US20100180886A1 - Structure and method for controlling solar energy board - Google Patents

Structure and method for controlling solar energy board Download PDF

Info

Publication number
US20100180886A1
US20100180886A1 US12/404,809 US40480909A US2010180886A1 US 20100180886 A1 US20100180886 A1 US 20100180886A1 US 40480909 A US40480909 A US 40480909A US 2010180886 A1 US2010180886 A1 US 2010180886A1
Authority
US
United States
Prior art keywords
motor
encoder
solar energy
rotation angle
energy board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/404,809
Inventor
Hsuan-Hsi Chang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Assigned to DELTA ELECTRONICS, INC. reassignment DELTA ELECTRONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, HSUAN-HSI
Publication of US20100180886A1 publication Critical patent/US20100180886A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • F24S50/20Arrangements for controlling solar heat collectors for tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking

Definitions

  • the present invention relates to a structure and method for controlling a solar energy board, in particular, to a structure and method for tracking the sun according to the computation of solar position generated from a solar tracking data, and controlling rotation angle of solar energy board precisely through separating an encoder from a motor.
  • the conventional solar energy apparatus detects sunlight by optical sensor.
  • the apparatus includes a plate-like supporter 16 for supporting the solar energy board 10 .
  • the first shaft 131 is used to control vertical rotation of the solar energy board 10
  • the second shaft 132 is used to control horizontal rotation.
  • Four optical sensors 11 generate voltage signals by sensing amount variation of light so as to transmit the control signal to activate motors 141 , 142 . Accordingly, the motors rotate the solar energy board through transmission chains 151 , 152 so that the solar energy board 10 is perpendicular to solar beam. Otherwise, a brightness sensor 12 closes the power of solar energy apparatus when the brightness is lower than predetermined value in the evening.
  • the tracking precision is impacted due to bad weather or sensor covered with dust or bird excrement, thereby influencing the tracking efficiency so that the surface of the solar energy board can not be kept in a direction perpendicular to the solar beam.
  • the invention is to provide a structure and method for controlling a solar energy board, in particular, to a structure and method for tracking the sun according to the computation of solar position generated from a solar tracking data, and controlling rotation angle of solar energy board precisely through separating an encoder from a motor.
  • the present invention discloses a structure for controlling a solar energy board.
  • the structure includes a first shaft, a first encoder, a connecting rod, a first motor and a controller.
  • the first shaft is used to control vertical rotation of the solar energy board.
  • the first encoder is disposed at the first shaft to read a vertical rotation angle of the solar energy board.
  • the connecting rod is connected to one side of the solar energy board.
  • the first motor is disposed at the connecting rod to move the connecting rod so that the solar energy board is driven to rotate in the vertical direction.
  • the controller is respectively connected to the first encoder and the first motor so as to activate or deactivate the first motor according to the vertical rotation angle read from the first encoder.
  • the structure further includes a second shaft, a second motor and a second encoder.
  • the second shaft is used to control horizontal rotation of the solar energy board.
  • the second motor is disposed at the second shaft to rotate the second shaft so that the solar energy board is driven to rotate in the horizontal direction.
  • the second encoder is used to read a horizontal rotation angle of the solar energy board or a turn number of the second motor.
  • the controller is respectively connected to the second encoder and the second motor so as to activate or deactivate the second motor according to the horizontal rotation angle read from the second encoder or the turn number of the second motor.
  • the controller includes a built-in solar tracking data.
  • the controller generates a predetermined vertical rotation angle of the solar energy board according to the solar tracking data and compares the predetermined vertical rotation angle with the vertical rotation angle read from the first encoder so as to activate or deactivate the first motor so that the connecting rod drives the solar energy board to rotate to the predetermined vertical rotation angle.
  • the controller also generates a predetermined horizontal rotation angle of the solar energy board according to the solar tracking data.
  • the second encoder is disposed at the second shaft to read the horizontal rotation angle of the solar energy board, or is coupled to the second motor to read the turn number of the second motor.
  • the controller compares the predetermined horizontal rotation angle with the horizontal rotation angle read from the second encoder so as to activate or deactivate the second motor so that the solar energy board is driven to rotate to the predetermined horizontal rotation angle.
  • the controller computes a predetermined turn number of the second motor according to the predetermined horizontal rotation angle, and compares the predetermined turn number with the turn number read from the second encoder so as to activate or deactivate the second motor so that the solar energy board is driven to rotate to the predetermined horizontal rotation angle.
  • the first motor and the first encoder can be disposed separately.
  • the structure of the present invention further includes an optical sensor for sensing solar position at the initial time, thereby setting the reference point of the solar energy board.
  • the first shaft or the second shaft is preferably has a mechanical box connected with the first encoder or the second encoder for enhancing the reading precision of the first encoder or the second encoder.
  • the mechanical box of the second shaft is preferably connected to the second motor.
  • a ratio of the horizontal rotation angle of the solar energy board to the turn number of the second motor corresponds to acceleration or deceleration ratio of the mechanical box.
  • first motor or the second motor is preferably a servo motor, stepping motor, AC motor or DC motor.
  • the mechanical box includes a plurality of gears assembled together, and is preferably an accelerative or decelerative mechanical box.
  • the structure of the present invention further includes a pillar-like or plate-like supporter for supporting the solar energy board.
  • the first encoder or the second encoder is preferably a magnetic encoder, optical encoder or reading sensor.
  • the present invention discloses a method for controlling a solar energy board.
  • the method includes steps of: providing a solar energy board connected with one side of a connecting rod; computing a solar tracking data to generate a predetermined vertical rotation angle of the solar energy board; activating a first motor to move the connecting rod for driving the solar energy board to rotate in the vertical direction; reading a vertical rotation angle of the solar energy board by a first encoder; comparing the predetermined vertical rotation angle with the vertical rotation angle read from the first encoder; and deactivating the first motor when the predetermined vertical rotation angle being equal to the vertical rotation angle read from the first encoder.
  • the connecting rod drives the solar energy board to rotate about the first shaft in the vertical direction.
  • the first encoder is preferably disposed at the first shaft.
  • the first motor is preferably disposed at the connecting rod.
  • a second encoder can be disposed at a second shaft to read a horizontal rotation angle of the solar energy board, or be connected to a second motor to read a turn number of the second motor.
  • the method for controlling the solar energy board further includes steps of: computing the solar tracking data to generate a predetermined horizontal rotation angle; activating a second motor to drive the solar energy board to rotate in the horizontal direction; reading a horizontal rotation angle of the solar energy board by a second encoder; comparing the predetermined horizontal rotation angle with the horizontal rotation angle read from the second encoder; and deactivating the second motor when the predetermined horizontal rotation angle being equal to the horizontal rotation angle.
  • the method further includes steps of: computing the solar tracking data to generate a predetermined horizontal rotation angle; generating a predetermined turn number of a second motor according to the predetermined horizontal rotation angle; activating a second motor to drive the solar energy board to rotate in the horizontal direction; reading a turn number of the second motor by a second encoder; comparing the predetermined turn number with the turn number read from the second encoder; and deactivating the second motor when the predetermined turn number being equal to the turn number.
  • FIG. 1 is a perspective diagram of a conventional solar energy apparatus
  • FIG. 2 is a schematic diagram showing a structure for controlling solar energy board according to an embodiment of the present invention
  • FIGS. 3A and 3B are block diagrams showing how to control solar energy board according to the present invention.
  • FIGS. 4A and 4B are flow charts showing methods for controlling solar energy board according to the present invention.
  • FIG. 2 showing a structure for controlling solar energy board according to the present invention.
  • the optical sensor 27 is utilized to sense solar position at the initial time, thereby providing the controller 25 with the reference point of the solar energy board 26 .
  • the first shaft 211 is used to control vertical rotation of the solar energy board 26 .
  • the first encoder 221 is disposed at the first shaft 211 for reading a vertical rotation angle of the solar energy board 26 .
  • the connecting rod 24 is connected with one side of the solar energy board 26 .
  • the first motor 231 is disposed at the connecting rod 24 for moving the connecting rod 24 so that the solar energy board 26 is driven to rotate in the vertical direction v.
  • the controller 25 is respectively connected with the first encoder 221 and the first motor 231 so as to activate or deactivate the first motor 231 according to the vertical rotation angle read from the first encoder 221 .
  • the second shaft 222 is used to control horizontal rotation of the solar energy board.
  • the second motor 232 is disposed at the second shaft 212 to drive the solar energy board 26 to rotate in the horizontal direction h.
  • the second encoder 222 is preferably disposed at the second shaft 212 and connected with the second motor 232 so as to read a horizontal rotation angle of the solar energy board 26 or a turn number of the second motor 232 .
  • the controller 25 is respectively connected with the second encoder 222 and the second motor 232 so as to activate or deactivate the second motor 232 according to the horizontal rotation angle or the turn number.
  • a mechanical box 29 including a plurality of gears assembled together is disposed at the second shaft 212 .
  • a ratio of the horizontal rotation angle of the solar energy board 26 to the turn number of the second motor 232 corresponds to acceleration or deceleration ratio of the mechanical box 29 .
  • the structure for controlling solar energy board further includes a pillar-like supporter 28 for supporting the solar energy board 26 .
  • FIGS. 3A and 3B showing block diagrams how to control solar energy board according to the present invention.
  • the controller 25 has a built-in solar tracking data 31 , thereby generating a predetermined vertical rotation angle 321 . Afterwards, the controller 25 compares the predetermined vertical rotation angle 321 with the vertical rotation angle A 1 read from the first encoder 221 so as to activate or deactivate the first motor 231 so that the connecting rod 24 drives the solar energy board to rotate to the predetermined vertical rotation angle.
  • the controller 25 also generates a predetermined horizontal rotation angle 322 of the solar energy board 26 according to the solar tracking data 31 .
  • the second encoder 222 can be disposed at the second shaft to read a horizontal rotation angle A 2 of the solar energy board 26 , or is coupled to the second motor to read a turn number A 3 of the second motor 232 .
  • the controller 25 compares the predetermined horizontal rotation angle 322 with the horizontal rotation angle A 2 read from the second encoder 222 so as to activate or deactivate the second motor 232 so that the solar energy board 26 is driven to rotate to the predetermined horizontal rotation angle 322 as shown in FIG. 3A .
  • the controller 25 computes a predetermined turn number 33 of the second motor 232 according to the predetermined horizontal rotation angle 322 , and compares the predetermined turn number 33 with the turn number A 3 read from the second encoder 222 so as to activate or deactivate the second motor 232 so that the solar energy board 26 is driven to rotate to the predetermined horizontal rotation angle 322 as shown in FIG. 3B .
  • the first shaft or the second shaft has a mechanical box connected with the first encoder or the second encoder for enhancing the reading precision of the first encoder or the second encoder.
  • the first motor or the second motor is preferably a servo motor, stepping motor, AC motor or DC motor.
  • the first encoder or the second encoder is preferably a magnetic encoder, optical encoder or reading sensor.
  • the second encoder can be applied to read the horizontal rotation angle of the solar energy board or the turn number of the second motor.
  • the method for controlling solar energy board includes the steps S 41 to S 443 as follows.
  • step S 41 a solar energy board is provided to be connected with one side of a connecting rod.
  • step S 42 the predetermined vertical rotation angle and horizontal rotation angle of the solar energy board are generated according to the computation of a solar tracking data.
  • step S 431 a first motor is activated to move the connecting rod so that the solar energy board is driven to rotate in the vertical direction.
  • step S 432 a vertical rotation angle of the solar energy board is read by a first encoder.
  • step S 433 the vertical rotation angle read from the first encoder is compared with the predetermined vertical rotation angle so as to deactivate the first motor when the predetermined vertical rotation angle is equal to the vertical rotation angle read from the first encoder.
  • step S 441 a second motor is activated to drive the solar energy board to rotate in the horizontal direction.
  • step S 442 a horizontal rotation angle of the solar energy board is read by a second encoder.
  • step S 443 the horizontal rotation angle from the second encoder is compared with the predetermined horizontal rotation angle so as to deactivate the second motor when the predetermined horizontal rotation angle is equal to the horizontal rotation angle from the second encoder.
  • the second encoder can be also applied to read the turn number of the second motor as shown in FIG. 4B .
  • the difference between FIG. 4A and FIG. 4B includes the steps S 451 to S 454 as follows.
  • step S 451 a predetermined turn number of the second motor is generated according to the computation of the predetermined horizontal rotation angle.
  • step S 452 the second motor is activated to drive the solar energy board to rotate in the horizontal direction.
  • step S 453 a turn number of the second motor is read by the second encoder.
  • step S 454 the turn number from the second encoder is compared with the predetermined turn number so as to deactivate the second motor when the predetermined turn number is equal to the turn number from the second encoder.
  • the connecting rod drives the solar energy board to rotate about the first shaft in the vertical direction.
  • the first encoder is preferably disposed at the first shaft.
  • the first motor is preferably disposed at the connecting rod.
  • the structure and method for controlling the solar energy board of the present invention computes solar position according to the solar tracking data. Therefore, the solar energy board can track the sun precisely in the condition of bad weather or dust contamination so as to optimize efficiency.
  • the structure of the present invention drives the solar energy board to rotate in the vertical direction by a connecting rod. Further, the encoder is separated from the motor and disposed at the shaft, thereby minimizing the tolerance and inaccurate rotation angle of solar energy board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)
  • Control Of Position Or Direction (AREA)

Abstract

Disclosed is a structure and method for controlling a solar energy board. The structure includes a first shaft, a first encoder, a connecting rod, a first motor and a controller. The first shaft is used to control vertical rotation of the solar energy board. The first encoder is disposed at the first shaft to read a vertical rotation angle of the solar energy board. The connecting rod is connected to one side of the solar energy board. The first motor is disposed at the connecting rod to move the connecting rod so that the solar energy board is driven to rotate in the vertical direction. The controller is respectively connected to the first encoder and the first motor so as to activate or deactivate the first motor according to the vertical rotation angle read from the first encoder.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This Non-provisional application claims priority under 35 U.S.C. §119(a) on Patent Application No(s). 098101854 filed in Taiwan, Republic of China on Jan. 19, 2009, the entire contents of which are hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of Invention
  • The present invention relates to a structure and method for controlling a solar energy board, in particular, to a structure and method for tracking the sun according to the computation of solar position generated from a solar tracking data, and controlling rotation angle of solar energy board precisely through separating an encoder from a motor.
  • 2. Related Art
  • Along with the progressive of technology, the living level of human beings increases, and environmental protection is taken as a serious problem. Therefore, pollution prevention and economic efficiency must be concerned in advance about energy utilization. It is urgent to develop an energy with minimum pollution and high economic efficiency for retrieving the shortage of conventional energy. It is well known that massive energy are transmitted to the earth from the sun; however, the incident angle of sunlight is different at various time or seasons so that the surface of the solar energy board needs to be rotated in the direction perpendicular to the solar beam. Referring to FIG. 1, the conventional solar energy apparatus detects sunlight by optical sensor. The apparatus includes a plate-like supporter 16 for supporting the solar energy board 10. The first shaft 131 is used to control vertical rotation of the solar energy board 10, and the second shaft 132 is used to control horizontal rotation. Four optical sensors 11 generate voltage signals by sensing amount variation of light so as to transmit the control signal to activate motors 141,142. Accordingly, the motors rotate the solar energy board through transmission chains 151,152 so that the solar energy board 10 is perpendicular to solar beam. Otherwise, a brightness sensor 12 closes the power of solar energy apparatus when the brightness is lower than predetermined value in the evening.
  • However, when tracking the solar position by optical sensor, the tracking precision is impacted due to bad weather or sensor covered with dust or bird excrement, thereby influencing the tracking efficiency so that the surface of the solar energy board can not be kept in a direction perpendicular to the solar beam.
  • SUMMARY OF THE INVENTION
  • In view of the foregoing, the invention is to provide a structure and method for controlling a solar energy board, in particular, to a structure and method for tracking the sun according to the computation of solar position generated from a solar tracking data, and controlling rotation angle of solar energy board precisely through separating an encoder from a motor.
  • To achieve the above, the present invention discloses a structure for controlling a solar energy board. The structure includes a first shaft, a first encoder, a connecting rod, a first motor and a controller. The first shaft is used to control vertical rotation of the solar energy board. The first encoder is disposed at the first shaft to read a vertical rotation angle of the solar energy board. The connecting rod is connected to one side of the solar energy board. The first motor is disposed at the connecting rod to move the connecting rod so that the solar energy board is driven to rotate in the vertical direction. The controller is respectively connected to the first encoder and the first motor so as to activate or deactivate the first motor according to the vertical rotation angle read from the first encoder.
  • The structure further includes a second shaft, a second motor and a second encoder. The second shaft is used to control horizontal rotation of the solar energy board. The second motor is disposed at the second shaft to rotate the second shaft so that the solar energy board is driven to rotate in the horizontal direction. The second encoder is used to read a horizontal rotation angle of the solar energy board or a turn number of the second motor. The controller is respectively connected to the second encoder and the second motor so as to activate or deactivate the second motor according to the horizontal rotation angle read from the second encoder or the turn number of the second motor.
  • The controller includes a built-in solar tracking data. The controller generates a predetermined vertical rotation angle of the solar energy board according to the solar tracking data and compares the predetermined vertical rotation angle with the vertical rotation angle read from the first encoder so as to activate or deactivate the first motor so that the connecting rod drives the solar energy board to rotate to the predetermined vertical rotation angle.
  • Furthermore, the controller also generates a predetermined horizontal rotation angle of the solar energy board according to the solar tracking data. The second encoder is disposed at the second shaft to read the horizontal rotation angle of the solar energy board, or is coupled to the second motor to read the turn number of the second motor. When the second encoder is applied to read the horizontal rotation angle of the solar energy board, the controller compares the predetermined horizontal rotation angle with the horizontal rotation angle read from the second encoder so as to activate or deactivate the second motor so that the solar energy board is driven to rotate to the predetermined horizontal rotation angle. When the second encoder is applied to read the turn number of the second motor, the controller computes a predetermined turn number of the second motor according to the predetermined horizontal rotation angle, and compares the predetermined turn number with the turn number read from the second encoder so as to activate or deactivate the second motor so that the solar energy board is driven to rotate to the predetermined horizontal rotation angle.
  • The first motor and the first encoder can be disposed separately. The structure of the present invention further includes an optical sensor for sensing solar position at the initial time, thereby setting the reference point of the solar energy board.
  • The first shaft or the second shaft is preferably has a mechanical box connected with the first encoder or the second encoder for enhancing the reading precision of the first encoder or the second encoder.
  • The mechanical box of the second shaft is preferably connected to the second motor. A ratio of the horizontal rotation angle of the solar energy board to the turn number of the second motor corresponds to acceleration or deceleration ratio of the mechanical box.
  • In addition, the first motor or the second motor is preferably a servo motor, stepping motor, AC motor or DC motor. The mechanical box includes a plurality of gears assembled together, and is preferably an accelerative or decelerative mechanical box. The structure of the present invention further includes a pillar-like or plate-like supporter for supporting the solar energy board. The first encoder or the second encoder is preferably a magnetic encoder, optical encoder or reading sensor.
  • To achieve the above, the present invention discloses a method for controlling a solar energy board. The method includes steps of: providing a solar energy board connected with one side of a connecting rod; computing a solar tracking data to generate a predetermined vertical rotation angle of the solar energy board; activating a first motor to move the connecting rod for driving the solar energy board to rotate in the vertical direction; reading a vertical rotation angle of the solar energy board by a first encoder; comparing the predetermined vertical rotation angle with the vertical rotation angle read from the first encoder; and deactivating the first motor when the predetermined vertical rotation angle being equal to the vertical rotation angle read from the first encoder.
  • The connecting rod drives the solar energy board to rotate about the first shaft in the vertical direction. The first encoder is preferably disposed at the first shaft. The first motor is preferably disposed at the connecting rod.
  • Otherwise, a second encoder can be disposed at a second shaft to read a horizontal rotation angle of the solar energy board, or be connected to a second motor to read a turn number of the second motor. When the second encoder is applied to read the horizontal rotation angle of the solar energy board, the method for controlling the solar energy board further includes steps of: computing the solar tracking data to generate a predetermined horizontal rotation angle; activating a second motor to drive the solar energy board to rotate in the horizontal direction; reading a horizontal rotation angle of the solar energy board by a second encoder; comparing the predetermined horizontal rotation angle with the horizontal rotation angle read from the second encoder; and deactivating the second motor when the predetermined horizontal rotation angle being equal to the horizontal rotation angle.
  • Alternatively, when the second encoder is applied to read the turn number of the second motor, the method further includes steps of: computing the solar tracking data to generate a predetermined horizontal rotation angle; generating a predetermined turn number of a second motor according to the predetermined horizontal rotation angle; activating a second motor to drive the solar energy board to rotate in the horizontal direction; reading a turn number of the second motor by a second encoder; comparing the predetermined turn number with the turn number read from the second encoder; and deactivating the second motor when the predetermined turn number being equal to the turn number.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more fully understood from the subsequent detailed description and accompanying drawings, which are given by way of illustration only, and thus are not limitative of the present invention, and wherein:
  • FIG. 1 is a perspective diagram of a conventional solar energy apparatus;
  • FIG. 2 is a schematic diagram showing a structure for controlling solar energy board according to an embodiment of the present invention;
  • FIGS. 3A and 3B are block diagrams showing how to control solar energy board according to the present invention; and
  • FIGS. 4A and 4B are flow charts showing methods for controlling solar energy board according to the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention will be apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.
  • Please refer to FIG. 2 showing a structure for controlling solar energy board according to the present invention. The optical sensor 27 is utilized to sense solar position at the initial time, thereby providing the controller 25 with the reference point of the solar energy board 26. The first shaft 211 is used to control vertical rotation of the solar energy board 26. The first encoder 221 is disposed at the first shaft 211 for reading a vertical rotation angle of the solar energy board 26. The connecting rod 24 is connected with one side of the solar energy board 26. The first motor 231 is disposed at the connecting rod 24 for moving the connecting rod 24 so that the solar energy board 26 is driven to rotate in the vertical direction v. The controller 25 is respectively connected with the first encoder 221 and the first motor 231 so as to activate or deactivate the first motor 231 according to the vertical rotation angle read from the first encoder 221.
  • The second shaft 222 is used to control horizontal rotation of the solar energy board. The second motor 232 is disposed at the second shaft 212 to drive the solar energy board 26 to rotate in the horizontal direction h. The second encoder 222 is preferably disposed at the second shaft 212 and connected with the second motor 232 so as to read a horizontal rotation angle of the solar energy board 26 or a turn number of the second motor 232. The controller 25 is respectively connected with the second encoder 222 and the second motor 232 so as to activate or deactivate the second motor 232 according to the horizontal rotation angle or the turn number.
  • A mechanical box 29 including a plurality of gears assembled together is disposed at the second shaft 212. A ratio of the horizontal rotation angle of the solar energy board 26 to the turn number of the second motor 232 corresponds to acceleration or deceleration ratio of the mechanical box 29. The structure for controlling solar energy board further includes a pillar-like supporter 28 for supporting the solar energy board 26.
  • Please refer to FIGS. 3A and 3B showing block diagrams how to control solar energy board according to the present invention. The controller 25 has a built-in solar tracking data 31, thereby generating a predetermined vertical rotation angle 321. Afterwards, the controller 25 compares the predetermined vertical rotation angle 321 with the vertical rotation angle A1 read from the first encoder 221 so as to activate or deactivate the first motor 231 so that the connecting rod 24 drives the solar energy board to rotate to the predetermined vertical rotation angle.
  • In addition, the controller 25 also generates a predetermined horizontal rotation angle 322 of the solar energy board 26 according to the solar tracking data 31. The second encoder 222 can be disposed at the second shaft to read a horizontal rotation angle A2 of the solar energy board 26, or is coupled to the second motor to read a turn number A3 of the second motor 232. When the second encoder 222 is applied to read the horizontal rotation angle A2 of the solar energy board, the controller 25 compares the predetermined horizontal rotation angle 322 with the horizontal rotation angle A2 read from the second encoder 222 so as to activate or deactivate the second motor 232 so that the solar energy board 26 is driven to rotate to the predetermined horizontal rotation angle 322 as shown in FIG. 3A.
  • When the second encoder 222 is applied to read the turn number A3 of the second motor 232, the controller 25 computes a predetermined turn number 33 of the second motor 232 according to the predetermined horizontal rotation angle 322, and compares the predetermined turn number 33 with the turn number A3 read from the second encoder 222 so as to activate or deactivate the second motor 232 so that the solar energy board 26 is driven to rotate to the predetermined horizontal rotation angle 322 as shown in FIG. 3B.
  • The first shaft or the second shaft has a mechanical box connected with the first encoder or the second encoder for enhancing the reading precision of the first encoder or the second encoder. The first motor or the second motor is preferably a servo motor, stepping motor, AC motor or DC motor. The first encoder or the second encoder is preferably a magnetic encoder, optical encoder or reading sensor.
  • Referring to FIGS. 4A and 4B, the second encoder can be applied to read the horizontal rotation angle of the solar energy board or the turn number of the second motor. When the second encoder is applied to read the horizontal rotation angle as shown in FIG. 4A, the method for controlling solar energy board includes the steps S41 to S443 as follows.
  • In step S41, a solar energy board is provided to be connected with one side of a connecting rod.
  • In step S42, the predetermined vertical rotation angle and horizontal rotation angle of the solar energy board are generated according to the computation of a solar tracking data.
  • In step S431, a first motor is activated to move the connecting rod so that the solar energy board is driven to rotate in the vertical direction.
  • In step S432, a vertical rotation angle of the solar energy board is read by a first encoder.
  • In step S433, the vertical rotation angle read from the first encoder is compared with the predetermined vertical rotation angle so as to deactivate the first motor when the predetermined vertical rotation angle is equal to the vertical rotation angle read from the first encoder.
  • In step S441, a second motor is activated to drive the solar energy board to rotate in the horizontal direction.
  • In step S442, a horizontal rotation angle of the solar energy board is read by a second encoder.
  • In step S443, the horizontal rotation angle from the second encoder is compared with the predetermined horizontal rotation angle so as to deactivate the second motor when the predetermined horizontal rotation angle is equal to the horizontal rotation angle from the second encoder.
  • Alternatively, the second encoder can be also applied to read the turn number of the second motor as shown in FIG. 4B. The difference between FIG. 4A and FIG. 4B includes the steps S451 to S454 as follows.
  • In step S451, a predetermined turn number of the second motor is generated according to the computation of the predetermined horizontal rotation angle.
  • In step S452, the second motor is activated to drive the solar energy board to rotate in the horizontal direction.
  • In step S453, a turn number of the second motor is read by the second encoder.
  • In step S454, the turn number from the second encoder is compared with the predetermined turn number so as to deactivate the second motor when the predetermined turn number is equal to the turn number from the second encoder.
  • The connecting rod drives the solar energy board to rotate about the first shaft in the vertical direction. The first encoder is preferably disposed at the first shaft. The first motor is preferably disposed at the connecting rod.
  • In summary, the structure and method for controlling the solar energy board of the present invention computes solar position according to the solar tracking data. Therefore, the solar energy board can track the sun precisely in the condition of bad weather or dust contamination so as to optimize efficiency. In addition, the structure of the present invention drives the solar energy board to rotate in the vertical direction by a connecting rod. Further, the encoder is separated from the motor and disposed at the shaft, thereby minimizing the tolerance and inaccurate rotation angle of solar energy board.
  • Although the present invention has been described with reference to specific embodiments, this description is not meant to be construed in a limiting sense. Various modifications of the disclosed embodiments, as well as alternative embodiments, will be apparent to persons skilled in the art. It is, therefore, contemplated that the appended claims will cover all modifications that fall within the true scope of the present invention.

Claims (20)

1. A structure for controlling a solar energy board comprising:
a first shaft controlling a vertical rotation of the solar energy board;
a first encoder disposed at the first shaft for reading a vertical rotation angle of the solar energy board;
a connecting rod connected to one side of the solar energy board;
a first motor disposed at the connecting rod for moving the connecting rod so that the solar energy board is driven to rotate in the vertical direction; and
a controller respectively connected to the first encoder and the first motor so as to activate or deactivate the first motor according to the vertical rotation angle read from the first encoder.
2. The structure according to claim 1, wherein the controller generates a predetermined vertical rotation angle of the solar energy board according to a built-in solar tracking data and compares the predetermined vertical rotation angle with the vertical rotation angle read from the first encoder so as to activate or deactivate the first motor so that the connecting rod drives the solar energy board to rotate to the predetermined vertical rotation angle.
3. The structure according to claim 1, wherein the first motor and the first encoder are disposed separately.
4. The structure according to claim 1, further comprising an optical sensor for sensing a solar position at the initial time, thereby setting the reference point of the solar energy board.
5. The structure according to claim 1, further comprising:
a second shaft for controlling a horizontal rotation of the solar energy board;
a second motor disposed at the second shaft to rotate the second shaft so that the solar energy board is driven to rotate in the horizontal direction; and
a second encoder for reading a horizontal rotation angle of the solar energy board or a turn number of the second motor.
6. The structure according to claim 5, wherein the controller is respectively connected to the second encoder and the second motor so as to activate or deactivate the second motor according to the horizontal rotation angle read from the second encoder or the turn number of the second motor.
7. The structure according to claim 6, wherein the controller generates a predetermined horizontal rotation angle of the solar energy board according to a built-in solar tracking data and compares the predetermined horizontal rotation angle with the horizontal rotation angle read from the second encoder so as to activate or deactivate the second motor so that the solar energy board is driven to rotate to the predetermined horizontal rotation angle.
8. The structure according to claim 5, wherein the controller generates a predetermined horizontal rotation angle of the solar energy board according to a built-in solar tracking data, thereby computing a predetermined turn number of the second motor and compares the predetermined turn number with the turn number read from the second encoder so as to activate or deactivate the second motor so that the solar energy board is driven to rotate to the predetermined horizontal rotation angle.
9. The structure according to claim 5, wherein the first motor or the second motor is a servo motor, stepping motor, AC motor or DC motor, and the first encoder or the second encoder is a magnetic encoder, optical encoder or reading sensor.
10. The structure according to claim 5, further comprising a mechanical box connected to the second motor, wherein a ratio of the horizontal rotation angle of the solar energy board to the turn number of the second motor corresponds to an acceleration or deceleration ratio of the mechanical box.
11. The structure according to claim 5, further comprising a mechanical box disposed at the first shaft or the second shaft, and the mechanical box is connected to the first encoder or the second encoder for enhancing the reading precision of the first encoder or the second encoder.
12. The structure according to claim 11, wherein the mechanical box is an accelerative or decelerative mechanical box, and the mechanical box comprises a plurality of gears assembled together.
13. The structure according to claim 5, further comprising a pillar-like or plate-like supporter for supporting the solar energy board.
14. A method for controlling a solar energy board comprising steps of:
providing a solar energy board connected with one side of a connecting rod;
computing a solar tracking data to generate a predetermined vertical rotation angle of the solar energy board;
activating a first motor to move the connecting rod for driving the solar energy board to rotate in the vertical direction;
reading a vertical rotation angle of the solar energy board by a first encoder;
comparing the predetermined vertical rotation angle with the vertical rotation angle read from the first encoder; and
deactivating the first motor when the predetermined vertical rotation angle being equal to the vertical rotation angle read from the first encoder.
15. The method according to claim 14, wherein the solar energy board is driven to rotate in the vertical direction about the first shaft by the connecting rod, the first encoder is disposed at the first shaft, and the first motor is disposed at the connecting rod.
16. The method according to claim 14, further comprising steps of:
computing the solar tracking data to generate a predetermined horizontal rotation angle, or generating a predetermined turn number of a second motor according to the predetermined horizontal rotation angle;
activating a second motor to drive the solar energy board to rotate in the horizontal direction;
reading a horizontal rotation angle of the solar energy board or a turn number of the second motor by a second encoder;
comparing the predetermined horizontal rotation angle with the horizontal rotation angle read from the second encoder, or comparing the predetermined turn number with the turn number read from the second encoder; and
deactivating the second motor when the predetermined horizontal rotation angle is equal to the horizontal rotation angle, or when the predetermined turn number is equal to the turn number.
17. The method according to claim 16, wherein the solar energy board is driven to rotate in the horizontal direction about a second shaft, and the second encoder is disposed at the second shaft to read the horizontal rotation angle of the solar energy board, or is coupled to the second motor to read the turn number of the second motor.
18. The method according to claim 16, further comprising a step of providing an optical sensor for sensing solar position at the initial time, thereby setting the reference point of the solar energy board.
19. The method according to claim 16, further comprising a step of providing a mechanical box connected with the second motor, wherein a ratio of the horizontal rotation angle of the solar energy board to the turn number of the second motor corresponds to acceleration or deceleration ratio of the mechanical box.
20. The method according to claim 16, further comprising a step of providing a mechanical box connected with the first encoder or the second encoder for enhancing the reading precision of the first encoder or the second encoder.
US12/404,809 2009-01-19 2009-03-16 Structure and method for controlling solar energy board Abandoned US20100180886A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW098101854A TWI366653B (en) 2009-01-19 2009-01-19 Structure and method for controlling solar energy board
TW098101854 2009-01-19

Publications (1)

Publication Number Publication Date
US20100180886A1 true US20100180886A1 (en) 2010-07-22

Family

ID=42335959

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/404,809 Abandoned US20100180886A1 (en) 2009-01-19 2009-03-16 Structure and method for controlling solar energy board

Country Status (2)

Country Link
US (1) US20100180886A1 (en)
TW (1) TWI366653B (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090301467A1 (en) * 2008-06-05 2009-12-10 Hong-Wen Cheng Control Method and Device for Quasi-Uniaxial Sun Chase of Solar Panels
US20100218758A1 (en) * 2009-11-20 2010-09-02 International Business Machines Corporation Solar energy alignment and collection system
US20110122606A1 (en) * 2009-11-20 2011-05-26 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Solar energy collector and lamp using the same
US20110168167A1 (en) * 2010-01-13 2011-07-14 International Business Machines Corporation Multi-point cooling system for a solar concentrator
CN102393752A (en) * 2011-09-29 2012-03-28 南通纺织职业技术学院 Solar tracking device and control system thereof
US20120073564A1 (en) * 2010-09-24 2012-03-29 Ching-Hsiang Cheng Auto-focusing device for solar heat energy power generators and power generator cluster
US8168931B1 (en) * 2009-12-09 2012-05-01 Concrete Systems, Inc. Solar tracking device
CN102981514A (en) * 2012-12-04 2013-03-20 西北农林科技大学 Magnetic suspension type solar energy two-dimensional real-time tracking device based on spherical pair
US8569616B2 (en) 2009-11-20 2013-10-29 International Business Machines Corporation Method of concetrating solar energy
US20150207005A1 (en) * 2014-01-21 2015-07-23 Aiguo Feng Portable solar panel system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795851A (en) * 1972-01-03 1974-03-05 T Gage Digital servosystem
US6123067A (en) * 1999-03-31 2000-09-26 Amonix, Inc. Solar collector tracking system
US7109461B2 (en) * 2001-03-28 2006-09-19 Solar Systems Pty Ltd. Solar tracking system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3795851A (en) * 1972-01-03 1974-03-05 T Gage Digital servosystem
US6123067A (en) * 1999-03-31 2000-09-26 Amonix, Inc. Solar collector tracking system
US7109461B2 (en) * 2001-03-28 2006-09-19 Solar Systems Pty Ltd. Solar tracking system

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090301467A1 (en) * 2008-06-05 2009-12-10 Hong-Wen Cheng Control Method and Device for Quasi-Uniaxial Sun Chase of Solar Panels
US20100218758A1 (en) * 2009-11-20 2010-09-02 International Business Machines Corporation Solar energy alignment and collection system
US20110122606A1 (en) * 2009-11-20 2011-05-26 Fu Zhun Precision Industry (Shen Zhen) Co., Ltd. Solar energy collector and lamp using the same
US9057539B2 (en) 2009-11-20 2015-06-16 International Business Machines Corporation Method of tracking and collecting solar energy
US8569616B2 (en) 2009-11-20 2013-10-29 International Business Machines Corporation Method of concetrating solar energy
US8490619B2 (en) * 2009-11-20 2013-07-23 International Business Machines Corporation Solar energy alignment and collection system
US8168931B1 (en) * 2009-12-09 2012-05-01 Concrete Systems, Inc. Solar tracking device
US20110168167A1 (en) * 2010-01-13 2011-07-14 International Business Machines Corporation Multi-point cooling system for a solar concentrator
US9127859B2 (en) 2010-01-13 2015-09-08 International Business Machines Corporation Multi-point cooling system for a solar concentrator
US9157657B2 (en) 2010-01-13 2015-10-13 International Business Machines Corporation Method of cooling a solar concentrator
US20120073564A1 (en) * 2010-09-24 2012-03-29 Ching-Hsiang Cheng Auto-focusing device for solar heat energy power generators and power generator cluster
CN102393752A (en) * 2011-09-29 2012-03-28 南通纺织职业技术学院 Solar tracking device and control system thereof
CN102981514A (en) * 2012-12-04 2013-03-20 西北农林科技大学 Magnetic suspension type solar energy two-dimensional real-time tracking device based on spherical pair
US20150207005A1 (en) * 2014-01-21 2015-07-23 Aiguo Feng Portable solar panel system and method
US9819304B2 (en) * 2014-01-21 2017-11-14 Aiguo Feng Portable solar panel system and method

Also Published As

Publication number Publication date
TWI366653B (en) 2012-06-21
TW201028626A (en) 2010-08-01

Similar Documents

Publication Publication Date Title
US20100180886A1 (en) Structure and method for controlling solar energy board
JP4970580B2 (en) Sound barrier with solar power generation function
KR101242412B1 (en) Photovoltaic power generation device and solar cell board adjusting method
KR20110136935A (en) Photovoltaic power generation device and solar cell board adjusting method
JP5184473B2 (en) High-efficiency concentrating solar tracking device and method
CN1239013C (en) Forecast pulsive lighting to surface by utilizing micro-structure pilot tech
CN101943917B (en) Light ray automatic-tracking device
US20090050192A1 (en) Tracking-Type Photovoltaic Power Generation System, Method for Controlling the System, and Program Product for Controlling the System
KR100914273B1 (en) Not Project Shadow And Sunray Tracing Solar Cell Module System
EP2557431A1 (en) Solar panel tracking system and associated tracking sensor
KR100799094B1 (en) Sunlight detecting system for the solar cell and solar heat sink device
CN105259930B (en) Round-the-clock solar azimuth tracking and device
CN102035435B (en) Photovoltaic power generation device with two-dimensional photovoltaic sun-positioning mechanism
CN205336202U (en) All -weather solar position tracking means
US20190068113A1 (en) Solar panel tracing equipment and method and device of controlling the same, power generator and power system
CN101788826A (en) Solar panel control structure and method
CN101776918A (en) All-weather precise intelligent sun tracking system
KR101652243B1 (en) Solar sensor and solar tracker including the solar sensor
CN103592957B (en) Solar cell panel array and automatic light following system and method thereof
CN201837898U (en) Solar energy automatic tracking device
CN102789241B (en) Device and method for simulating solar illumination with autoregulative elevation angle
CN111993464A (en) Vibration testing device and method for spring coupling rotating multi-body mechanical arm system
CN201219246Y (en) Intermittent sun tracing control system
CN212749632U (en) Solar tracking control system with wind speed protection device
CN210774002U (en) Sunlight angle measuring device

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELTA ELECTRONICS, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHANG, HSUAN-HSI;REEL/FRAME:022402/0648

Effective date: 20090202

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION