US20100043337A1 - Spacer for concrete reinforcement wire - Google Patents

Spacer for concrete reinforcement wire Download PDF

Info

Publication number
US20100043337A1
US20100043337A1 US12/195,595 US19559508A US2010043337A1 US 20100043337 A1 US20100043337 A1 US 20100043337A1 US 19559508 A US19559508 A US 19559508A US 2010043337 A1 US2010043337 A1 US 2010043337A1
Authority
US
United States
Prior art keywords
spacer
wire
base
body portion
triangular body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/195,595
Inventor
Robert S. Banks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
STRIKE TOOL Inc
Stike Tool Inc
Original Assignee
Stike Tool Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stike Tool Inc filed Critical Stike Tool Inc
Priority to US12/195,595 priority Critical patent/US20100043337A1/en
Assigned to STRIKE TOOL, INC. reassignment STRIKE TOOL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BANKS, ROBERT S.
Publication of US20100043337A1 publication Critical patent/US20100043337A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/168Spacers connecting parts for reinforcements and spacing the reinforcements from the form
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/162Connectors or means for connecting parts for reinforcements
    • E04C5/166Connectors or means for connecting parts for reinforcements the reinforcements running in different directions
    • E04C5/167Connection by means of clips or other resilient elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/16Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups
    • E04C5/20Auxiliary parts for reinforcements, e.g. connectors, spacers, stirrups of material other than metal or with only additional metal parts, e.g. concrete or plastics spacers with metal binding wires
    • E04C5/208Spacers especially adapted for cylindrical reinforcing cages

Definitions

  • Reinforcement wire enhances the strength and integrity of a concrete structure.
  • reinforcement wire is configured into a grid or mesh that is placed within a concrete form. In such cases, the intersections of wires of the mesh may be welded together. If the concrete form is in the shape of a cylinder, the mesh may have a continuous horizontal member wound in a helical configuration and welded to vertical members.
  • spacer devices have been used to hold reinforcement wire meshes in place. Some spacers hold the reinforcement wire mesh a specified distance above the ground; these typically have a large ground contact area to form a stable base for holding the reinforcement wire mesh. Other spacers are used for horizontally positioning a reinforcement wire mesh away from form walls. In this case, a large contact area with the form wall will undesirably leave a large area of the spacer exposed when the mold is removed. The concrete is thereby prevented from filling in the volume against the mold wall in the space occupied by the spacer. Thus, a small footprint of the spacers at the mold is desirable so that the edge of the poured concrete has more concrete on the outer surface for greater strength and a better appearance.
  • a spacer that connects to a reinforcement wire mesh at an intersection of a first wire and a second wire includes a first triangular body portion and a second triangular body portion, wherein the second triangular body portion is orthogonal to and bisects the first triangular body portion.
  • the first triangular body portion includes a first apex, a first base, and a notch on each side of the first triangular body portion proximate each end of the first base, each notch allowing a respective end of the first base to flex toward the first apex.
  • the second triangular body portion includes a second apex, a second base, and a clip extending from each end of the second base, each clip configured to surround the second wire.
  • FIG. 1 is a partial perspective view of a two-piece cylindrical concrete form with a reinforcement mesh positioned between the two pieces and a plurality of spacers in accordance with an exemplary embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view of a spacer of FIG. 1 .
  • FIG. 3 is a perspective view of the spacer of FIG. 2 , viewed from the opposite side of the reinforcement mesh.
  • FIG. 4 is an enlarged perspective view of the spacer of FIG. 2 , detached from the reinforcement mesh.
  • FIG. 5 is an elevational view of the spacer of FIG. 4 , showing a flexing capability of the spacer.
  • FIG. 6 is an enlarged perspective view of a second exemplary embodiment of a spacer.
  • FIG. 7 is an elevational view of the spacer of FIG. 6 .
  • FIG. 8 is an enlarged perspective view of a third exemplary embodiment of a spacer.
  • FIG. 9 is an elevational view of the spacer of FIG. 8 .
  • pyramid-shaped spacers 16 are attached to a cylinder of reinforcement wire mesh 14 to space the mesh cylinder from a wall of exterior form 18 .
  • a notch (shown as notch 44 in FIG. 5 ) is disposed on each side of spacer 16 to allow pads 32 to flex toward tip 36 so that spacer 16 can accommodate reinforcement wire mesh cylinders of different, particularly larger, diameters.
  • Notches 44 may be integrally molded into spacer 16 or cut out of spacer 16 by a tool such as a rotating cutting tool.
  • FIG. 1 is a partial perspective view of a two-piece cylindrical concrete form with a reinforcement mesh positioned between the two pieces and a plurality of spacers in accordance with an exemplary embodiment of the present invention.
  • a concrete form 10 For pouring a cylindrical concrete structure, a concrete form 10 with two parts is generally used. Interior form 12 is shown in broken lines so as to not obstruct the view of reinforcement mesh 14 and spacers 16 . Reinforcement mesh 14 and exterior form 18 are shown in partial views for clarity.
  • reinforcement mesh 14 Before pouring concrete into space 20 between interior form 12 and exterior form 18 , reinforcement mesh 14 is placed into space 20 and remains encased within the cured concrete. It is desirable to prevent shifting of reinforcement mesh 14 within space 20 so that reinforcement mesh 14 will remain in the proper position within the formed cylindrical concrete structure.
  • a plurality of spacers 16 is used in an exemplary method to maintain the spacing between reinforcement mesh and exterior form 18 .
  • an effective height of spacer 16 results in a uniform spacing 22 between reinforcement mesh 14 and exterior form 18 .
  • distance 22 is from about 0.75 inch to about 2.0 inches, although other spacer sizes may also be used.
  • FIG. 2 is an enlarged perspective view of a spacer 16 attached to an intersection of reinforcement mesh 14 .
  • Intersection 24 is formed at the joints of vertical wire 26 and horizontal wire 28 .
  • spacer 16 is attached by clips 30 onto vertical wire 26 .
  • each clip 30 is “C”-shaped and attaches to surround vertical wire 26 .
  • spacer 16 is formed of a lightweight, non-corrosive, resilient and durable material such as a plastic. The resilient characteristics of the material and the C-shaped configuration allow each clip 30 to securely attach to vertical wire 26 . Thus, clips 30 prevent spacer 16 from becoming dislodged from reinforcement wire mesh 14 during impacts received during the concrete pouring process.
  • a pad 32 extends from each end of first base 52 (shown in FIG. 4 ) and is configured to contact horizontal wire 28 .
  • each pad 32 includes two pins 34 .
  • Pins 34 surround horizontal wire 28 , thereby preventing excess vertical movement of spacer 16 .
  • spacer 16 is symmetrical so that it can also be used upside-down compared to the illustrated view.
  • FIG. 3 is a perspective view of the spacer 16 of FIG. 2 , viewed from the opposite side of reinforcement mesh 14 .
  • each spacer 16 has a pyramid shape with a pointed tip 36 for contacting the exterior form wall 18 , thus leaving a small footprint on the outer portion of the poured concrete.
  • tip 36 is slightly rounded or blunted so as to prevent damage or injury from contact therewith.
  • each spacer 16 has a wide base 38 with the clips 30 for engaging reinforcement wire mesh 14 spaced at the ends of the base 38 and extending therefrom. This configuration provides stability against twisting forces encountered by spacer 16 when concrete is poured into form 10 .
  • Spacer 16 also has a pair of pads 32 for engaging a perpendicularly crossing reinforcement wire 28 to stably hold the spacer 16 on reinforcement wire mesh 14 . While a contemplated design may include additional clips 30 in place of pads 32 , having only one pair of clips 30 makes it easier and faster to install spacers 16 onto reinforcement wire mesh 14 .
  • spacer 16 has four anti-sliding pins 34 . This prevents spacer 16 from twisting or turning on the reinforcement wire mesh 14 . Because spacers 16 remain consistently aligned, variations in spacing distance 22 between reinforcement wire mesh 14 and exterior form 18 are prevented.
  • a notch (shown as notch 44 in FIG. 5 ) is disposed on each side of spacer 16 to allow pads 32 to flex toward tip 36 so that spacer 16 can accommodate reinforcement wire mesh cylinders of different, particularly larger, diameters.
  • Notches 44 may be integrally molded into spacer 16 or cut out of spacer 16 by a tool such as a rotating cutting tool.
  • the notch acts as a flex point.
  • a notch is shown, other configurations that include a flex point are within the scope of this invention.
  • the flex point could be a narrower section sufficiently narrow to permit flexing between the body 46 and the pads 32 .
  • FIG. 4 is an enlarged perspective view of the spacer 16 of FIG. 2 , detached from reinforcement mesh 14 .
  • surfaces 40 of base 38 contact vertical wire 26 .
  • Base 38 includes recess 42 , which allows horizontal wire 28 to pass through a bottom portion of base 38 .
  • the anti-sliding pins form passages 33 which are aligned with recess 42 as indicated by common axis 35 .
  • FIG. 5 is an elevation view of the spacer 16 of FIG. 4 .
  • Spacer 16 is formed from first triangular body portion 46 and second triangular body portion 48 .
  • Second triangular body portion 48 is orthogonal to and bisects first triangular body portion 46 .
  • First triangular body portion 46 includes first apex 50 and first base 52 .
  • Second triangular body portion 48 includes second apex 54 and base 38 .
  • a notch 44 is disposed on each side of the first triangular body 46 proximate each end of first base 52 .
  • Notches 44 may be integrally molded into spacer 16 or cut out of spacer 16 by a tool such as a rotating cutting tool.
  • Each notch 44 allows a respective end of first base 52 to flex toward first apex 50 , as shown in FIG. 5 .
  • This flexing allows spacer 16 to accommodate reinforcement wire mesh cylinders of different, particularly larger, diameters.
  • different embodiments of spacer 16 may be provided for different gauges of vertical and horizontal wires 26 , 28 . These embodiments may have clips 30 and pads 32 /anti-sliding pins 34 of different sizes or configurations to accommodate different wire thicknesses.
  • FIGS. 6 and 7 show perspective and elevational views, respectively, of a second exemplary spacer 116 , having parts similarly numbered.
  • Notches 144 allow pads 132 to flex, thereby accommodating reinforcement mesh cylinders of different diameters. Compared to notches 44 (in FIG. 5 , for example), notches 144 have a more linear shape. This can be achieved by using a rotating cutting tool with a smaller bit, for example.
  • FIGS. 8 and 9 show perspective and elevational views, respectively, of a third exemplary spacer 216 , having parts similarly numbered.
  • Notches 244 allow pads 232 to flex, thereby accommodating reinforcement mesh cylinders of different diameters.
  • notches 244 are formed as indentations rather than as cut-out regions.
  • notches 244 are integrally molded into spacer 216 , thereby eliminating the need for a step of cutting out notch 244 from body portion 246 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Reinforcement Elements For Buildings (AREA)

Abstract

A spacer that connects to a reinforcement wire mesh at an intersection of a first wire and a second wire includes a first triangular body portion and a second triangular body portion, wherein the second triangular body portion is orthogonal to and bisects the first triangular body portion. The first triangular body portion includes a first apex, a first base, and a notch on each side of the first triangular body portion proximate each end of the first base, each notch allowing a respective end of the first base to flex toward the first apex. The second triangular body portion includes a second apex, a second base, and a clip extending from each end of the second base, each clip configured to surround the second wire.

Description

    BACKGROUND OF THE INVENTION
  • Reinforcement wire enhances the strength and integrity of a concrete structure. In some cases, reinforcement wire is configured into a grid or mesh that is placed within a concrete form. In such cases, the intersections of wires of the mesh may be welded together. If the concrete form is in the shape of a cylinder, the mesh may have a continuous horizontal member wound in a helical configuration and welded to vertical members.
  • It is important to keep the reinforcement wire in a selected position relative to the form. A variety of spacer devices have been used to hold reinforcement wire meshes in place. Some spacers hold the reinforcement wire mesh a specified distance above the ground; these typically have a large ground contact area to form a stable base for holding the reinforcement wire mesh. Other spacers are used for horizontally positioning a reinforcement wire mesh away from form walls. In this case, a large contact area with the form wall will undesirably leave a large area of the spacer exposed when the mold is removed. The concrete is thereby prevented from filling in the volume against the mold wall in the space occupied by the spacer. Thus, a small footprint of the spacers at the mold is desirable so that the edge of the poured concrete has more concrete on the outer surface for greater strength and a better appearance.
  • SUMMARY OF THE INVENTION
  • A spacer that connects to a reinforcement wire mesh at an intersection of a first wire and a second wire includes a first triangular body portion and a second triangular body portion, wherein the second triangular body portion is orthogonal to and bisects the first triangular body portion. The first triangular body portion includes a first apex, a first base, and a notch on each side of the first triangular body portion proximate each end of the first base, each notch allowing a respective end of the first base to flex toward the first apex. The second triangular body portion includes a second apex, a second base, and a clip extending from each end of the second base, each clip configured to surround the second wire.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a partial perspective view of a two-piece cylindrical concrete form with a reinforcement mesh positioned between the two pieces and a plurality of spacers in accordance with an exemplary embodiment of the present invention.
  • FIG. 2 is an enlarged perspective view of a spacer of FIG. 1.
  • FIG. 3 is a perspective view of the spacer of FIG. 2, viewed from the opposite side of the reinforcement mesh.
  • FIG. 4 is an enlarged perspective view of the spacer of FIG. 2, detached from the reinforcement mesh.
  • FIG. 5 is an elevational view of the spacer of FIG. 4, showing a flexing capability of the spacer.
  • FIG. 6 is an enlarged perspective view of a second exemplary embodiment of a spacer.
  • FIG. 7 is an elevational view of the spacer of FIG. 6.
  • FIG. 8 is an enlarged perspective view of a third exemplary embodiment of a spacer.
  • FIG. 9 is an elevational view of the spacer of FIG. 8.
  • The drawing figures may not be drawn to scale. Moreover, where directional terms such as above, below, left, right, top, bottom, etc. are used, the terms are supplied for descriptive purposes only. It is to be understood that the described components may be oriented otherwise.
  • DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS
  • As shown in FIGS. 1-3, pyramid-shaped spacers 16 are attached to a cylinder of reinforcement wire mesh 14 to space the mesh cylinder from a wall of exterior form 18. A notch (shown as notch 44 in FIG. 5) is disposed on each side of spacer 16 to allow pads 32 to flex toward tip 36 so that spacer 16 can accommodate reinforcement wire mesh cylinders of different, particularly larger, diameters. Notches 44 may be integrally molded into spacer 16 or cut out of spacer 16 by a tool such as a rotating cutting tool.
  • FIG. 1 is a partial perspective view of a two-piece cylindrical concrete form with a reinforcement mesh positioned between the two pieces and a plurality of spacers in accordance with an exemplary embodiment of the present invention. For pouring a cylindrical concrete structure, a concrete form 10 with two parts is generally used. Interior form 12 is shown in broken lines so as to not obstruct the view of reinforcement mesh 14 and spacers 16. Reinforcement mesh 14 and exterior form 18 are shown in partial views for clarity.
  • Before pouring concrete into space 20 between interior form 12 and exterior form 18, reinforcement mesh 14 is placed into space 20 and remains encased within the cured concrete. It is desirable to prevent shifting of reinforcement mesh 14 within space 20 so that reinforcement mesh 14 will remain in the proper position within the formed cylindrical concrete structure. A plurality of spacers 16 is used in an exemplary method to maintain the spacing between reinforcement mesh and exterior form 18. In an exemplary embodiment, an effective height of spacer 16 results in a uniform spacing 22 between reinforcement mesh 14 and exterior form 18. In one embodiment, distance 22 is from about 0.75 inch to about 2.0 inches, although other spacer sizes may also be used.
  • FIG. 2 is an enlarged perspective view of a spacer 16 attached to an intersection of reinforcement mesh 14. Intersection 24 is formed at the joints of vertical wire 26 and horizontal wire 28. In an exemplary embodiment, spacer 16 is attached by clips 30 onto vertical wire 26. In an exemplary embodiment, each clip 30 is “C”-shaped and attaches to surround vertical wire 26. In an exemplary embodiment, spacer 16 is formed of a lightweight, non-corrosive, resilient and durable material such as a plastic. The resilient characteristics of the material and the C-shaped configuration allow each clip 30 to securely attach to vertical wire 26. Thus, clips 30 prevent spacer 16 from becoming dislodged from reinforcement wire mesh 14 during impacts received during the concrete pouring process.
  • A pad 32 extends from each end of first base 52 (shown in FIG. 4) and is configured to contact horizontal wire 28. In the illustrated embodiment, each pad 32 includes two pins 34. Pins 34 surround horizontal wire 28, thereby preventing excess vertical movement of spacer 16. In an exemplary embodiment, spacer 16 is symmetrical so that it can also be used upside-down compared to the illustrated view.
  • FIG. 3 is a perspective view of the spacer 16 of FIG. 2, viewed from the opposite side of reinforcement mesh 14. In an exemplary embodiment, each spacer 16 has a pyramid shape with a pointed tip 36 for contacting the exterior form wall 18, thus leaving a small footprint on the outer portion of the poured concrete. In an exemplary embodiment, tip 36 is slightly rounded or blunted so as to prevent damage or injury from contact therewith.
  • In an exemplary embodiment, each spacer 16 has a wide base 38 with the clips 30 for engaging reinforcement wire mesh 14 spaced at the ends of the base 38 and extending therefrom. This configuration provides stability against twisting forces encountered by spacer 16 when concrete is poured into form 10. Spacer 16 also has a pair of pads 32 for engaging a perpendicularly crossing reinforcement wire 28 to stably hold the spacer 16 on reinforcement wire mesh 14. While a contemplated design may include additional clips 30 in place of pads 32, having only one pair of clips 30 makes it easier and faster to install spacers 16 onto reinforcement wire mesh 14.
  • In an exemplary embodiment, spacer 16 has four anti-sliding pins 34. This prevents spacer 16 from twisting or turning on the reinforcement wire mesh 14. Because spacers 16 remain consistently aligned, variations in spacing distance 22 between reinforcement wire mesh 14 and exterior form 18 are prevented.
  • A notch (shown as notch 44 in FIG. 5) is disposed on each side of spacer 16 to allow pads 32 to flex toward tip 36 so that spacer 16 can accommodate reinforcement wire mesh cylinders of different, particularly larger, diameters. Notches 44 may be integrally molded into spacer 16 or cut out of spacer 16 by a tool such as a rotating cutting tool.
  • The notch acts as a flex point. Although a notch is shown, other configurations that include a flex point are within the scope of this invention. For example, instead of a notch the flex point could be a narrower section sufficiently narrow to permit flexing between the body 46 and the pads 32.
  • FIG. 4 is an enlarged perspective view of the spacer 16 of FIG. 2, detached from reinforcement mesh 14. When spacer 16 is attached to reinforcement mesh 14 at intersection 24, surfaces 40 of base 38 contact vertical wire 26. Base 38 includes recess 42, which allows horizontal wire 28 to pass through a bottom portion of base 38. As best illustrated in FIG. 4, the anti-sliding pins form passages 33 which are aligned with recess 42 as indicated by common axis 35.
  • FIG. 5 is an elevation view of the spacer 16 of FIG. 4. Spacer 16 is formed from first triangular body portion 46 and second triangular body portion 48. Second triangular body portion 48 is orthogonal to and bisects first triangular body portion 46. First triangular body portion 46 includes first apex 50 and first base 52. Second triangular body portion 48 includes second apex 54 and base 38.
  • A notch 44 is disposed on each side of the first triangular body 46 proximate each end of first base 52. Notches 44 may be integrally molded into spacer 16 or cut out of spacer 16 by a tool such as a rotating cutting tool. Each notch 44 allows a respective end of first base 52 to flex toward first apex 50, as shown in FIG. 5. This flexing allows spacer 16 to accommodate reinforcement wire mesh cylinders of different, particularly larger, diameters. Moreover, different embodiments of spacer 16 may be provided for different gauges of vertical and horizontal wires 26, 28. These embodiments may have clips 30 and pads 32/anti-sliding pins 34 of different sizes or configurations to accommodate different wire thicknesses.
  • FIGS. 6 and 7 show perspective and elevational views, respectively, of a second exemplary spacer 116, having parts similarly numbered. Notches 144 allow pads 132 to flex, thereby accommodating reinforcement mesh cylinders of different diameters. Compared to notches 44 (in FIG. 5, for example), notches 144 have a more linear shape. This can be achieved by using a rotating cutting tool with a smaller bit, for example.
  • FIGS. 8 and 9 show perspective and elevational views, respectively, of a third exemplary spacer 216, having parts similarly numbered. Notches 244 allow pads 232 to flex, thereby accommodating reinforcement mesh cylinders of different diameters. Compared to notches 44 (in FIG. 5, for example) and notches 144 (in FIG. 7, for example), notches 244 are formed as indentations rather than as cut-out regions. In an exemplary embodiment, notches 244 are integrally molded into spacer 216, thereby eliminating the need for a step of cutting out notch 244 from body portion 246.
  • Although the disclosure refers to exemplary embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention.

Claims (12)

1. A spacer that connects to a reinforcement wire mesh at an intersection of a first wire and a second wire, the spacer comprising:
a first triangular body portion comprising:
a first apex;
a first base; and
a flex point positioned on each side of the first triangular body portion proximate each end of the first base, each flex point allowing a respective end of the first base to flex; and
a second triangular body portion comprising:
a second apex;
a second base; and
a clip extending from each end of the second base, each clip configured to surround the second wire;
wherein the second triangular body portion is orthogonal to and bisects the first triangular body portion.
2. The spacer of claim 1 further comprising a pad extending from each end of the first base, each pad configured to contact the first wire.
3. The spacer of claim 2 further comprising a pin extending from each end of each pad, wherein the two pins on each pad are positioned to surround the first wire.
4. The spacer of claim 1 wherein each clip is “C”-shaped.
5. The spacer of claim 1 wherein the second base comprises a recess through which the first wire passes.
6. The spacer of claim 1 comprising a plastic material.
7. The spacer of claim 1 wherein a surface of the second base contacts the second wire when each clip surrounds the second wire.
8. The spacer of claim 1 wherein the flex point is a notch.
9. The spacer of claim 3 and further comprising a recess through which the first wire passes wherein the recess is aligned with a space defined by the two pins on each pad.
10. A spacer that connects to a reinforcement wire mesh at an intersection of a first wire and a second wire, the spacer comprising:
a first plastic triangular body portion comprising:
a first apex;
a first base;
a flex point on each side of the first triangular body portion proximate each end of the first base, each flex point allowing a respective end of the first base to flex toward the first apex;
a pad extending from each end of the first base, each pad configured to contact the first wire; and
a pin extending from each end of each pad, wherein the two pins on each pad are positioned to surround the first wire; and
a second plastic triangular body portion comprising:
a second apex;
a second base comprising a recess through which the first wire passes; and
a “C”-shaped clip extending from each end of the second base, each clip configured to surround the second wire, wherein a surface of the second base contacts the second wire when each clip surrounds the second wire;
wherein the second triangular body portion is orthogonal to and bisects the first triangular body portion.
11. The spacer of claim 10 wherein the flex point is a notch.
12. The spacer of claim 10 wherein the recess is aligned along a common access with a passageways defined by the two pins on each pad, the two pins being spaced apart.
US12/195,595 2008-08-21 2008-08-21 Spacer for concrete reinforcement wire Abandoned US20100043337A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/195,595 US20100043337A1 (en) 2008-08-21 2008-08-21 Spacer for concrete reinforcement wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/195,595 US20100043337A1 (en) 2008-08-21 2008-08-21 Spacer for concrete reinforcement wire

Publications (1)

Publication Number Publication Date
US20100043337A1 true US20100043337A1 (en) 2010-02-25

Family

ID=41695029

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/195,595 Abandoned US20100043337A1 (en) 2008-08-21 2008-08-21 Spacer for concrete reinforcement wire

Country Status (1)

Country Link
US (1) US20100043337A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150167303A1 (en) * 2013-12-13 2015-06-18 Joel Foderberg Tie system for insulated concrete panels
US20160123501A1 (en) * 2014-11-03 2016-05-05 Sidney E. Francies, III Dovetail cable clip
US9493946B2 (en) 2013-12-13 2016-11-15 Iconx, Llc Tie system for insulated concrete panels
US10011988B2 (en) 2016-05-11 2018-07-03 Joel Foderberg System for insulated concrete composite wall panels
US20190338524A1 (en) * 2018-05-07 2019-11-07 Peter W. Gavin Clipping apparatus for connection of rebar
US20220186510A1 (en) * 2020-12-14 2022-06-16 Korea Institute Of Civil Engineering And Building Technology Concrete structure strengthened using grid reinforcement material and non-shrink grout and method of strengthening the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030033761A1 (en) * 1998-01-30 2003-02-20 Boone Bradley P. Multi-sheet glazing unit and method of making same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030033761A1 (en) * 1998-01-30 2003-02-20 Boone Bradley P. Multi-sheet glazing unit and method of making same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10167633B2 (en) 2013-12-13 2019-01-01 Iconx, Llc Tie system for insulated concrete panels
US9103119B2 (en) * 2013-12-13 2015-08-11 Joel Foderberg Tie system for insulated concrete panels
US10704260B2 (en) 2013-12-13 2020-07-07 Iconx, Llc Tie system for insulated concrete panels
US9493946B2 (en) 2013-12-13 2016-11-15 Iconx, Llc Tie system for insulated concrete panels
US20150167303A1 (en) * 2013-12-13 2015-06-18 Joel Foderberg Tie system for insulated concrete panels
US9638353B2 (en) * 2014-11-03 2017-05-02 A.L. Patterson, Inc. Clip for supporting a prestressed cable along a dovetail slot in a cement casting
US20160123501A1 (en) * 2014-11-03 2016-05-05 Sidney E. Francies, III Dovetail cable clip
US10011988B2 (en) 2016-05-11 2018-07-03 Joel Foderberg System for insulated concrete composite wall panels
US10309105B2 (en) 2016-05-11 2019-06-04 Joel Foderberg System for insulated concrete composite wall panels
US10844600B2 (en) 2016-05-11 2020-11-24 Joel Foderberg System for insulated concrete composite wall panels
US20190338524A1 (en) * 2018-05-07 2019-11-07 Peter W. Gavin Clipping apparatus for connection of rebar
US10934713B2 (en) * 2018-05-07 2021-03-02 Polylok, Inc. Clipping apparatus for connection of rebar
US20220186510A1 (en) * 2020-12-14 2022-06-16 Korea Institute Of Civil Engineering And Building Technology Concrete structure strengthened using grid reinforcement material and non-shrink grout and method of strengthening the same
US11773610B2 (en) * 2020-12-14 2023-10-03 Korea Institute Of Civil Engineering And Building Technology Concrete structure strengthened using grid reinforcement material and non-shrink grout and method of strengthening the same

Similar Documents

Publication Publication Date Title
US20100043337A1 (en) Spacer for concrete reinforcement wire
CA2471269C (en) Electrical box support
JP6553209B2 (en) Steel pipe support frame and steel pipe support device
EP2582894B1 (en) Rebar clip for joining different size bars
US6779312B2 (en) Anchoring device
US20040088942A1 (en) Cage spacer
US7051392B2 (en) Handle multi-purpose tool
JP2017031789A (en) Top edge level controller
KR200441158Y1 (en) Band Cable of Stud Type
KR102289730B1 (en) Leveling rod for concrete pouring
US20140331592A1 (en) Rebar securing device
KR101696070B1 (en) Deak plate spacer
JP6441605B2 (en) Auxiliary tool
JP6243630B2 (en) Reinforced concrete construction spacer
WO2019191844A1 (en) Hanging device with resiliently deformable section
JP2018080495A (en) Anchor fixture
KR200492683Y1 (en) Duct
JP6682245B2 (en) Anchor bolt positioning ruler and its mounting method
US20110214380A1 (en) Reinforcement bar positioning system
AU2011100196A4 (en) Support for reinforcement
US10934713B2 (en) Clipping apparatus for connection of rebar
JP3940406B2 (en) Rebar spacer
JP2005200940A (en) Spacer for reinforcement
JP4520220B2 (en) Reinforced concrete spacer
EP1753107B1 (en) Clamping piece

Legal Events

Date Code Title Description
AS Assignment

Owner name: STRIKE TOOL, INC.,MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BANKS, ROBERT S.;REEL/FRAME:021422/0244

Effective date: 20080820

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION