US20100199861A1 - Treating Apparatus - Google Patents

Treating Apparatus Download PDF

Info

Publication number
US20100199861A1
US20100199861A1 US12/525,057 US52505708A US2010199861A1 US 20100199861 A1 US20100199861 A1 US 20100199861A1 US 52505708 A US52505708 A US 52505708A US 2010199861 A1 US2010199861 A1 US 2010199861A1
Authority
US
United States
Prior art keywords
current
treated
container
metallic plate
treating apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/525,057
Inventor
Tomoyuki Godai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAYATEC CO Ltd
Original Assignee
MAYATEC CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MAYATEC CO Ltd filed Critical MAYATEC CO Ltd
Assigned to MAYATEC CO., LTD. reassignment MAYATEC CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GODAI, TOMOYUKI
Publication of US20100199861A1 publication Critical patent/US20100199861A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/32Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with electric currents without heating effect
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/005Preserving by heating
    • A23B4/01Preserving by heating by irradiation or electric treatment with or without shaping, e.g. in form of powder, granules or flakes
    • A23B4/012Preserving by heating by irradiation or electric treatment with or without shaping, e.g. in form of powder, granules or flakes with packages, or with shaping in the form of blocks or portions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/015Preserving by irradiation or electric treatment without heating effect
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B7/00Preservation or chemical ripening of fruit or vegetables
    • A23B7/015Preserving by irradiation or electric treatment without heating effect

Definitions

  • the present invention relates to a treating apparatus, and more particularly, to a treating apparatus capable of applying an alternating-current power such that a weak current flows in an object to be treated.
  • the thawing techniques described in the above conventional examples are not of a type based on a detailed analysis of the factors of deterioration of freshness at the time of thawing frozen materials and are half-baked techniques from the point of view of keeping freshness of frozen materials.
  • the present invention has been accomplished in view of these circumstances, and an object thereof is to provide a treating apparatus that is capable of properly suppressing deterioration in quality of an object to be treated.
  • a first treating apparatus of the present invention includes a container having an interior set at a predetermined temperature, a support means for supporting an object to be treated in the container such that insulation is maintained between the container and the object to be treated, and an alternating-current power applying means for applying an alternating-current voltage which is not smaller than 10V and not larger than 5 kV, through the support means, to the object to be treated such that a current which is not smaller than 1 ⁇ A and not larger than 1,000 mA flows therein, wherein oxidation of the object to be treated is suppressed by providing the current to the object to be treated.
  • a second treating apparatus of the present invention includes a container having an interior set at a predetermined temperature, a support means for supporting a frozen object to be treated in the container such that insulation is maintained between the container and the object to be treated, and an alternating-current power applying means for applying an alternating-current voltage which is not smaller than 10V and not larger than 5 kV, through the support means, to the object to be treated such that a current which is not smaller than 1 ⁇ A and not larger than 1,000 mA flows therein, wherein the object to be treated is thawed by providing the current to the object to be treated.
  • a third treating apparatus of the present invention includes a container having an interior set at a predetermined temperature, a support means for supporting an object to be treated in the container such that insulation is maintained between the container and the object to be treated, and an alternating-current power applying means for applying an alternating-current voltage which is not smaller than 10V and not larger than 5 kV, through the support means, to the object to be treated such that a current which is not smaller than 1 ⁇ A and not larger than 1,000 mA flows therein, wherein freshness of the object to be treated is preserved without its freezing by providing the current to the object to be treated.
  • an example of the above support means includes a first metallic plate disposed in the interior to place the object to be treated thereon, a current-carrying rail of metal electrically connected to the first metallic plate, and a metallic support bar for supporting the first metallic plate through a first insulating member, wherein the alternating-current voltage is applied to the current-carrying rail.
  • another example of the above support means includes a second insulating member extending upright from a lower wall of the container into the interior, a second metallic plate supported on an end face of the second insulating member to place the object to be treated thereon, wherein the second metallic plate is electrically connected to the current-carrying rail through a wire.
  • the support means may include a hook for supporting the first insulating member and the first metallic plate, and the position of the first metallic plate may be set based on the locking position of the hook to the metallic support bar.
  • first and second insulating members are preferably insulators.
  • each of the voltage-applying members is insulated using an insulator having superior insulating properties, appropriate insulation of these members may be maintained even if the interior of the treating container becomes an unfavorable environment for electric insulation such as a high-humidity environment with a high moisture content.
  • the object to be treated is a foodstuff of meat or seafood, there are cases where it is preferable to set the current to a value which is not smaller than 500 ⁇ A and not larger than 800 ⁇ A.
  • the object to be treated is a foodstuff of vegetable or fruit
  • the current provided to the foodstuff of vegetable or fruit is substantially 100 ⁇ A.
  • frozen tuna or frozen salmon may be thawed as the object to be treated using the above treating apparatus.
  • a treating apparatus which enables to appropriately suppress deterioration in the quality of the objects to be treated.
  • FIG. 1 is a view of the interior of a power applying apparatus according to an embodiment of the present invention, as viewed in a left and right direction.
  • FIG. 2 is a view of the interior of a power applying apparatus according to an embodiment of the present invention, as viewed in an upper and lower direction.
  • FIG. 1 is a view of the interior of a power applying apparatus (treating apparatus) according to an embodiment of the present invention, as viewed in a left and right direction
  • FIG. 2 is a view of the interior of the power applying apparatus according to the embodiment of the present invention, as viewed in an upper and lower direction.
  • the direction in which the self weight of the power applying apparatus 100 acts is referred to as the “upper and lower” direction
  • the door 22 side of the power applying apparatus 100 as the “front” side
  • the side opposite the door 22 as the “rear” side
  • the direction perpendicular to the “upper and lower” direction and the “front and rear” direction as the “left and right” direction.
  • the power applying apparatus 100 primarily includes a treating container 10 of box shape (rectangular parallelepiped), the internal temperature of which is settable at a thawing temperature of frozen materials 21 (frozen objects to be treated), an alternating-current power generating device 11 (alternating-current power applying means) disposed inside a housing space 11 a located over the treating container 10 , and a mounting unit 101 disposed inside a treating space 10 a of the treating container 10 .
  • the treating container 10 has the treating space 10 a (interior of the treating container 10 ) for thawing frozen materials 21 .
  • the housing space 11 a is provided on the treating container 10 , which accommodates, in addition to the above alternating-current power generating device 11 , various known operation equipment (not shown) for the purpose of operating the power applying apparatus 100 .
  • Doors 22 , 23 are provided to enable access to the objects contained in the treating space 10 a and the housing space 11 a , respectively.
  • frozen materials 21 include, in addition to a solid object, liquid and gaseous objects packed in an appropriate bag (not shown) and, in short, mean various kinds of freezable foodstuffs containing water or freezable drinking water.
  • the mounting unit 101 includes metallic plates 14 , 15 for placing a frozen material 21 thereon, a metal-made current-carrying rail 12 of rectangular shape which is electrically connected to the metallic plates 14 , 15 in a manner capable of applying an alternating-current voltage thereto, and which extends in the upper and lower direction, and rod-like metallic support bars 13 b , 13 c , 13 d which support three metallic plates 14 via insulators 19 made of ceramic (made of pottery) or made of resin.
  • the metallic support bars 13 b , 13 c , 13 d include two metallic support bars 13 b attached in proximity to the left and right ends of the rear side wall 10 b of the treating container 10 to extend in the upper and lower direction, one metallic support bar 13 c attached in proximity to the front end of the left side wall 10 c of the treating container 10 to extend in the upper and lower direction, and one metallic support bar 13 d attached in proximity to the front end of the right side wall 10 d of the treating container 10 to extend in the upper and lower direction.
  • Each of these metallic support bars 13 b , 13 c , 13 d is provided in the form of a ladder, which enables a hook 18 to be locked at an appropriate height of the metallic support bar 13 b , 13 c , 13 d .
  • the hooks 18 are attached to an upper, intermediate and lower step of each of the four metallic support bars 13 b , 13 c , 13 d one by one, so that a metallic plate 14 with a frozen material 21 placed thereon is supported by the insulators 19 on the hooks 18 .
  • a metallic plate 14 This allows the height (position in the upper and lower direction) of a metallic plate 14 to be adjustably set based on the locking position of the hooks 18 attached to the metallic support bars 13 d , 13 c , 13 d (the position of plate springs 17 also needs to be changed).
  • These metallic support bars 13 b , 13 c , 13 d are advantageous in that they are less likely to get soiled or damaged.
  • the use of insulators 19 with excellent insulation properties for supporting the metallic plates 14 is suitable in that proper insulation is maintained between the metallic plates 14 and the metallic support bars 13 b , 13 c , 13 d even under an undesirable environment for electric insulation such as when the treating space 10 a becomes a moisture-rich atmosphere.
  • the alternating-current power generating device 11 includes a transformer (not shown) therein, and one of a pair of secondary terminals of the transformer is electrically connected to the current-carrying rail 12 through a wire 16 a , while the other (not shown) of the secondary terminals of the transformer is opened.
  • An electrically conductive elastic member 17 (here, plate spring 17 of metal) is provided between the current-carrying rail 12 and each of the metallic plates 14 . This allows an appropriate electric contact to be made between the current-carrying rail 12 and the metallic plates 14 by the biasing force of the plate springs 17 , the metallic plates 14 being restricted with respect to their in-plane movement by a suitable fixing means (not shown). In this way, one of the pair of secondary terminals of the transformer is electrically connected with the metallic plates 14 . And, the metallic plates 14 (frozen materials 21 ) and the other of the pair of secondary terminals of the transformer are insulated from each other by air.
  • insulators 20 a made of ceramic (made of pottery) or made of resin are spaced equidistant from one another along the upper and lower direction and partially embedded. These insulators 20 a take the form of extending perpendicular from the rear side wall 10 b into the treating space 10 a , and the above current-carrying rail 12 is fixed to the tip end face of the insulators 20 a .
  • insulators 20 b made of ceramic (made of pottery) or made of resin are partially embedded in proximity to four corners of the lower wall 10 e of the treating container 10 .
  • These insulators 20 b take the form of extending perpendicular from the lower wall 10 e into the treating space 10 a , and the metallic plate 15 is supported on the tip end face of the insulators 20 b.
  • the metallic plate 15 is electrically connected to the current-carrying rail 12 through a wire 16 b . Consequently, as is the case with the metallic plates 14 , the above alternating-current voltage is applied to the metallic plate 15 and the frozen material 21 placed on the metallic plate 15 .
  • the power applying apparatus 100 of the present embodiment by supporting the metallic plate 15 on the tip end face of the insulators 20 b extending upright from the lower wall 10 e of the treating container 10 , a dead space is avoided in the treating space 10 a to make effective use of the treating space 10 a . Furthermore, by using the insulators 20 b , which are superior in insulating properties, for support of the metallic plate 15 , proper insulation can suitably be maintained between the metallic plate 15 and the treating container 10 (lower wall 10 e ) even under an undesirable environment for electric insulation such as when the treating space 10 a becomes a moisture-rich atmosphere.
  • the door 22 of the treating container 10 is opened and closed to locate the frozen material 21 on the metallic plates 14 and 15 .
  • the temperature of the treating space 10 a is set, for example, to a value which is not lower than ⁇ 5° C. and not higher than +10° C.
  • a primary voltage is applied between a pair of primary terminals of the transformer of the alternating-current power generating device 11 .
  • This primary voltage here is a sinusoidal alternating-current voltage having a commercial frequency.
  • a secondary voltage is induced between the secondary terminals of the transformer, and a load voltage, the secondary voltage obtained by subtracting the voltage drop due to a ballast resistor (not shown) and ammeter (not shown), is applied between the frozen materials 21 (accurately, metallic plates 14 and 15 ) and the other of the pair of secondary terminals of the transformer.
  • a weak load current which corresponds to the load impedance (leak resistance and capacitance) between the frozen materials 21 and the other of the pair of secondary terminals of the transformer, flows in the frozen materials 21 .
  • a predetermined alternating-current power is thus applied from the alternating-current power generating device 11 to the current-carrying rail 12 , to the metallic plates 14 , 15 , and to the frozen materials 21 .
  • the other of the secondary terminals may be electrically grounded with a high resistance element disposed between the metallic plates 14 , 15 and a ground terminal, rather than allowing the other of the secondary terminals to be opened.
  • the above load voltage is not smaller than 10V and not larger than 5 kV, and more preferable not smaller than 100V and not larger than 5 kV. And, it is preferable that the above load current is not smaller than 1 ⁇ A and not larger than 1,000 mA, and not smaller than 10 ⁇ A and not larger than 100 mA.
  • Factors that cause the degradation of frozen materials 21 are broadly grouped as follows. Here, it should be noted that a description will be made taking a frozen foodstuff as an example of frozen material 21 .
  • Fat and other ingredients in a foodstuff combine with oxygen in the air to be oxidized. Such oxidation causes the foodstuff to progress in degradation.
  • the power applying apparatus 100 of the present embodiment prevents the above degradation of a foodstuff in the following manner.
  • thawing is performed at a predetermined temperature range (e.g. not lower than ⁇ 5° C. and not higher than +10° C.), so as to properly suppress cell tissue destruction.
  • the power applying apparatus 100 activates the cells in a foodstuff by the application of high-voltage energy through electrostatic induction, and therefore prevents a reduction in the energy to be consumed in the foodstuff and acts to suppress the release of water.
  • the frozen foodstuff is smoothly thawed by the effect of activation of the cells, even at the above predetermined temperature range.
  • an alternating-current power can be supplied to an object to be treated under the conditions of a predetermined voltage (not smaller than 10V and not larger than 5 kV) and current (not smaller than 1 ⁇ A and not larger than 1,000 mA).
  • a predetermined voltage not smaller than 10V and not larger than 5 kV
  • current not smaller than 1 ⁇ A and not larger than 1,000 mA.
  • insulators 19 , 20 a , 20 b having superior insulating properties are used to insulate each voltage-applying member (metallic plates 14 , 15 or current-carrying rail 12 ), proper insulation of these members may be maintained even when the interior of the treating container 10 becomes an unfavorable environment for electric insulation such as a high-humidity environment with a high moisture content.
  • the metallic plate 15 is supported on the tip end face of the insulators 20 b provided upright on the lower wall 10 e of the treating container 10 , so that a dead space is eliminated from the treating space 10 a and effective utilization of the treating space 10 a is made.
  • the power applying apparatus 100 is also usable in the application as a freezer that freezes foodstuffs or drinking water at a predetermined temperature (e.g. not lower than ⁇ 60° C. and not higher than 0° C.), and is also usable in the application as a freshness preserver for preserving freshness of frozen materials 21 at the above predetermined temperature range (e.g. not lower than ⁇ 5° C. and not higher than 10° C.) without causing their freezing.
  • a predetermined temperature e.g. not lower than ⁇ 60° C. and not higher than 0° C.
  • the power applying apparatus 100 is further usable as an oxidation suppressing apparatus that suppress oxidation of various materials such as metallic materials (e.g. heating oxidation of metallic materials) as well as oxidation of foodstuffs and drinking water.
  • Example 1 the usage example of the power applying apparatus 100 as a freshness preserver that keeps freshness of perishable foodstuffs will be discussed. The same discussion, however, is also applicable to the case in which the power applying apparatus 100 is used as a freezer or a thawer.
  • This verification was conducted by a method in which the perishable foodstuffs listed below were placed on metallic plate 14 inside the treating container 10 which is internally set at a predetermined temperature (here, ⁇ 1° C.), the perishable foodstuffs were given predetermined currents (here, four patterns of 100 ⁇ A, 500 ⁇ A, 800 ⁇ A, and 1 mA) and stored for one week, and the degrees of freshness of the perishable foodstuffs (evaluation items: dripping (release of water), color and smell) were visually checked.
  • a predetermined temperature here, ⁇ 1° C.
  • the current output value of the power applying apparatus 100 was set within a suitable current range which is not smaller than 500 ⁇ A and not larger than 800 ⁇ A, the pork ham inside the treating container 10 produced a very small amount of drippings, kept its color well, and emitted no smell, thereby properly preserving the freshness.
  • the pork ham in the refrigerator comparative example: with no current applied
  • the current output value of the power applying apparatus 100 was set within a suitable current range which is not smaller than 500 ⁇ A and not larger than 800 ⁇ A, the chicken meat inside the treating container 10 produced a very small amount of drippings, kept its color well, and emitted no smell, thereby properly preserving the freshness.
  • the chicken meat in the refrigerator comparative example: with no current applied
  • the current output value of the power applying apparatus 100 was set lower than the above suitable range (100 ⁇ A)
  • the chicken meat in the treating container 10 produced a small amount of drippings and developed discoloration at a central portion thereof
  • the current output value of the power applying apparatus 100 was set higher than the above suitable range (1 mA)
  • the chicken meat in the treating container 10 produced a small amount of drippings and somewhat developed discoloration as a whole.
  • the current output value of the power applying apparatus 100 was set within a suitable current range which is not smaller than 500 ⁇ A and not larger than 800 ⁇ A, the shrimp inside the treating container 10 produced a very small amount of drippings and kept its color well, thereby properly preserving the freshness although it somewhat emitted smell.
  • the shrimp in the refrigerator comparative example: with no current applied
  • produced a large amount of drippings from the third day), developed dark discoloration, and emitted smell.
  • the current output value of the power applying apparatus 100 was set lower than the above suitable range (100 ⁇ A)
  • the shrimp in the treating container 10 produced a large amount of drippings (from the fourth day), developed dark discoloration, and emitted smell
  • the current output value of the power applying apparatus 100 was set higher than the above suitable range (1 mA)
  • the shrimp in the treating container 10 produced a small amount of drippings (from the fifth day), developed dark discoloration, and emitted smell.
  • the current output value of the power applying apparatus 100 was set within a suitable current range which is not smaller than 500 ⁇ A and not larger than 800 ⁇ A, the scallop inside the treating container 10 produced a very small amount of drippings (from the sixth day), kept its color well, and emitted no smell, thereby properly preserving the freshness.
  • the scallop in the refrigerator comparative example: with no current applied
  • the current output value of the power applying apparatus 100 was set at a suitable weak current of about 100 mA, the strawberry inside the treating container 10 produced no drippings, kept its color well, and emitted no smell, thereby properly preserving the freshness.
  • the strawberry in the refrigerator comparative example: with no current applied
  • the current output value of the power applying apparatus 100 was set to 500 ⁇ A or 800 ⁇ A, a higher value than the above suitable current value, the strawberry in the treating container 10 produced a very small amount of drippings and somewhat developed discoloration, and it was found that if the current output value of the power applying apparatus 100 was set to 1 mA, a further higher value than the above suitable current value, the strawberry in the treating container 10 produced a small amount of drippings and somewhat developed discoloration.
  • the current output value of the power applying apparatus 100 was set at a suitable weak current of about 100 ⁇ A, the lettuce inside the treating container 10 produced no drippings, kept its color well, and emitted no smell, thereby properly preserving the freshness.
  • the lettuce in the refrigerator comparative example: with no current applied developed discoloration from the base thereof.
  • the current output value of the power applying apparatus 100 was set to 500 ⁇ A, 800 ⁇ A or 1 mA, a higher value than the above suitable current value, the lettuce in the treating container 10 developed discoloration from its base.
  • an optimum current output value of the power applying apparatus 100 for the foodstuff of meat and seafood lies within a weak current range which is not smaller than 500 ⁇ A and not larger than 800 ⁇ A.
  • an optimum current output value of the power applying apparatus 100 is expected to lie at least in a range of further weaker currents than and falling outside the above optimum current range for the foodstuff of meat, etc. (i.e., in the current range which is no smaller than 1 ⁇ A and smaller than 500 ⁇ A), and more particularly, this current is conceivable to be a current in the vicinity of substantially 100 ⁇ A.
  • freeze tuna The results of verification of the effect of suppressing the freezer burn (oxidation) of frozen tuna and frozen salmon for sushi ingredient use (hereinafter abbreviated as “frozen tuna, etc.”), which effect is performed by the power applying apparatus 100 of the above embodiment, will be described.
  • the suppressing of freezer burn (oxidation) of frozen tuna, etc. is concretely discussed here, but such oxidation also occurs in other frozen foodstuffs (e.g., avocado). Accordingly, the oxidation prevention technique as described below also functions effectively on these foodstuffs.
  • freezer burn There is a problem associated with the frozen tuna, etc. for sushi ingredient use, which is referred to as freezer burn. Specifically, it is known that, when the frozen tuna, etc. that have been stably stored in a particular freezer at an extremely low temperature (around ⁇ 60° C. to ⁇ 35° C.) are stored in a household freezer or a freezer stocker for distribution use under a normal freezing environment of the order of ⁇ 20° C., the frozen tuna, etc. sooner or later undergo oxidative discoloration called freezer burn.
  • Such oxidative discoloration of frozen tuna, etc. lowers their commercial value as an ingredient for sushi, and needs to preferably be reduced to a minimum. On the other hand, it is practically nearly impossible to always keep the frozen tuna, etc. at an extremely low temperature (around ⁇ 60° C. to ⁇ 35° C.) in each household or in various networks of domestic distribution.
  • the present inventor has developed a technique which makes it possible to prevent the freezer burn of frozen tuna, etc. under a normal freezing environment (around ⁇ 20° C.).
  • the frozen tuna, etc. having been stored at an extremely low temperature are thawed using the above power applying apparatus 100 .
  • the thawing conditions of the frozen tuna, etc. may be set the same as mentioned in the above embodiment.
  • the temperature of the treating space 10 of the power applying apparatus 100 may be set to a value which is not lower than ⁇ 5° C. and not higher than +10° C.
  • the load voltage of the power applying apparatus 100 may be set to a value which is not smaller than 10V and not larger than 5 kV.
  • the load current of the power applying apparatus 100 may be set to a value which is not smaller than 1 ⁇ A and not larger than 1,000 mA.
  • part of the frozen tuna, etc. is cut off for sushi ingredient use, and the frozen tuna, etc. are refrozen with cold air at about ⁇ 50° C. using a suitable quick static freezer. Also in this instance, it is preferable to provide the same load voltage and load current as mentioned above to the frozen tuna, etc. Nonetheless, it is conceivable that the above-mentioned application of power to the frozen tuna, etc. at the time of their thawing is important for the suppressing action of freezer burn of the frozen tuna, etc.
  • the frozen tuna, etc. are stored under a normal freezing environment ( ⁇ 20° C.).
  • the load current of the power applying apparatus 100 is set to a value which is not smaller than 1 ⁇ A and not larger than 1,000 mA in the present embodiment.
  • the capacity of an actual machine it may be preferable to set to a value which is not smaller than 1 ⁇ A and not larger than several tens of mA.
  • the treating apparatus of the present invention enables to properly prevent deterioration in quality of an object to be treated and is utilizable, for example, as a commercial-use or home-use thawer for frozen materials capable of properly preserving the freshness of frozen materials at the time of their thawing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Food Science & Technology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Nutrition Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Freezing, Cooling And Drying Of Foods (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A treating apparatus includes a container having an interior set at a predetermined temperature, a support means for supporting an object to be treated in the container such that insulation is maintained between the container and the object to be treated, and an alternating-current power applying means for applying an alternating-current voltage which is not smaller than 10V and not larger than 5 kV, through the support means, to the object to be treated such that a current which is not smaller than 1 μA and not larger than 1,000 mA flows therein, wherein oxidation of the object to be treated is suppressed by providing the above current to the object to be treated.

Description

    TECHNICAL FIELD
  • The present invention relates to a treating apparatus, and more particularly, to a treating apparatus capable of applying an alternating-current power such that a weak current flows in an object to be treated.
  • BACKGROUND ART
  • A variety of techniques for suppressing deterioration in the quality of goods (e.g. oxidation or release of water) have heretofore been developed. As a familiar example, there can be mentioned a thawing technique for frozen materials (e.g. frozen foodstuffs).
  • When thawing such frozen materials, it is convenient if the frozen materials can be thawed within a short period of time without causing impairment of their taste, appearance and the like. For this reason, as an example of such a thawing technique, a method has been proposed in which the temperature inside a thawing box containing frozen materials is raised by means of heated air (see patent document 1 and patent document 2 as conventional examples).
    • Patent document 1: Japanese Patent Application Unexamined Publication No. H08-214850
    • Patent document 2: Japanese Patent Application Unexamined Publication No. H07-253265
    DISCLOSURE OF THE INVENTION Problem to be Solved by the Invention
  • However, the thawing techniques described in the above conventional examples are not of a type based on a detailed analysis of the factors of deterioration of freshness at the time of thawing frozen materials and are half-baked techniques from the point of view of keeping freshness of frozen materials.
  • The present invention has been accomplished in view of these circumstances, and an object thereof is to provide a treating apparatus that is capable of properly suppressing deterioration in quality of an object to be treated.
  • Means for Solving the Problem
  • In order to solve the above problem, a first treating apparatus of the present invention includes a container having an interior set at a predetermined temperature, a support means for supporting an object to be treated in the container such that insulation is maintained between the container and the object to be treated, and an alternating-current power applying means for applying an alternating-current voltage which is not smaller than 10V and not larger than 5 kV, through the support means, to the object to be treated such that a current which is not smaller than 1 μA and not larger than 1,000 mA flows therein, wherein oxidation of the object to be treated is suppressed by providing the current to the object to be treated.
  • Furthermore, a second treating apparatus of the present invention includes a container having an interior set at a predetermined temperature, a support means for supporting a frozen object to be treated in the container such that insulation is maintained between the container and the object to be treated, and an alternating-current power applying means for applying an alternating-current voltage which is not smaller than 10V and not larger than 5 kV, through the support means, to the object to be treated such that a current which is not smaller than 1 μA and not larger than 1,000 mA flows therein, wherein the object to be treated is thawed by providing the current to the object to be treated.
  • This, in the case, for example, where the alternating-current power is utilized for thawing frozen foodstuffs, allows the tissue of the frozen foodstuffs to be activated and appropriate preservation of their freshness.
  • In addition, a third treating apparatus of the present invention includes a container having an interior set at a predetermined temperature, a support means for supporting an object to be treated in the container such that insulation is maintained between the container and the object to be treated, and an alternating-current power applying means for applying an alternating-current voltage which is not smaller than 10V and not larger than 5 kV, through the support means, to the object to be treated such that a current which is not smaller than 1 μA and not larger than 1,000 mA flows therein, wherein freshness of the object to be treated is preserved without its freezing by providing the current to the object to be treated.
  • Here, an example of the above support means includes a first metallic plate disposed in the interior to place the object to be treated thereon, a current-carrying rail of metal electrically connected to the first metallic plate, and a metallic support bar for supporting the first metallic plate through a first insulating member, wherein the alternating-current voltage is applied to the current-carrying rail.
  • Additionally, another example of the above support means includes a second insulating member extending upright from a lower wall of the container into the interior, a second metallic plate supported on an end face of the second insulating member to place the object to be treated thereon, wherein the second metallic plate is electrically connected to the current-carrying rail through a wire.
  • By supporting the metallic plate on the tip end face of the second insulating member provided upright on the lower wall of the treating container, dead space in the treating space may be avoided, thereby making effective use of the space.
  • Furthermore, the support means may include a hook for supporting the first insulating member and the first metallic plate, and the position of the first metallic plate may be set based on the locking position of the hook to the metallic support bar.
  • Furthermore, the above first and second insulating members are preferably insulators.
  • Since each of the voltage-applying members is insulated using an insulator having superior insulating properties, appropriate insulation of these members may be maintained even if the interior of the treating container becomes an unfavorable environment for electric insulation such as a high-humidity environment with a high moisture content.
  • It should be noted that if the object to be treated is a foodstuff of meat or seafood, there are cases where it is preferable to set the current to a value which is not smaller than 500 μA and not larger than 800 μA.
  • In addition, if the object to be treated is a foodstuff of vegetable or fruit, there are cases where it is preferable to set the current to a value which is not smaller than 1 μA and smaller than 500 μA. And, there are cases where it is preferable that the current provided to the foodstuff of vegetable or fruit is substantially 100 μA.
  • Furthermore, frozen tuna or frozen salmon may be thawed as the object to be treated using the above treating apparatus.
  • This allows to properly prevent freezer burn (oxidation) of the frozen tuna or frozen salmon.
  • The above object, other objects, features and advantages of the present invention will become apparent from the following detailed description of the preferred embodiments with reference made to the accompanying drawings.
  • Effect of the Invention
  • According to the present invention, a treating apparatus is obtained which enables to appropriately suppress deterioration in the quality of the objects to be treated.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 is a view of the interior of a power applying apparatus according to an embodiment of the present invention, as viewed in a left and right direction.
  • FIG. 2 is a view of the interior of a power applying apparatus according to an embodiment of the present invention, as viewed in an upper and lower direction.
  • DESCRIPTION OF REFERENCE NUMERALS
    • 10 Treating container
    • 11 Alternating-current power generating device
    • 12 Current-carrying rail
    • 13 b, 13 c, 13 d Metallic support bar
    • 14, 15 Metallic plate
    • 16 a, 16 b Wire
    • 17 Elastic member (plate spring)
    • 18 Hook
    • 19, 20 a, 20 b Insulator
    • 21 Frozen material (frozen object to be treated)
    • 22, 23 Door
    • 100 Power applying apparatus (treating apparatus)
    • 101 Mounting unit
    BEST MODE FOR CARRYING OUT THE INVENTION
  • A preferred embodiment of the present invention will now be described with reference to the drawings.
  • FIG. 1 is a view of the interior of a power applying apparatus (treating apparatus) according to an embodiment of the present invention, as viewed in a left and right direction, and FIG. 2 is a view of the interior of the power applying apparatus according to the embodiment of the present invention, as viewed in an upper and lower direction.
  • It should be noted that, with respect to FIGS. 1 and 2, for convenience of description below, the direction in which the self weight of the power applying apparatus 100 acts is referred to as the “upper and lower” direction, the door 22 side of the power applying apparatus 100 as the “front” side, the side opposite the door 22 as the “rear” side, and the direction perpendicular to the “upper and lower” direction and the “front and rear” direction as the “left and right” direction.
  • The power applying apparatus 100, as shown in FIGS. 1 and 2, primarily includes a treating container 10 of box shape (rectangular parallelepiped), the internal temperature of which is settable at a thawing temperature of frozen materials 21 (frozen objects to be treated), an alternating-current power generating device 11 (alternating-current power applying means) disposed inside a housing space 11 a located over the treating container 10, and a mounting unit 101 disposed inside a treating space 10 a of the treating container 10.
  • In other words, the treating container 10 has the treating space 10 a (interior of the treating container 10) for thawing frozen materials 21. The housing space 11 a is provided on the treating container 10, which accommodates, in addition to the above alternating-current power generating device 11, various known operation equipment (not shown) for the purpose of operating the power applying apparatus 100. Doors 22, 23 are provided to enable access to the objects contained in the treating space 10 a and the housing space 11 a, respectively.
  • It should be noted that, in the present specification, frozen materials 21 include, in addition to a solid object, liquid and gaseous objects packed in an appropriate bag (not shown) and, in short, mean various kinds of freezable foodstuffs containing water or freezable drinking water.
  • The mounting unit 101, as shown in FIGS. 1 and 2, includes metallic plates 14, 15 for placing a frozen material 21 thereon, a metal-made current-carrying rail 12 of rectangular shape which is electrically connected to the metallic plates 14, 15 in a manner capable of applying an alternating-current voltage thereto, and which extends in the upper and lower direction, and rod-like metallic support bars 13 b, 13 c, 13 d which support three metallic plates 14 via insulators 19 made of ceramic (made of pottery) or made of resin.
  • The metallic support bars 13 b, 13 c, 13 d include two metallic support bars 13 b attached in proximity to the left and right ends of the rear side wall 10 b of the treating container 10 to extend in the upper and lower direction, one metallic support bar 13 c attached in proximity to the front end of the left side wall 10 c of the treating container 10 to extend in the upper and lower direction, and one metallic support bar 13 d attached in proximity to the front end of the right side wall 10 d of the treating container 10 to extend in the upper and lower direction.
  • Each of these metallic support bars 13 b, 13 c, 13 d is provided in the form of a ladder, which enables a hook 18 to be locked at an appropriate height of the metallic support bar 13 b, 13 c, 13 d. In other words, in the present embodiment, the hooks 18 are attached to an upper, intermediate and lower step of each of the four metallic support bars 13 b, 13 c, 13 d one by one, so that a metallic plate 14 with a frozen material 21 placed thereon is supported by the insulators 19 on the hooks 18. This allows the height (position in the upper and lower direction) of a metallic plate 14 to be adjustably set based on the locking position of the hooks 18 attached to the metallic support bars 13 d, 13 c, 13 d (the position of plate springs 17 also needs to be changed). These metallic support bars 13 b, 13 c, 13 d, as compared with conventional support bars made of resin, are advantageous in that they are less likely to get soiled or damaged. Furthermore, the use of insulators 19 with excellent insulation properties for supporting the metallic plates 14 is suitable in that proper insulation is maintained between the metallic plates 14 and the metallic support bars 13 b, 13 c, 13 d even under an undesirable environment for electric insulation such as when the treating space 10 a becomes a moisture-rich atmosphere.
  • The alternating-current power generating device 11 includes a transformer (not shown) therein, and one of a pair of secondary terminals of the transformer is electrically connected to the current-carrying rail 12 through a wire 16 a, while the other (not shown) of the secondary terminals of the transformer is opened. An electrically conductive elastic member 17 (here, plate spring 17 of metal) is provided between the current-carrying rail 12 and each of the metallic plates 14. This allows an appropriate electric contact to be made between the current-carrying rail 12 and the metallic plates 14 by the biasing force of the plate springs 17, the metallic plates 14 being restricted with respect to their in-plane movement by a suitable fixing means (not shown). In this way, one of the pair of secondary terminals of the transformer is electrically connected with the metallic plates 14. And, the metallic plates 14 (frozen materials 21) and the other of the pair of secondary terminals of the transformer are insulated from each other by air.
  • Substantially at the center in a width direction of the rear side wall 10 b of the treating container 10, three insulators 20 a made of ceramic (made of pottery) or made of resin are spaced equidistant from one another along the upper and lower direction and partially embedded. These insulators 20 a take the form of extending perpendicular from the rear side wall 10 b into the treating space 10 a, and the above current-carrying rail 12 is fixed to the tip end face of the insulators 20 a. By fixing the current-carrying rail 12 with such insulators 20 a having superior insulating properties, appropriate insulation can be suitably maintained between the current-carrying rail 12 and the treating container 10 (rear side wall 10 b) even under an undesirable environment for electric insulation such as when the treating space 10 a becomes a moisture-rich atmosphere.
  • Additionally, four insulators 20 b made of ceramic (made of pottery) or made of resin are partially embedded in proximity to four corners of the lower wall 10 e of the treating container 10. These insulators 20 b take the form of extending perpendicular from the lower wall 10 e into the treating space 10 a, and the metallic plate 15 is supported on the tip end face of the insulators 20 b.
  • It should be noted that the metallic plate 15 is electrically connected to the current-carrying rail 12 through a wire 16 b. Consequently, as is the case with the metallic plates 14, the above alternating-current voltage is applied to the metallic plate 15 and the frozen material 21 placed on the metallic plate 15.
  • Thus, in the power applying apparatus 100 of the present embodiment, by supporting the metallic plate 15 on the tip end face of the insulators 20 b extending upright from the lower wall 10 e of the treating container 10, a dead space is avoided in the treating space 10 a to make effective use of the treating space 10 a. Furthermore, by using the insulators 20 b, which are superior in insulating properties, for support of the metallic plate 15, proper insulation can suitably be maintained between the metallic plate 15 and the treating container 10 (lower wall 10 e) even under an undesirable environment for electric insulation such as when the treating space 10 a becomes a moisture-rich atmosphere.
  • The operation of the power applying apparatus 100 constructed as above (operation for preserving freshness of the frozen materials 21) will now be described.
  • First, the door 22 of the treating container 10 is opened and closed to locate the frozen material 21 on the metallic plates 14 and 15. In this instance, the temperature of the treating space 10 a is set, for example, to a value which is not lower than −5° C. and not higher than +10° C.
  • Next, a primary voltage is applied between a pair of primary terminals of the transformer of the alternating-current power generating device 11. This primary voltage here is a sinusoidal alternating-current voltage having a commercial frequency. Then, a secondary voltage is induced between the secondary terminals of the transformer, and a load voltage, the secondary voltage obtained by subtracting the voltage drop due to a ballast resistor (not shown) and ammeter (not shown), is applied between the frozen materials 21 (accurately, metallic plates 14 and 15) and the other of the pair of secondary terminals of the transformer. Consequently, a weak load current, which corresponds to the load impedance (leak resistance and capacitance) between the frozen materials 21 and the other of the pair of secondary terminals of the transformer, flows in the frozen materials 21. A predetermined alternating-current power is thus applied from the alternating-current power generating device 11 to the current-carrying rail 12, to the metallic plates 14, 15, and to the frozen materials 21. Alternatively, the other of the secondary terminals may be electrically grounded with a high resistance element disposed between the metallic plates 14, 15 and a ground terminal, rather than allowing the other of the secondary terminals to be opened.
  • Here, it is preferable that the above load voltage is not smaller than 10V and not larger than 5 kV, and more preferable not smaller than 100V and not larger than 5 kV. And, it is preferable that the above load current is not smaller than 1 μA and not larger than 1,000 mA, and not smaller than 10 μA and not larger than 100 mA.
  • Next, the mechanism in which freshness of the frozen materials 21 is preserved by the power applying apparatus 100 of the present embodiment will be described.
  • Factors that cause the degradation of frozen materials 21 (deterioration in freshness) related to the thawing of the frozen materials 21 are broadly grouped as follows. Here, it should be noted that a description will be made taking a frozen foodstuff as an example of frozen material 21.
  • (1) Degradation by Release of Water
  • If the temperature of a frozen foodstuff rises too high with thawing of the foodstuff, the cells become no longer capable of holding the water contained in the tissue. Then, breaks occur in the cell membranes, resulting in release of water (occurrence of drippings). This released water contains lots of nutrients and, as a result, accelerates the growth rate of bacteria.
  • (2) Degradation by Oxidation
  • Fat and other ingredients in a foodstuff combine with oxygen in the air to be oxidized. Such oxidation causes the foodstuff to progress in degradation.
  • Accordingly, the power applying apparatus 100 of the present embodiment prevents the above degradation of a foodstuff in the following manner.
  • First, thawing is performed at a predetermined temperature range (e.g. not lower than −5° C. and not higher than +10° C.), so as to properly suppress cell tissue destruction. Furthermore, the power applying apparatus 100 activates the cells in a foodstuff by the application of high-voltage energy through electrostatic induction, and therefore prevents a reduction in the energy to be consumed in the foodstuff and acts to suppress the release of water. On the other hand, it is conceivable that the frozen foodstuff is smoothly thawed by the effect of activation of the cells, even at the above predetermined temperature range.
  • Furthermore, it is conceivable that if a foodstuff is given a high-voltage energy through electrostatic induction and electrically charged (i.e., if a foodstuff is given a weak current), the ionic balance becomes unstable, causing suppression of the combination of oxygen in the air and the foodstuff. It should be noted that although the detailed mechanism in which oxidation of foodstuffs is suppressed is not revealed, it has already been verified that, if an alternating current is supplied to foodstuffs under the conditions of a predetermined voltage (not smaller than 10V and not larger than 5 kV) and current (not smaller than 1 μA and not larger than 1,000 mA), oxidation of the foodstuffs is suppressed.
  • As described above, according to the power applying apparatus 100 of the present embodiment, an alternating-current power can be supplied to an object to be treated under the conditions of a predetermined voltage (not smaller than 10V and not larger than 5 kV) and current (not smaller than 1 μA and not larger than 1,000 mA). This, in the case where the alternating-current power is utilized, for example, for thawing a frozen foodstuff, allows the tissue of the frozen foodstuff to be activated, thereby properly preserving its freshness.
  • Furthermore, since in the power applying apparatus 100 of the present embodiment insulators 19, 20 a, 20 b having superior insulating properties are used to insulate each voltage-applying member ( metallic plates 14, 15 or current-carrying rail 12), proper insulation of these members may be maintained even when the interior of the treating container 10 becomes an unfavorable environment for electric insulation such as a high-humidity environment with a high moisture content.
  • Moreover, in the power applying apparatus 100 of the present embodiment, the metallic plate 15 is supported on the tip end face of the insulators 20 b provided upright on the lower wall 10 e of the treating container 10, so that a dead space is eliminated from the treating space 10 a and effective utilization of the treating space 10 a is made.
  • It should be noted that although, as an example of use of the power applying apparatus 100, the case has hereinabove been described where it is used as a thawer of frozen materials 21, its uses are not limited thereto. The power applying apparatus 100, conversely to thawing, is also usable in the application as a freezer that freezes foodstuffs or drinking water at a predetermined temperature (e.g. not lower than −60° C. and not higher than 0° C.), and is also usable in the application as a freshness preserver for preserving freshness of frozen materials 21 at the above predetermined temperature range (e.g. not lower than −5° C. and not higher than 10° C.) without causing their freezing.
  • Moreover, the power applying apparatus 100 is further usable as an oxidation suppressing apparatus that suppress oxidation of various materials such as metallic materials (e.g. heating oxidation of metallic materials) as well as oxidation of foodstuffs and drinking water.
  • EXAMPLE 1
  • The results of verification of the effect of preserving freshness of perishable foodstuffs showed by the power applying apparatus 100 of the above embodiment will be described.
  • In Example 1, the usage example of the power applying apparatus 100 as a freshness preserver that keeps freshness of perishable foodstuffs will be discussed. The same discussion, however, is also applicable to the case in which the power applying apparatus 100 is used as a freezer or a thawer.
  • This verification was conducted by a method in which the perishable foodstuffs listed below were placed on metallic plate 14 inside the treating container 10 which is internally set at a predetermined temperature (here, −1° C.), the perishable foodstuffs were given predetermined currents (here, four patterns of 100 μA, 500 μA, 800 μA, and 1 mA) and stored for one week, and the degrees of freshness of the perishable foodstuffs (evaluation items: dripping (release of water), color and smell) were visually checked.
  • As a comparative example, the same foodstuffs were placed in an existing refrigerator (with no current applied: 0 μA), and the perishable foodstuffs were stored for one week, with the temperature set at the same temperature as inside the above treating container 10. The verification results are summarized in the following table.
  • TABLE 1
    Various freshness preservation tests verification table (minus 1° C.)
    foodstuff state 0 μA 100 μA 500 μA 800 μA 1 mA
    pork ham dripping somewhat large small amount very small amount very small amount somewhat large
    amount (from 2nd day) amount (from 5th day)
    color slowly discolored somewhat discolored good good somewhat discolored
    (fat from
    white to yellow)
    smell not present not present not present not present not present
    evaluation Bad somewhat bad good good somewhat bad
    chicken dripping large amount small amount very small amount very small amount small amount
    color generally discolored centrally discolored good good generally somewhat
    discolored
    smell not present not present not present not present not present
    evaluation Bad somewhat bad good good somewhat bad
    shrimp dripping large amount large amount very small amount very small amount small amount
    (from 3rd day) (from 4th day) (from 5th day)
    color discolored dark colored dark good good discolored dark
    smell Present present somewhat present somewhat present present
    evaluation very bad bad good good bad
    scallop dripping large amount small amount very small amount very small amount small amount
    (from 3rd day) (from 3rd day) (from 6th day) (from 6th day) (from 5th day)
    color generally discolored somewhat discolored good good generally somewhat
    discolored
    smell Present not present not present not present present
    evaluation Bad somewhat bad good good somewhat bad
    strawberry dripping small amount not present very small amount very small amount small amount
    color somewhat discolored good somewhat somewhat somewhat discolored
    discolored discolored
    smell not present not present not present not present not present
    evaluation Bad good somewhat bad somewhat bad bad (spoil from
    (spoil from 3rd day) (spoil from 3rd day) 6th day)
    lettuce dripping not present not present not present not present not present
    color discolored from root good discolored from root discolored from root discolored from root
    smell not present not present not present not present not present
    evaluation somewhat bad good bad bad bad
  • (1) Pork Ham
  • It was found that if the current output value of the power applying apparatus 100 was set within a suitable current range which is not smaller than 500 μA and not larger than 800 μA, the pork ham inside the treating container 10 produced a very small amount of drippings, kept its color well, and emitted no smell, thereby properly preserving the freshness. On the other hand, it was ascertained that the pork ham in the refrigerator (comparative example: with no current applied) produced a somewhat increased amount of drippings (from the second day) and developed gradual discoloration.
  • Furthermore, it was found that if the current output value of the power applying apparatus 100 was set lower than the above suitable range (100 μA), the pork ham in the treating container 10 produced a small amount of drippings and somewhat developed discoloration, and it was found that if the current output value of the power applying apparatus 100 was set higher than the above suitable current range (1 mA), the pork ham in the treating container 10 produced a somewhat increased amount of drippings and somewhat developed discoloration.
  • (2) Chicken Meat
  • It was found that if the current output value of the power applying apparatus 100 was set within a suitable current range which is not smaller than 500 μA and not larger than 800 μA, the chicken meat inside the treating container 10 produced a very small amount of drippings, kept its color well, and emitted no smell, thereby properly preserving the freshness. On the other hand, it was ascertained that the chicken meat in the refrigerator (comparative example: with no current applied) produced a large amount of drippings and developed discoloration as a whole.
  • Furthermore, it was found that if the current output value of the power applying apparatus 100 was set lower than the above suitable range (100 μA), the chicken meat in the treating container 10 produced a small amount of drippings and developed discoloration at a central portion thereof, and it was found that if the current output value of the power applying apparatus 100 was set higher than the above suitable range (1 mA), the chicken meat in the treating container 10 produced a small amount of drippings and somewhat developed discoloration as a whole.
  • (3) Shrimp
  • It was found that if the current output value of the power applying apparatus 100 was set within a suitable current range which is not smaller than 500 μA and not larger than 800 μA, the shrimp inside the treating container 10 produced a very small amount of drippings and kept its color well, thereby properly preserving the freshness although it somewhat emitted smell. On the other hand, it was ascertained that the shrimp in the refrigerator (comparative example: with no current applied) produced a large amount of drippings (from the third day), developed dark discoloration, and emitted smell.
  • Furthermore, it was found that if the current output value of the power applying apparatus 100 was set lower than the above suitable range (100 μA), the shrimp in the treating container 10 produced a large amount of drippings (from the fourth day), developed dark discoloration, and emitted smell, and it was found that if the current output value of the power applying apparatus 100 was set higher than the above suitable range (1 mA), the shrimp in the treating container 10 produced a small amount of drippings (from the fifth day), developed dark discoloration, and emitted smell.
  • (4) Scallop
  • It was found that if the current output value of the power applying apparatus 100 was set within a suitable current range which is not smaller than 500 μA and not larger than 800 μA, the scallop inside the treating container 10 produced a very small amount of drippings (from the sixth day), kept its color well, and emitted no smell, thereby properly preserving the freshness. On the other hand, it was ascertained that the scallop in the refrigerator (comparative example: with no current applied) produced a large amount of drippings (from the third day), developed discoloration as a whole, and emitted smell.
  • Furthermore, it was found that if the current output value of the power applying apparatus 100 was set lower than the above suitable range (100 μA), the scallop in the treating container 10 produced a small amount of drippings (from the third day) and somewhat developed discoloration, and that if the current output value of the power applying apparatus 100 was set higher than the above suitable range (1 mA), the scallop in the treating container 10 produced a small amount of drippings (from the fifth day), somewhat developed discoloration as a whole, and emitted smell.
  • (5) Strawberry
  • It was found that if the current output value of the power applying apparatus 100 was set at a suitable weak current of about 100 mA, the strawberry inside the treating container 10 produced no drippings, kept its color well, and emitted no smell, thereby properly preserving the freshness. On the other hand, it was ascertained that the strawberry in the refrigerator (comparative example: with no current applied) produced a small amount of drippings and somewhat developed dark discoloration.
  • Furthermore, it was found that if the current output value of the power applying apparatus 100 was set to 500 μA or 800 μA, a higher value than the above suitable current value, the strawberry in the treating container 10 produced a very small amount of drippings and somewhat developed discoloration, and it was found that if the current output value of the power applying apparatus 100 was set to 1 mA, a further higher value than the above suitable current value, the strawberry in the treating container 10 produced a small amount of drippings and somewhat developed discoloration.
  • (6) Lettuce
  • It was found that if the current output value of the power applying apparatus 100 was set at a suitable weak current of about 100 μA, the lettuce inside the treating container 10 produced no drippings, kept its color well, and emitted no smell, thereby properly preserving the freshness. On the other hand, it was ascertained that the lettuce in the refrigerator (comparative example: with no current applied) developed discoloration from the base thereof.
  • Furthermore, it was found that if the current output value of the power applying apparatus 100 was set to 500 μA, 800 μA or 1 mA, a higher value than the above suitable current value, the lettuce in the treating container 10 developed discoloration from its base.
  • Judging comprehensively from all the verification results exemplified above, it is conceivable that, from the viewpoint of the preservation of freshness of perishable foodstuffs by the power applying apparatus 100, an optimum current output value of the power applying apparatus 100 for the foodstuff of meat and seafood lies within a weak current range which is not smaller than 500 μA and not larger than 800 μA.
  • In addition, with respect to the foodstuff of vegetable and fruit, an optimum current output value of the power applying apparatus 100 is expected to lie at least in a range of further weaker currents than and falling outside the above optimum current range for the foodstuff of meat, etc. (i.e., in the current range which is no smaller than 1 μA and smaller than 500 μA), and more particularly, this current is conceivable to be a current in the vicinity of substantially 100 μA.
  • It should be noted that although in the present experiments the “current” was used to identify a suitable output value of the power applying apparatus 100, it is also possible to use the “voltage” outputted from the power applying apparatus 100 to identify such suitable range.
  • Nonetheless, the reason for selecting herein the outputted “current” from the power applying apparatus 100 as an indicator of the suitable range is as follows.
  • It is estimated that, as mentioned above, the state of electric charge of a perishable foodstuff is deeply related to the activation of tissue of the foodstuff that is indispensable to preserving freshness of the foodstuff. Therefore, the use of “current” to identify a suitable range of output values of the power applying apparatus 100 is presumed more preferable, as it allows direct understanding of the electrically charged state of a foodstuff.
  • EXAMPLE 2
  • The results of verification of the effect of suppressing the freezer burn (oxidation) of frozen tuna and frozen salmon for sushi ingredient use (hereinafter abbreviated as “frozen tuna, etc.”), which effect is performed by the power applying apparatus 100 of the above embodiment, will be described. It should be noted that the suppressing of freezer burn (oxidation) of frozen tuna, etc. is concretely discussed here, but such oxidation also occurs in other frozen foodstuffs (e.g., avocado). Accordingly, the oxidation prevention technique as described below also functions effectively on these foodstuffs.
  • There is a problem associated with the frozen tuna, etc. for sushi ingredient use, which is referred to as freezer burn. Specifically, it is known that, when the frozen tuna, etc. that have been stably stored in a particular freezer at an extremely low temperature (around −60° C. to −35° C.) are stored in a household freezer or a freezer stocker for distribution use under a normal freezing environment of the order of −20° C., the frozen tuna, etc. sooner or later undergo oxidative discoloration called freezer burn.
  • Such oxidative discoloration of frozen tuna, etc. lowers their commercial value as an ingredient for sushi, and needs to preferably be reduced to a minimum. On the other hand, it is practically nearly impossible to always keep the frozen tuna, etc. at an extremely low temperature (around −60° C. to −35° C.) in each household or in various networks of domestic distribution.
  • Thus, the present inventor has developed a technique which makes it possible to prevent the freezer burn of frozen tuna, etc. under a normal freezing environment (around −20° C.).
  • As a result of various studies, it has been found that if frozen tuna, etc. are subjected to the following steps and then stored under a normal freezing environment (around −20° C.), freezer burn of the frozen tuna, etc. can be prevented. That is, it has been ascertained by a visual experiment that with the frozen tuna, etc. thawed and refrozen after passing through the steps, an improvement is made in the phenomenon of freezer burn of frozen tuna, etc. as compared with the case where frozen tuna, etc. are exposed to the normal freezing environment (−20° C.) directly from storage at an extremely low temperature (in the vicinity of −60° C. to −35° C.).
  • First, the frozen tuna, etc. having been stored at an extremely low temperature (in the vicinity of −60° C. to −35° C.) are thawed using the above power applying apparatus 100. In this instance, the thawing conditions of the frozen tuna, etc. may be set the same as mentioned in the above embodiment. In other words, the temperature of the treating space 10 of the power applying apparatus 100 may be set to a value which is not lower than −5° C. and not higher than +10° C. The load voltage of the power applying apparatus 100 may be set to a value which is not smaller than 10V and not larger than 5 kV. In addition, the load current of the power applying apparatus 100 may be set to a value which is not smaller than 1 μA and not larger than 1,000 mA.
  • Next, part of the frozen tuna, etc. is cut off for sushi ingredient use, and the frozen tuna, etc. are refrozen with cold air at about −50° C. using a suitable quick static freezer. Also in this instance, it is preferable to provide the same load voltage and load current as mentioned above to the frozen tuna, etc. Nonetheless, it is conceivable that the above-mentioned application of power to the frozen tuna, etc. at the time of their thawing is important for the suppressing action of freezer burn of the frozen tuna, etc.
  • Thereafter, the frozen tuna, etc. are stored under a normal freezing environment (−20° C.).
  • From the foregoing description, various improvements and other embodiments of the present invention will be apparent to a person skilled in the art. Accordingly, the above description should be construed as examples only, it being provided for the purpose of giving the skilled person the best mode for carrying out the invention. A substantial change can be made in the particulars of the structure and/or function of the present invention without departing from its spirit. For example, the load current of the power applying apparatus 100 is set to a value which is not smaller than 1 μA and not larger than 1,000 mA in the present embodiment. However, taking into account the capacity of an actual machine (power applying apparatus), it may be preferable to set to a value which is not smaller than 1 μA and not larger than several tens of mA.
  • INDUSTRIAL APPLICABILITY
  • The treating apparatus of the present invention enables to properly prevent deterioration in quality of an object to be treated and is utilizable, for example, as a commercial-use or home-use thawer for frozen materials capable of properly preserving the freshness of frozen materials at the time of their thawing.

Claims (13)

1. A treating apparatus comprising:
a container having an interior set at a predetermined temperature;
a support means for supporting an object to be treated in the container such that insulation is maintained between the container and the object to be treated; and
an alternating-current power applying means for applying an alternating-current voltage which is not smaller than 10V and not larger than 5 kV, through the support means, to the object to be treated such that a current which is not smaller than 1 μA and not larger than 1,000 mA flows therein,
wherein oxidation of the object to be treated is suppressed by providing the current to the object to be treated.
2. A treating apparatus comprising:
a container having an interior set at a predetermined temperature;
a support means for supporting a frozen object to be treated in the container such that insulation is maintained between the container and the object to be treated; and
an alternating-current power applying means for applying an alternating-current voltage which is not smaller than 10V and not larger than 5 kV, through the support means, to the object to be treated such that a current which is not smaller than 1 μA and not larger than 1,000 mA flows therein,
wherein the object to be treated is thawed by providing the current to the object to be treated.
3. A treating apparatus comprising:
a container having an interior set at a predetermined temperature;
a support means for supporting an object to be treated in the container such that insulation is maintained between the container and the object to be treated; and
an alternating-current power applying means for applying an alternating-current voltage which is not smaller than 10V and not larger than 5 kV, through the support means, to the object to be treated such that a current which is not smaller than 1 μA and not larger than 1,000 mA flows therein,
wherein freshness of the object to be treated is preserved without its freezing by providing the current to the object to be treated.
4. The treating apparatus according to claim 1, wherein the support means comprises:
a first metallic plate disposed in the interior to place the object to be treated thereon;
a current-carrying rail of metal electrically connected to the first metallic plate; and
a metallic support bar for supporting the first metallic plate through a first insulating member,
wherein the alternating-current voltage is applied to the current-carrying rail.
5. The treating apparatus according to claim 4, wherein the support means comprises:
a second insulating member extending upright from a lower wall of the container into the interior;
a second metallic plate supported on an end face of the second insulating member to place the object to be treated thereon,
wherein the second metallic plate is electrically connected to the current-carrying rail through a wire.
6. The treating apparatus according to claim 4, wherein the support means comprises a hook for supporting the first insulating member and the first metallic plate,
wherein a position of the first metallic plate is set based on a locking position of the hook to the metallic support bar.
7. The treating apparatus according to claim 5, wherein the first and second insulating member are insulators.
8. The treating apparatus according to claim 1, wherein the current is set to a value which is not smaller than 500 μA and not larger than 800 μA if the object to be treated is a foodstuff of meat or seafood.
9. The treating apparatus according to claim 1, wherein the current is set to a value which is not smaller than 1 μA and smaller than 500 μA if the object to be treated is a foodstuff of vegetable or fruit.
10. The treating apparatus according to claim 9, wherein the current is substantially 100 μA.
11. The treating apparatus according to claim 2, wherein frozen tuna or frozen salmon is thawed as the object to be treated.
12. The treating apparatus according to claim 2, wherein the support means comprises:
a first metallic plate disposed in the interior to place the object to be treated thereon;
a current-carrying rail of metal electrically connected to the first metallic plate; and
a metallic support bar for supporting the first metallic plate through a first insulating member,
wherein the alternating-current voltage is applied to the current-carrying rail.
13. The treating apparatus according to claim 3, wherein the support means comprises:
a first metallic plate disposed in the interior to place the object to be treated thereon;
a current-carrying rail of metal electrically connected to the first metallic plate; and
a metallic support bar for supporting the first metallic plate through a first insulating member,
wherein the alternating-current voltage is applied to the current-carrying rail.
US12/525,057 2007-02-06 2008-01-29 Treating Apparatus Abandoned US20100199861A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007-027041 2007-02-06
JP2007027041 2007-02-06
PCT/JP2008/051247 WO2008096631A1 (en) 2007-02-06 2008-01-29 Treating apparatus

Publications (1)

Publication Number Publication Date
US20100199861A1 true US20100199861A1 (en) 2010-08-12

Family

ID=39681542

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/525,057 Abandoned US20100199861A1 (en) 2007-02-06 2008-01-29 Treating Apparatus

Country Status (3)

Country Link
US (1) US20100199861A1 (en)
JP (1) JPWO2008096631A1 (en)
WO (1) WO2008096631A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110271702A1 (en) * 2010-05-10 2011-11-10 Boston Com., Ltd. Refrigerator and container for cold storage
EP2666852A1 (en) * 2011-01-19 2013-11-27 Fukuoka University Anti-apoptosis or anti-necrosis induction method
CN105517451A (en) * 2013-09-19 2016-04-20 株式会社三泰技研 Thawing method for frozen goods
CN113016865A (en) * 2021-04-21 2021-06-25 徐敏刚 Food material fresh-keeping method based on electric field
US11493258B2 (en) * 2020-09-17 2022-11-08 Kyowa Kako Co. Ltd AC electric field-assisted refrigerating container

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5858403B2 (en) * 2012-01-05 2016-02-10 新連携岡山中央卸売市場ネット合同会社 Method for producing edible meat
JP2018027064A (en) * 2016-08-19 2018-02-22 プリマハム株式会社 Thawing device
WO2018185912A1 (en) 2017-04-06 2018-10-11 株式会社マヤテック Method for freezing frozen item

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2666127A (en) * 1952-04-15 1954-01-12 Arne B Johnson Bottle warmer
US3383218A (en) * 1964-09-16 1968-05-14 Mini Of Technology Thawing frozen foods
US5034236A (en) * 1989-06-30 1991-07-23 Tatsukiyo Ohtsuki Process for thawing foodstuffs
US5069920A (en) * 1987-01-29 1991-12-03 Hildebrand Victor F Electric conduction cooking method
US5156869A (en) * 1990-10-31 1992-10-20 Tatsukiyo Otsuki Method and apparatus for processing foods
US5758015A (en) * 1993-01-22 1998-05-26 Polny, Jr.; Thaddeus J. Methods and apparatus for electroheating food employing concentric electrodes
US5776529A (en) * 1994-12-23 1998-07-07 Washington State University Research Foundation Continuous flow electrical treatment of flowable food products
US5834746A (en) * 1994-08-17 1998-11-10 Apv Pasilac A/S Method and apparatus for heating products by means of high-frequency electromagnetic waves
US6209447B1 (en) * 1995-05-11 2001-04-03 Restaurant Technology, Inc. Cooked food staging device and method
US6247395B1 (en) * 1999-03-03 2001-06-19 Yamamoto Vinita Co., Ltd. High-frequency thawing apparatus
US6451364B1 (en) * 1997-03-17 2002-09-17 Akinori Ito Method of treating a food object in an electrostatic field
US6773736B1 (en) * 1999-03-24 2004-08-10 Ato B.V. Method for treating products by high voltage pulses
US7470878B2 (en) * 2005-12-21 2008-12-30 Yamamoto Vinita Co., Ltd. High-frequency thawing apparatus and thawing method with electrodes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159282A (en) * 2000-11-27 2002-06-04 Santetsu Engineering Inc Warmth-keeping method and warmth-keeping apparatus
JP3939555B2 (en) * 2002-01-17 2007-07-04 株式会社インテクト Electric field unit equipment

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2666127A (en) * 1952-04-15 1954-01-12 Arne B Johnson Bottle warmer
US3383218A (en) * 1964-09-16 1968-05-14 Mini Of Technology Thawing frozen foods
US5069920A (en) * 1987-01-29 1991-12-03 Hildebrand Victor F Electric conduction cooking method
US5034236A (en) * 1989-06-30 1991-07-23 Tatsukiyo Ohtsuki Process for thawing foodstuffs
US5156869A (en) * 1990-10-31 1992-10-20 Tatsukiyo Otsuki Method and apparatus for processing foods
US5758015A (en) * 1993-01-22 1998-05-26 Polny, Jr.; Thaddeus J. Methods and apparatus for electroheating food employing concentric electrodes
US5834746A (en) * 1994-08-17 1998-11-10 Apv Pasilac A/S Method and apparatus for heating products by means of high-frequency electromagnetic waves
US5776529A (en) * 1994-12-23 1998-07-07 Washington State University Research Foundation Continuous flow electrical treatment of flowable food products
US6209447B1 (en) * 1995-05-11 2001-04-03 Restaurant Technology, Inc. Cooked food staging device and method
US6451364B1 (en) * 1997-03-17 2002-09-17 Akinori Ito Method of treating a food object in an electrostatic field
US20030068414A1 (en) * 1997-03-17 2003-04-10 Akinori Ito Method and equipment for treating electrostatic field and electrode used therein
US20040093049A1 (en) * 1997-03-17 2004-05-13 Akinori Ito Method and equipment for treating electrostatic field and electrode used therein
US6247395B1 (en) * 1999-03-03 2001-06-19 Yamamoto Vinita Co., Ltd. High-frequency thawing apparatus
US6773736B1 (en) * 1999-03-24 2004-08-10 Ato B.V. Method for treating products by high voltage pulses
US7470878B2 (en) * 2005-12-21 2008-12-30 Yamamoto Vinita Co., Ltd. High-frequency thawing apparatus and thawing method with electrodes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ito, Machine Translation of JP2003-217817, 07/2003, 4 pages. *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110271702A1 (en) * 2010-05-10 2011-11-10 Boston Com., Ltd. Refrigerator and container for cold storage
US9609889B2 (en) * 2010-05-10 2017-04-04 Boston Com., Ltd. Refrigerator and container for cold storage
EP2666852A1 (en) * 2011-01-19 2013-11-27 Fukuoka University Anti-apoptosis or anti-necrosis induction method
EP2666852A4 (en) * 2011-01-19 2014-09-10 Univ Fukuoka Anti-apoptosis or anti-necrosis induction method
CN105517451A (en) * 2013-09-19 2016-04-20 株式会社三泰技研 Thawing method for frozen goods
EP3047736A1 (en) * 2013-09-19 2016-07-27 Santetsu Engineering Inc. Thawing method for frozen goods
US20160219922A1 (en) * 2013-09-19 2016-08-04 Santetsu Engineering Inc. Thawing method for frozen goods
EP3047736A4 (en) * 2013-09-19 2017-05-17 Santetsu Engineering Inc. Thawing method for frozen goods
US9839229B2 (en) * 2013-09-19 2017-12-12 Santetsu Engineering Inc. Thawing method for frozen goods
US11493258B2 (en) * 2020-09-17 2022-11-08 Kyowa Kako Co. Ltd AC electric field-assisted refrigerating container
CN113016865A (en) * 2021-04-21 2021-06-25 徐敏刚 Food material fresh-keeping method based on electric field

Also Published As

Publication number Publication date
WO2008096631A1 (en) 2008-08-14
JPWO2008096631A1 (en) 2010-05-20

Similar Documents

Publication Publication Date Title
US20100199861A1 (en) Treating Apparatus
KR102069813B1 (en) Spatial electric potential generator, Freshness keeping device using Spatial electric potential generator and Fryer with Spatial electric potential generator
JP2000100636A (en) Power supply and apparatus for processing food material using the same
WO2014042271A1 (en) Electric-field treatment device and electric-field treatment method
US9839229B2 (en) Thawing method for frozen goods
JP5288286B2 (en) Food thawing / refrigerated storage equipment
CN110446433B (en) Method for freezing and preserving frozen product
JPH10276744A (en) Device for applying high-voltage feeble current to food material
US20200337342A1 (en) Thawing machine
JP2008267750A (en) Treatment apparatus
JP3147195U (en) Electric field generator
JP2007111011A (en) Food storage facility and food storage method
JPH0577387B2 (en)
KR20150083460A (en) Preservation treatment device for oxide-containing material
JP3126693U (en) Freezing refrigeration equipment by high voltage electrostatic induction
JP3113402U (en) High voltage frequency conversion induction device by electronic modulation
JPH08336354A (en) Method for keeping freshness of perishable food by applying high voltage
KR200393711Y1 (en) Electronically-frequency-controlled voltage adjustment device
NZ721355B2 (en) Space potential generation device, a storage device for maintaining a freshness of an object stored therein using such space potential generation device, and fryer provided with such space potential generation device
JP3032635U (en) Electronic storage device for sandwich bread
JP2018027064A (en) Thawing device
JPH04349843A (en) Method and apparatus for preservation of edible raw meat, etc.

Legal Events

Date Code Title Description
AS Assignment

Owner name: MAYATEC CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GODAI, TOMOYUKI;REEL/FRAME:024075/0229

Effective date: 20091001

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION