US20100097148A1 - Headphone Amplifier Circuit - Google Patents
Headphone Amplifier Circuit Download PDFInfo
- Publication number
- US20100097148A1 US20100097148A1 US12/255,537 US25553708A US2010097148A1 US 20100097148 A1 US20100097148 A1 US 20100097148A1 US 25553708 A US25553708 A US 25553708A US 2010097148 A1 US2010097148 A1 US 2010097148A1
- Authority
- US
- United States
- Prior art keywords
- voltage
- positive
- output
- signal
- negative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0211—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
- H03F1/0244—Stepped control
- H03F1/025—Stepped control by using a signal derived from the input signal
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/30—Single-ended push-pull [SEPP] amplifiers; Phase-splitters therefor
- H03F3/3081—Duplicated single-ended push-pull arrangements, i.e. bridge circuits
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/03—Indexing scheme relating to amplifiers the amplifier being designed for audio applications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/507—A switch being used for switching on or off a supply or supplying circuit in an IC-block amplifier circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/511—Many discrete supply voltages or currents or voltage levels can be chosen by a control signal in an IC-block amplifier circuit
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/516—Some amplifier stages of an amplifier use supply voltages of different value
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/20—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F2203/21—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F2203/211—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
- H03F2203/21196—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers the supply voltage of a power amplifier being switchable controlled
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/30—Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
- H03F2203/30072—Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor the SEPP has a power supply switchable by a controlling signal derived from the input signal
Definitions
- the present invention relates generally to amplifier circuits and more specifically to headphone amplifier circuits in portable electronic devices.
- headphone amplifiers In portable electronic devices, such as portable CD players and MP3 players, audio signals are amplified by headphone amplifiers.
- a headphone amplifier is typically externally biased by two power supplies to accurately represent incoming signals.
- portable electronic devices usually use a single power supply, e.g., a battery, as the only source of power.
- headphone amplifiers 101 and 102 In a prior art headphone amplifier circuit shown in FIG. 1 , headphone amplifiers 101 and 102 have their positive power supply terminals coupled to a positive power supply VDD and their negative power supply terminals coupled to ground, and consequently are biased at mid-rail (VDD/2). Since the output of the amplifiers 101 and 102 are at a higher DC voltage with respect to ground, relatively large capacitors 103 and 104 are required to prevent high currents from flowing through headphones. Such large capacitors make miniaturizing portable electronic devices difficult.
- amplifiers 201 and 202 have their positive power supply terminals coupled to VDD and their negative power supply terminals coupled to ⁇ VDD, and are biased at ground (0 volt) potential. Although large DC blocking capacitors are avoided, the amplifier circuit shown in FIG. 2 is a class AB amplifier, and has low power efficiency.
- Another prior art approach is to use a class D amplifier, which has better power efficiency than a class AB amplifier, but high EMI (Electromagnetic interference), which can be a problem.
- EMI Electromagnetic interference
- FIG. 1 illustrates a prior art headphone amplifier circuit
- FIG. 2 illustrates another prior art headphone amplifier circuit.
- FIG. 3 illustrates a headphone amplifier circuit according to one embodiment of the present invention.
- FIG. 4A illustrates waveforms of a two amplitude step power supply to headphone amplifiers according to one embodiment of the present invention.
- FIG. 4B illustrates waveforms of a three amplitude step power supply to headphone amplifiers according to one embodiment of the present invention.
- FIG. 5 illustrates a headphone amplifier circuit according to one embodiment of the present invention.
- FIG. 6 illustrates the architecture of a charge pump used in a headphone amplifier circuit according to one embodiment of the present invention.
- FIG. 7 illustrates a finite state machine (FSM) of a charge pump used in a headphone amplifier circuit according to one embodiment of the present invention.
- FSM finite state machine
- FIGS. 8A-8C illustrate circuit diagrams of a charge pump at various operating states according to one embodiment of the present invention.
- FIG. 9 illustrates a finite state machine (FSM) of a charge pump used in a headphone amplifier circuit according to one embodiment of the present invention.
- FSM finite state machine
- FIGS. 10A-10C illustrate circuit diagrams of a charge pump at various operating states according to one embodiment of the present invention.
- FIG. 11 illustrates a headphone amplifier according to one embodiment of the present invention.
- FIG. 12 illustrates a response speed controller for a signal level detector according to one embodiment of the present invention.
- FIG. 13 is a flowchart of a method for powering a headphone amplifier according to one embodiment of the present invention.
- Embodiments of the present invention provide a class G headphone amplifier circuit which has improved power efficiency and low EMI.
- Embodiments may use an automatic signal level detector to detect the signal level of incoming signals and dynamically adjust positive and negative power supplies for headphone amplifiers.
- a voltage generator may generate pairs of differential output voltages at variable amplitudes, and supply to headphone amplifiers an amplitude determined by the automatic signal level detector.
- headphone amplifiers receive power supplies at voltage levels that correspond to an input signal level which may improve power efficiency and avoid signal clipping.
- FIG. 3 illustrates a headphone amplifier circuit according to one embodiment of the present invention.
- the circuit 300 may include an automatic signal level detector 302 , a voltage generator 303 and a pair of amplifiers 304 , 305 .
- the level detector 302 may compare input signals, which are to be amplified, to one or more voltage thresholds and may cause the voltage generator 303 to adjust output voltages VPOS and VNEG dynamically in response to this comparison.
- the output voltages VPOS and VNEG may be input to the amplifiers 304 , 305 as power sources. In this manner, the circuit 300 tunes the supply power of the amplifiers 304 , 305 to levels that are matched to the amplitude of the input signal and conserve energy.
- the headphone amplifier circuit may be coupled to a power supply VDD at a node 1 , and may receive a left input signal via a capacitor C 1 and a right input signal via a capacitor C 2 .
- the automatic signal level detector 302 may compare the input signal(s) to a plurality of thresholds; data regarding the thresholds and their corresponding target positive and negative power supplies may be stored in a memory, and the automatic signal level detector 302 may access the memory for the thresholds and target values.
- the voltage generator 303 may be able to generate positive voltage output VPOS and negative voltage output VNEG at at least two amplitude steps, and may bias headphone amplifiers 304 and 305 with voltages at the amplitude step determined by the automatic signal level detector 302 .
- the headphone amplifier 304 may receive the left input signal and the headphone amplifier 305 may receive the right input signal. Their second input may be coupled to a common ground and their output may be coupled to a left headphone speaker and a right headphone speaker respectively, which are represented collectively by a load 301 .
- a headphone may be any listening device that fits in or around the ear.
- FIG. 4A illustrates exemplary waveforms of a two amplitude step power supply to headphone amplifiers according to one embodiment of the present invention.
- the automatic signal level detector 302 may compare an input signal with a threshold VTH 1 .
- V 1 VTH 1
- V 2 VDD.
- FIG. 4B illustrates waveforms of a three amplitude step power supply to headphone amplifiers according to one embodiment of the present invention.
- the automatic signal level detector 302 may compare an input signal with a second threshold VTH 2 and a third threshold VTH 3 , wherein 0 ⁇ VTH 2 ⁇ VTH 3 .
- V 3 VTH 2
- V 4 VTH 3
- V 5 VDD.
- the headphone amplifier circuit may have as many voltage amplitude steps as necessary.
- the voltage generator may be a charge pump 503 .
- An oscillator 5031 may provide oscillating signals to a control logic 5032 , which may receive the target positive power supply VREFP and target negative power supply VREFN directly or indirectly from the automatic signal level detector 302 .
- a driving block 5033 may configure state of switches in a switch block 5034 , so that the charge pump 503 may keep its output VPOS approximately at VREFP, and its output VNEG approximately at VREFN.
- FIG. 6 illustrates in more detail the architecture of the charge pump in FIG. 5 .
- the charge pump may receive an input voltage VDD at a terminal CPVDD and output a positive voltage VPOS and a negative voltage VNEG at output terminals 603 and 604 respectively.
- a flying capacitor CF may be charged by the voltage VDD and discharge via load capacitors CP or CN, depending on the state of switches P 1 -P 6 .
- a comparator 601 may compare the positive voltage output VPOS and the target positive power supply VREFP and output a feedback control signal PVH to the control logic 5032 .
- a comparator 602 may compare the negative voltage output VNEG and the target negative power supply VREFN and output a feedback control signal NVL to the control logic 5032 .
- the values of VREFP and VREFN may be provided by the automatic signal level detector 302 , or provided by a memory device according to a control signal from the automatic signal level detector 302 .
- control logic 5032 may change the state of switches P 1 -P 6 and consequently the operating state of the charge pump to keep its positive voltage output VPOS close to VREFP and its negative voltage output VNEG close to VREFN.
- FIG. 7 illustrates a finite state machine (FSM) of the charge pump in FIG. 6 in the first work mode, providing voltages ⁇ V 1 at the first amplitude step as shown in FIG. 4 .
- FIGS. 8A-8C illustrate circuit diagrams of the charge pump in FIG. 6 at various operating states according to one embodiment of the present invention.
- the VREFP in FIG. 6 may be set to V 1
- the VREFN in FIG. 6 may be set to ⁇ V 1 .
- the charge pump may change among four operating states: an initial state (INI), a positive voltage charging state (PVC), a negative voltage charging state (NVC) and a charge averaging state (CA) according to the state of switches P 1 -P 6 .
- IPI initial state
- PVC positive voltage charging state
- NVC negative voltage charging state
- CA charge averaging state
- VPOS is close to V 1 and VNEG is close to ⁇ V 1 .
- switches P 1 and P 5 may be turned on, as shown in FIG. 8A , so that the input voltage VDD may charge the load capacitor CP to increase the value of VPOS to approximately V 1 .
- switches P 4 and P 6 may be turned on, as shown in FIG. 8B , so that the load capacitor CN may be negatively charged and VNEG may be lowered to approximately ⁇ V 1 .
- switches P 2 and P 3 may be turned on, as shown in FIG. 8C , so that charge may be averaged between the flying capacitor CF and the load capacitor CP.
- the control logic 5032 may perform a transition 701 , changing state of the switches (i.e., only keep P 1 and P 5 switched on) and consequently changing the charge pump to the PVC state to increase VPOS to approximately V 1 .
- the control logic 5032 may perform a transition 702 , changing state of the switches (i.e., only keep P 4 and P 6 switched on) and consequently changing the charge pump to the NVC state to lower the VNEG to approximately ⁇ V 1 .
- the control logic 5032 may perform a transition 703 , changing state of the switches (i.e., only keep P 2 and P 3 switched on) and consequently changing the charge pump to the CA state.
- the control logic 5032 may perform a transition 704 , changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V 1 and keep VNEG close to ⁇ V 1 .
- control logic 5032 may perform a transition 705 , changing state of the switches (i.e., only keep P 2 and P 3 switched on) and consequently changing the charge pump to the CA state.
- the control logic 5032 may perform a transition 706 , changing state of the switches (i.e., only keep P 4 and P 6 switched on) and consequently changing the charge pump to the NVC state to lower the VNEG to approximately ⁇ V 1 .
- the control logic 5032 may perform a transition 707 , changing state of the switches (i.e., only keep P 1 and P 5 switched on) and consequently changing the charge pump to the PVC state to increase VPOS to approximately V 1 .
- the control logic 5032 may perform a transition 708 , changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V 1 and keep VNEG close to ⁇ V 1 .
- the control logic 5032 may perform a transition 709 , changing state of the switches (i.e., only keep P 1 and P 5 switched on) and consequently changing the charge pump to the PVC state to increase VPOS to approximately V 1 .
- the control logic 5032 may perform a transition 710 , changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V 1 and keep VNEG close to ⁇ V 1 .
- FIG. 9 illustrates a finite state machine (FSM) of the charge pump in FIG. 6 in the second work mode, providing voltages ⁇ V 2 at the second amplitude step as shown in FIG. 4A .
- FIGS. 10A-10C illustrate circuit diagrams of the charge pump in FIG. 6 at various operating states according to one embodiment of the present invention.
- the charge pump may change among four operating states: the initial state (INI), a positive voltage charging state (PVC), a negative voltage charging state (NVC) and a flying capacitor charging state (FCC) according to the state of the switches P 1 -P 6 .
- VPOS is close to V 2
- VNEG is close to ⁇ V 2 .
- switches P 1 and P 3 may be turned on, as shown in FIG. 10A , so that the input voltage VDD may charge the flying capacitor CF.
- switches P 2 and P 3 may be turned on, as shown in FIG. 10B , so that the flying capacitor CF may charge the load capacitor CP to increase the value of VPOS to approximately V 2 .
- switches P 4 and P 6 may be turned on, as shown in FIG. 10C , so that the load capacitor CN may be negatively charged and VNEG may be lowered to approximately ⁇ V 2 .
- control logic 5032 may perform a transition 901 , changing state of the switches (i.e., only keep P 1 and P 3 switched on) and consequently changing the charge pump to the FCC state to charge the flying capacitor CF.
- the control logic 5032 may perform a transition 902 , changing state of the switches (i.e., only keep P 2 and P 3 switched on) and consequently changing the charge pump to the PVC state to increase the value of VPOS to approximately V 2 .
- the control logic 5032 may perform a transition 903 , changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V 2 and VNEG close to ⁇ V 2 .
- the control logic 5032 may perform a transition 904 , changing state of the switches (i.e., only keep P 2 and P 3 switched on) and consequently changing the charge pump to the PVC state to increase the value of VPOS to approximately V 2 .
- the control logic 5032 may perform a transition 905 , changing state of the switches (i.e., only keep P 4 and P 6 switched on) and consequently changing the charge pump to the NVC state to decrease VNEG to approximately ⁇ V 2 .
- control logic 5032 may perform a transition 906 , changing state of the switches (i.e., only keep P 1 and P 3 switched on) and consequently changing the charge pump to the FCC state to charge the flying capacitor CF.
- the control logic 5032 may perform a transition 907 , changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V 2 and VNEG close to ⁇ V 2 .
- the control logic 5032 may perform a transition 908 , changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V 2 and VNEG close to ⁇ V 2 .
- control logic 5032 may perform a transition 909 , changing state of the switches (i.e., only keep P 1 and P 3 switched on) and consequently changing the charge pump to the FCC state to charge the flying capacitor.
- FIGS. 7 and 9 are two embodiments of the present invention only, and are not intended to limit the sequence of the transitions.
- the charge pump may start at any work mode or operating state, and perform any transitions as long as conditions of that transition are met.
- the charge pump in FIGS. 6-10 are described with a two amplitude step headphone amplifier circuit, although the charge pump may be used with headphone amplifier circuits with more amplitude steps.
- the charge pump may change to a different work mode or voltage amplitude step when VREFP and VREFN are changed.
- VREFP may be set to V 3 and VREFN may be set to ⁇ V 3 .
- VREFP may be set to V 4 and VREFN may be set to ⁇ V 4 .
- VREFP may be set to V 5 and VREFN may be set to ⁇ V 5 .
- the control logic 5032 may turn on and off switches P 1 -P 6 according to an FSM for that mode, so as to change operating state of the charge pump to keep VPOS close to VREFP and VNEG close to VREFN.
- FIG. 11 illustrates a headphone amplifier according to one embodiment of the present invention.
- the headphone amplifier 304 or 305 may have a first stage and a second stage.
- the first stage A 1 may be powered by VDD and VNEG
- the second stage A 2 may be powered by VPOS and VNEG.
- FIG. 12 illustrates a response speed controller for a signal level detector according to one embodiment of the present invention.
- the response speed controller may set the signal level detector to work at a fast response speed when incoming signals are higher than a predetermined value to prevent clipping, and at a slower response speed when incoming signals are lower than the predetermined value to conserve battery power.
- a fast response speed may be set as the default, and may be changed to a slower speed when incoming signals are lower than a predetermined value for a predetermined period of time.
- incoming signals may be compared at a comparator COMP 1 with a threshold VTH 1 , which is used to determine voltages VPOS and VNEG; and compared at a comparator COMP 2 with a predetermined value VTH 1 ⁇ v, which is used to determine the response speed of the signal level detector, wherein VTH 1 >VTH 1 ⁇ v.
- the output of the NOR gate is high and the counter may be triggered. If the output of the NOR gate is high for a predetermined period of time, e.g., 30 ms, the counter's output may turn high and trigger the multiplexer MUX to change the response speed to a slower one.
- FIG. 13 is a flowchart of a method for powering a headphone amplifier according to one embodiment of the present invention.
- the method may be used in the headphone amplifier circuit in FIG. 3 to generate voltages VPOS and VNEG shown in FIG. 4A .
- the signal level detector 302 may detect whether an incoming signal exceeds the threshold VH 1 .
- voltages VPOS and VNEG may be used to power amplifiers 304 and 305 .
- the headphone amplifier circuit of the present invention is more power efficient.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
Description
- The present invention relates generally to amplifier circuits and more specifically to headphone amplifier circuits in portable electronic devices.
- In portable electronic devices, such as portable CD players and MP3 players, audio signals are amplified by headphone amplifiers. A headphone amplifier is typically externally biased by two power supplies to accurately represent incoming signals. However, portable electronic devices usually use a single power supply, e.g., a battery, as the only source of power. In a prior art headphone amplifier circuit shown in
FIG. 1 ,headphone amplifiers amplifiers large capacitors - In another prior art headphone amplifier circuit shown in
FIG. 2 ,amplifiers FIG. 2 is a class AB amplifier, and has low power efficiency. - Another prior art approach is to use a class D amplifier, which has better power efficiency than a class AB amplifier, but high EMI (Electromagnetic interference), which can be a problem.
- Therefore, it may be desirable to provide a headphone amplifier circuit which may help to conserve power and avoid audio clipping.
- So that features of the present invention can be understood, a number of drawings are described below. It is to be noted, however, that the appended drawings illustrate only particular embodiments of the invention and are therefore not to be considered limiting of its scope, for the invention may encompass other equally effective embodiments.
-
FIG. 1 illustrates a prior art headphone amplifier circuit. -
FIG. 2 illustrates another prior art headphone amplifier circuit. -
FIG. 3 illustrates a headphone amplifier circuit according to one embodiment of the present invention. -
FIG. 4A illustrates waveforms of a two amplitude step power supply to headphone amplifiers according to one embodiment of the present invention. -
FIG. 4B illustrates waveforms of a three amplitude step power supply to headphone amplifiers according to one embodiment of the present invention. -
FIG. 5 illustrates a headphone amplifier circuit according to one embodiment of the present invention. -
FIG. 6 illustrates the architecture of a charge pump used in a headphone amplifier circuit according to one embodiment of the present invention. -
FIG. 7 illustrates a finite state machine (FSM) of a charge pump used in a headphone amplifier circuit according to one embodiment of the present invention. -
FIGS. 8A-8C illustrate circuit diagrams of a charge pump at various operating states according to one embodiment of the present invention. -
FIG. 9 illustrates a finite state machine (FSM) of a charge pump used in a headphone amplifier circuit according to one embodiment of the present invention. -
FIGS. 10A-10C illustrate circuit diagrams of a charge pump at various operating states according to one embodiment of the present invention. -
FIG. 11 illustrates a headphone amplifier according to one embodiment of the present invention. -
FIG. 12 illustrates a response speed controller for a signal level detector according to one embodiment of the present invention. -
FIG. 13 is a flowchart of a method for powering a headphone amplifier according to one embodiment of the present invention. - Embodiments of the present invention provide a class G headphone amplifier circuit which has improved power efficiency and low EMI. Embodiments may use an automatic signal level detector to detect the signal level of incoming signals and dynamically adjust positive and negative power supplies for headphone amplifiers. A voltage generator may generate pairs of differential output voltages at variable amplitudes, and supply to headphone amplifiers an amplitude determined by the automatic signal level detector. As a result, headphone amplifiers receive power supplies at voltage levels that correspond to an input signal level which may improve power efficiency and avoid signal clipping.
-
FIG. 3 illustrates a headphone amplifier circuit according to one embodiment of the present invention. The circuit 300 may include an automaticsignal level detector 302, avoltage generator 303 and a pair ofamplifiers level detector 302 may compare input signals, which are to be amplified, to one or more voltage thresholds and may cause thevoltage generator 303 to adjust output voltages VPOS and VNEG dynamically in response to this comparison. The output voltages VPOS and VNEG may be input to theamplifiers amplifiers - Specifically, the headphone amplifier circuit may be coupled to a power supply VDD at a
node 1, and may receive a left input signal via a capacitor C1 and a right input signal via a capacitor C2. An automaticsignal level detector 302 may compare an input signal with a threshold VTH and, for the input signal, select a target (or reference) positive power supply VREFP and a target negative power supply VREFN (VREFP=−VREFN). In one embodiment, the automaticsignal level detector 302 may compare the higher one of the left input signal and the right input signal with the threshold VTH1, and determine the amplitude of the positive and negative target power supplies. In one embodiment, the automaticsignal level detector 302 may compare the input signal(s) to a plurality of thresholds; data regarding the thresholds and their corresponding target positive and negative power supplies may be stored in a memory, and the automaticsignal level detector 302 may access the memory for the thresholds and target values. - The
voltage generator 303 may be able to generate positive voltage output VPOS and negative voltage output VNEG at at least two amplitude steps, and may biasheadphone amplifiers signal level detector 302. - The
headphone amplifier 304 may receive the left input signal and theheadphone amplifier 305 may receive the right input signal. Their second input may be coupled to a common ground and their output may be coupled to a left headphone speaker and a right headphone speaker respectively, which are represented collectively by aload 301. A headphone may be any listening device that fits in or around the ear. -
FIG. 4A illustrates exemplary waveforms of a two amplitude step power supply to headphone amplifiers according to one embodiment of the present invention. The automaticsignal level detector 302 may compare an input signal with a threshold VTH1. When the amplitude of the input signal does not exceed the threshold VTH1, thevoltage generator 303 may work at a first mode or voltage amplitude step, so that VPOS=V1 and VNEG=−V1, wherein 0<V1<VDD. When the amplitude of the input signal exceeds the threshold VTH1, thevoltage generator 303 may work at a second mode or voltage amplitude step, so that VPOS=V2 and VNEG=−V2, wherein V2>V1. In one embodiment, V1=VTH1, and V2=VDD. -
FIG. 4B illustrates waveforms of a three amplitude step power supply to headphone amplifiers according to one embodiment of the present invention. The automaticsignal level detector 302 may compare an input signal with a second threshold VTH2 and a third threshold VTH3, wherein 0<VTH2<VTH3. When the amplitude of the input signal does not exceed the threshold VTH2, thevoltage generator 303 may work at a third mode or voltage amplitude step, so that VPOS=V3 and VNEG=−V3, wherein 0<V3<VDD. When the amplitude of the input signal is between VTH2 and VTH3, thevoltage generator 303 may work at a fourth mode or voltage amplitude step, so that VPOS=V4 and VNEG=−V4, wherein 0<V3<V4<VDD. When the amplitude of the input signal exceeds the threshold VTH3, thevoltage generator 303 may work at a fifth mode or voltage amplitude step, so that VPOS=V5 and VNEG=−V5, wherein 0<V3<V4<V5<VDD. In one embodiment, V3=VTH2, V4=VTH3, and V5=VDD. The headphone amplifier circuit may have as many voltage amplitude steps as necessary. - In an embodiment shown in
FIG. 5 , the voltage generator may be acharge pump 503. Anoscillator 5031 may provide oscillating signals to acontrol logic 5032, which may receive the target positive power supply VREFP and target negative power supply VREFN directly or indirectly from the automaticsignal level detector 302. Adriving block 5033 may configure state of switches in aswitch block 5034, so that thecharge pump 503 may keep its output VPOS approximately at VREFP, and its output VNEG approximately at VREFN. -
FIG. 6 illustrates in more detail the architecture of the charge pump inFIG. 5 . The charge pump may receive an input voltage VDD at a terminal CPVDD and output a positive voltage VPOS and a negative voltage VNEG atoutput terminals signal level detector 302, e.g., VPOS=V1 and VNEG=−V1 if the amplitude of the incoming signal does not exceed the threshold VTH1, or VPOS=V2 and VNEG=−V2 if the amplitude of the incoming signal exceeds the threshold VTH1. - A flying capacitor CF may be charged by the voltage VDD and discharge via load capacitors CP or CN, depending on the state of switches P1-P6.
- A
comparator 601 may compare the positive voltage output VPOS and the target positive power supply VREFP and output a feedback control signal PVH to thecontrol logic 5032. In one example, PVH=0 when VPOS<VREFP, and PVH=1 otherwise. Similarly, acomparator 602 may compare the negative voltage output VNEG and the target negative power supply VREFN and output a feedback control signal NVL to thecontrol logic 5032. In one example, NVL=0 when VNEG is higher than VREFN (or its amplitude is smaller than that of VREFN) and NVL=1 otherwise. The values of VREFP and VREFN may be provided by the automaticsignal level detector 302, or provided by a memory device according to a control signal from the automaticsignal level detector 302. - In response to the feedback control signals PVH and NVL from
comparators control logic 5032 may change the state of switches P1-P6 and consequently the operating state of the charge pump to keep its positive voltage output VPOS close to VREFP and its negative voltage output VNEG close to VREFN. -
FIG. 7 illustrates a finite state machine (FSM) of the charge pump inFIG. 6 in the first work mode, providing voltages ±V1 at the first amplitude step as shown inFIG. 4 .FIGS. 8A-8C illustrate circuit diagrams of the charge pump inFIG. 6 at various operating states according to one embodiment of the present invention. The VREFP inFIG. 6 may be set to V1, and the VREFN inFIG. 6 may be set to −V1. The charge pump may change among four operating states: an initial state (INI), a positive voltage charging state (PVC), a negative voltage charging state (NVC) and a charge averaging state (CA) according to the state of switches P1-P6. - At the initial state (INI), all switches may be turned off, as shown in
FIG. 6 . VPOS is close to V1 and VNEG is close to −V1. - At the positive voltage charging state (PVC), switches P1 and P5 may be turned on, as shown in
FIG. 8A , so that the input voltage VDD may charge the load capacitor CP to increase the value of VPOS to approximately V1. - At the negative voltage charging state (NVC), switches P4 and P6 may be turned on, as shown in
FIG. 8B , so that the load capacitor CN may be negatively charged and VNEG may be lowered to approximately −V1. - At the charge averaging state (CA), switches P2 and P3 may be turned on, as shown in
FIG. 8C , so that charge may be averaged between the flying capacitor CF and the load capacitor CP. - When the charge pump is at the INI operating state, if both PVH and NVL change to 0, the
control logic 5032 may perform atransition 701, changing state of the switches (i.e., only keep P1 and P5 switched on) and consequently changing the charge pump to the PVC state to increase VPOS to approximately V1. - When the charge pump is at the PVC operating state, if PVH is 1 but NVL is 0, the
control logic 5032 may perform atransition 702, changing state of the switches (i.e., only keep P4 and P6 switched on) and consequently changing the charge pump to the NVC state to lower the VNEG to approximately −V1. - When the charge pump is at the NVC operating state, if PVH is 1 but NVL is 0, the
control logic 5032 may perform atransition 703, changing state of the switches (i.e., only keep P2 and P3 switched on) and consequently changing the charge pump to the CA state. - When the charge pump is at the CA operating state, if both PVH and NVL change to 1, the
control logic 5032 may perform atransition 704, changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V1 and keep VNEG close to −V1. - When the charge pump is at the INI operating state, if PVH is 1 but NVL is 0, the
control logic 5032 may perform atransition 705, changing state of the switches (i.e., only keep P2 and P3 switched on) and consequently changing the charge pump to the CA state. - When the charge pump is at the CA operating state, if PVH is 1 but NVL is 0, the
control logic 5032 may perform atransition 706, changing state of the switches (i.e., only keep P4 and P6 switched on) and consequently changing the charge pump to the NVC state to lower the VNEG to approximately −V1. - When the charge pump is at the NVC operating state, if both PVH and NVL change to 0, the
control logic 5032 may perform atransition 707, changing state of the switches (i.e., only keep P1 and P5 switched on) and consequently changing the charge pump to the PVC state to increase VPOS to approximately V1. - When the charge pump is at the PVC operating state, if both PVH and NVL change to 1, the
control logic 5032 may perform atransition 708, changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V1 and keep VNEG close to −V1. - When the charge pump is at the CA operating state, if PVH is 0 and NVL is 1, the
control logic 5032 may perform atransition 709, changing state of the switches (i.e., only keep P1 and P5 switched on) and consequently changing the charge pump to the PVC state to increase VPOS to approximately V1. - When the charge pump is at the NVC operating state, if both PVH and NVL are 1, the
control logic 5032 may perform atransition 710, changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V1 and keep VNEG close to −V1. -
FIG. 9 illustrates a finite state machine (FSM) of the charge pump inFIG. 6 in the second work mode, providing voltages ±V2 at the second amplitude step as shown inFIG. 4A .FIGS. 10A-10C illustrate circuit diagrams of the charge pump inFIG. 6 at various operating states according to one embodiment of the present invention. When thesignal level detector 302 determines that the amplitude of the incoming signal exceeds the threshold VTH1, the charge pump may change from the first work mode to the second mode. Consequently, the VREFP may be set to V2, and the VREFN may be set to −V2. - The charge pump may change among four operating states: the initial state (INI), a positive voltage charging state (PVC), a negative voltage charging state (NVC) and a flying capacitor charging state (FCC) according to the state of the switches P1-P6.
- At the initial operating state (INI), all switches may be turned off, as shown in
FIG. 6 . VPOS is close to V2, and VNEG is close to −V2. - At the flying capacitor charging state (FCC), switches P1 and P3 may be turned on, as shown in
FIG. 10A , so that the input voltage VDD may charge the flying capacitor CF. - At the positive voltage charging state (PVC), switches P2 and P3 may be turned on, as shown in
FIG. 10B , so that the flying capacitor CF may charge the load capacitor CP to increase the value of VPOS to approximately V2. - At the negative voltage charging state (NVC), switches P4 and P6 may be turned on, as shown in
FIG. 10C , so that the load capacitor CN may be negatively charged and VNEG may be lowered to approximately −V2. - When the charge pump is at the INI operating state, if either PVH or NVL changes to 0, the
control logic 5032 may perform atransition 901, changing state of the switches (i.e., only keep P1 and P3 switched on) and consequently changing the charge pump to the FCC state to charge the flying capacitor CF. - When the charge pump is at the INI operating state, if both PVH and NVL are 0, the
control logic 5032 may perform atransition 902, changing state of the switches (i.e., only keep P2 and P3 switched on) and consequently changing the charge pump to the PVC state to increase the value of VPOS to approximately V2. - When the charge pump is at the FCC operating state, if both PVH and NVL are 1, the
control logic 5032 may perform atransition 903, changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V2 and VNEG close to −V2. - When the charge pump is at the FCC operating state, if PVH is 0, the
control logic 5032 may perform atransition 904, changing state of the switches (i.e., only keep P2 and P3 switched on) and consequently changing the charge pump to the PVC state to increase the value of VPOS to approximately V2. - When the charge pump is at the FCC operating state, if PVH=1 and NVL=0, the
control logic 5032 may perform atransition 905, changing state of the switches (i.e., only keep P4 and P6 switched on) and consequently changing the charge pump to the NVC state to decrease VNEG to approximately −V2. - When the charge pump is at the NVC operating state, if either PVH or NVL changes to 0, the
control logic 5032 may perform atransition 906, changing state of the switches (i.e., only keep P1 and P3 switched on) and consequently changing the charge pump to the FCC state to charge the flying capacitor CF. - When the charge pump is at the NVC operating state, if both PVH and NVL are 1, the
control logic 5032 may perform atransition 907, changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V2 and VNEG close to −V2. - When the charge pump is at the PVC operating state, if both PVH and NVL are 1, the
control logic 5032 may perform atransition 908, changing state of the switches (i.e., turn off all switches) and consequently changing the charge pump to the INI state to keep VPOS close to V2 and VNEG close to −V2. - When the charge pump is at the PVC operating state, if either PVH or NVL changes to 0, the
control logic 5032 may perform a transition 909, changing state of the switches (i.e., only keep P1 and P3 switched on) and consequently changing the charge pump to the FCC state to charge the flying capacitor. -
FIGS. 7 and 9 are two embodiments of the present invention only, and are not intended to limit the sequence of the transitions. The charge pump may start at any work mode or operating state, and perform any transitions as long as conditions of that transition are met. - For the sake of clarity, the charge pump in
FIGS. 6-10 are described with a two amplitude step headphone amplifier circuit, although the charge pump may be used with headphone amplifier circuits with more amplitude steps. The charge pump may change to a different work mode or voltage amplitude step when VREFP and VREFN are changed. For example, for the three amplitude step power supply to headphone amplifiers shown inFIG. 4B , at the third work mode, VREFP may be set to V3 and VREFN may be set to −V3. At the fourth work mode, VREFP may be set to V4 and VREFN may be set to −V4. At the fifth work mode, VREFP may be set to V5 and VREFN may be set to −V5. At each work mode, thecontrol logic 5032 may turn on and off switches P1-P6 according to an FSM for that mode, so as to change operating state of the charge pump to keep VPOS close to VREFP and VNEG close to VREFN. -
FIG. 11 illustrates a headphone amplifier according to one embodiment of the present invention. As shown, theheadphone amplifier - Further embodiments are also possible. For example, in addition to a charge pump, other devices capable of generating positive and negative voltages at multiple amplitude steps may be used as the
voltage generator 303 as well. -
FIG. 12 illustrates a response speed controller for a signal level detector according to one embodiment of the present invention. The response speed controller may set the signal level detector to work at a fast response speed when incoming signals are higher than a predetermined value to prevent clipping, and at a slower response speed when incoming signals are lower than the predetermined value to conserve battery power. - In one embodiment, a fast response speed may be set as the default, and may be changed to a slower speed when incoming signals are lower than a predetermined value for a predetermined period of time. As shown, incoming signals may be compared at a comparator COMP1 with a threshold VTH1, which is used to determine voltages VPOS and VNEG; and compared at a comparator COMP2 with a predetermined value VTH1−v, which is used to determine the response speed of the signal level detector, wherein VTH1>VTH1−v.
- For an incoming signal VIN>VTH1>VTH1−v, the output of the comparator COMP1 is high, and the output terminal Q of a flip-flop FF1 is kept high. At the same time, the output terminal of a flip-flop FF2 is also kept high. Consequently, the output of a NOR gate is low and cannot trigger a counter coupled at its output, and a multiplexer MUX may keep the response speed of the signal level detector at the fast speed.
- When an incoming signal is between VTH1 and VTH1−v, the output of the comparator COMP1 is low. Since the output of the comparator COMP2 is high, the output of the NOR gate is still low and cannot trigger the counter to change the response speed.
- For an incoming signal VIN<VTH1−v<VTH1, the output of the NOR gate is high and the counter may be triggered. If the output of the NOR gate is high for a predetermined period of time, e.g., 30 ms, the counter's output may turn high and trigger the multiplexer MUX to change the response speed to a slower one.
-
FIG. 13 is a flowchart of a method for powering a headphone amplifier according to one embodiment of the present invention. The method may be used in the headphone amplifier circuit inFIG. 3 to generate voltages VPOS and VNEG shown inFIG. 4A . As shown, at 1301, thesignal level detector 302 may detect whether an incoming signal exceeds the threshold VH1. - If the incoming signal exceeds VH1, at 1302, the
voltage generator 303 may generate voltages VPOS and VNEG at a bigger amplitude, e.g., VPOS=V2 and VNEG=−V2. - If the incoming signal does not exceed VH1, at 1303, the
voltage generator 303 may generate voltages VPOS and VNEG at a smaller amplitude, e.g., VPOS=V1 and VNEG=−V1. - At 1304, voltages VPOS and VNEG may be used to
power amplifiers - Thus, large DC blocking capacitors required in the prior art circuit shown in
FIG. 1 are avoided. In addition, since power supplies forheadphone amplifiers FIG. 2 does, the headphone amplifier circuit of the present invention is more power efficient. - Several features and aspects of the present invention have been illustrated and described in detail with reference to particular embodiments by way of example only, and not by way of limitation. Those of skill in the art will appreciate that alternative implementations and various modifications to the disclosed embodiments are within the scope and contemplation of the present disclosure. Therefore, it is intended that the invention be considered as limited only by the scope of the appended claims.
Claims (26)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/255,537 US7880548B2 (en) | 2008-10-21 | 2008-10-21 | Headphone amplifier circuit |
PCT/US2009/061433 WO2010048256A1 (en) | 2008-10-21 | 2009-10-21 | Headphone amplifier circuit |
CN2009801416793A CN102204086B (en) | 2008-10-21 | 2009-10-21 | Headphone amplifier circuit and power supply method, and portable electronic device |
US12/983,412 US8228124B2 (en) | 2008-10-21 | 2011-01-03 | Headphone amplifier circuit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/255,537 US7880548B2 (en) | 2008-10-21 | 2008-10-21 | Headphone amplifier circuit |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/983,412 Continuation US8228124B2 (en) | 2008-10-21 | 2011-01-03 | Headphone amplifier circuit |
Publications (2)
Publication Number | Publication Date |
---|---|
US20100097148A1 true US20100097148A1 (en) | 2010-04-22 |
US7880548B2 US7880548B2 (en) | 2011-02-01 |
Family
ID=41354089
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/255,537 Active US7880548B2 (en) | 2008-10-21 | 2008-10-21 | Headphone amplifier circuit |
US12/983,412 Expired - Fee Related US8228124B2 (en) | 2008-10-21 | 2011-01-03 | Headphone amplifier circuit |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/983,412 Expired - Fee Related US8228124B2 (en) | 2008-10-21 | 2011-01-03 | Headphone amplifier circuit |
Country Status (3)
Country | Link |
---|---|
US (2) | US7880548B2 (en) |
CN (1) | CN102204086B (en) |
WO (1) | WO2010048256A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110255698A1 (en) * | 2010-04-19 | 2011-10-20 | Hubert Young | Programmable noise gate for audio amplifier employing a combination of low-noise and noise-rejecting analog and digital signal processing |
US8436683B2 (en) | 2010-11-29 | 2013-05-07 | Robert Gehrke | High efficiency audio amplifier |
US20180190256A1 (en) * | 2017-01-03 | 2018-07-05 | Synaptics Incorporated | Hum reduction circuit and method |
US20180198430A1 (en) | 2017-01-06 | 2018-07-12 | Avnera Corporation | Power supply for class g amplifier |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102075146B (en) * | 2009-10-20 | 2013-07-10 | 成都芯源系统有限公司 | G-class audio amplification system and method |
US8797103B2 (en) | 2010-12-07 | 2014-08-05 | Skyworks Solutions, Inc. | Apparatus and methods for capacitive load reduction |
TWI457739B (en) | 2012-03-14 | 2014-10-21 | Anpec Electronics Corp | Dynamic power control method and circuit thereof |
CN103973231B (en) * | 2013-01-31 | 2017-04-26 | 立锜科技股份有限公司 | Voltage adjustment circuit of amplification circuit and related adjustment method |
CN105576966B (en) * | 2016-01-05 | 2018-05-08 | 嘉兴禾润电子科技有限公司 | A kind of charge pump circuit for producing positive and negative voltage sources |
CN107070410B (en) * | 2017-04-13 | 2023-04-28 | 成都信息工程大学 | Dynamic power amplifier |
CN107026618B (en) * | 2017-04-13 | 2023-05-02 | 成都信息工程大学 | High efficiency amplifier and method for controlling power supply thereof |
CN106899270B (en) * | 2017-04-13 | 2023-04-28 | 成都信息工程大学 | Dynamic monitoring circuit |
CN107040218B (en) * | 2017-04-13 | 2023-05-16 | 成都信息工程大学 | CAP-FREE amplifier |
US10411651B2 (en) | 2017-04-13 | 2019-09-10 | Chengdu University Of Information Technology | High-efficiency amplifying device and method for controlling power supply thereof |
CN111901725B (en) * | 2020-07-22 | 2022-02-01 | 上海艾为电子技术股份有限公司 | Audio power amplifier circuit and power limiting method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3486128A (en) * | 1968-02-07 | 1969-12-23 | Us Army | Power amplifier for amplitude modulated transmitter |
US3900823A (en) * | 1973-03-28 | 1975-08-19 | Nathan O Sokal | Amplifying and processing apparatus for modulated carrier signals |
US6586992B1 (en) * | 2000-10-16 | 2003-07-01 | Globespanvirata, Inc. | System and method for increasing power range in a power amplifier using a single voltage supply |
US6825726B2 (en) * | 2000-07-12 | 2004-11-30 | Indigo Manufacturing Inc. | Power amplifier with multiple power supplies |
US7061327B2 (en) * | 2002-01-24 | 2006-06-13 | Maxim Integrated Products, Inc. | Single supply headphone driver/charge pump combination |
US7193470B2 (en) * | 2003-03-04 | 2007-03-20 | Samsung Electronics Co., Ltd. | Method and apparatus for controlling a power amplifier in a mobile communication system |
US20080116979A1 (en) * | 2006-06-30 | 2008-05-22 | Lesso John P | Amplifier circuit and methods of operation thereof |
US7466195B2 (en) * | 2007-05-18 | 2008-12-16 | Quantance, Inc. | Error driven RF power amplifier control with increased efficiency |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7310420B2 (en) * | 2004-04-28 | 2007-12-18 | Gn Netcom A/S | Telephone headset amplifier with noise blanking capability |
TWI315937B (en) * | 2004-10-18 | 2009-10-11 | Monolithic Power Systems Inc | Low noise audio amplifier and the method thereof |
EP1982400A4 (en) | 2006-01-23 | 2014-08-13 | Audera Internat Sales Inc | Power supply for limited power sources and audio amplifier using power supply |
US8362838B2 (en) | 2007-01-19 | 2013-01-29 | Cirrus Logic, Inc. | Multi-stage amplifier with multiple sets of fixed and variable voltage rails |
-
2008
- 2008-10-21 US US12/255,537 patent/US7880548B2/en active Active
-
2009
- 2009-10-21 WO PCT/US2009/061433 patent/WO2010048256A1/en active Application Filing
- 2009-10-21 CN CN2009801416793A patent/CN102204086B/en active Active
-
2011
- 2011-01-03 US US12/983,412 patent/US8228124B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3486128A (en) * | 1968-02-07 | 1969-12-23 | Us Army | Power amplifier for amplitude modulated transmitter |
US3900823A (en) * | 1973-03-28 | 1975-08-19 | Nathan O Sokal | Amplifying and processing apparatus for modulated carrier signals |
US6825726B2 (en) * | 2000-07-12 | 2004-11-30 | Indigo Manufacturing Inc. | Power amplifier with multiple power supplies |
US6586992B1 (en) * | 2000-10-16 | 2003-07-01 | Globespanvirata, Inc. | System and method for increasing power range in a power amplifier using a single voltage supply |
US7061327B2 (en) * | 2002-01-24 | 2006-06-13 | Maxim Integrated Products, Inc. | Single supply headphone driver/charge pump combination |
US7193470B2 (en) * | 2003-03-04 | 2007-03-20 | Samsung Electronics Co., Ltd. | Method and apparatus for controlling a power amplifier in a mobile communication system |
US20080116979A1 (en) * | 2006-06-30 | 2008-05-22 | Lesso John P | Amplifier circuit and methods of operation thereof |
US7466195B2 (en) * | 2007-05-18 | 2008-12-16 | Quantance, Inc. | Error driven RF power amplifier control with increased efficiency |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110255698A1 (en) * | 2010-04-19 | 2011-10-20 | Hubert Young | Programmable noise gate for audio amplifier employing a combination of low-noise and noise-rejecting analog and digital signal processing |
US8436683B2 (en) | 2010-11-29 | 2013-05-07 | Robert Gehrke | High efficiency audio amplifier |
US20180190256A1 (en) * | 2017-01-03 | 2018-07-05 | Synaptics Incorporated | Hum reduction circuit and method |
CN110121838A (en) * | 2017-01-03 | 2019-08-13 | 辛纳普蒂克斯公司 | Noise reduces circuit and method |
US10553192B2 (en) * | 2017-01-03 | 2020-02-04 | Synaptics Incorporated | Hum reduction circuit and method |
US20180198430A1 (en) | 2017-01-06 | 2018-07-12 | Avnera Corporation | Power supply for class g amplifier |
WO2018128937A1 (en) * | 2017-01-06 | 2018-07-12 | Avnera Corporation | Power supply for class g amplifier |
US10425053B2 (en) | 2017-01-06 | 2019-09-24 | Avnera Corporation | Power supply for class G amplifier |
Also Published As
Publication number | Publication date |
---|---|
US8228124B2 (en) | 2012-07-24 |
US7880548B2 (en) | 2011-02-01 |
US20110095829A1 (en) | 2011-04-28 |
WO2010048256A1 (en) | 2010-04-29 |
CN102204086B (en) | 2013-09-04 |
CN102204086A (en) | 2011-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7880548B2 (en) | Headphone amplifier circuit | |
US9705458B1 (en) | Energy-efficient consumer device audio power output stage with gain control | |
CN110366819B (en) | Amplifier circuit for amplifying an audio signal with controlled power supply | |
US9595869B2 (en) | Multi-level switching regulator circuits and methods with finite state machine control | |
US9742357B2 (en) | Audio system having an improved efficiency and extended operation time | |
US9306520B2 (en) | Reverse current prevention | |
US7468631B1 (en) | Class D amplifier | |
US20110084760A1 (en) | Highly efficient class-g amplifier and control method thereof | |
US7733178B1 (en) | High efficiency audio amplifier | |
US6940345B2 (en) | Supplying a ramp voltage to an amplifier | |
US7298209B1 (en) | Class D amplifier | |
US9209757B1 (en) | Energy-efficient personal audio device output stage with signal polarity-dependent power supply update rate | |
US20100156520A1 (en) | Reference voltage generator | |
KR20130090930A (en) | Charge pump circuit | |
US20120235730A1 (en) | Charge pump surge current reduction | |
US9312755B2 (en) | Charge pump power savings | |
US7164312B1 (en) | Apparatus and method for pop-and-click suppression with fast turn-on time | |
US8115542B2 (en) | Variable frequency class-D amplifier, control method thereof, and ramp generator therefor | |
JP2010130136A (en) | Audio signal processing circuit, and method of controlling charge pump circuit | |
US7184561B2 (en) | Electronic apparatus having audio output units | |
JP7204440B2 (en) | power amplifier | |
US20240056039A1 (en) | Switching amplifier circuitry | |
US11906993B2 (en) | Nonlinear feedforward correction in a multilevel output system | |
TWI716763B (en) | Class-g amplifier and a control method for a class-g amplifier |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ANALOG DEVICES INC.,MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YE, JINGHUA;SHEN, HUI;LI, DANNY;SIGNING DATES FROM 20081017 TO 20081020;REEL/FRAME:021716/0026 Owner name: ANALOG DEVICES INC., MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YE, JINGHUA;SHEN, HUI;LI, DANNY;SIGNING DATES FROM 20081017 TO 20081020;REEL/FRAME:021716/0026 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552) Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |