US20100086883A1 - Method for reacting self-igniting dusts in a vacuum pump device - Google Patents

Method for reacting self-igniting dusts in a vacuum pump device Download PDF

Info

Publication number
US20100086883A1
US20100086883A1 US12/438,220 US43822007A US2010086883A1 US 20100086883 A1 US20100086883 A1 US 20100086883A1 US 43822007 A US43822007 A US 43822007A US 2010086883 A1 US2010086883 A1 US 2010086883A1
Authority
US
United States
Prior art keywords
oxygen
dust
vacuum pump
pump device
supplying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/438,220
Inventor
Uwe Zöllig
Thomas Dreifert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Oerlikon Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Leybold Vacuum GmbH filed Critical Oerlikon Leybold Vacuum GmbH
Assigned to OERLIKON LEYBOLD VACUUM GMBH reassignment OERLIKON LEYBOLD VACUUM GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DREIFERT, THOMAS, ZOLLIG, UWE
Publication of US20100086883A1 publication Critical patent/US20100086883A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/28Safety arrangements; Monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0092Removing solid or liquid contaminants from the gas under pumping, e.g. by filtering or deposition; Purging; Scrubbing; Cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D3/00Axial-flow pumps
    • F04D3/02Axial-flow pumps of screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2220/00Application
    • F04C2220/10Vacuum
    • F04C2220/12Dry running
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2280/00Arrangements for preventing or removing deposits or corrosion
    • F04C2280/02Preventing solid deposits in pumps, e.g. in vacuum pumps with chemical vapour deposition [CVD] processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/85986Pumped fluid control

Definitions

  • the invention relates to a method for exhaustive reaction of self-igniting dust in a dry-sealed vacuum pump device, as well as a corresponding vacuum pump.
  • the dust also causes a safety hazard to the maintenance personnel of the systems because, in case of faulty operating or unintentional venting of the system, inflammation of the dust cannot be excluded. Such an inflammation may even occur in the filter or in the tubing.
  • One aspect provides a well-aimed exhaustive reaction of oxidizable dust in the vacuum pump.
  • silicon oxide (SiO) is oxidized to silicon dioxide (SiO 2 ), and metals are oxidized to metal oxides. Since it is substantially gas that is conveyed by the vacuum pump and since the absolute mass flow of dust per time unit is relatively small, the present method offers the possibility to accomplish a continuous and controlled exhaustive reaction of the reactive dust. Uncontrolled inflammation of the dust is reliably prevented.
  • the supplying of oxygen can be provided in the form of pure oxygen or in the form of air. The oxygen supply will affect the suction performance of the pump only to a mere negligible extent.
  • the dust quantity introduced into the vacuum pump per time unit is small enough to be continuously burned with a relatively low air-gas ballast while this burning process will not cause damage to the pump. All of the particles leaving the pump again on the pressure side will have undergone an exhaustive reaction. Consequently, a separation of dust can be performed by use of normal dust filters on the pressure side without a danger of uncontrolled reactions. This allows for a simplified and less expensive installation of the vacuum pump. Possible accumulations of dust in the tubing on the exhaust side will not be reactive anymore and thus will be of no concern under the aspect of safety technology.
  • the supplied oxygen-containing gas can be fed into the vacuum pump device at a suitable site, e.g. into the pumping chamber at the entrance to the pump, at a site along the compression chamber, or at the pump exit.
  • Another aspect relates to a dry-sealed vacuum pump device comprising at least one driven compression member and a housing with pump entrance and pump exit.
  • the vacuum pump is characterized in that the housing comprises at least one oxygen entrance provided with a throttle valve for regulating the cross section of the entrance.
  • a dry-sealed vacuum pump Possible embodiments of a dry-sealed vacuum pump are the following: screw pumps, claw-type pumps, Roots pumps, turbo compressors, lateral-channel blowers, dry-sealed rotary-vane pumps, and others.
  • the vacuum pump device can comprise a sole vacuum pump, or a plurality of pumps connected in series and each forming a pump stage.
  • the oxygen can also be introduced into a reaction chamber arranged between two pump stages.
  • a reaction chamber use can be made also of a tube conduit.
  • temperature and pressure sensors are provided for monitoring the reaction in the vacuum pump device.
  • a method for cleansing the vacuum pump device and the feed conduits from dust can reside in that, after the end of the process, the supply of process gas is terminated while the supply of an oxygen-containing gas mixture, e.g. air, through the pump device is continued.
  • an oxygen-containing gas mixture e.g. air
  • the oxygen required for oxidation can also be contained in the buffer gas of a shaft sealing.
  • the oxygen will flow in dosed quantities from the shaft sealing into a pump chamber or into a conduit of the pump device.
  • FIG. 1 is a schematic longitudinal sectional view through the compression chamber of a vacuum pump
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1 .
  • FIG. 3 is a schematic representation for illustrating the principle of the present invention.
  • a vacuum pump in the form of a screw pump.
  • Said pump comprises an elongate housing 10 supporting therein two screw rotors 12 , 14 for rotation in opposite senses.
  • Each screw rotor comprises a helically configured tooth 16 , 18 with a pitch continuously decreasing from the pump entrance 20 to the pump exit 22 , as can be seen in FIG. 1 .
  • the working chamber which in rotating rotors will be traveling in axial direction, is reduced in size from pump entrance 20 towards pump exit 22 .
  • the compression chamber 24 is arranged between the pump entrance and the pump exit.
  • Pump entrance 20 forms the pumping chamber which will be connected to the device that is to be evacuated. Into this pumping chamber, the process gas 38 will be sucked. The process gas contains particles 40 in the form of non-oxidized dust.
  • Pump entrance 20 is connected to an oxygen intake 26 which is laterally arranged on housing 10 and is provided with a throttle valve 28 .
  • Throttle valve 28 can be set to various throttle cross sections so as to regulate the oxygen supply.
  • the oxygen can be pure oxygen or a component of a gas mixture, e.g. of air.
  • the dust will undergo a controlled reaction with the supplied oxygen as soon as, during condensation, an oxygen partial pressure as required for reaction has been reached.
  • Oxygen intake 26 a is located in the region of the mid-length of compression chamber 24 , namely in the middle between the two mutually engaging helically shaped teeth 16 , 18 .
  • a third alternative includes the oxygen intake 26 b arranged on pump exit 22 .
  • FIG. 3 is a schematic representation of the pump with the pump entrance 20 for suctional intake of the process gas 38 .
  • oxygen intake 26 is arranged at the suction connector of pump entrance 20 .
  • the black sphere symbols represent the non-oxidized particles
  • the hollow sphere symbols represent the oxidized particles. Oxidation takes place in compression chamber 24 in dependence on which intake among the oxygen intakes 26 , 26 a , 26 b is in the opened state.
  • the shafts for rotating the screw rotors are designated by 30 .

Abstract

Into a vacuum pump device arranged for suctional intake of a process gas (38) possibly comprising reactive particles (40), oxygen in the form of air or pure oxygen is supplied in a controlled manner via an oxygen intake (26, 26 a, 26 b). Thus, controlled oxidation takes place in the compression chamber (24) such that the dust cannot self-ignite in case of sudden ventilation.

Description

    BACKGROUND
  • The invention relates to a method for exhaustive reaction of self-igniting dust in a dry-sealed vacuum pump device, as well as a corresponding vacuum pump.
  • In metallurgical and various other processes performed in a vacuum environment, it is frequently the case that particles or fine dust are generated, which due to their chemical composition and their large surface are so reactive that they will self-ignite upon contact with ambient air, thus entering an exhaustive reaction with the aerial oxygen. Examples of such processes are the Czochralsky method for producing silicon monocrystals, or the melting and degassing of steels. In the first case, silicon oxide (SiO) is generated, and in the second case, metallic fine dust such as e.g. magnesium dust, are generated. The dust particles are sucked into the vacuum pump which generates the vacuum required for the process. In oil-sealed vacuum pumps, the dust particles are absorbed by the lubricant and will not be discharged from the pump. Since the particles are mostly very hard and together with the oil will act like a grinding agent, this will often lead to massive wear within the vacuum pump. In dry-sealed vacuum pumps, on the other hand, such as e.g. screw-type vacuum pumps, the massive reaction upon sudden contact with oxygen involves a danger of explosions. Therefore, in both cases, the assemblies are provided with complex dust filters which will filter out the dust upstream of the vacuum pump. The dust will accumulate within the dust filter, whereby, however, the danger of explosion is not eliminated. In dry-sealed pumps, there is also a possibility of dust accumulating on the exhaust side of the vacuum pump.
  • The dust also causes a safety hazard to the maintenance personnel of the systems because, in case of faulty operating or unintentional venting of the system, inflammation of the dust cannot be excluded. Such an inflammation may even occur in the filter or in the tubing.
  • It is an object to provide a method for exhaustive reaction of self-igniting dust in a dry-sealed vacuum pump, which method shall effect a continuous oxidation of the reactive dust within the vacuum pump, so that the vacuum pump per se is simplified and the working processes to be performed at the vacuum pump are made safer.
  • During operation of the vacuum pump device, oxygen is continuously supplied thereto in a dosed manner, whereby an oxidation of the dust is effected.
  • SUMMARY
  • One aspect provides a well-aimed exhaustive reaction of oxidizable dust in the vacuum pump. Thus, for instance, silicon oxide (SiO) is oxidized to silicon dioxide (SiO2), and metals are oxidized to metal oxides. Since it is substantially gas that is conveyed by the vacuum pump and since the absolute mass flow of dust per time unit is relatively small, the present method offers the possibility to accomplish a continuous and controlled exhaustive reaction of the reactive dust. Uncontrolled inflammation of the dust is reliably prevented. The supplying of oxygen can be provided in the form of pure oxygen or in the form of air. The oxygen supply will affect the suction performance of the pump only to a mere negligible extent. The dust quantity introduced into the vacuum pump per time unit is small enough to be continuously burned with a relatively low air-gas ballast while this burning process will not cause damage to the pump. All of the particles leaving the pump again on the pressure side will have undergone an exhaustive reaction. Consequently, a separation of dust can be performed by use of normal dust filters on the pressure side without a danger of uncontrolled reactions. This allows for a simplified and less expensive installation of the vacuum pump. Possible accumulations of dust in the tubing on the exhaust side will not be reactive anymore and thus will be of no concern under the aspect of safety technology.
  • The supplied oxygen-containing gas can be fed into the vacuum pump device at a suitable site, e.g. into the pumping chamber at the entrance to the pump, at a site along the compression chamber, or at the pump exit.
  • Another aspect relates to a dry-sealed vacuum pump device comprising at least one driven compression member and a housing with pump entrance and pump exit. The vacuum pump is characterized in that the housing comprises at least one oxygen entrance provided with a throttle valve for regulating the cross section of the entrance.
  • Possible embodiments of a dry-sealed vacuum pump are the following: screw pumps, claw-type pumps, Roots pumps, turbo compressors, lateral-channel blowers, dry-sealed rotary-vane pumps, and others.
  • The vacuum pump device can comprise a sole vacuum pump, or a plurality of pumps connected in series and each forming a pump stage. The oxygen can also be introduced into a reaction chamber arranged between two pump stages. As a reaction chamber, use can be made also of a tube conduit.
  • According to a modified embodiment, temperature and pressure sensors are provided for monitoring the reaction in the vacuum pump device.
  • A method for cleansing the vacuum pump device and the feed conduits from dust can reside in that, after the end of the process, the supply of process gas is terminated while the supply of an oxygen-containing gas mixture, e.g. air, through the pump device is continued.
  • Finally, the oxygen required for oxidation can also be contained in the buffer gas of a shaft sealing. In this case, the oxygen will flow in dosed quantities from the shaft sealing into a pump chamber or into a conduit of the pump device.
  • The following is a detailed description of an embodiment of the invention with reference to the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic longitudinal sectional view through the compression chamber of a vacuum pump,
  • FIG. 2 is a sectional view taken along line II-II in FIG. 1, and
  • FIG. 3 is a schematic representation for illustrating the principle of the present invention.
  • DETAILED DESCRIPTION
  • According to FIG. 1, there is provided a vacuum pump in the form of a screw pump. Said pump comprises an elongate housing 10 supporting therein two screw rotors 12,14 for rotation in opposite senses. Each screw rotor comprises a helically configured tooth 16,18 with a pitch continuously decreasing from the pump entrance 20 to the pump exit 22, as can be seen in FIG. 1. Thereby, the working chamber, which in rotating rotors will be traveling in axial direction, is reduced in size from pump entrance 20 towards pump exit 22. Between the pump entrance and the pump exit, the compression chamber 24 is arranged.
  • Pump entrance 20 forms the pumping chamber which will be connected to the device that is to be evacuated. Into this pumping chamber, the process gas 38 will be sucked. The process gas contains particles 40 in the form of non-oxidized dust.
  • Pump entrance 20 is connected to an oxygen intake 26 which is laterally arranged on housing 10 and is provided with a throttle valve 28. Throttle valve 28 can be set to various throttle cross sections so as to regulate the oxygen supply. The oxygen can be pure oxygen or a component of a gas mixture, e.g. of air.
  • Within pump housing 10, the dust will undergo a controlled reaction with the supplied oxygen as soon as, during condensation, an oxygen partial pressure as required for reaction has been reached.
  • An alternative embodiment of the oxygen intake is designated by 26 a. Oxygen intake 26 a is located in the region of the mid-length of compression chamber 24, namely in the middle between the two mutually engaging helically shaped teeth 16,18.
  • A third alternative includes the oxygen intake 26 b arranged on pump exit 22.
  • At each of said oxygen intakes 26,26 a, due to the vacuum prevailing there, the oxygen and respectively the ambient air will be sucked in. The above oxygen intake 26 b, however, is located at the pump exit 22 where atmospheric pressure prevails. For this reason, a connected oxygen source must be subjected to overpressure. In any case, a throttle valve 28 is provided on the oxygen intake.
  • FIG. 3 is a schematic representation of the pump with the pump entrance 20 for suctional intake of the process gas 38. In this Figure, oxygen intake 26 is arranged at the suction connector of pump entrance 20.
  • In FIG. 3, the black sphere symbols represent the non-oxidized particles, and the hollow sphere symbols represent the oxidized particles. Oxidation takes place in compression chamber 24 in dependence on which intake among the oxygen intakes 26,26 a,26 b is in the opened state.
  • In FIG. 3, the shafts for rotating the screw rotors are designated by 30.
  • The invention has been described with reference to the preferred embodiments. Modifications and alterations may occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Claims (10)

1. A method for exhaustive reaction of self-igniting dust in a dry-sealed vacuum pump device, comprising:
during operation of the vacuum pump device, continuously supplying oxygen thereto in a dosed manner, whereby an oxidation of the dust is effected.
2. The method according to claim 1, wherein said supplying of oxygen takes place at at least one of an entrance of the vacuum pump device and in the feed lines of the vacuum pump device.
3. The method according to claim 1, wherein said supplying of oxygen takes place along a compression chamber of the vacuum pump device.
4. The method according to claim 1, wherein said supplying of oxygen takes place along or between at least two compression chambers.
5. The method according to claim 1, wherein the supplying of oxygen is performed at an exit or in exhaust lines of the vacuum pump device.
6. The method according to claim 1, wherein the supplying of oxygen is performed via a settable or controllable throttle valve.
7. The method according to claim 1, further including:
terminating supplying a process gas for condensation, and continuing the supplying of an oxygen-containing gas mixture, for cleaning the pump device and the supply lines from dust and for exhaustive reaction of the dust.
8. A dry-sealed vacuum pump device comprising:
at least one driven compression member; and
a housing with a pump entrance and a pump exit, one of said housing or a line connected thereto comprises at least one gas and respectively oxygen intake provided with a throttle valve for regulating an entrance cross-section.
9. The vacuum pump device of claim 8, further including:
at least one of temperature sensors and pressure sensors in a chamber in which dust is oxidized to monitor a dust oxidation reaction.
10. A method of reacting exhaust dust in a dry-sealed vacuum device, comprising:
with a dry-sealed vacuum device, sucking in a process gas with flammable dust;
introducing oxygen into the exhaust gas in or adjacent the dry-sealed vacuum device;
compressing the process gas with flammable dust and the oxygen in a compression chamber of the dry-sealed vacuum device;
oxidizing the flammable dust with the introduced oxygen in the dry-sealed vacuum device; and
discharging the process gas and oxidized dust.
US12/438,220 2006-08-23 2007-08-07 Method for reacting self-igniting dusts in a vacuum pump device Abandoned US20100086883A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200610039529 DE102006039529A1 (en) 2006-08-23 2006-08-23 A method of reacting auto-ignitable dusts in a vacuum pumping apparatus
DE102006039529.8 2006-08-23
PCT/EP2007/058199 WO2008022916A1 (en) 2006-08-23 2007-08-07 Method for reacting self-igniting dusts in a vacuum pump device

Publications (1)

Publication Number Publication Date
US20100086883A1 true US20100086883A1 (en) 2010-04-08

Family

ID=38792066

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/438,220 Abandoned US20100086883A1 (en) 2006-08-23 2007-08-07 Method for reacting self-igniting dusts in a vacuum pump device

Country Status (7)

Country Link
US (1) US20100086883A1 (en)
EP (1) EP2054626B1 (en)
JP (1) JP2010501766A (en)
CN (1) CN101535651B (en)
DE (1) DE102006039529A1 (en)
RU (1) RU2009110263A (en)
WO (1) WO2008022916A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231162A1 (en) * 2004-03-26 2007-10-04 Graeme Huntley Vacuum Pump
US20110232689A1 (en) * 2008-10-28 2011-09-29 Oerlikon Leybold Vacuum Gmbh Method for cleaning a vacuum pump
US11293435B2 (en) 2016-08-30 2022-04-05 Leybold Gmbh Vacuum pump screw rotors with symmetrical profiles on low pitch sections
US11300123B2 (en) 2016-08-30 2022-04-12 Leybold Gmbh Screw vacuum pump without internal cooling
US20220341423A1 (en) * 2019-10-07 2022-10-27 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007043350B3 (en) * 2007-09-12 2009-05-28 Oerlikon Leybold Vacuum Gmbh Vacuum pump and method for controlling a gas ballast supply to a vacuum pump
DE102008030788A1 (en) * 2008-06-28 2009-12-31 Oerlikon Leybold Vacuum Gmbh Method for cleaning vacuum pumps
DE102011005464B4 (en) * 2011-03-11 2014-07-17 Fmp Technology Gmbh Fluid Measurements & Projects Device for generating a negative pressure
JP6100038B2 (en) * 2013-03-14 2017-03-22 株式会社荏原製作所 Vacuum pump
DE102015118022A1 (en) * 2015-10-22 2017-04-27 Pfeiffer Vacuum Gmbh Rotationsverdrängervakuumpumpe
DE102015121143B4 (en) * 2015-12-04 2023-02-02 Pfeiffer Vacuum Gmbh Multi-shaft vacuum pump
JP7072417B2 (en) * 2018-03-27 2022-05-20 株式会社日立産機システム Screw compressor
CN108775286A (en) * 2018-08-03 2018-11-09 深圳市石金科技股份有限公司 A kind of cleaning device of dry vacuum pump
KR102119071B1 (en) * 2018-11-22 2020-06-04 (주)엘오티베큠 Vacuum pump for preventing abrasion

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919599A (en) * 1988-06-01 1990-04-24 Leybold Aktiengesellschaft Pumping system for a leak detecting device
US5672322A (en) * 1992-01-16 1997-09-30 Leybold Ag Method, dry multi-stage pump and plasmascrubber for converting reactive gases
US6224326B1 (en) * 1998-09-10 2001-05-01 Alcatel Method and apparatus for preventing deposits from forming in a turbomolecular pump having magnetic or gas bearings
US20030007910A1 (en) * 2001-06-22 2003-01-09 Stela Diamant Lazarovich Plasma treatment of processing gases
WO2004036047A1 (en) * 2002-10-14 2004-04-29 The Boc Group Plc Rotary piston vacuum pump with washing installation
US20050142000A1 (en) * 2003-12-01 2005-06-30 Alcatel Plasma-based gas treatment system integrated in a vacuum pump
WO2005093260A1 (en) * 2004-03-26 2005-10-06 The Boc Group Plc Vacuum pump
WO2007066141A1 (en) * 2005-12-09 2007-06-14 Edwards Limited Method of inhibiting a deflagration in a vacuum pump
US20080135066A1 (en) * 2004-12-22 2008-06-12 Christian Beyer Method For Cleaning a Vacuum Screw-Type Pump

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2835260A1 (en) * 1978-08-11 1980-02-14 Pfeiffer Vakuumtechnik Protection unit for vacuum pump in chemical vapour coating process - incorporating condenser followed by dust filter between vacuum chamber and pump
DD143172A1 (en) * 1979-05-17 1980-08-06 Rainer Moeller METHOD FOR PUMPING HIGH-REACTIVE OR TOXIC GAS OR DUST THROUGH SUSPENDED VACUUM PUMPS
JP3402039B2 (en) * 1995-12-25 2003-04-28 信越半導体株式会社 Single crystal manufacturing equipment
JP3603578B2 (en) * 1997-12-27 2004-12-22 信越半導体株式会社 Inert gas recovery equipment for single crystal pulling equipment
DE19854235A1 (en) * 1998-11-24 2000-05-25 Wacker Siltronic Halbleitermat Continuous combustible metallurgical dust passivation, especially in Czochralski silicon single crystal growth units, comprises controlled dust oxidation in off-gas stream
DE29904411U1 (en) * 1999-03-10 2000-07-20 Ghh Rand Schraubenkompressoren Screw compressor
JP2002316889A (en) * 2001-04-18 2002-10-31 Sumitomo Mitsubishi Silicon Corp Method for removing deposit in waste gas piping and single crystal puller
KR20060087599A (en) 2003-10-21 2006-08-02 나부테스코 가부시키가이샤 Rotary dry vacuum pump

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4919599A (en) * 1988-06-01 1990-04-24 Leybold Aktiengesellschaft Pumping system for a leak detecting device
US5672322A (en) * 1992-01-16 1997-09-30 Leybold Ag Method, dry multi-stage pump and plasmascrubber for converting reactive gases
US6224326B1 (en) * 1998-09-10 2001-05-01 Alcatel Method and apparatus for preventing deposits from forming in a turbomolecular pump having magnetic or gas bearings
US20030007910A1 (en) * 2001-06-22 2003-01-09 Stela Diamant Lazarovich Plasma treatment of processing gases
WO2004036047A1 (en) * 2002-10-14 2004-04-29 The Boc Group Plc Rotary piston vacuum pump with washing installation
US20050142000A1 (en) * 2003-12-01 2005-06-30 Alcatel Plasma-based gas treatment system integrated in a vacuum pump
WO2005093260A1 (en) * 2004-03-26 2005-10-06 The Boc Group Plc Vacuum pump
US7819635B2 (en) * 2004-03-26 2010-10-26 Edwards Limited Vacuum pump with a continuous ignition source
US20080135066A1 (en) * 2004-12-22 2008-06-12 Christian Beyer Method For Cleaning a Vacuum Screw-Type Pump
WO2007066141A1 (en) * 2005-12-09 2007-06-14 Edwards Limited Method of inhibiting a deflagration in a vacuum pump

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231162A1 (en) * 2004-03-26 2007-10-04 Graeme Huntley Vacuum Pump
US7819635B2 (en) * 2004-03-26 2010-10-26 Edwards Limited Vacuum pump with a continuous ignition source
US20110232689A1 (en) * 2008-10-28 2011-09-29 Oerlikon Leybold Vacuum Gmbh Method for cleaning a vacuum pump
US11293435B2 (en) 2016-08-30 2022-04-05 Leybold Gmbh Vacuum pump screw rotors with symmetrical profiles on low pitch sections
US11300123B2 (en) 2016-08-30 2022-04-12 Leybold Gmbh Screw vacuum pump without internal cooling
US20220341423A1 (en) * 2019-10-07 2022-10-27 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor
US11933300B2 (en) * 2019-10-07 2024-03-19 Hitachi Industrial Equipment Systems Co., Ltd. Screw compressor having a screw rotor whose pitch changes in an axial direction from a suction end surface toward a discharge end surface

Also Published As

Publication number Publication date
JP2010501766A (en) 2010-01-21
EP2054626B1 (en) 2012-12-05
RU2009110263A (en) 2010-09-27
CN101535651A (en) 2009-09-16
DE102006039529A1 (en) 2008-03-06
CN101535651B (en) 2014-05-14
EP2054626A1 (en) 2009-05-06
WO2008022916A1 (en) 2008-02-28

Similar Documents

Publication Publication Date Title
US20100086883A1 (en) Method for reacting self-igniting dusts in a vacuum pump device
US4797068A (en) Vacuum evacuation system
EP1866076B1 (en) Method and apparatus of treating a gas stream
KR100730073B1 (en) Evacuating apparatus
JP2001289192A (en) Seal assembly
CN1991182A (en) Turbo compressor
JP2619468B2 (en) Oil-free screw fluid machine
KR20030071585A (en) Vacuum Exhausting Apparatus
US5413467A (en) Oil-free type screw compressor device
EP0389036A1 (en) Screw compressor and method of operation thereof
JP5717751B2 (en) Corrosion-resistant shaft seal device for vacuum pumps
EP1234982B1 (en) Vacuum pump
EP1990543A1 (en) Dry vacuum pump
GB2440542A (en) Vacuum pump gearbox purge gas arrangement
JP2005171766A (en) Dry pump and operating method of dry pump
CN103620230B (en) Turbocompressor
JP5242968B2 (en) Screw compressor for extremely high operating pressure
JP3085539U (en) Shaft seal structure of vacuum pump
JP4679119B2 (en) Shaft sealed dust-proof structure of turbo molecular pump
CN115803527A (en) Vacuum line and method for controlling a vacuum line
US6672828B2 (en) Vacuum pump
JP4111763B2 (en) Vertical screw vacuum pump
CN218493804U (en) Oil-free screw rod host and all-in-one machine
CN220015494U (en) Constant oxygen supply type vortex air compressor
KR20040107230A (en) Gas-leakage reduction structure of centrifugal compressor

Legal Events

Date Code Title Description
AS Assignment

Owner name: OERLIKON LEYBOLD VACUUM GMBH,GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZOLLIG, UWE;DREIFERT, THOMAS;REEL/FRAME:023361/0067

Effective date: 20090306

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION