US20100186642A1 - Bastions for force protection and military applications - Google Patents

Bastions for force protection and military applications Download PDF

Info

Publication number
US20100186642A1
US20100186642A1 US12/653,516 US65351609A US2010186642A1 US 20100186642 A1 US20100186642 A1 US 20100186642A1 US 65351609 A US65351609 A US 65351609A US 2010186642 A1 US2010186642 A1 US 2010186642A1
Authority
US
United States
Prior art keywords
panels
connecting tubes
bastion
panel
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/653,516
Inventor
Ryan Christman
Jorge Gallego
Cesar Giraldo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/879,678 external-priority patent/US20050284080A1/en
Priority claimed from US12/165,161 external-priority patent/US20090151293A1/en
Application filed by Individual filed Critical Individual
Priority to US12/653,516 priority Critical patent/US20100186642A1/en
Publication of US20100186642A1 publication Critical patent/US20100186642A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/02Retaining or protecting walls
    • E02D29/0208Gabions
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01FADDITIONAL WORK, SUCH AS EQUIPPING ROADS OR THE CONSTRUCTION OF PLATFORMS, HELICOPTER LANDING STAGES, SIGNS, SNOW FENCES, OR THE LIKE
    • E01F8/00Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic
    • E01F8/02Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic specially adapted for sustaining vegetation or for accommodating plants ; Embankment-type or crib-type noise barriers; Retaining walls specially adapted to absorb or reflect noise
    • E01F8/021Arrangements for absorbing or reflecting air-transmitted noise from road or railway traffic specially adapted for sustaining vegetation or for accommodating plants ; Embankment-type or crib-type noise barriers; Retaining walls specially adapted to absorb or reflect noise with integral support structure
    • E01F8/025Gabion-type

Definitions

  • the invention relates to a bastion. More particularly, the invention relates to a multiple panel-based bastion system, which can be used, for example, for military applications and force protection.
  • bastions has been traditional ever since Roman times. In the seventeenth and eighteenth centuries it took the form of wicker baskets filled with earth or stones. In the early twentieth century, sand bags were used. In the later twentieth century bastions took the form of gabion structures lined with geo-textiles.
  • Prior art protection barriers suffer from a number of additional drawbacks. Visual impact of prior art protection barriers is unsuitable for deployment within cities and the systems do not provide any concealment option. Deployment for long periods of time is also problematic given that barriers are exposed to environmental agents such as fungus, and UV attacks, that rapidly deteriorate them. Further, prior art protection barriers require intensive maintenance.
  • the present invention seeks to produce a protection barrier or bastion which overcomes the above described prior art drawbacks.
  • a protection barrier or bastion according to an exemplary embodiment of the invention includes a multi-cell structure, for example, for military and anti-terrorist use, consisting of structures conformed by welded wire panels lined with knitted wire or expanded mesh, linked together to constitute a fire resistant cell structure. This structure is filled with sand, crushed rock or granular materials and may be camouflaged. Further, the multi-cell structure is deployable in flat or sloped terrain.
  • the expanded metal mesh or knitted wire mesh lining may withstand a flame thrower attack successfully, without losing particulate filling material through the openings.
  • the expanded metal mesh or knitted wire mesh lining admits rooting of plants, which helps mitigate the visual impact of the bastions in the cities. Given the nature of the mesh, the plants will grow over the bastions, changing the hard appearance to look as natural fences melding them with the landscape.
  • the expanded mesh or knitted wire mesh lining materials are more suited to resist environmental attacks and are less maintenance demanding than prior art bastions.
  • the wall has a continuous volume, and therefore, behaves like a monolithic rather than an adobe like structure.
  • the infill continuity results in cavities or caverns created by impact of projectiles being filled by material coming from both damaged and adjacent cells, thus, improving the protection offered by the bastion.
  • the bastion may further include a pinned connection system that allows continuity of cells at different heights, and thus, for the possibility of deployment in sloped terrain.
  • FIG. 1 is a perspective of an exemplary embodiment of the bastion of the present invention.
  • FIG. 2A is a perspective view of the leftmost and middle cells in FIG. 1 .
  • FIG. 2B is a perspective view of the leftmost and center cells in FIG. 1 with an exterior panel in the middle cell disconnected.
  • FIG. 3 is a top view of the pinned connection connecting exterior panels of the leftmost and middle cells.
  • FIG. 4 is a cross sectional view taken along lines 4 - 4 in FIG. 13 .
  • FIG. 5 is a perspective view of a single bastion cell having a movable connected top.
  • FIG. 6 is a perspective view of the leftmost cell of FIG. 1 .
  • FIG. 7 is a perspective view of the rightmost cell with an additional panel connected to reinforce a damaged panel.
  • FIG. 8 is a perspective view of an exemplary embodiment of a filled bastion wall of the present invention including a hexagonal corner unit.
  • FIG. 9 is a perspective view of the insert of FIG. 1 .
  • FIG. 10 shows the partially filled bastion of FIG. 1 from a different perspective and without an insert.
  • FIG. 11 is a perspective view of the rightmost cell of FIG. 1 with two pins staked to the ground.
  • FIG. 12 is a perspective view of a bastion including four rows of piled cells.
  • FIG. 13 is a perspective view of a bastion construction including rows separated by structural beams.
  • FIG. 14 is a perspective view of a camouflaged bastion on a sloped terrain.
  • FIG. 15 is a perspective view of a bastion assembly according to an alternative embodiment of the invention.
  • FIG. 16 is a plan view of an external panel layout for a bastion according to the embodiment of FIG. 15 .
  • FIG. 17 is a plan view of an internal panel layout for a bastion according to the embodiment of FIG. 15 .
  • FIG. 18 is a schematic illustration of how two external panels and an internal panel may be interconnected, using a single connecting pin.
  • FIG. 18A is a schematic layout of how external and internal panels may be assembled to form a section of bastion, using external and internal panels according to the embodiment of FIG. 15 .
  • FIG. 19 is a schematic illustration of how external and internal panels according to the embodiment of FIG. 15 may be used to create a bastion construction that may be used to ascend or descend contours in geography.
  • FIG. 19A is a schematic illustration of how an ascending/descending bastion may be formed, using external and internal panels according to the embodiment of FIG. 15 .
  • FIG. 20 is a schematic illustration of how external panels only, according to the embodiment of FIG. 15 , may be used to create a bastion that may be used to ascend or descend contours in geography.
  • FIG. 20A is a schematic illustration of how an ascending/descending bastion may be formed, using only external panels according to the embodiment of FIG. 15 .
  • FIG. 21 is an illustration showing representative panel structures according to an embodiment of the invention.
  • FIG. 22 is a highly schematic top plan view showing how external and internal panels interconnect to form a bastion according to the embodiment of FIG. 15 .
  • FIGS. 23-26 illustrate, non-exhaustively, various structures which may be obtained from the multipanel bastion system of FIGS. 15-22 .
  • FIG. 27 illustrates an alternative manner of folding the mesh on external panels.
  • FIG. 28 illustrates a bracing element for use in alternative embodiments of the invention, for inhibiting outward bowing in non-rectangular cells.
  • FIG. 29 is a schematic top plan view of a portion of a bastion, having a non-rectangular corner cell, showing the placement of bracing elements to connect non-consecutive corners in a non-rectangular cell.
  • the basic components of an exemplary embodiment of a bastion of the present invention, generally designated 10 are panels 12 a - 12 j.
  • the panels 12 a - 12 j may be made, for example, from a welded wire frame including wires 14 having, for example, diameters between 3 mm and 8 mm.
  • the wires 14 may, for example, have a rectangular pattern with center to center distance depending on load, for example, 5 cm to 20 cm.
  • the wires 14 may be lined with a screen mesh 16 of expanded metal or wire knitted mesh, stitched to the wire frame or connected using staples 18 .
  • the panels 12 a - 12 j may be configured without a mesh. However, in this case the wires 14 are spaced close together so as to prevent a filler, used to fill the bastion 10 , such as sand crushed rocks, granulars, etc., from spilling out.
  • Bastion 10 may be used, for example, as a force protection system for military applications.
  • the length of the bastion 10 may be as long as desired with a minimum of one cell and may extend up to, for example, hundreds of cells.
  • FIGS. 2A and 2B which illustrate close-ups of a connecting region between two cells 21 and 23 , exterior panels 12 f and 12 g are connected at their sides 4 via pinned connection 30 .
  • FIG. 2B is the same view as provided in FIG. 2A except a bit closer up and with panel 12 g shown disconnected for clarity.
  • a pinned connection may require, for example, a set of 4 up to 24 connecting tubes.
  • Exterior panels 12 f and 12 g each include a set of connecting tubes 20 and 22 respectively.
  • Tube segments 20 and 22 may be welded to their respective panels and are matched and aligned with correspondent connecting tubes 24 and 26 ( FIG. 3 ) connected to interior panel 12 i by a centering pin 28 a, which passes through the connecting tubes 20 and 24 , and by a centering pin 28 b, which passes through connecting tubes 22 and 26 .
  • FIG. 12 is a perspective view of the rightmost cell of FIG. 1 with pins 28 e and 28 g staked to the ground.
  • connecting tubes 20 and 22 project at an angle towards the inside of bastion 10 .
  • Tubes 20 and 24 are shown using ghost lines because the connection between tubes 20 and 24 via pin 28 a is at least partially hidden behind panel 12 f.
  • Panels 12 f, 12 g and 12 i are shown connected in the top view of FIG. 3 .
  • the remaining panels 12 a - 12 e are interconnected in an identical manner using pins 28 a - 28 m or, alternatively, using straps 32 ( FIG. 4 ).
  • the lining or mesh 16 of the exterior panels 12 f and 12 g at pinned connection 30 is bent as flaps 34 and is used to avoid infill spills through the space 36 between the connected exterior panels 12 f and 12 g. Flaps 34 may be used to prevent spillage between the connection of the other panels as well.
  • an insert such as a duct 38
  • Duct 38 may have an X or Y shape (from a top view) in accordance with the tactical tooth-saw fire pattern.
  • Duct 38 is a rectangular box with a reduced section in a middle section 42 and full sections 44 at the faces of the panels.
  • On the outer face of the bastion 10 these face inserts 40 may be covered with a mesh lining (not shown), which both masks the duct 38 and provides protection against objects thrown from outside.
  • a flap gate 46 can be provided, for temperature control.
  • FIG. 11 shows the bastion of FIG. 1 from a different perspective and without the duct 38 .
  • Interior panels 12 i and 12 j do not have full mesh lining allowing the continuity of the infill material configuring a monolithic structure. Further, as can be seen in FIG. 6 , interior panel 12 i may have connecting tubes 34 at a point between its sides, e.g., in the middle, for connection via pin 28 n to connecting tubes 35 welded to another interior panel 12 k, also without mesh lining. Although not shown, interior panel 12 k may be similarly connected to exterior panel 12 e. Alternatively, interior panel 12 k may be free floating, connected to exterior panel 12 e and interior panel 12 i by straps, or supported on either side by material used to fill the bastion 10 .
  • FIGS. 1 and 10 are shown in a partially filled state so as to expose the interior panels 12 i and 12 j.
  • the pinned connection system of the present invention allows for deployment in sloped terrain, as illustrated in FIG. 15 , by stepping panels 12 in the vertical direction, i.e., joining the panels at different heights.
  • FIG. 8 illustrates a multi-cell structure filled with sand including two walls 48 , 50 connected by a hexagonal corner unit 52 .
  • Wall 48 includes cells 48 a - 48 c and wall 50 includes cells 50 a - 50 c.
  • the filling of a single cell with two different granulates may be accomplished, for example, by means of interior panel 12 k ( FIG. 6 ).
  • a top mesh-lined cover panel 54 may be pivotally or otherwise connected to a top of any given bastion cell.
  • the panel 54 mitigates the action of whirlwinds and drafts caused by nature or machinery.
  • the bastion 10 is a multiple height or piled bastion including a base having four columns 56 a - 56 d of multi-cell structures, a second row having three columns 58 a - 58 c , a third row having two columns 60 a and 60 b and a top row having a single column 62 .
  • the panels in each row may be connected to adjacent rows using metallic or plastic straps 32 that align and fasten the layers, as detailed in FIG. 4 .
  • FIG. 4 is a cross section taken along lines 4 - 4 in FIG. 12 .
  • the multi-cell structures may be piled directly on top of each other or may be separated by a structural element 64 , such as a structural beam, flat board, steel deck or plate, as illustrated in FIG. 14 .
  • the above mentioned materials constituent of the system are resistant to fire attacks and tropical conditions, thus allowing for a longer life expectancy, and reutilization of the elements.
  • the screen or mesh 16 lining allows rooting of vegetation, thus providing camouflage to the system.
  • FIG. 14 illustrates a bastion system of the present invention camouflaged by natural elements, such as vegetation.
  • the panel's wire mesh, pinned connections and expanded metal mesh are environmentally resistant to damage like rust, UV, fungus attack, etc., by means of galvanic protection, or polymeric coating.
  • the structure may be used as basic constituent for constructions and fortifications, supporting a roof structure.
  • Repairs can be made to the bastion by replacing a damaged panel 12 or by strapping an overlapping new panel 66 over an existing damaged panel 12 , as illustrated in FIG. 7 .
  • the panels form box shaped structures.
  • three or more panels may be joined in the manner taught above to form other shaped free-standing structures having, for example, triangular or hexagonal cross sections when viewed from above.
  • These free-standing structures may then be interconnected, for example using pinned connections or straps, to form bastions of varying shapes and sizes.
  • FIGS. 15-22 illustrate an alternative embodiment of the invention, wherein the internal panels employ only a single vertical row of connecting tubes, on each side of the internal panel.
  • FIG. 15 is a perspective view of a partial bastion assembly according to an alternative embodiment of the invention.
  • Partial bastion assembly 100 employs external panels 102 and internal panel 104 .
  • FIG. 16 is a plan view of a layout for an external panel 102 for a bastion according to the embodiment of FIG. 15 .
  • External panel 102 includes metal bar grid 110 (formed from horizontal bars 112 , and vertical bars 114 ), cylindrical connecting tubes 116 , and mesh 118 .
  • the placement of the connecting tubes 116 repeats every third horizontal bar 112 , with the vertical spacing between adjacent connecting tubes being slightly greater (to accommodate manufacturing tolerances) than the height of two connecting tubes.
  • FIG. 17 is a plan view of a layout for an internal panel 104 for a bastion according to the embodiment of FIG. 15 .
  • Internal panel 104 includes metal bar grid 120 (formed from horizontal bars 122 and vertical bars 124 ), and cylindrical connecting tubes 126 .
  • Mesh 128 may or may not be provided. Typically, mesh 128 will not be used in internal panels, in order to permit infill material to spread out to maximize the homogeneity of the infill material and thus the density of the bastion structure. However, as described hereinbelow, it may be desirable in certain cases, such as when hills or other terrain contours are being addressed, to provide internal panels with partial or complete mesh covering.
  • Mesh 118 and mesh 128 may be fabricated as expanded metal mesh, or knitted wire (woven) metal mesh.
  • fiberglass mesh e.g., polyester coated/fused fiberglass
  • fiberglass mesh may have benefits that may extend the useful life of bastions constructed therefrom, including being rustproof, having less tendency to leak infill material, following piercing by bullets or shrapnel, being fire-resistant, and being less likely to cause injury to persons handling the panels, as may be the case where metal mesh is employed.
  • FIGS. 18 and 18A illustrate schematically of how two external panels 102 and an internal panel 104 may be interconnected, using a single connecting pin (not shown).
  • all connecting tubes for both external panels 102 and internal panels 104 are all the same length, and external and internal diameters, for ease of manufacturing and interchangeability of components. Because of the selection of vertical spacing, on both external panels 102 and internal panels 104 , equivalent to the height of two connecting tubes, connecting tubes 116 and 126 may interdigitate snugly and in common vertical alignment, to enable a single connecting pin (not shown) to pass through all the aligned connecting tubes, of both the internal panels 104 and external panels 102 .
  • FIGS. 19 and 19A illustrate schematically how external panels 102 and internal panels 104 according to the embodiment of FIG. 15 may be used to create a bastion construction that may be used to ascend or descend contours in geography.
  • FIGS. 20 and 20A illustrate schematically how external panels only, according to the embodiment of FIG. 15 , may be used to create a bastion that may be used to ascend or descend contours in geography.
  • FIG. 21 is an illustration showing representative panel structures according to an embodiment of the invention. Any numerical values provided in FIG. 21 (or in any of the other figures or the present specification) are given by way of example, and the invention is not to be construed as being limited thereto.
  • FIG. 22 is a highly schematic top plan view showing how external and internal panels interconnect to form a bastion according to the embodiment of FIG. 15 .
  • the use of a single column of interdigitated connecting tubes in the external panels 102 and internal panels 104 causes the panels to be closer together at their junctions, reducing the space between adjacent panels, as compared to the embodiment of FIGS. 1-14 .
  • the bastion structure becomes tighter and more rigid as a result.
  • mesh may be provided on internal panels 128 , typically it may not be used. In order to control leakage of infill material, at the junctions, at the edges of external panels 102 , the mesh 118 will be folded back around the end vertical bars of the external panel 102 , as shown in FIG.
  • FIG. 27 illustrates, on the right side of that figure, an alternative method for affixing mesh 118 at the junctions, wherein mesh 118 is folded back, along the inside surface of the panel 102 , and back upon itself, so that there are three layers of the mesh under the staple on the inside, and then the end of the mesh abuts the connecting tubes and is bent along the direction of the surface of the internal panel.
  • FIGS. 23-26 illustrate various examples of structures which may be built using the multipanel bastion system of the embodiment of FIGS. 15-22 , though other additional structures may be built as well.
  • FIG. 23 illustrates a bastion section incorporating end panels 204 , central (or internal) panels 202 , and side panels 200 , wherein end panels 204 have the same structure as side panels 200 , and are only named differently to identify their location.
  • the panels at the end of a string of cells may simply be referred to as side panels also.
  • FIG. 24 illustrates another bastion section, incorporating side panels 200 , central panels 202 , end panels 204 and a gun port panel 208 .
  • FIG. 24 illustrates another bastion section, incorporating side panels 200 , central panels 202 , end panels 204 and a gun port panel 208 .
  • FIG. 25 illustrates a bastion section used in “climbing” hills, incorporating hill panels 210 (which are like central or internal panels 202 , except that mesh is provided only on an upper portion of the panel), along with side, end, and/or internal panels, as may be required.
  • FIG. 26 is a curving bastion section, that makes use of turn panels 206 , which may be similar to other external panels, except shorter in the “width” dimension, to create bastion cells which are trapezoidal when viewed from above.
  • bracing elements 302 may be provided, comprising two relatively short tubes or washers 304 located at the ends of a bar or strip 306 . Washers 304 will be sized to fit into the aforementioned interstitial vertical gaps between connecting tubes of adjacent panels, where the connecting tubes of the adjacent panels are interdigitated to form a joint, as described hereinabove.
  • FIG. 28
  • Bracing elements 302 will be sized to span the distance between non-consecutive joints 308 . The number of bracing elements which may be used in any such corner cell will depend upon the circumstances of any particular application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Laminated Bodies (AREA)

Abstract

A bastion including one or more free-standing structures for use in, for example, military applications and for force protection. The free-standing structures are made up of a plurality of interconnected fire resistant mesh covered wire panels and are filled with, for example, sand, crushed rock or granular materials.

Description

  • This application is a continuation-in-part of, and claims priority of the filing date of, U.S. Ser. No. 12/165,161, filed Jun. 30, 2008 and presently pending, which, in turn, was a continuation-in-part of U.S. Ser. No. 10/879,678, filed Jun. 29, 2004, now abandoned.
  • FIELD OF THE INVENTION
  • The invention relates to a bastion. More particularly, the invention relates to a multiple panel-based bastion system, which can be used, for example, for military applications and force protection.
  • BACKGROUND OF THE INVENTION
  • The use of bastions has been traditional ever since Roman times. In the seventeenth and eighteenth centuries it took the form of wicker baskets filled with earth or stones. In the early twentieth century, sand bags were used. In the later twentieth century bastions took the form of gabion structures lined with geo-textiles.
  • This latter application, was basically the use of elements originally devised for civil works applied to the military use. This structure was rapidly deployable but its main failing was its lack of fire resistance. At best, a fire retardant composite was used in some situations to delay ignition. Use of flame throwers, incendiary bombs, Molotov cocktails and even tracer bullets of machine guns (one every seven in a belt loader) in combat situations destroys the protection afforded by this conventional bastion by igniting its lining or sand bags defenses.
  • Prior art protection barriers suffer from a number of additional drawbacks. Visual impact of prior art protection barriers is unsuitable for deployment within cities and the systems do not provide any concealment option. Deployment for long periods of time is also problematic given that barriers are exposed to environmental agents such as fungus, and UV attacks, that rapidly deteriorate them. Further, prior art protection barriers require intensive maintenance.
  • SUMMARY OF THE INVENTION
  • The present invention seeks to produce a protection barrier or bastion which overcomes the above described prior art drawbacks.
  • A protection barrier or bastion according to an exemplary embodiment of the invention includes a multi-cell structure, for example, for military and anti-terrorist use, consisting of structures conformed by welded wire panels lined with knitted wire or expanded mesh, linked together to constitute a fire resistant cell structure. This structure is filled with sand, crushed rock or granular materials and may be camouflaged. Further, the multi-cell structure is deployable in flat or sloped terrain.
  • The expanded metal mesh or knitted wire mesh lining may withstand a flame thrower attack successfully, without losing particulate filling material through the openings. At the same time the expanded metal mesh or knitted wire mesh lining admits rooting of plants, which helps mitigate the visual impact of the bastions in the cities. Given the nature of the mesh, the plants will grow over the bastions, changing the hard appearance to look as natural fences melding them with the landscape.
  • The expanded mesh or knitted wire mesh lining materials are more suited to resist environmental attacks and are less maintenance demanding than prior art bastions.
  • The wall has a continuous volume, and therefore, behaves like a monolithic rather than an adobe like structure.
  • The infill continuity results in cavities or caverns created by impact of projectiles being filled by material coming from both damaged and adjacent cells, thus, improving the protection offered by the bastion.
  • The bastion may further include a pinned connection system that allows continuity of cells at different heights, and thus, for the possibility of deployment in sloped terrain.
  • To the accomplishment of the above and related objects the invention may be embodied in the form illustrated in the accompanying drawings. Attention is called to the fact, however, that the drawings are illustrative only. Variations are contemplated as being part of the invention, limited only by the scope of the claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings, like elements are depicted by like reference numerals. The drawings are briefly described as follows.
  • FIG. 1 is a perspective of an exemplary embodiment of the bastion of the present invention.
  • FIG. 2A is a perspective view of the leftmost and middle cells in FIG. 1.
  • FIG. 2B is a perspective view of the leftmost and center cells in FIG. 1 with an exterior panel in the middle cell disconnected.
  • FIG. 3 is a top view of the pinned connection connecting exterior panels of the leftmost and middle cells.
  • FIG. 4 is a cross sectional view taken along lines 4-4 in FIG. 13.
  • FIG. 5 is a perspective view of a single bastion cell having a movable connected top.
  • FIG. 6 is a perspective view of the leftmost cell of FIG. 1.
  • FIG. 7 is a perspective view of the rightmost cell with an additional panel connected to reinforce a damaged panel.
  • FIG. 8 is a perspective view of an exemplary embodiment of a filled bastion wall of the present invention including a hexagonal corner unit.
  • FIG. 9 is a perspective view of the insert of FIG. 1.
  • FIG. 10 shows the partially filled bastion of FIG. 1 from a different perspective and without an insert.
  • FIG. 11 is a perspective view of the rightmost cell of FIG. 1 with two pins staked to the ground.
  • FIG. 12 is a perspective view of a bastion including four rows of piled cells.
  • FIG. 13 is a perspective view of a bastion construction including rows separated by structural beams.
  • FIG. 14 is a perspective view of a camouflaged bastion on a sloped terrain.
  • FIG. 15 is a perspective view of a bastion assembly according to an alternative embodiment of the invention.
  • FIG. 16 is a plan view of an external panel layout for a bastion according to the embodiment of FIG. 15.
  • FIG. 17 is a plan view of an internal panel layout for a bastion according to the embodiment of FIG. 15.
  • FIG. 18 is a schematic illustration of how two external panels and an internal panel may be interconnected, using a single connecting pin.
  • FIG. 18A is a schematic layout of how external and internal panels may be assembled to form a section of bastion, using external and internal panels according to the embodiment of FIG. 15.
  • FIG. 19 is a schematic illustration of how external and internal panels according to the embodiment of FIG. 15 may be used to create a bastion construction that may be used to ascend or descend contours in geography.
  • FIG. 19A is a schematic illustration of how an ascending/descending bastion may be formed, using external and internal panels according to the embodiment of FIG. 15.
  • FIG. 20 is a schematic illustration of how external panels only, according to the embodiment of FIG. 15, may be used to create a bastion that may be used to ascend or descend contours in geography.
  • FIG. 20A is a schematic illustration of how an ascending/descending bastion may be formed, using only external panels according to the embodiment of FIG. 15.
  • FIG. 21 is an illustration showing representative panel structures according to an embodiment of the invention.
  • FIG. 22 is a highly schematic top plan view showing how external and internal panels interconnect to form a bastion according to the embodiment of FIG. 15.
  • FIGS. 23-26 illustrate, non-exhaustively, various structures which may be obtained from the multipanel bastion system of FIGS. 15-22.
  • FIG. 27 illustrates an alternative manner of folding the mesh on external panels.
  • FIG. 28 illustrates a bracing element for use in alternative embodiments of the invention, for inhibiting outward bowing in non-rectangular cells.
  • FIG. 29 is a schematic top plan view of a portion of a bastion, having a non-rectangular corner cell, showing the placement of bracing elements to connect non-consecutive corners in a non-rectangular cell.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The basic components of an exemplary embodiment of a bastion of the present invention, generally designated 10, are panels 12 a-12 j. The panels 12 a-12 j may be made, for example, from a welded wire frame including wires 14 having, for example, diameters between 3 mm and 8 mm. The wires 14 may, for example, have a rectangular pattern with center to center distance depending on load, for example, 5 cm to 20 cm. The wires 14 may be lined with a screen mesh 16 of expanded metal or wire knitted mesh, stitched to the wire frame or connected using staples 18. Alternatively, the panels 12 a-12 j may be configured without a mesh. However, in this case the wires 14 are spaced close together so as to prevent a filler, used to fill the bastion 10, such as sand crushed rocks, granulars, etc., from spilling out.
  • In the example embodiment of the present invention illustrated in FIG. 1, exterior panels 12 a-12 h and interior panels 12 i and 12 j form a three-cell structure of reticular pattern. Bastion 10 may be used, for example, as a force protection system for military applications. The length of the bastion 10 may be as long as desired with a minimum of one cell and may extend up to, for example, hundreds of cells.
  • As best seen in FIGS. 2A and 2B, which illustrate close-ups of a connecting region between two cells 21 and 23, exterior panels 12 f and 12 g are connected at their sides 4 via pinned connection 30. FIG. 2B is the same view as provided in FIG. 2A except a bit closer up and with panel 12 g shown disconnected for clarity. Depending on the height of the bastion 10, a pinned connection may require, for example, a set of 4 up to 24 connecting tubes.
  • Exterior panels 12 f and 12 g each include a set of connecting tubes 20 and 22 respectively. Tube segments 20 and 22 may be welded to their respective panels and are matched and aligned with correspondent connecting tubes 24 and 26 (FIG. 3) connected to interior panel 12 i by a centering pin 28 a, which passes through the connecting tubes 20 and 24, and by a centering pin 28 b, which passes through connecting tubes 22 and 26.
  • Centering pins 28 a and 28 b also function also as an anchoring element of the system when staked to the ground. FIG. 12 is a perspective view of the rightmost cell of FIG. 1 with pins 28 e and 28 g staked to the ground.
  • As can be seen in FIG. 2A, connecting tubes 20 and 22 project at an angle towards the inside of bastion 10. Tubes 20 and 24 are shown using ghost lines because the connection between tubes 20 and 24 via pin 28 a is at least partially hidden behind panel 12 f. Panels 12 f, 12 g and 12 i are shown connected in the top view of FIG. 3. The remaining panels 12 a-12 e are interconnected in an identical manner using pins 28 a-28 m or, alternatively, using straps 32 (FIG. 4).
  • As illustrated in the top view of FIG. 3, the lining or mesh 16 of the exterior panels 12 f and 12 g at pinned connection 30 is bent as flaps 34 and is used to avoid infill spills through the space 36 between the connected exterior panels 12 f and 12 g. Flaps 34 may be used to prevent spillage between the connection of the other panels as well.
  • For observation posts and fire back positions, an insert, such as a duct 38, may be provided on both interior and exterior panels into which face inserts 40 may be installed. Duct 38 may have an X or Y shape (from a top view) in accordance with the tactical tooth-saw fire pattern. Duct 38 is a rectangular box with a reduced section in a middle section 42 and full sections 44 at the faces of the panels. On the outer face of the bastion 10 these face inserts 40 may be covered with a mesh lining (not shown), which both masks the duct 38 and provides protection against objects thrown from outside. At the inner side, a flap gate 46 can be provided, for temperature control. FIG. 11 shows the bastion of FIG. 1 from a different perspective and without the duct 38.
  • Interior panels 12 i and 12 j do not have full mesh lining allowing the continuity of the infill material configuring a monolithic structure. Further, as can be seen in FIG. 6, interior panel 12 i may have connecting tubes 34 at a point between its sides, e.g., in the middle, for connection via pin 28 n to connecting tubes 35 welded to another interior panel 12 k, also without mesh lining. Although not shown, interior panel 12 k may be similarly connected to exterior panel 12 e. Alternatively, interior panel 12 k may be free floating, connected to exterior panel 12 e and interior panel 12 i by straps, or supported on either side by material used to fill the bastion 10.
  • Once the structure has been anchored, for example, by anchoring pins 28 a-n used in the pinned connection 30, an infill of filling material, for example, sand, crushed rock, or granulars is laid in compacted layers conforming a monolithic structure to complete the defense system. The bastion 10 of FIGS. 1 and 10 are shown in a partially filled state so as to expose the interior panels 12 i and 12 j.
  • The pinned connection system of the present invention allows for deployment in sloped terrain, as illustrated in FIG. 15, by stepping panels 12 in the vertical direction, i.e., joining the panels at different heights.
  • FIG. 8 illustrates a multi-cell structure filled with sand including two walls 48, 50 connected by a hexagonal corner unit 52. Wall 48 includes cells 48 a-48 c and wall 50 includes cells 50 a-50 c. As indicated above, the filling of a single cell with two different granulates may be accomplished, for example, by means of interior panel 12 k (FIG. 6).
  • In an exemplary embodiment of the present invention, a top mesh-lined cover panel 54, as illustrated in FIG. 5, may be pivotally or otherwise connected to a top of any given bastion cell. The panel 54 mitigates the action of whirlwinds and drafts caused by nature or machinery.
  • In an exemplary embodiment of the present invention, as illustrated in FIG. 12, the bastion 10 is a multiple height or piled bastion including a base having four columns 56 a-56 d of multi-cell structures, a second row having three columns 58 a-58 c, a third row having two columns 60 a and 60 b and a top row having a single column 62. The panels in each row may be connected to adjacent rows using metallic or plastic straps 32 that align and fasten the layers, as detailed in FIG. 4. FIG. 4 is a cross section taken along lines 4-4 in FIG. 12. The multi-cell structures may be piled directly on top of each other or may be separated by a structural element 64, such as a structural beam, flat board, steel deck or plate, as illustrated in FIG. 14.
  • In an exemplary embodiment of the present invention, the above mentioned materials constituent of the system, are resistant to fire attacks and tropical conditions, thus allowing for a longer life expectancy, and reutilization of the elements.
  • In an exemplary embodiment of the present invention, the screen or mesh 16 lining allows rooting of vegetation, thus providing camouflage to the system. FIG. 14 illustrates a bastion system of the present invention camouflaged by natural elements, such as vegetation.
  • In an exemplary embodiment of the present invention, the panel's wire mesh, pinned connections and expanded metal mesh are environmentally resistant to damage like rust, UV, fungus attack, etc., by means of galvanic protection, or polymeric coating.
  • In an exemplary embodiment of the present invention, the structure may be used as basic constituent for constructions and fortifications, supporting a roof structure.
  • Repairs can be made to the bastion by replacing a damaged panel 12 or by strapping an overlapping new panel 66 over an existing damaged panel 12, as illustrated in FIG. 7.
  • As illustrated in the figures, the panels form box shaped structures. However, three or more panels may be joined in the manner taught above to form other shaped free-standing structures having, for example, triangular or hexagonal cross sections when viewed from above. These free-standing structures may then be interconnected, for example using pinned connections or straps, to form bastions of varying shapes and sizes.
  • FIGS. 15-22 illustrate an alternative embodiment of the invention, wherein the internal panels employ only a single vertical row of connecting tubes, on each side of the internal panel.
  • FIG. 15 is a perspective view of a partial bastion assembly according to an alternative embodiment of the invention. Partial bastion assembly 100 employs external panels 102 and internal panel 104.
  • FIG. 16 is a plan view of a layout for an external panel 102 for a bastion according to the embodiment of FIG. 15. External panel 102 includes metal bar grid 110 (formed from horizontal bars 112, and vertical bars 114), cylindrical connecting tubes 116, and mesh 118. As can be seen in FIG. 16, the placement of the connecting tubes 116 repeats every third horizontal bar 112, with the vertical spacing between adjacent connecting tubes being slightly greater (to accommodate manufacturing tolerances) than the height of two connecting tubes.
  • FIG. 17 is a plan view of a layout for an internal panel 104 for a bastion according to the embodiment of FIG. 15. Internal panel 104 includes metal bar grid 120 (formed from horizontal bars 122 and vertical bars 124), and cylindrical connecting tubes 126. Mesh 128 may or may not be provided. Typically, mesh 128 will not be used in internal panels, in order to permit infill material to spread out to maximize the homogeneity of the infill material and thus the density of the bastion structure. However, as described hereinbelow, it may be desirable in certain cases, such as when hills or other terrain contours are being addressed, to provide internal panels with partial or complete mesh covering. Mesh 118 and mesh 128 (if present) may be fabricated as expanded metal mesh, or knitted wire (woven) metal mesh. Alternatively, fiberglass mesh (e.g., polyester coated/fused fiberglass) may be employed. It is believed that fiberglass mesh may have benefits that may extend the useful life of bastions constructed therefrom, including being rustproof, having less tendency to leak infill material, following piercing by bullets or shrapnel, being fire-resistant, and being less likely to cause injury to persons handling the panels, as may be the case where metal mesh is employed.
  • FIGS. 18 and 18A illustrate schematically of how two external panels 102 and an internal panel 104 may be interconnected, using a single connecting pin (not shown). In embodiments of the invention, corresponding to the embodiment of FIG. 15, all connecting tubes for both external panels 102 and internal panels 104, are all the same length, and external and internal diameters, for ease of manufacturing and interchangeability of components. Because of the selection of vertical spacing, on both external panels 102 and internal panels 104, equivalent to the height of two connecting tubes, connecting tubes 116 and 126 may interdigitate snugly and in common vertical alignment, to enable a single connecting pin (not shown) to pass through all the aligned connecting tubes, of both the internal panels 104 and external panels 102. It may be understood that, in an alternative embodiment of the invention (not shown), by increasing the vertical spacing of the connecting tubes, on the external and internal panels to three connecting tube lengths, it becomes possible to join 4 panels all together, e.g., two external panels and two internal panels, by a single connecting pin.
  • FIGS. 19 and 19A illustrate schematically how external panels 102 and internal panels 104 according to the embodiment of FIG. 15 may be used to create a bastion construction that may be used to ascend or descend contours in geography.
  • FIGS. 20 and 20A illustrate schematically how external panels only, according to the embodiment of FIG. 15, may be used to create a bastion that may be used to ascend or descend contours in geography.
  • FIG. 21 is an illustration showing representative panel structures according to an embodiment of the invention. Any numerical values provided in FIG. 21 (or in any of the other figures or the present specification) are given by way of example, and the invention is not to be construed as being limited thereto.
  • FIG. 22 is a highly schematic top plan view showing how external and internal panels interconnect to form a bastion according to the embodiment of FIG. 15. The use of a single column of interdigitated connecting tubes in the external panels 102 and internal panels 104 causes the panels to be closer together at their junctions, reducing the space between adjacent panels, as compared to the embodiment of FIGS. 1-14. In addition, the bastion structure becomes tighter and more rigid as a result. As mentioned above, while mesh may be provided on internal panels 128, typically it may not be used. In order to control leakage of infill material, at the junctions, at the edges of external panels 102, the mesh 118 will be folded back around the end vertical bars of the external panel 102, as shown in FIG. 22, to provide a vertically extending flap, that, due to material memory behavior of fiberglass, will tend to bear against the sides of the internal panels 104, thus creating an automatically deploying flap to provide resistance to leakage of infill material through the junction. FIG. 27 illustrates, on the right side of that figure, an alternative method for affixing mesh 118 at the junctions, wherein mesh 118 is folded back, along the inside surface of the panel 102, and back upon itself, so that there are three layers of the mesh under the staple on the inside, and then the end of the mesh abuts the connecting tubes and is bent along the direction of the surface of the internal panel.
  • In embodiments in which mesh is omitted from internal panels 104, migration of infill material from “cell” to “cell” is facilitated, thus leading to a more monolithic completed bastion structure. FIGS. 23-26 illustrate various examples of structures which may be built using the multipanel bastion system of the embodiment of FIGS. 15-22, though other additional structures may be built as well.
  • In particular, FIG. 23 illustrates a bastion section incorporating end panels 204, central (or internal) panels 202, and side panels 200, wherein end panels 204 have the same structure as side panels 200, and are only named differently to identify their location. In alternative embodiments, the panels at the end of a string of cells may simply be referred to as side panels also. FIG. 24 illustrates another bastion section, incorporating side panels 200, central panels 202, end panels 204 and a gun port panel 208. FIG. 25 illustrates a bastion section used in “climbing” hills, incorporating hill panels 210 (which are like central or internal panels 202, except that mesh is provided only on an upper portion of the panel), along with side, end, and/or internal panels, as may be required. FIG. 26 is a curving bastion section, that makes use of turn panels 206, which may be similar to other external panels, except shorter in the “width” dimension, to create bastion cells which are trapezoidal when viewed from above.
  • In installations wherein corner cells are desired having non-rectangular cross-sections (when viewed from above), such as in FIGS. 8 and 29, there may be a tendency, depending upon various factors such as the weight of the infill material, for the outer walls of such corner cells to bow outwardly. In an alternative embodiment of the invention, there is provided a method and apparatus for inhibiting such outward bowing. This is accomplished, in part, by adjusting the vertical lengths of the connecting tubes attached to the ends of the panels. As described and illustrated hereinabove, e.g., in the embodiments of FIGS. 15-22, the connecting tubes of the respective external and internal panels, once installed, are shown as being relatively closely spaced apart, with relatively little clearance between them. It has been found, in alternative embodiments of the invention, that the vertical lengths of the respective connecting tubes may be shortened slightly, without affecting the strength or rigidity of the joints created when two or more panels are joined, thus providing for gaps, located between immediately adjacent connecting tubes. Accordingly, bracing elements 302 (FIG. 28) may be provided, comprising two relatively short tubes or washers 304 located at the ends of a bar or strip 306. Washers 304 will be sized to fit into the aforementioned interstitial vertical gaps between connecting tubes of adjacent panels, where the connecting tubes of the adjacent panels are interdigitated to form a joint, as described hereinabove. FIG. 29 is a schematic top plan view of a portion of a bastion, having a non-rectangular corner cell, showing the placement of bracing elements to connect non-consecutive corners in a non-rectangular cell. Bracing elements 302 will be sized to span the distance between non-consecutive joints 308. The number of bracing elements which may be used in any such corner cell will depend upon the circumstances of any particular application.
  • As many apparently widely different embodiments of the present invention can be made without departing from the spirit and scope thereof, it is to be understood that the invention is not limited to the specific embodiments thereof except as defined in the appended claims.

Claims (8)

1. A bastion system comprising:
at least two external panels, each such panel including
a frame formed from a regular rectangular grid of regularly spaced apart vertical bars and horizontal bars, including terminal top and bottom horizontal bars and terminal left and right vertical bars, the frame having an inner face and an outer face;
at least two vertically spaced apart connecting tubes mounted on each of the terminal left and right vertical bars, so as to be disposed substantially coplanar with the frame, the connecting tubes being of substantially uniform length, the vertical spacing being at least twice the length of the connecting tubes, the connecting tubes on the terminal left vertical bar being vertically indexed a predetermined distance, relative to the connecting tubes on the terminal right vertical bar, so as to enable two such external panels to be disposed adjacent to one another, with the connecting tubes of one external panel being interdigitated and vertically aligned with the connecting tubes of the adjacent external panel, to enable a connecting pin to be passed through the interdigitated connecting tubes to releasably fasten the external panels to one another.
2. The bastion system according to claim 1, wherein the at least two external panels further comprise a mesh covering disposed on the inner faces thereof.
3. The bastion system according to claim 2, wherein the mesh covering is fabricated from at least one of: fiberglass, expanded metal, woven metal, knitted metal wire.
4. The bastion system according to claim 1, further comprising at least one internal panel, including
a frame formed from a regular rectangular grid of regularly spaced apart vertical bars and horizontal bars, including terminal top and bottom horizontal bars and terminal left and right vertical bars, the frame having an inner face and an outer face;
at least two vertically spaced apart connecting tubes mounted on each of the terminal left and right vertical bars, so as to be disposed substantially coplanar with the frame, the connecting tubes being of substantially uniform length, the vertical spacing being at least twice the length of the connecting tubes, the connecting tubes on the terminal left vertical bar being vertically indexed a predetermined distance, relative to the connecting tubes on the terminal right vertical bar, all of the connecting tubes being further indexed relative to the connecting tubes of the external panels, so as to enable an internal panel to be disposed adjacent to a terminal left or right vertical bar of an external panel, or the respective terminal left and right vertical bars of two such external panels disposed adjacent to one another, with the connecting tubes of the internal panel being interdigitated and vertically aligned with the connecting tubes of the adjacent external panel or panels, to enable a connecting pin to be passed through the interdigitated connecting tubes to releasably fasten the internal and external or panels to one another.
5. The bastion system according to claim 4, wherein the at least two external panels further comprise a mesh covering disposed on the inner faces thereof.
6. The bastion system according to claim 5, further comprising flaps on the external panels, which are formed from the mesh covering, the flaps extending laterally beyond the frame, so as to abut and partially cover an adjacently and obliquely-disposed panel, when a panel is disposed adjacent and connected to, an external panel, so as to inhibit the passage of infill material which may be disposed within a bastion form from a plurality of at least external panels.
7. The bastion system according to claim 4, wherein the junction between two adjacent panels forms a joint, the bastion system further comprising at least one bracing element for connecting non-consecutive joints.
8. The bastion system according to claim 7, wherein the at least one bracing element comprises:
an elongated support member, having opposing ends;
annular connecting members, disposed at the opposing ends of the elongated support member, wherein the annular support members are operably configured to be vertically interdigitated between the connecting tubes of adjacent panels forming a joint.
US12/653,516 2004-06-29 2009-12-15 Bastions for force protection and military applications Abandoned US20100186642A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/653,516 US20100186642A1 (en) 2004-06-29 2009-12-15 Bastions for force protection and military applications

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/879,678 US20050284080A1 (en) 2004-06-29 2004-06-29 Bastions for force protection and military applications
US12/165,161 US20090151293A1 (en) 2004-06-29 2008-06-30 Bastions for Force Protection and Military Applications
US12/653,516 US20100186642A1 (en) 2004-06-29 2009-12-15 Bastions for force protection and military applications

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/165,161 Continuation-In-Part US20090151293A1 (en) 2004-06-29 2008-06-30 Bastions for Force Protection and Military Applications

Publications (1)

Publication Number Publication Date
US20100186642A1 true US20100186642A1 (en) 2010-07-29

Family

ID=42353104

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/653,516 Abandoned US20100186642A1 (en) 2004-06-29 2009-12-15 Bastions for force protection and military applications

Country Status (1)

Country Link
US (1) US20100186642A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2485212A (en) * 2010-11-05 2012-05-09 Hesco Bastion Ltd Gabion system
US20120137598A1 (en) * 2009-03-13 2012-06-07 Inoxys S.A. Gabion elements for producing constructions such as walls, barricades and the like
DE102010053738A1 (en) * 2010-12-08 2012-06-14 Thomas Schmitz Gabion for use as decorative element in e.g. outdoor region, has continuous apertures formed in lattice body, where apertures form support for chute that forms water channel with endside plane for water fall
RU2459904C1 (en) * 2011-06-08 2012-08-27 Федеральное бюджетное учреждение "3 Центральный научно-исследовательский институт Министерства обороны Российской Федерации" Defensive wall from gabions
US8721221B2 (en) 2011-02-16 2014-05-13 Premark Packaging Llc System for providing flood protection and method of implementing same
US20150299977A1 (en) * 2008-04-18 2015-10-22 Hesco Bastion Limited Gabion system
WO2016076309A1 (en) * 2014-11-11 2016-05-19 太陽工業株式会社 Box-shaped sandbag
US9611626B2 (en) * 2013-12-10 2017-04-04 Jeffrey D Pettey Multi-compartment gabion stormwater treatment system
RU2651591C1 (en) * 2017-01-09 2018-04-23 Александр Иванович Ерышалов Volumetric gabion structure
US10030409B2 (en) * 2013-02-05 2018-07-24 Praesidiad Fence and method of installing a fence
RU185024U1 (en) * 2018-10-09 2018-11-19 ООО "ТР Инжиниринг" GABION
CN109024483A (en) * 2018-08-21 2018-12-18 安平县昊昌丝网制造有限公司 A kind of gabion protective net
US10625185B1 (en) * 2019-03-01 2020-04-21 Precision Dewatering, Llc Portable filtration apparatus, systems and methods
US10731309B2 (en) * 2018-10-17 2020-08-04 Beau G. Adams Reservoir bag
US10844564B1 (en) * 2017-11-22 2020-11-24 Glenn Burkett Flood control system
US11608602B2 (en) * 2019-03-06 2023-03-21 Geosystem Gbk Gmbh Support system for constructing a privacy and noise protection barrier
RU223729U1 (en) * 2023-12-08 2024-02-29 Юрий Валентинович Анкудинов GABION DEVICE

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1443901A (en) * 1920-09-23 1923-01-30 Timothy J Murray Folding wire crate or container
US1849472A (en) * 1928-06-30 1932-03-15 Pittsburgh Steel Co Knockdown receptacle
GB1588415A (en) * 1977-10-04 1981-04-23 Gkn Reinforcements Ltd Gabions
US4530622A (en) * 1982-12-23 1985-07-23 P.L.G. Research Limited Retaining fill in a geotechnical structure
US4667912A (en) * 1986-03-18 1987-05-26 Devilbiss Charles E Collapsible rack for flexible bags
US4685837A (en) * 1986-06-09 1987-08-11 Cicanese William C Portable safety trench and pit form system
US5333970A (en) * 1989-04-07 1994-08-02 Hesco Bastion Limited Building and shoring blocks
US5490604A (en) * 1991-07-11 1996-02-13 Shape Plastics Corp. Composter
US5544446A (en) * 1995-05-15 1996-08-13 Benson, Jr.; Donald O. Collapsible and adjustable plant support and protector
US5647695A (en) * 1995-04-11 1997-07-15 Hilfiker Pipe Company Soil filled wall
US5860551A (en) * 1997-04-07 1999-01-19 Knott, Sr.; James M. Gabion container
JPH1193132A (en) * 1997-09-24 1999-04-06 Nippon Gyabion Kk Gabion works
JP2000054342A (en) * 1998-08-06 2000-02-22 Hoshino Kogyo Kk Gabion
US6601723B1 (en) * 2002-04-30 2003-08-05 Lamont Limited Method and system for providing an easily assembled rigid-walled wicker hamper
JP2003342957A (en) * 2002-05-30 2003-12-03 Kazuhiko Kitagawa Gabion body reinforcing structure, bent structure of gabion, and lumber holder

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1443901A (en) * 1920-09-23 1923-01-30 Timothy J Murray Folding wire crate or container
US1849472A (en) * 1928-06-30 1932-03-15 Pittsburgh Steel Co Knockdown receptacle
GB1588415A (en) * 1977-10-04 1981-04-23 Gkn Reinforcements Ltd Gabions
US4530622A (en) * 1982-12-23 1985-07-23 P.L.G. Research Limited Retaining fill in a geotechnical structure
US4667912A (en) * 1986-03-18 1987-05-26 Devilbiss Charles E Collapsible rack for flexible bags
US4685837A (en) * 1986-06-09 1987-08-11 Cicanese William C Portable safety trench and pit form system
US5333970A (en) * 1989-04-07 1994-08-02 Hesco Bastion Limited Building and shoring blocks
US5490604A (en) * 1991-07-11 1996-02-13 Shape Plastics Corp. Composter
US5647695A (en) * 1995-04-11 1997-07-15 Hilfiker Pipe Company Soil filled wall
US5544446A (en) * 1995-05-15 1996-08-13 Benson, Jr.; Donald O. Collapsible and adjustable plant support and protector
US5860551A (en) * 1997-04-07 1999-01-19 Knott, Sr.; James M. Gabion container
JPH1193132A (en) * 1997-09-24 1999-04-06 Nippon Gyabion Kk Gabion works
JP2000054342A (en) * 1998-08-06 2000-02-22 Hoshino Kogyo Kk Gabion
US6601723B1 (en) * 2002-04-30 2003-08-05 Lamont Limited Method and system for providing an easily assembled rigid-walled wicker hamper
JP2003342957A (en) * 2002-05-30 2003-12-03 Kazuhiko Kitagawa Gabion body reinforcing structure, bent structure of gabion, and lumber holder

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150299977A1 (en) * 2008-04-18 2015-10-22 Hesco Bastion Limited Gabion system
US20120137598A1 (en) * 2009-03-13 2012-06-07 Inoxys S.A. Gabion elements for producing constructions such as walls, barricades and the like
US8689501B2 (en) * 2009-03-13 2014-04-08 Inoxys S.A. Gabion elements for producing constructions such as walls, barricades and the like
GB2485212A (en) * 2010-11-05 2012-05-09 Hesco Bastion Ltd Gabion system
DE102010053738A1 (en) * 2010-12-08 2012-06-14 Thomas Schmitz Gabion for use as decorative element in e.g. outdoor region, has continuous apertures formed in lattice body, where apertures form support for chute that forms water channel with endside plane for water fall
US8721221B2 (en) 2011-02-16 2014-05-13 Premark Packaging Llc System for providing flood protection and method of implementing same
RU2459904C1 (en) * 2011-06-08 2012-08-27 Федеральное бюджетное учреждение "3 Центральный научно-исследовательский институт Министерства обороны Российской Федерации" Defensive wall from gabions
US10030409B2 (en) * 2013-02-05 2018-07-24 Praesidiad Fence and method of installing a fence
US9611626B2 (en) * 2013-12-10 2017-04-04 Jeffrey D Pettey Multi-compartment gabion stormwater treatment system
JP2016089575A (en) * 2014-11-11 2016-05-23 太陽工業株式会社 Box-shaped sandbag
WO2016076309A1 (en) * 2014-11-11 2016-05-19 太陽工業株式会社 Box-shaped sandbag
RU2651591C1 (en) * 2017-01-09 2018-04-23 Александр Иванович Ерышалов Volumetric gabion structure
US10844564B1 (en) * 2017-11-22 2020-11-24 Glenn Burkett Flood control system
CN109024483A (en) * 2018-08-21 2018-12-18 安平县昊昌丝网制造有限公司 A kind of gabion protective net
RU185024U1 (en) * 2018-10-09 2018-11-19 ООО "ТР Инжиниринг" GABION
US10731309B2 (en) * 2018-10-17 2020-08-04 Beau G. Adams Reservoir bag
US10625185B1 (en) * 2019-03-01 2020-04-21 Precision Dewatering, Llc Portable filtration apparatus, systems and methods
US11608602B2 (en) * 2019-03-06 2023-03-21 Geosystem Gbk Gmbh Support system for constructing a privacy and noise protection barrier
RU223729U1 (en) * 2023-12-08 2024-02-29 Юрий Валентинович Анкудинов GABION DEVICE

Similar Documents

Publication Publication Date Title
US20100186642A1 (en) Bastions for force protection and military applications
US8425158B2 (en) Cellular confinement systems
CN101631920B (en) Construction block
US5161917A (en) Method of and an element for the production of structures for containing areas of ground
US8209916B2 (en) Construction block
US20090235813A1 (en) Ballistics Barrier
US20050284080A1 (en) Bastions for force protection and military applications
US9453322B2 (en) Cellular confinement systems
US20090235507A1 (en) Method Of Repairing A Ballistics Barrier
US20150299977A1 (en) Gabion system
KR101979022B1 (en) Bulletproof Protective wall for personal weapon of shooting range
US20190153741A1 (en) Ballistic and fire protection enclosures
US20090151293A1 (en) Bastions for Force Protection and Military Applications
EP3314075B1 (en) Multi layered protection system
US6401403B1 (en) Storm shelter kit and method of assembly with means for selectably configuring a wind deflecting soil mound
RU2812868C1 (en) Gabion
GB2576176A (en) Security fencing
US20150152622A1 (en) Gabion
Golden et al. Splinter Protection for Airbase Firefighting Resources
IL226525A (en) Gabion
JPH07102570A (en) Sheathing unit for engineering work, and method of construction by using the sheathing unit

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION