US20100151555A1 - Isoprenoid compounds - Google Patents
Isoprenoid compounds Download PDFInfo
- Publication number
- US20100151555A1 US20100151555A1 US12/540,050 US54005009A US2010151555A1 US 20100151555 A1 US20100151555 A1 US 20100151555A1 US 54005009 A US54005009 A US 54005009A US 2010151555 A1 US2010151555 A1 US 2010151555A1
- Authority
- US
- United States
- Prior art keywords
- nucleic acid
- acid molecule
- squalene synthase
- isolated nucleic
- synthase enzyme
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- -1 Isoprenoid compounds Chemical class 0.000 title abstract description 10
- 108010022535 Farnesyl-Diphosphate Farnesyltransferase Proteins 0.000 claims abstract description 208
- 150000007523 nucleic acids Chemical class 0.000 claims abstract description 208
- 102000039446 nucleic acids Human genes 0.000 claims abstract description 189
- 108020004707 nucleic acids Proteins 0.000 claims abstract description 189
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims abstract description 91
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims abstract description 87
- 150000003505 terpenes Chemical class 0.000 claims abstract description 82
- VWFJDQUYCIWHTN-YFVJMOTDSA-N 2-trans,6-trans-farnesyl diphosphate Chemical compound CC(C)=CCC\C(C)=C\CC\C(C)=C\CO[P@](O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-YFVJMOTDSA-N 0.000 claims abstract description 42
- 102000004190 Enzymes Human genes 0.000 claims abstract description 42
- 108090000790 Enzymes Proteins 0.000 claims abstract description 42
- VWFJDQUYCIWHTN-UHFFFAOYSA-N Farnesyl pyrophosphate Natural products CC(C)=CCCC(C)=CCCC(C)=CCOP(O)(=O)OP(O)(O)=O VWFJDQUYCIWHTN-UHFFFAOYSA-N 0.000 claims abstract description 42
- YYGNTYWPHWGJRM-UHFFFAOYSA-N (6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene Chemical compound CC(C)=CCCC(C)=CCCC(C)=CCCC=C(C)CCC=C(C)CCC=C(C)C YYGNTYWPHWGJRM-UHFFFAOYSA-N 0.000 claims abstract description 36
- BHEOSNUKNHRBNM-UHFFFAOYSA-N Tetramethylsqualene Natural products CC(=C)C(C)CCC(=C)C(C)CCC(C)=CCCC=C(C)CCC(C)C(=C)CCC(C)C(C)=C BHEOSNUKNHRBNM-UHFFFAOYSA-N 0.000 claims abstract description 36
- PRAKJMSDJKAYCZ-UHFFFAOYSA-N dodecahydrosqualene Natural products CC(C)CCCC(C)CCCC(C)CCCCC(C)CCCC(C)CCCC(C)C PRAKJMSDJKAYCZ-UHFFFAOYSA-N 0.000 claims abstract description 36
- TUHBEKDERLKLEC-UHFFFAOYSA-N squalene Natural products CC(=CCCC(=CCCC(=CCCC=C(/C)CCC=C(/C)CC=C(C)C)C)C)C TUHBEKDERLKLEC-UHFFFAOYSA-N 0.000 claims abstract description 36
- 229940031439 squalene Drugs 0.000 claims abstract description 36
- 229930182558 Sterol Natural products 0.000 claims abstract description 23
- 150000003432 sterols Chemical class 0.000 claims abstract description 23
- 235000003702 sterols Nutrition 0.000 claims abstract description 23
- 230000009469 supplementation Effects 0.000 claims abstract description 15
- 210000004027 cell Anatomy 0.000 claims description 159
- 239000013598 vector Substances 0.000 claims description 77
- 101150116391 erg9 gene Proteins 0.000 claims description 74
- 150000001413 amino acids Chemical class 0.000 claims description 54
- 230000008859 change Effects 0.000 claims description 45
- 230000000813 microbial effect Effects 0.000 claims description 44
- 102100037997 Squalene synthase Human genes 0.000 claims description 43
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 32
- 230000000694 effects Effects 0.000 claims description 31
- 238000006467 substitution reaction Methods 0.000 claims description 31
- 230000015572 biosynthetic process Effects 0.000 claims description 28
- 238000001727 in vivo Methods 0.000 claims description 26
- 230000012010 growth Effects 0.000 claims description 23
- 230000002829 reductive effect Effects 0.000 claims description 22
- 238000003786 synthesis reaction Methods 0.000 claims description 22
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 21
- 108091026890 Coding region Proteins 0.000 claims description 19
- 230000035772 mutation Effects 0.000 claims description 14
- 238000013518 transcription Methods 0.000 claims description 14
- 230000035897 transcription Effects 0.000 claims description 14
- 210000003527 eukaryotic cell Anatomy 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 11
- 230000001105 regulatory effect Effects 0.000 claims description 10
- 230000010076 replication Effects 0.000 claims description 10
- 241000235070 Saccharomyces Species 0.000 claims description 9
- 241000894007 species Species 0.000 claims description 9
- 241000235648 Pichia Species 0.000 claims description 8
- 230000002538 fungal effect Effects 0.000 claims description 8
- 210000004962 mammalian cell Anatomy 0.000 claims description 8
- 238000013519 translation Methods 0.000 claims description 8
- 238000003776 cleavage reaction Methods 0.000 claims description 7
- 230000007017 scission Effects 0.000 claims description 7
- 239000000758 substrate Substances 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 7
- 241000222120 Candida <Saccharomycetales> Species 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims description 6
- 108091008146 restriction endonucleases Proteins 0.000 claims description 6
- 241000235649 Kluyveromyces Species 0.000 claims description 5
- 230000001413 cellular effect Effects 0.000 claims description 5
- 210000001236 prokaryotic cell Anatomy 0.000 claims description 5
- 241000235035 Debaryomyces Species 0.000 claims description 3
- 241000235395 Mucor Species 0.000 claims description 3
- 241000235017 Zygosaccharomyces Species 0.000 claims description 3
- 108700026244 Open Reading Frames Proteins 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 28
- OILXMJHPFNGGTO-UHFFFAOYSA-N (22E)-(24xi)-24-methylcholesta-5,22-dien-3beta-ol Natural products C1C=C2CC(O)CCC2(C)C2C1C1CCC(C(C)C=CC(C)C(C)C)C1(C)CC2 OILXMJHPFNGGTO-UHFFFAOYSA-N 0.000 abstract description 13
- RQOCXCFLRBRBCS-UHFFFAOYSA-N (22E)-cholesta-5,7,22-trien-3beta-ol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CCC(C)C)CCC33)C)C3=CC=C21 RQOCXCFLRBRBCS-UHFFFAOYSA-N 0.000 abstract description 13
- OQMZNAMGEHIHNN-UHFFFAOYSA-N 7-Dehydrostigmasterol Natural products C1C(O)CCC2(C)C(CCC3(C(C(C)C=CC(CC)C(C)C)CCC33)C)C3=CC=C21 OQMZNAMGEHIHNN-UHFFFAOYSA-N 0.000 abstract description 13
- DNVPQKQSNYMLRS-NXVQYWJNSA-N Ergosterol Natural products CC(C)[C@@H](C)C=C[C@H](C)[C@H]1CC[C@H]2C3=CC=C4C[C@@H](O)CC[C@]4(C)[C@@H]3CC[C@]12C DNVPQKQSNYMLRS-NXVQYWJNSA-N 0.000 abstract description 13
- DNVPQKQSNYMLRS-SOWFXMKYSA-N ergosterol Chemical compound C1[C@@H](O)CC[C@]2(C)[C@H](CC[C@]3([C@H]([C@H](C)/C=C/[C@@H](C)C(C)C)CC[C@H]33)C)C3=CC=C21 DNVPQKQSNYMLRS-SOWFXMKYSA-N 0.000 abstract description 13
- 108090000623 proteins and genes Proteins 0.000 description 110
- 238000000034 method Methods 0.000 description 83
- 108020004414 DNA Proteins 0.000 description 68
- 235000001014 amino acid Nutrition 0.000 description 66
- 230000014509 gene expression Effects 0.000 description 60
- 229940024606 amino acid Drugs 0.000 description 53
- 102000004169 proteins and genes Human genes 0.000 description 37
- 125000000539 amino acid group Chemical group 0.000 description 36
- 101100390536 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) erg-6 gene Proteins 0.000 description 34
- 239000013612 plasmid Substances 0.000 description 33
- 235000018102 proteins Nutrition 0.000 description 31
- 238000000855 fermentation Methods 0.000 description 29
- 230000004151 fermentation Effects 0.000 description 29
- 239000013604 expression vector Substances 0.000 description 27
- WEZDOYDDKIHCLM-UHFFFAOYSA-N Agarospirene Natural products CC1CCC=C(C)C11CC(C(C)=C)CC1 WEZDOYDDKIHCLM-UHFFFAOYSA-N 0.000 description 26
- 229930000013 premnaspirodiene Natural products 0.000 description 26
- WEZDOYDDKIHCLM-RBSFLKMASA-N premnaspirodiene Chemical compound C[C@@H]1CCC=C(C)[C@@]11C[C@H](C(C)=C)CC1 WEZDOYDDKIHCLM-RBSFLKMASA-N 0.000 description 26
- 239000000047 product Substances 0.000 description 25
- 108090000765 processed proteins & peptides Proteins 0.000 description 24
- 241000196324 Embryophyta Species 0.000 description 23
- 229920001184 polypeptide Polymers 0.000 description 23
- 102000004196 processed proteins & peptides Human genes 0.000 description 23
- 101100390535 Mus musculus Fdft1 gene Proteins 0.000 description 20
- 239000002609 medium Substances 0.000 description 20
- 241000700605 Viruses Species 0.000 description 18
- 238000003752 polymerase chain reaction Methods 0.000 description 18
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 16
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 15
- 239000002773 nucleotide Substances 0.000 description 15
- 125000003729 nucleotide group Chemical group 0.000 description 15
- 210000000349 chromosome Anatomy 0.000 description 14
- 235000007586 terpenes Nutrition 0.000 description 13
- 239000002299 complementary DNA Substances 0.000 description 12
- 230000037432 silent mutation Effects 0.000 description 11
- 101150009006 HIS3 gene Proteins 0.000 description 10
- 101100394989 Rhodopseudomonas palustris (strain ATCC BAA-98 / CGA009) hisI gene Proteins 0.000 description 10
- 238000010367 cloning Methods 0.000 description 10
- 108010087432 terpene synthase Proteins 0.000 description 10
- 230000014616 translation Effects 0.000 description 10
- 241000894006 Bacteria Species 0.000 description 9
- 108091033319 polynucleotide Proteins 0.000 description 9
- 102000040430 polynucleotide Human genes 0.000 description 9
- 239000002157 polynucleotide Substances 0.000 description 9
- 230000009466 transformation Effects 0.000 description 9
- 210000005253 yeast cell Anatomy 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 8
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 8
- 238000013459 approach Methods 0.000 description 8
- 239000008103 glucose Substances 0.000 description 8
- 230000002209 hydrophobic effect Effects 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 230000001939 inductive effect Effects 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 241000701161 unidentified adenovirus Species 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- 230000001580 bacterial effect Effects 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 7
- 230000002950 deficient Effects 0.000 description 7
- 108020004999 messenger RNA Proteins 0.000 description 7
- 238000002703 mutagenesis Methods 0.000 description 7
- 231100000350 mutagenesis Toxicity 0.000 description 7
- 238000003199 nucleic acid amplification method Methods 0.000 description 7
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 230000003612 virological effect Effects 0.000 description 7
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 6
- 238000007792 addition Methods 0.000 description 6
- 230000000295 complement effect Effects 0.000 description 6
- 239000003550 marker Substances 0.000 description 6
- 235000015097 nutrients Nutrition 0.000 description 6
- 108700028369 Alleles Proteins 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 5
- 102000053602 DNA Human genes 0.000 description 5
- 241000238631 Hexapoda Species 0.000 description 5
- 241001495123 Hyoscyamus muticus Species 0.000 description 5
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 5
- 108091092724 Noncoding DNA Proteins 0.000 description 5
- 108091034117 Oligonucleotide Proteins 0.000 description 5
- 230000003321 amplification Effects 0.000 description 5
- 210000004102 animal cell Anatomy 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 239000003623 enhancer Substances 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 238000003780 insertion Methods 0.000 description 5
- 230000037431 insertion Effects 0.000 description 5
- 238000002955 isolation Methods 0.000 description 5
- 244000005700 microbiome Species 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 239000012071 phase Substances 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- FQVLRGLGWNWPSS-BXBUPLCLSA-N (4r,7s,10s,13s,16r)-16-acetamido-13-(1h-imidazol-5-ylmethyl)-10-methyl-6,9,12,15-tetraoxo-7-propan-2-yl-1,2-dithia-5,8,11,14-tetrazacycloheptadecane-4-carboxamide Chemical compound N1C(=O)[C@@H](NC(C)=O)CSSC[C@@H](C(N)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](C)NC(=O)[C@@H]1CC1=CN=CN1 FQVLRGLGWNWPSS-BXBUPLCLSA-N 0.000 description 4
- 102100034035 Alcohol dehydrogenase 1A Human genes 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 101000892220 Geobacillus thermodenitrificans (strain NG80-2) Long-chain-alcohol dehydrogenase 1 Proteins 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- 101000780443 Homo sapiens Alcohol dehydrogenase 1A Proteins 0.000 description 4
- 108091092195 Intron Proteins 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- 125000002707 L-tryptophyl group Chemical group [H]C1=C([H])C([H])=C2C(C([C@](N([H])[H])(C(=O)[*])[H])([H])[H])=C([H])N([H])C2=C1[H] 0.000 description 4
- 102000003792 Metallothionein Human genes 0.000 description 4
- 108090000157 Metallothionein Proteins 0.000 description 4
- 101710182846 Polyhedrin Proteins 0.000 description 4
- 241000723873 Tobacco mosaic virus Species 0.000 description 4
- 241000700618 Vaccinia virus Species 0.000 description 4
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Chemical compound CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 4
- 230000000692 anti-sense effect Effects 0.000 description 4
- 229940041514 candida albicans extract Drugs 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 238000004520 electroporation Methods 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 108020001507 fusion proteins Proteins 0.000 description 4
- 102000037865 fusion proteins Human genes 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 108010000820 premnaspirodiene synthase Proteins 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 230000035939 shock Effects 0.000 description 4
- 230000010473 stable expression Effects 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 229940035893 uracil Drugs 0.000 description 4
- 239000012138 yeast extract Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 3
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 3
- 241000201370 Autographa californica nucleopolyhedrovirus Species 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 241000206602 Eukaryota Species 0.000 description 3
- 230000005526 G1 to G0 transition Effects 0.000 description 3
- 101100321817 Human parvovirus B19 (strain HV) 7.5K gene Proteins 0.000 description 3
- 125000003412 L-alanyl group Chemical group [H]N([H])[C@@](C([H])([H])[H])(C(=O)[*])[H] 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 238000012408 PCR amplification Methods 0.000 description 3
- 108091093037 Peptide nucleic acid Proteins 0.000 description 3
- 108020004511 Recombinant DNA Proteins 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 108030001636 Squalene synthases Proteins 0.000 description 3
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 239000000796 flavoring agent Substances 0.000 description 3
- 235000019634 flavors Nutrition 0.000 description 3
- 239000003205 fragrance Substances 0.000 description 3
- 238000004817 gas chromatography Methods 0.000 description 3
- 230000002068 genetic effect Effects 0.000 description 3
- 230000013595 glycosylation Effects 0.000 description 3
- 238000006206 glycosylation reaction Methods 0.000 description 3
- 238000009396 hybridization Methods 0.000 description 3
- 230000000977 initiatory effect Effects 0.000 description 3
- 230000003834 intracellular effect Effects 0.000 description 3
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical compound CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 3
- 238000000520 microinjection Methods 0.000 description 3
- 239000012454 non-polar solvent Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 235000019198 oils Nutrition 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- DIGQNXIGRZPYDK-WKSCXVIASA-N (2R)-6-amino-2-[[2-[[(2S)-2-[[2-[[(2R)-2-[[(2S)-2-[[(2R,3S)-2-[[2-[[(2S)-2-[[2-[[(2S)-2-[[(2S)-2-[[(2R)-2-[[(2S,3S)-2-[[(2R)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[2-[[(2S)-2-[[(2R)-2-[[2-[[2-[[2-[(2-amino-1-hydroxyethylidene)amino]-3-carboxy-1-hydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxypropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1,5-dihydroxy-5-iminopentylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxybutylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1,3-dihydroxypropylidene]amino]-1-hydroxyethylidene]amino]-1-hydroxy-3-sulfanylpropylidene]amino]-1-hydroxyethylidene]amino]hexanoic acid Chemical compound C[C@@H]([C@@H](C(=N[C@@H](CS)C(=N[C@@H](C)C(=N[C@@H](CO)C(=NCC(=N[C@@H](CCC(=N)O)C(=NC(CS)C(=N[C@H]([C@H](C)O)C(=N[C@H](CS)C(=N[C@H](CO)C(=NCC(=N[C@H](CS)C(=NCC(=N[C@H](CCCCN)C(=O)O)O)O)O)O)O)O)O)O)O)O)O)O)O)N=C([C@H](CS)N=C([C@H](CO)N=C([C@H](CO)N=C([C@H](C)N=C(CN=C([C@H](CO)N=C([C@H](CS)N=C(CN=C(C(CS)N=C(C(CC(=O)O)N=C(CN)O)O)O)O)O)O)O)O)O)O)O)O DIGQNXIGRZPYDK-WKSCXVIASA-N 0.000 description 2
- HPZMWTNATZPBIH-UHFFFAOYSA-N 1-methyladenine Chemical compound CN1C=NC2=NC=NC2=C1N HPZMWTNATZPBIH-UHFFFAOYSA-N 0.000 description 2
- RFLVMTUMFYRZCB-UHFFFAOYSA-N 1-methylguanine Chemical compound O=C1N(C)C(N)=NC2=C1N=CN2 RFLVMTUMFYRZCB-UHFFFAOYSA-N 0.000 description 2
- YSAJFXWTVFGPAX-UHFFFAOYSA-N 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetic acid Chemical compound OC(=O)COC1=CNC(=O)NC1=O YSAJFXWTVFGPAX-UHFFFAOYSA-N 0.000 description 2
- FZWGECJQACGGTI-UHFFFAOYSA-N 2-amino-7-methyl-1,7-dihydro-6H-purin-6-one Chemical compound NC1=NC(O)=C2N(C)C=NC2=N1 FZWGECJQACGGTI-UHFFFAOYSA-N 0.000 description 2
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- OVONXEQGWXGFJD-UHFFFAOYSA-N 4-sulfanylidene-1h-pyrimidin-2-one Chemical compound SC=1C=CNC(=O)N=1 OVONXEQGWXGFJD-UHFFFAOYSA-N 0.000 description 2
- OIVLITBTBDPEFK-UHFFFAOYSA-N 5,6-dihydrouracil Chemical compound O=C1CCNC(=O)N1 OIVLITBTBDPEFK-UHFFFAOYSA-N 0.000 description 2
- DCPSTSVLRXOYGS-UHFFFAOYSA-N 6-amino-1h-pyrimidine-2-thione Chemical compound NC1=CC=NC(S)=N1 DCPSTSVLRXOYGS-UHFFFAOYSA-N 0.000 description 2
- 244000178606 Abies grandis Species 0.000 description 2
- 235000017894 Abies grandis Nutrition 0.000 description 2
- 241000701822 Bovine papillomavirus Species 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 2
- 101710132601 Capsid protein Proteins 0.000 description 2
- 101710094648 Coat protein Proteins 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 241000701959 Escherichia virus Lambda Species 0.000 description 2
- PLUBXMRUUVWRLT-UHFFFAOYSA-N Ethyl methanesulfonate Chemical compound CCOS(C)(=O)=O PLUBXMRUUVWRLT-UHFFFAOYSA-N 0.000 description 2
- 102100039556 Galectin-4 Human genes 0.000 description 2
- 102000005731 Glucose-6-phosphate isomerase Human genes 0.000 description 2
- 108010070600 Glucose-6-phosphate isomerase Proteins 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 102100021181 Golgi phosphoprotein 3 Human genes 0.000 description 2
- 101000608765 Homo sapiens Galectin-4 Proteins 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 241001138401 Kluyveromyces lactis Species 0.000 description 2
- 241000235058 Komagataella pastoris Species 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 101150068888 MET3 gene Proteins 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 101710125418 Major capsid protein Proteins 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 241001045988 Neogene Species 0.000 description 2
- 101100022915 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cys-11 gene Proteins 0.000 description 2
- 101710141454 Nucleoprotein Proteins 0.000 description 2
- 102000052812 Ornithine decarboxylases Human genes 0.000 description 2
- 108700005126 Ornithine decarboxylases Proteins 0.000 description 2
- 101710083689 Probable capsid protein Proteins 0.000 description 2
- 108091028664 Ribonucleotide Proteins 0.000 description 2
- 108010003581 Ribulose-bisphosphate carboxylase Proteins 0.000 description 2
- 101100022918 Schizosaccharomyces pombe (strain 972 / ATCC 24843) sua1 gene Proteins 0.000 description 2
- 102000039471 Small Nuclear RNA Human genes 0.000 description 2
- 108020004459 Small interfering RNA Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 241000256251 Spodoptera frugiperda Species 0.000 description 2
- 241000607479 Yersinia pestis Species 0.000 description 2
- ZSLZBFCDCINBPY-ZSJPKINUSA-N acetyl-CoA Chemical compound O[C@@H]1[C@H](OP(O)(O)=O)[C@@H](COP(O)(=O)OP(O)(=O)OCC(C)(C)[C@@H](O)C(=O)NCCC(=O)NCCSC(=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 ZSLZBFCDCINBPY-ZSJPKINUSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 235000011130 ammonium sulphate Nutrition 0.000 description 2
- 229960000723 ampicillin Drugs 0.000 description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 239000008346 aqueous phase Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000002306 biochemical method Methods 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 239000001110 calcium chloride Substances 0.000 description 2
- 229910001628 calcium chloride Inorganic materials 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 238000011098 chromatofocusing Methods 0.000 description 2
- 239000013611 chromosomal DNA Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 239000005547 deoxyribonucleotide Substances 0.000 description 2
- 125000002637 deoxyribonucleotide group Chemical group 0.000 description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 2
- SNRUBQQJIBEYMU-UHFFFAOYSA-N dodecane Chemical compound CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- VLCYCQAOQCDTCN-UHFFFAOYSA-N eflornithine Chemical compound NCCCC(N)(C(F)F)C(O)=O VLCYCQAOQCDTCN-UHFFFAOYSA-N 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000002523 gelfiltration Methods 0.000 description 2
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 2
- 230000033444 hydroxylation Effects 0.000 description 2
- 238000005805 hydroxylation reaction Methods 0.000 description 2
- 238000001155 isoelectric focusing Methods 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 101150091879 neo gene Proteins 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000012261 overproduction Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- YCOZIPAWZNQLMR-UHFFFAOYSA-N pentadecane Chemical compound CCCCCCCCCCCCCCC YCOZIPAWZNQLMR-UHFFFAOYSA-N 0.000 description 2
- 150000004713 phosphodiesters Chemical class 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 238000001742 protein purification Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000001177 retroviral effect Effects 0.000 description 2
- 238000010839 reverse transcription Methods 0.000 description 2
- 239000002336 ribonucleotide Substances 0.000 description 2
- 125000002652 ribonucleotide group Chemical group 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000013606 secretion vector Substances 0.000 description 2
- 239000004055 small Interfering RNA Substances 0.000 description 2
- 108091029842 small nuclear ribonucleic acid Proteins 0.000 description 2
- 235000012424 soybean oil Nutrition 0.000 description 2
- 239000003549 soybean oil Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- BGHCVCJVXZWKCC-UHFFFAOYSA-N tetradecane Chemical compound CCCCCCCCCCCCCC BGHCVCJVXZWKCC-UHFFFAOYSA-N 0.000 description 2
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- IIYFAKIEWZDVMP-UHFFFAOYSA-N tridecane Chemical compound CCCCCCCCCCCCC IIYFAKIEWZDVMP-UHFFFAOYSA-N 0.000 description 2
- 241001430294 unidentified retrovirus Species 0.000 description 2
- 108700026220 vif Genes Proteins 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- WTVHAMTYZJGJLJ-UHFFFAOYSA-N (+)-(4S,8R)-8-epi-beta-bisabolol Natural products CC(C)=CCCC(C)C1(O)CCC(C)=CC1 WTVHAMTYZJGJLJ-UHFFFAOYSA-N 0.000 description 1
- WTOYNNBCKUYIKC-JMSVASOKSA-N (+)-nootkatone Chemical compound C1C[C@@H](C(C)=C)C[C@@]2(C)[C@H](C)CC(=O)C=C21 WTOYNNBCKUYIKC-JMSVASOKSA-N 0.000 description 1
- RGZSQWQPBWRIAQ-CABCVRRESA-N (-)-alpha-Bisabolol Chemical compound CC(C)=CCC[C@](C)(O)[C@H]1CCC(C)=CC1 RGZSQWQPBWRIAQ-CABCVRRESA-N 0.000 description 1
- AOFUBOWZWQFQJU-SNOJBQEQSA-N (2r,3s,4s,5r)-2,5-bis(hydroxymethyl)oxolane-2,3,4-triol;(2s,3r,4s,5s,6r)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O.OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O AOFUBOWZWQFQJU-SNOJBQEQSA-N 0.000 description 1
- YHBUQBJHSRGZNF-VGOFMYFVSA-N (E)-alpha-bisabolene Chemical compound CC(C)=CC\C=C(/C)C1CCC(C)=CC1 YHBUQBJHSRGZNF-VGOFMYFVSA-N 0.000 description 1
- 101710100916 (E)-beta-farnesene synthase Proteins 0.000 description 1
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 1
- SATCOUWSAZBIJO-UHFFFAOYSA-N 1-methyladenine Natural products N=C1N(C)C=NC2=C1NC=N2 SATCOUWSAZBIJO-UHFFFAOYSA-N 0.000 description 1
- WJNGQIYEQLPJMN-IOSLPCCCSA-N 1-methylinosine Chemical compound C1=NC=2C(=O)N(C)C=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O WJNGQIYEQLPJMN-IOSLPCCCSA-N 0.000 description 1
- HLYBTPMYFWWNJN-UHFFFAOYSA-N 2-(2,4-dioxo-1h-pyrimidin-5-yl)-2-hydroxyacetic acid Chemical compound OC(=O)C(O)C1=CNC(=O)NC1=O HLYBTPMYFWWNJN-UHFFFAOYSA-N 0.000 description 1
- PIINGYXNCHTJTF-UHFFFAOYSA-N 2-(2-azaniumylethylamino)acetate Chemical group NCCNCC(O)=O PIINGYXNCHTJTF-UHFFFAOYSA-N 0.000 description 1
- SVBOROZXXYRWJL-UHFFFAOYSA-N 2-[(4-oxo-2-sulfanylidene-1h-pyrimidin-5-yl)methylamino]acetic acid Chemical compound OC(=O)CNCC1=CNC(=S)NC1=O SVBOROZXXYRWJL-UHFFFAOYSA-N 0.000 description 1
- LLWPKTDSDUQBFY-UHFFFAOYSA-N 2-[6-(aminomethyl)-2,4-dioxo-1H-pyrimidin-5-yl]acetic acid Chemical compound C(=O)(O)CC=1C(NC(NC=1CN)=O)=O LLWPKTDSDUQBFY-UHFFFAOYSA-N 0.000 description 1
- XMSMHKMPBNTBOD-UHFFFAOYSA-N 2-dimethylamino-6-hydroxypurine Chemical compound N1C(N(C)C)=NC(=O)C2=C1N=CN2 XMSMHKMPBNTBOD-UHFFFAOYSA-N 0.000 description 1
- SMADWRYCYBUIKH-UHFFFAOYSA-N 2-methyl-7h-purin-6-amine Chemical compound CC1=NC(N)=C2NC=NC2=N1 SMADWRYCYBUIKH-UHFFFAOYSA-N 0.000 description 1
- WTLKTXIHIHFSGU-UHFFFAOYSA-N 2-nitrosoguanidine Chemical compound NC(N)=NN=O WTLKTXIHIHFSGU-UHFFFAOYSA-N 0.000 description 1
- 102100029077 3-hydroxy-3-methylglutaryl-coenzyme A reductase Human genes 0.000 description 1
- 101710158485 3-hydroxy-3-methylglutaryl-coenzyme A reductase Proteins 0.000 description 1
- KOLPWZCZXAMXKS-UHFFFAOYSA-N 3-methylcytosine Chemical compound CN1C(N)=CC=NC1=O KOLPWZCZXAMXKS-UHFFFAOYSA-N 0.000 description 1
- GJAKJCICANKRFD-UHFFFAOYSA-N 4-acetyl-4-amino-1,3-dihydropyrimidin-2-one Chemical compound CC(=O)C1(N)NC(=O)NC=C1 GJAKJCICANKRFD-UHFFFAOYSA-N 0.000 description 1
- MQJSSLBGAQJNER-UHFFFAOYSA-N 5-(methylaminomethyl)-1h-pyrimidine-2,4-dione Chemical compound CNCC1=CNC(=O)NC1=O MQJSSLBGAQJNER-UHFFFAOYSA-N 0.000 description 1
- LQLQRFGHAALLLE-UHFFFAOYSA-N 5-bromouracil Chemical compound BrC1=CNC(=O)NC1=O LQLQRFGHAALLLE-UHFFFAOYSA-N 0.000 description 1
- 108010014293 5-epi-aristolochene synthase Proteins 0.000 description 1
- KELXHQACBIUYSE-UHFFFAOYSA-N 5-methoxy-1h-pyrimidine-2,4-dione Chemical compound COC1=CNC(=O)NC1=O KELXHQACBIUYSE-UHFFFAOYSA-N 0.000 description 1
- ZLAQATDNGLKIEV-UHFFFAOYSA-N 5-methyl-2-sulfanylidene-1h-pyrimidin-4-one Chemical compound CC1=CNC(=S)NC1=O ZLAQATDNGLKIEV-UHFFFAOYSA-N 0.000 description 1
- LRSASMSXMSNRBT-UHFFFAOYSA-N 5-methylcytosine Chemical compound CC1=CNC(=O)N=C1N LRSASMSXMSNRBT-UHFFFAOYSA-N 0.000 description 1
- UDZRZGNQQSUDNP-UHFFFAOYSA-N 6-(aminomethyl)-5-methoxy-2-sulfanylidene-1H-pyrimidin-4-one Chemical compound COC=1C(NC(NC=1CN)=S)=O UDZRZGNQQSUDNP-UHFFFAOYSA-N 0.000 description 1
- HSPHKCOAUOJLIO-UHFFFAOYSA-N 6-(aziridin-1-ylamino)-1h-pyrimidin-2-one Chemical compound N1C(=O)N=CC=C1NN1CC1 HSPHKCOAUOJLIO-UHFFFAOYSA-N 0.000 description 1
- CKOMXBHMKXXTNW-UHFFFAOYSA-N 6-methyladenine Chemical compound CNC1=NC=NC2=C1N=CN2 CKOMXBHMKXXTNW-UHFFFAOYSA-N 0.000 description 1
- SWJYOKZMYFJUOY-KQYNXXCUSA-N 9-[(2r,3r,4s,5r)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6-(methylamino)-7h-purin-8-one Chemical compound OC1=NC=2C(NC)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O SWJYOKZMYFJUOY-KQYNXXCUSA-N 0.000 description 1
- MSSXOMSJDRHRMC-UHFFFAOYSA-N 9H-purine-2,6-diamine Chemical compound NC1=NC(N)=C2NC=NC2=N1 MSSXOMSJDRHRMC-UHFFFAOYSA-N 0.000 description 1
- 241000589291 Acinetobacter Species 0.000 description 1
- 102100029457 Adenine phosphoribosyltransferase Human genes 0.000 description 1
- 108010024223 Adenine phosphoribosyltransferase Proteins 0.000 description 1
- 108010022380 Amorpha-4,11-diene synthase Proteins 0.000 description 1
- 108020004491 Antisense DNA Proteins 0.000 description 1
- 108020005544 Antisense RNA Proteins 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 235000001405 Artemisia annua Nutrition 0.000 description 1
- 240000000011 Artemisia annua Species 0.000 description 1
- 241000722808 Arthrobotrys Species 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 239000002028 Biomass Substances 0.000 description 1
- 101100327917 Caenorhabditis elegans chup-1 gene Proteins 0.000 description 1
- 240000004160 Capsicum annuum Species 0.000 description 1
- 235000002567 Capsicum annuum Nutrition 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 108090000994 Catalytic RNA Proteins 0.000 description 1
- 102000053642 Catalytic RNA Human genes 0.000 description 1
- 241000701489 Cauliflower mosaic virus Species 0.000 description 1
- 244000298479 Cichorium intybus Species 0.000 description 1
- 235000007542 Cichorium intybus Nutrition 0.000 description 1
- 108010007343 Citrus valencene synthase Proteins 0.000 description 1
- 108091033380 Coding strand Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 241000192700 Cyanobacteria Species 0.000 description 1
- 102000002004 Cytochrome P-450 Enzyme System Human genes 0.000 description 1
- 108010015742 Cytochrome P-450 Enzyme System Proteins 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 241000701832 Enterobacteria phage T3 Species 0.000 description 1
- 108030004983 Epi-cedrol synthases Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000588722 Escherichia Species 0.000 description 1
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 108010061047 Gamma-humulene synthase Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 108010048467 Germacrene C synthase Proteins 0.000 description 1
- 108030004951 Germacrene-A synthases Proteins 0.000 description 1
- 102000030595 Glucokinase Human genes 0.000 description 1
- 108010021582 Glucokinase Proteins 0.000 description 1
- 240000001814 Gossypium arboreum Species 0.000 description 1
- 235000014751 Gossypium arboreum Nutrition 0.000 description 1
- SQUHHTBVTRBESD-UHFFFAOYSA-N Hexa-Ac-myo-Inositol Natural products CC(=O)OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC(C)=O SQUHHTBVTRBESD-UHFFFAOYSA-N 0.000 description 1
- 102000005548 Hexokinase Human genes 0.000 description 1
- 108700040460 Hexokinases Proteins 0.000 description 1
- 108010091358 Hypoxanthine Phosphoribosyltransferase Proteins 0.000 description 1
- 102100029098 Hypoxanthine-guanine phosphoribosyltransferase Human genes 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 125000000570 L-alpha-aspartyl group Chemical group [H]OC(=O)C([H])([H])[C@]([H])(N([H])[H])C(*)=O 0.000 description 1
- 125000002059 L-arginyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C([H])([H])C([H])([H])N([H])C(=N[H])N([H])[H] 0.000 description 1
- 125000000010 L-asparaginyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(=O)N([H])[H] 0.000 description 1
- 125000000415 L-cysteinyl group Chemical group O=C([*])[C@@](N([H])[H])([H])C([H])([H])S[H] 0.000 description 1
- 125000003338 L-glutaminyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C([H])([H])C(=O)N([H])[H] 0.000 description 1
- 125000002061 L-isoleucyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](C([H])([H])[H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000003440 L-leucyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 description 1
- 125000001176 L-lysyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C([H])([H])C([H])([H])C(N([H])[H])([H])[H] 0.000 description 1
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 125000002435 L-phenylalanyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 1
- 125000000769 L-threonyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](O[H])(C([H])([H])[H])[H] 0.000 description 1
- 125000003798 L-tyrosyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 240000008415 Lactuca sativa Species 0.000 description 1
- 235000003228 Lactuca sativa Nutrition 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 101710175625 Maltose/maltodextrin-binding periplasmic protein Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 235000004357 Mentha x piperita Nutrition 0.000 description 1
- 241001479543 Mentha x piperita Species 0.000 description 1
- 101100261636 Methanothermobacter marburgensis (strain ATCC BAA-927 / DSM 2133 / JCM 14651 / NBRC 100331 / OCM 82 / Marburg) trpB2 gene Proteins 0.000 description 1
- 241000589350 Methylobacter Species 0.000 description 1
- SGSSKEDGVONRGC-UHFFFAOYSA-N N(2)-methylguanine Chemical compound O=C1NC(NC)=NC2=C1N=CN2 SGSSKEDGVONRGC-UHFFFAOYSA-N 0.000 description 1
- HYVABZIGRDEKCD-UHFFFAOYSA-N N(6)-dimethylallyladenine Chemical compound CC(C)=CCNC1=NC=NC2=C1N=CN2 HYVABZIGRDEKCD-UHFFFAOYSA-N 0.000 description 1
- 229910004616 Na2MoO4.2H2 O Inorganic materials 0.000 description 1
- 101000915175 Nicotiana tabacum 5-epi-aristolochene synthase Proteins 0.000 description 1
- 229940122060 Ornithine decarboxylase inhibitor Drugs 0.000 description 1
- 108010087702 Penicillinase Proteins 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 102000001105 Phosphofructokinases Human genes 0.000 description 1
- 108010069341 Phosphofructokinases Proteins 0.000 description 1
- 102000012288 Phosphopyruvate Hydratase Human genes 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 101100124346 Photorhabdus laumondii subsp. laumondii (strain DSM 15139 / CIP 105565 / TT01) hisCD gene Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 1
- 102000013009 Pyruvate Kinase Human genes 0.000 description 1
- 108020005115 Pyruvate Kinase Proteins 0.000 description 1
- 108020004518 RNA Probes Proteins 0.000 description 1
- 239000003391 RNA probe Substances 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 241000191025 Rhodobacter Species 0.000 description 1
- 241000316848 Rhodococcus <scale insect> Species 0.000 description 1
- 241000220317 Rosa Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 240000003768 Solanum lycopersicum Species 0.000 description 1
- 240000006021 Solidago canadensis Species 0.000 description 1
- 235000003657 Solidago canadensis Nutrition 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 241000192584 Synechocystis Species 0.000 description 1
- 101150006914 TRP1 gene Proteins 0.000 description 1
- 101710136739 Teichoic acid poly(glycerol phosphate) polymerase Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 102000006601 Thymidine Kinase Human genes 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108020004566 Transfer RNA Proteins 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 101150012828 UPC2 gene Proteins 0.000 description 1
- 108010053355 Vetispiradiene synthase Proteins 0.000 description 1
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- XJLXINKUBYWONI-DQQFMEOOSA-N [[(2r,3r,4r,5r)-5-(6-aminopurin-9-yl)-3-hydroxy-4-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl] [(2s,3r,4s,5s)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl phosphate Chemical compound NC(=O)C1=CC=C[N+]([C@@H]2[C@H]([C@@H](O)[C@H](COP([O-])(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-DQQFMEOOSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- RGZSQWQPBWRIAQ-LSDHHAIUSA-N alpha-Bisabolol Natural products CC(C)=CCC[C@@](C)(O)[C@@H]1CCC(C)=CC1 RGZSQWQPBWRIAQ-LSDHHAIUSA-N 0.000 description 1
- 229940126575 aminoglycoside Drugs 0.000 description 1
- HMTAHNDPLDKYJT-CBBWQLFWSA-N amorpha-4,11-diene Chemical compound C1=C(C)CC[C@H]2[C@H](C)CC[C@@H](C(C)=C)[C@H]21 HMTAHNDPLDKYJT-CBBWQLFWSA-N 0.000 description 1
- HMTAHNDPLDKYJT-UHFFFAOYSA-N amorphadiene Natural products C1=C(C)CCC2C(C)CCC(C(C)=C)C21 HMTAHNDPLDKYJT-UHFFFAOYSA-N 0.000 description 1
- 230000003698 anagen phase Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000078 anti-malarial effect Effects 0.000 description 1
- 230000000340 anti-metabolite Effects 0.000 description 1
- 230000000845 anti-microbial effect Effects 0.000 description 1
- 239000003430 antimalarial agent Substances 0.000 description 1
- 229940100197 antimetabolite Drugs 0.000 description 1
- 239000002256 antimetabolite Substances 0.000 description 1
- 239000003816 antisense DNA Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229930101531 artemisinin Natural products 0.000 description 1
- BLUAFEHZUWYNDE-NNWCWBAJSA-N artemisinin Chemical compound C([C@](OO1)(C)O2)C[C@H]3[C@H](C)CC[C@@H]4[C@@]31[C@@H]2OC(=O)[C@@H]4C BLUAFEHZUWYNDE-NNWCWBAJSA-N 0.000 description 1
- 229960004191 artemisinin Drugs 0.000 description 1
- 210000004507 artificial chromosome Anatomy 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000005667 attractant Substances 0.000 description 1
- OGBVRMYSNSKIEF-UHFFFAOYSA-L benzyl-dioxido-oxo-$l^{5}-phosphane Chemical compound [O-]P([O-])(=O)CC1=CC=CC=C1 OGBVRMYSNSKIEF-UHFFFAOYSA-L 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 229960002685 biotin Drugs 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 239000011616 biotin Substances 0.000 description 1
- HHGZABIIYIWLGA-UHFFFAOYSA-N bisabolol Natural products CC1CCC(C(C)(O)CCC=C(C)C)CC1 HHGZABIIYIWLGA-UHFFFAOYSA-N 0.000 description 1
- 229940036350 bisabolol Drugs 0.000 description 1
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 1
- 229960002079 calcium pantothenate Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000001511 capsicum annuum Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 210000002230 centromere Anatomy 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000002759 chromosomal effect Effects 0.000 description 1
- YHBUQBJHSRGZNF-UHFFFAOYSA-N cis-alpha-bisabolene Natural products CC(C)=CCC=C(C)C1CCC(C)=CC1 YHBUQBJHSRGZNF-UHFFFAOYSA-N 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000003184 complementary RNA Substances 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- JZCCFEFSEZPSOG-UHFFFAOYSA-L copper(II) sulfate pentahydrate Chemical compound O.O.O.O.O.[Cu+2].[O-]S([O-])(=O)=O JZCCFEFSEZPSOG-UHFFFAOYSA-L 0.000 description 1
- 239000000490 cosmetic additive Substances 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 238000000432 density-gradient centrifugation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- WTOYNNBCKUYIKC-UHFFFAOYSA-N dl-nootkatone Natural products C1CC(C(C)=C)CC2(C)C(C)CC(=O)C=C21 WTOYNNBCKUYIKC-UHFFFAOYSA-N 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000012847 fine chemical Substances 0.000 description 1
- 229960002949 fluorouracil Drugs 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000012215 gene cloning Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 1
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 101150113423 hisD gene Proteins 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 229960000367 inositol Drugs 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 238000002218 isotachophoresis Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- WRUGWIBCXHJTDG-UHFFFAOYSA-L magnesium sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Mg+2].[O-]S([O-])(=O)=O WRUGWIBCXHJTDG-UHFFFAOYSA-L 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- ISPYRSDWRDQNSW-UHFFFAOYSA-L manganese(II) sulfate monohydrate Chemical compound O.[Mn+2].[O-]S([O-])(=O)=O ISPYRSDWRDQNSW-UHFFFAOYSA-L 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000001771 mentha piperita Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 238000003808 methanol extraction Methods 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- IZAGSTRIDUNNOY-UHFFFAOYSA-N methyl 2-[(2,4-dioxo-1h-pyrimidin-5-yl)oxy]acetate Chemical compound COC(=O)COC1=CNC(=O)NC1=O IZAGSTRIDUNNOY-UHFFFAOYSA-N 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 230000003228 microsomal effect Effects 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- XTGGILXPEMRCFM-UHFFFAOYSA-N morpholin-4-yl carbamate Chemical compound NC(=O)ON1CCOCC1 XTGGILXPEMRCFM-UHFFFAOYSA-N 0.000 description 1
- 231100000219 mutagenic Toxicity 0.000 description 1
- 239000003471 mutagenic agent Substances 0.000 description 1
- 231100000707 mutagenic chemical Toxicity 0.000 description 1
- 230000003505 mutagenic effect Effects 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- XJVXMWNLQRTRGH-UHFFFAOYSA-N n-(3-methylbut-3-enyl)-2-methylsulfanyl-7h-purin-6-amine Chemical compound CSC1=NC(NCCC(C)=C)=C2NC=NC2=N1 XJVXMWNLQRTRGH-UHFFFAOYSA-N 0.000 description 1
- 229930027945 nicotinamide-adenine dinucleotide Natural products 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 239000002818 ornithine decarboxylase inhibitor Substances 0.000 description 1
- 230000004792 oxidative damage Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229950009506 penicillinase Drugs 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- PTMHPRAIXMAOOB-UHFFFAOYSA-L phosphoramidate Chemical compound NP([O-])([O-])=O PTMHPRAIXMAOOB-UHFFFAOYSA-L 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- ZUFQODAHGAHPFQ-UHFFFAOYSA-N pyridoxine hydrochloride Chemical compound Cl.CC1=NC=C(CO)C(CO)=C1O ZUFQODAHGAHPFQ-UHFFFAOYSA-N 0.000 description 1
- 235000019171 pyridoxine hydrochloride Nutrition 0.000 description 1
- 239000011764 pyridoxine hydrochloride Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000000754 repressing effect Effects 0.000 description 1
- 108091092562 ribozyme Proteins 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 238000011218 seed culture Methods 0.000 description 1
- 239000006152 selective media Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- FDEIWTXVNPKYDL-UHFFFAOYSA-N sodium molybdate dihydrate Chemical compound O.O.[Na+].[Na+].[O-][Mo]([O-])(=O)=O FDEIWTXVNPKYDL-UHFFFAOYSA-N 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- IIACRCGMVDHOTQ-UHFFFAOYSA-M sulfamate Chemical compound NS([O-])(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-M 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 229960003495 thiamine Drugs 0.000 description 1
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 1
- 235000019190 thiamine hydrochloride Nutrition 0.000 description 1
- 239000011747 thiamine hydrochloride Substances 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 230000005030 transcription termination Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 101150081616 trpB gene Proteins 0.000 description 1
- 101150111232 trpB-1 gene Proteins 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 230000014848 ubiquitin-dependent protein catabolic process Effects 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 239000011782 vitamin Substances 0.000 description 1
- 229940088594 vitamin Drugs 0.000 description 1
- 235000013343 vitamin Nutrition 0.000 description 1
- 229930003231 vitamin Natural products 0.000 description 1
- 229940011671 vitamin b6 Drugs 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 239000000341 volatile oil Substances 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 239000007222 ypd medium Substances 0.000 description 1
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/10—Transferases (2.)
- C12N9/1085—Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1034—Isolating an individual clone by screening libraries
- C12N15/1079—Screening libraries by altering the phenotype or phenotypic trait of the host
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/002—Preparation of hydrocarbons or halogenated hydrocarbons cyclic
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P5/00—Preparation of hydrocarbons or halogenated hydrocarbons
- C12P5/007—Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
Definitions
- This invention is directed to yeast strains that overproduce a precursor to terpenes, farnesyl pyrophosphate (FPP), and are capable of growing without sterol supplementation.
- FPP farnesyl pyrophosphate
- terpenoids comprise the largest known class of natural products. These compounds are structurally diverse, although based on related carbon skeletons. The structural diversity found among these compounds allows them to perform a variety of essential biochemical functions. These compounds serve as attractants for pollinators, antimicrobial and antiherbivorial defense compounds, and may react with reactive oxygen species to protect against oxidative damage (Dudereva et al., Plant Physiol. 135: 1893-1902 (2004)). As components of the essential oils of aromatic plants, they are largely responsible for the distinct flavors and fragrances associated with their host plants. Moreover, the value of these small molecules extends beyond their biological utility. Many terpenoids have commercial value as antibiotics, pest control agents, fragrances, flavors, and anti-cancer agents, among other important uses.
- a specific class of these natural products, sesquiterpenoids, is derived from a common 15-carbon building block.
- This common 15-carbon building block is farnesyl pyrophosphate (FPP).
- FPP farnesyl pyrophosphate
- Many important products, such as the flavoring nootkatone, the cosmetic additive bisabolol, and amorpha-4,11-diene, a precursor to the antimalarial compound artemisinin, are sesquiterpenoids and thus are based on the 15-carbon carbon skeleton of FPP. Therefore, methods that can increase the yield of FPP that can be utilized in sequiterpenoid synthesis are of extreme importance.
- squalene synthase has been used to prevent or minimize conversion of farnesyl pyrophosphate to squalene. In practice, this has been done by either eliminating the corresponding gene, reducing its expression using weak promoters, or controlling its expression with a regulated promoter.
- Squalene is a precursor to sterols, which are essential to viability of yeast and other organisms. Accordingly, complete elimination of the gene requires feeding of sterols.
- the yeast Saccharomyces cerevisiae is not normally capable of taking up sterols under aerobic conditions, so in order to feed sterols to mutants, secondary mutations enabling sterol uptake are required.
- a promoter the MET3 promoter
- ERG9 promoter is used in place of the native ERG9 promoter to downregulate the expression of squalene synthase by repressing its synthesis by adding methionine, which acts as a repressor with respect to the MET3 promoter (Asadollahi et al., Biotech. Bioengineer. 99: 666-677 (2007)).
- a number of mutations of the Saccharomyces cerevisiae squalene synthase gene have been isolated and characterized. These mutants produce a sufficient quantity of squalene synthesis enzyme so that the enzyme catalyzes the synthesis of squalene at a sufficiently high rate so that sterol supplementation for the S. cerevisiae cells is not required, while having reduced activity so that more farnesyl pyrophosphate is available for isoprenoid biosynthesis.
- the reduced activity may be the result of reduced catalytic efficiency of the enzyme, or of reduced intracellular concentration of the protein, or both.
- one aspect of the present invention is an isolated nucleic acid molecule that encodes a squalene synthase enzyme that, when present and expressed in vivo in a eukaryotic microbial host as the only squalene synthase species, catalyzes the synthesis of squalene at a sufficiently high rate so that supplementation of the eukaryotic microbial host with a sterol is not required for growth, and also has a reduced squalene synthase activity (referred to herein for convenience as a variant squalene synthase enzyme).
- a host cell containing the nucleic acid molecule when expressed in vivo, produces a greater concentration of an isoprenoid in grams of isoprenoid per liter of culture than a corresponding host containing a wild-type nucleic acid molecule.
- variant squalene synthase enzyme of the present invention can be a squalene synthase enzyme of any suitable species.
- variant squalene synthase enzymes are from Saccharomyces cerevisiae.
- Isolated nucleic acid molecules encoding a variant S. cerevisiae squalene synthase enzymes according to the present invention include, but are not limited to the following isolated nucleic acid molecules:
- nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 691 A ⁇ G, resulting in the amino acid change E ⁇ G at amino acid residue 149; (b) 748 G ⁇ T, resulting in the amino acid change G ⁇ V at amino acid residue 168; (c) 786 T ⁇ A, resulting in the amino acid change Y ⁇ N at amino acid residue 181; (d) 1114 A ⁇ T, resulting in the amino acid change Q ⁇ L at amino acid residue 290; (e) 1213 T ⁇ C, resulting in the amino acid change I ⁇ T at amino acid residue 323; and (f) 1290 T ⁇ C, resulting in no change of the amino acid L at amino acid residue 349 (silent mutation);
- nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 989 T ⁇ A, resulting in no change of the amino acid P at amino acid residue 248 (silent mutation); (b) 1112 G ⁇ A, resulting in no change of the amino acid E at amino acid residue 289 (silent mutation); (c) 1220 G ⁇ A, resulting in no change of the amino acid K at amino acid residue 325 (silent mutation); and (d) 1233 T ⁇ C, resulting in the amino acid change Y ⁇ H at amino acid residue 330;
- nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 786 T ⁇ A, resulting in the amino acid change Y ⁇ N at amino acid residue 181; (b) 1025 A ⁇ G, resulting in no change of the amino acid Q at amino acid residue 260 (silent mutation); (c) 1056 T ⁇ A, resulting in the amino acid change L ⁇ I at amino acid residue 271; (d) 1068 A ⁇ G, resulting in the amino acid change S ⁇ G at amino acid residue 275; and (e) 1203 A ⁇ G, resulting in the amino acid change N ⁇ D at amino acid residue 320;
- nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 886 T ⁇ C, resulting in the amino acid change M ⁇ T at amino acid residue 214; (b) 969 A ⁇ G, resulting in the amino acid change I ⁇ V at amino acid residue 242; (c) 1075 T ⁇ C, resulting in the amino acid change V ⁇ A at amino acid residue 277; and (d) 1114 A ⁇ T, resulting in the amino acid change Q ⁇ L at amino acid residue 290;
- nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 619 A ⁇ T, resulting in the amino acid change D ⁇ V at amino acid residue 125; (b) 634 resulting in the amino acid change L ⁇ P at amino acid residue 130; and (c) 962 C ⁇ T, resulting in no change of the amino acid P at amino acid residue 239 (silent mutation);
- nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 150 A ⁇ T (in the non-coding region); (b) 410 T ⁇ G, resulting in no change of the amino acid A at amino acid residue 55 (silent mutation); (c) 411 G ⁇ T, resulting in the amino acid change V ⁇ L at amino acid residue 56; and (d) 1248 T ⁇ C, resulting in the amino acid change S ⁇ P at amino acid residue 335;
- nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 510 C ⁇ T, resulting in the amino acid change H ⁇ Y at amino acid residue 89; (b) 573 T ⁇ C, resulting in the amino acid change F ⁇ L at amino acid residue 110; (c) 918 A ⁇ G, resulting in the amino acid change R ⁇ G at amino acid residue 224; and (d) 997 A ⁇ G, resulting in the amino acid change K ⁇ G at amino acid residue 251;
- nucleic acid molecules (3), (4), (6), (7), or (8) an isolated nucleic acid molecule identical to any of (3), (4), (6), (7), or (8), above, except that one or more of the silent mutations in nucleic acid molecules (3), (4), (6), (7), or (8) are omitted;
- (11) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme in which the wild-type S. cerevisiae squalene synthase enzyme is mutated with the same amino acid changes as in any of (1) through (10) above;
- an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme in which the squalene synthase enzyme differs from the squalene synthase enzyme encoded by the isolated nucleic acid molecule of any of (1) through (12) above by one to three conservative amino acid substitutions, wherein a conservative amino acid substitution is defined as one of the following substitutions: A ⁇ G or S; R ⁇ K; N ⁇ Q or H; D ⁇ E; C ⁇ S; Q ⁇ N; G ⁇ D; G ⁇ A or P; H ⁇ N or Q; I ⁇ L or V; L ⁇ I or V; K ⁇ R or Q or E; M ⁇ L or Y or I; F ⁇ M or L or Y; S ⁇ T; T ⁇ S; W ⁇ Y; Y ⁇ W or F; and V ⁇ I or L.
- the present invention also encompasses an isolated nucleic acid molecule that is at least 95% identical to any of the isolated nucleic acid molecules described above that encodes a variant S. cerevisiae squalene synthase enzyme, such that the isolated nucleic acid molecule also encodes a variant S. cerevisiae squalene synthase enzyme that, when present and expressed in vivo in Saccharomyces cerevisiae , catalyzes the synthesis of squalene at a sufficiently high rate that supplementation of the S. cerevisiae with a sterol is not required and that has a reduced squalene synthase activity.
- an isolated nucleic acid molecule that includes therein, as a discrete, continuous nucleic acid segment, the isolated nucleic acid molecule encoding the variant squalene synthase as described above.
- This embodiment of the invention can include, at either the 5′-terminus, the 3′-terminus, or both, additional nucleic acid sequences such as linkers, adaptors, restriction endonuclease cleavage sites, regulatory sequences such as promoters, enhancers, or operators, or coding sequences, to which the discrete, continuous nucleic acid segment is operatively linked.
- vectors including therein nucleic acid segments according to the present invention as described above, as well as host cells transformed or transfected with the vectors or host cells including therein a nucleic acid segment encoding the variant squalene synthase enzyme according to the present invention, as described above.
- the present invention further includes a variant squalene synthase enzyme encoded by a nucleic acid sequence according to the present invention as described above.
- the variant squalene synthase enzyme can be, but is not limited to a variant S. cerevisiae squalene synthase enzyme.
- Variant S. cerevisiae squalene synthase enzymes according to the present invention include, but are not limited to, at least one of the mutants listed in Table 2.
- Another aspect of the present invention includes a host cell containing and/or expressing a variant squalene synthase enzyme of the present invention as described above (a variant squalene synthase enzyme).
- the host cell in this alternative, includes at least one copy of a nucleic acid sequence encoding the enzyme.
- the copy of the nucleic acid sequence encoding the enzyme can be present in the chromosome of a prokaryotic (bacterial) cell or in one chromosome of a eukaryotic cell.
- the copy of the nucleic acid sequence encoding the enzyme can be present in a vector or plasmid that is present in the cell.
- Another aspect of the invention is a method of isolating a defective ERG9 gene.
- this method comprises the steps of:
- step (3) transforming mutants from the pool of erg9 mutants generated in step (2) into a strain of a eukaryotic microbial host that contains a plasmid expressing a terpene synthase gene that produces a detectable and measurable terpene product, the strain of the eukaryotic microbial host being transformed in such a manner that replacement of the preexisting ERG9 allele with an erg9 mutation allows the strain to grow in a sterol-free medium;
- step (3) isolating a transformant from step (3) that produces a level of terpene product at least equivalent to the level of terpene product produced by a strain of the eukaryotic microbial host expressing the terpene synthase gene that requires a sterol in the medium for growth.
- Another aspect of the present invention is a method of isolating a variant squalene synthase enzyme.
- the variant squalene synthase enzyme to be isolated by the methods of the invention is as described above.
- this method comprises the steps of:
- Yet another aspect of the present invention is a method of producing an isoprenoid using a host cell containing a mutated ERG9 gene, which defective ERG9 gene encodes a variant squalene synthase enzyme.
- a host cell that includes a mutated ERG9 gene encoding a variant squalene synthase enzyme further includes at least one isoprenoid synthase gene, so that the farnesyl pyrophosphate produced in the host cell, which is available in greater concentrations for isoprenoid biosynthesis can be converted to an isoprenoid by the isoprenoid synthase encoded by the isoprenoid synthase gene.
- This alternative in general, comprises the steps of:
- the method in general, comprises the steps of:
- FIG. 1 depicts a graph showing the concentration of premnaspirodiene in mg/L for each of the 25 isolates grown with and without ergosterol supplementation.
- FIG. 2 depicts shows the sequences of the wild-type ERG9 gene including sequences 245 base pairs upstream of the start site (SEQ ID NO: 3).
- the underlined nucleotides shown at the 5′-terminus and 3′-terminus of the ERG9 gene sequence represent the upstream primer (7-162.1) 5′-CCATCTTCAACAACAATACCG-3′ (SEQ ID NO: 1) and the downstream primer (7-162.2) 5′-GTACTTAGTTATTGTTCGG-3′ (SEQ ID NO: 2).
- nucleic acid refers to a deoxyribonucleotide or ribonucleotide oligonucleotide or polynucleotide, including single- or double-stranded forms, and coding or non-coding (e.g., “antisense”) forms.
- the term encompasses nucleic acids containing known analogues of natural nucleotides.
- the teen also encompasses nucleic acids including modified or substituted bases as long as the modified or substituted bases interfere neither with the Watson-Crick binding of complementary nucleotides or with the binding of the nucleotide sequence by proteins that bind specifically.
- DNA backbone analogues provided by the invention include phosphodiester, phosphorothioate, phosphorodithioate, methylphosphonate, phosphoramidate, alkyl phosphotriester, sulfamate, 3′-thioacetal, methylene(methylimino), 3′-N-carbamate, morpholino carbamate, and peptide nucleic acids (PNAs).
- PNAs peptide nucleic acids
- PNAs contain non-ionic backbones, such as N-(2-aminoethyl) glycine units. Phosphorothioate linkages are described in, e.g. U.S. Pat. Nos. 6,031,092; 6,001,982; 5,684,148; WO 97/03211; WO 96/39154; Mata, Toxicol. Appl. Pharmacol. 144:189-197 (1997).
- Bases included in nucleic acids include any of the known base analogs of DNA and RNA including, but not limited to, 4-acetylcytosine, 8-hydroxy-N 6 -methyl adenosine, aziridinylcytosine, pseudoisocytosine, 5-(carboxyhydroxylmethyl)uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethyl-aminomethyluracil, dihydrouracil, inosine, N 6 -isopentenyladenine, 1-methyladenine, 1-methylpseudo-uracil, 1-methylguanine, 1-methylinosine, 2,2-dimethyl-guanine, 2-methyladenine, 2-methylguanine, 3-methyl-cytosine, 5-methylcytosine, N 6 -methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxy-amino-methyl-2-thiour
- DNA may be in the form of cDNA, in vitro polymerized DNA, plasmid DNA, parts of a plasmid DNA, genetic material derived from a virus, linear DNA, vectors (e.g. P1, PAC, BAC, YAC, and artificial chromosomes), expression cassettes, chimeric sequences, recombinant DNA, chromosomal DNA, an oligonucleotide, anti-sense DNA, or derivatives of these groups.
- vectors e.g. P1, PAC, BAC, YAC, and artificial chromosomes
- expression cassettes e.g. P1, PAC, BAC, YAC, and artificial chromosomes
- RNA may be in the form of oligonucleotide RNA, tRNA (transfer RNA), snRNA (small nuclear RNA), rRNA (ribosomal RNA), mRNA (messenger RNA), in vitro polymerized RNA, recombinant RNA, chimeric sequences, anti-sense RNA, siRNA (small interfering RNA), ribozymes, or derivatives of these groups.
- nucleic acid or “nucleic acid molecule” refer to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, would encompass known analogs of natural nucleotides that can function in a similar manner as naturally occurring nucleotides.
- a “nucleotide sequence” also refers to a polynucleotide molecule or oligonucleotide molecule in the form of a separate fragment or as a component of a larger nucleic acid.
- nucleotide sequence or molecule may also be referred to as a “nucleotide probe.”
- nucleic acid molecules of the invention are derived from DNA or RNA isolated at least once in substantially pure form and in a quantity or concentration enabling identification, manipulation, and recovery of its component nucleotide sequence by standard biochemical methods. Examples of such methods, including methods for PCR protocols that may be used herein, are disclosed in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York (1989), Ausubel, F.
- nucleic acid molecule also includes its complement as determined by the standard Watson-Crick base-pairing rules, with uracil (U) in RNA replacing thymine (T) in DNA where necessary, unless the complement is specifically excluded.
- the nucleic acid molecules of the invention include DNA in both single-stranded and double-stranded form, as well as the DNA or RNA complement thereof.
- DNA includes, for example, DNA, genomic DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof.
- Genomic DNA, including translated, non-translated and control regions, may be isolated by conventional techniques, e.g., using any one of the cDNAs of the invention, or suitable fragments thereof, as a probe, to identify a piece of genomic DNA which can then be cloned using methods commonly known in the art.
- nucleic acids of the invention are encompassed by the invention.
- reference to a nucleic acid “encoding” a protein or polypeptide encompasses not only cDNAs and other intronless nucleic acids, but also DNAs, such as genomic DNA, with introns, on the assumption that the introns included have appropriate splice donor and acceptor sites that will ensure that the introns are spliced out of the corresponding transcript when the transcript is processed in a eukaryotic cell. Due to the degeneracy of the genetic code wherein more than one codon can encode the same amino acid, multiple DNA sequences can code for the same polypeptide.
- Such variant DNA sequences can result from genetic drift or artificial manipulation (e.g., occurring during PCR amplification or as the product of deliberate mutagenesis of a native sequence).
- Deliberate mutagenesis of a native sequence can be carried out using numerous techniques well known in the art. For example, oligonucleotide-directed site-specific mutagenesis procedures can be employed, particularly where it is desired to mutate a gene such that predetermined restriction nucleotides or codons are altered by substitution, deletion or insertion. Exemplary methods of making such alterations are disclosed by Walder et al., Gene, 42:133 (1986); Bauer et al., Gene 37:73 (1985); Craik, BioTechniques, Jan.
- the present invention thus encompasses any nucleic acid capable of encoding a protein of the current invention.
- Suitable conservative substitutions of amino acids are known to those of skill in this art and may be made generally without altering the biological activity of the resulting molecule.
- Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g. Watson et al., Molecular Biology of the Gene, 4th Edition, 1987, Benjamin/Cummings, p. 224).
- such a conservative variant has a modified amino acid sequence, such that the change(s) do not substantially alter the proteins structure and/or activity, e.g., antibody activity, enzymatic activity, or receptor activity.
- amino acid sequence i.e., amino acid substitutions, additions or deletions of those residues that are not critical for protein activity, or substitution of amino acids with residues having similar properties (e.g., acidic, basic, positively or negatively charged, polar or non-polar, etc.) such that the substitutions of even critical amino acids does not substantially alter structure and/or activity.
- amino acids having similar properties e.g., acidic, basic, positively or negatively charged, polar or non-polar, etc.
- one exemplary guideline to select conservative substitutions includes (original residue followed by exemplary substitution): Ala/Gly or Ser; Arg/Lys; Asn/Gln or His; Asp/Glu; Cys/Ser; Gln/Asn; Gly/Asp; Gly/Ala or Pro; His/Asn or Gln; Ile/Leu or Val; Leu/Ile or Val; Lys/Arg or Gln or Glu; Met/Leu or Tyr or Ile; Phe/Met or Leu or Tyr; Ser/Thr; Thr/Ser; Trp/Tyr; Tyr/Trp or Phe; or Leu.
- An alternative exemplary guideline uses the following six groups, each containing amino acids that are conservative substitutions for one another: (1) alanine (A or Ala), serine (S or Ser), threonine (T or Thr); (2) aspartic acid (D or Asp), glutamic acid (E or Glu); (3) asparagine (N or Asn), glutamine (Q or Gln); (4) arginine (R or Arg), lysine (K or Lys); (5) isoleucine (I or He), leucine (L or Leu), methionine (M or Met), valine (V or Val); and (6) phenylalanine (F or Phe), tyrosine (Y or Tyr), tryptophan (W or Trp); (Creighton (1984) Proteins, W.
- substitutions are not the only possible conservative substitutions. For example, for some purposes, one may regard all charged amino acids as conservative substitutions for each other whether they are positive or negative.
- individual substitutions, deletions or additions that alter, add or delete a single amino acid or a small percentage of amino acids in an encoded sequence can also be considered “conservatively modified variations” when the three-dimensional structure and the function of the protein to be delivered are conserved by such a variation.
- the term “isolated” with reference to a nucleic acid molecule or polypeptide or other biomolecule means that the nucleic acid or polypeptide has been separated from the natural environment from which the polypeptide or nucleic acid were obtained. It may also mean that the biomolecule has been altered from the natural state. For example, a polynucleotide or a polypeptide naturally present in a living animal is not “isolated,” but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is “isolated,” as the term is employed herein. Thus, a polypeptide or polynucleotide produced and/or contained within a recombinant host cell is considered isolated.
- isolated polypeptide or an “isolated polynucleotide” are polypeptides or polynucleotides that have been purified, partially or substantially, from a recombinant host cell or from a native source.
- a recombinantly produced version of a compound can be substantially purified by the one-step method described in Smith et al., Gene 67:3140 (1998).
- isolated and purified are sometimes used interchangeably.
- isolated it is meant that the nucleic acid is free of the coding sequences of those genes that, in a naturally-occurring genome, immediately flank the gene encoding the nucleic acid of interest.
- Isolated DNA may be single-stranded or double-stranded, and may be genomic DNA, cDNA, recombinant hybrid DNA, or synthetic DNA. It may be identical to a native DNA sequence, or may differ from such sequence by the deletion, addition, or substitution of one or more nucleotides.
- isolated or purified also refer to preparations made from biological cells or hosts means any cell extract containing the indicated DNA or protein including a crude extract of the DNA or protein of interest.
- a purified preparation can be obtained following an individual technique or a series of preparative or biochemical techniques and the protein of interest can be present at various degrees of purity in these preparations.
- the procedures may include for example, but are not limited to, ammonium sulfate fractionation, gel filtration, ion exchange change chromatography, affinity chromatography, density gradient centrifugation, electrofocusing, chromatofocusing, and electrophoresis.
- the term “substantially purified,” when applied to a composition or extract derived from yeast, and wherein the composition or extract contains an isoprenoid, is hereby defined as containing at least about twice the concentration of isoprenoid in proportion to yeast material, wherein yeast material is defined as being selected from the group consisting of yeast cell membrane, yeast organelle, yeast cytoplasm, yeast microsomal fraction, yeast cell, and yeast extract.
- a preparation of DNA or protein that is “substantially pure” or “isolated” refers to a preparation free from naturally occurring materials with which such DNA or protein is normally associated in nature. “Essentially pure” means a “highly” purified preparation that contains at least 95% of the DNA or protein of interest.
- a cell extract that contains the DNA or protein of interest should be understood to mean a homogenate preparation or cell-free preparation obtained from cells that express the protein or contain the DNA of interest.
- a “vector” is a nucleic acid that is capable of transporting another nucleic acid.
- Vectors may be, for example, plasmids, viruses, cosmids or phage.
- An “expression vector” is a vector that is capable of directing expression of a protein encoded by one or more genes carried by the vector when it is present in the appropriate environment. Examples of vectors are those that can autonomously replicate and express structural gene products present in the DNA segments to which they are operatively linked. Vectors, therefore, can contain the replicons and selectable markers described earlier. Vectors include, but are not necessarily limited to, expression vectors.
- operatively linked means the sequences or segments have been covalently joined, preferably by conventional phosphodiester bonds, into one strand of DNA, whether in single or double-stranded form such that operatively linked portions function as intended.
- the phrase “substantially identical” means that a relevant sequence is at least 70%, 75%, 80%, 85%, 90%, 92%, 95% 96%, 97%, 98%, or 99% identical to a given sequence.
- sequences may be allelic variants, sequences derived from various species, or they may be derived from the given sequence by truncation, deletion, amino acid substitution or addition. Percent identity between two sequences is determined by standard alignment algorithms such as ClustalX when the two sequences are in best alignment according to the alignment algorithm.
- FPP farnesyl pyrophosphate
- the ERG9 gene is the gene encoding squalene synthase. These mutants have reduced, but not eliminated, squalene synthase activity. As such, they allow sufficient production of squalene and subsequent sterols to allow growth, but are sufficiently reduced in activity to allow accumulation of FPP and overproduction of terpenes.
- one aspect of the present invention is an isolated nucleic acid molecule that encodes a squalene synthase enzyme that, when present and expressed in vivo in a eukaryotic microbial host cell, catalyzes the synthesis of squalene at a sufficiently high rate that supplementation of the eukaryotic microbial host cell with a sterol is not required and that has a reduced squalene synthase activity (referred to herein for convenience as a variant squalene synthase enzyme).
- the variant squalene synthase enzyme encoded by the isolated nucleic acid molecule of the present invention has a reduced V max for squalene synthesis.
- V max is the maximum rate of a reaction being catalysed by an enzyme.
- the variant squalene synthase enzyme encoded by the isolated nucleic acid molecule of the present invention has an increased Michaelis constant (K m ) for its FPP substrate, in which case the enzyme is less active at a given intracellular concentration of FPP than the wild-type enzyme.
- K m is a means of characterising an enzyme's affinity for a substrate.
- the K m in an enzymatic reaction is the substrate concentration at which the reaction rate is half its maximum speed.
- the squalene synthase enzyme encoded by the isolated nucleic acid molecule of the present invention when expressed in vivo in the eukaryotic microbial host cell, produces squalene at a rate of less than 75% of the wild-type enzyme.
- the squalene synthase enzyme encoded by the isolated nucleic acid molecule of the present invention when expressed in vivo in the eukaryotic microbial host cell, produces squalene at a rate of less than 50% of the wild-type enzyme.
- the squalene synthase enzyme encoded by the isolated nucleic acid molecule of the present invention when expressed in vivo in the eukaryotic microbial host cell, produces squalene at a rate of less than 25% of the wild-type enzyme.
- the eukaryotic microbial host cell is typically, but is not limited to, a fungal host cell.
- the fungal host cell is typically, but it not limited to, a yeast host cells, such as a Saccharomyces cerevisiae host cell or other host cells of the genus Saccharomyces .
- the variant squalene synthase is not limited to a squalene synthase of Saccharomyces cerevisiae , but can be a squalene synthase of another species of Saccharomyces or a squalene synthase of any organism that has a gene that catalyzes the conversion of farnesyl pyrophosphate into squalene.
- Isolated nucleic acid molecules according to the present invention include, but are not limited to, the following isolated nucleic acid molecules:
- nucleic acid molecules (3), (4), (6), (7), or (8) an isolated nucleic acid molecule identical to any of (3), (4), (6), (7), or (8), above, except that one or more of the silent mutations in nucleic acid molecules (3), (4), (6), (7), or (8) are omitted;
- (11) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase protein in which the wild-type S. cerevisiae squalene synthase enzyme is mutated with the same amino acid changes as in any of (1) through (10) above;
- the invention includes an isolated nucleic acid molecule encoding a squalene synthase enzyme that differs from the squalene synthase enzyme encoded by the nucleic acid molecule in any of (1) through (11), above, by one to three conservative amino acid substitutions, in which a conservative amino acid substitution is defined as one of the following substitutions: A ⁇ G or S; R ⁇ K; N ⁇ Q or H; D ⁇ E; C ⁇ S; Q ⁇ N; G ⁇ D; G ⁇ A or P; H ⁇ N or Q; or I ⁇ L or V; L ⁇ I or V; K ⁇ R or Q or E; M ⁇ L or Y or I; F ⁇ M or L or Y; S ⁇ T; T ⁇ S; W ⁇ Y; Y ⁇ W or F; and V ⁇ I or L.
- the isolated nucleic acid molecule encodes a squalene synthase protein that differs from the squalene synthase protein encoded by the nucleic acid molecule in any of (1) through (10) by one or two conservative amino acid substitutions. More preferably, the isolated nucleic acid molecule encodes a squalene synthase protein that differs from the squalene synthase protein encoded by the nucleic acid molecule in any of (1) through (11) by one conservative amino acid substitution.
- the invention includes an isolated nucleic acid molecule that is at least 95% identical to any of the isolated nucleic acid molecules described above that encodes a mutated S. cerevisiae squalene synthase enzyme, such that the isolated nucleic acid molecule also encodes a mutated S. cerevisiae squalene synthase enzyme that, when present and expressed in vivo in Saccharomyces cerevisiae , catalyzes the synthesis of squalene at a sufficiently high rate that supplementation of the S. cerevisiae with sterols is not required and that has a reduced squalene synthase activity.
- the isolated nucleic acid molecule is at least 97.5% identical to any of the isolated nucleic acid molecules described above.
- the isolated nucleic acid molecule is at least 99% identical to any of the isolated nucleic acid molecules described above. More preferably, the isolated nucleic acid molecule is at least 99.5% identical to any of the isolated nucleic acid molecules described above. Most preferably, the isolated nucleic acid molecule is at least 99.8% identical to any of the isolated nucleic acid molecules described above.
- “identity” is defined according to the Needleman-Wunsch algorithm (S. B. Needleman & C. D. Wunsch, “A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins,” J. Mol. Biol. 48: 443-453 (1970)).
- Nucleic acid molecules according to the present invention and having the desired degree of identity are not limited to nucleic acid molecules derived from S. cerevisiae ; they include nucleic acid molecules derived from other species of Saccharomyces , or, as described above, derived from any organism that has a gene capable of catalyzing the conversion of farnesyl pyrophosphate into squalene.
- isolated nucleic acid molecules according to the present invention further include isolated nucleic acid molecules, which encode a squalene synthase enzyme, and when expressed in a eukaryotic microbial host in which no other squalene synthase enzyme is expressed, result in a significant reduction of conversion of farnesyl pyrophosphate to squalene as described above.
- a nucleic acid molecule according to the present invention when expressed in vivo, causes a host cell to produce a greater concentration of an isoprenoid in grams of isoprenoid per liter of culture than a corresponding host cell expressing a wild-type nucleic acid molecule.
- These isolated nucleic acid molecules have at least one change from a nucleic acid molecule that includes the coding region for the wild-type ERG9 gene and its flanking sequences, including the sequences both upstream and downstream from the coding region.
- This at least one change reduces the squalene synthase activity, even though the specific activity may potentially be unaltered.
- the reduction of the activity of the squalene synthase enzyme can occur through one or more of the following mechanisms: (1) reduction in transcription so that less mRNA that can be translated into squalene synthase enzyme is generated; (2) reduction of mRNA stability, again reducing translation; and (3) reduction of enzyme stability brought about by an increased rate of protein degeneration in vivo.
- the specific activity of the resulting squalene synthase enzyme is reduced through at least one change in the amino acid sequence of the enzyme expressed from the nucleic acid molecule; or (2) the in vivo activity of the enzyme is reduced through a reduction in transcription, a reduction in translation, or a reduction of enzyme stability.
- the nucleic acid described above can be DNA, RNA, or a RNA-DNA hybrid, but is typically DNA.
- the nucleic acid described above can be single-stranded or double-stranded. If the nucleic acid is single-stranded, either the strand described or its complement can be the coding strand and is within the scope of the invention.
- an isolated nucleic acid molecule that includes therein, as a discrete, continuous nucleic acid segment, the isolated nucleic acid molecule encoding the variant squalene synthase.
- This embodiment of the invention can include, at either the 5′-terminus, the 3′-terminus, or both, additional nucleic acid sequences such as linkers, adaptors, restriction endonuclease cleavage sites, regulatory sequences such as promoters, enhancers, or operators, or coding sequences, to which the discrete, continuous nucleic acid segment is operatively linked.
- the isolated nucleic acid molecule includes additional coding sequences
- the isolated nucleic acid molecule can encode a fusion protein having S. cerevisiae squalene synthase activity.
- vectors including therein nucleic acid segments according to the present invention as described above.
- the vectors can be capable of replication in prokaryotes (bacteria) or in eukaryotes (yeast or cells of higher organisms).
- the vectors are capable of replication in yeast, for example, S. cerevisiae .
- yeast a number of vectors containing constitutive or inducible promoters may be used.
- a constitutive yeast promoter such as ADH1 or LEU2 or an inducible promoter such as GAL4 may be used (Cloning in Yeast, Ch. 3, Rothstein In: DNA Cloning Vol. 11, A Practical Approach, Ed. D M Glover, 1986, IRL Press, Wash., D.C.).
- vectors may be used which promote integration of foreign DNA sequences into the yeast chromosome.
- cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described, for example, in Pouwels et al., Cloning Vectors. A Laboratory Manual, Elsevier, N.Y., (1985). Cell-free translation systems could also be employed to produce the disclosed polypeptides using RNAs derived from DNA constructs disclosed herein.
- the pBR322 vector contains genes for ampicillin and tetracycline resistance and thus provides simple means for identifying transformed cells.
- an appropriate promoter and a DNA sequence encoding one or more of the polypeptides of the invention are inserted into the pBR322 vector.
- vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEM-1 (Promega Biotec, Madison, Wis., USA).
- Other commercially available vectors include those that are specifically designed for the expression of proteins; these would include pMAL-p2 and pMAL-c2 vectors that are used for the expression of proteins fused to maltose binding protein (New England Biolabs, Beverly, Mass., USA).
- Promoter sequences commonly used for recombinant prokaryotic host cell expression vectors include the bacteriophage T7 promoter (Studier and Moffatt, J. Mol. Biol. 189:113 (1986)), ⁇ -lactamase (penicillinase), lactose promoter system (Chang et al., Nature 275:615, 1978; Goeddel et al., Nature 281:544 (1979)), tryptophan (trp) promoter system (Goeddel et al., Nucl. Acids Res. 8:4057 (1980); EP-A-36776), and tac promoter (Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, p.
- a particularly useful prokaryotic host cell expression system employs a phage ⁇ PL promoter and a c1857ts thermolabile repressor sequence.
- Plasmid vectors available from the American Type Culture Collection (ATCC), which incorporate derivatives of the P L promoter, include plasmid pHUB2 (resident in E. coli strain JMB9 (ATCC 37092)) and pPLc28 (resident in E. coli RR1 (ATCC 53082)).
- nucleic acid segments according to the present invention can also be incorporated in vectors suitable for introduction into yeast cells, such as, for example, Saccharomyces (particularly S. cerevisiae ), Pichia (particularly P. pastoris ), and Kluyveromyces (particularly K. lactis ).
- yeast vectors will often contain an origin of replication sequence from a 2 ⁇ yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene.
- Suitable promoter sequences for yeast vectors include, among others, promoters for metallothionein, 3-phosphoglycerate kinase (Hitzeman et al., J.
- glycolytic enzymes Hess et al., J. Adv. Enzyme Reg. 7:149 (1968); Holland et al., Biochem. 17:4900, (1978)
- enolase glyceraldehyde phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase.
- yeast vectors and promoters for use in yeast expression are described in Hitzeman, EPA-73,657 or in Fleer et al., Gene, 107:285-195 (1991); and van den Berg et al., Bio/Technology, 8:135-139 (1990).
- Another alternative is the glucose-repressible ADH2 promoter described by Russell et al. (J. Biol. Chem. 258:2674, (1982)) and Beier et al. (Nature 300:724 (1982)).
- Shuttle vectors replicable in both yeast and E. coli can be constructed by inserting DNA sequences from pBR322 for selection and replication in E. coli (Amp r gene and origin of replication) into the above-described yeast vectors.
- the higher organisms can be plants or animals, including mammals.
- the expression of a mutated S. cerevisiae squalene synthase coding sequence according to the present invention may be driven by any of a number of promoters.
- viral promoters such as the 35S RNA and 19S RNA promoters of CaMV (Brisson et al., Nature, 310:511-514 (1984)), or the coat protein promoter to TMV (Takamatsu et al., EMBO J., 3:1671-1680 (1984); Broglie et al., Science 224:838-843 (1984)); or heat shock promoters, e.g., soybean hsp17.5-E or hsp17.3-B (Gurley et al., Mol.
- Eukaryotic cells are alternative host cells for the expression of mutated S. cerevisiae squalene synthase coding sequences. Such host cell lines may include but are not limited to CHO, VERO, BHK, HeLa, COS, MDCK, 293, and WI38.
- Mammalian cell systems that utilize recombinant viruses or viral elements to direct expression may be engineered.
- the coding sequence of a variant squalene synthase enzyme may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted into the adenovirus genome by in vitro or in vivo recombination.
- Insertion in a non-essential region of the viral genome will result in a recombinant virus that is viable and capable of expressing the variant squalene synthase enzyme in infected hosts (Logan and Shenk, PNAS USA 81:3655-3659 (1984)).
- the vaccinia virus 7.5K promoter may be used. (Mackett et al., PNAS USA, 79:7415-7419 (1982); Mackett et al., J. Virol. 49:857-864 (1984); Panicali, et al., PNAS USA, 79:4927-4931 (1982)).
- vectors based on bovine papilloma virus which have the ability to replicate as extrachromosomal elements (Sarver et al., Mol. Cell. Biol. 1:486 (1981)). Shortly after entry of this DNA into mouse cells, the plasmid replicates to about 100 to 200 copies per cell. Transcription of the inserted cDNA does not require integration of the plasmid into the host's chromosome, thereby yielding a high level of expression.
- These vectors can be used for stable expression by including a selectable marker in the plasmid, such as the neo gene.
- the retroviral genome can be modified for use as a vector capable of introducing and directing the expression of the variant squalene synthase enzyme in host cells (Cone and Mulligan, PNAS USA 81:6349-6353 (1984)).
- High level expression may also be achieved using inducible promoters, including, but not limited to, the metallothionein IIA promoter and heat shock promoters.
- nucleic acid segment encoding the variant squalene synthase according to the present invention, as described above. These host cells are typically transformed or transfected with the nucleic acid segment; methods for such transformation or transfection are described above.
- nucleic acid segment is used herein to include the following alternatives: (1) a vector including therein the variant squalene synthase; or (2) a chromosome of the host cell including therein the variant squalene synthase.
- the vector or chromosome can include, as described above, nucleic acid sequences either 5′-3′-, or both 5′- and 3′- to the coding sequence of the mutated S.
- the host cells can be prokaryotic cells, such as bacteria, or can be eukaryotic cells, such as yeast cells, plant cells, or animal cells. If the host cells are yeast cells, they are typically S. cerevisiae , although other genera of yeast, such as Pichia ( Pichia pastoris ) or Kluyveromyces ( Kluyveromyces lactis ) can also be employed. If the cells are plant cells, many types of plant cells are suitable host cells; one frequently employed host cell is Arabidopsis thaliana . If the cells are animal cells, they can be insect cells or mammalian cells.
- the nucleic acid segment in host cells according to the present invention including therein a nucleic acid segment encoding the variant squalene synthase as described above, can be incorporated into a vector as described above. Alternatively, the nucleic acid segment can be integrated into a chromosome of the host cell. Methods for integrating the nucleic acid segment encoding the variant squalene synthase as described above into the chromosome of a prokaryotic cell (i.e., a bacterium) or into one chromosome of a eukaryotic cell are known in the art. As described above, in this application, the nucleic acid is typically DNA.
- DNA sequences encoding variant squalene synthase can be obtained by several methods.
- the DNA can be isolated using hybridization procedures that are well known in the art. These include, but are not limited to: (1) hybridization of probes to genomic or cDNA libraries to detect shared nucleotide sequences; (2) antibody screening of expression libraries to detect shared structural features; and (3) synthesis by the polymerase chain reaction (PCR).
- RNA sequences of the invention can be obtained by methods known in the art (See, for example, Current Protocols in Molecular Biology, Ausubel, et al., Eds. (1989)).
- the development of specific DNA sequences encoding variant squalene synthases of the invention can be obtained by: (1) isolation of a double-stranded DNA sequence from the genomic DNA; (2) chemical manufacture of a DNA sequence to provide the necessary codons for the polypeptide of interest; and (3) in vitro synthesis of a double-stranded DNA sequence by reverse transcription of mRNA isolated from a eukaryotic donor cell. In the latter case, a double-stranded DNA complement of mRNA is eventually formed which is generally referred to as cDNA.
- the isolation of genomic DNA is the least common.
- nucleic acid sequences encoding variant squalene synthases For obtaining nucleic acid sequences encoding variant squalene synthases according to the present invention, the synthesis of DNA sequences is frequently the method of choice when the entire sequence of amino acid residues of the desired polypeptide product is known. When the entire sequence of amino acid residues of the desired polypeptide is not known, the direct synthesis of DNA sequences is not possible and the method of choice is the formation of cDNA sequences.
- the production of labeled single or double-stranded DNA or RNA probe sequences duplicating a sequence putatively present in the target cDNA may be employed in DNA/DNA hybridization procedures which are carried out on cloned copies of the cDNA which have been denatured into a single-stranded form (Jay et al., Nucleic Acid Research 11:2325 (1983)).
- Nucleotide sequences encompassed by the present invention can also be incorporated into a vector as described above, including, but not limited to, an expression vector, and used to transfect or transform suitable host cells, as is well known in the art.
- the vectors incorporating the nucleotide sequences that are encompassed by the present invention are also within the scope of the invention.
- Host cells that are transformed or transfected with the vector or with polynucleotides or nucleotide sequences of the present invention are also within the scope of the invention.
- the host cells can be prokaryotic or eukaryotic; if eukaryotic, the host cells can be mammalian cells, insect cells, or yeast cells. If prokaryotic, the host cells are typically bacterial cells.
- Transformation of a host cell with recombinant DNA may be carried out by conventional techniques as are well known to those skilled in the art.
- the host is prokaryotic, such as Escherichia coli
- competent cells which are capable of DNA uptake can be prepared from cells harvested after exponential growth phase and subsequently treated by the CaCl 2 method by procedures well known in the art.
- CaCl 2 or RbCl can be used. Transformation can also be performed after forming a protoplast of the host cell or by electroporation.
- a variety of host-expression vector systems may be utilized to express the nucleic acid sequence encoding the variant squalene synthase enzymes of the present invention. These include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing a variant squalene synthase enzyme coding sequence; yeast transformed with recombinant yeast expression vectors containing the variant squalene synthase enzyme coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing a variant squalene synthase enzyme coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing a variant squalene synthas
- any of a number of suitable transcription and translation elements for example, constitutive and inducible promoters, transcription enhancer elements, transcription terminators, may be used in the expression vector (Bitter et al., Methods in Enzymology, 153:516-544 (1987)).
- inducible promoters such as pL of bacteriophage ⁇ , plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used.
- promoters derived from the genome of mammalian cells e.g., metallothionein promoter
- mammalian viruses e.g., the retrovirus long terminal repeat; the adenovirus late promoter; the vaccinia virus 7.5K promoter
- Promoters produced by recombinant DNA or synthetic techniques may also be used to provide for transcription of the inserted variant squalene synthase enzyme coding sequence.
- a number of expression vectors may be advantageously selected depending upon the use intended for the variant squalene synthase enzyme expressed, and whether it is desired to isolate the enzyme and in what state of purity. For example, when large quantities are to be produced, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Those which are engineered to contain a cleavage site to aid in recovering the protein are preferred.
- Such vectors include, but are not limited to, the Escherichia coli expression vector pUR278 (Ruttier et al., EMBO J., 2:1791 (1983)), in which the variant squalene synthase enzyme coding sequence may be ligated into the vector in frame with the lac Z coding region so that a hybrid variant squalene synthase enzyme-lac Z protein is produced as well as pIN vectors (Inouye and Inouye, Nucleic Acids Res. 13:3101-3109 (1985); Van Heeke and Schuster, J. Biol. Chem. 264:5503-5509 (1989)).
- yeast a number of vectors containing constitutive or inducible promoters may be used.
- Current Protocols in Molecular Biology Vol. 2, Ed. Ausubel, et al., Greene Publish. Assoc. & Wiley Interscience, Ch. 13 (1988); Grant et al., Expression and Secretion Vectors for Yeast, in Methods in Enzymology, Eds. Wu & Grossman, 31987, Acad. Press, N.Y., Vol. 153, pp. 516-544 (1987); Glover, DNA Cloning, Vol. II, IRL Press, Wash., D.C., Ch.
- yeast promoter such as ADH1 or LEU2 or an inducible promoter such as GAL4 may be used (Cloning in Yeast, Ch. 3, R. Rothstein In: DNA Cloning Vol. 11, A Practical Approach, Ed. DM Glover, IRL Press, Wash., D.C. (1986)).
- vectors may be used which promote integration of foreign DNA sequences into the yeast chromosome.
- the expression of a variant squalene synthase enzyme coding sequence may be driven by any of a number of promoters.
- viral promoters such as the 35S RNA and 19S RNA promoters of CaMV (Brisson et al., Nature, 310:511-514 (1984)), or the coat protein promoter to TMV (Takamatsu et al., EMBO J., 3:187)) may be used; alternatively, plant promoters such as the small subunit of RUBISCO (Coruzzi et al., EMBO J.
- An alternative expression system that can be used to express a variant squalene synthase enzyme of the present invention is an insect system.
- Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes.
- the virus grows in Spodoptera frugiperda cells.
- the variant squalene synthase enzyme coding sequence may be cloned into non-essential regions (in Spodoptera frugiperda , for example, the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter).
- Eukaryotic systems and preferably mammalian expression systems, allow for proper post-translational modifications of expressed eukaryotic proteins to occur. Therefore, eukaryotic cells, such as mammalian cells that possess the cellular machinery for proper processing of the primary transcript, glycosylation, phosphorylation, and, advantageously secretion of the gene product, are the preferred host cells for the expression of a variant squalene synthase enzyme.
- host cell lines may include, for example CHO, VERO, BHK, HeLa, COS, MDCK, 293, and WI38.
- Other eukaryotic host cells are also suitable host cells for the expression of a variant squalene synthase enzyme or of nucleic acids according to the present invention, including, for example, microalgal cells.
- Mammalian cell systems that utilize recombinant viruses or viral elements to direct expression may be engineered for use in the present invention.
- the coding sequence of a variant squalene synthase enzyme may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted into the adenovirus genome by in vitro or in vivo recombination.
- Insertion in a non-essential region of the viral genome will result in a recombinant virus that is viable and capable of expressing the variant squalene synthase enzyme in infected hosts (Logan and Shenk, PNAS USA 81:3655-3659 (1984)).
- the vaccinia virus 7.5K promoter may be used (Mackett et al., PNAS USA, 79:7415-7419 (1982); Mackett et al., J. Virol. 49:857-864, 1984; Panicali et al., (PNAS USA, 79:4927-4931 (1982)).
- vectors based on bovine papilloma virus which have the ability to replicate as extrachromosomal elements (Sarver et al., Mol. Cell. Biol. 1:486 (1981)). Shortly after entry of this DNA into mouse cells, the plasmid replicates to about 100 to 200 copies per cell. Transcription of the inserted cDNA does not require integration of the plasmid into the host's chromosome, thereby yielding a high level of expression.
- These vectors can be used for stable expression by including a selectable marker in the plasmid, such as the neo gene.
- the retroviral genome can be modified for use as a vector capable of introducing and directing the expression of the variant squalene synthase enzyme in host cells (Cone and Mulligan, PNAS USA 81:6349-6353 (1984)).
- High level expression may also be achieved using inducible promoters, including, but not limited to, the metallothionein IIA promoter and heat shock promoters.
- host cells can be transformed with a cDNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker.
- expression control elements e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.
- the selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines.
- engineered cells may be allowed to grow for 1-2 days in enriched media, and then are switched to a selective medium.
- a number of selection systems may be used, including but not limited, to the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223 (1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska and Szybalski, PNAS USA, 48:2026 (1962)), and adenine phosphoribosyltransferase (Lowy et al., Cell, 22:817 (1980)) genes, which can be employed in tk ⁇ , hgprt ⁇ or aprt ⁇ cells, respectively.
- antimetabolite resistance-conferring genes can be used as the basis of selection; for example, the genes for dhfr, which confer resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA, 77:3567 (1980); O'Hare et al., PNAS USA, 78:1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan and Berg, PNA S USA, 78:2072 (1981)); neo, which confers resistance to the aminoglycoside G418 (Colberre-Garapin et al., J. Mol.
- trpB which allows cells to utilize indole in place of tryptophan
- hisD which allows cells to utilize histinol in place of histidine
- ODC ornithine decarboxylase
- Another aspect of the present invention is a variant squalene synthase enzyme encoded by a nucleic acid segment of the present invention as described above.
- These squalene synthase enzymes can be for example, enzymes derived from S. cerevisiae or other species of the genus Saccharomyces ; they can also include other squalene synthases derived from any organism that has a gene that catalyzes the conversion of farnesyl pyrophosphate into squalene.
- variant squalene synthase enzymes include, for example, the following:
- a variant S. cerevisiae squalene synthase enzyme in which the squalene synthase enzyme differs from the variant squalene synthase enzyme of any of (1) through (11) above by one to three conservative amino acid substitutions, wherein a conservative amino acid substitution is defined as one of the following substitutions: A ⁇ G or S; R ⁇ K; N ⁇ Q or H; D ⁇ E; C ⁇ S; Q ⁇ N; G ⁇ D; G ⁇ A or P; H ⁇ N or Q; I ⁇ L or V; L ⁇ I or V; K ⁇ R or Q or E; M ⁇ L or Y or I; F ⁇ M or L or Y; S ⁇ T; T ⁇ S; W ⁇ Y; Y ⁇ W or F; and V ⁇ I or L.
- the variant squalene synthase enzyme has a reduced V max for squalene synthesis.
- the variant squalene synthase enzyme has an increased K m for its FPP substrate, in which case the enzyme is less active at a given intracellular concentration of FPP than the wild-type enzyme.
- the variant squalene synthase enzyme when expressed in vivo in a suitable eukaryotic microbial host, as described above, produces squalene at a rate of less than 75% of the wild-type enzyme.
- the variant squalene synthase enzyme when expressed in vivo in a suitable eukaryotic microbial host, as described above, produces squalene at a rate of less than 50% of the wild-type enzyme. More preferably, the variant squalene synthase enzyme, when expressed in vivo in a suitable eukaryotic microbial host, produces squalene at a rate of less than 25% of the wild-type enzyme.
- the variant S. cerevisiae squalene synthase enzyme differs from the variant S. cerevisiae squalene synthase enzyme of any of (1) through (10) above by one to two conservative amino acid substitutions. More preferably, the variant S. cerevisiae squalene synthase enzyme differs from the variant S. cerevisiae squalene synthase enzyme of any of (1) through (10) above by one conservative amino acid substitution.
- the host cell in this alternative, includes at least one copy of a nucleic acid sequence encoding a variant squalene synthase enzyme.
- the at least one copy of the nucleic acid sequence encoding a variant squalene synthase enzyme can be present in the chromosome of a prokaryotic (bacterial) cell or in one chromosome of a eukaryotic cell.
- the at least one copy of the nucleic acid sequence encoding a variant squalene synthase enzyme can be present in a vector or plasmid that is present in the cell.
- the host cell can be a prokaryotic or eukaryotic cell. If a prokaryotic cell, it can be a bacterial cell. If a eukaryotic cell, it can be a yeast cell, a plant cell, or an animal cell. Suitable host cells are described above.
- Another aspect of the present invention is a method of isolating a mutated ERG9 gene.
- the mutated ERG9 gene is typically a S. cerevisiae gene, but can be a homologous gene from another species as described above.
- a method of isolating a mutated ERG9 gene according to the present invention comprises the steps of:
- step (b) (3) transforming mutants from the pool of ERG9 mutants generated in step (b) into a strain of a eukaryotic microbial host that contains a plasmid expressing a terpene synthase gene that produces a detectable and measurable terpene product, the strain of the eukaryotic microbial host being transformed in such a manner that replacement of the preexisting erg9 allele with an erg9 mutation allows the strain to grow in a sterol-free medium; and
- step (c) isolating a transformant from step (c) that produces a level of terpene product at least equivalent to the level of terpene product produced by a strain of the eukaryotic microbial host expressing the terpene synthase gene that requires a sterol in the medium for growth.
- the step of isolating a wild-type ERG9 gene to produce an isolated wild-type ERG9 gene is typically performed by amplifying a wild-type ERG9 gene by using a nucleic acid amplification process to produce an amplified wild-type ERG9 gene; however, other isolation methods are known in the art and are contemplated by this invention, it is not necessary to use PCR or another nucleic acid amplification method.
- the nucleic acid amplification method is typically PCR.
- other nucleic acid amplification processes can be used that are well known in the art.
- the ERG9 gene can be a fungal ERG9 gene, such as a Saccharomyces cerevisiae ERG9 gene or an ERG9 gene of another Saccharomyces species; alternatively, the ERG9 gene can be any homologous ERG9 gene as described above.
- the mutagenesis is typically performed using error-prone PCR, although other mutagenesis methods are well known in the art and can alternatively be used. Such mutagenesis methods include, for example, ultraviolet (UV) radiation, ethyl methanesulfonate (EMS), nitrosoguanidine, and other mutagens.
- UV ultraviolet
- EMS ethyl methanesulfonate
- nitrosoguanidine and other mutagens.
- the error-prone PCR is typically performed using one or more DNA polymerase enzymes that have higher misinsertion and misextension rates than wild-type polymerase enzymes.
- the terpene synthase gene that produces a detectable and measurable terpene product can be, for example, the Hyoscyamus muticus premnaspirodiene synthase (HPS) gene.
- HPS Hyoscyamus muticus premnaspirodiene synthase
- the terpene synthase gene that produces a detectable and measurable terpene product is one that produces a product detectable and measurable by gas chromatography, although other detection methods can be used.
- a suitable strain of S. cerevisiae that contains a plasmid expressing a terpene synthase gene that produces a detectable and measurable terpene product is ALX7-95 (his3, tip1, erg9::HIS3, HMGcat/TRP1::rDNA, dpp1), a leucine prototroph of strain CALI-5 (U.S. Pat. Nos. 6,531,303 and 6,689,593), containing a plasmid expressing the Hyoscyamus muticus premnaspirodiene synthase (HPS) gene.
- Transformants of this strain require histidine for growth; before transformation, this strain requires supplementation with a sterol.
- Another aspect of the present invention is a method of isolating a variant squalene synthase enzyme.
- the variant squalene synthase enzyme to be isolated by these methods is as described above.
- this method comprises the steps of:
- this method further comprises the step of purifying the isolated variant squalene synthase enzyme.
- Variant squalene synthase enzymes according to the present invention can be purified by conventional protein purification techniques, including, for example, techniques such as precipitation with salts such as ammonium sulfate, ion exchange chromatography, gel filtration, affinity chromatography, electrophoresis, isoelectric focusing, isotachophoresis, chromatofocusing, and other techniques are well known in the art and are described in R. K. Scopes, “Protein Purification: Principles and Practice” (3 rd ed., Springer-Verlag, New York (1994)).
- Yet another aspect of the present invention is a method of producing an isoprenoid using a mutated ERG9 gene, in which the defective ERG9 gene encodes a variant squalene synthase enzyme.
- a host cell that includes a mutated ERG9 gene encoding a variant squalene synthase enzyme further includes at least one isoprenoid synthase gene, so that the farnesyl pyrophosphate produced in the host cell, which is available in greater concentrations for isoprenoid biosynthesis can be converted to a isoprenoid by the isoprenoid synthase encoded by the isoprenoid synthase gene.
- the isoprenoid synthase gene included in the host cell can be a chimeric isoprenoid synthase gene such as those described in U.S. Patent Application Publication No. 2008/0178354.
- chimeric isoprenoid synthase genes include derivatives of the Hyoscyamus muticus vetispiradiene synthase gene and/or the Nicotiana tabacum 5-epi-aristolochene synthase gene.
- the isoprenoid synthase gene included in the host cell can be a citrus valencene synthase gene as described in U.S. Patent Application Publication No. 2006/0218661.
- the isoprenoid synthase gene included in the host cell can be a H. muticus premnaspirodiene synthase gene, such as those described in Back and Chappell, J. Biol. Chem.
- the isoprenoid synthase gene included in the host cell can be an isoprenoid synthase gene such as those described in U.S. Patent Application Publication No. 2005/0210549.
- isoprenoid synthase genes include 5-epi-aristolochene synthase from Capsicum annuum , (E)- ⁇ -farnesene synthase from Mentha piperita , ⁇ -selenene synthase and ⁇ -humulene synthase from Abies grandis, 6-cadinene synthase from Gossypium arboreum , E- ⁇ -bisabolene synthase from Abies grandis , germacrene C synthase from Lycopersicon esculentum , epi-cedrol synthase and amorpha-4,11-diene synthase from Artemisia annua , and germacrene A synthases from Lactuca sativa, Cichorium intybus and Solidago canadensis .
- isoprenoid synthase genes are known in the art.
- mutants and protein engineered variants of these enzymes can be used.
- Methods for engineering variants of terpene synthases are known in the art; such methods can, for example, involve recombining domains from two or more terpene synthases to generate a chimeric terpene synthase. Such methods are described, for example, in U.S. Patent Application Publication No. 2006/0218661 and in U.S. Patent Application Publication No. 2008/0178354.
- this aspect of the invention comprises the steps of:
- the premnaspirodiene can be isolated by (i) sequestering the premnaspirodiene by binding it to a hydrophobic resin; (ii) and isolating the premnaspirodiene from the hydrophobic resin.
- the hydrophobic resin is Amberlite® XAD-16 hydrophobic resin.
- Other hydrophobic resins within the scope of the present invention will be known to one of reasonable skill in the art.
- premnaspirodiene is isolated from the hydrophobic resin by methanol extraction.
- isoprenoids can be isolated by similar methods well known in the art, making use of the fact that isoprenoids are hydrophobic and bind to hydrophobic resins.
- a two-phase system can be used with a non-polar solvent, substantially immiscible with an aqueous phase, added to the fermentation broth and the premnaspirodiene removed from the non-polar phase by distillation.
- a preferred non-polar solvent is an oil.
- a particularly preferred oil is a vegetable oil such as soybean oil.
- Alternative non-polar solvents include, but are not limited to, high molecular weight aliphatic hydrocarbons such as, but not limited to, dodecane, tridecane, tetradecane, pentadecane, and hexadecane; either straight-chain or branched-chain isomers can be used; these high-molecular weight aliphatic hydrocarbons are optionally substituted with one or more hydroxy or halogen substituents as long as the substituted hydrocarbon remains substantially immiscible with the aqueous phase.
- high molecular weight aliphatic hydrocarbons such as, but not limited to, dodecane, tridecane, tetradecane, pentadecane, and hexadecane; either straight-chain or branched-chain isomers can be used; these high-molecular weight aliphatic hydrocarbons are optionally substituted with one or more hydroxy or halogen substituents as long as the substituted hydrocarbon remains substantially im
- a classical batch fermentation is a closed system where the composition of the medium is set at the beginning of the fermentation and not subject to artificial alterations during the fermentation. Thus, at the beginning of the fermentation the medium is inoculated with the desired microorganism or microorganisms and fermentation is permitted to occur without further addition of nutrients.
- concentration of the carbon source in a batch fermentation is limited, and factors such as pH and oxygen concentration are controlled.
- the metabolite and biomass compositions of the system change constantly up to the time the fermentation is stopped.
- cells typically modulate through a static lag phase to a high growth log phase and finally to a stationary phase where growth rate is diminished or halted. If untreated, cells in the stationary phase will eventually die.
- Fed-Batch fermentation processes are also suitable for use in the present invention and comprise a typical batch system with the exception that nutrients are added as the fermentation progresses.
- Fed-Batch systems are useful when catabolite repression is apt to inhibit the metabolism of the cells and where it is desirable to have limited amounts of substrate in the medium. Also, the ability to feed nutrients will often result in higher cell densities in Fed-Batch fermentation processes compared to Batch fermentation processes.
- Factors such as pH, dissolved oxygen, nutrient concentrations, and the partial pressure of waste gases such as CO 2 are generally measured and controlled in Fed-Batch fermentations.
- Continuous fermentation is an open system where a defined fermentation medium is added continuously to a bioreactor and an equal amount of conditioned medium is removed simultaneously for processing. This system generally maintains the cultures at a constant high density where cells are primarily in their log phase of growth. Continuous fermentation allows for modulation of any number of factors that affect cell growth or end product concentration. For example, one method will maintain a limiting nutrient such as the carbon source or nitrogen level at a fixed rate and allow all other parameters to moderate. In other systems a number of factors affecting growth can be altered continuously while the cell concentration, measured by the medium turbidity, is kept constant.
- Microorganism host cells useful in the present invention for the production of the isoprenoid may include, but are not limited to, bacteria, such as the enteric bacteria ( Escherichia and Salmonella for example) as well as Bacillus, Acinetobacter, Streptomyces, Methylobacter, Rhodococcus and Pseudomonas ; Cyanobacteria, such as Rhodobacter and Synechocystis ; yeasts, such as Saccharomyces, Zygosaccharomyces, Kluyveromyces, Candida, Hansenula, Debaryomyces, Mucor, Pichia, Yarrowia , and Torulopsis ; and filamentous fungi such as Aspergillus and Arthrobotrys , and algae for example.
- bacteria such as the enteric bacteria ( Escherichia and Salmonella for example) as well as Bacillus, Acinetobacter, Streptomyces, Methylobacter, Rhodococcus
- the host cell is a eukaryotic cell. More preferably, the host cell is a yeast cell, which is a eukaryotic microorganism host cell. Most preferably, the host cell is a Saccharomyces cerevisiae cell.
- Microbial expression systems and expression vectors containing regulatory sequences that direct high level expression of foreign proteins are well known to those skilled in the art. These expression systems and expression vectors are known both for prokaryotic organisms such as bacteria and for eukaryotic organisms such as yeast. Similarly, vectors or cassettes useful for the transformation of suitable microbial host cells are well known in the art. These vectors and cassettes are known both for prokaryotic organisms such as bacteria and for eukaryotic organisms such as yeast. Typically, the vector or cassette contains sequences directing expression of the relevant gene, a selectable marker, and sequences allowing autonomous replication or chromosomal integration. Suitable vectors comprise a region 5′ of the gene which harbors transcriptional initiation controls and a region 3′ of the DNA fragment which controls transcriptional termination.
- Termination control regions or promoters which are useful to drive expression of the relevant genes in the desired host cell are numerous and familiar to those skilled in the art. Termination control regions may also be derived from various genes native to the preferred hosts.
- Enzymol. 185: 280-297 (1991) describes the use of yeast vector systems and components, the use of homologous recombination to integrate plasmids into the yeast host genome, and the use of centromere plasmids.
- Mylin et al., Meth. Enzymol. 185: 297-308 (1991) describes the use of galactose-inducible promoters to provide high levels of production of cloned proteins in yeast.
- Price et al., Meth. Enzymol. 185: 308-318 (1991) describes the use of the glucose-repressible ADH2 promoter to provide controllable, high level expression of cloned proteins in yeast. Etcheverry, Meth. Enzymol.
- yeast CUP1 promoter to drive controllable expression of cloned genes in yeast.
- Kingsman et al., Meth. Enzymol. 185: 329-341 (1991) describes the use of the yeast PGK promoter to drive controllable expression of cloned genes in yeast.
- Rosenberg at al., Meth. Enzymol. 185: 341-350 (1991) describes the use of expression cassette plasmids utilizing the strong GAPDH-491 promoter for high levels of heterologous protein production in yeast. Sledziewski at al., Meth. Enzymol.
- nucleic acid segments that include therein the isoprenoid synthase gene.
- the nucleic acid segments are DNA nucleic acid segments.
- the isoprenoid synthase gene is operatively linked to at least one nucleic acid expression control element, such as, but not limited to, a promoter, an enhancer, or a site capable of binding a repressor or activator.
- nucleic acid expression control elements are well known in the art.
- the isoprenoid synthase gene is included in a vector and, as such, is again operatively linked to at least one nucleic acid expression control element.
- Site-directed mutagenesis can be used, for example, to provide optimum codon selection for expression in S. cerevisiae , as described above.
- the isoprenoid synthase gene can, in one alternative, be expressed in the form of a nucleic acid segment encoding a fusion protein, such as a purification tag or other detectable protein domain.
- the method in general, comprises the steps of:
- isoprenoid synthases are available for in vitro use. These isoprenoid synthases have been either cloned or isolated from plants. The step of isolating the isoprenoid is performed as described above.
- additional reactions can be performed on the isolated isoprenoid to transform the isolated isoprenoid into another isoprenoid or related compound.
- additional reactions can be reactions such as oxidation, hydroxylation, alkylation, halogenation, or other reactions well known in the art.
- reactions such as hydroxylation or oxidation can be carried out by cytochrome P450 enzymes.
- the present invention describes improved strains of Saccharomyces cerevisiae that have a defective squalene synthase enzyme. These strains have the ability to produce enough squalene so that they do not need to be supplemented with sterols such as ergosterol for growth. However, because these strains produce less squalene than do wild-type strains, they have more farnesyl pyrophosphate available for eventual isoprenoid synthesis, because farnesyl pyrophosphate is a branch point for the steroid synthesis and isoprenoid synthesis pathways.
- these strains as well as the nucleic acid segments encoding the defective squalene synthase enzyme and the defective squalene synthase enzymes themselves, are useful for the improved production of isoprenoid products because the strains of S. cerevisiae do not need to be supplemented with sterols for growth and can produce high levels of farnesyl pyrophosphate without such supplementation.
- the nucleic acid segments eukaryotic microbial host cell strains, including S. cerevisiae strains, vectors and host cells incorporating the nucleic acid segments, and the variant squalene synthase enzymes have industrial utility.
- Chromosomal DNA isolated from Saccharomyces cerevisiae strain ATCC28383 was used as the DNA template for PCR amplification of the wild type ERG9 gene.
- the primers used for the amplification were the upstream primer 7-162.1 5′-CCATCTTCAACAACAATACCG-3′ (SEQ ID NO: 1) (underlined nucleotides at the 5′ end of the ERG9 sequence in FIG. 2 ) and the downstream primer 7-162.2 5′-GTACTTAGTTATTGTTCGG-3′ (SEQ ID NO: 2) (underlined nucleotides at the 3′ end of ERG9).
- SEQ ID NO: 1 underlined nucleotides at the 5′ end of the ERG9 sequence in FIG. 2
- SEQ ID NO: 2 underlined nucleotides at the 3′ end of ERG9
- ERG9 PCR product was sequenced and verified to be identical to the published sequence for ERG9.
- This DNA was used as the template for performing error prone PCR using the GeneMorph kit from Stratagene and the same primers described above.
- the error-prone PCR reaction was run using two different DNA concentrations ( ⁇ 500 ng and ⁇ 50 ng) to generate a range of mutations per gene. This generated a pool of ERG9 mutant genes.
- the PCR product from the mutagenic PCR reaction was transformed into ALX7-95 (his3, trp1, erg9:HIS3, HMGcat/TRP1::rDNA, dpp1), a leucine prototroph of strain CALI-5 (U.S. Pat. Nos. 6,531,303 and 6,689,593), containing a plasmid expressing the Hyoscyamus muticus premnaspirodiene synthase (HPS) gene.
- HPS gene was cloned into the yeast shuttle expression vector YEp-GW-URA-NheI/BamHI to give YEp-HPS-ura.
- This vector contained the ADH1 promoter for initiating transcription of the HPS gene. In addition, it contained the ADH1 terminator downstream of the HPS gene. This vector was maintained in S. cerevisiae by selecting media lacking uracil and it was maintained in E. coli by selecting for resistance to ampicillin.
- Transformation procedure of this strain with the ERG9 mutant pool used the lithium acetate transformation kit from Sigma.
- Transformants were selected for growth on YPD medium (10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose) without ergosterol. Since the parent strain requires ergosterol for growth, transformants that grew on YPD replaced the erg9::HIS3 replacement mutation with a copy of ERG9 that made sufficient amount of ergosterol for growth. This was verified by the fact that transformants had obtained a requirement for histidine for growth.
- the products were extracted first by introducing 250 ⁇ L of acetone through the serum stopper and vortexing, followed by addition of 500 ⁇ l of n-hexane and vortexing. After phase separation, the vials were placed on the sample tray of a gas chromatography autosampler, which removed one microliter of the organic phase for analysis of premnaspirodiene.
- the acetone and hexane used for extraction were each spiked with internal standards to aid in quantitation of the samples.
- the extracted samples were analyzed by GC and the amount of premnaspirodiene was calculated from the peak area.
- mutant strains were identified that produced more or similar amounts of premnaspirodiene as the control strain ALX7-95 containing expressed HPS. They were given the designations ALX7-168.4, ALX7-168.10, ALX7-168.14, ALX7-168.19, ALX7-168.22, ALX7-168.23, ALX7-168.24, ALX7-168.25, and ALX7-183.69.
- the ERG9 gene from these mutant strains was PCR amplified and the PCR product was sequenced to determine the mutations within each strain.
- a HIS3 + strain of ALX7-168.25 was constructed and is designated ALX7-175.1.
- strain ALX7-175.1 was constructed for the production of premnaspirodiene. Production of premnaspirodiene in this strain was compared to that of strain ALX7-95 HPS, which is completely lacking in squalene synthase activity.
- premnaspirodiene was carried out in a 3-L fermentation tank (New Brunswick Bioflow 110).
- One liter of fermentation medium was prepared and autoclaved in the fermentation tank (20 g (NH 4 ) 2 SO 4 , 20 g KH 2 PO 4 , 1 g NaCl, MgSO 4 .7H 2 O, 4 g yeast extract (Difco).
- the seed culture for inoculating the fermentation medium was prepared by inoculating 50 mL of SD medium for ERG9 transformant strains.
- Non-transformant control cultures were grown in SDE medium (SD medium supplemented with 40 mg/L ergosterol). This culture was grown until early stationary phase (24-48 hr).
- SDE medium SD medium supplemented with 40 mg/L ergosterol
- This culture was grown until early stationary phase (24-48 hr).
- One mL of this culture was inoculated into 500 mL of SD or SDE medium, as appropriate, and grown for 24 hr.
- a 50-mL aliquot (5% inoculum) was used to inoculate the one liter of medium.
- the fermentor was maintained at 26° C.
- the air flow was 4.5 L/min and the dO 2 was maintained above 30% by adjusting the rpm.
- the pH was maintained at 4.5 using acetic acid and NaOH.
- a feeding regimen was initiated such that the glucose in the fermentor was kept between 0 and 1 g/L.
- the glucose feed was made by mixing 1400 mL of 60% glucose and 328 mL of 12.5% yeast extract.
- strains 4-10, 114, 19, 22, 23, 24, 25, and 69 were given strain designations ALX7-168.4, ALX7-168.10, ALX7-168.14, ALX7-168.19, ALX7-168.22, ALX7-168.23, ALX7-168.24, ALX7-168.25, and ALX7-83.169 respectively.
- strains ALX7-95 HPS (erg9::HIS3) and ALX7-175.1, a histidine prototroph of ALX7-168.25 (erg9 def ) were grown in fermentors using the same protocol except for the presence or absence of cholesterol in the medium.
- premnaspirodiene was assayed by gas chromatography.
- Table 1 the yields of premnaspirodiene in the fermentors waw similar.
- more glucose was fed and consumed during the course of the fermentation. Because of the resultant higher volume, more total premnaspirodiene was produced by the erg9 def culture grown under the same starting conditions.
- the sequence of the wild type ERG9 gene and sequences 245 base pairs upstream are shown in FIG. 2 .
- the ERG9 alleles from strains described in Examples 2 and 4 were obtained by PCR amplification of genomic DNA from strains designations ALX7-168.4, ALX7-168.10, ALX7-168.14, ALX7-168.19, ALX7-168.22, ALX7-168.23, ALX7-168.24, ALX7-168.25, and ALX7-183.69.
- the resulting DNA was sequenced, and the sequences corresponding to those mutants are shown in Table 2. All mutant genes contain mutations in the ERGS coding region. Alleles 10, 23, 24, and 25 contain, in addition, mutations in the 245 base pair noncoding region of upstream of the gene.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Microbiology (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Medicinal Chemistry (AREA)
- Biophysics (AREA)
- Plant Pathology (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Description
- This application claims the benefit of priority to U.S. Provisional Application Ser. No. 61/088,288, filed Aug. 12, 2008, which is incorporated herein in its entirety.
- This invention is directed to yeast strains that overproduce a precursor to terpenes, farnesyl pyrophosphate (FPP), and are capable of growing without sterol supplementation.
- With over 50,000 identified members, terpenoids comprise the largest known class of natural products. These compounds are structurally diverse, although based on related carbon skeletons. The structural diversity found among these compounds allows them to perform a variety of essential biochemical functions. These compounds serve as attractants for pollinators, antimicrobial and antiherbivorial defense compounds, and may react with reactive oxygen species to protect against oxidative damage (Dudereva et al., Plant Physiol. 135: 1893-1902 (2004)). As components of the essential oils of aromatic plants, they are largely responsible for the distinct flavors and fragrances associated with their host plants. Moreover, the value of these small molecules extends beyond their biological utility. Many terpenoids have commercial value as antibiotics, pest control agents, fragrances, flavors, and anti-cancer agents, among other important uses.
- A specific class of these natural products, sesquiterpenoids, is derived from a common 15-carbon building block. This common 15-carbon building block is farnesyl pyrophosphate (FPP). Many important products, such as the flavoring nootkatone, the cosmetic additive bisabolol, and amorpha-4,11-diene, a precursor to the antimalarial compound artemisinin, are sesquiterpenoids and thus are based on the 15-carbon carbon skeleton of FPP. Therefore, methods that can increase the yield of FPP that can be utilized in sequiterpenoid synthesis are of extreme importance.
- To maximize production of terpenes, mutations in squalene synthase have been used to prevent or minimize conversion of farnesyl pyrophosphate to squalene. In practice, this has been done by either eliminating the corresponding gene, reducing its expression using weak promoters, or controlling its expression with a regulated promoter. Squalene is a precursor to sterols, which are essential to viability of yeast and other organisms. Accordingly, complete elimination of the gene requires feeding of sterols. The yeast Saccharomyces cerevisiae is not normally capable of taking up sterols under aerobic conditions, so in order to feed sterols to mutants, secondary mutations enabling sterol uptake are required.
- Various solutions have been proposed in order to obtain high yields of farnesyl pyrophosphate for maximum production of terpenes. In one approach, the ERG9 gene of the yeast is completely eliminated. The gene ERG9 encodes the enzyme squalene synthase. However, because these mutants in which ERG9 is eliminated cannot synthesize squalene, which is a precursor to sterols, they must be fed sterols (Takahashi, et al. Biotech. Bioengineer. 97:170-181 (2007)). In another approach, PCT Patent Application Publication No. WO 06/102342 by Bailey et al. describes production of high yields of farnesyl pyrophosphate by modifying the expression or activity of one or more polypeptides involved in generating cytosolic acetyl-CoA and/or NADPH. In another approach, a promoter, the MET3 promoter, is used in place of the native ERG9 promoter to downregulate the expression of squalene synthase by repressing its synthesis by adding methionine, which acts as a repressor with respect to the MET3 promoter (Asadollahi et al., Biotech. Bioengineer. 99: 666-677 (2007)). In a similar approach, in addition to repression of ERG9 production, overproduction of a soluble, truncated form of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, and enhancement of the activity of the transcription factor UPC2 was employed (Paradise et al., Cell. Metabol. Engineer. Bioengineer. 100: 371-378 (2008); Ro et al., Nature 440: 940-943 (2006)).
- However, there is a need for improved strains of Saccharomyces cerevisiae that can overproduce FPP without the need for sterol supplementation and without regulating expression. Preferably, these improved strains would grow efficiently and produce high levels of farnesyl pyrophosphate for subsequent terpenoid synthesis.
- A number of mutations of the Saccharomyces cerevisiae squalene synthase gene have been isolated and characterized. These mutants produce a sufficient quantity of squalene synthesis enzyme so that the enzyme catalyzes the synthesis of squalene at a sufficiently high rate so that sterol supplementation for the S. cerevisiae cells is not required, while having reduced activity so that more farnesyl pyrophosphate is available for isoprenoid biosynthesis. The reduced activity may be the result of reduced catalytic efficiency of the enzyme, or of reduced intracellular concentration of the protein, or both.
- Accordingly, one aspect of the present invention is an isolated nucleic acid molecule that encodes a squalene synthase enzyme that, when present and expressed in vivo in a eukaryotic microbial host as the only squalene synthase species, catalyzes the synthesis of squalene at a sufficiently high rate so that supplementation of the eukaryotic microbial host with a sterol is not required for growth, and also has a reduced squalene synthase activity (referred to herein for convenience as a variant squalene synthase enzyme). In one alternative, a host cell containing the nucleic acid molecule, when expressed in vivo, produces a greater concentration of an isoprenoid in grams of isoprenoid per liter of culture than a corresponding host containing a wild-type nucleic acid molecule.
- The variant squalene synthase enzyme of the present invention can be a squalene synthase enzyme of any suitable species. In one aspect, variant squalene synthase enzymes are from Saccharomyces cerevisiae.
- Isolated nucleic acid molecules encoding a variant S. cerevisiae squalene synthase enzymes according to the present invention include, but are not limited to the following isolated nucleic acid molecules:
- (1) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 691 A→G, resulting in the amino acid change E→G at amino acid residue 149; (b) 748 G→T, resulting in the amino acid change G→V at amino acid residue 168; (c) 786 T→A, resulting in the amino acid change Y→N at amino acid residue 181; (d) 1114 A→T, resulting in the amino acid change Q→L at
amino acid residue 290; (e) 1213 T→C, resulting in the amino acid change I→T at amino acid residue 323; and (f) 1290 T→C, resulting in no change of the amino acid L at amino acid residue 349 (silent mutation); - (2) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 72 C→A (in the non-coding region); (b) 110 ΔA (in the non-coding region); and (c) 801 G→A, resulting in the amino acid change V→I at amino acid residue 186;
- (3) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 989 T→A, resulting in no change of the amino acid P at amino acid residue 248 (silent mutation); (b) 1112 G→A, resulting in no change of the amino acid E at amino acid residue 289 (silent mutation); (c) 1220 G→A, resulting in no change of the amino acid K at amino acid residue 325 (silent mutation); and (d) 1233 T→C, resulting in the amino acid change Y→H at
amino acid residue 330; - (4) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 786 T→A, resulting in the amino acid change Y→N at amino acid residue 181; (b) 1025 A→G, resulting in no change of the amino acid Q at amino acid residue 260 (silent mutation); (c) 1056 T→A, resulting in the amino acid change L→I at amino acid residue 271; (d) 1068 A→G, resulting in the amino acid change S→G at amino acid residue 275; and (e) 1203 A→G, resulting in the amino acid change N→D at
amino acid residue 320; - (5) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 886 T→C, resulting in the amino acid change M→T at amino acid residue 214; (b) 969 A→G, resulting in the amino acid change I→V at amino acid residue 242; (c) 1075 T→C, resulting in the amino acid change V→A at amino acid residue 277; and (d) 1114 A→T, resulting in the amino acid change Q→L at
amino acid residue 290; - (6) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: 84 T→A (in the non-coding region); (b) 283 A→T, resulting in the amino acid change E→V at amino acid residue 13; (c) 424 T→C, resulting in the amino acid change L→P at
amino acid residue 60; (d) 440 A→G, resulting in no change of the amino acid R at amino acid residue 65 (silent mutation); and (e) 1076 T→C, resulting in no change of the amino acid V at amino acid residue 277 (silent mutation); - (7) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 619 A→T, resulting in the amino acid change D→V at amino acid residue 125; (b) 634 resulting in the amino acid change L→P at
amino acid residue 130; and (c) 962 C→T, resulting in no change of the amino acid P at amino acid residue 239 (silent mutation); - (8) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 150 A→T (in the non-coding region); (b) 410 T→G, resulting in no change of the amino acid A at amino acid residue 55 (silent mutation); (c) 411 G→T, resulting in the amino acid change V→L at amino acid residue 56; and (d) 1248 T→C, resulting in the amino acid change S→P at amino acid residue 335;
- (9) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme, in which the following nucleic acid changes occur: (a) 510 C→T, resulting in the amino acid change H→Y at amino acid residue 89; (b) 573 T→C, resulting in the amino acid change F→L at
amino acid residue 110; (c) 918 A→G, resulting in the amino acid change R→G at amino acid residue 224; and (d) 997 A→G, resulting in the amino acid change K→G at amino acid residue 251; - (10) an isolated nucleic acid molecule identical to any of (3), (4), (6), (7), or (8), above, except that one or more of the silent mutations in nucleic acid molecules (3), (4), (6), (7), or (8) are omitted;
- (11) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme in which the wild-type S. cerevisiae squalene synthase enzyme is mutated with the same amino acid changes as in any of (1) through (10) above;
- (12) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme containing any of the amino acid changes in any of (1) through (10) above; and
- (13) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme in which the squalene synthase enzyme differs from the squalene synthase enzyme encoded by the isolated nucleic acid molecule of any of (1) through (12) above by one to three conservative amino acid substitutions, wherein a conservative amino acid substitution is defined as one of the following substitutions: A→G or S; R→K; N→Q or H; D→E; C→S; Q→N; G→D; G→A or P; H→N or Q; I→L or V; L→I or V; K→R or Q or E; M→L or Y or I; F→M or L or Y; S→T; T→S; W→Y; Y→W or F; and V→I or L.
- The present invention also encompasses an isolated nucleic acid molecule that is at least 95% identical to any of the isolated nucleic acid molecules described above that encodes a variant S. cerevisiae squalene synthase enzyme, such that the isolated nucleic acid molecule also encodes a variant S. cerevisiae squalene synthase enzyme that, when present and expressed in vivo in Saccharomyces cerevisiae, catalyzes the synthesis of squalene at a sufficiently high rate that supplementation of the S. cerevisiae with a sterol is not required and that has a reduced squalene synthase activity.
- Also within the scope of the present invention is an isolated nucleic acid molecule that includes therein, as a discrete, continuous nucleic acid segment, the isolated nucleic acid molecule encoding the variant squalene synthase as described above. This embodiment of the invention can include, at either the 5′-terminus, the 3′-terminus, or both, additional nucleic acid sequences such as linkers, adaptors, restriction endonuclease cleavage sites, regulatory sequences such as promoters, enhancers, or operators, or coding sequences, to which the discrete, continuous nucleic acid segment is operatively linked.
- Also within the scope of the present invention are vectors including therein nucleic acid segments according to the present invention as described above, as well as host cells transformed or transfected with the vectors or host cells including therein a nucleic acid segment encoding the variant squalene synthase enzyme according to the present invention, as described above.
- The present invention further includes a variant squalene synthase enzyme encoded by a nucleic acid sequence according to the present invention as described above. The variant squalene synthase enzyme can be, but is not limited to a variant S. cerevisiae squalene synthase enzyme. Variant S. cerevisiae squalene synthase enzymes according to the present invention include, but are not limited to, at least one of the mutants listed in Table 2.
- Another aspect of the present invention includes a host cell containing and/or expressing a variant squalene synthase enzyme of the present invention as described above (a variant squalene synthase enzyme). The host cell, in this alternative, includes at least one copy of a nucleic acid sequence encoding the enzyme. The copy of the nucleic acid sequence encoding the enzyme can be present in the chromosome of a prokaryotic (bacterial) cell or in one chromosome of a eukaryotic cell. Alternatively, the copy of the nucleic acid sequence encoding the enzyme can be present in a vector or plasmid that is present in the cell.
- Another aspect of the invention is a method of isolating a defective ERG9 gene. In general, this method comprises the steps of:
- (1) isolating a wild-type ERG9 gene to produce an isolated wild-type ERG9 gene;
- (2) subjecting the isolated wild-type ERG9 gene to mutagenesis to generate a pool of erg9 mutants;
- (3) transforming mutants from the pool of erg9 mutants generated in step (2) into a strain of a eukaryotic microbial host that contains a plasmid expressing a terpene synthase gene that produces a detectable and measurable terpene product, the strain of the eukaryotic microbial host being transformed in such a manner that replacement of the preexisting ERG9 allele with an erg9 mutation allows the strain to grow in a sterol-free medium; and
- (4) isolating a transformant from step (3) that produces a level of terpene product at least equivalent to the level of terpene product produced by a strain of the eukaryotic microbial host expressing the terpene synthase gene that requires a sterol in the medium for growth.
- Another aspect of the present invention is a method of isolating a variant squalene synthase enzyme. The variant squalene synthase enzyme to be isolated by the methods of the invention is as described above.
- In general, this method comprises the steps of:
- (a) culturing a host cell that expresses a variant squalene synthase gene according to the present invention or that contains a variant squalene synthase enzyme according to the present invention; and
- (b) isolating the variant squalene synthase enzyme from the host cell.
- Yet another aspect of the present invention is a method of producing an isoprenoid using a host cell containing a mutated ERG9 gene, which defective ERG9 gene encodes a variant squalene synthase enzyme.
- In one alternative, a host cell that includes a mutated ERG9 gene encoding a variant squalene synthase enzyme further includes at least one isoprenoid synthase gene, so that the farnesyl pyrophosphate produced in the host cell, which is available in greater concentrations for isoprenoid biosynthesis can be converted to an isoprenoid by the isoprenoid synthase encoded by the isoprenoid synthase gene.
- This alternative, in general, comprises the steps of:
- (1) providing a host cell that includes a mutated ERG9 gene that encodes a variant squalene synthase enzyme according to the present invention and at least one isoprenoid synthase gene;
- (2) allowing the host cell to produce farnesyl pyrophosphate and to synthesize the isoprenoid from the farnesyl pyrophosphate; and
- (3) isolating the isoprenoid synthesized by the host cell.
- In another alternative method for producing an isoprenoid, the method, in general, comprises the steps of:
- (1) providing a host cell that includes a mutated ERG9 gene that encodes a variant synthase enzyme according to the present invention;
- (2) allowing the host cell to produce farnesyl pyrophosphate;
- (3) isolating farnesyl pyrophosphate from the host cell;
- (4) reacting the farnesyl pyrophosphate in vitro with one or more isoprenoid synthases to synthesize the isoprenoid; and
- (5) isolating the isoprenoid.
- These and other features, aspects, and advantages of the present invention will become better understood with regard to the following description, appended claims, and accompanying drawings.
-
FIG. 1 depicts a graph showing the concentration of premnaspirodiene in mg/L for each of the 25 isolates grown with and without ergosterol supplementation. -
FIG. 2 depicts shows the sequences of the wild-type ERG9 gene including sequences 245 base pairs upstream of the start site (SEQ ID NO: 3). InFIG. 2 , the underlined nucleotides shown at the 5′-terminus and 3′-terminus of the ERG9 gene sequence represent the upstream primer (7-162.1) 5′-CCATCTTCAACAACAATACCG-3′ (SEQ ID NO: 1) and the downstream primer (7-162.2) 5′-GTACTTAGTTATTGTTCGG-3′ (SEQ ID NO: 2). - As used herein, the term “nucleic acid,” “nucleic acid sequence.” “polynucleotide,” or similar terms, refers to a deoxyribonucleotide or ribonucleotide oligonucleotide or polynucleotide, including single- or double-stranded forms, and coding or non-coding (e.g., “antisense”) forms. The term encompasses nucleic acids containing known analogues of natural nucleotides. The teen also encompasses nucleic acids including modified or substituted bases as long as the modified or substituted bases interfere neither with the Watson-Crick binding of complementary nucleotides or with the binding of the nucleotide sequence by proteins that bind specifically. The term also encompasses nucleic-acid-like structures with synthetic backbones. DNA backbone analogues provided by the invention include phosphodiester, phosphorothioate, phosphorodithioate, methylphosphonate, phosphoramidate, alkyl phosphotriester, sulfamate, 3′-thioacetal, methylene(methylimino), 3′-N-carbamate, morpholino carbamate, and peptide nucleic acids (PNAs). (Oligonucleotides and Analogues, a Practical Approach, edited by F. Eckstein, IRL Press at Oxford University Press (1991); Antisense Strategies, Annals of the New York Academy of Sciences,
Volume 600, Eds. Baserga and Denhardt (NYAS 1992); Milligan, J. Med. Chem. 36:1923-1937 (1993); Antisense Research and Applications (1993, CRC Press). PNAs contain non-ionic backbones, such as N-(2-aminoethyl) glycine units. Phosphorothioate linkages are described in, e.g. U.S. Pat. Nos. 6,031,092; 6,001,982; 5,684,148; WO 97/03211; WO 96/39154; Mata, Toxicol. Appl. Pharmacol. 144:189-197 (1997). Other synthetic backbones encompassed by the term include methylphosphonate linkages or alternating methylphosphonate and phosphodiester linkages (U.S. Pat. No. 5,962,674; Strauss-Soukup, Biochemistry 36:8692-8698 (1997)), and benzylphosphonate linkages (U.S. Pat. No. 5,532,226; Samstag, Antisense Nucleic Acid Drug Dev 6:153-156 (1996)). Bases included in nucleic acids include any of the known base analogs of DNA and RNA including, but not limited to, 4-acetylcytosine, 8-hydroxy-N6-methyl adenosine, aziridinylcytosine, pseudoisocytosine, 5-(carboxyhydroxylmethyl)uracil, 5-fluorouracil, 5-bromouracil, 5-carboxymethylaminomethyl-2-thiouracil, 5-carboxymethyl-aminomethyluracil, dihydrouracil, inosine, N6-isopentenyladenine, 1-methyladenine, 1-methylpseudo-uracil, 1-methylguanine, 1-methylinosine, 2,2-dimethyl-guanine, 2-methyladenine, 2-methylguanine, 3-methyl-cytosine, 5-methylcytosine, N6-methyladenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxy-amino-methyl-2-thiouracil, β-D-mannosylqueosine, 5′-methoxycarbonylmethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, oxybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, N-uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid, pseudouracil, queosine, 2-thiocytosine, and 2,6-diaminopurine. DNA may be in the form of cDNA, in vitro polymerized DNA, plasmid DNA, parts of a plasmid DNA, genetic material derived from a virus, linear DNA, vectors (e.g. P1, PAC, BAC, YAC, and artificial chromosomes), expression cassettes, chimeric sequences, recombinant DNA, chromosomal DNA, an oligonucleotide, anti-sense DNA, or derivatives of these groups. RNA may be in the form of oligonucleotide RNA, tRNA (transfer RNA), snRNA (small nuclear RNA), rRNA (ribosomal RNA), mRNA (messenger RNA), in vitro polymerized RNA, recombinant RNA, chimeric sequences, anti-sense RNA, siRNA (small interfering RNA), ribozymes, or derivatives of these groups. Additionally, the terms “nucleic acid” or “nucleic acid molecule” refer to a deoxyribonucleotide or ribonucleotide polymer in either single- or double-stranded form, and unless otherwise limited, would encompass known analogs of natural nucleotides that can function in a similar manner as naturally occurring nucleotides. A “nucleotide sequence” also refers to a polynucleotide molecule or oligonucleotide molecule in the form of a separate fragment or as a component of a larger nucleic acid. The nucleotide sequence or molecule may also be referred to as a “nucleotide probe.” Some of the nucleic acid molecules of the invention are derived from DNA or RNA isolated at least once in substantially pure form and in a quantity or concentration enabling identification, manipulation, and recovery of its component nucleotide sequence by standard biochemical methods. Examples of such methods, including methods for PCR protocols that may be used herein, are disclosed in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, New York (1989), Ausubel, F. A., et al., eds., Current Protocols in Molecular Biology, John Wiley and Sons, Inc., New York (1987), and Innis, M., et al. (Eds.) PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, Calif. (1990). Reference to a nucleic acid molecule also includes its complement as determined by the standard Watson-Crick base-pairing rules, with uracil (U) in RNA replacing thymine (T) in DNA where necessary, unless the complement is specifically excluded. - As described herein, the nucleic acid molecules of the invention include DNA in both single-stranded and double-stranded form, as well as the DNA or RNA complement thereof. DNA includes, for example, DNA, genomic DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof. Genomic DNA, including translated, non-translated and control regions, may be isolated by conventional techniques, e.g., using any one of the cDNAs of the invention, or suitable fragments thereof, as a probe, to identify a piece of genomic DNA which can then be cloned using methods commonly known in the art.
- Polypeptides encoded by the nucleic acids of the invention are encompassed by the invention. As used herein, reference to a nucleic acid “encoding” a protein or polypeptide encompasses not only cDNAs and other intronless nucleic acids, but also DNAs, such as genomic DNA, with introns, on the assumption that the introns included have appropriate splice donor and acceptor sites that will ensure that the introns are spliced out of the corresponding transcript when the transcript is processed in a eukaryotic cell. Due to the degeneracy of the genetic code wherein more than one codon can encode the same amino acid, multiple DNA sequences can code for the same polypeptide. Such variant DNA sequences can result from genetic drift or artificial manipulation (e.g., occurring during PCR amplification or as the product of deliberate mutagenesis of a native sequence). Deliberate mutagenesis of a native sequence can be carried out using numerous techniques well known in the art. For example, oligonucleotide-directed site-specific mutagenesis procedures can be employed, particularly where it is desired to mutate a gene such that predetermined restriction nucleotides or codons are altered by substitution, deletion or insertion. Exemplary methods of making such alterations are disclosed by Walder et al., Gene, 42:133 (1986); Bauer et al., Gene 37:73 (1985); Craik, BioTechniques, Jan. 12-19 (1985); Smith et al., Genetic Engineering Principles and Methods, Plenum Press, (1981); Kunkel (PNAS USA 82:488 (1985); Kunkel et al., Methods in Enzymol. 154.367 (1987). The present invention thus encompasses any nucleic acid capable of encoding a protein of the current invention.
- In a peptide or protein, suitable conservative substitutions of amino acids are known to those of skill in this art and may be made generally without altering the biological activity of the resulting molecule. Those of skill in this art recognize that, in general, single amino acid substitutions in non-essential regions of a polypeptide do not substantially alter biological activity (see, e.g. Watson et al., Molecular Biology of the Gene, 4th Edition, 1987, Benjamin/Cummings, p. 224). In particular, such a conservative variant has a modified amino acid sequence, such that the change(s) do not substantially alter the proteins structure and/or activity, e.g., antibody activity, enzymatic activity, or receptor activity. These include conservatively modified variations of an amino acid sequence, i.e., amino acid substitutions, additions or deletions of those residues that are not critical for protein activity, or substitution of amino acids with residues having similar properties (e.g., acidic, basic, positively or negatively charged, polar or non-polar, etc.) such that the substitutions of even critical amino acids does not substantially alter structure and/or activity. Conservative substitution tables providing functionally similar amino acids are well known in the art. For example, one exemplary guideline to select conservative substitutions includes (original residue followed by exemplary substitution): Ala/Gly or Ser; Arg/Lys; Asn/Gln or His; Asp/Glu; Cys/Ser; Gln/Asn; Gly/Asp; Gly/Ala or Pro; His/Asn or Gln; Ile/Leu or Val; Leu/Ile or Val; Lys/Arg or Gln or Glu; Met/Leu or Tyr or Ile; Phe/Met or Leu or Tyr; Ser/Thr; Thr/Ser; Trp/Tyr; Tyr/Trp or Phe; or Leu. An alternative exemplary guideline uses the following six groups, each containing amino acids that are conservative substitutions for one another: (1) alanine (A or Ala), serine (S or Ser), threonine (T or Thr); (2) aspartic acid (D or Asp), glutamic acid (E or Glu); (3) asparagine (N or Asn), glutamine (Q or Gln); (4) arginine (R or Arg), lysine (K or Lys); (5) isoleucine (I or He), leucine (L or Leu), methionine (M or Met), valine (V or Val); and (6) phenylalanine (F or Phe), tyrosine (Y or Tyr), tryptophan (W or Trp); (Creighton (1984) Proteins, W. H. Freeman and Company; Schulz and Schimer (1979) Principles of Protein Structure, Springer-Verlag). One of skill in the art will appreciate that the above-identified substitutions are not the only possible conservative substitutions. For example, for some purposes, one may regard all charged amino acids as conservative substitutions for each other whether they are positive or negative. In addition, individual substitutions, deletions or additions that alter, add or delete a single amino acid or a small percentage of amino acids in an encoded sequence can also be considered “conservatively modified variations” when the three-dimensional structure and the function of the protein to be delivered are conserved by such a variation.
- As used herein, the term “isolated” with reference to a nucleic acid molecule or polypeptide or other biomolecule means that the nucleic acid or polypeptide has been separated from the natural environment from which the polypeptide or nucleic acid were obtained. It may also mean that the biomolecule has been altered from the natural state. For example, a polynucleotide or a polypeptide naturally present in a living animal is not “isolated,” but the same polynucleotide or polypeptide separated from the coexisting materials of its natural state is “isolated,” as the term is employed herein. Thus, a polypeptide or polynucleotide produced and/or contained within a recombinant host cell is considered isolated. Also intended as an “isolated polypeptide” or an “isolated polynucleotide” are polypeptides or polynucleotides that have been purified, partially or substantially, from a recombinant host cell or from a native source. For example, a recombinantly produced version of a compound can be substantially purified by the one-step method described in Smith et al., Gene 67:3140 (1998). The terms “isolated” and “purified” are sometimes used interchangeably.
- Thus, by “isolated” it is meant that the nucleic acid is free of the coding sequences of those genes that, in a naturally-occurring genome, immediately flank the gene encoding the nucleic acid of interest. Isolated DNA may be single-stranded or double-stranded, and may be genomic DNA, cDNA, recombinant hybrid DNA, or synthetic DNA. It may be identical to a native DNA sequence, or may differ from such sequence by the deletion, addition, or substitution of one or more nucleotides.
- “Isolated” or “purified” also refer to preparations made from biological cells or hosts means any cell extract containing the indicated DNA or protein including a crude extract of the DNA or protein of interest. For example, in the ease of a protein, a purified preparation can be obtained following an individual technique or a series of preparative or biochemical techniques and the protein of interest can be present at various degrees of purity in these preparations. Particularly for proteins, the procedures may include for example, but are not limited to, ammonium sulfate fractionation, gel filtration, ion exchange change chromatography, affinity chromatography, density gradient centrifugation, electrofocusing, chromatofocusing, and electrophoresis. As used herein, the term “substantially purified,” when applied to a composition or extract derived from yeast, and wherein the composition or extract contains an isoprenoid, is hereby defined as containing at least about twice the concentration of isoprenoid in proportion to yeast material, wherein yeast material is defined as being selected from the group consisting of yeast cell membrane, yeast organelle, yeast cytoplasm, yeast microsomal fraction, yeast cell, and yeast extract.
- A preparation of DNA or protein that is “substantially pure” or “isolated” refers to a preparation free from naturally occurring materials with which such DNA or protein is normally associated in nature. “Essentially pure” means a “highly” purified preparation that contains at least 95% of the DNA or protein of interest.
- A cell extract that contains the DNA or protein of interest should be understood to mean a homogenate preparation or cell-free preparation obtained from cells that express the protein or contain the DNA of interest. The term “cell extract includes culture media, for example, spent culture media from which the cells have been removed.
- A “vector” is a nucleic acid that is capable of transporting another nucleic acid. Vectors may be, for example, plasmids, viruses, cosmids or phage. An “expression vector” is a vector that is capable of directing expression of a protein encoded by one or more genes carried by the vector when it is present in the appropriate environment. Examples of vectors are those that can autonomously replicate and express structural gene products present in the DNA segments to which they are operatively linked. Vectors, therefore, can contain the replicons and selectable markers described earlier. Vectors include, but are not necessarily limited to, expression vectors.
- As used herein with regard to nucleic acid molecules, including DNA fragments, the phrase “operatively linked” means the sequences or segments have been covalently joined, preferably by conventional phosphodiester bonds, into one strand of DNA, whether in single or double-stranded form such that operatively linked portions function as intended.
- As used herein, the phrase “substantially identical” means that a relevant sequence is at least 70%, 75%, 80%, 85%, 90%, 92%, 95% 96%, 97%, 98%, or 99% identical to a given sequence. By way of example, such sequences may be allelic variants, sequences derived from various species, or they may be derived from the given sequence by truncation, deletion, amino acid substitution or addition. Percent identity between two sequences is determined by standard alignment algorithms such as ClustalX when the two sequences are in best alignment according to the alignment algorithm.
- In order to maximize production of farnesyl pyrophosphate (FPP), novel mutants in the ERG9 gene of Saccharomyces cerevisiae have been developed. The ERG9 gene is the gene encoding squalene synthase. These mutants have reduced, but not eliminated, squalene synthase activity. As such, they allow sufficient production of squalene and subsequent sterols to allow growth, but are sufficiently reduced in activity to allow accumulation of FPP and overproduction of terpenes. This is done, unlike in previous approaches, by generating and utilizing defective squalene synthase genes, which when expressed result in reduced cellular squalene synthase, activity rather than downregulating the transcription of a normally active squalene synthase enzyme. This makes the reduced squalene synthase activity independent of the activity of a repressor.
- Accordingly, one aspect of the present invention is an isolated nucleic acid molecule that encodes a squalene synthase enzyme that, when present and expressed in vivo in a eukaryotic microbial host cell, catalyzes the synthesis of squalene at a sufficiently high rate that supplementation of the eukaryotic microbial host cell with a sterol is not required and that has a reduced squalene synthase activity (referred to herein for convenience as a variant squalene synthase enzyme). Typically, the variant squalene synthase enzyme encoded by the isolated nucleic acid molecule of the present invention has a reduced Vmax for squalene synthesis. Vmax is the maximum rate of a reaction being catalysed by an enzyme. Alternatively, the variant squalene synthase enzyme encoded by the isolated nucleic acid molecule of the present invention has an increased Michaelis constant (Km) for its FPP substrate, in which case the enzyme is less active at a given intracellular concentration of FPP than the wild-type enzyme. The Km is a means of characterising an enzyme's affinity for a substrate. The Km in an enzymatic reaction is the substrate concentration at which the reaction rate is half its maximum speed. Typically, the squalene synthase enzyme encoded by the isolated nucleic acid molecule of the present invention, when expressed in vivo in the eukaryotic microbial host cell, produces squalene at a rate of less than 75% of the wild-type enzyme. Preferably, the squalene synthase enzyme encoded by the isolated nucleic acid molecule of the present invention, when expressed in vivo in the eukaryotic microbial host cell, produces squalene at a rate of less than 50% of the wild-type enzyme. More preferably, the squalene synthase enzyme encoded by the isolated nucleic acid molecule of the present invention, when expressed in vivo in the eukaryotic microbial host cell, produces squalene at a rate of less than 25% of the wild-type enzyme. The eukaryotic microbial host cell is typically, but is not limited to, a fungal host cell. The fungal host cell is typically, but it not limited to, a yeast host cells, such as a Saccharomyces cerevisiae host cell or other host cells of the genus Saccharomyces. Similarly, the variant squalene synthase is not limited to a squalene synthase of Saccharomyces cerevisiae, but can be a squalene synthase of another species of Saccharomyces or a squalene synthase of any organism that has a gene that catalyzes the conversion of farnesyl pyrophosphate into squalene.
- Isolated nucleic acid molecules according to the present invention include, but are not limited to, the following isolated nucleic acid molecules:
- (1) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase enzyme as shown as Mutant 4 in Table 2 of the present invention;
- (2) an isolated nucleic acid molecule encoding a mutated S. cerevisiae squalene synthase enzyme as shown as
Mutant 10 in Table 2 of the present invention; - (3) an isolated nucleic acid molecule encoding a mutated S. cerevisiae squalene synthase enzyme as shown as Mutant 14 in Table 2 of the present invention;
- (4) an isolated nucleic acid molecule encoding a mutated S. cerevisiae squalene synthase enzyme as shown as Mutant 19 in Table 2 of the present invention;
- (5) an isolated nucleic acid molecule encoding a mutated S. cerevisiae squalene synthase enzyme as shown as
Mutant 22 in Table 2 of the present invention; - (6) an isolated nucleic acid molecule encoding a mutated S. cerevisiae squalene synthase enzyme as shown as
Mutant 23 in Table 2 of the present invention; - (7) an isolated nucleic acid molecule encoding a mutated S. cerevisiae squalene synthase enzyme as shown as
Mutant 24 in Table 2 of the present invention; - (8) an isolated nucleic acid molecule encoding a mutated S. cerevisiae squalene synthase enzyme as shown as
Mutant 25 in Table 2 of the present invention; - (9) an isolated nucleic acid molecule encoding a mutated S. cerevisiae squalene synthase enzyme as shown as Mutant 69 in Table 2 of the present invention;
- (10) an isolated nucleic acid molecule identical to any of (3), (4), (6), (7), or (8), above, except that one or more of the silent mutations in nucleic acid molecules (3), (4), (6), (7), or (8) are omitted;
- (11) an isolated nucleic acid molecule encoding a variant S. cerevisiae squalene synthase protein in which the wild-type S. cerevisiae squalene synthase enzyme is mutated with the same amino acid changes as in any of (1) through (10) above;
- (12) an isolated nucleic acid encoding a squalene synthase protein containing any of the amino acid changes in any of (1) through (10). Although some of the mutations described above are designated as “silent,” meaning that they do not affect the amino acid inserted into the polypeptide chain at that position, there is evidence that such mutations may affect protein function in a number of ways, including altering folding patterns due to effects on translation due to codon
- The invention includes an isolated nucleic acid molecule encoding a squalene synthase enzyme that differs from the squalene synthase enzyme encoded by the nucleic acid molecule in any of (1) through (11), above, by one to three conservative amino acid substitutions, in which a conservative amino acid substitution is defined as one of the following substitutions: A→G or S; R→K; N→Q or H; D→E; C→S; Q→N; G→D; G→A or P; H→N or Q; or I→L or V; L→I or V; K→R or Q or E; M→L or Y or I; F→M or L or Y; S→T; T→S; W→Y; Y→W or F; and V→I or L. Preferably, the isolated nucleic acid molecule encodes a squalene synthase protein that differs from the squalene synthase protein encoded by the nucleic acid molecule in any of (1) through (10) by one or two conservative amino acid substitutions. More preferably, the isolated nucleic acid molecule encodes a squalene synthase protein that differs from the squalene synthase protein encoded by the nucleic acid molecule in any of (1) through (11) by one conservative amino acid substitution.
- The invention includes an isolated nucleic acid molecule that is at least 95% identical to any of the isolated nucleic acid molecules described above that encodes a mutated S. cerevisiae squalene synthase enzyme, such that the isolated nucleic acid molecule also encodes a mutated S. cerevisiae squalene synthase enzyme that, when present and expressed in vivo in Saccharomyces cerevisiae, catalyzes the synthesis of squalene at a sufficiently high rate that supplementation of the S. cerevisiae with sterols is not required and that has a reduced squalene synthase activity. Typically, the isolated nucleic acid molecule is at least 97.5% identical to any of the isolated nucleic acid molecules described above. Preferably, the isolated nucleic acid molecule is at least 99% identical to any of the isolated nucleic acid molecules described above. More preferably, the isolated nucleic acid molecule is at least 99.5% identical to any of the isolated nucleic acid molecules described above. Most preferably, the isolated nucleic acid molecule is at least 99.8% identical to any of the isolated nucleic acid molecules described above. For these purposes. “identity” is defined according to the Needleman-Wunsch algorithm (S. B. Needleman & C. D. Wunsch, “A General Method Applicable to the Search for Similarities in the Amino Acid Sequence of Two Proteins,” J. Mol. Biol. 48: 443-453 (1970)).
- Nucleic acid molecules according to the present invention and having the desired degree of identity are not limited to nucleic acid molecules derived from S. cerevisiae; they include nucleic acid molecules derived from other species of Saccharomyces, or, as described above, derived from any organism that has a gene capable of catalyzing the conversion of farnesyl pyrophosphate into squalene.
- Additionally, isolated nucleic acid molecules according to the present invention further include isolated nucleic acid molecules, which encode a squalene synthase enzyme, and when expressed in a eukaryotic microbial host in which no other squalene synthase enzyme is expressed, result in a significant reduction of conversion of farnesyl pyrophosphate to squalene as described above. In one alternative, a nucleic acid molecule according to the present invention, when expressed in vivo, causes a host cell to produce a greater concentration of an isoprenoid in grams of isoprenoid per liter of culture than a corresponding host cell expressing a wild-type nucleic acid molecule. These isolated nucleic acid molecules have at least one change from a nucleic acid molecule that includes the coding region for the wild-type ERG9 gene and its flanking sequences, including the sequences both upstream and downstream from the coding region. This at least one change reduces the squalene synthase activity, even though the specific activity may potentially be unaltered. The reduction of the activity of the squalene synthase enzyme can occur through one or more of the following mechanisms: (1) reduction in transcription so that less mRNA that can be translated into squalene synthase enzyme is generated; (2) reduction of mRNA stability, again reducing translation; and (3) reduction of enzyme stability brought about by an increased rate of protein degeneration in vivo. In other words, either: (1) the specific activity of the resulting squalene synthase enzyme is reduced through at least one change in the amino acid sequence of the enzyme expressed from the nucleic acid molecule; or (2) the in vivo activity of the enzyme is reduced through a reduction in transcription, a reduction in translation, or a reduction of enzyme stability.
- The nucleic acid described above can be DNA, RNA, or a RNA-DNA hybrid, but is typically DNA. The nucleic acid described above can be single-stranded or double-stranded. If the nucleic acid is single-stranded, either the strand described or its complement can be the coding strand and is within the scope of the invention.
- Also within the scope of the invention is an isolated nucleic acid molecule that includes therein, as a discrete, continuous nucleic acid segment, the isolated nucleic acid molecule encoding the variant squalene synthase. This embodiment of the invention can include, at either the 5′-terminus, the 3′-terminus, or both, additional nucleic acid sequences such as linkers, adaptors, restriction endonuclease cleavage sites, regulatory sequences such as promoters, enhancers, or operators, or coding sequences, to which the discrete, continuous nucleic acid segment is operatively linked. In the event that the isolated nucleic acid molecule includes additional coding sequences, the isolated nucleic acid molecule can encode a fusion protein having S. cerevisiae squalene synthase activity.
- Also within the scope of the invention are vectors including therein nucleic acid segments according to the present invention as described above. The vectors can be capable of replication in prokaryotes (bacteria) or in eukaryotes (yeast or cells of higher organisms). In one alternative, the vectors are capable of replication in yeast, for example, S. cerevisiae. In yeast, a number of vectors containing constitutive or inducible promoters may be used. For a review, see Current Protocols in Molecular Biology, Vol. 2, 1988, Ed. Ausubel, et al., Greene Publish. Assoc. & Wiley Interscience, Ch. 13; Grant, et al., 1987, Expression and Secretion Vectors for Yeast, in Methods in Enzymology, Eds. Wu & Grossman, 31987, Acad. Press, N.Y., Vol. 153, pp. 516-544; Glover, 1986, DNA Cloning, Vol. II, IRL Press, Wash., D.C., Ch. 3; and Bitter, 1987, Heterologous Gene Expression in Yeast, Methods in Enzymology, Eds. Berger & Kimmel, Acad. Press, N.Y., Vol. 152, pp. 673-684; and The Molecular Biology of the Yeast Saccharomyces, 1982, Eds. Strathern et al., Cold Spring Harbor Press, Vols. I and II. A constitutive yeast promoter such as ADH1 or LEU2 or an inducible promoter such as GAL4 may be used (Cloning in Yeast, Ch. 3, Rothstein In: DNA Cloning Vol. 11, A Practical Approach, Ed. D M Glover, 1986, IRL Press, Wash., D.C.). Alternatively, vectors may be used which promote integration of foreign DNA sequences into the yeast chromosome.
- Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described, for example, in Pouwels et al., Cloning Vectors. A Laboratory Manual, Elsevier, N.Y., (1985). Cell-free translation systems could also be employed to produce the disclosed polypeptides using RNAs derived from DNA constructs disclosed herein.
- Examples of expression vectors that can be used in prokaryotic host cells include those derived from commercially available plasmids such as the cloning vector pET plasmids (Novagen, Madison, Wis., USA) or pBR322 (ATCC 37017). The pBR322 vector contains genes for ampicillin and tetracycline resistance and thus provides simple means for identifying transformed cells. To construct an expression vector using pBR322, an appropriate promoter and a DNA sequence encoding one or more of the polypeptides of the invention are inserted into the pBR322 vector. Other commercially available vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEM-1 (Promega Biotec, Madison, Wis., USA). Other commercially available vectors include those that are specifically designed for the expression of proteins; these would include pMAL-p2 and pMAL-c2 vectors that are used for the expression of proteins fused to maltose binding protein (New England Biolabs, Beverly, Mass., USA).
- Promoter sequences commonly used for recombinant prokaryotic host cell expression vectors include the bacteriophage T7 promoter (Studier and Moffatt, J. Mol. Biol. 189:113 (1986)), β-lactamase (penicillinase), lactose promoter system (Chang et al., Nature 275:615, 1978; Goeddel et al., Nature 281:544 (1979)), tryptophan (trp) promoter system (Goeddel et al., Nucl. Acids Res. 8:4057 (1980); EP-A-36776), and tac promoter (Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, p. 412(1982)). A particularly useful prokaryotic host cell expression system employs a phage λ PL promoter and a c1857ts thermolabile repressor sequence. Plasmid vectors available from the American Type Culture Collection (ATCC), which incorporate derivatives of the PL promoter, include plasmid pHUB2 (resident in E. coli strain JMB9 (ATCC 37092)) and pPLc28 (resident in E. coli RR1 (ATCC 53082)).
- As detailed below, nucleic acid segments according to the present invention can also be incorporated in vectors suitable for introduction into yeast cells, such as, for example, Saccharomyces (particularly S. cerevisiae), Pichia (particularly P. pastoris), and Kluyveromyces (particularly K. lactis). Yeast vectors will often contain an origin of replication sequence from a 2μ yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene. Suitable promoter sequences for yeast vectors include, among others, promoters for metallothionein, 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073, 1980), or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg. 7:149 (1968); Holland et al., Biochem. 17:4900, (1978)), such as enolase, glyceraldehyde phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Other suitable vectors and promoters for use in yeast expression are described in Hitzeman, EPA-73,657 or in Fleer et al., Gene, 107:285-195 (1991); and van den Berg et al., Bio/Technology, 8:135-139 (1990). Another alternative is the glucose-repressible ADH2 promoter described by Russell et al. (J. Biol. Chem. 258:2674, (1982)) and Beier et al. (Nature 300:724 (1982)). Shuttle vectors replicable in both yeast and E. coli can be constructed by inserting DNA sequences from pBR322 for selection and replication in E. coli (Ampr gene and origin of replication) into the above-described yeast vectors.
- When the vectors are capable of replication in cells of higher organisms, the higher organisms can be plants or animals, including mammals. In cases where plant expression vectors are used, the expression of a mutated S. cerevisiae squalene synthase coding sequence according to the present invention may be driven by any of a number of promoters. For example, viral promoters such as the 35S RNA and 19S RNA promoters of CaMV (Brisson et al., Nature, 310:511-514 (1984)), or the coat protein promoter to TMV (Takamatsu et al., EMBO J., 6:307-311 (1987)) may be used; alternatively, plant promoters such as the small subunit of RUBISCO (Coruzzi et al., EMBO J. 3:1671-1680 (1984); Broglie et al., Science 224:838-843 (1984)); or heat shock promoters, e.g., soybean hsp17.5-E or hsp17.3-B (Gurley et al., Mol. Cell. Biol., 6:559-565 (1986)) may be used. These constructs can be introduced into plant cells using Ti plasmids, Ri plasmids, plant virus vectors, direct DNA transformation, microinjection, electroporation, or other techniques that are well known in the art. For reviews of such techniques see, for example, Weissbach and Weissbach, Methods for Plant Molecular Biology, Academic Press, NY, Section VIII, pp. 421-463 (1988); and Grierson and Corey, Plant Molecular Biology, 2d Ed., Blackie, London, Ch. 7-9 (1988). Eukaryotic cells are alternative host cells for the expression of mutated S. cerevisiae squalene synthase coding sequences. Such host cell lines may include but are not limited to CHO, VERO, BHK, HeLa, COS, MDCK, 293, and WI38.
- Mammalian cell systems that utilize recombinant viruses or viral elements to direct expression may be engineered. For example, when using adenovirus expression vectors, the coding sequence of a variant squalene synthase enzyme may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted into the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing the variant squalene synthase enzyme in infected hosts (Logan and Shenk, PNAS USA 81:3655-3659 (1984)). Alternatively, the vaccinia virus 7.5K promoter may be used. (Mackett et al., PNAS USA, 79:7415-7419 (1982); Mackett et al., J. Virol. 49:857-864 (1984); Panicali, et al., PNAS USA, 79:4927-4931 (1982)). Of particular interest are vectors based on bovine papilloma virus which have the ability to replicate as extrachromosomal elements (Sarver et al., Mol. Cell. Biol. 1:486 (1981)). Shortly after entry of this DNA into mouse cells, the plasmid replicates to about 100 to 200 copies per cell. Transcription of the inserted cDNA does not require integration of the plasmid into the host's chromosome, thereby yielding a high level of expression. These vectors can be used for stable expression by including a selectable marker in the plasmid, such as the neo gene. Alternatively, the retroviral genome can be modified for use as a vector capable of introducing and directing the expression of the variant squalene synthase enzyme in host cells (Cone and Mulligan, PNAS USA 81:6349-6353 (1984)). High level expression may also be achieved using inducible promoters, including, but not limited to, the metallothionein IIA promoter and heat shock promoters.
- Also within the scope of the invention are host cells including a nucleic acid segment encoding the variant squalene synthase according to the present invention, as described above. These host cells are typically transformed or transfected with the nucleic acid segment; methods for such transformation or transfection are described above. The term “nucleic acid segment” is used herein to include the following alternatives: (1) a vector including therein the variant squalene synthase; or (2) a chromosome of the host cell including therein the variant squalene synthase. The vector or chromosome can include, as described above, nucleic acid sequences either 5′-3′-, or both 5′- and 3′- to the coding sequence of the mutated S. cerevisiae squalene synthase, such as, but not limited to, linkers, adaptors, restriction endonuclease cleavage sites, regulatory sequences such as promoters, enhancers, or operators, or coding sequences. The host cells can be prokaryotic cells, such as bacteria, or can be eukaryotic cells, such as yeast cells, plant cells, or animal cells. If the host cells are yeast cells, they are typically S. cerevisiae, although other genera of yeast, such as Pichia (Pichia pastoris) or Kluyveromyces (Kluyveromyces lactis) can also be employed. If the cells are plant cells, many types of plant cells are suitable host cells; one frequently employed host cell is Arabidopsis thaliana. If the cells are animal cells, they can be insect cells or mammalian cells.
- In host cells according to the present invention including therein a nucleic acid segment encoding the variant squalene synthase as described above, the nucleic acid segment can be incorporated into a vector as described above. Alternatively, the nucleic acid segment can be integrated into a chromosome of the host cell. Methods for integrating the nucleic acid segment encoding the variant squalene synthase as described above into the chromosome of a prokaryotic cell (i.e., a bacterium) or into one chromosome of a eukaryotic cell are known in the art. As described above, in this application, the nucleic acid is typically DNA.
- DNA sequences encoding variant squalene synthase can be obtained by several methods. For example, the DNA can be isolated using hybridization procedures that are well known in the art. These include, but are not limited to: (1) hybridization of probes to genomic or cDNA libraries to detect shared nucleotide sequences; (2) antibody screening of expression libraries to detect shared structural features; and (3) synthesis by the polymerase chain reaction (PCR). RNA sequences of the invention can be obtained by methods known in the art (See, for example, Current Protocols in Molecular Biology, Ausubel, et al., Eds. (1989)).
- The development of specific DNA sequences encoding variant squalene synthases of the invention can be obtained by: (1) isolation of a double-stranded DNA sequence from the genomic DNA; (2) chemical manufacture of a DNA sequence to provide the necessary codons for the polypeptide of interest; and (3) in vitro synthesis of a double-stranded DNA sequence by reverse transcription of mRNA isolated from a eukaryotic donor cell. In the latter case, a double-stranded DNA complement of mRNA is eventually formed which is generally referred to as cDNA. Of these three methods for developing specific DNA sequences for use in recombinant procedures, the isolation of genomic DNA is the least common. This is especially true when it is desirable to obtain the microbial expression of eukaryotic polypeptides, such as yeast polypeptides, due to the presence of introns. For obtaining nucleic acid sequences encoding variant squalene synthases according to the present invention, the synthesis of DNA sequences is frequently the method of choice when the entire sequence of amino acid residues of the desired polypeptide product is known. When the entire sequence of amino acid residues of the desired polypeptide is not known, the direct synthesis of DNA sequences is not possible and the method of choice is the formation of cDNA sequences. Among the standard procedures for isolating cDNA sequences of interest is the formation of plasmid-carrying cDNA libraries which are derived from reverse transcription of mRNA which is abundant in donor cells that have a high level of genetic expression. When used in combination with polymerase chain reaction technology, even rare expression products can be clones. In those cases where significant portions of the amino acid sequence of the polypeptide are known, the production of labeled single or double-stranded DNA or RNA probe sequences duplicating a sequence putatively present in the target cDNA may be employed in DNA/DNA hybridization procedures which are carried out on cloned copies of the cDNA which have been denatured into a single-stranded form (Jay et al., Nucleic Acid Research 11:2325 (1983)).
- Nucleotide sequences encompassed by the present invention can also be incorporated into a vector as described above, including, but not limited to, an expression vector, and used to transfect or transform suitable host cells, as is well known in the art. The vectors incorporating the nucleotide sequences that are encompassed by the present invention are also within the scope of the invention. Host cells that are transformed or transfected with the vector or with polynucleotides or nucleotide sequences of the present invention are also within the scope of the invention. The host cells can be prokaryotic or eukaryotic; if eukaryotic, the host cells can be mammalian cells, insect cells, or yeast cells. If prokaryotic, the host cells are typically bacterial cells.
- Transformation of a host cell with recombinant DNA may be carried out by conventional techniques as are well known to those skilled in the art. Where the host is prokaryotic, such as Escherichia coli, competent cells which are capable of DNA uptake can be prepared from cells harvested after exponential growth phase and subsequently treated by the CaCl2 method by procedures well known in the art. Alternatively, MgCl2 or RbCl can be used. Transformation can also be performed after forming a protoplast of the host cell or by electroporation.
- When the host is a eukaryote, such methods of transfection of DNA as calcium phosphate co-precipitates, conventional mechanical procedures such as microinjection, electroporation, insertion of a plasmid encased in liposomes, or virus vectors may be used.
- A variety of host-expression vector systems may be utilized to express the nucleic acid sequence encoding the variant squalene synthase enzymes of the present invention. These include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing a variant squalene synthase enzyme coding sequence; yeast transformed with recombinant yeast expression vectors containing the variant squalene synthase enzyme coding sequence; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing a variant squalene synthase enzyme coding sequence; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing a variant squalene synthase enzyme coding sequence; or animal cell systems infected with recombinant virus expression vectors (e.g., retroviruses, adenovirus, vaccinia virus) containing a variant squalene synthase enzyme coding sequence, or transformed animal cell systems engineered for stable expression. In such cases where glycosylation may be important, expression systems that provide for translational and post-translational modifications may be used; e.g., mammalian, insect, yeast or plant expression systems.
- Depending on the host/vector system utilized, any of a number of suitable transcription and translation elements, for example, constitutive and inducible promoters, transcription enhancer elements, transcription terminators, may be used in the expression vector (Bitter et al., Methods in Enzymology, 153:516-544 (1987)). For example, when cloning in bacterial systems, inducible promoters such as pL of bacteriophage λ, plac, ptrp, ptac (ptrp-lac hybrid promoter) and the like may be used. When cloning in mammalian cell systems, promoters derived from the genome of mammalian cells (e.g., metallothionein promoter) or from mammalian viruses (e.g., the retrovirus long terminal repeat; the adenovirus late promoter; the vaccinia virus 7.5K promoter) may be used. Promoters produced by recombinant DNA or synthetic techniques may also be used to provide for transcription of the inserted variant squalene synthase enzyme coding sequence.
- In bacterial systems a number of expression vectors may be advantageously selected depending upon the use intended for the variant squalene synthase enzyme expressed, and whether it is desired to isolate the enzyme and in what state of purity. For example, when large quantities are to be produced, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Those which are engineered to contain a cleavage site to aid in recovering the protein are preferred. Such vectors include, but are not limited to, the Escherichia coli expression vector pUR278 (Ruttier et al., EMBO J., 2:1791 (1983)), in which the variant squalene synthase enzyme coding sequence may be ligated into the vector in frame with the lac Z coding region so that a hybrid variant squalene synthase enzyme-lac Z protein is produced as well as pIN vectors (Inouye and Inouye, Nucleic Acids Res. 13:3101-3109 (1985); Van Heeke and Schuster, J. Biol. Chem. 264:5503-5509 (1989)).
- In yeast, a number of vectors containing constitutive or inducible promoters may be used. For a review, see Current Protocols in Molecular Biology, Vol. 2, Ed. Ausubel, et al., Greene Publish. Assoc. & Wiley Interscience, Ch. 13 (1988); Grant et al., Expression and Secretion Vectors for Yeast, in Methods in Enzymology, Eds. Wu & Grossman, 31987, Acad. Press, N.Y., Vol. 153, pp. 516-544 (1987); Glover, DNA Cloning, Vol. II, IRL Press, Wash., D.C., Ch. 3 (1986); Bitter, Heterologous Gene Expression in Yeast, Methods in Enzymology, Eds. Berger & Kimmel, Acad. Press, N.Y., Vol. 152, pp. 673-684 1987); and The Molecular Biology of the Yeast Saccharomyces, Eds. Strathern et al., Cold Spring Harbor Press, Vols. I and II (1982). A constitutive yeast promoter such as ADH1 or LEU2 or an inducible promoter such as GAL4 may be used (Cloning in Yeast, Ch. 3, R. Rothstein In: DNA Cloning Vol. 11, A Practical Approach, Ed. DM Glover, IRL Press, Wash., D.C. (1986)). Alternatively, vectors may be used which promote integration of foreign DNA sequences into the yeast chromosome.
- In cases where plant expression vectors are used, the expression of a variant squalene synthase enzyme coding sequence may be driven by any of a number of promoters. For example, viral promoters such as the 35S RNA and 19S RNA promoters of CaMV (Brisson et al., Nature, 310:511-514 (1984)), or the coat protein promoter to TMV (Takamatsu et al., EMBO J., 6:307-311 (1987)) may be used; alternatively, plant promoters such as the small subunit of RUBISCO (Coruzzi et al., EMBO J. 3:1671-1680 (1984); Broglie et al., Science 224:838-843 (1984)); or heat shock promoters, e.g., soybean hsp17.5-E or hsp17.3-B (Gurley et al., Mol. Cell. Biol., 6:559-565 (1986)) may be used. These constructs can be introduced into plant cells using Ti plasmids, Ri plasmids, plant virus vectors, direct DNA transformation, microinjection, electroporation, or other techniques that are well known in the art. (Weissbach & Weissbach, Methods for Plant Molecular Biology, Academic Press, NY, Section VIII, pp. 421-463 (1988); Grierson and Corey, Plant Molecular Biology, 2d Ed., Blackie, London, Ch. 7-9 (1988).
- An alternative expression system that can be used to express a variant squalene synthase enzyme of the present invention is an insect system. In one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. The variant squalene synthase enzyme coding sequence may be cloned into non-essential regions (in Spodoptera frugiperda, for example, the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). Successful insertion of the variant squalene synthase enzyme coding sequence will result in inactivation of the polyhedrin gene and production of non-occluded recombinant virus (i.e., virus lacking the proteinaceous coat coded for by the polyhedrin gene). These recombinant viruses are then used to infect cells in which the inserted gene is expressed. (Smith et al., J. Biol. 46:584 (1983); U.S. Pat. No. 4,215,051).
- Eukaryotic systems, and preferably mammalian expression systems, allow for proper post-translational modifications of expressed eukaryotic proteins to occur. Therefore, eukaryotic cells, such as mammalian cells that possess the cellular machinery for proper processing of the primary transcript, glycosylation, phosphorylation, and, advantageously secretion of the gene product, are the preferred host cells for the expression of a variant squalene synthase enzyme. Such host cell lines may include, for example CHO, VERO, BHK, HeLa, COS, MDCK, 293, and WI38. Other eukaryotic host cells are also suitable host cells for the expression of a variant squalene synthase enzyme or of nucleic acids according to the present invention, including, for example, microalgal cells.
- Mammalian cell systems that utilize recombinant viruses or viral elements to direct expression may be engineered for use in the present invention. For example, when using adenovirus expression vectors, the coding sequence of a variant squalene synthase enzyme may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted into the adenovirus genome by in vitro or in vivo recombination. Insertion in a non-essential region of the viral genome (e.g., region E1 or E3) will result in a recombinant virus that is viable and capable of expressing the variant squalene synthase enzyme in infected hosts (Logan and Shenk, PNAS USA 81:3655-3659 (1984)). Alternatively, the vaccinia virus 7.5K promoter may be used (Mackett et al., PNAS USA, 79:7415-7419 (1982); Mackett et al., J. Virol. 49:857-864, 1984; Panicali et al., (PNAS USA, 79:4927-4931 (1982)). Of particular interest are vectors based on bovine papilloma virus which have the ability to replicate as extrachromosomal elements (Sarver et al., Mol. Cell. Biol. 1:486 (1981)). Shortly after entry of this DNA into mouse cells, the plasmid replicates to about 100 to 200 copies per cell. Transcription of the inserted cDNA does not require integration of the plasmid into the host's chromosome, thereby yielding a high level of expression. These vectors can be used for stable expression by including a selectable marker in the plasmid, such as the neo gene. Alternatively, the retroviral genome can be modified for use as a vector capable of introducing and directing the expression of the variant squalene synthase enzyme in host cells (Cone and Mulligan, PNAS USA 81:6349-6353 (1984)). High level expression may also be achieved using inducible promoters, including, but not limited to, the metallothionein IIA promoter and heat shock promoters.
- For long-term, high-yield production of recombinant proteins, stable expression is preferred. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with a cDNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. For example, following the introduction of foreign DNA, engineered cells may be allowed to grow for 1-2 days in enriched media, and then are switched to a selective medium. A number of selection systems may be used, including but not limited, to the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223 (1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska and Szybalski, PNAS USA, 48:2026 (1962)), and adenine phosphoribosyltransferase (Lowy et al., Cell, 22:817 (1980)) genes, which can be employed in tk−, hgprt− or aprt− cells, respectively. Additionally, antimetabolite resistance-conferring genes can be used as the basis of selection; for example, the genes for dhfr, which confer resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA, 77:3567 (1980); O'Hare et al., PNAS USA, 78:1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan and Berg, PNA S USA, 78:2072 (1981)); neo, which confers resistance to the aminoglycoside G418 (Colberre-Garapin et al., J. Mol. Biol., 150:1 (1981)); and hygro, which confers resistance to hygromycin (Santerre et al., Gene, 30:147 (1984)). Recently, additional selectable genes have been described, namely trpB, which allows cells to utilize indole in place of tryptophan; hisD, which allows cells to utilize histinol in place of histidine (Hartman and Mulligan, PNAS USA, 85:804 (1988)); and ODC (ornithine decarboxylase) which confers resistance to the ornithine decarboxylase inhibitor, 2-(difluoromethyl)-DL-ornithine, DFMO (McConlogue, In: Current Communications in Molecular Biology, Cold Spring Harbor Laboratory ed., (1987)).
- Another aspect of the present invention is a variant squalene synthase enzyme encoded by a nucleic acid segment of the present invention as described above. These squalene synthase enzymes can be for example, enzymes derived from S. cerevisiae or other species of the genus Saccharomyces; they can also include other squalene synthases derived from any organism that has a gene that catalyzes the conversion of farnesyl pyrophosphate into squalene.
- When the variant squalene synthase enzymes are S. cerevisiae squalene synthase enzymes, they include, for example, the following:
- (1) a variant S. cerevisiae squalene synthase enzyme as shown as Mutant 4 in Table 2;
- (2) a variant S. cerevisiae squalene synthase enzyme as shown as
Mutant 10 in Table 2; - (3) a variant S. cerevisiae squalene synthase enzyme as shown as Mutant 14 in Table 2;
- (4) a variant S. cerevisiae squalene synthase enzyme as shown as Mutant 19 in Table 2;
- (5) a variant S. cerevisiae squalene synthase enzyme as shown as
Mutant 22 in Table 2; - (6) a variant S. cerevisiae squalene synthase enzyme as shown as
Mutant 23 in Table 2; - (7) a variant S. cerevisiae squalene synthase enzyme as shown as
Mutant 24 in Table 2; - (8) a variant S. cerevisiae squalene synthase enzyme as shown as
Mutant 25 in Table 2; - (9) a variant S. cerevisiae squalene synthase enzyme as shown as Mutant 69 in Table 2;
- (10) a variant S. cerevisiae squalene synthase enzyme in which the wild-type S. cerevisiae squalene synthase enzyme is mutated with the same amino acid changes as in any of (1) through (9) above;
- (11) a variant S. cerevisiae squalene synthase enzyme containing any of the amino acid changes as in any of (1) through (10), above; and
- (12) a variant S. cerevisiae squalene synthase enzyme in which the squalene synthase enzyme differs from the variant squalene synthase enzyme of any of (1) through (11) above by one to three conservative amino acid substitutions, wherein a conservative amino acid substitution is defined as one of the following substitutions: A→G or S; R→K; N→Q or H; D→E; C→S; Q→N; G→D; G→A or P; H→N or Q; I→L or V; L→I or V; K→R or Q or E; M→L or Y or I; F→M or L or Y; S→T; T→S; W→Y; Y→W or F; and V→I or L.
- Furthermore, with respect to these alternatives, typically, the variant squalene synthase enzyme has a reduced Vmax for squalene synthesis. Alternatively, the variant squalene synthase enzyme has an increased Km for its FPP substrate, in which case the enzyme is less active at a given intracellular concentration of FPP than the wild-type enzyme. Typically, the variant squalene synthase enzyme, when expressed in vivo in a suitable eukaryotic microbial host, as described above, produces squalene at a rate of less than 75% of the wild-type enzyme. Preferably, the variant squalene synthase enzyme, when expressed in vivo in a suitable eukaryotic microbial host, as described above, produces squalene at a rate of less than 50% of the wild-type enzyme. More preferably, the variant squalene synthase enzyme, when expressed in vivo in a suitable eukaryotic microbial host, produces squalene at a rate of less than 25% of the wild-type enzyme.
- With respect to (12) of these alternatives, preferably, the variant S. cerevisiae squalene synthase enzyme differs from the variant S. cerevisiae squalene synthase enzyme of any of (1) through (10) above by one to two conservative amino acid substitutions. More preferably, the variant S. cerevisiae squalene synthase enzyme differs from the variant S. cerevisiae squalene synthase enzyme of any of (1) through (10) above by one conservative amino acid substitution.
- Another aspect of the present invention is a host cell containing and/or expressing a variant squalene synthase enzyme of the present invention as described above. The host cell, in this alternative, includes at least one copy of a nucleic acid sequence encoding a variant squalene synthase enzyme. The at least one copy of the nucleic acid sequence encoding a variant squalene synthase enzyme can be present in the chromosome of a prokaryotic (bacterial) cell or in one chromosome of a eukaryotic cell. Alternatively, the at least one copy of the nucleic acid sequence encoding a variant squalene synthase enzyme can be present in a vector or plasmid that is present in the cell. The host cell, as described above, can be a prokaryotic or eukaryotic cell. If a prokaryotic cell, it can be a bacterial cell. If a eukaryotic cell, it can be a yeast cell, a plant cell, or an animal cell. Suitable host cells are described above.
- Another aspect of the present invention is a method of isolating a mutated ERG9 gene. The mutated ERG9 gene is typically a S. cerevisiae gene, but can be a homologous gene from another species as described above.
- In general, a method of isolating a mutated ERG9 gene according to the present invention comprises the steps of:
- (1) isolating a wild-type ERG9 gene to produce an isolated wild-type ERG9 gene;
- (2) subjecting the isolated wild-type ERG9 gene to mutagenesis to generate a pool of ERG9 mutants;
- (3) transforming mutants from the pool of ERG9 mutants generated in step (b) into a strain of a eukaryotic microbial host that contains a plasmid expressing a terpene synthase gene that produces a detectable and measurable terpene product, the strain of the eukaryotic microbial host being transformed in such a manner that replacement of the preexisting erg9 allele with an erg9 mutation allows the strain to grow in a sterol-free medium; and
- (4) isolating a transformant from step (c) that produces a level of terpene product at least equivalent to the level of terpene product produced by a strain of the eukaryotic microbial host expressing the terpene synthase gene that requires a sterol in the medium for growth.
- In the present invention, the step of isolating a wild-type ERG9 gene to produce an isolated wild-type ERG9 gene is typically performed by amplifying a wild-type ERG9 gene by using a nucleic acid amplification process to produce an amplified wild-type ERG9 gene; however, other isolation methods are known in the art and are contemplated by this invention, it is not necessary to use PCR or another nucleic acid amplification method. When a nucleic acid amplification process is used, the nucleic acid amplification method is typically PCR. However, other nucleic acid amplification processes can be used that are well known in the art. In this method, the ERG9 gene can be a fungal ERG9 gene, such as a Saccharomyces cerevisiae ERG9 gene or an ERG9 gene of another Saccharomyces species; alternatively, the ERG9 gene can be any homologous ERG9 gene as described above. In this method, the mutagenesis is typically performed using error-prone PCR, although other mutagenesis methods are well known in the art and can alternatively be used. Such mutagenesis methods include, for example, ultraviolet (UV) radiation, ethyl methanesulfonate (EMS), nitrosoguanidine, and other mutagens.
- When error-prone PCR is used, the error-prone PCR is typically performed using one or more DNA polymerase enzymes that have higher misinsertion and misextension rates than wild-type polymerase enzymes.
- In the present invention, the terpene synthase gene that produces a detectable and measurable terpene product can be, for example, the Hyoscyamus muticus premnaspirodiene synthase (HPS) gene. Preferably, the terpene synthase gene that produces a detectable and measurable terpene product is one that produces a product detectable and measurable by gas chromatography, although other detection methods can be used.
- In the present invention, a suitable strain of S. cerevisiae that contains a plasmid expressing a terpene synthase gene that produces a detectable and measurable terpene product is ALX7-95 (his3, tip1, erg9::HIS3, HMGcat/TRP1::rDNA, dpp1), a leucine prototroph of strain CALI-5 (U.S. Pat. Nos. 6,531,303 and 6,689,593), containing a plasmid expressing the Hyoscyamus muticus premnaspirodiene synthase (HPS) gene. Transformants of this strain require histidine for growth; before transformation, this strain requires supplementation with a sterol.
- Although the invention can be used with isolates of mutations in S. cerevisiae, analogous methods can be used with other organisms, as described above.
- Another aspect of the present invention is a method of isolating a variant squalene synthase enzyme. The variant squalene synthase enzyme to be isolated by these methods is as described above.
- In general, this method comprises the steps of:
- (1) culturing a host cell that expresses a variant squalene synthase enzyme or that contains a variant squalene synthase enzyme; and
- (2) isolating the variant squalene synthase enzyme from the host cell.
- Typically, this method further comprises the step of purifying the isolated variant squalene synthase enzyme. Variant squalene synthase enzymes according to the present invention can be purified by conventional protein purification techniques, including, for example, techniques such as precipitation with salts such as ammonium sulfate, ion exchange chromatography, gel filtration, affinity chromatography, electrophoresis, isoelectric focusing, isotachophoresis, chromatofocusing, and other techniques are well known in the art and are described in R. K. Scopes, “Protein Purification: Principles and Practice” (3rd ed., Springer-Verlag, New York (1994)).
- Yet another aspect of the present invention is a method of producing an isoprenoid using a mutated ERG9 gene, in which the defective ERG9 gene encodes a variant squalene synthase enzyme.
- In one aspect of the invention, a host cell that includes a mutated ERG9 gene encoding a variant squalene synthase enzyme further includes at least one isoprenoid synthase gene, so that the farnesyl pyrophosphate produced in the host cell, which is available in greater concentrations for isoprenoid biosynthesis can be converted to a isoprenoid by the isoprenoid synthase encoded by the isoprenoid synthase gene. For example, and not by way of limitation, the isoprenoid synthase gene included in the host cell can be a chimeric isoprenoid synthase gene such as those described in U.S. Patent Application Publication No. 2008/0178354. These chimeric isoprenoid synthase genes include derivatives of the Hyoscyamus muticus vetispiradiene synthase gene and/or the Nicotiana tabacum 5-epi-aristolochene synthase gene. Alternatively, the isoprenoid synthase gene included in the host cell can be a citrus valencene synthase gene as described in U.S. Patent Application Publication No. 2006/0218661. As yet another alternative, the isoprenoid synthase gene included in the host cell can be a H. muticus premnaspirodiene synthase gene, such as those described in Back and Chappell, J. Biol. Chem. 270: 7375-7381 (1995); Back and Chappell, PNAS USA 93: 6841-6845 (1996); and Greenhagen et al., PNAS USA 103: 9826-9831 (2006). As another alternative, the isoprenoid synthase gene included in the host cell can be an isoprenoid synthase gene such as those described in U.S. Patent Application Publication No. 2005/0210549. These isoprenoid synthase genes include 5-epi-aristolochene synthase from Capsicum annuum, (E)-β-farnesene synthase from Mentha piperita, δ-selenene synthase and γ-humulene synthase from Abies grandis, 6-cadinene synthase from Gossypium arboreum, E-α-bisabolene synthase from Abies grandis, germacrene C synthase from Lycopersicon esculentum, epi-cedrol synthase and amorpha-4,11-diene synthase from Artemisia annua, and germacrene A synthases from Lactuca sativa, Cichorium intybus and Solidago canadensis. Other suitable isoprenoid synthase genes are known in the art. In addition, mutants and protein engineered variants of these enzymes can be used. Methods for engineering variants of terpene synthases are known in the art; such methods can, for example, involve recombining domains from two or more terpene synthases to generate a chimeric terpene synthase. Such methods are described, for example, in U.S. Patent Application Publication No. 2006/0218661 and in U.S. Patent Application Publication No. 2008/0178354.
- Accordingly, this aspect of the invention comprises the steps of:
- (1) providing a host cell including a mutated ERG9 gene according to the present invention and at least one isoprenoid synthase gene;
- (2) allowing the host cell to produce farnesyl pyrophosphate and to synthesize the isoprenoid from the farnesyl pyrophosphate; and
- (3) isolating the isoprenoid synthesized by the host cell.
- Methods for isolating the isoprenoid synthesized by the host cell are well known in the art. For example, when the isoprenoid is premnaspirodiene, the premnaspirodiene can be isolated by (i) sequestering the premnaspirodiene by binding it to a hydrophobic resin; (ii) and isolating the premnaspirodiene from the hydrophobic resin. Preferably, the hydrophobic resin is Amberlite® XAD-16 hydrophobic resin. Other hydrophobic resins within the scope of the present invention will be known to one of reasonable skill in the art. Typically, premnaspirodiene is isolated from the hydrophobic resin by methanol extraction. Other methods of isolating premnaspirodiene that are within the scope of the present invention will be known to one of reasonable skill in the art. Other isoprenoids can be isolated by similar methods well known in the art, making use of the fact that isoprenoids are hydrophobic and bind to hydrophobic resins.
- In an alternative for isolation of premnaspirodiene, a two-phase system can be used with a non-polar solvent, substantially immiscible with an aqueous phase, added to the fermentation broth and the premnaspirodiene removed from the non-polar phase by distillation. A preferred non-polar solvent is an oil. A particularly preferred oil is a vegetable oil such as soybean oil. Alternative non-polar solvents include, but are not limited to, high molecular weight aliphatic hydrocarbons such as, but not limited to, dodecane, tridecane, tetradecane, pentadecane, and hexadecane; either straight-chain or branched-chain isomers can be used; these high-molecular weight aliphatic hydrocarbons are optionally substituted with one or more hydroxy or halogen substituents as long as the substituted hydrocarbon remains substantially immiscible with the aqueous phase.
- In this method, where commercial production of the isoprenoid is desired, a variety of fermentation methodologies may be applied. For example, large scale production may be effected by either batch or continuous fermentation. A classical batch fermentation is a closed system where the composition of the medium is set at the beginning of the fermentation and not subject to artificial alterations during the fermentation. Thus, at the beginning of the fermentation the medium is inoculated with the desired microorganism or microorganisms and fermentation is permitted to occur without further addition of nutrients. Typically, the concentration of the carbon source in a batch fermentation is limited, and factors such as pH and oxygen concentration are controlled. In batch systems the metabolite and biomass compositions of the system change constantly up to the time the fermentation is stopped. Within batch cultures cells typically modulate through a static lag phase to a high growth log phase and finally to a stationary phase where growth rate is diminished or halted. If untreated, cells in the stationary phase will eventually die.
- A variation on the standard batch system is the Fed-Batch system. Fed-Batch fermentation processes are also suitable for use in the present invention and comprise a typical batch system with the exception that nutrients are added as the fermentation progresses. Fed-Batch systems are useful when catabolite repression is apt to inhibit the metabolism of the cells and where it is desirable to have limited amounts of substrate in the medium. Also, the ability to feed nutrients will often result in higher cell densities in Fed-Batch fermentation processes compared to Batch fermentation processes. Factors such as pH, dissolved oxygen, nutrient concentrations, and the partial pressure of waste gases such as CO2 are generally measured and controlled in Fed-Batch fermentations. Batch and Fed-Batch fermentations are common and well known in the art and examples may be found in Brock, Biotechnology: A Textbook of Industrial Microbiology, 2nd ed.; Sinauer Associates: Sunderland, Mass. (1989); or Deshpande, Appl. Biochem. Biotechnol. 36:227 (1992).
- Commercial production of the isoprenoid may also be accomplished with continuous fermentation. Continuous fermentation is an open system where a defined fermentation medium is added continuously to a bioreactor and an equal amount of conditioned medium is removed simultaneously for processing. This system generally maintains the cultures at a constant high density where cells are primarily in their log phase of growth. Continuous fermentation allows for modulation of any number of factors that affect cell growth or end product concentration. For example, one method will maintain a limiting nutrient such as the carbon source or nitrogen level at a fixed rate and allow all other parameters to moderate. In other systems a number of factors affecting growth can be altered continuously while the cell concentration, measured by the medium turbidity, is kept constant. Continuous systems strive to maintain steady state growth conditions and thus the cell loss due to the medium removal must be balanced against the cell growth rate in the fermentation. Methods of modulating nutrients and growth factors for continuous fermentation processes as well as techniques for maximizing the rate of product formation are well known in the art of industrial microbiology and a variety of methods are detailed by Brock, supra.
- Microorganism host cells useful in the present invention for the production of the isoprenoid may include, but are not limited to, bacteria, such as the enteric bacteria (Escherichia and Salmonella for example) as well as Bacillus, Acinetobacter, Streptomyces, Methylobacter, Rhodococcus and Pseudomonas; Cyanobacteria, such as Rhodobacter and Synechocystis; yeasts, such as Saccharomyces, Zygosaccharomyces, Kluyveromyces, Candida, Hansenula, Debaryomyces, Mucor, Pichia, Yarrowia, and Torulopsis; and filamentous fungi such as Aspergillus and Arthrobotrys, and algae for example. Preferably, the host cell is a eukaryotic cell. More preferably, the host cell is a yeast cell, which is a eukaryotic microorganism host cell. Most preferably, the host cell is a Saccharomyces cerevisiae cell.
- Microbial expression systems and expression vectors containing regulatory sequences that direct high level expression of foreign proteins are well known to those skilled in the art. These expression systems and expression vectors are known both for prokaryotic organisms such as bacteria and for eukaryotic organisms such as yeast. Similarly, vectors or cassettes useful for the transformation of suitable microbial host cells are well known in the art. These vectors and cassettes are known both for prokaryotic organisms such as bacteria and for eukaryotic organisms such as yeast. Typically, the vector or cassette contains sequences directing expression of the relevant gene, a selectable marker, and sequences allowing autonomous replication or chromosomal integration. Suitable vectors comprise a region 5′ of the gene which harbors transcriptional initiation controls and a region 3′ of the DNA fragment which controls transcriptional termination.
- Initiation control regions or promoters, which are useful to drive expression of the relevant genes in the desired host cell are numerous and familiar to those skilled in the art. Termination control regions may also be derived from various genes native to the preferred hosts.
- Expression of cloned heterologous genes in yeast cells, particularly cells of S. cerevisiae, is described in the following references: Emr, Meth. Enzymol. 185: 231-233 (1991), is a general overview of expression in yeast, including the possibility of exploiting protein secretion and modification in yeast and achieving stability of expressed proteins. Rose and Broach, Meth. Enzymol. 185: 234-279 (1991), describes the use of 2-μm circle-based vectors for transfection of genes into yeast and for expression of heterologous genes in yeast, including standard 2-μm circle-based vectors, vectors for high copy propagation, vectors for expression of cloned genes in yeast, and vectors for specialized applications. Stearns et al., Meth. Enzymol. 185: 280-297 (1991), describes the use of yeast vector systems and components, the use of homologous recombination to integrate plasmids into the yeast host genome, and the use of centromere plasmids. Mylin et al., Meth. Enzymol. 185: 297-308 (1991), describes the use of galactose-inducible promoters to provide high levels of production of cloned proteins in yeast. Price et al., Meth. Enzymol. 185: 308-318 (1991), describes the use of the glucose-repressible ADH2 promoter to provide controllable, high level expression of cloned proteins in yeast. Etcheverry, Meth. Enzymol. 185: 319-329 (1991), describes the use of the yeast CUP1 promoter to drive controllable expression of cloned genes in yeast. Kingsman et al., Meth. Enzymol. 185: 329-341 (1991), describes the use of the yeast PGK promoter to drive controllable expression of cloned genes in yeast. Rosenberg at al., Meth. Enzymol. 185: 341-350 (1991), describes the use of expression cassette plasmids utilizing the strong GAPDH-491 promoter for high levels of heterologous protein production in yeast. Sledziewski at al., Meth. Enzymol. 185: 351-366 (1991), describes the construction of temperature-regulated variants of two strong yeast promoters, TPII and ADH2, and the use of these promoters for regulation of expression and thus regulation of the extent of glycosylation of proteins secreted by yeast. Donahue and Cigan, Meth. Enzymol. 185: 366-372 (1991), describes the significance of codon usage variations between yeast and higher eukaryotes and the selection of efficient leader sequences. Jones, Meth. Enzymol. 185: 372-386 (1991), describes the elimination of vacuolar protease activity in yeast to maximize the yield of protein production from cloned genes. Wilkinson, Meth. Enzymol. 185: 387-397 (1991), describes methods for preventing ubiquitin-dependent protein degradation in yeast, again to maximize the yield of protein production from cloned genes. Kendall et al., Meth. Enzymol. 185: 398-407 (1991), describes the cotranslational processing events that occur in yeast at the amino-termini of nascent polypeptide genes and their effects on heterologous gene expression and protein stability. Brake, Meth. Enzymol. 185: 408-421 (1991), describes expression systems based on the yeast α-factor leader. Hitzeman et al., Meth. Enzymol. 185: 421-440 (1991), describes the use of both heterologous and homologous signal sequences for the production and secretion of heterologous gene products in yeast. Chisholm et al., “Meth. Enzymol. 185: 471-482 (1991), describes the use of an enhanced secretion phenotype occurring among drug-resistant yeast mutants to maximize secretion of cloned proteins in yeast.
- General molecular biological techniques of gene cloning, site-directed mutagenesis, and fusion protein construction can be used to provide nucleic acid segments that include therein the isoprenoid synthase gene. Typically, the nucleic acid segments are DNA nucleic acid segments. Typically, as described above, the isoprenoid synthase gene is operatively linked to at least one nucleic acid expression control element, such as, but not limited to, a promoter, an enhancer, or a site capable of binding a repressor or activator. Such nucleic acid expression control elements are well known in the art. Typically, as described above, the isoprenoid synthase gene is included in a vector and, as such, is again operatively linked to at least one nucleic acid expression control element. Site-directed mutagenesis can be used, for example, to provide optimum codon selection for expression in S. cerevisiae, as described above. The isoprenoid synthase gene can, in one alternative, be expressed in the form of a nucleic acid segment encoding a fusion protein, such as a purification tag or other detectable protein domain.
- In another alternative method for producing an isoprenoid, the method, in general, comprises the steps of:
- (1) providing a host cell including a mutated ERG9 gene according to the present invention;
- (2) allowing the host cell to produce farnesyl pyrophosphate
- (3) isolating farnesyl pyrophosphate from the host cell;
- (4) reacting the farnesyl pyrophosphate in vitro with one or more isoprenoid synthases to synthesize the isoprenoid; and
- (5) isolating the isoprenoid.
- As described above, a number of isoprenoid synthases are available for in vitro use. These isoprenoid synthases have been either cloned or isolated from plants. The step of isolating the isoprenoid is performed as described above.
- In both of these synthesis methods, additional reactions can be performed on the isolated isoprenoid to transform the isolated isoprenoid into another isoprenoid or related compound. These additional reactions can be reactions such as oxidation, hydroxylation, alkylation, halogenation, or other reactions well known in the art. In particular, reactions such as hydroxylation or oxidation can be carried out by cytochrome P450 enzymes. These reactions, and methods of carrying them out by chemical or enzymatic means, are well known in the art and need not be described further here.
- The present invention describes improved strains of Saccharomyces cerevisiae that have a defective squalene synthase enzyme. These strains have the ability to produce enough squalene so that they do not need to be supplemented with sterols such as ergosterol for growth. However, because these strains produce less squalene than do wild-type strains, they have more farnesyl pyrophosphate available for eventual isoprenoid synthesis, because farnesyl pyrophosphate is a branch point for the steroid synthesis and isoprenoid synthesis pathways. Therefore, these strains, as well as the nucleic acid segments encoding the defective squalene synthase enzyme and the defective squalene synthase enzymes themselves, are useful for the improved production of isoprenoid products because the strains of S. cerevisiae do not need to be supplemented with sterols for growth and can produce high levels of farnesyl pyrophosphate without such supplementation.
- Because the eventual isoprenoid products have commercial value as antibiotics, pest control agents, fragrances, flavors, and anti-cancer agents, the nucleic acid segments, eukaryotic microbial host cell strains, including S. cerevisiae strains, vectors and host cells incorporating the nucleic acid segments, and the variant squalene synthase enzymes have industrial utility.
- The invention is illustrated by the following examples. These examples are for illustrative purposes only, and are not intended to limit the invention.
- Chromosomal DNA isolated from Saccharomyces cerevisiae strain ATCC28383 was used as the DNA template for PCR amplification of the wild type ERG9 gene. The primers used for the amplification were the upstream primer 7-162.1 5′-CCATCTTCAACAACAATACCG-3′ (SEQ ID NO: 1) (underlined nucleotides at the 5′ end of the ERG9 sequence in
FIG. 2 ) and the downstream primer 7-162.2 5′-GTACTTAGTTATTGTTCGG-3′ (SEQ ID NO: 2) (underlined nucleotides at the 3′ end of ERG9). Using Tag polymerase (New England Biolabs), amplification conditions were 94° C. for 30 seconds, 45° C. for 30 seconds, 72° C. for 2 minutes for a total of 30 cycles. The resulting ERG9 PCR product was sequenced and verified to be identical to the published sequence for ERG9. This DNA was used as the template for performing error prone PCR using the GeneMorph kit from Stratagene and the same primers described above. The error-prone PCR reaction was run using two different DNA concentrations (˜500 ng and ˜50 ng) to generate a range of mutations per gene. This generated a pool of ERG9 mutant genes. - To isolate ERG9 mutants that make sufficient ergosterol to restore growth, the PCR product from the mutagenic PCR reaction was transformed into ALX7-95 (his3, trp1, erg9:HIS3, HMGcat/TRP1::rDNA, dpp1), a leucine prototroph of strain CALI-5 (U.S. Pat. Nos. 6,531,303 and 6,689,593), containing a plasmid expressing the Hyoscyamus muticus premnaspirodiene synthase (HPS) gene. The HPS gene was cloned into the yeast shuttle expression vector YEp-GW-URA-NheI/BamHI to give YEp-HPS-ura. This vector contained the ADH1 promoter for initiating transcription of the HPS gene. In addition, it contained the ADH1 terminator downstream of the HPS gene. This vector was maintained in S. cerevisiae by selecting media lacking uracil and it was maintained in E. coli by selecting for resistance to ampicillin.
- Transformation procedure of this strain with the ERG9 mutant pool used the lithium acetate transformation kit from Sigma. Transformants were selected for growth on YPD medium (10 g/L yeast extract, 20 g/L peptone, 20 g/L glucose) without ergosterol. Since the parent strain requires ergosterol for growth, transformants that grew on YPD replaced the erg9::HIS3 replacement mutation with a copy of ERG9 that made sufficient amount of ergosterol for growth. This was verified by the fact that transformants had obtained a requirement for histidine for growth.
- To screen for premnaspirodiene production in strains transformed with ERG9 mutant genes, a high-throughput screening procedure using microvial cultures was employed. Transformant yeast colonies were inoculated into individual wells of 96-well microtiter plates filled with 200 μL of SD (0.67 Bacto yeast nitrogen base without amino acids, 2% glucose, 0.14% yeast synthetic drop-out medium without uracil). The plate was grown for two days at 28° C. After growth to saturation, ten μL from each well was used to inoculate in duplicate two ml glass vials containing 250 μL of medium suitable for growth and premnaspirodiene production. The vials were sealed with serum-stoppered caps and then incubated with shaking for 3 days. The products were extracted first by introducing 250 μL of acetone through the serum stopper and vortexing, followed by addition of 500 μl of n-hexane and vortexing. After phase separation, the vials were placed on the sample tray of a gas chromatography autosampler, which removed one microliter of the organic phase for analysis of premnaspirodiene. The acetone and hexane used for extraction were each spiked with internal standards to aid in quantitation of the samples. The extracted samples were analyzed by GC and the amount of premnaspirodiene was calculated from the peak area.
- Several mutant strains were identified that produced more or similar amounts of premnaspirodiene as the control strain ALX7-95 containing expressed HPS. They were given the designations ALX7-168.4, ALX7-168.10, ALX7-168.14, ALX7-168.19, ALX7-168.22, ALX7-168.23, ALX7-168.24, ALX7-168.25, and ALX7-183.69. The ERG9 gene from these mutant strains was PCR amplified and the PCR product was sequenced to determine the mutations within each strain. A HIS3+ strain of ALX7-168.25 was constructed and is designated ALX7-175.1.
- As described in Example 2, strain ALX7-175.1 was constructed for the production of premnaspirodiene. Production of premnaspirodiene in this strain was compared to that of strain ALX7-95 HPS, which is completely lacking in squalene synthase activity.
- Production of premnaspirodiene was carried out in a 3-L fermentation tank (New Brunswick Bioflow 110). One liter of fermentation medium was prepared and autoclaved in the fermentation tank (20 g (NH4)2SO4, 20 g KH2PO4, 1 g NaCl, MgSO4.7H2O, 4 g yeast extract (Difco). Afterward the following components were added: 20 ml mineral solution (0.028% FeSO4.7H2O, 0.029% ZnSO4.7H2O, 0.008% CuSO4.5H2O, 0.024% Na2MoO4.2H2O, 0.024% CoCl2.6H2O, 0.017% MnSO4.H2O, 1 mL HCl); 10
mL 50% glucose; 30 mL vitamin solution (0.001% biotin; 0.012% calcium pantothenate, 0.06% inositol, 0.012% pyridoxine-HCl, 0.012% thiamine-HCl); 10mL 10% CaCl2, and 20 mL autoclaved soybean oil (purchased from local groceries). For ALX7-95 HPS, 1 mL of 50 mg/mL cholesterol in 100% ethanol was added. - The seed culture for inoculating the fermentation medium was prepared by inoculating 50 mL of SD medium for ERG9 transformant strains. Non-transformant control cultures were grown in SDE medium (SD medium supplemented with 40 mg/L ergosterol). This culture was grown until early stationary phase (24-48 hr). One mL of this culture was inoculated into 500 mL of SD or SDE medium, as appropriate, and grown for 24 hr. A 50-mL aliquot (5% inoculum) was used to inoculate the one liter of medium.
- The fermentor was maintained at 26° C. The air flow was 4.5 L/min and the dO2 was maintained above 30% by adjusting the rpm. Furthermore, the pH was maintained at 4.5 using acetic acid and NaOH.
- Once the glucose concentration was below 1 g/L, a feeding regimen was initiated such that the glucose in the fermentor was kept between 0 and 1 g/L. The glucose feed was made by mixing 1400 mL of 60% glucose and 328 mL of 12.5% yeast extract.
- After 5 days, the air and agitation were turned off, and the oil was allowed to rise to the top of the tank and decanted.
- As described in Example 2, initial screening of mutants was conducted using microvial cultures. Mutants were further screened in microvial cultures by growing in media with or without 40 mg/L ergosterol supplementation and compared to ALX7-95 HPS grown with ergosterol (ALX7-95 HPS will not grow without ergosterol). Twenty-five isolates are compared in
FIG. 1 . InFIG. 1 , the concentration of premnaspirodiene in mg/L is shown for each of the 25 isolates with and without ergosterol supplementation. Several of these isolates produced more or comparable amounts of premnaspirodiene as the control culture ALX7-95 HPS. In general, these strains produced more premnaspirodiene in the absence of ergosterol than in its presence.Isolates - In this example, strains ALX7-95 HPS (erg9::HIS3) and ALX7-175.1, a histidine prototroph of ALX7-168.25 (erg9def) were grown in fermentors using the same protocol except for the presence or absence of cholesterol in the medium. At the end of the fermentation, premnaspirodiene was assayed by gas chromatography. As indicated in Table 1, the yields of premnaspirodiene in the fermentors waw similar. However, because of faster growth and growth to higher density of the erg9def strain, more glucose was fed and consumed during the course of the fermentation. Because of the resultant higher volume, more total premnaspirodiene was produced by the erg9def culture grown under the same starting conditions.
-
TABLE 1 Cell Premna- Final ERG9 Density, spirodiene Volume, Total Yield, Strain Allele OD600 Titer, g/L Liters grams ALX7-95 erg9::HIS3 48 3.9 1.1 4.3 HPS ALX7- erg9 def25193 3.7 1.7 6.2 175.1 - The sequence of the wild type ERG9 gene and sequences 245 base pairs upstream are shown in
FIG. 2 . The ERG9 alleles from strains described in Examples 2 and 4 were obtained by PCR amplification of genomic DNA from strains designations ALX7-168.4, ALX7-168.10, ALX7-168.14, ALX7-168.19, ALX7-168.22, ALX7-168.23, ALX7-168.24, ALX7-168.25, and ALX7-183.69. The resulting DNA was sequenced, and the sequences corresponding to those mutants are shown in Table 2. All mutant genes contain mutations in the ERGS coding region.Alleles -
TABLE 2 Nucleotide Amino Acid Affect of position and position and change on Mutant change change amino acid 4 691 A→G 149 E→G 748 G→T 168 G→V 786 T→A 181 Y→N 1114 A→T 290 Q→L 1213 T→C 323 I→T 1290 T→C 349 L→L silent 10 72 C→A non-coding 110 Δ A non-coding 801 G→A 186 V→I 14 989 T→A 248 P→P silent 1112 G→A 289 E→E silent 1220 G→A 325 K→K silent 1233 T→C 330 Y→H 19 786 T→A 181 Y→N 1025 A→G 260 Q→Q silent 1056 T→A 271 L→I 1068 A→G 275 S→G 1203 A→G 320 N→D 22 886 T→C 214 M→T 969 A→G 242 I→V 1075 T→C 277 V→A 1114 A→T 290 Q→L 23 84 T→A non-coding 283 A→T 13 E→V 424 T→C 60 L→P 440 A→G 65 R→R silent 1076 T→C 277 V→V silent 24 619 A→T 125 D→V 634 T→C 130 L→P 962 C→T 239 P→P silent 25 150 A→T non-coding 410 T→G 55 A→A silent 411 G→T 56 V→L 1248 T→C 335 S→P 69 510 C→T 89 H→Y 573 T→C 110 F→L 918 A→G 224 R→G 997 A→G 251 K→G - As used in this specification and in the appended claims, the singular forms include the plural forms. For example the terms “a,” “an,” and “the” include plural references unless the content clearly dictates otherwise. Additionally, the term “at least” preceding a series of elements is to be understood as referring to every element in the series. The inventions illustratively described herein can suitably be practiced in the absence of any element or elements, limitation or limitations, not specifically disclosed herein. Thus, for example, the terms “comprising,” “including,” “containing,” etc. shall be read expansively and without limitation. Additionally, the terms and expressions employed herein have been used as terms of description and not of limitation, and there is no intention in the use of such terms and expressions of excluding any equivalents of the future shown and described or any portion thereof, and it is recognized that various modifications are possible within the scope of the invention claimed.
- Although the present invention has been described in considerable detail with reference to certain preferred embodiments, other embodiments are possible. The steps disclosed for the present methods, for example, are not intended to be limiting nor are they intended to indicate that each step is necessarily essential to the method, but instead are exemplary steps only. Therefore, the scope of the appended claims should not be limited to the description of preferred embodiments contained in this disclosure. All references cited herein are incorporated by reference in their entirety.
Claims (46)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/540,050 US8609371B2 (en) | 2008-08-12 | 2009-08-12 | Isoprenoid compounds |
US13/986,436 US8753842B2 (en) | 2008-08-12 | 2013-05-01 | Method for production of isoprenoid compounds |
US14/120,176 US20140242658A1 (en) | 2008-08-12 | 2014-05-02 | Method for production of isoprenoid compounds |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8828808P | 2008-08-12 | 2008-08-12 | |
US12/540,050 US8609371B2 (en) | 2008-08-12 | 2009-08-12 | Isoprenoid compounds |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/540,094 Continuation US8481286B2 (en) | 2008-08-12 | 2009-08-12 | Method for production of isoprenoid compounds |
US13/986,436 Continuation US8753842B2 (en) | 2008-08-12 | 2013-05-01 | Method for production of isoprenoid compounds |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100151555A1 true US20100151555A1 (en) | 2010-06-17 |
US8609371B2 US8609371B2 (en) | 2013-12-17 |
Family
ID=41669654
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/540,094 Active 2031-03-01 US8481286B2 (en) | 2008-08-12 | 2009-08-12 | Method for production of isoprenoid compounds |
US12/540,050 Active 2031-07-01 US8609371B2 (en) | 2008-08-12 | 2009-08-12 | Isoprenoid compounds |
US13/986,436 Active US8753842B2 (en) | 2008-08-12 | 2013-05-01 | Method for production of isoprenoid compounds |
US14/120,176 Abandoned US20140242658A1 (en) | 2008-08-12 | 2014-05-02 | Method for production of isoprenoid compounds |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/540,094 Active 2031-03-01 US8481286B2 (en) | 2008-08-12 | 2009-08-12 | Method for production of isoprenoid compounds |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/986,436 Active US8753842B2 (en) | 2008-08-12 | 2013-05-01 | Method for production of isoprenoid compounds |
US14/120,176 Abandoned US20140242658A1 (en) | 2008-08-12 | 2014-05-02 | Method for production of isoprenoid compounds |
Country Status (3)
Country | Link |
---|---|
US (4) | US8481286B2 (en) |
EP (1) | EP2326707B1 (en) |
WO (1) | WO2010019696A2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040078840A1 (en) * | 1996-04-12 | 2004-04-22 | Joseph Chappell | Chimeric isoprenoid synthases and uses thereof |
US20100129306A1 (en) * | 2007-03-20 | 2010-05-27 | Allylix. Inc. | Novel fragrance and methods for production of 5-epi-beta-vetivone, 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-2,6-dien-8-one, and 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-1,6-dien-8-one |
US20100151519A1 (en) * | 2008-08-12 | 2010-06-17 | Allylix, Inc. | Method for production of isoprenoids |
US20100216186A1 (en) * | 2003-07-24 | 2010-08-26 | Joseph Chappell | Novel sesquiterpene synthase gene and protein |
US8263362B2 (en) | 2001-03-09 | 2012-09-11 | University Of Kentucky Research Foundation | Cytochrome P450S and uses thereof |
WO2014150599A1 (en) | 2013-03-14 | 2014-09-25 | Allylix, Inc. | Valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof |
US9303252B2 (en) | 2010-10-29 | 2016-04-05 | Evolva, Inc. | Modified valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof |
US9353385B2 (en) | 2012-07-30 | 2016-05-31 | Evolva, Inc. | Sclareol and labdenediol diphosphate synthase polypeptides, encoding nucleic acid molecules and uses thereof |
US9483117B2 (en) | 2013-04-08 | 2016-11-01 | Nokia Technologies Oy | Apparatus, method and computer program for controlling a near-eye display |
US9550815B2 (en) | 2012-01-23 | 2017-01-24 | University Of British Columbia | ABC terpenoid transporters and methods of using the same |
US11060124B2 (en) | 2017-05-03 | 2021-07-13 | Firmenich Incorporated | Methods for making high intensity sweeteners |
US11357246B2 (en) | 2015-10-29 | 2022-06-14 | Firmenich Incorporated | High intensity sweeteners |
Families Citing this family (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5989098B2 (en) * | 2011-05-09 | 2016-09-07 | アミリス, インコーポレイテッド | Production of acetyl-coenzyme A derivative compounds |
BR112013031442A2 (en) | 2011-06-27 | 2016-12-13 | Firmenich & Cie | modified microorganisms and their use for terpene production |
US20130323820A1 (en) * | 2012-06-01 | 2013-12-05 | Lanzatech New Zealand Limited | Recombinant microorganisms and uses therefor |
US9821037B1 (en) * | 2013-04-19 | 2017-11-21 | University Of Kentucky Research Foundation | Compounds and method of use as anti-infection compounds and therapeutic agents to regulate cholesterol metabolism |
WO2015153501A2 (en) | 2014-03-31 | 2015-10-08 | Allylix, Inc. | Modified santalene synthase polypeptides, encoding nucleic acid molecules and uses thereof |
EP3303599A4 (en) | 2015-04-09 | 2019-05-01 | Firmenich SA | Production of fragrant compounds |
CN105087579B (en) * | 2015-07-13 | 2017-12-29 | 上海交通大学 | The promoter and its application that a kind of controlling gene is expressed in nonsecreting type glandular hairs |
US11737459B2 (en) | 2016-03-24 | 2023-08-29 | Evolva Sa | Use of nootkatone to kill sap-sucking insects |
US12089593B2 (en) | 2016-03-24 | 2024-09-17 | Danstar Ferment Ag | Compositions and methods for treating and preventing dust mite infestation |
US11191266B2 (en) | 2016-03-24 | 2021-12-07 | Evolva Sa | Methods and compositions for the treatment of infections and arthropod infestation |
EP3452027B1 (en) | 2016-05-02 | 2020-09-16 | Evolva SA | Use of nootkatone to treat sea lice |
EP3506749A1 (en) | 2016-09-02 | 2019-07-10 | Evolva SA | Use of nootkatone to treat and prevent mosquito infestations |
EP3510459A2 (en) | 2016-09-09 | 2019-07-17 | The Procter and Gamble Company | System and method for independently routing container-loaded vehicles to create different finished products |
EP4194378A1 (en) | 2016-09-09 | 2023-06-14 | The Procter & Gamble Company | System and method for independently routing vehicles and delivering containers and closures to unit operation stations |
CN109689510B (en) | 2016-09-09 | 2021-09-24 | 宝洁公司 | System and method for simultaneously filling containers of different shapes and/or sizes |
CA3035540C (en) | 2016-09-09 | 2021-04-06 | The Procter & Gamble Company | Track system for creating finished products |
MX2019002777A (en) | 2016-09-09 | 2019-08-29 | Procter & Gamble | System and method for producing products based upon demand. |
WO2018049125A1 (en) | 2016-09-09 | 2018-03-15 | The Procter & Gamble Company | System and method for simultaneously filling containers with different fluent compositions |
CN109689304B (en) | 2016-09-09 | 2021-03-26 | 宝洁公司 | Vacuum holder and carrier with autonomous vacuum |
WO2018049119A1 (en) | 2016-09-09 | 2018-03-15 | The Procter & Gamble Company | Methods for simultaneously producing different products on a single production line |
WO2018178322A1 (en) | 2017-03-31 | 2018-10-04 | Evolva Sa | Use of nootkatone to treat infections caused by nematodes, trematodes, cestodes, or endoparasitic helminths |
WO2018210875A1 (en) | 2017-05-15 | 2018-11-22 | Evolva Sa | Use of nootkatone for post-harvest treatment, food preservation and shelf-life extension |
WO2018210870A1 (en) | 2017-05-15 | 2018-11-22 | Evolva Sa | Use of nootkatone for controlling phytopathogenic microbes |
CN110607247B (en) * | 2019-08-15 | 2021-06-08 | 宜昌东阳光生化制药有限公司 | Method for improving capacity of saccharomyces cerevisiae in synthesizing squalene |
CN114107078B (en) * | 2021-10-29 | 2024-09-17 | 湖北冠众通科技有限公司 | Genetic engineering bacterium for producing valencene, construction method and application thereof |
CN114058522B (en) * | 2021-10-29 | 2024-03-29 | 湖北冠众通科技有限公司 | Saccharomyces cerevisiae for high yield of squalene, application and breeding method thereof |
CN116396986B (en) * | 2023-06-01 | 2023-08-29 | 中义(北京)健康研究院 | Application of kluyveromyces lactis in production of squalene |
Citations (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745051A (en) * | 1983-05-27 | 1988-05-17 | The Texas A&M University System | Method for producing a recombinant baculovirus expression vector |
US5532226A (en) * | 1991-07-18 | 1996-07-02 | Ortho Pharmaceutical Corporation | Trifluoromethybenzylphosphonates useful in treating osteoporosis |
US5684148A (en) * | 1988-05-26 | 1997-11-04 | Competitive Technologies, Inc. | Nucleoside thiophosphoramidites |
US5824774A (en) * | 1996-04-12 | 1998-10-20 | Board Of Trustees Of The University Of Kentucky | Chimeric isoprenoid synthases and uses thereof |
US5962674A (en) * | 1995-06-01 | 1999-10-05 | Hybridon, Inc. | Synthesis of oligonucleotides containing alkylphosphonate internucleoside linkages |
US6001982A (en) * | 1993-07-29 | 1999-12-14 | Isis Pharmaceuticals, Inc. | Synthesis of oligonucleotides |
US6031092A (en) * | 1995-10-20 | 2000-02-29 | Mc Gill University | Preparation of phosphorothioate oligomers |
US6242227B1 (en) * | 1998-07-06 | 2001-06-05 | Dcv, Inc. | Method of vitamin production |
US6410755B1 (en) * | 1998-07-06 | 2002-06-25 | Dcv, Inc. | Method of vitamin production |
US6531303B1 (en) * | 1998-07-06 | 2003-03-11 | Arkion Life Sciences Llc | Method of producing geranylgeraniol |
US20030157583A1 (en) * | 2001-12-17 | 2003-08-21 | Donna Stevens | Methods for determining squalene synthase activity |
US20040078840A1 (en) * | 1996-04-12 | 2004-04-22 | Joseph Chappell | Chimeric isoprenoid synthases and uses thereof |
US20050210549A1 (en) * | 2002-10-04 | 2005-09-22 | Michel Schalk | Sesquiterpene synthases and methods of use |
US20060160172A1 (en) * | 2002-09-27 | 2006-07-20 | Tatsuo Hoshino | Sqs gene |
US20060218661A1 (en) * | 2003-07-24 | 2006-09-28 | Joe Chappell | Novel sesquiterpene synthase gene and protein |
US20070031947A1 (en) * | 1998-08-27 | 2007-02-08 | Genoclipp Biotechnology B.V. | Transgenic amorpha-4, 11-diene synthesis |
US7186891B1 (en) * | 1996-04-12 | 2007-03-06 | University Of Kentucky, Research Foundation | Plant cells and plants expressing chimeric isoprenoid synthases |
US20080171378A1 (en) * | 2004-07-27 | 2008-07-17 | Keasling Jay D | Genetically Modified Host Cells And Use Of Same For Producing Isoprenoid Compounds |
US20080187983A1 (en) * | 2006-12-12 | 2008-08-07 | Dietrich Jeffrey Allen | Artemisinic epoxide and methods for producing same |
US20080233622A1 (en) * | 2007-03-20 | 2008-09-25 | Julien Bryan N | Novel methods for production of 5-epi-beta-vetivone, 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-2,6-dien-8-one, and 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-1,6-dien-8-one |
US20100151519A1 (en) * | 2008-08-12 | 2010-06-17 | Allylix, Inc. | Method for production of isoprenoids |
US20110318797A1 (en) * | 2001-03-09 | 2011-12-29 | Joseph Chappell | Cytochrome P450s and uses thereof |
US8124811B2 (en) * | 2007-03-20 | 2012-02-28 | Allylix, Inc. | Fragrance and methods for production of 5-epi-β-vetivone, 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-2,6-dien-8-one, and 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-1,6-dien-8-one |
US20120246767A1 (en) * | 2010-10-29 | 2012-09-27 | Jean Davin Amick | Modified valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0831854A4 (en) | 1995-06-06 | 2001-01-24 | Isis Pharmaceuticals Inc | Oligonucleotides having phosphorothioate linkages of high chiral purity |
US5985662A (en) | 1995-07-13 | 1999-11-16 | Isis Pharmaceuticals Inc. | Antisense inhibition of hepatitis B virus replication |
CN101914558B (en) | 2002-10-04 | 2013-05-29 | 弗门尼舍有限公司 | Sesquiterpene synthases and methods of use |
WO2006102342A2 (en) | 2005-03-18 | 2006-09-28 | Microbia, Inc. | Production of carotenoids in oleaginous yeast and fungi |
JP5430929B2 (en) | 2005-06-17 | 2014-03-05 | フイルメニツヒ ソシエテ アノニム | Novel sesquiterpene synthase and method of use thereof |
US7735349B2 (en) * | 2007-01-31 | 2010-06-15 | Biosense Websters, Inc. | Correlation of ultrasound images and gated position measurements |
-
2009
- 2009-08-12 WO PCT/US2009/053589 patent/WO2010019696A2/en active Application Filing
- 2009-08-12 US US12/540,094 patent/US8481286B2/en active Active
- 2009-08-12 US US12/540,050 patent/US8609371B2/en active Active
- 2009-08-12 EP EP09807243.2A patent/EP2326707B1/en active Active
-
2013
- 2013-05-01 US US13/986,436 patent/US8753842B2/en active Active
-
2014
- 2014-05-02 US US14/120,176 patent/US20140242658A1/en not_active Abandoned
Patent Citations (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4745051A (en) * | 1983-05-27 | 1988-05-17 | The Texas A&M University System | Method for producing a recombinant baculovirus expression vector |
US5684148A (en) * | 1988-05-26 | 1997-11-04 | Competitive Technologies, Inc. | Nucleoside thiophosphoramidites |
US5532226A (en) * | 1991-07-18 | 1996-07-02 | Ortho Pharmaceutical Corporation | Trifluoromethybenzylphosphonates useful in treating osteoporosis |
US6001982A (en) * | 1993-07-29 | 1999-12-14 | Isis Pharmaceuticals, Inc. | Synthesis of oligonucleotides |
US5962674A (en) * | 1995-06-01 | 1999-10-05 | Hybridon, Inc. | Synthesis of oligonucleotides containing alkylphosphonate internucleoside linkages |
US6031092A (en) * | 1995-10-20 | 2000-02-29 | Mc Gill University | Preparation of phosphorothioate oligomers |
US20040078840A1 (en) * | 1996-04-12 | 2004-04-22 | Joseph Chappell | Chimeric isoprenoid synthases and uses thereof |
US5824774A (en) * | 1996-04-12 | 1998-10-20 | Board Of Trustees Of The University Of Kentucky | Chimeric isoprenoid synthases and uses thereof |
US6072045A (en) * | 1996-04-12 | 2000-06-06 | Board Of Trustees Of The University Of Kentucky | Chimeric isoprenoid synthases and uses thereof |
US20080178354A1 (en) * | 1996-04-12 | 2008-07-24 | Joseph Chappell | Chimeric isoprenoid synthases and uses thereof |
US7186891B1 (en) * | 1996-04-12 | 2007-03-06 | University Of Kentucky, Research Foundation | Plant cells and plants expressing chimeric isoprenoid synthases |
US6410755B1 (en) * | 1998-07-06 | 2002-06-25 | Dcv, Inc. | Method of vitamin production |
US20070254354A1 (en) * | 1998-07-06 | 2007-11-01 | Millis James R | Production of Isoprenoids |
US20100035329A1 (en) * | 1998-07-06 | 2010-02-11 | Millis James R | Production of Isoprenoids |
US6242227B1 (en) * | 1998-07-06 | 2001-06-05 | Dcv, Inc. | Method of vitamin production |
US6689593B2 (en) * | 1998-07-06 | 2004-02-10 | Arkion Life Sciences Llc | Production of farnesol and geranylgeraniol |
US20070238157A1 (en) * | 1998-07-06 | 2007-10-11 | Millis James R | Production of Isoprenoids |
US20070238159A1 (en) * | 1998-07-06 | 2007-10-11 | Millis James R | Production of Isoprenoids |
US6531303B1 (en) * | 1998-07-06 | 2003-03-11 | Arkion Life Sciences Llc | Method of producing geranylgeraniol |
US20070238160A1 (en) * | 1998-07-06 | 2007-10-11 | Millis James R | Production of Isoprenoids |
US20070231861A1 (en) * | 1998-07-06 | 2007-10-04 | Millis James R | Production of Isoprenoids |
US20070031947A1 (en) * | 1998-08-27 | 2007-02-08 | Genoclipp Biotechnology B.V. | Transgenic amorpha-4, 11-diene synthesis |
US20110318797A1 (en) * | 2001-03-09 | 2011-12-29 | Joseph Chappell | Cytochrome P450s and uses thereof |
US20030157583A1 (en) * | 2001-12-17 | 2003-08-21 | Donna Stevens | Methods for determining squalene synthase activity |
US20060160172A1 (en) * | 2002-09-27 | 2006-07-20 | Tatsuo Hoshino | Sqs gene |
US7273735B2 (en) * | 2002-10-04 | 2007-09-25 | Firmenich Sa | Sesquiterpene synthases and methods of use |
US20050210549A1 (en) * | 2002-10-04 | 2005-09-22 | Michel Schalk | Sesquiterpene synthases and methods of use |
US20080213832A1 (en) * | 2002-10-04 | 2008-09-04 | Firmenich Sa | Sesquiterpene synthases and methods of use |
US7790426B2 (en) * | 2002-10-04 | 2010-09-07 | Firmenich Sa | Sesquiterpene synthases and methods of use |
US20060218661A1 (en) * | 2003-07-24 | 2006-09-28 | Joe Chappell | Novel sesquiterpene synthase gene and protein |
US20080171378A1 (en) * | 2004-07-27 | 2008-07-17 | Keasling Jay D | Genetically Modified Host Cells And Use Of Same For Producing Isoprenoid Compounds |
US20080187983A1 (en) * | 2006-12-12 | 2008-08-07 | Dietrich Jeffrey Allen | Artemisinic epoxide and methods for producing same |
US7622614B2 (en) * | 2007-03-20 | 2009-11-24 | Allylix, Inc. | Methods for production of 5-epi-β-vetivone, 2-isopropyl-6,10-dimethyl-spiro [4.5]deca-2,6-dien-8-one, and 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-1,6-dien-8-one |
US20080233622A1 (en) * | 2007-03-20 | 2008-09-25 | Julien Bryan N | Novel methods for production of 5-epi-beta-vetivone, 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-2,6-dien-8-one, and 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-1,6-dien-8-one |
US8124811B2 (en) * | 2007-03-20 | 2012-02-28 | Allylix, Inc. | Fragrance and methods for production of 5-epi-β-vetivone, 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-2,6-dien-8-one, and 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-1,6-dien-8-one |
US20120129235A1 (en) * | 2007-03-20 | 2012-05-24 | Julien Bryan N | Novel fragrance and methods for production of 5-EPI-ß- vetivone, 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-2,6-dien-8-one, and 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-1,6-dien-8-one |
US20100151519A1 (en) * | 2008-08-12 | 2010-06-17 | Allylix, Inc. | Method for production of isoprenoids |
US20120246767A1 (en) * | 2010-10-29 | 2012-09-27 | Jean Davin Amick | Modified valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8106260B2 (en) | 1996-04-12 | 2012-01-31 | The Board Of Trustees Of The University Of Kentucky | Chimeric isoprenoid synthases and uses thereof |
US20040078840A1 (en) * | 1996-04-12 | 2004-04-22 | Joseph Chappell | Chimeric isoprenoid synthases and uses thereof |
US8741651B2 (en) | 1996-04-12 | 2014-06-03 | The Board Of Trustees Of The University Of Kentucky | Chimeric isoprenoid synthases and uses thereof |
US8354504B2 (en) | 1996-04-12 | 2013-01-15 | The Board Of Trustees Of The University Of Kentucky | Chimeric isoprenoid synthases and uses thereof |
US20110081703A1 (en) * | 1996-04-12 | 2011-04-07 | Joseph Chappell | Chimeric isoprenoid synthases and uses thereof |
US8263362B2 (en) | 2001-03-09 | 2012-09-11 | University Of Kentucky Research Foundation | Cytochrome P450S and uses thereof |
US8445231B2 (en) | 2001-03-09 | 2013-05-21 | University Of Kentucky Research Foundation | Cytochrome P450s and uses thereof |
US10184119B2 (en) | 2001-03-09 | 2019-01-22 | The University Of Kentucky Research Foundation | Cytochrome P450s and uses thereof |
US8722363B2 (en) | 2001-03-09 | 2014-05-13 | University Of Kentucky Research Foundation | Cytochrome P450S and uses thereof |
US10184118B2 (en) | 2001-03-09 | 2019-01-22 | The University Of Kentucky Research Foundation | Cytochrome P450S and uses thereof |
US8192950B2 (en) | 2003-07-24 | 2012-06-05 | The University Of Kentucky Research Foundation | Sesquiterpene synthase gene and protein |
US9534237B2 (en) | 2003-07-24 | 2017-01-03 | University Of Kentucky Research Foundation | Sesquiterpene synthase gene and protein |
US20100216186A1 (en) * | 2003-07-24 | 2010-08-26 | Joseph Chappell | Novel sesquiterpene synthase gene and protein |
US8835131B2 (en) | 2003-07-24 | 2014-09-16 | University Of Kentucky Research Foundation | Sesquiterpene synthase gene and protein |
US8124811B2 (en) | 2007-03-20 | 2012-02-28 | Allylix, Inc. | Fragrance and methods for production of 5-epi-β-vetivone, 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-2,6-dien-8-one, and 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-1,6-dien-8-one |
US8362309B2 (en) | 2007-03-20 | 2013-01-29 | Allylix, Inc. | Fragrance and methods for production of 5-epi-β-vetivone, 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-2,6-dien-8-one, and 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-1,6-dien-8-one |
US8642815B2 (en) | 2007-03-20 | 2014-02-04 | Allylix, Inc. | Fragrance and methods for production of 5-epi-β-vetivone, 2-isopropyl-6, 10-dimethyl-spiro[4.5]deca-2,6-dien-8-one, and 2-isopropyl-6, 10-dimethyl-spiro[4.5]deca-1, 6-dien-8-one |
US20100129306A1 (en) * | 2007-03-20 | 2010-05-27 | Allylix. Inc. | Novel fragrance and methods for production of 5-epi-beta-vetivone, 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-2,6-dien-8-one, and 2-isopropyl-6,10-dimethyl-spiro[4.5]deca-1,6-dien-8-one |
US8753842B2 (en) | 2008-08-12 | 2014-06-17 | Allylix, Inc. | Method for production of isoprenoid compounds |
US20100151519A1 (en) * | 2008-08-12 | 2010-06-17 | Allylix, Inc. | Method for production of isoprenoids |
US8481286B2 (en) | 2008-08-12 | 2013-07-09 | Allylix, Inc. | Method for production of isoprenoid compounds |
US9303252B2 (en) | 2010-10-29 | 2016-04-05 | Evolva, Inc. | Modified valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof |
US9550815B2 (en) | 2012-01-23 | 2017-01-24 | University Of British Columbia | ABC terpenoid transporters and methods of using the same |
US9725740B2 (en) | 2012-07-30 | 2017-08-08 | Evolva, Inc. | Sclareol and labdenediol diphosphate synthase polypeptides, encoding nucleic acid molecules and uses thereof |
US9353385B2 (en) | 2012-07-30 | 2016-05-31 | Evolva, Inc. | Sclareol and labdenediol diphosphate synthase polypeptides, encoding nucleic acid molecules and uses thereof |
WO2014150599A1 (en) | 2013-03-14 | 2014-09-25 | Allylix, Inc. | Valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof |
US10000749B2 (en) | 2013-03-14 | 2018-06-19 | Evolva, Inc. | Valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof |
EP3085778A1 (en) | 2013-03-14 | 2016-10-26 | Evolva, Inc. | Valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof |
US9483117B2 (en) | 2013-04-08 | 2016-11-01 | Nokia Technologies Oy | Apparatus, method and computer program for controlling a near-eye display |
US11357246B2 (en) | 2015-10-29 | 2022-06-14 | Firmenich Incorporated | High intensity sweeteners |
US11758933B2 (en) | 2015-10-29 | 2023-09-19 | Firmenich Incorporated | High intensity sweeteners |
US11060124B2 (en) | 2017-05-03 | 2021-07-13 | Firmenich Incorporated | Methods for making high intensity sweeteners |
Also Published As
Publication number | Publication date |
---|---|
US20100151519A1 (en) | 2010-06-17 |
WO2010019696A3 (en) | 2010-05-14 |
EP2326707B1 (en) | 2016-11-23 |
US8609371B2 (en) | 2013-12-17 |
WO2010019696A2 (en) | 2010-02-18 |
US20130236943A1 (en) | 2013-09-12 |
EP2326707A2 (en) | 2011-06-01 |
US20140242658A1 (en) | 2014-08-28 |
US8481286B2 (en) | 2013-07-09 |
US8753842B2 (en) | 2014-06-17 |
EP2326707A4 (en) | 2012-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8753842B2 (en) | Method for production of isoprenoid compounds | |
US10000749B2 (en) | Valencene synthase polypeptides, encoding nucleic acid molecules and uses thereof | |
US9969999B2 (en) | Method for producing alpha-santalene | |
US8058046B2 (en) | Sesquiterpene synthases from patchouli | |
US7273735B2 (en) | Sesquiterpene synthases and methods of use | |
US8703454B2 (en) | Method for producing (+)-zizaene | |
US20130137138A1 (en) | Method of producing isoprenoid compounds in yeast | |
WO2006079020A2 (en) | Functional identification of the hyoscyamus muticus gene coding for premnaspirodiene hydroxylase activity | |
WO2008008256A2 (en) | Methods for enhancing production of isoprenoid compounds by host cells | |
CN110582568B (en) | Sesquiterpene synthases for producing drimenol and mixtures thereof | |
Gutiérrez et al. | A synthetic biology and green bioprocess approach to recreate agarwood sesquiterpenoid mixtures | |
Gutiérrez et al. | Compartmentalized sesquiterpenoid biosynthesis and functionalization in the Chlamydomonas reinhardtii plastid | |
WO2005056803A1 (en) | Sesquiterpene synthases from patchouli | |
Gutiérrez et al. | Compartmentalized sesquiterpenoid biosynthesis and functionalization in the $\textit {Chlamydomonas reinhardtii} $ plastid | |
Chappell et al. | Sesquiterpene Synthase Gene and Protein |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ALLYLIX, INC.,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JULIEN, BRYAN;BURLINGAME, RICHARD;REEL/FRAME:023966/0714 Effective date: 20091123 Owner name: ALLYLIX, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JULIEN, BRYAN;BURLINGAME, RICHARD;REEL/FRAME:023966/0714 Effective date: 20091123 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
SULP | Surcharge for late payment | ||
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: EVOLVA, INC., SWITZERLAND Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:ALLYLIX INC.;ALLYLIX INC.;REEL/FRAME:037769/0922 Effective date: 20151109 |
|
AS | Assignment |
Owner name: EVOLVA, INC., KENTUCKY Free format text: CHANGE OF ADDRESS FOR ASSIGNEE;ASSIGNOR:EVOLVA, INC.;REEL/FRAME:040381/0312 Effective date: 20161017 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO SMALL (ORIGINAL EVENT CODE: LTOS); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YR, SMALL ENTITY (ORIGINAL EVENT CODE: M2552); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY Year of fee payment: 8 |
|
AS | Assignment |
Owner name: MINNESOTA SPECIALTY YEAST LLC, MINNESOTA Free format text: MERGER AND CHANGE OF NAME;ASSIGNORS:EVOLVA, INC.;MINNESOTA SPECIALTY YEAST LLC;REEL/FRAME:067415/0084 Effective date: 20240326 |