US20100193925A1 - Leadframe for semiconductor packages - Google Patents
Leadframe for semiconductor packages Download PDFInfo
- Publication number
- US20100193925A1 US20100193925A1 US12/758,141 US75814110A US2010193925A1 US 20100193925 A1 US20100193925 A1 US 20100193925A1 US 75814110 A US75814110 A US 75814110A US 2010193925 A1 US2010193925 A1 US 2010193925A1
- Authority
- US
- United States
- Prior art keywords
- leads
- lead
- leadframe
- die pad
- side rail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0237—High frequency adaptations
- H05K1/025—Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/394—Routing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/495—Lead-frames or other flat leads
- H01L23/49541—Geometry of the lead-frame
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/58—Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
- H01L23/64—Impedance arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48245—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
- H01L2224/48247—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49171—Fan-out arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/42—Wire connectors; Manufacturing methods related thereto
- H01L24/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L24/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/1905—Shape
- H01L2924/19051—Impedance matching structure [e.g. balun]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/30107—Inductance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
- H01L2924/30111—Impedance matching
Definitions
- the invention relates to leadframes for semiconductor packages and in particular to leadframes for high frequency applications.
- the conventional leadframe type semiconductor package has a central supported die pad for supporting semiconductor die, a plurality of leads peripherally located therein, a plurality of bonding wires for electrically connecting the semiconductor die to the leads, and a mold compound, such as plastic, for encapsulating these components in a package structure.
- a portion of the leadframe is internal to the package, (i.e., completely surrounded by the mold compound). Portions of the leads of the leadframe typically extend externally from the package body for electrically connecting the package to the printed circuit board.
- the semiconductor package has the greatest influence on total performance of the circuit, and one of the main causes of performance degradation is inductance of the interconnections between chip and printed circuit board. Therefore, as the operating frequency of these circuits increases, there is a need for even lower impedance mismatches packages.
- the lead route or lead distribution of the leadframe is substantially symmetrical for desired productibility or manufacturibility and lower process cost, but do negatively affect the impedance match.
- the invention provides leadframe for semiconductor packages and a method utilizing the same, providing flexible impedance match design, improving the electrical performance of the resulting electronic products.
- the invention provides leadframe for semiconductor packages comprising a die pad, a side rail, a tie bar, and a plurality of leads.
- the side rail is around the die pad.
- the tie bar connects the die pad and the side rail.
- the leads extend from the side rail to close proximity to the die pad. Every lead has a corresponding lead relative to a predetermined center line.
- a predetermined pair of corresponding leads is substantially asymmetrical with each other relative to the predetermined center line.
- FIGS. 1A through 1E illustrate top views of a preferred embodiment of the invention
- FIGS. 2A through 2B illustrate a conventional symmetrical leadframe
- FIGS. 3A and 3B illustrate a first experimental example of the invention
- FIGS. 4A and 4B illustrate a second experimental example of the invention.
- FIGS. 1A through 1E are top views of a preferred embodiment of the invention.
- the leadframe comprises a die pad 10 , a side rail 30 , tie bars 21 through 24 , and a plurality of leads.
- the side rail 30 is around the die pad 10 .
- the tie bars 21 through 24 connect the die pad 10 and the side rail 30 .
- the leads extend from the side rail 30 close proximity to the die pad 10 . In some cases, the side rail 30 is removed in a trimming or separation step of the subsequent semiconductor packaging process.
- the invention provides the capability to vary the impedance of an electrical device.
- impedance can be controllably varied by changing: the length of the leads; the pitch of the leads; the spacing between the leads; and/or the width of the leads.
- the invention provides an asymmetrical leadframe structure.
- each lead has a corresponding lead relative to a predetermined center line at opposite location of the leadframe.
- an exemplary center line 50 is shown in FIGS. 1A through 1E .
- the lead 241 corresponds to respective leads 141 a through 141 e in respective FIGS. 1A through 1E
- the lead 245 corresponds to the lead 145 .
- the leadframe comprises a pair of corresponding leads including the lead and the corresponding lead, substantially asymmetrical to each other.
- this asymmetrical design serves for impedance matching.
- the lead 241 is substantially asymmetrical with the respective leads 141 a through 141 e in FIGS. 1A through 1E relative to the predetermined center line 50 .
- FIGS. 1A through 1E show various examples of asymmetrical leads for the asymmetrical leadframe structure.
- the corresponding lead of a specific lead depends on the selected center line, such as the center line 50 of this embodiment.
- the lead 141 a corresponds to the lead 241 relative to line 50 .
- the lead 141 a corresponds to the lead 146 relative to a center line (not shown) passing through the space between the leads 143 and 144 .
- the lead 141 a corresponds to the lead 341 relative a center line (not shown) passing through and aligned with the tie bars 21 .
- the center line 50 is utilized as the exemplary center line in subsequent discussion.
- lead 141 a through 141 e are asymmetrical to lead 241 relative to center line 50 , either the geometry of the lead or the route of the lead. Accordingly, the pair of corresponding asymmetrical leads related to the center line means that they are not identical in shape, dimension, or the relationship of itself to other corresponding parts of the leadframe.
- the leads 141 a and 241 have different lengths, and thus, are considered to be asymmetrical. In consequence, comparing the pair of corresponding lead 141 a and lead 241 , the varied lead length results in varied resistance of the lead 141 a . Thus, a desired impedance value can be achieved by adjusting the lead length.
- the leads 141 b and 241 have substantially the same widths. However, space S 1 between lead 141 b and the adjacent lead, for example lead 142 , is larger than space S 2 between lead 241 and the corresponding adjacent lead, for example lead 242 . Further, the pitch P 1 is also larger than the pitch P 2 . Thus, the leads 141 b and 241 are considered to be asymmetrical. In consequence, comparing the pair of corresponding lead 141 b and lead 241 , varied space between the leads results in varied inductance between the leads. Thus, a desired impedance value can be achieved by adjusting space between the leads.
- the leads 141 c and 142 c respectively have different widths from the corresponding leads 241 and 242 .
- space S 1 between lead 141 c and the adjacent lead, for example lead 142 c is less than space S 2 between lead 241 and the corresponding adjacent lead, for example lead 242 .
- the leads 141 c and 241 are considered to be asymmetrical
- the leads 142 c and 242 are considered to be asymmetrical.
- varied lead width results in varied resistance of the lead.
- a desired impedance value can be achieved by adjusting the lead width.
- the pitch P 1 between the lead 141 d and the adjacent lead, such as lead 142 d is larger than the pitch P 2 between the lead 241 and the corresponding adjacent lead, such as lead 242 .
- the leads 141 d and 241 are considered to be asymmetrical. In consequence, comparing the pair of corresponding lead 141 d and lead 241 , varied lead pitch results in varied inductance between the leads. Thus, a desired impedance value can be achieved by adjusting the lead pitch.
- pitch P 1 between the lead 141 e and the adjacent lead, such as lead 142 is less than the pitch P 2 between the lead 241 and the corresponding adjacent lead, such as lead 242 .
- the leads 141 e and 241 are considered to be asymmetrical. In consequence, comparing the pair of corresponding lead 141 e and lead 241 , the varied lead pitch results in varied inductance between the leads. Thus, a desired impedance value can be achieved by adjusting the lead pitch.
- FIGS. 2A through 2B a conventional symmetrical leadframe is shown in FIGS. 2A through 2B , and two experimental examples of the invention are respectively shown in FIGS. 3A , 3 B and FIGS. 4A , 4 B verifying the improved performance of the embodiment.
- FIG. 2A a top view of a conventional semiconductor package is shown.
- the package comprises a leadframe, a semiconductor chip 2100 attached to a die pad 2010 of the leadframe, a plurality of bonding wires 2200 electrically connecting the semiconductor chip 2100 and the leads of the leadframe, and an encapsulant (not shown) encapsulating the semiconductor chip 2100 , the leadframe, and the bonding wires 2200 .
- the leadframe comprises a die pad 2010 , four tie bars 2021 through 2024 for supporting die pad 2010 , and a plurality of leads. The side rail was trimmed during the packaging process.
- the conventional leadframe which the routes of the leads are substantially symmetrical.
- FIG. 2B a magnified drawing of the exemplary leads 1145 , 1146 , 1148 , and 1149 in FIG. 2A is shown.
- the differential impedance values of a differential pair of the leads 1145 and 1146 is near 68 ohm.
- the differential impedance value of a differential pair of the leads 1148 and 1149 is near 68 ohm.
- the single-ended impedance values of those leads 1145 , 1146 , 1148 , and 1149 are near 50 ohm.
- the desired differential impedance values for some leads are required between 80 and 120 ohm, and preferably approximately 100 ohm.
- the desired single-ended impedance values for some leads are required between 40 and 60 ohm, and preferably approximately 50 ohm.
- the utilization of the conventional symmetrical leadframe cannot achieve the desired impedance value.
- FIG. 3A a top view of a semiconductor package of a first experimental example of the invention is shown. Compared to that shown in FIG. 2A , the lengths of the leads 1145 , 1146 , 1148 , and 1149 are reduced by D, which is approximately 60 mils in this embodiment. Thus, the leadframe utilized in the package shown in FIG. 3A can act as another embodiment of the invention.
- FIG. 3B A magnified drawing of the shortened leads 1145 , 1146 , 1148 , and 1149 is shown in FIG. 3B .
- the differential impedance values of a differential pair of the leads 1145 and 1146 is near 84 ohm, which achieve the desired values.
- the differential impedance value of a differential pair of the leads 1148 and 1149 is near 84 ohm, which achieves the desired values, too.
- the single-ended impedance values thereof are near 58 ohm. It is appreciated that the package of the first experimental example utilizes the leadframe structure of the invention to cause the impedance values of the predetermined leads fulfilling the desired values for impedance match.
- FIG. 4A a top view of a semiconductor package of a second experimental example of the invention is shown. Compared to that shown in FIG. 3A , spaces between the leads 1145 and 1146 , and the space between the leads 1148 and 1149 are broader. Thus, the leadframe utilized in the package shown in FIG. 4A can act as another embodiment of the invention.
- FIG. 4B A magnified drawing of the leads 1145 , 1146 , 1148 , and 1149 of FIG. 4A is shown in FIG. 4B .
- the differential impedance values of a differential pair of the leads 1145 and 1146 is near 108 ohm, which achieve the desired values.
- the differential impedance value of a differential pair of the leads 1148 and 1149 is near 108 ohm, which achieves the desired values, too.
- the single-ended impedance values thereof are near 62 ohm. It is appreciated that the package of the second experimental example utilizes the leadframe structure of the invention to cause the impedance values of the predetermined leads fulfilling the desired values for impedance match.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Power Engineering (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Lead Frames For Integrated Circuits (AREA)
Abstract
A leadframe for semiconductor packages. The leadframe includes a die pad, a side rail, a tie bar, and a plurality of leads. The side rail is around the die pad. The tie bar connects the die pad and the side rail. The leads extend from the side rail to close proximity to the die pad. Each lead has a corresponding lead relative to a predetermined center line. A predetermined pair of corresponding leads are substantial asymmetrical with each other in appearance relative to the predetermined center line.
Description
- This application is a Continuation of pending U.S. patent application Ser. No. 11/539,239, filed on Oct. 6, 2006, which claims the benefit of provisional Application No. 60/731,779, filed on Oct. 31, 2005, the entirety of which are incorporated by reference herein.
- 1. Field of the Invention
- The invention relates to leadframes for semiconductor packages and in particular to leadframes for high frequency applications.
- 2. Description of the Related Art
- Semiconductor dies are enclosed in plastic packages that provide protection from hostile environments and enable electrical interconnection between the semiconductor die and a printed circuit board via a metal leadframe. The conventional leadframe type semiconductor package has a central supported die pad for supporting semiconductor die, a plurality of leads peripherally located therein, a plurality of bonding wires for electrically connecting the semiconductor die to the leads, and a mold compound, such as plastic, for encapsulating these components in a package structure.
- In most semiconductor package configurations, a portion of the leadframe is internal to the package, (i.e., completely surrounded by the mold compound). Portions of the leads of the leadframe typically extend externally from the package body for electrically connecting the package to the printed circuit board.
- In the electronics industry, there is continued demand for developing semiconductor dies which have increasing processing speeds and higher degrees of integration. For a semiconductor package to accommodate these enhanced semiconductor dies, the number of leads included in the semiconductor package must be significantly increased. To avoid an undesirable increase in the size of the semiconductor package attributable to the increased number of leads, a common practice is to reduce or narrow the spacing between the leads. However, a decreased spacing between the leads increases the capacitance between the leads, and increases the level of self inductance and mutual inductance. This inductance adversely affects the quality of signals transmitted on the leads of the leadframe by increasing signal reflections; causing greater impedance mismatches.
- Especially, in high frequency applications the semiconductor package has the greatest influence on total performance of the circuit, and one of the main causes of performance degradation is inductance of the interconnections between chip and printed circuit board. Therefore, as the operating frequency of these circuits increases, there is a need for even lower impedance mismatches packages. As shown in
FIG. 2A , conventionally, the lead route or lead distribution of the leadframe is substantially symmetrical for desired productibility or manufacturibility and lower process cost, but do negatively affect the impedance match. - The invention provides leadframe for semiconductor packages and a method utilizing the same, providing flexible impedance match design, improving the electrical performance of the resulting electronic products.
- The invention provides leadframe for semiconductor packages comprising a die pad, a side rail, a tie bar, and a plurality of leads. The side rail is around the die pad. The tie bar connects the die pad and the side rail. The leads extend from the side rail to close proximity to the die pad. Every lead has a corresponding lead relative to a predetermined center line. A predetermined pair of corresponding leads is substantially asymmetrical with each other relative to the predetermined center line.
- Further scope of the applicability of the invention will become apparent from the detailed description given hereinafter. It should be understood, however, that the detailed description and specific examples, while indicating preferred embodiments of the invention, are given by way of illustration only, since various changes and modifications within the spirit and scope of the invention will become apparent to those skilled in the art from this detailed description.
- A detailed description is given in the following embodiments with reference to the accompanying drawings.
- The invention can be more fully understood by reading the subsequent detailed description and examples with references made to the accompanying drawings, wherein:
-
FIGS. 1A through 1E illustrate top views of a preferred embodiment of the invention; -
FIGS. 2A through 2B illustrate a conventional symmetrical leadframe; -
FIGS. 3A and 3B illustrate a first experimental example of the invention; and -
FIGS. 4A and 4B illustrate a second experimental example of the invention. - The following description is of the best-contemplated mode of carrying out the invention. This description is made for the purpose of illustrating the general principles of the invention and should not be taken in a limiting sense. The scope of the invention is best determined by reference to the appended claims.
-
FIGS. 1A through 1E are top views of a preferred embodiment of the invention. Referring to theFIGS. 1A through 1E , the leadframe comprises adie pad 10, aside rail 30,tie bars 21 through 24, and a plurality of leads. Theside rail 30 is around the diepad 10. Thetie bars 21 through 24 connect thedie pad 10 and theside rail 30. The leads extend from theside rail 30 close proximity to thedie pad 10. In some cases, theside rail 30 is removed in a trimming or separation step of the subsequent semiconductor packaging process. - The invention provides the capability to vary the impedance of an electrical device. As examples, impedance can be controllably varied by changing: the length of the leads; the pitch of the leads; the spacing between the leads; and/or the width of the leads. In consequence, in order to respectively adjust the impedance of the leads, the invention provides an asymmetrical leadframe structure.
- In
FIGS. 1A through 1E , each lead has a corresponding lead relative to a predetermined center line at opposite location of the leadframe. In this embodiment, anexemplary center line 50 is shown inFIGS. 1A through 1E . For example, thelead 241 corresponds torespective leads 141 a through 141 e in respectiveFIGS. 1A through 1E , and thelead 245 corresponds to thelead 145. In this embodiment, the leadframe comprises a pair of corresponding leads including the lead and the corresponding lead, substantially asymmetrical to each other. Specifically, this asymmetrical design serves for impedance matching. For example, thelead 241 is substantially asymmetrical with the respective leads 141 a through 141 e inFIGS. 1A through 1E relative to thepredetermined center line 50.FIGS. 1A through 1E show various examples of asymmetrical leads for the asymmetrical leadframe structure. - In some cases, the corresponding lead of a specific lead depends on the selected center line, such as the
center line 50 of this embodiment. InFIG. 1A , for example, thelead 141 a corresponds to thelead 241 relative toline 50. Also, thelead 141 a corresponds to thelead 146 relative to a center line (not shown) passing through the space between theleads lead 141 a corresponds to thelead 341 relative a center line (not shown) passing through and aligned with the tie bars 21. In this embodiment, thecenter line 50 is utilized as the exemplary center line in subsequent discussion. - Referring to
FIGS. 1A through 1E , lead 141 a through 141 e are asymmetrical to lead 241 relative tocenter line 50, either the geometry of the lead or the route of the lead. Accordingly, the pair of corresponding asymmetrical leads related to the center line means that they are not identical in shape, dimension, or the relationship of itself to other corresponding parts of the leadframe. - In
FIG. 1A , theleads corresponding lead 141 a and lead 241, the varied lead length results in varied resistance of the lead 141 a. Thus, a desired impedance value can be achieved by adjusting the lead length. - In
FIG. 1B , theleads lead 141 b and the adjacent lead, forexample lead 142, is larger than space S2 betweenlead 241 and the corresponding adjacent lead, forexample lead 242. Further, the pitch P1 is also larger than the pitch P2. Thus, theleads corresponding lead 141 b and lead 241, varied space between the leads results in varied inductance between the leads. Thus, a desired impedance value can be achieved by adjusting space between the leads. - In
FIG. 1C , theleads lead 141 c and the adjacent lead, forexample lead 142 c, is less than space S2 betweenlead 241 and the corresponding adjacent lead, forexample lead 242. And thus, theleads leads corresponding lead 141 c and lead 241, or lead 142 c and lead 242, varied lead width results in varied resistance of the lead. Thus, a desired impedance value can be achieved by adjusting the lead width. - In
FIG. 1D , the pitch P1 between the lead 141 d and the adjacent lead, such aslead 142 d, is larger than the pitch P2 between the lead 241 and the corresponding adjacent lead, such aslead 242. Thus, theleads corresponding lead 141 d and lead 241, varied lead pitch results in varied inductance between the leads. Thus, a desired impedance value can be achieved by adjusting the lead pitch. - In
FIG. 1E , pitch P1 between the lead 141 e and the adjacent lead, such aslead 142, is less than the pitch P2 between the lead 241 and the corresponding adjacent lead, such aslead 242. Thus, theleads corresponding lead 141 e and lead 241, the varied lead pitch results in varied inductance between the leads. Thus, a desired impedance value can be achieved by adjusting the lead pitch. - Next, a conventional symmetrical leadframe is shown in
FIGS. 2A through 2B , and two experimental examples of the invention are respectively shown inFIGS. 3A , 3B andFIGS. 4A , 4B verifying the improved performance of the embodiment. - In
FIG. 2A , a top view of a conventional semiconductor package is shown. The package comprises a leadframe, asemiconductor chip 2100 attached to adie pad 2010 of the leadframe, a plurality ofbonding wires 2200 electrically connecting thesemiconductor chip 2100 and the leads of the leadframe, and an encapsulant (not shown) encapsulating thesemiconductor chip 2100, the leadframe, and thebonding wires 2200. The leadframe comprises adie pad 2010, fourtie bars 2021 through 2024 for supportingdie pad 2010, and a plurality of leads. The side rail was trimmed during the packaging process. The conventional leadframe which the routes of the leads are substantially symmetrical. - In
FIG. 2B , a magnified drawing of theexemplary leads FIG. 2A is shown. For an electronic signal with a frequency of approximately 750 MHz, the differential impedance values of a differential pair of theleads leads leads - In
FIG. 3A , a top view of a semiconductor package of a first experimental example of the invention is shown. Compared to that shown inFIG. 2A , the lengths of theleads FIG. 3A can act as another embodiment of the invention. - A magnified drawing of the shortened leads 1145, 1146, 1148, and 1149 is shown in
FIG. 3B . For an electronic signal with a frequency of approximately 750 MHz, the differential impedance values of a differential pair of theleads leads - In
FIG. 4A , a top view of a semiconductor package of a second experimental example of the invention is shown. Compared to that shown inFIG. 3A , spaces between theleads leads FIG. 4A can act as another embodiment of the invention. - A magnified drawing of the
leads FIG. 4A is shown inFIG. 4B . For an electronic signal with a frequency of approximately 750 MHz, the differential impedance values of a differential pair of theleads leads - The efficacy of the inventive leadframes at developing asymmetrical lead route or lead distribution provides effective impedance match for the resulting products.
- While the invention has been described by way of example and in terms of preferred embodiment, it is to be understood that the invention is not limited thereto. To the contrary, it is intended to cover various modifications and similar arrangements (as would be apparent to those skilled in the art). Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.
Claims (20)
1. A leadframe for semiconductor packages, comprising:
a die pad;
a side rail around the die pad;
a tie bar connecting the die pad and the side rail; and
a plurality of leads extending from the side rail to close proximity to the die pad, comprising a first lead and a second lead being at opposite locations of the leadframe relative to a center line through the die pad, and the first and second leads being substantially asymmetrical with each other relative to the center line.
2. The leadframe as claimed in claim 1 , wherein the first and second leads comprise substantially different lead lengths.
3. The leadframe as claimed in claim 1 , wherein the first and second leads comprise substantially different lead widths.
4. The leadframe as claimed in claim 1 , wherein the first and second leads comprise substantially asymmetrical extending traces.
5. The leadframe as claimed in claim 1 , wherein the plurality of leads further comprise a third lead adjacent to the first lead, and a fourth lead adjacent to the second lead.
6. The leadframe as claimed in claim 5 , wherein a space between the first and third leads is substantially different from that between the second and fourth leads.
7. The leadframe as claimed in claim 5 , wherein a pitch between the first and third leads is different from a pitch between the second and fourth leads.
8. The leadframe as claimed in claim 5 , wherein the space between the first and third leads is not uniform.
9. The leadframe as claimed in claim 8 , wherein at least one section of the space between the first and third leads increases and then decreases.
10. The leadframe as claimed in claim 5 , wherein the third lead and the fourth lead are at opposite locations of the leadframe relative to the center line.
11. A method of achieving a desired impedance value for a leadframe for semiconductor packages, comprising:
providing a leadframe comprising a die pad, a side rail around the die pad, a tie bar connecting the die pad and the side rail, and a plurality of leads extending from the side rail to close proximity to the die pad; and
designing a layout of the plurality of leads comprising a first lead and a second lead being at opposite locations of the leadframe relative to a center line through the die pad, wherein
the first and second leads are substantially asymmetrical with each other relative to the center line.
12. The method as claimed in claim 11 , wherein the first and second leads comprise substantially different lead lengths.
13. The method as claimed in claim 11 , wherein the first and second leads comprise substantially different lead widths.
14. The method as claimed in claim 11 , wherein the first and second leads comprise substantially asymmetrical extending traces.
15. The method as claimed in claim 11 , wherein the plurality of leads further comprise a third lead adjacent to the first lead, and a fourth lead adjacent to the second lead.
16. The method as claimed in claim 15 , wherein a space between the first and third leads is substantially different from that between the second and fourth leads.
17. The method as claimed in claim 15 , wherein a pitch between the first and third leads is different from a pitch between the second and fourth leads.
18. The method as claimed in claim 15 , wherein the space between the first and third leads is not uniform.
19. The method as claimed in claim 18 , wherein at least one section of the space between the first and third leads increases and then decreases.
20. The method as claimed in claim 15 , wherein the third lead and the fourth lead are at opposite locations of the leadframe relative to the center line.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/758,141 US20100193925A1 (en) | 2005-10-31 | 2010-04-12 | Leadframe for semiconductor packages |
US14/100,444 US9198281B2 (en) | 2005-10-31 | 2013-12-09 | Leadframe for semiconductor packages |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US73177905P | 2005-10-31 | 2005-10-31 | |
US11/539,239 US20070096269A1 (en) | 2005-10-31 | 2006-10-06 | Leadframe for semiconductor packages |
US12/758,141 US20100193925A1 (en) | 2005-10-31 | 2010-04-12 | Leadframe for semiconductor packages |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/539,239 Continuation US20070096269A1 (en) | 2005-10-31 | 2006-10-06 | Leadframe for semiconductor packages |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/100,444 Continuation US9198281B2 (en) | 2005-10-31 | 2013-12-09 | Leadframe for semiconductor packages |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100193925A1 true US20100193925A1 (en) | 2010-08-05 |
Family
ID=38071564
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/539,239 Abandoned US20070096269A1 (en) | 2005-10-31 | 2006-10-06 | Leadframe for semiconductor packages |
US12/758,141 Abandoned US20100193925A1 (en) | 2005-10-31 | 2010-04-12 | Leadframe for semiconductor packages |
US14/100,444 Active US9198281B2 (en) | 2005-10-31 | 2013-12-09 | Leadframe for semiconductor packages |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/539,239 Abandoned US20070096269A1 (en) | 2005-10-31 | 2006-10-06 | Leadframe for semiconductor packages |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/100,444 Active US9198281B2 (en) | 2005-10-31 | 2013-12-09 | Leadframe for semiconductor packages |
Country Status (3)
Country | Link |
---|---|
US (3) | US20070096269A1 (en) |
CN (2) | CN101546744B (en) |
TW (1) | TWI354357B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140009001A1 (en) * | 2012-07-06 | 2014-01-09 | Nxp B.V. | Differential return loss supporting high speed bus interfaces |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4595835B2 (en) * | 2006-03-07 | 2010-12-08 | 株式会社日立製作所 | Leaded electronic parts using lead-free solder |
US7468547B2 (en) * | 2007-05-11 | 2008-12-23 | Intersil Americas Inc. | RF-coupled digital isolator |
CN101572257B (en) * | 2008-04-30 | 2011-02-16 | 南茂科技股份有限公司 | Chip packaging tape and chip packaging structure containing same |
US20100171201A1 (en) * | 2009-01-06 | 2010-07-08 | Wyant M Todd | Chip on lead with small power pad design |
US20170245361A1 (en) * | 2016-01-06 | 2017-08-24 | Nokomis, Inc. | Electronic device and methods to customize electronic device electromagnetic emissions |
TWI623076B (en) * | 2016-11-02 | 2018-05-01 | 復盛精密工業股份有限公司 | Method for manufacturing leadframe |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725692A (en) * | 1985-05-24 | 1988-02-16 | Hitachi, Ltd. | Electronic device and lead frame used thereon |
US5065224A (en) * | 1986-06-30 | 1991-11-12 | Fairchild Semiconductor Corporation | Low noise integrated circuit and leadframe |
US5147815A (en) * | 1990-05-14 | 1992-09-15 | Motorola, Inc. | Method for fabricating a multichip semiconductor device having two interdigitated leadframes |
US5281849A (en) * | 1991-05-07 | 1994-01-25 | Singh Deo Narendra N | Semiconductor package with segmented lead frame |
US5497030A (en) * | 1993-06-24 | 1996-03-05 | Shinko Electric Industries Co., Ltd. | Lead frame and resin-molded-type semiconductor device |
US5517056A (en) * | 1993-09-30 | 1996-05-14 | Motorola, Inc. | Molded carrier ring leadframe having a particular resin injecting area design for gate removal and semiconductor device employing the same |
US5541565A (en) * | 1995-05-22 | 1996-07-30 | Trw Inc. | High frequency microelectronic circuit enclosure |
US5608265A (en) * | 1993-03-17 | 1997-03-04 | Hitachi, Ltd. | Encapsulated semiconductor device package having holes for electrically conductive material |
US5757067A (en) * | 1995-12-20 | 1998-05-26 | Nec Corporation | Resin-sealed type semiconductor device |
US5783463A (en) * | 1994-04-15 | 1998-07-21 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method of producing said semiconductor device |
US5918112A (en) * | 1997-07-24 | 1999-06-29 | Motorola, Inc. | Semiconductor component and method of fabrication |
US5994768A (en) * | 1995-04-05 | 1999-11-30 | National Semiconductor Corporation | Multi-layer lead frame |
US6281568B1 (en) * | 1998-10-21 | 2001-08-28 | Amkor Technology, Inc. | Plastic integrated circuit device package and leadframe having partially undercut leads and die pad |
US6424541B1 (en) * | 1999-04-21 | 2002-07-23 | Conexant Systems, Inc | Electronic device attachment methods and apparatus for forming an assembly |
US20020192873A1 (en) * | 1998-01-30 | 2002-12-19 | Corisis David J. | Method of fabricating a redundant pinout configuration for signal enhancement in an IC package |
US6621140B1 (en) * | 2002-02-25 | 2003-09-16 | Rf Micro Devices, Inc. | Leadframe inductors |
US20050173783A1 (en) * | 2004-02-05 | 2005-08-11 | St Assembly Test Services Ltd. | Semiconductor package with passive device integration |
US7102208B1 (en) * | 1999-10-15 | 2006-09-05 | Amkor Technology, Inc. | Leadframe and semiconductor package with improved solder joint strength |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3793474A (en) * | 1971-12-09 | 1974-02-19 | Motorola Inc | Lead configurations for plastic encapsulated semiconductor devices |
US4454529A (en) * | 1981-01-12 | 1984-06-12 | Avx Corporation | Integrated circuit device having internal dampening for a plurality of power supplies |
US4680613A (en) * | 1983-12-01 | 1987-07-14 | Fairchild Semiconductor Corporation | Low impedance package for integrated circuit die |
TWI252572B (en) * | 2004-06-30 | 2006-04-01 | Orient Semiconductor Elect Ltd | Package structure |
-
2006
- 2006-10-06 US US11/539,239 patent/US20070096269A1/en not_active Abandoned
- 2006-10-23 TW TW095139004A patent/TWI354357B/en active
- 2006-10-31 CN CN200910137099.9A patent/CN101546744B/en active Active
- 2006-10-31 CN CNB2006101427866A patent/CN100505231C/en active Active
-
2010
- 2010-04-12 US US12/758,141 patent/US20100193925A1/en not_active Abandoned
-
2013
- 2013-12-09 US US14/100,444 patent/US9198281B2/en active Active
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4725692A (en) * | 1985-05-24 | 1988-02-16 | Hitachi, Ltd. | Electronic device and lead frame used thereon |
US5065224A (en) * | 1986-06-30 | 1991-11-12 | Fairchild Semiconductor Corporation | Low noise integrated circuit and leadframe |
US5147815A (en) * | 1990-05-14 | 1992-09-15 | Motorola, Inc. | Method for fabricating a multichip semiconductor device having two interdigitated leadframes |
US5281849A (en) * | 1991-05-07 | 1994-01-25 | Singh Deo Narendra N | Semiconductor package with segmented lead frame |
US5608265A (en) * | 1993-03-17 | 1997-03-04 | Hitachi, Ltd. | Encapsulated semiconductor device package having holes for electrically conductive material |
US5497030A (en) * | 1993-06-24 | 1996-03-05 | Shinko Electric Industries Co., Ltd. | Lead frame and resin-molded-type semiconductor device |
US5517056A (en) * | 1993-09-30 | 1996-05-14 | Motorola, Inc. | Molded carrier ring leadframe having a particular resin injecting area design for gate removal and semiconductor device employing the same |
US5783463A (en) * | 1994-04-15 | 1998-07-21 | Matsushita Electric Industrial Co., Ltd. | Semiconductor device and method of producing said semiconductor device |
US5994768A (en) * | 1995-04-05 | 1999-11-30 | National Semiconductor Corporation | Multi-layer lead frame |
US5541565A (en) * | 1995-05-22 | 1996-07-30 | Trw Inc. | High frequency microelectronic circuit enclosure |
US5757067A (en) * | 1995-12-20 | 1998-05-26 | Nec Corporation | Resin-sealed type semiconductor device |
US5918112A (en) * | 1997-07-24 | 1999-06-29 | Motorola, Inc. | Semiconductor component and method of fabrication |
US20020192873A1 (en) * | 1998-01-30 | 2002-12-19 | Corisis David J. | Method of fabricating a redundant pinout configuration for signal enhancement in an IC package |
US20030141578A1 (en) * | 1998-01-30 | 2003-07-31 | Corisis David J. | Redundant pinout configuration for signal enhancement in IC packages |
US6281568B1 (en) * | 1998-10-21 | 2001-08-28 | Amkor Technology, Inc. | Plastic integrated circuit device package and leadframe having partially undercut leads and die pad |
US6424541B1 (en) * | 1999-04-21 | 2002-07-23 | Conexant Systems, Inc | Electronic device attachment methods and apparatus for forming an assembly |
US7102208B1 (en) * | 1999-10-15 | 2006-09-05 | Amkor Technology, Inc. | Leadframe and semiconductor package with improved solder joint strength |
US6621140B1 (en) * | 2002-02-25 | 2003-09-16 | Rf Micro Devices, Inc. | Leadframe inductors |
US20050173783A1 (en) * | 2004-02-05 | 2005-08-11 | St Assembly Test Services Ltd. | Semiconductor package with passive device integration |
Non-Patent Citations (1)
Title |
---|
Harper C. A., Electronic Packaging and Interconnect handbook, 1991, 1st Edition, pg. 6.1-6.3 & 6.48-6.51 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140009001A1 (en) * | 2012-07-06 | 2014-01-09 | Nxp B.V. | Differential return loss supporting high speed bus interfaces |
US9837188B2 (en) * | 2012-07-06 | 2017-12-05 | Nxp B.V. | Differential return loss supporting high speed bus interfaces |
Also Published As
Publication number | Publication date |
---|---|
US9198281B2 (en) | 2015-11-24 |
CN100505231C (en) | 2009-06-24 |
US20140097012A1 (en) | 2014-04-10 |
TWI354357B (en) | 2011-12-11 |
CN101546744A (en) | 2009-09-30 |
CN1959975A (en) | 2007-05-09 |
US20070096269A1 (en) | 2007-05-03 |
TW200717762A (en) | 2007-05-01 |
CN101546744B (en) | 2014-05-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9198281B2 (en) | Leadframe for semiconductor packages | |
US7256488B2 (en) | Semiconductor package with crossing conductor assembly and method of manufacture | |
US8039320B2 (en) | Optimized circuit design layout for high performance ball grid array packages | |
US7834435B2 (en) | Leadframe with extended pad segments between leads and die pad, and leadframe package using the same | |
US7345357B2 (en) | High density chip scale leadframe package and method of manufacturing the package | |
US20020100965A1 (en) | Semiconductor module and electronic component | |
US7378743B2 (en) | Circuit board and electronic assembly | |
JPH088331B2 (en) | Semiconductor chip package | |
US20090091019A1 (en) | Memory Packages Having Stair Step Interconnection Layers | |
US6815807B2 (en) | Method of fabricating a redundant pinout configuration for signal enhancement in an IC package | |
US5304737A (en) | Semiconductor package | |
US6483189B1 (en) | Semiconductor device | |
EP1944802B1 (en) | Semiconductor package product | |
US6407446B2 (en) | Leadframe and semiconductor chip package having cutout portions and increased lead count | |
US20040227226A1 (en) | Structure of multi-tier wire bonding for high frequency integrated circuits and method of layout for the same | |
US7122892B2 (en) | Multi-chip integrated circuit module for high-frequency operation | |
US20110115063A1 (en) | Integrated Circuit Packaging with Split Paddle | |
US6362426B1 (en) | Radiused leadframe | |
JP2879787B2 (en) | Semiconductor package for high density surface mounting and semiconductor mounting substrate | |
KR20000035352A (en) | Lead frame for semiconductor device and semiconductor device using the same | |
JPH08330351A (en) | Semiconductor integrated circuit device | |
KR20070000715A (en) | Circuit pattern of board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDIATEK INC., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHENG, TAO;REEL/FRAME:024215/0987 Effective date: 20060911 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |