US20100191470A1 - Method and system to estimate fracture aperture in horizontal wells - Google Patents

Method and system to estimate fracture aperture in horizontal wells Download PDF

Info

Publication number
US20100191470A1
US20100191470A1 US12/396,746 US39674609A US2010191470A1 US 20100191470 A1 US20100191470 A1 US 20100191470A1 US 39674609 A US39674609 A US 39674609A US 2010191470 A1 US2010191470 A1 US 2010191470A1
Authority
US
United States
Prior art keywords
resistivity
mud
matrix
fracture
well
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/396,746
Other versions
US8756016B2 (en
Inventor
Jacques R. Tabanou
Denis Heilot
Bernadette Tabanou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US12/396,746 priority Critical patent/US8756016B2/en
Assigned to SCHLUMBERGER TECHNOLOGY CORPORATION reassignment SCHLUMBERGER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: TABANOU, JACQUES R., HELIOT, DENIS
Priority to GB201000604A priority patent/GB2467415B/en
Publication of US20100191470A1 publication Critical patent/US20100191470A1/en
Application granted granted Critical
Publication of US8756016B2 publication Critical patent/US8756016B2/en
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device
    • G01V3/28Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device using induction coils

Definitions

  • the invention relates generally to oil and gas exploration, particularly to methods and systems for estimating fracture apertures in the formations and for assessing fracture aperture changes in response to well stress.
  • Fractures in the formation may be storage sites for hydrocarbons or they may enhance permeability of formations by connecting pores that might contain hydrocarbons. Therefore, identification and characterization of fractures is an important part of formation characterization. Fractures are cracks or surface breakages within rocks. When there is relative movement (displacement) of the rocks across the fracture face, the fracture may be referred to as a fault or joint, depending on the relative movement. For convenience, “fracture” will be used in a general sense in this description to include fractures, faults, joints, or other similar geological features.
  • Locating the intervals where the borehole intercepts large and/or numerous fractures is important to characterize the fractured reservoir and to optimize completion and production operations.
  • natural fracture aperture is also essential to estimate permeability in Fractured Reservoir Formation.
  • natural fracture aperture is also essential to determine the formation porosity.
  • Seismic data is commonly used for acquiring information about subsurface structures. Changes in the elastic properties of subsurface rocks appear as seismic reflections. Such changes in the properties of the rocks typically occur at boundaries between geologic formations, at fractures and at faults.
  • U.S. Pat. No. 3,668,619 describes the rotation of a logging tool having a single acoustic transducer that senses the reflected acoustic energy to detect fractures.
  • U.S. Pat. No. 5,121,363 describes a method for locating a subsurface fracture based on an orbital vibrator equipped with two orthogonal motion sensors and an orientation detector.
  • Sonic measurements are sensitive to natural fractures (Hornby B. et al, 1986), but also to stresses and local borehole damage, making it difficult to use them systematically to quantify fracture characteristics.
  • U.S. Pat. No. 4,802,144 uses the measurement of hydraulic impedance to determine fractures.
  • U.S. Pat. No. 2,244,484 measures downhole impedance to locate fractures by determining propagation velocity. Resistivity tools are particularly useful in this regard.
  • U.S. Pat. No. 6,798,208, issued to Omeragic which discloses a method for detecting a fracture in an earth formation using a propagation tool.
  • the method includes the steps of producing electromagnetic fields using a transverse magnetic dipole (TMD) transmitter in the tool; measuring corresponding voltage signals detected with one or more TMD receivers in the tool; determining harmonics from the measured signal responses by shifting the responses (e.g. by 90 degrees) and performing an addition or subtraction using the shifted response.
  • TMD transverse magnetic dipole
  • Borehole images allow one to identify, pick and characterize individual fractures as seen on the borehole wall. Techniques exist to quantify the aperture of each fracture based on the images (Luthi and Souhaite, 1990; Cheung and Heliot, 1990). However, those measurements have a very shallow depth of investigation, making it difficult to differentiate the natural fracture characteristics from the borehole damages.
  • a method in accordance with one embodiment of the invention includes obtaining at least one of a vertical resistivity (Rv) and a horizontal resistivity (Rh) of the formation; obtaining a mud resistivity (R mud ) or a matrix resistivity (R matrix ); and estimating the fracture aperture.
  • a system in accordance with one embodiment of the invention includes a memory storing a program having instructions to cause a processor to perform: obtaining at least one of a vertical resistivity (Rv) and a horizontal resistivity (Rh) of the formation; obtaining a mud resistivity (R mud ) or a matrix resistivity (R matrix ); and estimating the fracture aperture.
  • Rv vertical resistivity
  • Rh horizontal resistivity
  • R mud mud resistivity
  • R matrix matrix resistivity
  • FIG. 1 shows a prior art wireline logging system disposed in a well penetrating a formation.
  • FIG. 2 shows a schematic illustrating a well penetrating several fractures in a formation.
  • the schematic also illustrates the vertical resistivity (Rv) and horizontal resistivity (Rh) relative to the well axis.
  • FIG. 3 shows a diagram illustrating a formation having several fractures and the eddy currents induced in the horizontal and vertical directions relative to the well axis.
  • FIG. 4 shows a chart that can be pre-computed based on Rv, Rh, and R mud as a function of fracture apertures in accordance with one embodiment of the invention. Such a chart can be used to estimate fracture apertures based on Rv, Rh, and R mud measurements.
  • FIG. 5 shows an expanded region of the chart of FIG. 4 .
  • FIG. shows a chart illustrating changing fracture apertures as a function of normal stresses to the fractures.
  • Embodiments of the invention relate to methods and system for estimating fractures in formation penetrated by a well. Embodiments of the invention are particularly applicable to horizontal or highly deviated well drilled to cross fractures. Methods of the invention allow a user to identify fractured intervals and to quantify fracture apertures. Therefore, methods of the invention may help in the estimation of formation porosity and permeability.
  • methods of the invention allow a user to characterize how fracture apertures change in response to pressure variations. This is useful in forecasting reservoir performance as the reservoir is being depleted and makes it possible for the operator to optimize completion and production accordingly to maximize total recovery.
  • Embodiments of the invention may use any tools that can measure the resistivity parallel (in general term) and perpendicular (in general term) to the borehole axis.
  • RtScannerTM Wireline tool
  • PeriScope 15TM Logging While Drilling tool
  • Resistivity parallel to the borehole axis is commonly referred to as vertical resistivity (Rv)
  • resistivity perpendicular to the borehole axis is commonly referred to as horizontal resistivity (Rh).
  • Such tools may be electromagnetic (EM) logging tools that are equipped with antennas as EM sources (transmitter) and/or sensors (detectors).
  • the antennas on these tools are generally formed as loops or coils of conductive wire.
  • a transmitter antenna may be energized by an alternating current to emit EM energy (as electromagnetic fields) through the borehole fluid (“mud”) into the surrounding formations.
  • EM fields interact with the borehole and formation to produce signals (e.g., induced eddy currents or secondary electromagnetic fields) that are then detected and measured by one or more receiver antennas.
  • the detected signals reflect the interactions with the mud and the formation.
  • a log or profile of the formation and/or borehole properties may be determined.
  • a logging tool 10 may be lowered into a wellbore 15 that penetrates a formation 16 .
  • the tool 10 is a wireline tool that is lowered into the well via a cable (wireline) 14 .
  • embodimens of the invention may also be used with a logging-while-drilling (LWD) tool.
  • the tool 10 may include one or more transmitter 11 and one or more receivers 12 .
  • the tool 10 may include a circuitry 13 that may comprises a processor and a memory for performing calculations and/or storage of the log data.
  • the log data may be transmitted uphole to a surface computer 18 that typically includes a processor and a memory storing one or more programs for analyzing the log data.
  • LMD longitudinal magnetic dipoles
  • Newer EM tools may have transmitters and/or receivers designed to have magnetic dipoles that are not aligned with the longitudinal axis of the tool, i.e., such antennas (coils) may have their magnetic dipoles in a tilted or transverse direction with respect to the longitudinal axis of the tool.
  • Tools having such antennas are generally referred to as transverse magnetic moment (TMD) tools.
  • TMD transverse magnetic moment
  • a TMD tool will be able to induce eddy currents to flow in a direction non-perpendicular to the borehole axis. That is, the eddy currents will have components that flow across sedimentation layers in a vertical well, for example.
  • TMD tools are useful in obtaining resistivity data in the direction parallel with the borehole axis, i.e., Rv.
  • Rh and Rv measurements measurements related to formation resistivity in the horizontal and vertical directions.
  • Rh and Rv measurements it becomes possible to locate and identify geophysical features (such as fractures and dipping planes) of a formation.
  • geophysical features such as fractures and dipping planes
  • fractures may be storage sites for hydrocarbons. Furthermore, fractures may connect formations pores and provide flow paths for the hydrocarbons in the reservoir to flow to the well. Therefore, when drilling a well, it is desirable to drill across as many fractures as possible in order to maximize the production. Because natural fractures typically run in the same orientations, it would be desirable to drill a well in a direction perpendicular to the fracture faces.
  • FIG. 2 illustrates an example wherein an horizontal well drilled perpendicularly to the planes of a set of natural fractures.
  • Embodiments of the invention provide methods that allow an operator to estimate the apertures of the fractures. In addition, some embodiments of the invention allow an operator to estimate the changes of the fracture apertures as a function of borehole pressures. This information will be useful for optimizing the production of a well.
  • Methods of the invention may use resistivity measurements obtained using any existing tools, such as the wireline tool illustrated in FIG. 1 or an LWD tool. The following illustrates how these resistivity measurements may be used to derive the fracture apertures in accordance with embodiments of the invention.
  • FIG. 3 shows a schematic illustrating a well 31 penetrating a formation 32 , which includes several fractures 33 .
  • the fractures may have different apertures.
  • a formation may be characterized by its matrix resistivity R matrix .
  • Each Fracture i is characterized by its aperture h i .
  • a given interval of the borehole is characterized by the cumulative aperture of the fractures crossing the borehole per unit length of that borehole or V hf . Note that the cumulative fracture aperture, V hf , represents a fraction of the well interval and therefore is less than 1 (i.e., V hf ⁇ 1.0).
  • the eddy currents induced in the formation will be in planes perpendicular to the well axis, as illustrated in 34 .
  • the horizontal resistivity (Rh) measurements will reflect a summation of currents flowing in the formation layers and the fracture layers, as if these different layers form parallel circuits.
  • the eddy currents will flow in the formation in a direction parallel with the well axis, as illustrated in 35 . Because the eddy currents flow through various layers, the resistivity measurements in the vertical direction (Rv) will reflect a summation of resistivities of the various layers in the path of the eddy currents.
  • Equation (1) may be simplified as:
  • Equation (2) may be simplified as:
  • Equations (1a) and (2a) show that the Rv and Rh measurements vary roughly with the cumulative fracture aperture V hf in the interval of the well. Thus, Rv and Rh measurements should provide sensitive indicators of V hf .
  • the Rv and/or Rh measurements may be used to detect the presence (V hf >0) or absence (V hf ⁇ 0) of fractures in a well in the interval of interest.
  • the presence or absence (i.e., qualitative determination) and the magnitude fracture aperture (i.e., quantitative determination) in a particular interval of a well may be determined using the above Equations and the Rv, Rh and R mud measurements.
  • Equation 2(a) For example, if one knows that the cumulative fracture aperture is significantly smaller than 1 (i.e., a small fraction of the interval is fractured), then one may simply use Equation 2(a) to quickly estimate the V hf based on Rh and the known R mud , which is readily measured. Similarly, if R matrix is known, then one can use Equation 1(a) and Rv to estimate the V hf .
  • Rv, Rh, and R mud may be used using Equations (1) and (2), to solve for V hf .
  • Rv, Rh, and R mud may be used by solving Equations (1) and (2) simultaneously.
  • the R matrix thus derived in the neighboring intervals (zones) may be compared and used as a quality check, assuming that the neighboring intervals have the same R matrix .
  • This approach does not assume that the cumulative fracture aperture is significantly smaller than 1. Therefore, this method is applicable in most situations.
  • one of the Rv, Rh, and R mud measurements is not available, but R matrix is available, then one can use Equations (1) and (2) to solve for the missing measurement and V hf .
  • some embodiments of the invention may use a pre-computed cross plot of Rv versus Rh, for example, to facilitate the estimation of the cumulative fracture apertures.
  • FIG. 4 shows that the (Rv, Rh) measurements are indeed highly dependent on the cumulated fracture aperture V hf .
  • FIG. 5 shows an expanded region of the chart shown in FIG. 4 . Therefore, one can get a robust estimate of V hf from a chart pre-computed with the measurements of R v R h , and R mud ., as shown in FIG. 4 or FIG. 5 .
  • fractures apertures may be derived for a plurality of intervals within a zone or zones of interest to produce a log of fracture apertures. That is, a log of fracture aperture by unit length of borehole V hf can be computed from the (Rv, Rh) measurements. Such a log not only indicates the location of the open fractures, but also quantifies their contributions to the overall permeability of the fractured reservoir. This information is important for the characterization of fracture distributions (regular fracture spacing vs. fracture swarms) and for well completion.
  • Some embodiments of the invention provide methods for estimating fracture aperture changes as a function of the borehole stress.
  • Borehole stress may be induced by varying the pressures in the borehole.
  • FIG. 6 shows a theoretical relationship between fracture aperture and stress normal to the fracture, which can be computed from well pressure and in situ stresses.
  • a system in accordance with embodiments of the invention may include a processor and a memory, wherein the memory stores a program having instructions for performing the steps of a method of the invention.
  • Such a system may include any processor, such as a personal computer or a processor on a tool (e.g., 13 in FIG. 1 ) or at a well site.
  • Some embodiments of the invention relate to computer readable media that may include a program having instructions to cause a processor to perform the steps of a method of the invention.
  • Such computer medium may be any known in the art, such as hard drive, floppy disk, CD, DVD, magnetic tape, etc.
  • Embodiments of the invention provide convenient methods for estimating fracture apertures. Knowledge of fracture apertures is important in the optimization of the completion and production of a well. In addition, embodiments of the invention also provide methods for estimating the changes of fracture apertures as a function of well stress. This information is useful in designing the optimal way to obtain maximal production from a well, particularly when a well has been produced for some time.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

A method for estimating a fracture aperture in a formation penetrated by a well includes obtaining at least one of a vertical resistivity (Rv) and a horizontal resistivity (Rh) of the formation; obtaining a mud resistivity (Rmud) or a matrix resistivity (Rmatrix); and estimating the fracture aperture. The estimating of the fracture aperture may be performed by solving the following two equations:

Rv=Vhf·Rm+(1−Vhf)·Rmatrix and 1/Rh=Vhf·1/Rmud+(1−Vhf)·1/Rmatrix, wherein Vhf is the fracture aperture.

Description

    RELATED APPLICATION DATA
  • The present application claims priority from U.S. Provisional Patent Application No. 61/148,315, filed Jan. 29, 2009.
  • BACKGROUND OF INVENTION
  • 1. Field of the Invention
  • The invention relates generally to oil and gas exploration, particularly to methods and systems for estimating fracture apertures in the formations and for assessing fracture aperture changes in response to well stress.
  • 2. Background Art
  • Fractures in the formation may be storage sites for hydrocarbons or they may enhance permeability of formations by connecting pores that might contain hydrocarbons. Therefore, identification and characterization of fractures is an important part of formation characterization. Fractures are cracks or surface breakages within rocks. When there is relative movement (displacement) of the rocks across the fracture face, the fracture may be referred to as a fault or joint, depending on the relative movement. For convenience, “fracture” will be used in a general sense in this description to include fractures, faults, joints, or other similar geological features.
  • Locating the intervals where the borehole intercepts large and/or numerous fractures (e.g., fracture swarms) is important to characterize the fractured reservoir and to optimize completion and production operations.
  • Determining natural fracture aperture is also essential to estimate permeability in Fractured Reservoir Formation. In the case where fracture is the primary, or an important contributor, to the reservoir storage, natural fracture aperture is also essential to determine the formation porosity.
  • Various methods have been proposed to detect fractures and estimate their aperture from resistivity log (Sibbit and Faivre, 1985, “The Dual Laterolog Response in Fractured Rock,” Transaction of SPWLA 26-th Annual Logging Symposium, 1985, Dallas, paper T), borehole image (Luthi and Souhaite, 1990, “Fracture aperture from electrical borehole scans,” Geophysics, 1990, vol 55; Cheung and Heliot, 1990 “Workstation-based Fracture Evaluation Using Borehole Images and Wireline Logs,” SPE 20573), and sonic measurement (Hornby and Johnson, 1986, Winkler K, Plumb R., “Fracture Evaluation using reflected Stoneley Wave arrivals,” Geophysics, 1986, vol 54.).
  • Seismic data is commonly used for acquiring information about subsurface structures. Changes in the elastic properties of subsurface rocks appear as seismic reflections. Such changes in the properties of the rocks typically occur at boundaries between geologic formations, at fractures and at faults. For example, U.S. Pat. No. 3,668,619 describes the rotation of a logging tool having a single acoustic transducer that senses the reflected acoustic energy to detect fractures. U.S. Pat. No. 5,121,363 describes a method for locating a subsurface fracture based on an orbital vibrator equipped with two orthogonal motion sensors and an orientation detector.
  • Sonic measurements are sensitive to natural fractures (Hornby B. et al, 1986), but also to stresses and local borehole damage, making it difficult to use them systematically to quantify fracture characteristics.
  • In addition to seismic or sonic measurements, other measurements have also been used to locate fractures. For example, U.S. Pat. No. 4,802,144 uses the measurement of hydraulic impedance to determine fractures. U.S. Pat. No. 2,244,484 measures downhole impedance to locate fractures by determining propagation velocity. Resistivity tools are particularly useful in this regard. Similarly, U.S. Pat. No. 6,798,208, issued to Omeragic, which discloses a method for detecting a fracture in an earth formation using a propagation tool. The method includes the steps of producing electromagnetic fields using a transverse magnetic dipole (TMD) transmitter in the tool; measuring corresponding voltage signals detected with one or more TMD receivers in the tool; determining harmonics from the measured signal responses by shifting the responses (e.g. by 90 degrees) and performing an addition or subtraction using the shifted response.
  • Separation between shallow and deep laterolog readings has also been used as an indicator of natural fractures (Sibbit and Faivre, 1985). It is often used to help distinguish natural and induced fractures after those fractures have been picked on borehole image (Cheung and Heliot, 1990). However, this type of measurement does not provide any quantitative assessment of the fracture extent and aperture.
  • Borehole images allow one to identify, pick and characterize individual fractures as seen on the borehole wall. Techniques exist to quantify the aperture of each fracture based on the images (Luthi and Souhaite, 1990; Cheung and Heliot, 1990). However, those measurements have a very shallow depth of investigation, making it difficult to differentiate the natural fracture characteristics from the borehole damages.
  • The sensitivity of multi-component induction measurement to a fracture has been demonstrated by numerical modeling and field examples. (Wang et al. 2005) Discussion centers on the sensitivity of coplanar-coil (XX and YY) and co-axial-coil (ZZ) measurement to fractures. The numerical modeling is for one individual fracture, with application primarily to hydraulic fracture.
  • Because fractures often contain hydrocarbons, identification and quantification of the fractures in formations penetrated by a well can provide valuable information for optimal production of the wells. Therefore, it is desirable to have methods that can detect and quantify the presence of fractures.
  • SUMMARY OF INVENTION
  • One aspect of the invention relates to methods for estimating a fracture aperture in a formation penetrated by a well. A method in accordance with one embodiment of the invention includes obtaining at least one of a vertical resistivity (Rv) and a horizontal resistivity (Rh) of the formation; obtaining a mud resistivity (Rmud) or a matrix resistivity (Rmatrix); and estimating the fracture aperture. The estimating of the fracture aperture may be performed by solving the following two equations: Rv=Vhf·Rmud+(1−Vhf)·Rmatrix and 1/Rh=Vhf·1/Rmud+(1−Vhf)·1/Rmatrix, wherein Vhf is the fracture aperture.
  • Another aspect of the invention relates to systems for estimating a fracture aperture in a formation penetrated by a well. A system in accordance with one embodiment of the invention includes a memory storing a program having instructions to cause a processor to perform: obtaining at least one of a vertical resistivity (Rv) and a horizontal resistivity (Rh) of the formation; obtaining a mud resistivity (Rmud) or a matrix resistivity (Rmatrix); and estimating the fracture aperture.
  • Other aspects and advantages of the invention will be apparent from the following description and the appended claims.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows a prior art wireline logging system disposed in a well penetrating a formation.
  • FIG. 2 shows a schematic illustrating a well penetrating several fractures in a formation. The schematic also illustrates the vertical resistivity (Rv) and horizontal resistivity (Rh) relative to the well axis.
  • FIG. 3 shows a diagram illustrating a formation having several fractures and the eddy currents induced in the horizontal and vertical directions relative to the well axis.
  • FIG. 4 shows a chart that can be pre-computed based on Rv, Rh, and Rmud as a function of fracture apertures in accordance with one embodiment of the invention. Such a chart can be used to estimate fracture apertures based on Rv, Rh, and Rmud measurements.
  • FIG. 5 shows an expanded region of the chart of FIG. 4.
  • FIG. shows a chart illustrating changing fracture apertures as a function of normal stresses to the fractures.
  • DETAILED DESCRIPTION
  • Embodiments of the invention relate to methods and system for estimating fractures in formation penetrated by a well. Embodiments of the invention are particularly applicable to horizontal or highly deviated well drilled to cross fractures. Methods of the invention allow a user to identify fractured intervals and to quantify fracture apertures. Therefore, methods of the invention may help in the estimation of formation porosity and permeability.
  • Furthermore, when applied to logs acquired with varying pressures in the well, methods of the invention allow a user to characterize how fracture apertures change in response to pressure variations. This is useful in forecasting reservoir performance as the reservoir is being depleted and makes it possible for the operator to optimize completion and production accordingly to maximize total recovery.
  • Embodiments of the invention may use any tools that can measure the resistivity parallel (in general term) and perpendicular (in general term) to the borehole axis. For example, RtScanner™ (Wireline tool) and PeriScope 15™ (Logging While Drilling tool) are available from Schlumberger Technology Corp. (Houston, Tex.) for such measurements. Resistivity parallel to the borehole axis is commonly referred to as vertical resistivity (Rv), while resistivity perpendicular to the borehole axis is commonly referred to as horizontal resistivity (Rh).
  • Such tools may be electromagnetic (EM) logging tools that are equipped with antennas as EM sources (transmitter) and/or sensors (detectors). The antennas on these tools are generally formed as loops or coils of conductive wire. In operation, a transmitter antenna may be energized by an alternating current to emit EM energy (as electromagnetic fields) through the borehole fluid (“mud”) into the surrounding formations. The EM fields interact with the borehole and formation to produce signals (e.g., induced eddy currents or secondary electromagnetic fields) that are then detected and measured by one or more receiver antennas. The detected signals reflect the interactions with the mud and the formation. By processing the detected signals, a log or profile of the formation and/or borehole properties may be determined.
  • As shown in FIG. 1, a logging tool 10 may be lowered into a wellbore 15 that penetrates a formation 16. In this example, the tool 10 is a wireline tool that is lowered into the well via a cable (wireline) 14. However, embodimens of the invention may also be used with a logging-while-drilling (LWD) tool. The tool 10 may include one or more transmitter 11 and one or more receivers 12. In addition, the tool 10 may include a circuitry 13 that may comprises a processor and a memory for performing calculations and/or storage of the log data. Alternatively, the log data may be transmitted uphole to a surface computer 18 that typically includes a processor and a memory storing one or more programs for analyzing the log data.
  • Conventional EM tools may have the coils wound around the longitudinal axis of the tool. As a result, the magnetic dipoles of the transmitters and receivers of these tools are oriented along the longitudinal axis of the tool. Such coils are said to have longitudinal magnetic dipoles (LMD). The LMD tools will induce eddy currents circling around the borehole. Therefore, these tools are useful in the measurements of conductivity of the formation in the horizontal direction (i.e., in the plane perpendicular to the borehole)-Rh.
  • Newer EM tools may have transmitters and/or receivers designed to have magnetic dipoles that are not aligned with the longitudinal axis of the tool, i.e., such antennas (coils) may have their magnetic dipoles in a tilted or transverse direction with respect to the longitudinal axis of the tool. Tools having such antennas are generally referred to as transverse magnetic moment (TMD) tools. A TMD tool will be able to induce eddy currents to flow in a direction non-perpendicular to the borehole axis. That is, the eddy currents will have components that flow across sedimentation layers in a vertical well, for example. Thus, TMD tools are useful in obtaining resistivity data in the direction parallel with the borehole axis, i.e., Rv.
  • By judicial use of TMD and LMD tools, an operator may obtain measurements related to formation resistivity in the horizontal and vertical directions (i.e., Rh and Rv measurements). Once the Rh and Rv measurements are available, it becomes possible to locate and identify geophysical features (such as fractures and dipping planes) of a formation. For an example, see U.S. Pat. No. 6,798,208 issued to Omeragic, which discloses methods for identifying fractures and their orientations in the formations.
  • As noted above, fractures may be storage sites for hydrocarbons. Furthermore, fractures may connect formations pores and provide flow paths for the hydrocarbons in the reservoir to flow to the well. Therefore, when drilling a well, it is desirable to drill across as many fractures as possible in order to maximize the production. Because natural fractures typically run in the same orientations, it would be desirable to drill a well in a direction perpendicular to the fracture faces. FIG. 2 illustrates an example wherein an horizontal well drilled perpendicularly to the planes of a set of natural fractures.
  • Before one can design an optimal way to produce the well, it is desirable to know the fracture density (the number of fractures) and the apertures of the fractures in a particular interval (zone) of the well. Embodiments of the invention provide methods that allow an operator to estimate the apertures of the fractures. In addition, some embodiments of the invention allow an operator to estimate the changes of the fracture apertures as a function of borehole pressures. This information will be useful for optimizing the production of a well.
  • Methods of the invention may use resistivity measurements obtained using any existing tools, such as the wireline tool illustrated in FIG. 1 or an LWD tool. The following illustrates how these resistivity measurements may be used to derive the fracture apertures in accordance with embodiments of the invention.
  • FIG. 3 shows a schematic illustrating a well 31 penetrating a formation 32, which includes several fractures 33. The fractures may have different apertures. A formation may be characterized by its matrix resistivity Rmatrix. Each Fracture i is characterized by its aperture hi. A given interval of the borehole is characterized by the cumulative aperture of the fractures crossing the borehole per unit length of that borehole or Vhf. Note that the cumulative fracture aperture, Vhf, represents a fraction of the well interval and therefore is less than 1 (i.e., Vhf<1.0).
  • If an LMD tool is used to log this interval of the well, the eddy currents induced in the formation will be in planes perpendicular to the well axis, as illustrated in 34. Thus, the horizontal resistivity (Rh) measurements will reflect a summation of currents flowing in the formation layers and the fracture layers, as if these different layers form parallel circuits. On the other hand, if a TMD tool is used to log this interval, the eddy currents will flow in the formation in a direction parallel with the well axis, as illustrated in 35. Because the eddy currents flow through various layers, the resistivity measurements in the vertical direction (Rv) will reflect a summation of resistivities of the various layers in the path of the eddy currents.
  • Assuming that the open natural fracture is filled with mud of resistivity Rmud at the time of the logging, and that the matrix is not invaded, one would have:

  • R v =V hf ·R mud+(1−V hfR matrix  (1)
  • and

  • 1/R h =V hf·1/R mud+(1−V hf)·1/R matrix  (2)
  • wherein the Rmatrix is the resistivity of the virgin (not invaded) formation matrix. Because in water-based mud, the resistivity of the mud is much smaller than that of the formation, i.e., Rmud<<Rmatrix, and Vhf<<1 (in most situations), Equation (1) may be simplified as:

  • R v˜(1−V hfR matrix  (1a)
  • and Equation (2) may be simplified as:

  • 1/Rh˜Vhf/Rmud  (2a)
  • Equations (1a) and (2a) show that the Rv and Rh measurements vary roughly with the cumulative fracture aperture Vhf in the interval of the well. Thus, Rv and Rh measurements should provide sensitive indicators of Vhf. In accordance with some embodiments of the invention, the Rv and/or Rh measurements may be used to detect the presence (Vhf>0) or absence (Vhf˜0) of fractures in a well in the interval of interest.
  • In accordance with some embodiments of the invention, the presence or absence (i.e., qualitative determination) and the magnitude fracture aperture (i.e., quantitative determination) in a particular interval of a well may be determined using the above Equations and the Rv, Rh and Rmud measurements.
  • For example, if one knows that the cumulative fracture aperture is significantly smaller than 1 (i.e., a small fraction of the interval is fractured), then one may simply use Equation 2(a) to quickly estimate the Vhf based on Rh and the known Rmud, which is readily measured. Similarly, if Rmatrix is known, then one can use Equation 1(a) and Rv to estimate the Vhf.
  • Furthermore, other methods of the invention may use Rv, Rh, and Rmud, using Equations (1) and (2), to solve for Vhf. With this approach, one may solve for Vhf and Rmatrix by solving Equations (1) and (2) simultaneously. The Rmatrix thus derived in the neighboring intervals (zones) may be compared and used as a quality check, assuming that the neighboring intervals have the same Rmatrix. This approach does not assume that the cumulative fracture aperture is significantly smaller than 1. Therefore, this method is applicable in most situations. Similarly, if one of the Rv, Rh, and Rmud measurements is not available, but Rmatrix is available, then one can use Equations (1) and (2) to solve for the missing measurement and Vhf.
  • In addition to solving a simultaneous equations as described above, some embodiments of the invention may use a pre-computed cross plot of Rv versus Rh, for example, to facilitate the estimation of the cumulative fracture apertures. FIG. 4 shows that the (Rv, Rh) measurements are indeed highly dependent on the cumulated fracture aperture Vhf. FIG. 5 shows an expanded region of the chart shown in FIG. 4. Therefore, one can get a robust estimate of Vhf from a chart pre-computed with the measurements of Rv Rh, and Rmud., as shown in FIG. 4 or FIG. 5.
  • Using methods of the invention, fractures apertures may be derived for a plurality of intervals within a zone or zones of interest to produce a log of fracture apertures. That is, a log of fracture aperture by unit length of borehole Vhf can be computed from the (Rv, Rh) measurements. Such a log not only indicates the location of the open fractures, but also quantifies their contributions to the overall permeability of the fractured reservoir. This information is important for the characterization of fracture distributions (regular fracture spacing vs. fracture swarms) and for well completion.
  • Some embodiments of the invention provide methods for estimating fracture aperture changes as a function of the borehole stress. Borehole stress may be induced by varying the pressures in the borehole. Although it is known that natural fractures open and close as a function of the pressure in the well, and that this affects log measurements. (See e.g., Timko D. T., 1966, “A Case Against Oil Muds,” The log analyst, Nov. 1966, 4.), no quantitative study was available.
  • When several log passes are performed over the same zone at different well pressures, the matrix resistivity and the mud resistivity would not change appreciably, if at all. However, the fracture apertures would change in response to the stress normal to the fracture faces. Therefore, in accordance with embodiments of the invention, a quantitative relationship can be derived between fracture aperture changes and well pressure variations, based on Rv and Rh measurements. FIG. 6 shows a theoretical relationship between fracture aperture and stress normal to the fracture, which can be computed from well pressure and in situ stresses.
  • Some embodiments of the invention relate to systems for estimating fracture apertures in a well. A system in accordance with embodiments of the invention may include a processor and a memory, wherein the memory stores a program having instructions for performing the steps of a method of the invention. Such a system may include any processor, such as a personal computer or a processor on a tool (e.g., 13 in FIG. 1) or at a well site.
  • Some embodiments of the invention relate to computer readable media that may include a program having instructions to cause a processor to perform the steps of a method of the invention. Such computer medium may be any known in the art, such as hard drive, floppy disk, CD, DVD, magnetic tape, etc.
  • Advantages of embodiments of the invention may include one or more of the following. Embodiments of the invention provide convenient methods for estimating fracture apertures. Knowledge of fracture apertures is important in the optimization of the completion and production of a well. In addition, embodiments of the invention also provide methods for estimating the changes of fracture apertures as a function of well stress. This information is useful in designing the optimal way to obtain maximal production from a well, particularly when a well has been produced for some time.
  • While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.

Claims (12)

1. A method for estimating a fracture aperture in a formation penetrated by a well, comprising:
obtaining at least one of a vertical resistivity (Rv) and a horizontal resistivity (Rh) of the formation;
obtaining a mud resistivity (Rmud) or a matrix resistivity (Rmatrix); and
estimating the fracture aperture.
2. The method of claim 1, wherein the well is a horizontal or highly deviated well.
3. The method of claim 1, wherein both the vertical resistivity (Rv) and the horizontal resistivity (Rh) are obtained and the estimating is performed by solving the following two equations:

R v =V hf ·R mud+(1−V hfR matrix and

1/R h =V hf·1/R mud+(1−V hf)·1/R matrix
wherein Vhf is the fracture aperture.
4. The method of claim 1, wherein the horizontal resistivity (Rh) and the mud resistivity (Rmud) are obtained, and wherein the estimating is performed using the equation: 1/Rh=Vhf/Rmud, wherein Vhf is the fracture aperture and Vhf<<1.
5. The method of claim 1, wherein the vertical resistivity (Rv) and the matrix resistivity (Rmatrix) are obtained, and wherein the estimating is performed using the equation using the equation:

Rv=(1−V hfR matrix, wherein V hf is the fracture aperture and V hf<<1.
6. A method to measure a fracture aperture as a function of pressures in a well, comprising:
obtaining a vertical resistivity (Rv) and a horizontal resistivity (Rh) at a plurality of pressures in the well;
obtaining a mud resistivity (Rmud);
estimating the fracture aperture for each of the plurality of pressures based on the vertical resistivity, the horizontal resistivity, and the mud resistivity; and
determining a pressure dependence of fracture apertures.
7. The method of claim 6, wherein the well is a horizontal or highly deviated well.
8. A system for estimating a fracture aperture in a formation penetrated by a well, comprising a memory storing a program having instructions to cause a processor to perform:
obtaining at least one of a vertical resistivity (Rv) and a horizontal resistivity (Rh) of the formation;
obtaining a mud resistivity (Rmud) or a matrix resistivity (Rmatrix); and
estimating the fracture aperture.
9. The system of claim 8, wherein the program has instructions to use the vertical resistivity (Rv), the horizontal resistivity (Rh), and the mud resistivity (Rmud) to estimate the fracture aperture by solving the following two equations:

R v =V hf ·R mud+(1−V hfR matrix
and

1/R h =V hf·1/R mud+(1−V hf)·1/R matrix
wherein Vhf is the fracture aperture.
10. The system of claim 8, wherein the program has instructions to use the horizontal resistivity (Rh) and the mud resistivity (Rmud) to estimate the fracture aperture using the equation:

1/R h =V hf /R mud, wherein V hf is the fracture aperture and V hf<<1.
11. The system of claim 8, wherein the program has instructions to use the vertical resistivity (Rv) and the matrix resistivity (Rmatrix) to estimate the fracture aperture using the equation using the equation:

Rv=(1−V hfR matrix, wherein V hf is the fracture aperture and V hf<<1.
12. The system of claim 8, wherein the program further comprises instructions to perform estimation of the fracture aperture as a function of a plurality of pressures in the well.
US12/396,746 2009-01-29 2009-03-03 Method and system to estimate fracture aperture in horizontal wells Expired - Fee Related US8756016B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/396,746 US8756016B2 (en) 2009-01-29 2009-03-03 Method and system to estimate fracture aperture in horizontal wells
GB201000604A GB2467415B (en) 2009-01-29 2010-01-15 Method and system to estimate fracture aperture in horizontal wells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14831509P 2009-01-29 2009-01-29
US12/396,746 US8756016B2 (en) 2009-01-29 2009-03-03 Method and system to estimate fracture aperture in horizontal wells

Publications (2)

Publication Number Publication Date
US20100191470A1 true US20100191470A1 (en) 2010-07-29
US8756016B2 US8756016B2 (en) 2014-06-17

Family

ID=42354848

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/396,746 Expired - Fee Related US8756016B2 (en) 2009-01-29 2009-03-03 Method and system to estimate fracture aperture in horizontal wells

Country Status (1)

Country Link
US (1) US8756016B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191749A1 (en) * 2012-06-19 2013-12-27 Schlumberger Canada Limited Fracture aperture estimation using multi-axial induction tool
US20140078288A1 (en) * 2012-06-19 2014-03-20 Schlumberger Technology Corporation Far Field In Situ Maximum Horizontal Stress Direction Estimation Using Multi-Axial Induction And Borehole Image Data
CN109025985A (en) * 2018-09-19 2018-12-18 青岛海洋地质研究所 Experimental simulation device based on multiple-limb hole technology exploitation hydrate
CN110500089A (en) * 2019-08-15 2019-11-26 中石化石油工程技术服务有限公司 Shale gas horizontal well stratification fracture evaluation method based on array induction logging data
WO2021152419A1 (en) * 2020-01-29 2021-08-05 Chevron U.S.A. Inc. Categorizng fractures in a subsurface formation
US11118450B2 (en) * 2019-12-04 2021-09-14 Southwest Petroleum University Method for simulating the discontinuity of the hydraulic fracture wall in fractured reservoirs
US20230084141A1 (en) * 2021-09-16 2023-03-16 Saudi Arabian Oil Company Identifying Fluid Flow Paths in Naturally Fractured Reservoirs
US11921250B2 (en) 2022-03-09 2024-03-05 Saudi Arabian Oil Company Geo-mechanical based determination of sweet spot intervals for hydraulic fracturing stimulation

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10947841B2 (en) 2018-01-30 2021-03-16 Baker Hughes, A Ge Company, Llc Method to compute density of fractures from image logs
US11525935B1 (en) 2021-08-31 2022-12-13 Saudi Arabian Oil Company Determining hydrogen sulfide (H2S) concentration and distribution in carbonate reservoirs using geomechanical properties

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243521A (en) * 1988-10-03 1993-09-07 Schlumberger Technology Corporation Width determination of fractures intersecting a borehole
US5656930A (en) * 1995-02-06 1997-08-12 Halliburton Company Method for determining the anisotropic properties of a subterranean formation consisting of a thinly laminated sand/shale sequence using an induction type logging tool
US20040001388A1 (en) * 2001-12-13 2004-01-01 Baker Hughes Incorporated Method of using electrical and acoustic anisotropy measurements for fracture identification
US6904365B2 (en) * 2003-03-06 2005-06-07 Schlumberger Technology Corporation Methods and systems for determining formation properties and in-situ stresses
US20050256645A1 (en) * 2004-05-11 2005-11-17 Baker Hughes Incorporated Determination of fracture orientation and length using multi-component and multi-array induction data
US7089167B2 (en) * 2000-09-12 2006-08-08 Schlumberger Technology Corp. Evaluation of reservoir and hydraulic fracture properties in multilayer commingled reservoirs using commingled reservoir production data and production logging information
US20090192714A1 (en) * 2008-01-29 2009-07-30 Baker Hughes Incorporated Characterization of Fracture Length and Formation Resistivity from Array Induction Data
US20100019771A1 (en) * 2008-07-23 2010-01-28 Baker Hughes Incorporated Multi-Resolution Borehole Resistivity Imaging
US20100039115A1 (en) * 2008-08-13 2010-02-18 Baker Hughes Incorporated System and method for measuring resistivity of an earth formation with correction for mud electrical properties
US20100082255A1 (en) * 2008-09-30 2010-04-01 Sofia Davydycheva Method for borehole correction, formation dip and azimuth determination and resistivity determination using multiaxial induction measurements

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2244484A (en) 1938-05-07 1941-06-03 Roland F Beers Method of and means for analyzing and determining the geologic strata below the surface of the earth
US3668619A (en) 1969-07-02 1972-06-06 Mobil Oil Corp Three-dimensional presentation of borehole logging data
US4802144A (en) 1986-03-20 1989-01-31 Applied Geomechanics, Inc. Hydraulic fracture analysis method
US5121363A (en) 1990-12-26 1992-06-09 Conoco Inc. Fracture detection logging tool
US6924646B2 (en) 2002-12-31 2005-08-02 Schlumberger Technology Corporation System and method for locating a fracture in an earth formation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5243521A (en) * 1988-10-03 1993-09-07 Schlumberger Technology Corporation Width determination of fractures intersecting a borehole
US5656930A (en) * 1995-02-06 1997-08-12 Halliburton Company Method for determining the anisotropic properties of a subterranean formation consisting of a thinly laminated sand/shale sequence using an induction type logging tool
US7089167B2 (en) * 2000-09-12 2006-08-08 Schlumberger Technology Corp. Evaluation of reservoir and hydraulic fracture properties in multilayer commingled reservoirs using commingled reservoir production data and production logging information
US20040001388A1 (en) * 2001-12-13 2004-01-01 Baker Hughes Incorporated Method of using electrical and acoustic anisotropy measurements for fracture identification
US6904365B2 (en) * 2003-03-06 2005-06-07 Schlumberger Technology Corporation Methods and systems for determining formation properties and in-situ stresses
US20050256645A1 (en) * 2004-05-11 2005-11-17 Baker Hughes Incorporated Determination of fracture orientation and length using multi-component and multi-array induction data
US7359800B2 (en) * 2004-05-11 2008-04-15 Baker Hughes Incorporated Determination of fracture orientation and length using multi-component and multi-array induction data
US20090192714A1 (en) * 2008-01-29 2009-07-30 Baker Hughes Incorporated Characterization of Fracture Length and Formation Resistivity from Array Induction Data
US20100019771A1 (en) * 2008-07-23 2010-01-28 Baker Hughes Incorporated Multi-Resolution Borehole Resistivity Imaging
US20100039115A1 (en) * 2008-08-13 2010-02-18 Baker Hughes Incorporated System and method for measuring resistivity of an earth formation with correction for mud electrical properties
US20100082255A1 (en) * 2008-09-30 2010-04-01 Sofia Davydycheva Method for borehole correction, formation dip and azimuth determination and resistivity determination using multiaxial induction measurements

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Barbara Ina Anderson, Modeling and Inversion Methods for the Interpretation of Resistivity Logging Tool Response, 2001, B.Sc. Thesis, Western Connecticut State University, 386 pp. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191749A1 (en) * 2012-06-19 2013-12-27 Schlumberger Canada Limited Fracture aperture estimation using multi-axial induction tool
US20140078288A1 (en) * 2012-06-19 2014-03-20 Schlumberger Technology Corporation Far Field In Situ Maximum Horizontal Stress Direction Estimation Using Multi-Axial Induction And Borehole Image Data
US9274242B2 (en) 2012-06-19 2016-03-01 Schlumberger Technology Corporation Fracture aperture estimation using multi-axial induction tool
CN109025985A (en) * 2018-09-19 2018-12-18 青岛海洋地质研究所 Experimental simulation device based on multiple-limb hole technology exploitation hydrate
CN110500089A (en) * 2019-08-15 2019-11-26 中石化石油工程技术服务有限公司 Shale gas horizontal well stratification fracture evaluation method based on array induction logging data
US11118450B2 (en) * 2019-12-04 2021-09-14 Southwest Petroleum University Method for simulating the discontinuity of the hydraulic fracture wall in fractured reservoirs
WO2021152419A1 (en) * 2020-01-29 2021-08-05 Chevron U.S.A. Inc. Categorizng fractures in a subsurface formation
US20230084141A1 (en) * 2021-09-16 2023-03-16 Saudi Arabian Oil Company Identifying Fluid Flow Paths in Naturally Fractured Reservoirs
US11921250B2 (en) 2022-03-09 2024-03-05 Saudi Arabian Oil Company Geo-mechanical based determination of sweet spot intervals for hydraulic fracturing stimulation

Also Published As

Publication number Publication date
US8756016B2 (en) 2014-06-17

Similar Documents

Publication Publication Date Title
US8756016B2 (en) Method and system to estimate fracture aperture in horizontal wells
US7359800B2 (en) Determination of fracture orientation and length using multi-component and multi-array induction data
EP1461642B1 (en) Method of using electrical and acoustic anisotropy measurements for fracture identification
US7516015B2 (en) System and method for detection of near-wellbore alteration using acoustic data
US9274242B2 (en) Fracture aperture estimation using multi-axial induction tool
US10451765B2 (en) Post-well reservoir characterization using image-constrained inversion
US9606257B2 (en) Real-time fracture detection and fracture orientation estimation using tri-axial induction measurements
US9885795B2 (en) Acoustic wave imaging of formations
US20110254552A1 (en) Method and apparatus for determining geological structural dip using multiaxial induction measurements
AU2012216293B2 (en) Apparatus and methods of determining formation resistivity
GB2390432A (en) Formation anisotropy determination while drilling, with tilted magnetic dipole antennas
Prioul et al. Forward modeling of fracture-induced sonic anisotropy using a combination of borehole image and sonic logs
US8681582B2 (en) Method for sonic indication of formation porosity and lithology
GB2467415A (en) Method and system to estimate fracture aperture in horizontal wells
Li et al. Automated interpretation for LWD propagation resistivity tools through integrated model selection
Vij et al. LWD as the absolute formation evaluation technology: present-day capabilities, limitations, and future developments of LWD technology
Spring What’s new in well logging and formation evaluation
Fouda et al. Advanced Techniques for Wellbore Stability Evaluation Using Logging-While-Drilling Technologies
Fouda et al. Innovative Workflow for Wellbore Stability Evaluation Using Logging-While-Drilling Technologies
Al-Ameri et al. Improved Formation Evaluation with Inversion Techniques using Logging While Drilling Azimuthal Deep Resistivity Sensor–A Case Study
Felder Advances in openhole well logging
Market LWD Sonic Data Applications
Wang et al. Characterizing drilling-induced fractures with multicomponent induction and acoustic data
WO2018063142A1 (en) Data quality assessment of processed multi-component induction data

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:TABANOU, JACQUES R.;HELIOT, DENIS;SIGNING DATES FROM 20090306 TO 20090521;REEL/FRAME:022726/0599

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.)

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.)

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20180617

FP Lapsed due to failure to pay maintenance fee

Effective date: 20180617