink Jet Printer IJ14US 6,247,793 Tapered Magnetic Pole Electromagnetic Ink Jet Printer IJ15US 6,264,306 Linear Spring Electromagnetic Grill Ink Jet Printer IJ16US 6,241,342 Lorenz Diaphragm Electromagnetic Ink Jet Printer IJ17US 6,247,792 PTFE Surface Shooting Shuttered Oscillating Pressure Ink Jet Printer IJ18US 6,264,307 Buckle Grip Oscillating Pressure Ink Jet Printer IJ19US 6,254,220 Shutter Based Ink Jet Printer IJ20US 6,234,611 Curling Calyx Thermoelastic Ink Jet Printer IJ21US 6,302,528 Thermal Actuated Ink Jet Printer IJ22US 6,283,582 Iris Motion Ink Jet Printer IJ23US 6,239,821 Direct Firing Thermal Bend Actuator Ink Jet Printer IJ24US 6,338,547 Conductive PTFE Ben Activator Vented Ink Jet Printer IJ25US 6,247,796 Magnetostrictive Ink Jet Printer IJ26US 6,557,977 Shape Memory Alloy Ink Jet Printer IJ27US 6,390,603 Buckle Plate Ink Jet Printer IJ28US 6,362,843 Thermal Elastic Rotary Impeller Ink Jet Printer IJ29US 6,293,653 Thermoelastic Bend Actuator Ink Jet Printer IJ30US 6,312,107 Thermoelastic Bend Actuator Using PTFE and Corrugated Copper Ink Jet Printer IJ31US 6,227,653 Bend Actuator Direct Ink Supply Ink Jet Printer IJ32US 6,234,609 A High Young's Modulus Thermoelastic Ink Jet Printer IJ33US 6,238,040 Thermally actuated slotted chamber wall ink jet printer IJ34US 6,188,415 Ink Jet Printer having a thermal actuator comprising an external coiled spring IJ35US 6,227,654 Trough Container Ink Jet Printer IJ36US 6,209,989 Dual Chamber Single Vertical Actuator Ink Jet IJ37US 6,247,791 Dual Nozzle Single Horizontal Fulcrum Actuator Ink Jet IJ38US 6,336,710 Dual Nozzle Single Horizontal Actuator Ink Jet IJ39US 6,217,153 A single bend actuator cupped paddle ink jet printing device IJ40US 6,416,167 A thermally actuated ink jet printer having a series of thermal actuator units IJ41US 6,243,113 A thermally actuated ink jet printer including a tapered heater element IJ42US 6,283,581 Radial Back-Curling Thermoelastic Ink Jet IJ43US 6,247,790 Inverted Radial Back-Curling Thermoelastic Ink Jet IJ44US 6,260,953 Surface bend actuator vented ink supply ink jet printer IJ45US 6,267,469 Coil Acutuated Magnetic Plate Ink Jet Printer - Eleven important characteristics of the fundamental operation of individual inkjet nozzles have been identified. These characteristics are largely orthogonal, and so can be elucidated as an eleven dimensional matrix. Most of the eleven axes of this matrix include entries developed by the present assignee.
- The following tables form the axes of an eleven dimensional table of inkjet types.
-
Actuator mechanism (18 types) Basic operation mode (7 types) Auxiliary mechanism (8 types) Actuator amplification or modification method (17 types) Actuator motion (19 types) Nozzle refill method (4 types) Method of restricting back-flow through inlet (10 types) Nozzle clearing method (9 types) Nozzle plate construction (9 types) Drop ejection direction (5 types) Ink type (7 types) - The complete eleven dimensional table represented by these axes contains 36.9 billion possible configurations of inkjet nozzle. While not all of the possible combinations result in a viable inkjet technology, many million configurations are viable. It is clearly impractical to elucidate all of the possible configurations. Instead, certain inkjet types have been investigated in detail. These are designated IJ01 to IJ45 above.
- Other inkjet configurations can readily be derived from these 45 examples by substituting alternative configurations along one or more of the 11 axes. Most of the IJ01 to IJ45 examples can be made into inkjet print heads with characteristics superior to any currently available inkjet technology.
- Where there are prior art examples known to the inventor, one or more of these examples are listed in the examples column of the tables below. The IJ01 to IJ45 series are also listed in the examples column. In some cases, a printer may be listed more than once in a table, where it shares characteristics with more than one entry.
- Suitable applications include: Home printers, Office network printers, Short run digital printers, Commercial print systems, Fabric printers, Pocket printers, Internet WWW printers, Video printers, Medical imaging, Wide format printers, Notebook PC printers, Fax machines, Industrial printing systems, Photocopiers, Photographic minilabs etc.
- The information associated with the aforementioned 11 dimensional matrix are set out in the following tables.
-
-
Actuator Mechanism Description Advantages Thermal bubble An electrothermal heater heats the ink to Large force generated above boiling point, transferring Simple construction significant heat to the aqueous ink. A No moving parts bubble nucleates and quickly forms, Fast operation expelling the ink. Small chip area required for The efficiency of the process is low, with actuator typically less than 0.05% of the electrical energy being transformed into kinetic energy of the drop. Piezoelectric A piezoelectric crystal such as lead Low power consumption lanthanum zirconate (PZT) is electrically Many ink types can be used activated, and either expands, shears, or Fast operation bends to apply pressure to the ink, High efficiency ejecting drops. Electro-strictive An electric field is used to activate Low power consumption electrostriction in relaxor materials such Many ink types can be used as lead lanthanum zirconate titanate Low thermal expansion (PLZT) or lead magnesium niobate Electric field strength required (PMN). (approx. 3.5 V/μm) can be generated without difficulty Does not require electrical poling Ferroelectric An electric field is used to induce a Low power consumption phase transition between the Many ink types can be used antiferroelectric (AFE) and ferroelectric Fast operation (<1 μs) (FE) phase. Perovskite materials such as Relatively high longitudinal tin modified lead lanthanum zirconate strain titanate (PLZSnT) exhibit large strains of High efficiency up to 1% associated with the AFE to FE Electric field strength of phase transition. around 3 V/μm can be readily provided Electrostatic Conductive plates are separated by a Low power consumption plates compressible or fluid dielectric (usually Many ink types can be used air). Upon application of a voltage, the Fast operation plates attract each other and displace ink, causing drop ejection. The conductive plates may be in a comb or honeycomb structure, or stacked to increase the surface area and therefore the force. Electrostatic A strong electric field is applied to the Low current consumption pull on ink ink, whereupon electrostatic attraction Low temperature accelerates the ink towards the print medium. Permanent An electromagnet directly attracts a Low power consumption magnet electro- permanent magnet, displacing ink and Many ink types can be used magnetic causing drop ejection. Rare earth Fast operation magnets with a field strength around 1 High efficiency Tesla can be used. Examples are: Easy extension from single Samarium Cobalt (SaCo) and magnetic nozzles to pagewidth print materials in the neodymium iron boron heads family (NdFeB, NdDyFeBNb, NdDyFeB, etc) Soft magnetic A solenoid induced a magnetic field in a Low power consumption core electro- soft magnetic core or yoke fabricated Many ink types can be used magnetic from a ferrous material such as Fast operation electroplated iron alloys such as CoNiFe High efficiency [1], CoFe, or NiFe alloys. Typically, the Easy extension from single soft magnetic material is in two parts, nozzles to pagewidth print which are normally held apart by a heads spring. When the solenoid is actuated, the two parts attract, displacing the ink. Magnetic The Lorenz force acting on a current Low power consumption Lorenz force carrying wire in a magnetic field is Many ink types can be used utilized. Fast operation This allows the magnetic field to be High efficiency supplied externally to the print head, for Easy extension from single example with rare earth permanent nozzles to pagewidth print magnets. heads Only the current carrying wire need be fabricated on the print-head, simplifying materials requirements. Magneto- The actuator uses the giant Many ink types can be used striction magnetostrictive effect of materials such Fast operation as Terfenol-D (an alloy of terbium, Easy extension from single dysprosium and iron developed at the nozzles to pagewidth print Naval Ordnance Laboratory, hence Ter- heads Fe-NOL). For best efficiency, the High force is available actuator should be pre-stressed to approx. 8 MPa. Surface tension Ink under positive pressure is held in a Low power consumption reduction nozzle by surface tension. The surface Simple construction tension of the ink is reduced below the No unusual materials required bubble threshold, causing the ink to in fabrication egress from the nozzle. High efficiency Easy extension from single nozzles to pagewidth print heads Viscosity The ink viscosity is locally reduced to Simple construction reduction select which drops are to be ejected. A No unusual materials required viscosity reduction can be achieved in fabrication electrothermally with most inks, but Easy extension from single special inks can be engineered for a nozzles to pagewidth print 100:1 viscosity reduction. heads Acoustic An acoustic wave is generated and Can operate without a nozzle focussed upon the drop ejection region. plate Thermoelastic An actuator which relies upon Low power consumption bend actuator differential thermal expansion upon Many ink types can be used Joule heating is used. Simple planar fabrication Small chip area required for each actuator Fast operation High efficiency CMOS compatible voltages and currents Standard MEMS processes can be used Easy extension from single nozzles to pagewidth print heads High CTE A material with a very high coefficient High force can be generated thermoelastic of thermal expansion (CTE) such as PTFE is a candidate for low actuator polytetrafluoroethylene (PTFE) is used. dielectric constant insulation in As high CTE materials are usually non- ULSI conductive, a heater fabricated from a Very low power consumption conductive material is incorporated. A Many ink types can be used 50 μm long PTFE bend actuator with Simple planar fabrication polysilicon heater and 15 mW power Small chip area required for input can provide 180 μN force and 10 μm each actuator deflection. Actuator motions include: Fast operation 1) Bend High efficiency 2) Push CMOS compatible voltages 3) Buckle and currents 4) Rotate Easy extension from single nozzles to pagewidth print heads Conductive A polymer with a high coefficient of High force can be generated polymer thermal expansion (such as PTFE) is Very low power consumption thermoelastic doped with conducting substances to Many ink types can be used actuator increase its conductivity to about 3 Simple planar fabrication orders of magnitude below that of Small chip area required for copper. The conducting polymer each actuator expands when resistively heated. Fast operation Examples of conducting dopants include: High efficiency 1) Carbon nanotubes CMOS compatible voltages 2) Metal fibers and currents 3) Conductive polymers such as doped Easy extension from single polythiophene nozzles to pagewidth print 4) Carbon granules heads Shape memory A shape memory alloy such as TiNi (also High force is available alloy known as Nitinol - Nickel Titanium alloy (stresses of hundreds of MPa) developed at the Naval Ordnance Large strain is available (more Laboratory) is thermally switched than 3%) between its weak martensitic state and its High corrosion resistance high stiffness austenic state. The shape Simple construction of the actuator in its martensitic state is Easy extension from single deformed relative to the austenic shape. nozzles to pagewidth print The shape change causes ejection of a heads drop. Low voltage operation Linear Magnetic Linear magnetic actuators include the Linear Magnetic actuators can Actuator Linear Induction Actuator (LIA), Linear be constructed with high Permanent Magnet Synchronous thrust, long travel, and high Actuator (LPMSA), Linear Reluctance efficiency using planar Synchronous Actuator (LRSA), Linear semiconductor fabrication Switched Reluctance Actuator (LSRA), techniques and the Linear Stepper Actuator (LSA). Long actuator travel is available Medium force is available Low voltage operation Actuator Mechanism Disadvantages Examples Thermal bubble High power Canon Bubblejet 1979 Ink carrier limited to water Endo et al GB patent Low efficiency 2,007,162 High temperatures required Xerox heater-in-pit High mechanical stress 1990 Hawkins et al Unusual materials required U.S. Pat. No. 4,899,181 Large drive transistors Hewlett-Packard TIJ Cavitation causes actuator failure 1982 Vaught et al U.S. Pat. No. Kogation reduces bubble formation 4,490,728 Large print heads are difficult to fabricate Piezoelectric Very large area required for actuator Kyser et al U.S. Pat. No. Difficult to integrate with electronics 3,946,398 High voltage drive transistors required Zoltan U.S. Pat. No. 3,683,212 Full pagewidth print heads impractical due 1973 Stemme U.S. Pat. No. to actuator size 3,747,120 Requires electrical poling in high field Epson Stylus strengths during manufacture Tektronix IJ04 Electro-strictive Low maximum strain (approx. 0.01%) Seiko Epson, Usui et all Large area required for actuator due to low JP 253401/96 strain IJ04 Response speed is marginal (~10 μs) High voltage drive transistors required Full pagewidth print heads impractical due to actuator size Ferroelectric Difficult to integrate with electronics IJ04 Unusual materials such as PLZSnT are required Actuators require a large area Electrostatic Difficult to operate electrostatic devices in IJ02, IJ04 plates an aqueous environment The electrostatic actuator will normally need to be separated from the ink Very large area required to achieve high forces High voltage drive transistors may be required Full pagewidth print heads are not competitive due to actuator size Electrostatic High voltage required 1989 Saito et al, U.S. Pat. No. pull on ink May be damaged by sparks due to air 4,799,068 breakdown 1989 Miura et al, U.S. Pat. No. Required field strength increases as the 4,810,954 drop size decreases Tone-jet High voltage drive transistors required Electrostatic field attracts dust Permanent Complex fabrication IJ07, IJ10 magnet electro- Permanent magnetic material such as magnetic Neodymium Iron Boron (NdFeB) required. High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Pigmented inks are usually infeasible Operating temperature limited to the Curie temperature (around 540 K) Soft magnetic Complex fabrication IJ01, IJ05, IJ08, IJ10 core electro- Materials not usually present in a CMOS IJ12, IJ14, IJ15, IJ17 magnetic fab such as NiFe, CoNiFe, or CoFe are required High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Electroplating is required High saturation flux density is required (2.0-2.1 T is achievable with CoNiFe [1]) Magnetic Force acts as a twisting motion IJ06, IJ11, IJ13, IJ16 Lorenz force Typically, only a quarter of the solenoid length provides force in a useful direction High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Pigmented inks are usually infeasible Magneto- Force acts as a twisting motion Fischenbeck, U.S. Pat. No. striction Unusual materials such as Terfenol-D are 4,032,929 required IJ25 High local currents required Copper metalization should be used for long electromigration lifetime and low resistivity Pre-stressing may be required Surface tension Requires supplementary force to effect Silverbrook, EP 0771 reduction drop separation 658 A2 and related Requires special ink surfactants patent applications Speed may be limited by surfactant properties Viscosity Requires supplementary force to effect Silverbrook, EP 0771 reduction drop separation 658 A2 and related Requires special ink viscosity properties patent applications High speed is difficult to achieve Requires oscillating ink pressure A high temperature difference (typically 80 degrees) is required Acoustic Complex drive circuitry 1993 Hadimioglu et al, Complex fabrication EUP 550,192 Low efficiency 1993 Elrod et al, EUP Poor control of drop position 572,220 Poor control of drop volume Thermoelastic Efficient aqueous operation requires a IJ03, IJ09, IJ17, IJ18 bend actuator thermal insulator on the hot side IJ19, IJ20, IJ21, IJ22 Corrosion prevention can be difficult IJ23, IJ24, IJ27, IJ28 Pigmented inks may be infeasible, as IJ29, IJ30, IJ31, IJ32 pigment particles may jam the bend IJ33, IJ34, IJ35, IJ36 actuator IJ37, IJ38, IJ39, IJ40 IJ41 High CTE Requires special material (e.g. PTFE) IJ09, IJ17, IJ18, IJ20 thermoelastic Requires a PTFE deposition process, which IJ21, IJ22, IJ23, IJ24 actuator is not yet standard in ULSI fabs IJ27, IJ28, IJ29, IJ30 PTFE deposition cannot be followed with IJ31, IJ42, IJ43, IJ44 high temperature (above 350° C.) processing Pigmented inks may be infeasible, as pigment particles may jam the bend actuator Conductive Requires special materials development IJ24 polymer (High CTE conductive polymer) thermoelastic Requires a PTFE deposition process, which actuator is not yet standard in ULSI fabs PTFE deposition cannot be followed with high temperature (above 350° C.) processing Evaporation and CVD deposition techniques cannot be used Pigmented inks may be infeasible, as pigment particles may jam the bend actuator Shape memory Fatigue limits maximum number of cycles IJ26 alloy Low strain (1%) is required to extend fatigue resistance Cycle rate limited by heat removal Requires unusual materials (TiNi) The latent heat of transformation must be provided High current operation Requires pre-stressing to distort the martensitic state Linear Magnetic Requires unusual semiconductor materials IJ12 Actuator such as soft magnetic alloys (e.g. CoNiFe [1]) Some varieties also require permanent magnetic materials such as Neodymium iron boron (NdFeB) Requires complex multi-phase drive circuitry High current operation -
-
Operational mode Description Advantages Actuator directly This is the simplest mode of operation: Simple operation pushes ink the actuator directly supplies sufficient No external fields required kinetic energy to expel the drop. The Satellite drops can be avoided drop must have a sufficient velocity to if drop velocity is less than 4 m/s overcome the surface tension. Can be efficient, depending upon the actuator used Proximity The drops to be printed are selected by Very simple print head some manner (e.g. thermally induced fabrication can be used surface tension reduction of pressurized The drop selection means does ink). Selected drops are separated from not need to provide the energy the ink in the nozzle by contact with the required to separate the drop print medium or a transfer roller. from the nozzle Electrostatic The drops to be printed are selected by Very simple print head pull on ink some manner (e.g. thermally induced fabrication can be used surface tension reduction of pressurized The drop selection means does ink). Selected drops are separated from not need to provide the energy the ink in the nozzle by a strong electric required to separate the drop field. from the nozzle Magnetic pull on The drops to be printed are selected by Very simple print head ink some manner (e.g. thermally induced fabrication can be used surface tension reduction of pressurized The drop selection means does ink). Selected drops are separated from not need to provide the energy the ink in the nozzle by a strong required to separate the drop magnetic field acting on the magnetic from the nozzle ink. Shutter The actuator moves a shutter to block ink High speed (>50 KHz) flow to the nozzle. The ink pressure is operation can be achieved due pulsed at a multiple of the drop ejection to reduced refill time frequency. Drop timing can be very accurate The actuator energy can be very low Shuttered grill The actuator moves a shutter to block ink Actuators with small travel can flow through a grill to the nozzle. The be used shutter movement need only be equal to Actuators with small force can the width of the grill holes. be used High speed (>50 KHz) operation can be achieved Pulsed magnetic A pulsed magnetic field attracts an ‘ink Extremely low energy pull on ink pusher’ at the drop ejection frequency. operation is possible pusher An actuator controls a catch, which No heat dissipation problems prevents the ink pusher from moving when a drop is not to be ejected. Operational mode Disadvantages Examples Actuator directly Drop repetition rate is usually limited to Thermal inkjet pushes ink less than 10 KHz. However, this is not Piezoelectric inkjet fundamental to the method, but is related to IJ01, IJ02, IJ03, IJ04 the refill method normally used IJ05, IJ06, IJ07, IJ09 All of the drop kinetic energy must be IJ11, IJ12, IJ14, IJ16 provided by the actuator IJ20, IJ22, IJ23, IJ24 Satellite drops usually form if drop velocity IJ25, IJ26, IJ27, IJ28 is greater than 4.5 m/s IJ29, IJ30, IJ31, IJ32 IJ33, IJ34, IJ35, IJ36 IJ37, IJ38, IJ39, IJ40 IJ41, IJ42, IJ43, IJ44 Proximity Requires close proximity between the print Silverbrook, EP 0771 head and the print media or transfer roller 658 A2 and related May require two print heads printing patent applications alternate rows of the image Monolithic color print heads are difficult Electrostatic Requires very high electrostatic field Silverbrook, EP 0771 pull on ink Electrostatic field for small nozzle sizes is 658 A2 and related above air breakdown patent applications Electrostatic field may attract dust Tone-Jet Magnetic pull on Requires magnetic ink Silverbrook, EP 0771 ink Ink colors other than black are difficult 658 A2 and related Requires very high magnetic fields patent applications Shutter Moving parts are required IJ13, IJ17, IJ21 Requires ink pressure modulator Friction and wear must be considered Stiction is possible Shuttered grill Moving parts are required IJ08, IJ15, IJ18, IJ19 Requires ink pressure modulator Friction and wear must be considered Stiction is possible Pulsed magnetic Requires an external pulsed magnetic field IJ10 pull on ink Requires special materials for both the pusher actuator and the ink pusher Complex construction -
-
Auxiliary Mechanism Description Advantages Disadvantages Examples None The actuator directly fires the ink drop, Simplicity of construction Drop ejection energy must be supplied Most inkjets, including and there is no external field or other Simplicity of operation by individual nozzle actuator piezoelectric and mechanism required. Small physical size thermal bubble. IJ01-IJ07, IJ09, IJ11 IJ12, IJ14, IJ20, IJ22 IJ23-IJ45 Oscillating The ink pressure oscillates, providing Oscillating ink pressure can Requires external ink pressure oscillator Silverbrook, EP 0771 ink much of the drop ejection energy. The provide a refill pulse, Ink pressure phase and amplitude must 658 A2 and related pressure actuator selects which drops are to be allowing higher be carefully controlled patent applications (including fired by selectively blocking or enabling operating speed Acoustic reflections in the ink chamber IJ08, IJ13, IJ15, IJ17 acoustic nozzles. The ink pressure oscillation The actuators may operate must be designed for IJ18, IJ19, IJ21 stimulation) may be achieved by vibrating the with much lower energy print head, or preferably by an Acoustic lenses can be used to actuator in the ink supply. focus the sound on the nozzles Media The print head is placed in close Low power Precision assembly required Silverbrook, EP 0771 proximity proximity to the print medium. Selected High accuracy Paper fibers may cause problems 658 A2 and related drops protrude from the print head Simple print head construction Cannot print on rough substrates patent applications further than unselected drops, and contact the print medium. The drop soaks into the medium fast enough to cause drop separation. Transfer Drops are printed to a transfer roller High accuracy Bulky Silverbrook, EP 0771 roller instead of straight to the print medium. Wide range of print substrates Expensive 658 A2 and related A transfer roller can also be used for can be used Complex construction patent applications proximity drop separation. Ink can be dried on the Tektronix hot melt transfer roller piezoelectric inkjet Any of the IJ series Electrostatic An electric field is used to accelerate Low power Field strength required for separation of Silverbrook, EP 0771 selected drops towards the print Simple print head construction small drops is near or above 658 A2 and related medium. air breakdown patent applications Tone-Jet Direct A magnetic field is used to accelerate Low power Requires magnetic ink Silverbrook, EP 0771 magnetic selected drops of magnetic ink towards Simple print head construction Requires strong magnetic field 658 A2 and related field the print medium. patent applications Cross The print head is placed in a constant Does not require magnetic Requires external magnet IJ06, IJ16 magnetic magnetic field. The Lorenz force in a materials to be integrated in Current densities may be high, resulting field current carrying wire is used to move the print head manufacturing in electromigration problems the actuator. process Pulsed A pulsed magnetic field is used to Very low power operation is Complex print head construction IJ10 magnetic cyclically attract a paddle, which pushes possible Magnetic materials required in field on the ink. A small actuator moves a Small print head size print head catch, which selectively prevents the paddle from moving. -
-
Actuator amplification Description Advantages None No actuator mechanical amplification is Operational simplicity used. The actuator directly drives the drop ejection process. Differential An actuator material expands more on Provides greater travel in a expansion bend one side than on the other. The reduced print head area actuator expansion may be thermal, piezoelectric, The bend actuator converts a magnetostrictive, or other mechanism. high force low travel actuator mechanism to high travel, lower force mechanism. Transient bend A trilayer bend actuator where the two Very good temperature actuator outside layers are identical. This cancels stability bend due to ambient temperature and High speed, as a new drop can residual stress. The actuator only be fired before heat dissipates responds to transient heating of one side Cancels residual stress of or the other. formation Actuator stack A series of thin actuators are stacked. Increased travel This can be appropriate where actuators Reduced drive voltage require high electric field strength, such as electrostatic and piezoelectric actuators. Multiple Multiple smaller actuators are used Increases the force available actuators simultaneously to move the ink. Each from an actuator actuator need provide only a portion of Multiple actuators can be the force required. positioned to control ink flow accurately Linear Spring A linear spring is used to transform a Matches low travel actuator motion with small travel and high force with higher travel requirements into a longer travel, lower force motion. Non-contact method of motion transformation Reverse spring The actuator loads a spring. When the Better coupling to the ink actuator is turned off, the spring releases. This can reverse the force/distance curve of the actuator to make it compatible with the force/time requirements of the drop ejection. Coiled actuator A bend actuator is coiled to provide Increases travel greater travel in a reduced chip area. Reduces chip area Planar implementations are relatively easy to fabricate. Flexure bend A bend actuator has a small region near Simple means of increasing actuator the fixture point, which flexes much travel of a bend actuator more readily than the remainder of the actuator. The actuator flexing is effectively converted from an even coiling to an angular bend, resulting in greater travel of the actuator tip. Gears Gears can be used to increase travel at Low force, low travel actuators the expense of duration. Circular gears, can be used rack and pinion, ratchets, and other Can be fabricated using gearing methods can be used. standard surface MEMS processes Catch The actuator controls a small catch. The Very low actuator energy catch either enables or disables Very small actuator size movement of an ink pusher that is controlled in a bulk manner. Buckle plate A buckle plate can be used to change a Very fast movement slow actuator into a fast motion. It can achievable also convert a high force, low travel actuator into a high travel, medium force motion. Tapered A tapered magnetic pole can increase Linearizes the magnetic magnetic pole travel at the expense of force. force/distance curve Lever A lever and fulcrum is used to transform Matches low travel actuator a motion with small travel and high force with higher travel requirements into a motion with longer travel and Fulcrum area has no linear lower force. The lever can also reverse movement, and can be used for the direction of travel. a fluid seal Rotary impeller The actuator is connected to a rotary High mechanical advantage impeller. A small angular deflection of The ratio of force to travel of the actuator results in a rotation of the the actuator can be matched to impeller vanes, which push the ink the nozzle requirements by against stationary vanes and out of the varying the number of impeller nozzle. vanes Acoustic lens A refractive or diffractive (e.g. zone No moving parts plate) acoustic lens is used to concentrate sound waves. Sharp A sharp point is used to concentrate an Simple construction conductive electrostatic field. point Actuator amplification Disadvantages Examples None Many actuator mechanisms have Thermal Bubble Inkjet insufficient travel, or insufficient force, to IJ01, IJ02, IJ06, IJ07 efficiently drive the drop ejection process IJ16, IJ25, IJ26 Differential High stresses are involved Piezoelectric expansion bend Care must be taken that the materials do IJ03, IJ09, IJ17-IJ24 actuator not delaminate IJ27, IJ29-IJ39, IJ42, Residual bend resulting from high IJ43, IJ44 temperature or high stress during formation Transient bend High stresses are involved IJ40, IJ41 actuator Care must be taken that the materials do not delaminate Actuator stack Increased fabrication complexity Some piezoelectric ink Increased possibility of short circuits due to jets pinholes IJ04 Multiple Actuator forces may not add linearly, IJ12, IJ13, IJ18, IJ20 actuators reducing efficiency IJ22, IJ28, IJ42, IJ43 Linear Spring Requires print head area for the spring IJ15 Reverse spring Fabrication complexity IJ05, IJ11 High stress in the spring Coiled actuator Generally restricted to planar IJ17, IJ21, IJ34, IJ35 implementations due to extreme fabrication difficulty in other orientations. Flexure bend Care must be taken not to exceed the IJ10, IJ19, IJ33 actuator elastic limit in the flexure area Stress distribution is very uneven Difficult to accurately model with finite element analysis Gears Moving parts are required IJ13 Several actuator cycles are required More complex drive electronics Complex construction Friction, friction, and wear are possible Catch Complex construction IJ10 Requires external force Unsuitable for pigmented inks Buckle plate Must stay within elastic limits of the S. Hirata et al, “An Ink- materials for long device life jet Head . . . ”, Proc. High stresses involved IEEE MEMS, February Generally high power requirement 1996, pp 418-423. IJ18, IJ27 Tapered Complex construction IJ14 magnetic pole Lever High stress around the fulcrum IJ32, IJ36, IJ37 Rotary impeller Complex construction IJ28 Unsuitable for pigmented inks Acoustic lens Large area required 1993 Hadimioglu et al, Only relevant for acoustic ink jets EUP 550,192 1993 Elrod et al, EUP 572,220 Sharp Difficult to fabricate using standard VLSI Tone-jet conductive processes for a surface ejecting ink-jet point Only relevant for electrostatic ink jets -
-
Actuator motion Description Advantages Volume The volume of the actuator changes, Simple construction in the case expansion pushing the ink in all directions. of thermal ink jet Linear, normal The actuator moves in a direction normal Efficient coupling to ink drops to chip surface to the print head surface. The nozzle is ejected normal to the surface typically in the line of movement. Linear, parallel The actuator moves parallel to the print Suitable for planar fabrication to chip surface head surface. Drop ejection may still be normal to the surface. Membrane push An actuator with a high force but small The effective area of the area is used to push a stiff membrane actuator becomes the that is in contact with the ink. membrane area Rotary The actuator causes the rotation of some Rotary levers may be used to element, such a grill or impeller increase travel Small chip area requirements Bend The actuator bends when energized. This A very small change in may be due to differential thermal dimensions can be converted expansion, piezoelectric expansion, to a large motion. magnetostriction, or other form of relative dimensional change. Swivel The actuator swivels around a central Allows operation where the net pivot. This motion is suitable where linear force on the paddle is there are opposite forces applied to zero opposite sides of the paddle, e.g. Lorenz Small chip area requirements force. Straighten The actuator is normally bent, and Can be used with shape straightens when energized. memory alloys where the austenic phase is planar Double bend The actuator bends in one direction when One actuator can be used to one element is energized, and bends the power two nozzles. other way when another element is Reduced chip size. energized. Not sensitive to ambient temperature Shear Energizing the actuator causes a shear Can increase the effective motion in the actuator material. travel of piezoelectric actuators Radial The actuator squeezes an ink reservoir, Relatively easy to fabricate constriction forcing ink from a constricted nozzle. single nozzles from glass tubing as macroscopic structures Coil/uncoil A coiled actuator uncoils or coils more Easy to fabricate as a planar tightly. The motion of the free end of the VLSI process actuator ejects the ink. Small area required, therefore low cost Bow The actuator bows (or buckles) in the Can increase the speed of middle when energized. travel Mechanically rigid Push-Pull Two actuators control a shutter. One The structure is pinned at both actuator pulls the shutter, and the other ends, so has a high out-of- pushes it. plane rigidity Curl inwards A set of actuators curl inwards to reduce Good fluid flow to the region the volume of ink that they enclose. behind the actuator increases efficiency Curl outwards A set of actuators curl outwards, Relatively simple construction pressurizing ink in a chamber surrounding the actuators, and expelling ink from a nozzle in the chamber. Iris Multiple vanes enclose a volume of ink. High efficiency These simultaneously rotate, reducing Small chip area the volume between the vanes. Acoustic The actuator vibrates at a high The actuator can be physically vibration frequency. distant from the ink None In various ink jet designs the actuator No moving parts does not move. Actuator motion Disadvantages Examples Volume High energy is typically required to Hewlett-Packard expansion achieve volume expansion. This leads to Thermal Inkjet thermal stress, cavitation, and kogation in Canon Bubblejet thermal ink jet implementations Linear, normal High fabrication complexity may be IJ01, IJ02, IJ04, IJ07 to chip surface required to achieve perpendicular motion IJ11, IJ14 Linear, parallel Fabrication complexity IJ12, IJ13, IJ15, IJ33, to chip surface Friction IJ34, IJ35, IJ36 Stiction Membrane push Fabrication complexity 1982 Howkins U.S. Pat. No. Actuator size 4,459,601 Difficulty of integration in a VLSI process Rotary Device complexity IJ05, IJ08, IJ13, IJ28 May have friction at a pivot point Bend Requires the actuator to be made from at 1970 Kyser et al U.S. Pat. No. least two distinct layers, or to have a 3,946,398 thermal difference across the actuator 1973 Stemme U.S. Pat. No. 3,747,120 IJ03, IJ09, IJ10, IJ19 IJ23, IJ24, IJ25, IJ29 IJ30, IJ31, IJ33, IJ34 IJ35 Swivel Inefficient coupling to the ink motion IJ06 Straighten Requires careful balance of stresses to IJ26, IJ32 ensure that the quiescent bend is accurate Double bend Difficult to make the drops ejected by both IJ36, IJ37, IJ38 bend directions identical. A small efficiency loss compared to equivalent single bend actuators. Shear Not readily applicable to other actuator 1985 Fishbeck U.S. Pat. No. mechanisms 4,584,590 Radial High force required 1970 Zoltan U.S. Pat. No. constriction Inefficient 3,683,212 Difficult to integrate with VLSI processes Coil/uncoil Difficult to fabricate for non-planar devices IJ17, IJ21, IJ34, IJ35 Poor out-of-plane stiffness Bow Maximum travel is constrained IJ16, IJ18, IJ27 High force required Push-Pull Not readily suitable for inkjets which IJ18 directly push the ink Curl inwards Design complexity IJ20, IJ42 Curl outwards Relatively large chip area IJ43 Iris High fabrication complexity IJ22 Not suitable for pigmented inks Acoustic Large area required for efficient operation 1993 Hadimioglu et al, vibration at useful frequencies EUP 550,192 Acoustic coupling and crosstalk 1993 Elrod et al, EUP Complex drive circuitry 572,220 Poor control of drop volume and position None Various other tradeoffs are required to Silverbrook, EP 0771 eliminate moving parts 658 A2 and related patent applications Tone-jet -
-
Nozzle refill method Description Advantages Disadvantages Examples Surface After the actuator is energized, it Fabrication simplicity Low speed Thermal inkjet tension typically returns rapidly to its normal Operational simplicity Surface tension force relatively small Piezoelectric inkjet position. This rapid return sucks in air compared to actuator force IJ01-IJ07, IJ10-IJ14 through the nozzle opening. The ink Long refill time usually dominates the IJ16, IJ20, IJ22-IJ45 surface tension at the nozzle then exerts total repetition rate a small force restoring the meniscus to a minimum area. Shuttered Ink to the nozzle chamber is provided at High speed Requires common ink pressure oscillator IJ08, IJ13, IJ15, IJ17 oscillating a pressure that oscillates at twice the Low actuator energy, as the May not be suitable for pigmented inks IJ18, IJ19, IJ21 ink drop ejection frequency. When a drop is actuator need only open or pressure to be ejected, the shutter is opened for 3 close the shutter, instead of half cycles: drop ejection, actuator ejecting the ink drop return, and refill. Refill After the main actuator has ejected a High speed, as the nozzle is Requires two independent actuators per IJ09 actuator drop a second (refill) actuator is actively refilled nozzle energized. The refill actuator pushes ink into the nozzle chamber. The refill actuator returns slowly, to prevent its return from emptying the chamber again. Positive The ink is held a slight positive pressure. High refill rate, therefore a Surface spill must be prevented Silverbrook, EP 0771 ink After the ink drop is ejected, the nozzle high drop repetition rate is Highly hydrophobic print head surfaces 658 A2 and related pressure chamber fills quickly as surface tension possible are required patent applications and ink pressure both operate to refill the Alternative for: nozzle. IJ01-IJ07, IJ10-IJ14 IJ16, IJ20, IJ22-IJ45 -
-
Inlet back-flow restriction method Description Advantages Disadvantages Examples Long inlet The ink inlet channel to the nozzle Design simplicity Restricts refill rate Thermal inkjet channel chamber is made long and relatively Operational simplicity May result in a relatively large chip area Piezoelectric inkjet narrow, relying on viscous drag to Reduces crosstalk Only partially effective IJ42, IJ43 reduce inlet back-flow. Positive The ink is under a positive pressure, so Drop selection and separation Requires a method (such as a nozzle Silverbrook, EP 0771 ink that in the quiescent state some of the ink forces can be reduced rim or effective hydrophobizing, or 658 A2 and related pressure drop already protrudes from the nozzle. Fast refill time both) to prevent flooding of the patent applications This reduces the pressure in the nozzle ejection surface of the print head. Possible operation of chamber which is required to eject a the following: certain volume of ink. The reduction in IJ01-IJ07, IJ09-IJ12 chamber pressure results in a reduction IJ14, IJ16, IJ20, IJ22, in ink pushed out through the inlet. IJ23-IJ34, IJ36-IJ41 IJ44 Baffle One or more baffles are placed in the The refill rate is not as Design complexity HP Thermal Ink Jet inlet ink flow. When the actuator is restricted as the long inlet May increase fabrication complexity Tektronix piezoelectric energized, the rapid ink movement method. (e.g. Tektronix hot melt Piezoelectric ink jet creates eddies which restrict the flow Reduces crosstalk print heads). through the inlet. The slower refill process is unrestricted, and does not result in eddies. Flexible In this method recently disclosed by Significantly reduces back- Not applicable to most inkjet Canon flap Canon, the expanding actuator (bubble) flow for edge-shooter thermal configurations restricts pushes on a flexible flap that restricts the ink jet devices Increased fabrication complexity inlet inlet. Inelastic deformation of polymer flap results in creep over extended use Inlet filter A filter is located between the ink inlet Additional advantage of ink Restricts refill rate IJ04, IJ12, IJ24, IJ27 and the nozzle chamber. The filter has a filtration May result in complex construction IJ29, IJ30 multitude of small holes or slots, Ink filter may be fabricated restricting ink flow. The filter also with no additional process removes particles which may block the steps nozzle. Small inlet The ink inlet channel to the nozzle Design simplicity Restricts refill rate IJ02, IJ37, IJ44 compared chamber has a substantially smaller cross May result in a relatively large chip area to nozzle section than that of the nozzle, resulting Only partially effective in easier ink egress out of the nozzle than out of the inlet. Inlet A secondary actuator controls the Increases speed of the ink-jet Requires separate refill actuator and IJ09 shutter position of a shutter, closing off the ink print head operation drive circuit inlet when the main actuator is energized. The inlet The method avoids the problem of inlet Back-flow problem is Requires careful design to minimize the IJ01, IJ03, IJ05, IJ06 is back-flow by arranging the ink-pushing eliminated negative pressure behind the paddle IJ07, IJ10, IJ11, IJ14 located surface of the actuator between the inlet IJ16, IJ22, IJ23, IJ25 behind and the nozzle. IJ28, IJ31, IJ32, IJ33 the ink- IJ34, IJ35, IJ36, IJ39 pushing IJ40, IJ41 surface Part of the The actuator and a wall of the ink Significant reductions in back- Small increase in fabrication complexity IJ07, IJ20, IJ26, IJ38 actuator chamber are arranged so that the motion flow can be achieved moves to of the actuator closes off the inlet. Compact designs possible shut off the inlet Nozzle In some configurations of ink jet, there is Ink back-flow problem is None related to ink back-flow on Silverbrook, EP 0771 actuator no expansion or movement of an eliminated actuation 658 A2 and related does not actuator which may cause ink back-flow patent applications result in through the inlet. Valve-jet ink Tone-jet back-flow IJ08, IJ13, IJ15, IJ17 IJ18, IJ19, IJ21 -
-
Nozzle Clearing method Description Advantages Normal nozzle All of the nozzles are fired periodically, No added complexity on the firing before the ink has a chance to dry. When print head not in use the nozzles are sealed (capped) against air. The nozzle firing is usually performed during a special clearing cycle, after first moving the print head to a cleaning station. Extra power to In systems which heat the ink, but do not Can be highly effective if the ink heater boil it under normal situations, nozzle heater is adjacent to the nozzle clearing can be achieved by over- powering the heater and boiling ink at the nozzle. Rapid The actuator is fired in rapid succession. Does not require extra drive succession of In some configurations, this may cause circuits on the print head actuator pulses heat build-up at the nozzle which boils Can be readily controlled and the ink, clearing the nozzle. In other initiated by digital logic situations, it may cause sufficient vibrations to dislodge clogged nozzles. Extra power to Where an actuator is not normally driven A simple solution where ink pushing to the limit of its motion, nozzle clearing applicable actuator may be assisted by providing an enhanced drive signal to the actuator. Acoustic An ultrasonic wave is applied to the ink A high nozzle clearing resonance chamber. This wave is of an appropriate capability can be achieved amplitude and frequency to cause May be implemented at very sufficient force at the nozzle to clear low cost in systems which blockages. This is easiest to achieve if already include acoustic the ultrasonic wave is at a resonant actuators frequency of the ink cavity. Nozzle clearing A microfabricated plate is pushed against Can clear severely clogged plate the nozzles. The plate has a post for nozzles every nozzle. The array of posts Ink pressure The pressure of the ink is temporarily May be effective where other pulse increased so that ink streams from all of methods cannot be used the nozzles. This may be used in conjunction with actuator energizing. Print head wiper A flexible ‘blade’ is wiped across the Effective for planar print head print head surface. The blade is usually surfaces fabricated from a flexible polymer, e.g. Low cost rubber or synthetic elastomer. Separate ink A separate heater is provided at the Can be effective where other boiling heater nozzle although the normal drop e- nozzle clearing methods ection mechanism does not require it. cannot be used The heaters do not require individual Can be implemented at no drive circuits, as many nozzles can be additional cost in some inkjet cleared simultaneously, and no imaging configurations is required. Nozzle Clearing method Disadvantages Examples Normal nozzle May not be sufficient to displace dried ink Most ink jet systems firing IJ01-IJ07, IJ09-IJ12 IJ14, IJ16, IJ20, IJ22 IJ23-IJ34, IJ36-IJ45 Extra power to Requires higher drive voltage for clearing Silverbrook, EP 0771 ink heater May require larger drive transistors 658 A2 and related patent applications Rapid Effectiveness depends substantially upon May be used with: succession of the configuration of the inkjet nozzle IJ01-IJ07, IJ09-IJ11 actuator pulses IJ14, IJ16, IJ20, IJ22 IJ23-IJ25, IJ27-IJ34 IJ36-IJ45 Extra power to Not suitable where there is a hard limit to May be used with: ink pushing actuator movement IJ03, IJ09, IJ16, IJ20 actuator IJ23, IJ24, IJ25, IJ27 IJ29, IJ30, IJ31, IJ32 IJ39, IJ40, IJ41, IJ42 IJ43, IJ44, IJ45 Acoustic High implementation cost if system does IJ08, IJ13, IJ15, IJ17 resonance not already include an acoustic actuator IJ18, IJ19, IJ21 Nozzle clearing Accurate mechanical alignment is required Silverbrook, EP 0771 plate Moving parts are required 658 A2 and related There is risk of damage to the nozzles patent applications Accurate fabrication is required Ink pressure Requires pressure pump or other pressure May be used with all IJ pulse actuator series ink jets Expensive Wasteful of ink Print head wiper Difficult to use if print head surface is non- Many ink jet systems planar or very fragile Requires mechanical parts Blade can wear out in high volume print systems Separate ink Fabrication complexity Can be used with many boiling heater IJ series ink jets -
-
Nozzle plate construction Description Advantages Electroformed A nozzle plate is separately fabricated Fabrication simplicity nickel from electroformed nickel, and bonded to the print head chip. Laser ablated or Individual nozzle holes are ablated by an No masks required drilled polymer intense UV laser in a nozzle plate, which Can be quite fast is typically a polymer such as polyimide Some control over nozzle or polysulphone profile is possible Equipment required is relatively low cost Silicon micro- A separate nozzle plate is High accuracy is attainable machined micromachined from single crystal silicon, and bonded to the print head wafer. Glass capillaries Fine glass capillaries are drawn from No expensive equipment glass tubing. This method has been used required for making individual nozzles, but is Simple to make single nozzles difficult to use for bulk manufacturing of print heads with thousands of nozzles. Monolithic, The nozzle plate is deposited as a layer High accuracy (<1 μm) surface micro- using standard VLSI deposition Monolithic machined using techniques. Nozzles are etched in the Low cost VLSI nozzle plate using VLSI lithography and Existing processes can be used lithographic etching. processes Monolithic, The nozzle plate is a buried etch stop in High accuracy (<1 μm) etched through the wafer. Nozzle chambers are etched in Monolithic substrate the front of the wafer, and the wafer is Low cost thinned from the back side. Nozzles are No differential expansion then etched in the etch stop layer. No nozzle plate Various methods have been tried to No nozzles to become clogged eliminate the nozzles entirely, to prevent nozzle clogging. These include thermal bubble mechanisms and acoustic lens mechanisms Trough Each drop ejector has a trough through Reduced manufacturing which a paddle moves. There is no complexity nozzle plate. Monolithic Nozzle slit The elimination of nozzle holes and No nozzles to become clogged instead of replacement by a slit encompassing individual many actuator positions reduces nozzle nozzles clogging, but increases crosstalk due to ink surface waves Nozzle plate construction Disadvantages Examples Electroformed High temperatures and pressures are Hewlett Packard nickel required to bond nozzle plate Thermal Inkjet Minimum thickness constraints Differential thermal expansion Laser ablated or Each hole must be individually formed Canon Bubblejet drilled polymer Special equipment required 1988 Sercel et al., Slow where there are many thousands of SPIE, Vol. 998 Excimer nozzles per print head Beam Applications, pp. May produce thin burrs at exit holes 76-83 1993 Watanabe et al., U.S. Pat. No. 5,208,604 Silicon micro- Two part construction K. Bean, IEEE machined High cost Transactions on Requires precision alignment Electron Devices, Vol. Nozzles may be clogged by adhesive ED-25, No. 10, 1978, pp 1185-1195 Xerox 1990 Hawkins et al., U.S. Pat. No. 4,899,181 Glass capillaries Very small nozzle sizes are difficult to 1970 Zoltan U.S. Pat. No. form 3,683,212 Not suited for mass production Monolithic, Requires sacrificial layer under the nozzle Silverbrook, EP 0771 surface micro- plate to form the nozzle chamber 658 A2 and related machined using Surface may be fragile to the touch patent applications VLSI IJ01, IJ02, IJ04, IJ11 lithographic IJ12, IJ17, IJ18, IJ20 processes IJ22, IJ24, IJ27, IJ28 IJ29, IJ30, IJ31, IJ32 IJ33, IJ34, IJ36, IJ37 IJ38, IJ39, IJ40, IJ41 IJ42, IJ43, IJ44 Monolithic, Requires long etch times IJ03, IJ05, IJ06, IJ07 etched through Requires a support wafer IJ08, IJ09, IJ10, IJ13 substrate IJ14, IJ15, IJ16, IJ19 IJ21, IJ23, IJ25, IJ26 No nozzle plate Difficult to control drop position accurately Ricoh 1995 Sekiya et al Crosstalk problems U.S. Pat. No. 5,412,413 1993 Hadimioglu et al EUP 550,192 1993 Elrod et al EUP 572,220 Trough Drop firing direction is sensitive to IJ35 wicking. Nozzle slit Difficult to control drop position accurately 1989 Saito et al U.S. Pat. No. instead of Crosstalk problems 4,799,068 individual nozzles -
-
Ejection direction Description Advantages Edge Ink flow is along the surface of the chip, Simple construction (‘edge shooter’) and ink drops are ejected from the chip No silicon etching required edge. Good heat sinking via substrate Mechanically strong Ease of chip handing Surface Ink flow is along the surface of the chip, No bulk silicon etching (‘roof shooter’) and ink drops are ejected from the chip required surface, normal to the plane of the chip. Silicon can make an effective heat sink Mechanical strength Through chip, Ink flow is through the chip, and ink High ink flow forward drops are ejected from the front surface Suitable for pagewidth print (‘up shooter’) of the chip. High nozzle packing density therefore low manufacturing cost Through chip, Ink flow is through the chip, and ink High ink flow reverse drops are ejected from the rear surface of Suitable for pagewidth print (‘down shooter’) the chip. High nozzle packing density therefore low manufacturing cost Through Ink flow is through the actuator, which is Suitable for piezoelectric print actuator not fabricated as part of the same heads substrate as the drive transistors. Ejection direction Disadvantages Examples Edge Nozzles limited to edge Canon Bubblejet 1979 (‘edge shooter’) High resolution is difficult Endo et al GB patent Fast color printing requires one print head 2,007,162 per color Xerox heater-in-pit 1990 Hawkins et al U.S. Pat. No. 4,899,181 Tone-jet Surface Maximum ink flow is severely restricted Hewlett-Packard TIJ (‘roof shooter’) 1982 Vaught et al U.S. Pat. No. 4,490,728 IJ02, IJ11, IJ12, IJ20 IJ22 Through chip, Requires bulk silicon etching Silverbrook, EP 0771 forward 658 A2 and related (‘up shooter’) patent applications IJ04, IJ17, IJ18, IJ24 IJ27-IJ45 Through chip, Requires wafer thinning IJ01, IJ03, IJ05, IJ06 reverse Requires special handling during IJ07, IJ08, IJ09, IJ10 (‘down shooter’) manufacture IJ13, IJ14, IJ15, IJ16 IJ19, IJ21, IJ23, IJ25 IJ26 Through Pagewidth print heads require several Epson Stylus actuator thousand connections to drive circuits Tektronix hot melt Cannot be manufactured in standard piezoelectric ink jets CMOS fabs Complex assembly required -
-
Ink type Description Advantages Aqueous, dye Water based ink which typically Environmentally friendly contains: water, dye, surfactant, No odor humectant, and biocide. Modern ink dyes have high water- fastness, light fastness Aqueous, Water based ink which typically Environmentally friendly pigment contains: water, pigment, surfactant, No odor humectant, and biocide. Reduced bleed Pigments have an advantage in reduced Reduced wicking bleed, wicking and strikethrough. Reduced strikethrough Methyl Ethyl MEK is a highly volatile solvent used for Very fast drying Ketone (MEK) industrial printing on difficult surfaces Prints on various substrates such as aluminum cans. such as metals and plastics Alcohol Alcohol based inks can be used where Fast drying (ethanol, 2- the printer must operate at temperatures Operates at sub-freezing butanol, and below the freezing point of water. An temperatures others) example of this is in-camera consumer Reduced paper cockle photographic printing. Low cost Phase change The ink is solid at room temperature, and No drying time-ink instantly (hot melt) is melted in the print head before jetting. freezes on the print medium Hot melt inks are usually wax based, Almost any print medium can with a melting point around 80° C. After be used jetting the ink freezes almost instantly No paper cockle occurs upon contacting the print medium or a No wicking occurs transfer roller. No bleed occurs No strikethrough occurs Oil Oil based inks are extensively used in High solubility medium for offset printing. They have advantages in some dyes improved characteristics on paper Does not cockle paper (especially no wicking or cockle). Oil Does not wick through paper soluble dies and pigments are required. Microemulsion A microemulsion is a stable, self forming Stops ink bleed emulsion of oil, water, and surfactant. High dye solubility The characteristic drop size is less than Water, oil, and amphiphilic 100 nm, and is determined by the soluble dies can be used preferred curvature of the surfactant. Can stabilize pigment suspensions Ink type Disadvantages Examples Aqueous, dye Slow drying Most existing inkjets Corrosive All IJ series ink jets Bleeds on paper Silverbrook, EP 0771 May strikethrough 658 A2 and related Cockles paper patent applications Aqueous, Slow drying IJ02, IJ04, IJ21, IJ26 pigment Corrosive IJ27, IJ30 Pigment may clog nozzles Silverbrook, EP 0771 Pigment may clog actuator mechanisms 658 A2 and related Cockles paper patent applications Piezoelectric ink-jets Thermal ink jets (with significant restrictions) Methyl Ethyl Odorous All IJ series ink jets Ketone (MEK) Flammable Alcohol Slight odor All IJ series ink jets (ethanol, 2- Flammable butanol, and others) Phase change High viscosity Tektronix hot melt (hot melt) Printed ink typically has a ‘waxy’ feel piezoelectric ink jets Printed pages may ‘block’ 1989 Nowak U.S. Pat. No. Ink temperature may be above the curie 4,820,346 point of permanent magnets All IJ series ink jets Ink heaters consume power Long warm-up time Oil High viscosity: this is a significant All IJ series ink jets limitation for use in inkjets, which usually require a low viscosity. Some short chain and multi-branched oils have a sufficiently low viscosity. Slow drying Microemulsion Viscosity higher than water All IJ series ink jets Cost is slightly higher than water based ink High surfactant concentration required (around 5%) - A large number of new forms of ink jet printers have been developed to facilitate alternative ink jet technologies for the image processing and data distribution system. Various combinations of ink jet devices can be included in printer devices incorporated as part of the present invention. Australian Provisional Patent Applications relating to these ink jets which are specifically incorporated by cross reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
-
Australian US Patent/Patent Provisional Application and Filing Number Filing Date Title Date PO8066 15-Jul-97 Image Creation Method and Apparatus (IJ01) 6,227,652 (Jul. 10, 1998) PO8072 15-Jul-97 Image Creation Method and Apparatus (IJ02) 6,213,588 (Jul. 10, 1998) PO8040 15-Jul-97 Image Creation Method and Apparatus (IJ03) 6,213,589 (Jul. 10, 1998) PO8071 15-Jul-97 Image Creation Method and Apparatus (IJ04) 6,231,163 (Jul. 10, 1998) PO8047 15-Jul-97 Image Creation Method and Apparatus (IJ05) 6,247,795 (Jul. 10, 1998) PO8035 15-Jul-97 Image Creation Method and Apparatus (IJ06) 6,394,581 (Jul. 10, 1998) PO8044 15-Jul-97 Image Creation Method and Apparatus (IJ07) 6,244,691 (Jul. 10, 1998) PO8063 15-Jul-97 Image Creation Method and Apparatus (IJ08) 6,257,704 (Jul. 10, 1998) PO8057 15-Jul-97 Image Creation Method and Apparatus (IJ09) 6,416,168 (Jul. 10, 1998) PO8056 15-Jul-97 Image Creation Method and Apparatus (IJ10) 6,220,694 (Jul. 10, 1998) PO8069 15-Jul-97 Image Creation Method and Apparatus (IJ11) 6,257,705 (Jul. 10, 1998) PO8049 15-Jul-97 Image Creation Method and Apparatus (IJ12) 6,247,794 (Jul. 10, 1998) PO8036 15-Jul-97 Image Creation Method and Apparatus (IJ13) 6,234,610 (Jul. 10, 1998) PO8048 15-Jul-97 Image Creation Method and Apparatus (IJ14) 6,247,793 (Jul. 10, 1998) PO8070 15-Jul-97 Image Creation Method and Apparatus (IJ15) 6,264,306 (Jul. 10, 1998) PO8067 15-Jul-97 Image Creation Method and Apparatus (IJ16) 6,241,342 (Jul. 10, 1998) PO8001 15-Jul-97 Image Creation Method and Apparatus (IJ17) 6,247,792 (Jul. 10, 1998) PO8038 15-Jul-97 Image Creation Method and Apparatus (IJ18) 6,264,307 (Jul. 10, 1998) PO8033 15-Jul-97 Image Creation Method and Apparatus (IJ19) 6,254,220 (Jul. 10, 1998) PO8002 15-Jul-97 Image Creation Method and Apparatus (IJ20) 6,234,611 (Jul. 10, 1998) PO8068 15-Jul-97 Image Creation Method and Apparatus (IJ21) 6,302,528 (Jul. 10, 1998) PO8062 15-Jul-97 Image Creation Method and Apparatus (IJ22) 6,283,582 (Jul. 10, 1998) PO8034 15-Jul-97 Image Creation Method and Apparatus (IJ23) 6,239,821 (Jul. 10, 1998) PO8039 15-Jul-97 Image Creation Method and Apparatus (IJ24) 6,338,547 (Jul. 10, 1998) PO8041 15-Jul-97 Image Creation Method and Apparatus (IJ25) 6,247,796 (Jul. 10, 1998) PO8004 15-Jul-97 Image Creation Method and Apparatus (IJ26) 09/113,122 (Jul. 10, 1998) PO8037 15-Jul-97 Image Creation Method and Apparatus (IJ27) 6,390,603 (Jul. 10, 1998) PO8043 15-Jul-97 Image Creation Method and Apparatus (IJ28) 6,362,843 (Jul. 10, 1998) PO8042 15-Jul-97 Image Creation Method and Apparatus (IJ29) 6,293,653 (Jul. 10, 1998) PO8064 15-Jul-97 Image Creation Method and Apparatus (IJ30) 6,312,107 (Jul. 10, 1998) PO9389 23-Sep-97 Image Creation Method and Apparatus (IJ31) 6,227,653 (Jul. 10, 1998) PO9391 23-Sep-97 Image Creation Method and Apparatus (IJ32) 6,234,609 (Jul. 10, 1998) PP0888 12-Dec-97 Image Creation Method and Apparatus (IJ33) 6,238,040 (Jul. 10, 1998) PP0891 12-Dec-97 Image Creation Method and Apparatus (IJ34) 6,188,415 (Jul. 10, 1998) PP0890 12-Dec-97 Image Creation Method and Apparatus (IJ35) 6,227,654 (Jul. 10, 1998) PP0873 12-Dec-97 Image Creation Method and Apparatus (IJ36) 6,209,989 (Jul. 10, 1998) PP0993 12-Dec-97 Image Creation Method and Apparatus (IJ37) 6,247,791 (Jul. 10, 1998) PP0890 12-Dec-97 Image Creation Method and Apparatus (IJ38) 6,336,710 (Jul. 10, 1998) PP1398 19-Jan-98 An Image Creation Method and Apparatus 6,217,153 (IJ39) (Jul. 10, 1998) PP2592 25-Mar-98 An Image Creation Method and Apparatus 6,416,167 (IJ40) (Jul. 10, 1998) PP2593 25-Mar-98 Image Creation Method and Apparatus (IJ41) 6,243,113 (Jul. 10, 1998) PP3991 19-Jun-98 Image Creation Method and Apparatus (IJ42) 6,283,581 (Jul. 10, 1998) PP3987 9-Jun-98 Image Creation Method and Apparatus (IJ43) 6,247,790 (Jul. 10, 1998) PP3985 9-Jun-98 Image Creation Method and Apparatus (IJ44) 6,260,953 (Jul. 10, 1998) PP3983 9-Jun-98 Image Creation Method and Apparatus (IJ45) 6,267,469 (Jul. 10, 1998) - Further, the present application may utilize advanced semiconductor fabrication techniques in the construction of large arrays of ink jet printers. Suitable manufacturing techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
-
Australian US Patent/Patent Provisional Application and Filing Number Filing Date Title Date PO7935 15-Jul-97 A Method of Manufacture of an Image Creation 6,224,780 Apparatus (IJM01) (Jul. 10, 1998) PO7936 15-Jul-97 A Method of Manufacture of an Image Creation 6,235,212 Apparatus (IJM02) (Jul. 10, 1998) PO7937 15-Jul-97 A Method of Manufacture of an Image Creation 6,280,643 Apparatus (IJM03) (Jul. 10, 1998) PO8061 15-Jul-97 A Method of Manufacture of an Image Creation 6,284,147 Apparatus (IJM04) (Jul. 10, 1998) PO8054 15-Jul-97 A Method of Manufacture of an Image Creation 6,214,244 Apparatus (IJM05) (Jul. 10, 1998) PO8065 15-Jul-97 A Method of Manufacture of an Image Creation 6,071,750 Apparatus (IJM06) (Jul. 10, 1998) PO8055 15-Jul-97 A Method of Manufacture of an Image Creation 6,267,905 Apparatus (IJM07) (Jul. 10, 1998) PO8053 15-Jul-97 A Method of Manufacture of an Image Creation 6,251,298 Apparatus (IJM08) (Jul. 10, 1998) PO8078 15-Jul-97 A Method of Manufacture of an Image Creation 6,258,285 Apparatus (IJM09) (Jul. 10, 1998) PO7933 15-Jul-97 A Method of Manufacture of an Image Creation 6,225,138 Apparatus (IJM10) (Jul. 10, 1998) PO7950 15-Jul-97 A Method of Manufacture of an Image Creation 6,241,904 Apparatus (IJM11) (Jul. 10, 1998) PO7949 15-Jul-97 A Method of Manufacture of an Image Creation 6,299,786 Apparatus (IJM12) (Jul. 10, 1998) PO8060 15-Jul-97 A Method of Manufacture of an Image Creation 09/113,124 Apparatus (IJM13) (Jul. 10, 1998) PO8059 15-Jul-97 A Method of Manufacture of an Image Creation 6,231,773 Apparatus (IJM14) (Jul. 10, 1998) PO8073 15-Jul-97 A Method of Manufacture of an Image Creation 6,190,931 Apparatus (IJM15) (Jul. 10, 1998) PO8076 15-Jul-97 A Method of Manufacture of an Image Creation 6,248,249 Apparatus (IJM16) (Jul. 10, 1998) PO8075 15-Jul-97 A Method of Manufacture of an Image Creation 6,290,862 Apparatus (IJM17) (Jul. 10, 1998) PO8079 15-Jul-97 A Method of Manufacture of an Image Creation 6,241,906 Apparatus (IJM18) (Jul. 10, 1998) PO8050 15-Jul-97 A Method of Manufacture of an Image Creation 09/113,116 Apparatus (IJM19) (Jul. 10, 1998) PO8052 15-Jul-97 A Method of Manufacture of an Image Creation 6,241,905 Apparatus (IJM20) (Jul. 10, 1998) PO7948 15-Jul-97 A Method of Manufacture of an Image Creation 6,451,216 Apparatus (IJM21) (Jul. 10, 1998) PO7951 15-Jul-97 A Method of Manufacture of an Image Creation 6,231,772 Apparatus (IJM22) (Jul. 10, 1998) PO8074 15-Jul-97 A Method of Manufacture of an Image Creation 6,274,056 Apparatus (IJM23) (Jul. 10, 1998) PO7941 15-Jul-97 A Method of Manufacture of an Image Creation 6,290,861 Apparatus (IJM24) (Jul. 10, 1998) PO8077 15-Jul-97 A Method of Manufacture of an Image Creation 6,248,248 Apparatus (IJM25) (Jul. 10, 1998) PO8058 15-Jul-97 A Method of Manufacture of an Image Creation 6,306,671 Apparatus (IJM26) (Jul. 10, 1998) PO8051 15-Jul-97 A Method of Manufacture of an Image Creation 6,331,258 Apparatus (IJM27) (Jul. 10, 1998) PO8045 15-Jul-97 A Method of Manufacture of an Image Creation 6,110,754 Apparatus (IJM28) (Jul. 10, 1998) PO7952 15-Jul-97 A Method of Manufacture of an Image Creation 6,294,101 Apparatus (IJM29) (Jul. 10, 1998) PO8046 15-Jul-97 A Method of Manufacture of an Image Creation 6,416,679 Apparatus (IJM30) (Jul. 10, 1998) PO8503 11-Aug-97 A Method of Manufacture of an Image Creation 6,264,849 Apparatus (IJM30a) (Jul. 10, 1998) PO9390 23-Sep-97 A Method of Manufacture of an Image Creation 6,254,793 Apparatus (IJM31) (Jul. 10, 1998) PO9392 23-Sep-97 A Method of Manufacture of an Image Creation 6,235,211 Apparatus (IJM32) (Jul. 10, 1998) PP0889 12-Dec-97 A Method of Manufacture of an Image Creation 6,235,211 Apparatus (IJM35) (Jul. 10, 1998) PP0887 12-Dec-97 A Method of Manufacture of an Image Creation 6,264,850 Apparatus (IJM36) (Jul. 10, 1998) PP0882 12-Dec-97 A Method of Manufacture of an Image Creation 6,258,284 Apparatus (IJM37) (Jul. 10, 1998) PP0874 12-Dec-97 A Method of Manufacture of an Image Creation 6,258,284 Apparatus (IJM38) (Jul. 10, 1998) PP1396 19-Jan-98 A Method of Manufacture of an Image Creation 6,228,668 Apparatus (IJM39) (Jul. 10, 1998) PP2591 25-Mar-98 A Method of Manufacture of an Image Creation 6,180,427 Apparatus (IJM41) (Jul. 10, 1998) PP3989 9-Jun-98 A Method of Manufacture of an Image Creation 6,171,875 Apparatus (IJM40) (Jul. 10, 1998) PP3990 9-Jun-98 A Method of Manufacture of an Image Creation 6,267,904 Apparatus (IJM42) (Jul. 10, 1998) PP3986 9-Jun-98 A Method of Manufacture of an Image Creation 6,245,247 Apparatus (IJM43) (Jul. 10, 1998) PP3984 9-Jun-98 A Method of Manufacture of an Image Creation 6,245,247 Apparatus (IJM44) (Jul. 10, 1998) PP3982 9-Jun-98 A Method of Manufacture of an Image Creation 6,231,148 Apparatus (IJM45) (Jul. 10, 1998) - Further, the present application may utilize an ink delivery system to the ink jet head. Delivery systems relating to the supply of ink to a series of ink jet nozzles are described in the following Australian provisional patent specifications, the disclosure of which are hereby incorporated by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
-
Australian US Patent/ Provisional Patent Application Number Filing Date Title and Filing Date PO8003 15-Jul-97 Supply Method and 6,350,023 Apparatus (F1) (Jul. 10, 1998) PO8005 15-Jul-97 Supply Method and 6,318,849 Apparatus (F2) (Jul. 10, 1998) PO9404 23-Sep-97 A Device and 09/113,101 Method (F3) (Jul. 10, 1998) - Further, the present application may utilize advanced semiconductor microelectromechanical techniques in the construction of large arrays of ink jet printers. Suitable microelectromechanical techniques are described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
-
Australian US Patent/ Provisional Patent Application Number Filing Date Title and Filing Date PO7943 15-Jul-97 A device (MEMS01) PO8006 15-Jul-97 A device (MEMS02) 6,087,638 (Jul. 10, 1998) PO8007 15-Jul-97 A device (MEMS03) 09/113,093 (Jul. 10, 1998) PO8008 15-Jul-97 A device (MEMS04) 6,340,222 (Jul. 10, 1998) PO8010 15-Jul-97 A device (MEMS05) 6,041,600 (Jul. 10, 1998) PO8011 15-Jul-97 A device (MEMS06) 6,299,300 (Jul. 10, 1998) PO7947 15-Jul-97 A device (MEMS07) 6,067,797 (Jul. 10, 1998) PO7945 15-Jul-97 A device (MEMS08) 9/113,081 (Jul. 10, 1998) PO7944 15-Jul-97 A device (MEMS09) 6,286,935 (Jul. 10, 1998) PO7946 15-Jul-97 A device (MEMS10) 6,044,646 (Jul. 10, 1998) PO9393 23-Sep-97 A Device and Method 09/113,065 (MEMS11) (Jul. 10, 1998) PP0875 12-Dec-97 A Device (MEMS12) 09/113,078 (Jul. 10, 1998) PP0894 12-Dec-97 A Device and Method 09/113,075 (MEMS13) (Jul. 10, 1998) - Further, the present application may include the utilization of a disposable camera system such as those described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
-
US Patent/ Australian Patent Provisional Filing Application Number Date Title and Filing Date PP0895 12-Dec-97 An Image Creation Method 6,231,148 and Apparatus (IR01) (Jul. 10, 1998) PP0870 12-Dec-97 A Device and Method (IR02) 09/113,106 (Jul. 10, 1998) PP0869 12-Dec-97 A Device and Method (IR04) 6,293,658 (Jul. 10, 1998) PP0887 12-Dec-97 Image Creation Method and 09/113,104 Apparatus (IR05) (Jul. 10, 1998) PP0885 12-Dec-97 An Image Production System 6,238,033 (IR06) (Jul. 10, 1998) PP0884 12-Dec-97 Image Creation Method and 6,312,070 Apparatus (IR10) (Jul. 10, 1998) PP0886 12-Dec-97 Image Creation Method and 6,238,111 Apparatus (IR12) (Jul. 10, 1998) PP0871 12-Dec-97 A Device and Method (IR13) 09/113,086 (Jul. 10, 1998) PP0876 12-Dec-97 An Image Processing Method 09/113,094 and Apparatus (IR14) (Jul. 10, 1998) PP0877 12-Dec-97 A Device and Method (IR16) 6,378,970 (Jul. 10, 1998) PP0878 12-Dec-97 A Device and Method (IR17) 6,196,739 (Jul. 10, 1998) PP0879 12-Dec-97 A Device and Method (IR18) 09/112,774 (Jul. 10, 1998) PP0883 12-Dec-97 A Device and Method (IR19) 6,270,182 (Jul. 10, 1998) PP0880 12-Dec-97 A Device and Method (IR20) 6,152,619 (Jul. 10, 1998) PP0881 12-Dec-97 A Device and Method (IR21) 09/113,092 (Jul. 10, 1998) - Further, the present application may include the utilization of a data distribution system such as that described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
-
Australian US Patent/ Provisional Filing Patent Application Number Date Title and Filing Date PP2370 16-Mar-98 Data Processing Method 09/112,781 and Apparatus (Dot01) (Jul. 10, 1998) PP2371 16-Mar-98 Data Processing Method 09/113,052 and Apparatus (Dot02) (Jul. 10, 1998) - Further, the present application may include the utilization of camera and data processing techniques such as an Artcam type device as described in the following Australian provisional patent specifications incorporated here by cross-reference. The serial numbers of respective corresponding US patent applications are also provided for the sake of convenience.
-
Australian Provisional US Patent/Patent Application Number Filing Date Title and Filing Date PO7991 15-Jul-97 Image Processing Method and Apparatus 09/113,060 (ART01) (Jul. 10, 1998) PO7988 15-Jul-97 Image Processing Method and Apparatus 6,476,863 (ART02) (Jul. 10, 1998) PO7993 15-Jul-97 Image Processing Method and Apparatus 09/113,073 (ART03) (Jul. 10, 1998) PO9395 23-Sep-97 Data Processing Method and Apparatus 6,322,181 (ART04) (Jul. 10, 1998) PO8017 15-Jul-97 Image Processing Method and Apparatus 09/112,747 (ART06) (Jul. 10, 1998) PO8014 15-Jul-97 Media Device (ART07) 6,227,648 (Jul. 10, 1998) PO8025 15-Jul-97 Image Processing Method and Apparatus 09/112,750 (ART08) (Jul. 10, 1998) PO8032 15-Jul-97 Image Processing Method and Apparatus 09/112,746 (ART09) (Jul. 10, 1998) PO7999 15-Jul-97 Image Processing Method and Apparatus 09/112,743 (ART10) (Jul. 10, 1998) PO7998 15-Jul-97 Image Processing Method and Apparatus 09/112,742 (ART11) (Jul. 10, 1998) PO8031 15-Jul-97 Image Processing Method and Apparatus 09/112,741 (ART12) (Jul. 10, 1998) PO8030 15-Jul-97 Media Device (ART13) 6,196,541 (Jul. 10, 1998) PO7997 15-Jul-97 Media Device (ART15) 6,195,150 (Jul. 10, 1998) PO7979 15-Jul-97 Media Device (ART16) 6,362,868 (Jul. 10, 1998) PO8015 15-Jul-97 Media Device (ART17) 09/112,738 (Jul. 10, 1998) PO7978 15-Jul-97 Media Device (ART18) 09/113,067 (Jul. 10, 1998) PO7982 15-Jul-97 Data Processing Method and Apparatus 6,431,669 (ART19) (Jul. 10, 1998) PO7989 15-Jul-97 Data Processing Method and Apparatus 6,362,869 (ART20) (Jul. 10, 1998) PO8019 15-Jul-97 Media Processing Method and Apparatus 6,472,052 (ART21) (Jul. 10, 1998) PO7980 15-Jul-97 Image Processing Method and Apparatus 6,356,715 (ART22) (Jul. 10, 1998) PO8018 15-Jul-97 Image Processing Method and Apparatus 09/112,777 (ART24) (Jul. 10, 1998) PO7938 15-Jul-97 Image Processing Method and Apparatus 09/113,224 (ART25) (Jul. 10, 1998) PO8016 15-Jul-97 Image Processing Method and Apparatus 6,366,693 (ART26) (Jul. 10, 1998) PO8024 15-Jul-97 Image Processing Method and Apparatus 6,329,990 (ART27) (Jul. 10, 1998) PO7940 15-Jul-97 Data Processing Method and Apparatus 09/113,072 (ART28) (Jul. 10, 1998) PO7939 15-Jul-97 Data Processing Method and Apparatus 09/112,785 (ART29) (Jul. 10, 1998) PO8501 11-Aug-97 Image Processing Method and Apparatus 6,137,500 (ART30) (Jul. 10, 1998) PO8500 11-Aug-97 Image Processing Method and Apparatus 09/112,796 (ART31) (Jul. 10, 1998) PO7987 15-Jul-97 Data Processing Method and Apparatus 09/113,071 (ART32) (Jul. 10, 1998) PO8022 15-Jul-97 Image Processing Method and Apparatus 6,398,328 (ART33) (Jul. 10, 1998) PO8497 11-Aug-97 Image Processing Method and Apparatus 09/113,090 (ART34) (Jul. 10, 1998) PO8020 15-Jul-97 Data Processing Method and Apparatus 6,431,704 (ART38) (Jul. 10, 1998) PO8023 15-Jul-97 Data Processing Method and Apparatus 09/113,222 (ART39) (Jul. 10, 1998) PO8504 11-Aug-97 Image Processing Method and Apparatus 09/112,786 (ART42) (Jul. 10, 1998) PO8000 15-Jul-97 Data Processing Method and Apparatus 6,415,054 (ART43) (Jul. 10, 1998) PO7977 15-Jul-97 Data Processing Method and Apparatus 09/112,782 (ART44) (Jul. 10, 1998) PO7934 15-Jul-97 Data Processing Method and Apparatus 09/113,056 (ART45) (Jul. 10, 1998) PO7990 15-Jul-97 Data Processing Method and Apparatus 09/113,059 (ART46) (Jul. 10, 1998) PO8499 11-Aug-97 Image Processing Method and Apparatus 6,486,886 (ART47) (Jul. 10, 1998) PO8502 11-Aug-97 Image Processing Method and Apparatus 6,381,361 (ART48) (Jul. 10, 1998) PO7981 15-Jul-97 Data Processing Method and Apparatus 6,317,192 (ART50) (Jul. 10, 1998) PO7986 15-Jul-97 Data Processing Method and Apparatus 09/113,057 (ART51) (Jul. 10, 1998) PO7983 15-Jul-97 Data Processing Method and Apparatus 09/113,054 (ART52) (Jul. 10, 1998) PO8026 15-Jul-97 Image Processing Method and Apparatus 09/112,752 (ART53) (Jul. 10, 1998) PO8027 15-Jul-97 Image Processing Method and Apparatus 09/112,759 (ART54) (Jul. 10, 1998) PO8028 15-Jul-97 Image Processing Method and Apparatus 09/112,757 (ART56) (Jul. 10, 1998) PO9394 23-Sep-97 Image Processing Method and Apparatus 6,357,135 (ART57) (Jul. 10, 1998) PO9396 23-Sep-97 Data Processing Method and Apparatus 09/113,107 (ART58) (Jul. 10, 1998) PO9397 23-Sep-97 Data Processing Method and Apparatus 6,271,931 (ART59) (Jul. 10, 1998) PO9398 23-Sep-97 Data Processing Method and Apparatus 6,353,772 (ART60) (Jul. 10, 1998) PO9399 23-Sep-97 Data Processing Method and Apparatus 6,106,147 (ART61) (Jul. 10, 1998) PO9400 23-Sep-97 Data Processing Method and Apparatus 09/112,790 (ART62) (Jul. 10, 1998) PO9401 23-Sep-97 Data Processing Method and Apparatus 6,304,291 (ART63) (Jul. 10, 1998) PO9402 23-Sep-97 Data Processing Method and Apparatus 09/112,788 (ART64) (Jul. 10, 1998) PO9403 23-Sep-97 Data Processing Method and Apparatus 6,305,770 (ART65) (Jul. 10, 1998) PO9405 23-Sep-97 Data Processing Method and Apparatus 6,289,262 (ART66) (Jul. 10, 1998) PP0959 16-Dec-97 A Data Processing Method and 6,315,200 Apparatus (ART68) (Jul. 10, 1998) PP1397 19-Jan-98 A Media Device (ART69) 6,217,165 (Jul. 10, 1998)
Claims (4)
1. A digital camera for processing and printing images, the camera comprising:
an image sensor for capturing image data from images sensed at an auto exposure setting;
an image processor for processing the image to produce processed data;
a printer for printing the processed data; and
an interface for receiving a cartridge having postcard media and memory storing information regarding a size of each postcard,
wherein the image processor produces the processed data using the auto exposure setting and the information regarding the size of each postcard read from the cartridge memory.
2. A digital camera according to claim 1 wherein the printer has an inkjet printhead for printing the processed data.
3. A digital camera according to claim 2 wherein the cartridge has ink for use by the inkjet printhead.
4. A digital camera according to claim 2 wherein the image processor uses the information from the auto exposure setting to determine a re-mapping of colour data within the image data such that the printhead prints an amended image that takes account of the light conditions of the sensed image.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/769,643 US20100208085A1 (en) | 1997-07-15 | 2010-04-28 | Digital camera for processing and printing images |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPO7991 | 1997-07-15 | ||
AUPO7991A AUPO799197A0 (en) | 1997-07-15 | 1997-07-15 | Image processing method and apparatus (ART01) |
AUPO7999 | 1997-07-15 | ||
AUPO7999A AUPO799997A0 (en) | 1997-07-15 | 1997-07-15 | Image processing method and apparatus (ART10) |
US09/112,743 US6727951B1 (en) | 1997-07-15 | 1998-07-10 | Utilizing exposure information for image processing in a digital image camera |
US10/831,234 US7714889B2 (en) | 1997-07-15 | 2004-04-26 | Digital camera using exposure information for image processing |
US12/769,643 US20100208085A1 (en) | 1997-07-15 | 2010-04-28 | Digital camera for processing and printing images |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/831,234 Continuation US7714889B2 (en) | 1997-07-15 | 2004-04-26 | Digital camera using exposure information for image processing |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100208085A1 true US20100208085A1 (en) | 2010-08-19 |
Family
ID=46301238
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/831,234 Expired - Fee Related US7714889B2 (en) | 1997-07-15 | 2004-04-26 | Digital camera using exposure information for image processing |
US12/769,643 Abandoned US20100208085A1 (en) | 1997-07-15 | 2010-04-28 | Digital camera for processing and printing images |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/831,234 Expired - Fee Related US7714889B2 (en) | 1997-07-15 | 2004-04-26 | Digital camera using exposure information for image processing |
Country Status (1)
Country | Link |
---|---|
US (2) | US7714889B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods |
US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods |
AU2009293019A1 (en) | 2008-09-19 | 2010-03-25 | Tandem Diabetes Care Inc. | Solute concentration measurement device and related methods |
WO2011014704A2 (en) | 2009-07-30 | 2011-02-03 | Tandem Diabetes Care, Inc. | Infusion pump system with disposable cartridge having pressure venting and pressure feedback |
US9180242B2 (en) | 2012-05-17 | 2015-11-10 | Tandem Diabetes Care, Inc. | Methods and devices for multiple fluid transfer |
US9173998B2 (en) | 2013-03-14 | 2015-11-03 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump |
US10279107B2 (en) | 2015-08-20 | 2019-05-07 | Tandem Diabetes Care, Inc. | Drive mechanism for infusion pump |
US10541987B2 (en) | 2016-02-26 | 2020-01-21 | Tandem Diabetes Care, Inc. | Web browser-based device communication workflow |
CN111936182B (en) | 2018-02-05 | 2022-08-23 | 坦德姆糖尿病护理股份有限公司 | Method and system for detecting the condition of an infusion pump |
Citations (97)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2004A (en) * | 1841-03-12 | Improvement in the manner of constructing and propelling steam-vessels | ||
US4200867A (en) * | 1978-04-03 | 1980-04-29 | Hill Elmer D | System and method for painting images by synthetic color signal generation and control |
US4253476A (en) * | 1974-03-08 | 1981-03-03 | Shigeo Sato | Tobacco filter and method of removing impurities from tobacco smoke |
US4500919A (en) * | 1982-05-04 | 1985-02-19 | Massachusetts Institute Of Technology | Color reproduction system |
US4500183A (en) * | 1980-05-02 | 1985-02-19 | Olympus Optical Co., Ltd. | Film cassette and a photographing device using the same |
US4511907A (en) * | 1982-10-19 | 1985-04-16 | Nec Corporation | Color ink-jet printer |
US4641980A (en) * | 1984-10-02 | 1987-02-10 | Fujitsu Limited | Printer with pivotable print head attached to medium carrier moveable through a casing opening |
US4796038A (en) * | 1985-07-24 | 1989-01-03 | Ateq Corporation | Laser pattern generation apparatus |
US4819395A (en) * | 1985-12-26 | 1989-04-11 | Shimizu Construction Co., Ltd. | Textile reinforced structural components |
US4897724A (en) * | 1988-06-06 | 1990-01-30 | U.S. Philips Corporation | Apparatus and method for reproducing digitized video pictures, with inclined plane error restoration |
US4914452A (en) * | 1987-05-08 | 1990-04-03 | Ricoh Company, Ltd. | Ink sheet/recording paper cassette |
US4983996A (en) * | 1988-09-02 | 1991-01-08 | Casio Computer Co., Ltd. | Data recording apparatus for still camera |
US4987030A (en) * | 1987-10-07 | 1991-01-22 | Toray Industries, Inc. | High-tenacity conjugated fiber and process for preparation thereof |
US4993405A (en) * | 1989-05-15 | 1991-02-19 | Olympus Optical Co., Ltd. | Imaging apparatus |
US5107290A (en) * | 1989-06-06 | 1992-04-21 | Canon Kabushiki Kaisha | Camera |
US5182548A (en) * | 1990-01-10 | 1993-01-26 | Silicon Graphics, Inc. | Method and apparatus for painting on a computer |
US5184169A (en) * | 1990-04-19 | 1993-02-02 | Fuji Photo Film Co., Ltd. | Photography mode input systems |
US5191640A (en) * | 1990-12-26 | 1993-03-02 | Xerox Corporation | Method for optimal discrete rendering of images |
US5204944A (en) * | 1989-07-28 | 1993-04-20 | The Trustees Of Columbia University In The City Of New York | Separable image warping methods and systems using spatial lookup tables |
US5206919A (en) * | 1990-05-30 | 1993-04-27 | Sony Broadcast & Communications Limited | Image signal processing with digital filtering to minimize aliasing caused by image manipulation |
US5282044A (en) * | 1990-10-18 | 1994-01-25 | Fuji Photo Film Co., Ltd. | Camera shake correction system |
US5282051A (en) * | 1991-07-29 | 1994-01-25 | Xerox Corporation | Apparatus and method for performing resolution conversion on image data with auto correlation |
US5384899A (en) * | 1991-04-16 | 1995-01-24 | Scitex Corporation Ltd. | Apparatus and method for emulating a substrate |
US5398131A (en) * | 1992-08-13 | 1995-03-14 | Hall; Dennis R. | Stereoscopic hardcopy methods |
US5402527A (en) * | 1993-04-23 | 1995-03-28 | Xerox Corporation | Apparatus and method for determining the page description language in which a print job is written |
US5483379A (en) * | 1991-05-14 | 1996-01-09 | Svanberg; Sune | Image registering in color at low light intensity |
US5488223A (en) * | 1994-09-13 | 1996-01-30 | Intermec Corporation | System and method for automatic selection of printer control parameters |
US5493409A (en) * | 1990-11-29 | 1996-02-20 | Minolta Camera Kabushiki Kaisha | Still video camera having a printer capable of printing a photographed image in a plurality of printing modes |
US5502485A (en) * | 1993-06-23 | 1996-03-26 | Nikon Corporation | Camera which compresses digital image data in correspondence with the focus control or the stop value of the camera |
US5506620A (en) * | 1991-12-18 | 1996-04-09 | Sony Corporation | Recording/reproducing apparatus for providing indications of abnormal states |
US5506603A (en) * | 1993-05-19 | 1996-04-09 | Fujitsu Ltd. | Method and device for airbrushing |
US5512951A (en) * | 1992-06-02 | 1996-04-30 | Sony Corporation | Auto-focusing apparatus |
US5592597A (en) * | 1994-02-14 | 1997-01-07 | Parametric Technology Corporation | Real-time image generation system for simulating physical paint, drawing media, and feature modeling with 3-D graphics |
US5592237A (en) * | 1994-11-04 | 1997-01-07 | Infimed, Inc. | High resolution image processor with multiple bus architecture |
US5594500A (en) * | 1991-10-17 | 1997-01-14 | Canon Kabushiki Kaisha | Image pickup apparatus |
US5610761A (en) * | 1993-12-28 | 1997-03-11 | Minolta Co., Ltd. | Telescope having mechanism for automatically returning optical system to a reference dioptric power |
US5613175A (en) * | 1995-08-31 | 1997-03-18 | Xerox Corporation | Anisotropic imaging member |
US5615123A (en) * | 1991-04-02 | 1997-03-25 | Creatacard, Inc. | System for creating and producing custom card products |
US5619030A (en) * | 1993-01-22 | 1997-04-08 | Canon Kabushiki Kaisha | Control apparatus for image blur prevention employing an angular velocity and an image field sensor |
US5619737A (en) * | 1996-02-07 | 1997-04-08 | Eastman Kodak Company | Encodement-on-film recording apparatus utilizes flash components in a camera |
US5621868A (en) * | 1994-04-15 | 1997-04-15 | Sony Corporation | Generating imitation custom artwork by simulating brush strokes and enhancing edges |
US5624732A (en) * | 1994-09-28 | 1997-04-29 | Meiwa Gravure Co., Ltd. | Bright printed sheet |
US5706049A (en) * | 1995-11-30 | 1998-01-06 | Eastman Kodak Company | Camera that records an active image area identifier with an image |
US5708900A (en) * | 1993-06-18 | 1998-01-13 | Olympus Optical Co., Ltd. | Camera |
US5710948A (en) * | 1992-06-09 | 1998-01-20 | Nikon Corporation | Camera system with color temperature meter |
US5710582A (en) * | 1995-12-07 | 1998-01-20 | Xerox Corporation | Hybrid ink jet printer |
US5715325A (en) * | 1995-08-30 | 1998-02-03 | Siemens Corporate Research, Inc. | Apparatus and method for detecting a face in a video image |
US5719621A (en) * | 1992-08-10 | 1998-02-17 | Olympus Optical Co., Ltd. | Film image reproducing apparatus |
US5726693A (en) * | 1996-07-22 | 1998-03-10 | Eastman Kodak Company | Ink printing apparatus using ink surfactants |
US5731062A (en) * | 1995-12-22 | 1998-03-24 | Hoechst Celanese Corp | Thermoplastic three-dimensional fiber network |
US5734425A (en) * | 1994-02-15 | 1998-03-31 | Eastman Kodak Company | Electronic still camera with replaceable digital processing program |
US5734154A (en) * | 1996-09-03 | 1998-03-31 | Motorola, Inc. | Smart card with Iintegrated reader and visual image display |
US5745175A (en) * | 1995-10-02 | 1998-04-28 | Flashpoint Technologies, Inc. | Method and system for providing automatic focus control for a still digital camera |
US5859921A (en) * | 1995-05-10 | 1999-01-12 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for processing an image of a face |
US5860036A (en) * | 1997-06-10 | 1999-01-12 | Eastman Kodak Company | Controlling display useable in printers |
US5864630A (en) * | 1996-11-20 | 1999-01-26 | At&T Corp | Multi-modal method for locating objects in images |
US5867394A (en) * | 1996-03-01 | 1999-02-02 | The Standard Register Company | Document dispenser operational program downloading |
US5867213A (en) * | 1993-10-21 | 1999-02-02 | Canon Kabushiki Kaisha | Image pickup apparatus having image-shake correcting devices determined according to zoom magnifying power |
US5866253A (en) * | 1996-08-19 | 1999-02-02 | Isorca, Inc. | Synthetic reinforcing strands with spaced filaments |
US5870102A (en) * | 1995-11-03 | 1999-02-09 | 3Dfx Interactive, Incorporated | Texture compositing apparatus and method |
US5872594A (en) * | 1994-09-20 | 1999-02-16 | Thompson; Paul A. | Method for open loop camera control using a motion model to control camera movement |
US5874836A (en) * | 1996-09-06 | 1999-02-23 | International Business Machines Corporation | High reliability I/O stacked fets |
US5878292A (en) * | 1996-08-29 | 1999-03-02 | Eastman Kodak Company | Image-audio print, method of making and player for using |
US5881211A (en) * | 1995-12-11 | 1999-03-09 | Dainippon Screen Mfg. Co., Ltd. | Data conversion table changing |
US5884013A (en) * | 1995-11-17 | 1999-03-16 | Agfa-Gevaert | Autotypical screening with optimised dotshape |
US5894326A (en) * | 1996-08-26 | 1999-04-13 | Eastman Kodak Company | Electronic camera having a printer |
US5896176A (en) * | 1995-10-27 | 1999-04-20 | Texas Instruments Incorporated | Content-based video compression |
US6011536A (en) * | 1998-04-17 | 2000-01-04 | New York University | Method and system for generating an image having a hand-painted appearance |
US6014170A (en) * | 1997-06-20 | 2000-01-11 | Nikon Corporation | Information processing apparatus and method |
US6014165A (en) * | 1997-02-07 | 2000-01-11 | Eastman Kodak Company | Apparatus and method of producing digital image with improved performance characteristic |
US6020931A (en) * | 1996-04-25 | 2000-02-01 | George S. Sheng | Video composition and position system and media signal communication system |
US6020898A (en) * | 1992-07-27 | 2000-02-01 | Olympus Optical Co., Ltd. | Information display system for displaying time-series numerical values and graph simultaneously |
US6022099A (en) * | 1997-01-21 | 2000-02-08 | Eastman Kodak Company | Ink printing with drop separation |
US6028611A (en) * | 1996-08-29 | 2000-02-22 | Apple Computer, Inc. | Modular digital image processing via an image processing chain |
USRE36589E (en) * | 1993-12-22 | 2000-02-29 | Olympus Optical Co., Ltd. | Audio data recording system for recording voice data as an optically readable code on a recording medium for recording still image data photographed by a camera |
US6034740A (en) * | 1995-10-30 | 2000-03-07 | Kabushiki Kaisha Photron | Keying system and composite image producing method |
US6038491A (en) * | 1997-11-26 | 2000-03-14 | Mars, Incorporated | Monitoring and reporting system using cellular carriers |
US6042213A (en) * | 1994-10-28 | 2000-03-28 | Canon Kabushiki Kaisha | Method and apparatus for correcting printhead, printhead corrected by this apparatus, and printing apparatus using this printhead |
US6043821A (en) * | 1997-06-30 | 2000-03-28 | Ati Technologies, Inc. | Method and apparatus for rendering pixel information from blended texture maps |
US6047130A (en) * | 1995-04-24 | 2000-04-04 | Environmental Protection Systems, Inc. | Apparatus and method for portrait photography |
US6052648A (en) * | 1996-04-12 | 2000-04-18 | Earthwatch Communications, Inc. | Method and system for display of weather-related information |
US6167806B1 (en) * | 1998-03-11 | 2001-01-02 | Heidelberger Druckmaschinen Aktiengesellschaft | Device for controlling the printing of one or more webs of material in a rotary printing press |
US6178883B1 (en) * | 1997-11-26 | 2001-01-30 | Kabushiki Kaisha Tokyo Kikai | Tower type multi-color printing press |
US6188430B1 (en) * | 1997-04-18 | 2001-02-13 | Canon Kabushiki Kaisha | Digital camera and ink-jet printing apparatus |
US6198489B1 (en) * | 1997-02-21 | 2001-03-06 | University Of Washington | Computer generated watercolor |
US6199874B1 (en) * | 1993-05-26 | 2001-03-13 | Cornell Research Foundation Inc. | Microelectromechanical accelerometer for automotive applications |
US6201571B1 (en) * | 1996-06-13 | 2001-03-13 | Nec Corporation | Digital camera recording a reduced image synthesized with a character image of the image picking-up information |
US6217165B1 (en) * | 1997-07-15 | 2001-04-17 | Silverbrook Research Pty. Ltd. | Ink and media cartridge with axial ink chambers |
US6220615B1 (en) * | 1998-09-04 | 2001-04-24 | H. F. Brown Machine Co., Inc. | Aerobic wheelchair attachment |
US6362868B1 (en) * | 1997-07-15 | 2002-03-26 | Silverbrook Research Pty Ltd. | Print media roll and ink replaceable cartridge |
US6552821B2 (en) * | 1995-08-29 | 2003-04-22 | Canon Kabushiki Kaisha | Printer-built-in image-sensing apparatus using strobe-light means and electric-consumption control method thereof |
US7186499B2 (en) * | 1997-07-15 | 2007-03-06 | Silverbrook Research Pty Ltd | Print medium with anisotropic bending properties |
US7357497B2 (en) * | 1997-07-15 | 2008-04-15 | Silverbrook Research Pty Ltd | Print roll core with internal ink storage |
US7483053B2 (en) * | 1998-07-10 | 2009-01-27 | Silverbrook Research Pty Ltd | Combined camera and printer assembly with a card reader for image processing instructions |
US7517071B2 (en) * | 1997-07-15 | 2009-04-14 | Silverbrook Research Pty Ltd | Print roll unit with ink storage core |
US7525687B2 (en) * | 1997-07-15 | 2009-04-28 | Silverbrook Research Pty Ltd | Garment creation system |
US7665834B2 (en) * | 1997-07-12 | 2010-02-23 | Silverbrook Research Pty Ltd | Print roll with ink reservoir and print media roll sections |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5031049A (en) | 1984-05-25 | 1991-07-09 | Canon Kabushiki Kaisha | Automatic object image follow-up device |
US4762986A (en) | 1986-03-10 | 1988-08-09 | Canon Kabushiki Kaisha | Automatic focussing system including in-focus position prediction means |
EP0237940B1 (en) | 1986-03-19 | 1993-09-08 | Sharp Kabushiki Kaisha | Manual copying apparatus |
US4937676A (en) | 1989-02-10 | 1990-06-26 | Polariod Corporation | Electronic camera system with detachable printer |
EP0398295B1 (en) | 1989-05-17 | 1996-08-14 | Minolta Co., Ltd. | A camera capable of recording and reproducing a photographed image |
US5235428A (en) | 1990-02-21 | 1993-08-10 | Sony Corporation | Auto-focus system for video camera |
US5463470A (en) | 1991-10-09 | 1995-10-31 | Fuji Photo Film Co., Ltd. | Methods of collecting photometric image data and determining light exposure by extracting feature image data from an original image |
US5752114A (en) * | 1992-03-17 | 1998-05-12 | Sony Corporation | Photographic and video image system |
KR0147572B1 (en) | 1992-10-09 | 1998-09-15 | 김광호 | Method & apparatus for object tracing |
JPH06149051A (en) | 1992-11-08 | 1994-05-27 | Ricoh Co Ltd | Developer container, processing cartridge, judgement device for recycling of such container or cartridge and image forming device |
US5432863A (en) | 1993-07-19 | 1995-07-11 | Eastman Kodak Company | Automated detection and correction of eye color defects due to flash illumination |
JP2610386B2 (en) * | 1993-09-28 | 1997-05-14 | 株式会社ハドソン | Camera with monitor |
GB9325076D0 (en) | 1993-12-07 | 1994-02-02 | The Technology Partnership Plc | Electronic camera |
US5477264A (en) * | 1994-03-29 | 1995-12-19 | Eastman Kodak Company | Electronic imaging system using a removable software-enhanced storage device |
US5528339A (en) | 1994-08-26 | 1996-06-18 | Eastman Kodak Company | Color image reproduction of scenes with color enhancement and preferential tone mapping |
US5572596A (en) | 1994-09-02 | 1996-11-05 | David Sarnoff Research Center, Inc. | Automated, non-invasive iris recognition system and method |
EP0765226A1 (en) | 1995-04-12 | 1997-04-02 | Eastman Kodak Company | Color video printer and a photo-cd system with integrated printer |
US5909227A (en) * | 1995-04-12 | 1999-06-01 | Eastman Kodak Company | Photograph processing and copying system using coincident force drop-on-demand ink jet printing |
US20040201764A1 (en) * | 1995-06-21 | 2004-10-14 | Tsutomu Honda | Dual mode image shooting apparatus with still image and motion video image recording and reproduction |
US5587740A (en) * | 1995-08-17 | 1996-12-24 | Brennan; James M. | Digital photo kiosk |
US5999203A (en) * | 1995-08-18 | 1999-12-07 | Ttp Group, Plc | Printer assembly with easily loaded paper cartridge |
JPH09116843A (en) | 1995-10-20 | 1997-05-02 | Canon Inc | Image pickup device with printer |
JPH0971015A (en) | 1995-09-05 | 1997-03-18 | Ricoh Co Ltd | Recording device and image communication device |
JP3286804B2 (en) * | 1995-09-14 | 2002-05-27 | キヤノン株式会社 | Imaging device |
EP0763930B1 (en) | 1995-09-15 | 2002-10-16 | Agfa-Gevaert | Method for calculating color gamuts |
US5805213A (en) * | 1995-12-08 | 1998-09-08 | Eastman Kodak Company | Method and apparatus for color-correcting multi-channel signals of a digital camera |
US5633678A (en) * | 1995-12-20 | 1997-05-27 | Eastman Kodak Company | Electronic still camera for capturing and categorizing images |
JP3303255B2 (en) | 1995-12-28 | 2002-07-15 | 富士写真光機株式会社 | Driving device for zoom lens |
US5835899A (en) | 1996-03-01 | 1998-11-10 | Electronic Data Systems Corporation | System and method for deriving financial responsibility identification |
JP2907120B2 (en) | 1996-05-29 | 1999-06-21 | 日本電気株式会社 | Red-eye detection correction device |
US6157394A (en) | 1996-08-29 | 2000-12-05 | Apple Computer, Inc. | Flexible digital image processing via an image processing chain with modular image processors |
US6097431A (en) | 1996-09-04 | 2000-08-01 | Flashpoint Technology, Inc. | Method and system for reviewing and navigating among images on an image capture unit |
US5757388A (en) * | 1996-12-16 | 1998-05-26 | Eastman Kodak Company | Electronic camera and integral ink jet printer |
JPH10226139A (en) | 1997-02-14 | 1998-08-25 | Canon Inc | Image forming system, image forming apparatus, and medium |
US5845166A (en) | 1997-02-20 | 1998-12-01 | Eastman Kodak Company | Hybrid camera with identification matching of film and electronic images |
US5980010A (en) | 1997-06-30 | 1999-11-09 | Eastman Kodak Company | Scanning ink jet printer for electronic displays |
US7593058B2 (en) * | 1997-07-15 | 2009-09-22 | Silverbrook Research Pty Ltd | Digital camera with integrated inkjet printer having removable cartridge containing ink and media substrate |
US6431669B1 (en) * | 1997-07-15 | 2002-08-13 | Silverbrook Research Pty Ltd | Method and apparatus for information storage in a portable print roll |
US6292574B1 (en) | 1997-08-29 | 2001-09-18 | Eastman Kodak Company | Computer program product for redeye detection |
US6252976B1 (en) | 1997-08-29 | 2001-06-26 | Eastman Kodak Company | Computer program product for redeye detection |
US6278491B1 (en) | 1998-01-29 | 2001-08-21 | Hewlett-Packard Company | Apparatus and a method for automatically detecting and reducing red-eye in a digital image |
US6285410B1 (en) | 1998-09-11 | 2001-09-04 | Mgi Software Corporation | Method and system for removal of flash artifacts from digital images |
US6134339A (en) | 1998-09-17 | 2000-10-17 | Eastman Kodak Company | Method and apparatus for determining the position of eyes and for correcting eye-defects in a captured frame |
US7999969B2 (en) * | 2005-04-08 | 2011-08-16 | Panasonic Corporation | Imaging device, printing system, printing device, image printing method, and storage medium having stored thereon program controlling the image printing method |
-
2004
- 2004-04-26 US US10/831,234 patent/US7714889B2/en not_active Expired - Fee Related
-
2010
- 2010-04-28 US US12/769,643 patent/US20100208085A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2004A (en) * | 1841-03-12 | Improvement in the manner of constructing and propelling steam-vessels | ||
US4253476A (en) * | 1974-03-08 | 1981-03-03 | Shigeo Sato | Tobacco filter and method of removing impurities from tobacco smoke |
US4200867A (en) * | 1978-04-03 | 1980-04-29 | Hill Elmer D | System and method for painting images by synthetic color signal generation and control |
US4500183A (en) * | 1980-05-02 | 1985-02-19 | Olympus Optical Co., Ltd. | Film cassette and a photographing device using the same |
US4500919A (en) * | 1982-05-04 | 1985-02-19 | Massachusetts Institute Of Technology | Color reproduction system |
US4511907A (en) * | 1982-10-19 | 1985-04-16 | Nec Corporation | Color ink-jet printer |
US4641980A (en) * | 1984-10-02 | 1987-02-10 | Fujitsu Limited | Printer with pivotable print head attached to medium carrier moveable through a casing opening |
US4796038A (en) * | 1985-07-24 | 1989-01-03 | Ateq Corporation | Laser pattern generation apparatus |
US4819395A (en) * | 1985-12-26 | 1989-04-11 | Shimizu Construction Co., Ltd. | Textile reinforced structural components |
US4914452A (en) * | 1987-05-08 | 1990-04-03 | Ricoh Company, Ltd. | Ink sheet/recording paper cassette |
US4987030A (en) * | 1987-10-07 | 1991-01-22 | Toray Industries, Inc. | High-tenacity conjugated fiber and process for preparation thereof |
US4897724A (en) * | 1988-06-06 | 1990-01-30 | U.S. Philips Corporation | Apparatus and method for reproducing digitized video pictures, with inclined plane error restoration |
US4983996A (en) * | 1988-09-02 | 1991-01-08 | Casio Computer Co., Ltd. | Data recording apparatus for still camera |
US4993405A (en) * | 1989-05-15 | 1991-02-19 | Olympus Optical Co., Ltd. | Imaging apparatus |
US5107290A (en) * | 1989-06-06 | 1992-04-21 | Canon Kabushiki Kaisha | Camera |
US5204944A (en) * | 1989-07-28 | 1993-04-20 | The Trustees Of Columbia University In The City Of New York | Separable image warping methods and systems using spatial lookup tables |
US5182548A (en) * | 1990-01-10 | 1993-01-26 | Silicon Graphics, Inc. | Method and apparatus for painting on a computer |
US5184169A (en) * | 1990-04-19 | 1993-02-02 | Fuji Photo Film Co., Ltd. | Photography mode input systems |
US5206919A (en) * | 1990-05-30 | 1993-04-27 | Sony Broadcast & Communications Limited | Image signal processing with digital filtering to minimize aliasing caused by image manipulation |
US5282044A (en) * | 1990-10-18 | 1994-01-25 | Fuji Photo Film Co., Ltd. | Camera shake correction system |
US5875034A (en) * | 1990-11-29 | 1999-02-23 | Minolta Co., Ltd. | Camera system having a recordable medium positioned between photographing and reproducing portions |
US5493409A (en) * | 1990-11-29 | 1996-02-20 | Minolta Camera Kabushiki Kaisha | Still video camera having a printer capable of printing a photographed image in a plurality of printing modes |
US5606420A (en) * | 1990-11-29 | 1997-02-25 | Minolta Camera Kabushiki Kaisha | Camera system including a camera section and a reproduction section separately attachable to the camera section |
US5191640A (en) * | 1990-12-26 | 1993-03-02 | Xerox Corporation | Method for optimal discrete rendering of images |
US5615123A (en) * | 1991-04-02 | 1997-03-25 | Creatacard, Inc. | System for creating and producing custom card products |
US5384899A (en) * | 1991-04-16 | 1995-01-24 | Scitex Corporation Ltd. | Apparatus and method for emulating a substrate |
US5483379A (en) * | 1991-05-14 | 1996-01-09 | Svanberg; Sune | Image registering in color at low light intensity |
US5282051A (en) * | 1991-07-29 | 1994-01-25 | Xerox Corporation | Apparatus and method for performing resolution conversion on image data with auto correlation |
US5594500A (en) * | 1991-10-17 | 1997-01-14 | Canon Kabushiki Kaisha | Image pickup apparatus |
US5506620A (en) * | 1991-12-18 | 1996-04-09 | Sony Corporation | Recording/reproducing apparatus for providing indications of abnormal states |
US5512951A (en) * | 1992-06-02 | 1996-04-30 | Sony Corporation | Auto-focusing apparatus |
US5710948A (en) * | 1992-06-09 | 1998-01-20 | Nikon Corporation | Camera system with color temperature meter |
US6020898A (en) * | 1992-07-27 | 2000-02-01 | Olympus Optical Co., Ltd. | Information display system for displaying time-series numerical values and graph simultaneously |
US5719621A (en) * | 1992-08-10 | 1998-02-17 | Olympus Optical Co., Ltd. | Film image reproducing apparatus |
US5398131A (en) * | 1992-08-13 | 1995-03-14 | Hall; Dennis R. | Stereoscopic hardcopy methods |
US5619030A (en) * | 1993-01-22 | 1997-04-08 | Canon Kabushiki Kaisha | Control apparatus for image blur prevention employing an angular velocity and an image field sensor |
US5402527A (en) * | 1993-04-23 | 1995-03-28 | Xerox Corporation | Apparatus and method for determining the page description language in which a print job is written |
US5506603A (en) * | 1993-05-19 | 1996-04-09 | Fujitsu Ltd. | Method and device for airbrushing |
US6199874B1 (en) * | 1993-05-26 | 2001-03-13 | Cornell Research Foundation Inc. | Microelectromechanical accelerometer for automotive applications |
US5708900A (en) * | 1993-06-18 | 1998-01-13 | Olympus Optical Co., Ltd. | Camera |
US5502485A (en) * | 1993-06-23 | 1996-03-26 | Nikon Corporation | Camera which compresses digital image data in correspondence with the focus control or the stop value of the camera |
US5867213A (en) * | 1993-10-21 | 1999-02-02 | Canon Kabushiki Kaisha | Image pickup apparatus having image-shake correcting devices determined according to zoom magnifying power |
USRE36589E (en) * | 1993-12-22 | 2000-02-29 | Olympus Optical Co., Ltd. | Audio data recording system for recording voice data as an optically readable code on a recording medium for recording still image data photographed by a camera |
US5610761A (en) * | 1993-12-28 | 1997-03-11 | Minolta Co., Ltd. | Telescope having mechanism for automatically returning optical system to a reference dioptric power |
US5592597A (en) * | 1994-02-14 | 1997-01-07 | Parametric Technology Corporation | Real-time image generation system for simulating physical paint, drawing media, and feature modeling with 3-D graphics |
US5734425A (en) * | 1994-02-15 | 1998-03-31 | Eastman Kodak Company | Electronic still camera with replaceable digital processing program |
US5621868A (en) * | 1994-04-15 | 1997-04-15 | Sony Corporation | Generating imitation custom artwork by simulating brush strokes and enhancing edges |
US5488223A (en) * | 1994-09-13 | 1996-01-30 | Intermec Corporation | System and method for automatic selection of printer control parameters |
US5872594A (en) * | 1994-09-20 | 1999-02-16 | Thompson; Paul A. | Method for open loop camera control using a motion model to control camera movement |
US5624732A (en) * | 1994-09-28 | 1997-04-29 | Meiwa Gravure Co., Ltd. | Bright printed sheet |
US6042213A (en) * | 1994-10-28 | 2000-03-28 | Canon Kabushiki Kaisha | Method and apparatus for correcting printhead, printhead corrected by this apparatus, and printing apparatus using this printhead |
US5592237A (en) * | 1994-11-04 | 1997-01-07 | Infimed, Inc. | High resolution image processor with multiple bus architecture |
US6047130A (en) * | 1995-04-24 | 2000-04-04 | Environmental Protection Systems, Inc. | Apparatus and method for portrait photography |
US5859921A (en) * | 1995-05-10 | 1999-01-12 | Mitsubishi Denki Kabushiki Kaisha | Apparatus for processing an image of a face |
US6552821B2 (en) * | 1995-08-29 | 2003-04-22 | Canon Kabushiki Kaisha | Printer-built-in image-sensing apparatus using strobe-light means and electric-consumption control method thereof |
US5715325A (en) * | 1995-08-30 | 1998-02-03 | Siemens Corporate Research, Inc. | Apparatus and method for detecting a face in a video image |
US5613175A (en) * | 1995-08-31 | 1997-03-18 | Xerox Corporation | Anisotropic imaging member |
US5745175A (en) * | 1995-10-02 | 1998-04-28 | Flashpoint Technologies, Inc. | Method and system for providing automatic focus control for a still digital camera |
US5896176A (en) * | 1995-10-27 | 1999-04-20 | Texas Instruments Incorporated | Content-based video compression |
US6034740A (en) * | 1995-10-30 | 2000-03-07 | Kabushiki Kaisha Photron | Keying system and composite image producing method |
US5870102A (en) * | 1995-11-03 | 1999-02-09 | 3Dfx Interactive, Incorporated | Texture compositing apparatus and method |
US5884013A (en) * | 1995-11-17 | 1999-03-16 | Agfa-Gevaert | Autotypical screening with optimised dotshape |
US5706049A (en) * | 1995-11-30 | 1998-01-06 | Eastman Kodak Company | Camera that records an active image area identifier with an image |
US5710582A (en) * | 1995-12-07 | 1998-01-20 | Xerox Corporation | Hybrid ink jet printer |
US5881211A (en) * | 1995-12-11 | 1999-03-09 | Dainippon Screen Mfg. Co., Ltd. | Data conversion table changing |
US5731062A (en) * | 1995-12-22 | 1998-03-24 | Hoechst Celanese Corp | Thermoplastic three-dimensional fiber network |
US5619737A (en) * | 1996-02-07 | 1997-04-08 | Eastman Kodak Company | Encodement-on-film recording apparatus utilizes flash components in a camera |
US5867394A (en) * | 1996-03-01 | 1999-02-02 | The Standard Register Company | Document dispenser operational program downloading |
US6052648A (en) * | 1996-04-12 | 2000-04-18 | Earthwatch Communications, Inc. | Method and system for display of weather-related information |
US6020931A (en) * | 1996-04-25 | 2000-02-01 | George S. Sheng | Video composition and position system and media signal communication system |
US6201571B1 (en) * | 1996-06-13 | 2001-03-13 | Nec Corporation | Digital camera recording a reduced image synthesized with a character image of the image picking-up information |
US5726693A (en) * | 1996-07-22 | 1998-03-10 | Eastman Kodak Company | Ink printing apparatus using ink surfactants |
US5866253A (en) * | 1996-08-19 | 1999-02-02 | Isorca, Inc. | Synthetic reinforcing strands with spaced filaments |
US5894326A (en) * | 1996-08-26 | 1999-04-13 | Eastman Kodak Company | Electronic camera having a printer |
US6028611A (en) * | 1996-08-29 | 2000-02-22 | Apple Computer, Inc. | Modular digital image processing via an image processing chain |
US5878292A (en) * | 1996-08-29 | 1999-03-02 | Eastman Kodak Company | Image-audio print, method of making and player for using |
US5734154A (en) * | 1996-09-03 | 1998-03-31 | Motorola, Inc. | Smart card with Iintegrated reader and visual image display |
US5874836A (en) * | 1996-09-06 | 1999-02-23 | International Business Machines Corporation | High reliability I/O stacked fets |
US5864630A (en) * | 1996-11-20 | 1999-01-26 | At&T Corp | Multi-modal method for locating objects in images |
US6022099A (en) * | 1997-01-21 | 2000-02-08 | Eastman Kodak Company | Ink printing with drop separation |
US6014165A (en) * | 1997-02-07 | 2000-01-11 | Eastman Kodak Company | Apparatus and method of producing digital image with improved performance characteristic |
US6198489B1 (en) * | 1997-02-21 | 2001-03-06 | University Of Washington | Computer generated watercolor |
US6188430B1 (en) * | 1997-04-18 | 2001-02-13 | Canon Kabushiki Kaisha | Digital camera and ink-jet printing apparatus |
US5860036A (en) * | 1997-06-10 | 1999-01-12 | Eastman Kodak Company | Controlling display useable in printers |
US6014170A (en) * | 1997-06-20 | 2000-01-11 | Nikon Corporation | Information processing apparatus and method |
US6043821A (en) * | 1997-06-30 | 2000-03-28 | Ati Technologies, Inc. | Method and apparatus for rendering pixel information from blended texture maps |
US7665834B2 (en) * | 1997-07-12 | 2010-02-23 | Silverbrook Research Pty Ltd | Print roll with ink reservoir and print media roll sections |
US7517071B2 (en) * | 1997-07-15 | 2009-04-14 | Silverbrook Research Pty Ltd | Print roll unit with ink storage core |
US7525687B2 (en) * | 1997-07-15 | 2009-04-28 | Silverbrook Research Pty Ltd | Garment creation system |
US6217165B1 (en) * | 1997-07-15 | 2001-04-17 | Silverbrook Research Pty. Ltd. | Ink and media cartridge with axial ink chambers |
US7357497B2 (en) * | 1997-07-15 | 2008-04-15 | Silverbrook Research Pty Ltd | Print roll core with internal ink storage |
US6362868B1 (en) * | 1997-07-15 | 2002-03-26 | Silverbrook Research Pty Ltd. | Print media roll and ink replaceable cartridge |
US7186499B2 (en) * | 1997-07-15 | 2007-03-06 | Silverbrook Research Pty Ltd | Print medium with anisotropic bending properties |
US6178883B1 (en) * | 1997-11-26 | 2001-01-30 | Kabushiki Kaisha Tokyo Kikai | Tower type multi-color printing press |
US6038491A (en) * | 1997-11-26 | 2000-03-14 | Mars, Incorporated | Monitoring and reporting system using cellular carriers |
US6167806B1 (en) * | 1998-03-11 | 2001-01-02 | Heidelberger Druckmaschinen Aktiengesellschaft | Device for controlling the printing of one or more webs of material in a rotary printing press |
US6011536A (en) * | 1998-04-17 | 2000-01-04 | New York University | Method and system for generating an image having a hand-painted appearance |
US7483053B2 (en) * | 1998-07-10 | 2009-01-27 | Silverbrook Research Pty Ltd | Combined camera and printer assembly with a card reader for image processing instructions |
US6220615B1 (en) * | 1998-09-04 | 2001-04-24 | H. F. Brown Machine Co., Inc. | Aerobic wheelchair attachment |
Also Published As
Publication number | Publication date |
---|---|
US20040263675A1 (en) | 2004-12-30 |
US7714889B2 (en) | 2010-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7357497B2 (en) | Print roll core with internal ink storage | |
US6067797A (en) | Thermal actuator | |
US7557853B2 (en) | Processing of digital images using autofocus settings for image enhancement | |
US6044646A (en) | Micro cilia array and use thereof | |
US6087638A (en) | Corrugated MEMS heater structure | |
US6188415B1 (en) | Ink jet printer having a thermal actuator comprising an external coil spring | |
US8902333B2 (en) | Image processing method using sensed eye position | |
US6690416B1 (en) | Image production utilizing text editing including complex character sets | |
US20070046754A1 (en) | Inkjet cartridge with ink reservoir core and releasable housing | |
US20090251546A1 (en) | Digital camera with postcard printing | |
US20100007745A1 (en) | Digital camera having printhead and removable cartridge | |
US20100208085A1 (en) | Digital camera for processing and printing images | |
US6727951B1 (en) | Utilizing exposure information for image processing in a digital image camera | |
US6366693B1 (en) | Digital image region detection method and apparatus | |
US6289262B1 (en) | System for high volume printing of optical storage cards using ink dots | |
US6271931B1 (en) | Data addition to optical storage cards using ink dots | |
US20040160524A1 (en) | Utilising exposure information for image processing in a digital image camera |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SILVERBROOK RESEARCH PTY LTD, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SILVERBROOK, KIA;REEL/FRAME:024306/0392 Effective date: 20040422 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |