US20100126311A1 - Direct processing of metallic ore concentrates into ferroalloys - Google Patents
Direct processing of metallic ore concentrates into ferroalloys Download PDFInfo
- Publication number
- US20100126311A1 US20100126311A1 US12/452,850 US45285008A US2010126311A1 US 20100126311 A1 US20100126311 A1 US 20100126311A1 US 45285008 A US45285008 A US 45285008A US 2010126311 A1 US2010126311 A1 US 2010126311A1
- Authority
- US
- United States
- Prior art keywords
- iron
- process according
- melting furnace
- ore concentrates
- mixture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229910001021 Ferroalloy Inorganic materials 0.000 title claims abstract description 18
- 239000012141 concentrate Substances 0.000 title claims abstract description 13
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 239000002893 slag Substances 0.000 claims abstract description 26
- 239000000463 material Substances 0.000 claims abstract description 20
- 238000002844 melting Methods 0.000 claims abstract description 19
- 230000008018 melting Effects 0.000 claims abstract description 19
- 229910052742 iron Inorganic materials 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 17
- 239000007788 liquid Substances 0.000 claims abstract description 16
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 15
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 11
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 10
- 229910052751 metal Inorganic materials 0.000 claims abstract description 9
- 239000002184 metal Substances 0.000 claims abstract description 9
- 239000011651 chromium Chemical group 0.000 claims abstract description 8
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011230 binding agent Substances 0.000 claims abstract description 7
- 229910052804 chromium Chemical group 0.000 claims abstract description 6
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical group [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 4
- 239000011572 manganese Substances 0.000 claims abstract description 4
- 238000004519 manufacturing process Methods 0.000 claims abstract description 4
- 238000010079 rubber tapping Methods 0.000 claims abstract description 4
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical group [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims abstract 3
- 238000002156 mixing Methods 0.000 claims abstract 3
- 239000007789 gas Substances 0.000 claims description 32
- 238000000034 method Methods 0.000 claims description 24
- 230000008569 process Effects 0.000 claims description 18
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 7
- 239000003245 coal Substances 0.000 claims description 7
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 6
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 6
- 229910052681 coesite Inorganic materials 0.000 claims description 6
- 229910052906 cristobalite Inorganic materials 0.000 claims description 6
- 230000005611 electricity Effects 0.000 claims description 6
- 239000002006 petroleum coke Substances 0.000 claims description 6
- 229910052682 stishovite Inorganic materials 0.000 claims description 6
- 229910052905 tridymite Inorganic materials 0.000 claims description 6
- 229910019589 Cr—Fe Inorganic materials 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 5
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 229910052593 corundum Inorganic materials 0.000 claims description 5
- 238000011084 recovery Methods 0.000 claims description 5
- 239000002918 waste heat Substances 0.000 claims description 5
- 229910001845 yogo sapphire Inorganic materials 0.000 claims description 5
- 239000000440 bentonite Substances 0.000 claims description 3
- 229910000278 bentonite Inorganic materials 0.000 claims description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 3
- 239000001913 cellulose Substances 0.000 claims description 3
- 229920002678 cellulose Polymers 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- 235000013379 molasses Nutrition 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 2
- 235000012216 bentonite Nutrition 0.000 claims description 2
- 235000010980 cellulose Nutrition 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 230000003009 desulfurizing effect Effects 0.000 claims description 2
- 239000000446 fuel Substances 0.000 claims description 2
- 239000008107 starch Substances 0.000 claims description 2
- 235000019698 starch Nutrition 0.000 claims description 2
- NIPRUKPKWCZPEP-UHFFFAOYSA-N [S].[Fe].[Fe] Chemical compound [S].[Fe].[Fe] NIPRUKPKWCZPEP-UHFFFAOYSA-N 0.000 claims 2
- 239000000571 coke Substances 0.000 claims 2
- 238000004140 cleaning Methods 0.000 claims 1
- 150000002506 iron compounds Chemical class 0.000 abstract 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 7
- 229910052717 sulfur Inorganic materials 0.000 description 7
- 239000011593 sulfur Substances 0.000 description 7
- 238000007792 addition Methods 0.000 description 6
- 235000013980 iron oxide Nutrition 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- AMWRITDGCCNYAT-UHFFFAOYSA-L hydroxy(oxo)manganese;manganese Chemical compound [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 3
- 239000002737 fuel gas Substances 0.000 description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000010791 quenching Methods 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 3
- 229910001935 vanadium oxide Inorganic materials 0.000 description 3
- 229910000616 Ferromanganese Inorganic materials 0.000 description 2
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000010436 fluorite Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 239000004484 Briquette Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910000720 Silicomanganese Inorganic materials 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- -1 etc. Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/244—Binding; Briquetting ; Granulating with binders organic
- C22B1/245—Binding; Briquetting ; Granulating with binders organic with carbonaceous material for the production of coked agglomerates
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B11/00—Making pig-iron other than in blast furnaces
- C21B11/10—Making pig-iron other than in blast furnaces in electric furnaces
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/0006—Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
- C21B13/0013—Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state introduction of iron oxide into a bath of molten iron containing a carbon reductant
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B13/00—Making spongy iron or liquid steel, by direct processes
- C21B13/12—Making spongy iron or liquid steel, by direct processes in electric furnaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B13/00—Obtaining lead
- C22B13/02—Obtaining lead by dry processes
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B19/00—Obtaining zinc or zinc oxide
- C22B19/04—Obtaining zinc by distilling
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B19/00—Obtaining zinc or zinc oxide
- C22B19/04—Obtaining zinc by distilling
- C22B19/10—Obtaining zinc by distilling in reverberatory furnaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B19/00—Obtaining zinc or zinc oxide
- C22B19/04—Obtaining zinc by distilling
- C22B19/16—Distilling vessels
- C22B19/18—Condensers, Receiving vessels
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B34/00—Obtaining refractory metals
- C22B34/10—Obtaining titanium, zirconium or hafnium
- C22B34/12—Obtaining titanium or titanium compounds from ores or scrap by metallurgical processing; preparation of titanium compounds from other titanium compounds see C01G23/00 - C01G23/08
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B4/00—Electrothermal treatment of ores or metallurgical products for obtaining metals or alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/10—Dry methods smelting of sulfides or formation of mattes by solid carbonaceous reducing agents
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B5/00—General methods of reducing to metals
- C22B5/02—Dry methods smelting of sulfides or formation of mattes
- C22B5/16—Dry methods smelting of sulfides or formation of mattes with volatilisation or condensation of the metal being produced
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/60—Process control or energy utilisation in the manufacture of iron or steel
- C21B2100/62—Energy conversion other than by heat exchange, e.g. by use of exhaust gas in energy production
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2100/00—Handling of exhaust gases produced during the manufacture of iron or steel
- C21B2100/60—Process control or energy utilisation in the manufacture of iron or steel
- C21B2100/66—Heat exchange
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B2400/00—Treatment of slags originating from iron or steel processes
- C21B2400/02—Physical or chemical treatment of slags
- C21B2400/022—Methods of cooling or quenching molten slag
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C7/00—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
- C21C7/0056—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires
- C21C2007/0062—Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00 using cored wires with introduction of alloying or treating agents under a compacted form different from a wire, e.g. briquette, pellet
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21C—PROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
- C21C5/00—Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
- C21C5/52—Manufacture of steel in electric furnaces
- C21C5/527—Charging of the electric furnace
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/134—Reduction of greenhouse gas [GHG] emissions by avoiding CO2, e.g. using hydrogen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method and apparatus for direct processing of manganese, chromite and silica bearing compounds (Mn—Fe and Cr—Fe ores, and silica) to produce a liquid ferroalloy and iron, employing the concept of combined cycle power generation using a gas combustion turbine.
- manganese, chromite and silica bearing compounds Mn—Fe and Cr—Fe ores, and silica
- Mn—Fe ores, Cr—Fe ores, and silica are cold briquetted to form compact agglomerates containing a carbonaceous material such as coal, petcoke, char, etc., iron oxide (either already contained in the ore or added separately as iron ore fines, mill scale, metalized iron fines, etc., to the mix), fluxes such as lime, silica, spar, etc., and binder.
- a carbonaceous material such as coal, petcoke, char, etc.
- iron oxide either already contained in the ore or added separately as iron ore fines, mill scale, metalized iron fines, etc., to the mix
- fluxes such as lime, silica, spar, etc., and binder.
- An excess amount of carbon is present in the agglomerate not only to react with the manganese, chromium, and silica compounds, but also to reduce the iron oxide, manganese oxide, etc., so that the atmosphere within the melter is predominantly CO with some liberated H 2 from the volatilization of the carbonaceous material such as coal. Sulfur in the system is free to combine with the flux additions (CaO, CaF 2 , MgO, etc.), to form a sulfur-containing liquid slag.
- the principal object of the present invention is to provide a method of producing silicamanganese, ferromanganese or ferrosilicon ferroalloy from ordinary ore materials.
- Another object of the invention is to provide a method of recovering manganese, chromium, vanadium, and titanium as oxides from ores.
- FIG. 1 is a schematic flowsheet of the process, wherein the reference numerals refer to the items as indicated below.
- FIG. 2 is a schematic flowsheet for handling of off-gases.
- FIG. 3 is a schematic flowsheet for treating hot metal to form vanadium and titanium oxides.
- FIG. 4 is a schematic depiction of recovering hot metal in pig form.
- FIG. 5 is a schematic depiction of slag treatment to recover vanadium and titanium oxides or to recover concentrated slag for recycle.
- FIG. 6 is a schematic flowsheet showing an alternative method for producing a liquid ferroalloy in which the feed materials are preheated with or without agglomeration, and then fed to the melting furnace.
- feed materials are introduced to mixer 22 , the input materials consisting of: metallic iron fines, iron oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates 10 , 100% passing 10 mesh Tyler Standard (1.70 mm), preferably 100% passing 100 mesh Tyler Standard (150 microns); prepared reductant 14 , such as coal, petroleum coke, char, or other carbonaceous material, 100% passing 25 mm, preferably 100% passing 100 mesh Tyler Standard (150 microns); slag formers or fluxing agents 16 , such as MgO, CaO, Al 2 O 3 , CaF 2 (fluorspar) and SiO 2 , 100% of which are minus 25 mm; an organic or inorganic binder 18 , such as cellulose, bentonite, molasses, or starch; recycled fines 20 , and water 26 as needed.
- metallic iron fines, iron oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates 10 100% passing 10 mesh Tyler Standard
- briquetter/agglomerator 24 or in pelletizer 28 (such as a drum or disc type pelletizer), the agglomerates being in the form of uniformly sized briquettes or pellets.
- pelletizer 28 such as a drum or disc type pelletizer
- the agglomerates are screened by sizer 30 , the undersized material being returned to the agglomerator 24 or to the pelletizer 28 .
- material D 1 exiting mixer 22 can be fed to a heater 84 for the purpose of preheating the mixture to about 500 to 120° C., devolatizing the reductant, and producing a preheated charge to electric furnace melter 38 . Pre-reduction of the iron oxide will occur to levels ranging from about 0 to 90%.
- Agglomerated material D 2 can also be preheated, if desired, prior to feeding the material to the melter through the pressure seal 37 .
- the heater 84 can be an indirectly heated rotary kiln, or a direct fired kiln, as shown, with off-gases being recycled.
- the heater 84 can be refractory lined, or it can be unlined, as desired.
- Screened pellets from pelletizer 28 are dried in a greenball dryer 32 to 1% or less moisture content.
- the agglomerates are cured and/or stored in hoppers 34 , then fed into an electric melter, or melting furnace 38 through a pressure-sealed feed system 36 .
- Feed to the melter is through a pressure-sealed chamber 80 , a conventional feed leg as is used with a shaft furnace, or through lock valves.
- the melter off-gas is treated, cooled and scrubbed in cooler-scrubber 52 , compressed in compressor 54 and delivered to stack 56 which includes combustion means for converting carbon monoxide and hydrogen to carbon dioxide and water vapor.
- the melter 38 operates normally under a slight positive pressure. Tapping of the hot metal and slag is done on an intermittent basis.
- one or more additional feed materials may be introduced through a pressure seal to the melter 38 , including metallic iron fines and iron oxide fines 12 , 100% of which are minus 25 mm; prepared reductant 14 , such as coal, petroleum coke, char, or other carbonaceous material, 100% passing 25 mm, preferably 50% passing 10 mesh; slag formers or fluxing agents 16 , such as MgO, CaO, Al 2 O 3 , CaF 2 (fluorspar) and SiO 2 , 100% of which are minus 25 mm; and recycled slag 50 .
- the feed materials are melted in the melting furnace 38 at a temperature of from 1500 to 1760 C to form a liquid ferroalloy with a slag thereon;
- Liquid ferroalloy is removed from the melter into ladles 40 and may be cast into ferroalloy pigs at pig caster 44 , as shown. Additional fluxing agents 14 may be added to the hot ferroalloy as it is discharged into ladles 40 (A and B).
- a desulfurizing slag addition 42 is introduced into a hot metal ladle shown as B, the addition being CaO, MgO, Ca/Mg wire, or a mixture thereof.
- the hot metal from either ladle A or B can be cast into pigs.
- the slag from ladle C may contain unreduced oxidized species of Mn, Cr, V and Ti due to partitioning effects between the liquid ferroalloy and slag.
- the slag can then be treated as shown in FIG. 5 by a quenching and grinding and electrostatic separation 82 to recover MnO, Cr 2 O 5 , V 2 O 5 and TiO 2 .
- This concentrated slag 50 may then be recycled to the melter, if desired, in order to increase the desired material concentration of slag, and improve the efficiency of recovery.
- Recovery of oxidized species, MnO, Cr 2 O 5 , V 2 O 5 and TiO 2 , from the concentrated slag can also be obtained by solvent extraction techniques.
- Off-gas exiting the melting furnace 36 is cleaned in cooler-scrubber 52 .
- the off-gas may be moved by fan 54 through high pressure compressor 58 , which operates in the range of about 100 to 350 psig, and the cleaned, compressed off-gas is used as combustion fuel in gas turbine 64 , or used for preheating agglomerates in hopper/preheaters 34 prior to their introduction to the electric melting furnace 36 .
- Gas turbine 64 drives generator 66 to produce electricity, and sensible heat contained in offgas exiting the gas turbine is recovered in a waste heat recovery boiler system 68 .
- the waste heat boiler system 68 steam cycle could be a “Kalina” cycle based on using 70% ammonia and 30% water for better range processing and heat recovery efficiency at lower gas temperatures.
- Ammonia/water boiling occurs over a range of temperatures rather that at a specific temperature and pressure.
- Steam produced by the waste heat boiler system 68 is then used to drive a steam turbine 70 and associated generator 72 to produce additional electricity.
- a secondary objective of the invention is to supplement or produce all the required electricity to accommodate the process and operate the plant so as to be electricity self sufficient. If sufficient fuel gas is not produced by the melter, then additional fuel gas, such as natural gas, can be used to supplement the fuel gas feed to the gas turbine.
- Gas from the compressor 54 can be treated for sulfur removal in an optional sulfur removal system 60 , which may require an optional chiller 78 upstream of the sulfur gas removal system.
- the agglomerate curing or storage hoppers 34 can be preheaters, such as a shaft or vessel preheater, as desired.
- preheaters such as a shaft or vessel preheater, as desired.
- off-gas from the electric furnace or melter 38 can be utilized as shown in FIG. 1 .
- the off-gas is returned to the gas handling system at cooler-scrubber 52 .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
A method for producing liquid ferroalloy by direct processing of manganese and chromium bearing iron compounds, by the steps: of mixing carbonaceous reductant, fluxing agent, and a binder with materials such as iron sands, metallic oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates and silica sands, to form a mixture; forming agglomerates from the mixture; feeding the agglomerates to a melting furnace with other materials; melting the feed materials at a temperature of from 1500 to 1760 C and forming a slag and hot metal; removing the slag; and tapping the hot metal as liquid ferroalloy.
Description
- This application claims the benefit of priority of the following applications:
- PCT Application PCT/US2008/010122 filed: 12 Aug. 2008, U.S. Provisional Patent Application Ser. No. 60/967,347, filed 4 Sep. 2007;
- PCT Application PCT\US 2008\010124, filed: 12 Aug. 2008, U.S. Provisional Patent Application Ser. No. 60/997,616, filed: 4 Oct. 2007
- PCT Application PCT\US 2008\010123, filed 12 Aug. 2008, and U.S. Provisional Patent Application Ser. No. 61/126,915, filed 8 May 2008.
- The present invention relates to a method and apparatus for direct processing of manganese, chromite and silica bearing compounds (Mn—Fe and Cr—Fe ores, and silica) to produce a liquid ferroalloy and iron, employing the concept of combined cycle power generation using a gas combustion turbine.
- Mn—Fe ores, Cr—Fe ores, and silica are cold briquetted to form compact agglomerates containing a carbonaceous material such as coal, petcoke, char, etc., iron oxide (either already contained in the ore or added separately as iron ore fines, mill scale, metalized iron fines, etc., to the mix), fluxes such as lime, silica, spar, etc., and binder. An excess amount of carbon is present in the agglomerate not only to react with the manganese, chromium, and silica compounds, but also to reduce the iron oxide, manganese oxide, etc., so that the atmosphere within the melter is predominantly CO with some liberated H2 from the volatilization of the carbonaceous material such as coal. Sulfur in the system is free to combine with the flux additions (CaO, CaF2, MgO, etc.), to form a sulfur-containing liquid slag.
- The principal object of the present invention is to provide a method of producing silicamanganese, ferromanganese or ferrosilicon ferroalloy from ordinary ore materials.
- Another object of the invention is to provide a method of recovering manganese, chromium, vanadium, and titanium as oxides from ores.
- The foregoing and other objects will become more readily apparent by referring to the following detailed description and the appended drawings in which:
-
FIG. 1 is a schematic flowsheet of the process, wherein the reference numerals refer to the items as indicated below. -
FIG. 2 is a schematic flowsheet for handling of off-gases. -
FIG. 3 is a schematic flowsheet for treating hot metal to form vanadium and titanium oxides. -
FIG. 4 is a schematic depiction of recovering hot metal in pig form. -
FIG. 5 is a schematic depiction of slag treatment to recover vanadium and titanium oxides or to recover concentrated slag for recycle. -
FIG. 6 is a schematic flowsheet showing an alternative method for producing a liquid ferroalloy in which the feed materials are preheated with or without agglomeration, and then fed to the melting furnace. - In the figures, reference numerals refer to:
- 10—Mn—Fe, Cr—Fe, SiO2, or concentrates—100% passing 10 mesh Tyler Standard (1.70 mm), preferably 100% passing 100 mesh Tyler Standard (150 microns)
- 12—metallic iron fines, and iron oxide fines—100% minus 25 mm, preferably 100% passing 10 mesh
- 14—prepared reductant, such as coal, petroleum coke, char, etc., 100% passing 25 mm, preferably 100% passing 100 mesh Tyler Standard (150 microns)
- 16—fluxing agents—CaO, MgO, CaF2, SiO2, Al2O3, etc—100% minus 25 mm
- 18—binder such as cellulose, bentonite, molasses, starch—either organic or inorganic
- 20—recycled fines
- 22—mixer
- 24—briquetter/agglomerator (size 8 to 100 cc)
- 26—water addition (spray)
- 28—pelletizer—drum or disc type
- 30—screens—dry or roller type
- 32—greenball dryer (dries pellets to 1% moisture or less)
- 34—agglomerate (briquette) curing/storage hoppers, or preheaters
- 36—feed loss in weight system
- 38—electric melter, operating temperature >1500 C
- 40—ladles A and B for liquid ferroalloy
- 42—slag addition for desulfurization
- 44—pig iron caster
- 46—slag ladle (C)
- 48—slag disposal/quench bunker
- 50—recycle slag
- 52—offgas cooling scrubber/bag filter
- 54—fan
- 56—stack with combustion to convert CO & H2 to CO2 & H2O
- 58—high pressure compressor (100-350 psig)
- 60—optional gas stream, sulfur removal system, such as Selexol
- 62—high pressure gas accumulator tank
- 64—gas turbine (exit gas temp 600-700 C)
- 66—generator
- 68—waste heat boiler exchanger
- 70—high pressure steam turbine
- 72—generator
- 74—boiler closed circuit water conduit
- 76—pump
- 78—optional chiller upstream of gas sulfur removal system
- 80—pressure sealed chamber
- 82—quenching and grinding and electrostatic separation
- 84—heater, direct or indirect rotary kiln type
- As seen in
FIG. 1 , feed materials are introduced tomixer 22, the input materials consisting of: metallic iron fines, iron oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates 10, 100% passing 10 mesh Tyler Standard (1.70 mm), preferably 100% passing 100 mesh Tyler Standard (150 microns);prepared reductant 14, such as coal, petroleum coke, char, or other carbonaceous material, 100% passing 25 mm, preferably 100% passing 100 mesh Tyler Standard (150 microns); slag formers orfluxing agents 16, such as MgO, CaO, Al2O3, CaF2 (fluorspar) and SiO2, 100% of which are minus 25 mm; an organic orinorganic binder 18, such as cellulose, bentonite, molasses, or starch;recycled fines 20, andwater 26 as needed. - These materials are mixed in
mixer 22, then formed into agglomerates in briquetter/agglomerator 24, or in pelletizer 28 (such as a drum or disc type pelletizer), the agglomerates being in the form of uniformly sized briquettes or pellets. The agglomerates are screened bysizer 30, the undersized material being returned to theagglomerator 24 or to thepelletizer 28. - Alternatively, material
D1 exiting mixer 22 can be fed to aheater 84 for the purpose of preheating the mixture to about 500 to 120° C., devolatizing the reductant, and producing a preheated charge toelectric furnace melter 38. Pre-reduction of the iron oxide will occur to levels ranging from about 0 to 90%. Agglomerated material D2 can also be preheated, if desired, prior to feeding the material to the melter through the pressure seal 37. Theheater 84 can be an indirectly heated rotary kiln, or a direct fired kiln, as shown, with off-gases being recycled. Theheater 84 can be refractory lined, or it can be unlined, as desired. - Screened pellets from
pelletizer 28 are dried in agreenball dryer 32 to 1% or less moisture content. The agglomerates are cured and/or stored inhoppers 34, then fed into an electric melter, or meltingfurnace 38 through a pressure-sealedfeed system 36. Feed to the melter is through a pressure-sealedchamber 80, a conventional feed leg as is used with a shaft furnace, or through lock valves. The melter off-gas is treated, cooled and scrubbed in cooler-scrubber 52, compressed incompressor 54 and delivered to stack 56 which includes combustion means for converting carbon monoxide and hydrogen to carbon dioxide and water vapor. Themelter 38 operates normally under a slight positive pressure. Tapping of the hot metal and slag is done on an intermittent basis. - Optionally one or more additional feed materials may be introduced through a pressure seal to the
melter 38, including metallic iron fines andiron oxide fines 12, 100% of which are minus 25 mm;prepared reductant 14, such as coal, petroleum coke, char, or other carbonaceous material, 100% passing 25 mm, preferably 50% passing 10 mesh; slag formers orfluxing agents 16, such as MgO, CaO, Al2O3, CaF2 (fluorspar) and SiO2, 100% of which are minus 25 mm; andrecycled slag 50. The feed materials are melted in themelting furnace 38 at a temperature of from 1500 to 1760 C to form a liquid ferroalloy with a slag thereon; - Liquid ferroalloy is removed from the melter into
ladles 40 and may be cast into ferroalloy pigs atpig caster 44, as shown.Additional fluxing agents 14 may be added to the hot ferroalloy as it is discharged into ladles 40 (A and B). A desulfurizing slag addition 42 is introduced into a hot metal ladle shown as B, the addition being CaO, MgO, Ca/Mg wire, or a mixture thereof. The hot metal from either ladle A or B can be cast into pigs. - The slag from ladle C may contain unreduced oxidized species of Mn, Cr, V and Ti due to partitioning effects between the liquid ferroalloy and slag. The slag can then be treated as shown in
FIG. 5 by a quenching and grinding andelectrostatic separation 82 to recover MnO, Cr2O5, V2O5 and TiO2. Thisconcentrated slag 50 may then be recycled to the melter, if desired, in order to increase the desired material concentration of slag, and improve the efficiency of recovery. - Recovery of oxidized species, MnO, Cr2O5, V2O5 and TiO2, from the concentrated slag can also be obtained by solvent extraction techniques.
- The operating parameters of the invented process are as follows:
-
Normal Range Maximum Ferroalloy 1500-1600 C. 1700-1760 C. Melter Temp. Melter Off-Gas 500-1500 C. 1200-1650 C. Melter Off-Gas 0-0.2″ H2O gauge <15″ H2O gauge Pressure Gas Accumulator 100-350 psig Off-Gas Pressure Gas Turbine 750-900 C. <1000 C. Combined Product Exit Temp. - Off-gas exiting the melting
furnace 36 is cleaned in cooler-scrubber 52. Optionally, the off-gas may be moved byfan 54 throughhigh pressure compressor 58, which operates in the range of about 100 to 350 psig, and the cleaned, compressed off-gas is used as combustion fuel ingas turbine 64, or used for preheating agglomerates in hopper/preheaters 34 prior to their introduction to theelectric melting furnace 36.Gas turbine 64drives generator 66 to produce electricity, and sensible heat contained in offgas exiting the gas turbine is recovered in a waste heatrecovery boiler system 68. The wasteheat boiler system 68 steam cycle could be a “Kalina” cycle based on using 70% ammonia and 30% water for better range processing and heat recovery efficiency at lower gas temperatures. Ammonia/water boiling occurs over a range of temperatures rather that at a specific temperature and pressure. Steam produced by the wasteheat boiler system 68 is then used to drive asteam turbine 70 and associatedgenerator 72 to produce additional electricity. A secondary objective of the invention is to supplement or produce all the required electricity to accommodate the process and operate the plant so as to be electricity self sufficient. If sufficient fuel gas is not produced by the melter, then additional fuel gas, such as natural gas, can be used to supplement the fuel gas feed to the gas turbine. - Gas from the
compressor 54 can be treated for sulfur removal in an optionalsulfur removal system 60, which may require anoptional chiller 78 upstream of the sulfur gas removal system. - The agglomerate curing or
storage hoppers 34 can be preheaters, such as a shaft or vessel preheater, as desired. When used as preheaters, off-gas from the electric furnace ormelter 38 can be utilized as shown inFIG. 1 . The off-gas is returned to the gas handling system at cooler-scrubber 52. - From the foregoing, it is readily apparent that I have invented an improved method of producing liquid ferroalloy (ferrosilicon, ferromanganese, and silicomanganese) from ordinary ore materials, as well as a method of recovering metallic oxides contained in the slag, such as manganese oxide, chromium oxide, vanadium oxide and titanium oxide.
- It is to be understood that the foregoing description and specific embodiments are merely illustrative of the best mode of the invention and the principles thereof, and that various modifications and additions may be made to the apparatus by those skilled in the art, without departing from the spirit and scope of this invention.
Claims (16)
1. A method for producing liquid ferroalloy by direct processing of manganese and chromium bearing compounds (Mn—Fe and Cr—Fe ores), comprising the steps of:
(a) mixing:
i. materials selected from the group comprising: iron sands, metallic oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates, silica sands, and mixtures thereof;
ii. carbonaceous reductant;
iii. fluxing agent; and
iv. a binder to form a mixture;
(b) forming agglomerates from said mixture
(c) introducing said agglomerates to a melting furnace;
(d) maintaining a positive pressure within the melting furnace:
(e) melting the feed materials at a temperature of from 1500 to 1760 C and forming a slag thereon;
(f) removing the slag; and
(g) tapping the hot metal as hot liquid ferroalloy.
2. A process according to claim 1 , further comprising maintaining a reducing atmosphere within said melting furnace.
3. A process according to claim 1 , further comprising preventing substantially all air ingress to the melting furnace by providing a pressure seal.
4. A process according to claim 1 , further comprising preheating the mixture, the agglomerates, or both, prior to introducing them to the melting furnace.
5. A process according to claim 1 , wherein:
100% of the iron sands, metallic oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates and silica sands pass 10 mesh Tyler Standard (1.70 mm);
100% of the carbonaceous reductant is minus 25 mm; and
100% of the fluxing agent is minus 25 mm.
6. A process according to claim 1 wherein the carbonaceous reductant is selected from the group comprising coal, coke, petroleum coke, and char.
7. A process according to claim 1 , wherein the fluxing agent is selected from the group comprising CaO, MgO, CaF2, SiO2, Al2O3, and mixtures thereof.
8. A process according to claim 1 , further comprising forming a liquid iron-iron sulfide mixture in the melting furnace; removing the liquid iron-iron sulfide mixture from the melting furnace, desulfurizing the iron, and solidifying the resulting iron for further use.
9. A process according to claim 1 , further comprising forming off-gases in the melting furnace, cleaning and cooling the off-gases, and utilizing the cleaned off-gases as combustion fuel to drive a turbine and to generate electricity.
10. A process according to claim 9 , further comprising producing off-gases in the turbine, recovering the off-gases from the turbine and recovering the sensible heat contained therein as steam in a waste heat boiler recovery system.
11. A process according to claim 10 , further comprising utilizing the steam to drive a steam turbine and an associated generator to produce additional electricity, thereby accommodating substantially all the electrical requirements of the process.
12. A method for producing liquid ferroalloy by direct processing of manganese and chromium bearing compounds (Mn—Fe and Cr—Fe ores), comprising the steps of:
(a) mixing:
i. materials selected from the group comprising: iron sands, metallic oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates and silica sands;
ii. carbonaceous reductant;
iii. fluxing agent; and
iv. a binder to form a mixture;
(b) preheating at least a portion of said mixture in a heater to a temperature of 500 to 120° C.;
(c) introducing said preheated mixture to a melting furnace;
(d) melting the feed materials at a temperature of from 1500 to 1760 C and forming a slag thereon;
(e) maintaining a positive pressure within the melting furnace:
(f) removing the slag; and
(g) tapping the hot metal as hot liquid ferroalloy.
13. A process according to claim 12 wherein:
100% of the iron sands, metallic oxides, manganese-iron ore concentrates and/or chromium-iron ore concentrates and silica sands pass 10 mesh Tyler Standard (1.70 mm);
100% of the carbonaceous reductant is minus 25 mm; and
100% of the fluxing agent is minus 25 mm.
14. A process according to claim 12 , wherein the carbonaceous reductant is selected from the group comprising coal, coke, petroleum coke, and char.
15. A process according to claim 12 , wherein the fluxing agent is selected from the group comprising CaO, MgO, CaF2, SiO2, Al2O3, and mixtures thereof.
16. A process according to claim 12 , wherein the binder is selected from the group comprising cellulose, bentonite, molasses, starch or mixtures thereof.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/452,850 US20100126311A1 (en) | 2007-09-04 | 2008-08-12 | Direct processing of metallic ore concentrates into ferroalloys |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US96734707P | 2007-09-04 | 2007-09-04 | |
US99761607P | 2007-10-04 | 2007-10-04 | |
US12691508P | 2008-05-08 | 2008-05-08 | |
US12/452,850 US20100126311A1 (en) | 2007-09-04 | 2008-08-12 | Direct processing of metallic ore concentrates into ferroalloys |
PCT/US2008/010123 WO2009032110A1 (en) | 2007-09-04 | 2008-08-12 | Direct processing of metallic ore concentrates into ferroalloys |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100126311A1 true US20100126311A1 (en) | 2010-05-27 |
Family
ID=40429178
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/452,848 Expired - Fee Related US7985389B2 (en) | 2007-09-04 | 2008-08-12 | Direct processing of ferrotitania ores and sands |
US12/452,850 Abandoned US20100126311A1 (en) | 2007-09-04 | 2008-08-12 | Direct processing of metallic ore concentrates into ferroalloys |
US12/452,849 Expired - Fee Related US8043408B2 (en) | 2007-09-04 | 2008-08-12 | Direct smelting of zinc bearing compounds to produce metallic zinc |
US13/200,186 Expired - Fee Related US8420007B2 (en) | 2007-09-04 | 2011-09-20 | Apparatus for direct smelting of zinc bearing compounds to produce metallic zinc |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/452,848 Expired - Fee Related US7985389B2 (en) | 2007-09-04 | 2008-08-12 | Direct processing of ferrotitania ores and sands |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/452,849 Expired - Fee Related US8043408B2 (en) | 2007-09-04 | 2008-08-12 | Direct smelting of zinc bearing compounds to produce metallic zinc |
US13/200,186 Expired - Fee Related US8420007B2 (en) | 2007-09-04 | 2011-09-20 | Apparatus for direct smelting of zinc bearing compounds to produce metallic zinc |
Country Status (8)
Country | Link |
---|---|
US (4) | US7985389B2 (en) |
EP (3) | EP2190622A4 (en) |
CN (3) | CN101715492B (en) |
AU (3) | AU2008295563B2 (en) |
CA (3) | CA2687755C (en) |
MX (3) | MX2010001489A (en) |
WO (3) | WO2009032110A1 (en) |
ZA (3) | ZA201004007B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130081516A1 (en) * | 2011-10-04 | 2013-04-04 | John J. Simmons | Direct Production of Iron Slabs and Nuggets From Ore Without Pelletizing or Briquetting |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT506640B1 (en) * | 2008-03-17 | 2010-07-15 | Siemens Vai Metals Tech Gmbh | METHOD AND DEVICE FOR PRODUCING LIQUID RAW IRONS OR LIQUID STEEL PREPARED PRODUCTS |
PL2324135T3 (en) * | 2008-08-07 | 2012-12-31 | Zinchem A Div Of Zimco Group Pty Ltd | Method and plant for the production of zinc dust |
WO2010023691A1 (en) * | 2008-08-30 | 2010-03-04 | Tata Steel Limited | Method for separation of zinc and extraction of iron values from iron ores with high concentration of zinc |
JP5571345B2 (en) * | 2009-09-29 | 2014-08-13 | 株式会社神戸製鋼所 | Method for producing briquettes, method for producing reduced metals, and method for separating zinc or lead |
AU2011256134B2 (en) * | 2010-05-18 | 2014-12-11 | Tata Steel Limited | Direct smelting process |
US20140306386A1 (en) * | 2011-12-05 | 2014-10-16 | Active Land International Corporation | Sustainable process for the co-generation of pig iron and electric energy using wood as fuel |
KR101318962B1 (en) * | 2012-04-26 | 2013-10-15 | 주식회사 포스코 | Apparatus for manufacturing direct reduction iron using iron sand and method for manufacturing the samd |
US20150275323A1 (en) * | 2012-08-22 | 2015-10-01 | Hoffman & Sons Technologies, Llc | Production of pig iron |
WO2014031802A1 (en) * | 2012-08-22 | 2014-02-27 | Hoffman Glenn E | Producing pig iron from iron-containing feed materials |
US20160102382A1 (en) * | 2013-04-29 | 2016-04-14 | Saudi Basic Industries Corporation | Process for the removal of metal or impurities from electric arc furnace dust |
FI126719B (en) | 2013-12-17 | 2017-04-28 | Outotec Finland Oy | Process for making manganese-containing iron alloy |
CN103706958B (en) * | 2013-12-26 | 2016-05-25 | 中国铝业股份有限公司 | Aluminum-steel interface reducing agent |
CN106222444A (en) * | 2015-08-25 | 2016-12-14 | 赖成章 | Zinc sulfide ore method is smelted with high-tech |
CN108754178B (en) * | 2018-07-06 | 2020-06-09 | 六盘水中联工贸实业有限公司 | A kind of smelting method of zinc sulfide concentrate |
CN113461467A (en) * | 2021-07-20 | 2021-10-01 | 北京理工大学 | Safe and environment-friendly explosive with low mechanical sensitivity and preparation method thereof |
CN118326161B (en) * | 2024-06-13 | 2024-08-13 | 昆明理工大学 | Method for preparing Si-Ti alloy solder and simultaneously recovering tungsten and vanadium by utilizing waste SCR catalyst and crystalline silicon waste |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3860414A (en) * | 1968-09-04 | 1975-01-14 | Int Minerals & Chem Corp | Use of graft copolymers as agglomeration binders |
US3985545A (en) * | 1970-09-24 | 1976-10-12 | Sadamu Kinoshita | Metal melting method using electric arc furnace |
US4659374A (en) * | 1985-06-14 | 1987-04-21 | Dow Corning Corporation | Mixed binder systems for agglomerates |
US5431710A (en) * | 1991-11-06 | 1995-07-11 | Ebenfelt; Li W. | Method for continuously producing iron, steel or semi-steel and energy |
US5906671A (en) * | 1996-10-25 | 1999-05-25 | Agglo Inc. | Method for extraction of metals and non-metals from minerals, industrial by-products and waste materials |
US6582491B2 (en) * | 1998-10-30 | 2003-06-24 | Midrex International, B.V. Rotterdam, Zurich Branch | Method for producing molten iron in duplex furnaces |
US6685761B1 (en) * | 1998-10-30 | 2004-02-03 | Midrex International B.V. Rotterdam, Zurich Branch | Method for producing beneficiated titanium oxides |
US20050193864A1 (en) * | 2000-07-21 | 2005-09-08 | Steeghs Henricus R.G. | Agglomerating particulate materials |
US20060096416A1 (en) * | 2000-09-14 | 2006-05-11 | Jfe Steel Corporation | Refining agent and refining method |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2471242A (en) * | 1944-01-27 | 1949-05-24 | Pickands Mather & Co | Process of treating titaniferous iron ores |
US3068091A (en) * | 1960-11-01 | 1962-12-11 | Allis Chalmers Mfg Co | Process for the direct reduction of oxidic ores |
US3224871A (en) * | 1961-02-24 | 1965-12-21 | Elektrokemisk As | Process of preheating ores for reduction in smelting furnace |
US3203758A (en) * | 1962-10-30 | 1965-08-31 | Horizons Inc | Utilization of steel mill pickle liquor |
US3661555A (en) * | 1969-06-24 | 1972-05-09 | Showa Denko Kk | Pelletized chromium addition agents for ferro alloys production and method therefor |
CA923711A (en) * | 1969-09-12 | 1973-04-03 | Ishihara Sangyo Kaisha | Titanium dioxide concentrate and its manufacturing process |
US3754889A (en) * | 1970-10-14 | 1973-08-28 | Bethlehem Steel Corp | Highly fluxed iron oxide pellet |
JPS4936848B1 (en) * | 1970-12-30 | 1974-10-03 | ||
US3765868A (en) * | 1971-07-07 | 1973-10-16 | Nl Industries Inc | Method for the selective recovery of metallic iron and titanium oxide values from ilmenites |
US3900552A (en) * | 1972-02-01 | 1975-08-19 | Us Interior | Preparation of highly pure titanium tetrachloride from perovskite or titanite |
US3899569A (en) * | 1972-02-01 | 1975-08-12 | Us Interior | Preparation of highly pure titanium tetrachloride from ilmenite slag |
SE433128B (en) * | 1974-02-21 | 1984-05-07 | Nisshin Steel Co Ltd | HERMETICLY CLOSED LIGHT REAR OVEN |
US4071355A (en) * | 1976-05-13 | 1978-01-31 | Foote Mineral Company | Recovery of vanadium from pig iron |
US4120694A (en) * | 1977-09-06 | 1978-10-17 | The United States Of America As Represented By The Secretary Of The Interior | Process for purifying a titanium-bearing material and upgrading ilmenite to synthetic rutile with sulfur trioxide |
US4436551A (en) * | 1981-10-26 | 1984-03-13 | Sumitomo Heavy Industries, Ltd. | Process for making steel from direct-reduced iron |
US4509177A (en) * | 1983-06-29 | 1985-04-02 | Westinghouse Electric Corp. | Electric arc-fired blast furnace system |
DE3503493A1 (en) * | 1985-01-31 | 1986-08-14 | Korf Engineering GmbH, 4000 Düsseldorf | METHOD FOR THE PRODUCTION OF RAW IRON |
JP2671053B2 (en) * | 1990-04-20 | 1997-10-29 | 住友重機械工業株式会社 | Method for recovering valuable metals from zinc-containing dust |
US5443614A (en) * | 1994-07-28 | 1995-08-22 | Noranda, Inc. | Direct smelting or zinc concentrates and residues |
US6342089B1 (en) * | 1997-09-02 | 2002-01-29 | Mcgaa John R. | Direct reduced iron pellets |
AP1284A (en) | 1999-02-26 | 2004-06-19 | Mintek | Treatment of metal sulphide concentrates by roasting and arc furnace smelt reduction. |
US6306195B1 (en) * | 2000-03-24 | 2001-10-23 | Council Of Scientific And Industiral Research | Process for the preparation of high grade synthetic rutile and pig iron |
GB0009630D0 (en) * | 2000-04-19 | 2000-06-07 | Adwell Worldwide Inc | Ferroalloy production |
JP2002194452A (en) * | 2000-12-25 | 2002-07-10 | Aichi Steel Works Ltd | Method for treating dust of electric furnace |
US6648942B2 (en) * | 2001-01-26 | 2003-11-18 | Midrex International B.V. Rotterdam, Zurich Branch | Method of direct iron-making / steel-making via gas or coal-based direct reduction and apparatus |
US6666027B1 (en) * | 2002-07-15 | 2003-12-23 | General Electric Company | Turbine power generation systems and methods using off-gas fuels |
JP4153281B2 (en) * | 2002-10-08 | 2008-09-24 | 株式会社神戸製鋼所 | Method for producing titanium oxide-containing slag |
AU2002952062A0 (en) * | 2002-10-15 | 2002-10-31 | D.Wilson Investments Pty. Ltd. | Process and apparatus for extracting zinc |
WO2004113577A1 (en) * | 2003-06-20 | 2004-12-29 | Grain Processing Corporation | Method for producing mineral ore agglomerates using a hemicellulose binder and associated products |
CA2528139C (en) * | 2003-07-04 | 2012-07-10 | Umicore | Recovery of non-ferrous metals from zinc residues |
KR20050035604A (en) * | 2003-10-13 | 2005-04-19 | 한국지질자원연구원 | Method for recovering lead, zinc, and iron from electric arc furnace dust by two step high temperature reaction |
-
2008
- 2008-08-12 AU AU2008295563A patent/AU2008295563B2/en not_active Ceased
- 2008-08-12 AU AU2008295487A patent/AU2008295487B2/en not_active Ceased
- 2008-08-12 EP EP08829218A patent/EP2190622A4/en not_active Withdrawn
- 2008-08-12 CN CN2008800194404A patent/CN101715492B/en not_active Expired - Fee Related
- 2008-08-12 US US12/452,848 patent/US7985389B2/en not_active Expired - Fee Related
- 2008-08-12 WO PCT/US2008/010123 patent/WO2009032110A1/en active Application Filing
- 2008-08-12 US US12/452,850 patent/US20100126311A1/en not_active Abandoned
- 2008-08-12 EP EP08829719A patent/EP2190623A4/en not_active Withdrawn
- 2008-08-12 CA CA2687755A patent/CA2687755C/en not_active Expired - Fee Related
- 2008-08-12 AU AU2008295564A patent/AU2008295564B2/en not_active Ceased
- 2008-08-12 WO PCT/US2008/010124 patent/WO2009032111A1/en active Application Filing
- 2008-08-12 WO PCT/US2008/010122 patent/WO2009032109A1/en active Application Filing
- 2008-08-12 EP EP08829098.6A patent/EP2191025B1/en not_active Not-in-force
- 2008-08-12 MX MX2010001489A patent/MX2010001489A/en active IP Right Grant
- 2008-08-12 CA CA2694630A patent/CA2694630A1/en not_active Abandoned
- 2008-08-12 CN CN200880101273A patent/CN101790434A/en active Pending
- 2008-08-12 CA CA2698251A patent/CA2698251C/en not_active Expired - Fee Related
- 2008-08-12 MX MX2009012958A patent/MX2009012958A/en active IP Right Grant
- 2008-08-12 CN CN2008801049111A patent/CN102006966A/en active Pending
- 2008-08-12 US US12/452,849 patent/US8043408B2/en not_active Expired - Fee Related
- 2008-08-12 MX MX2010002194A patent/MX2010002194A/en not_active Application Discontinuation
-
2010
- 2010-06-04 ZA ZA2010/04007A patent/ZA201004007B/en unknown
- 2010-06-04 ZA ZA2010/04006A patent/ZA201004006B/en unknown
- 2010-06-04 ZA ZA2010/04008A patent/ZA201004008B/en unknown
-
2011
- 2011-09-20 US US13/200,186 patent/US8420007B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3860414A (en) * | 1968-09-04 | 1975-01-14 | Int Minerals & Chem Corp | Use of graft copolymers as agglomeration binders |
US3985545A (en) * | 1970-09-24 | 1976-10-12 | Sadamu Kinoshita | Metal melting method using electric arc furnace |
US4659374A (en) * | 1985-06-14 | 1987-04-21 | Dow Corning Corporation | Mixed binder systems for agglomerates |
US5431710A (en) * | 1991-11-06 | 1995-07-11 | Ebenfelt; Li W. | Method for continuously producing iron, steel or semi-steel and energy |
US5906671A (en) * | 1996-10-25 | 1999-05-25 | Agglo Inc. | Method for extraction of metals and non-metals from minerals, industrial by-products and waste materials |
US6582491B2 (en) * | 1998-10-30 | 2003-06-24 | Midrex International, B.V. Rotterdam, Zurich Branch | Method for producing molten iron in duplex furnaces |
US6685761B1 (en) * | 1998-10-30 | 2004-02-03 | Midrex International B.V. Rotterdam, Zurich Branch | Method for producing beneficiated titanium oxides |
US20050193864A1 (en) * | 2000-07-21 | 2005-09-08 | Steeghs Henricus R.G. | Agglomerating particulate materials |
US20060096416A1 (en) * | 2000-09-14 | 2006-05-11 | Jfe Steel Corporation | Refining agent and refining method |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130081516A1 (en) * | 2011-10-04 | 2013-04-04 | John J. Simmons | Direct Production of Iron Slabs and Nuggets From Ore Without Pelletizing or Briquetting |
WO2013052416A1 (en) * | 2011-10-04 | 2013-04-11 | Simmons John J | Direct production of iron slabs and nuggets from ore without pelletizing or briquetting |
US8906131B2 (en) * | 2011-10-04 | 2014-12-09 | John J. Simmons | Direct production of iron slabs and nuggets from ore without pelletizing or briquetting |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2008295564B2 (en) | Direct processing of metallic ore concentrates into ferroalloys | |
US8545593B2 (en) | Direct processing of metallic ore concentrates into ferroalloys | |
US5782957A (en) | Process for treating iron bearing material | |
McClelland et al. | Recycling ferrous and nonferrous waste streams with FASTMET | |
US20150275323A1 (en) | Production of pig iron | |
US5873925A (en) | Process for treating iron bearing material | |
CN212293639U (en) | A hydrogen metallurgy device | |
WO1999063119A1 (en) | Sustainable steelmaking by intensified direct reduction of iron oxide and solid waste minimisation | |
AU2013305777B2 (en) | Producing pig iron from iron-containing feed materials | |
Holappa et al. | Comparison of different coal based direct reduction processes | |
AU4124199A (en) | Sustainable steelmaking by intensified direct reduction of iron oxide and solid waste minimisation | |
JPH10265815A (en) | Operation method of smelting reduction furnace | |
JPH09143584A (en) | Method for desulfurizing reduced iron and apparatus therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CARDERO RESOURCE CORPORATION, CANADA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HOFFMAN, GLENN E.;REEL/FRAME:023862/0376 Effective date: 20100121 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |