US20100016383A1 - 4-(3,3-dihalo-allyloxy)phenol derivatives having pesticidal properties - Google Patents
4-(3,3-dihalo-allyloxy)phenol derivatives having pesticidal properties Download PDFInfo
- Publication number
- US20100016383A1 US20100016383A1 US12/564,995 US56499509A US2010016383A1 US 20100016383 A1 US20100016383 A1 US 20100016383A1 US 56499509 A US56499509 A US 56499509A US 2010016383 A1 US2010016383 A1 US 2010016383A1
- Authority
- US
- United States
- Prior art keywords
- spp
- alkyl
- compound
- cycloalkyl
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 CC.CC.CCC.[1*]C1=C(CC[W]C[3H]CC)C([2*])=CC([Y]CC=C(C)C)=C1.[2H]1=CC=CC=C1 Chemical compound CC.CC.CCC.[1*]C1=C(CC[W]C[3H]CC)C([2*])=CC([Y]CC=C(C)C)=C1.[2H]1=CC=CC=C1 0.000 description 45
- OBSLLHNATPQFMJ-UHFFFAOYSA-N CC1=CSC(C)=N1 Chemical compound CC1=CSC(C)=N1 OBSLLHNATPQFMJ-UHFFFAOYSA-N 0.000 description 4
- HNJOAIYFUCQZAA-UHFFFAOYSA-N CC1=NOC(C)=N1 Chemical compound CC1=NOC(C)=N1 HNJOAIYFUCQZAA-UHFFFAOYSA-N 0.000 description 3
- SAYWSRBCOUSIFU-ZWGKIWOBSA-N CC.CC.CCC.[2H]1=CC=CC=C1 Chemical compound CC.CC.CCC.[2H]1=CC=CC=C1 SAYWSRBCOUSIFU-ZWGKIWOBSA-N 0.000 description 2
- BOLUTFLCJITYBW-UHFFFAOYSA-N CC1=CSC(C2=CC=C(Cl)C=C2)=N1 Chemical compound CC1=CSC(C2=CC=C(Cl)C=C2)=N1 BOLUTFLCJITYBW-UHFFFAOYSA-N 0.000 description 2
- BAMPVSWRQZNDQC-UHFFFAOYSA-N CC1=NC(C)=C(C)S1 Chemical compound CC1=NC(C)=C(C)S1 BAMPVSWRQZNDQC-UHFFFAOYSA-N 0.000 description 2
- ZXQWSYDWLBEQBS-UHFFFAOYSA-N CC1=NN(C)C(C(F)(F)F)=C1 Chemical compound CC1=NN(C)C(C(F)(F)F)=C1 ZXQWSYDWLBEQBS-UHFFFAOYSA-N 0.000 description 2
- JEEOZKGYSUUAAU-UHFFFAOYSA-N CCC1=CSC(C)=N1 Chemical compound CCC1=CSC(C)=N1 JEEOZKGYSUUAAU-UHFFFAOYSA-N 0.000 description 2
- VEOBELAUIVEIRB-UHFFFAOYSA-N CCC1=NC(C)=NO1 Chemical compound CCC1=NC(C)=NO1 VEOBELAUIVEIRB-UHFFFAOYSA-N 0.000 description 2
- HOJVLDSGRUPRMU-UHFFFAOYSA-N CCC1=NOC(CC)=N1 Chemical compound CCC1=NOC(CC)=N1 HOJVLDSGRUPRMU-UHFFFAOYSA-N 0.000 description 2
- FKNJDCSKTSRSSW-UHFFFAOYSA-N CCOC(=O)C1=C(C(F)(F)F)N=C(C)S1 Chemical compound CCOC(=O)C1=C(C(F)(F)F)N=C(C)S1 FKNJDCSKTSRSSW-UHFFFAOYSA-N 0.000 description 2
- PNNRZXFUPQQZSO-UHFFFAOYSA-N [CH]1OC=CC=C1 Chemical compound [CH]1OC=CC=C1 PNNRZXFUPQQZSO-UHFFFAOYSA-N 0.000 description 2
- KYRMPMCAOPMOIR-UHFFFAOYSA-N [H]N1N=NC(CC)=N1 Chemical compound [H]N1N=NC(CC)=N1 KYRMPMCAOPMOIR-UHFFFAOYSA-N 0.000 description 2
- GGCLDHIQBAGLGR-UHFFFAOYSA-N C=CCSC1=NN=NN1C Chemical compound C=CCSC1=NN=NN1C GGCLDHIQBAGLGR-UHFFFAOYSA-N 0.000 description 1
- BLQOKWQUTLNKON-UHFFFAOYSA-N CC(=O)C1=C(C)N=C(C)S1 Chemical compound CC(=O)C1=C(C)N=C(C)S1 BLQOKWQUTLNKON-UHFFFAOYSA-N 0.000 description 1
- NZFLWVDXYUGFAV-UHFFFAOYSA-N CC(=O)C1=CC=CN1C Chemical compound CC(=O)C1=CC=CN1C NZFLWVDXYUGFAV-UHFFFAOYSA-N 0.000 description 1
- BMSTXGFDLFCVRN-UHFFFAOYSA-N CC(C)SC1=NN=NN1C Chemical compound CC(C)SC1=NN=NN1C BMSTXGFDLFCVRN-UHFFFAOYSA-N 0.000 description 1
- CNGJTCQVWCLGGC-BRMRLFMBSA-N CC.CCC.[2H]1=CC=CC=C1.[H][W]CC([3H])C Chemical compound CC.CCC.[2H]1=CC=CC=C1.[H][W]CC([3H])C CNGJTCQVWCLGGC-BRMRLFMBSA-N 0.000 description 1
- GEDJNIMLSMRART-UHFFFAOYSA-N CC.[H]CC1=C([H])C=C([Y]C)C=C1[H] Chemical compound CC.[H]CC1=C([H])C=C([Y]C)C=C1[H] GEDJNIMLSMRART-UHFFFAOYSA-N 0.000 description 1
- WMWJKPQSDSZFAD-UHFFFAOYSA-N CC.[H]CC1=C([H])C=C([Y]C=C)C=C1[H] Chemical compound CC.[H]CC1=C([H])C=C([Y]C=C)C=C1[H] WMWJKPQSDSZFAD-UHFFFAOYSA-N 0.000 description 1
- GDYKEHYOOVICQZ-UHFFFAOYSA-N CC1=C(C)SC(C(C)C)=N1 Chemical compound CC1=C(C)SC(C(C)C)=N1 GDYKEHYOOVICQZ-UHFFFAOYSA-N 0.000 description 1
- LGTRXZPAYGKNLP-UHFFFAOYSA-N CC1=CC(C(F)(F)F)=NN1C Chemical compound CC1=CC(C(F)(F)F)=NN1C LGTRXZPAYGKNLP-UHFFFAOYSA-N 0.000 description 1
- HNOQAFMOBRWDKQ-UHFFFAOYSA-N CC1=CC(C)=NN1C Chemical compound CC1=CC(C)=NN1C HNOQAFMOBRWDKQ-UHFFFAOYSA-N 0.000 description 1
- GYCGFNPVXKJNTL-UHFFFAOYSA-N CC1=CC2=NC(C)=CN2C=C1 Chemical compound CC1=CC2=NC(C)=CN2C=C1 GYCGFNPVXKJNTL-UHFFFAOYSA-N 0.000 description 1
- XKRYQIMDVNDPPO-UHFFFAOYSA-N CC1=CC=C(OCCCOC2=C(Cl)C=C(OCC=C(Cl)Cl)C=C2Cl)C=C1 Chemical compound CC1=CC=C(OCCCOC2=C(Cl)C=C(OCC=C(Cl)Cl)C=C2Cl)C=C1 XKRYQIMDVNDPPO-UHFFFAOYSA-N 0.000 description 1
- PSOZJOZKEVZLKZ-UHFFFAOYSA-N CC1=COC(C)=N1 Chemical compound CC1=COC(C)=N1 PSOZJOZKEVZLKZ-UHFFFAOYSA-N 0.000 description 1
- OFLXNHNYPQPQKW-UHFFFAOYSA-N CC1=CSC(C(C)C)=N1 Chemical compound CC1=CSC(C(C)C)=N1 OFLXNHNYPQPQKW-UHFFFAOYSA-N 0.000 description 1
- SDIPNHIRWNZCSP-UHFFFAOYSA-N CC1=CSC(C2=C(F)C=CC=C2F)=N1 Chemical compound CC1=CSC(C2=C(F)C=CC=C2F)=N1 SDIPNHIRWNZCSP-UHFFFAOYSA-N 0.000 description 1
- IDNVAAAHBDAMBN-UHFFFAOYSA-N CC1=CSC(C2=CC=C(C(F)(F)F)C=C2)=N1 Chemical compound CC1=CSC(C2=CC=C(C(F)(F)F)C=C2)=N1 IDNVAAAHBDAMBN-UHFFFAOYSA-N 0.000 description 1
- IPOHWQDCODUHTD-UHFFFAOYSA-N CC1=CSC(C2=CC=CC=C2)=N1 Chemical compound CC1=CSC(C2=CC=CC=C2)=N1 IPOHWQDCODUHTD-UHFFFAOYSA-N 0.000 description 1
- OUQMXTJYCAJLGO-UHFFFAOYSA-N CC1=CSC(N)=N1 Chemical compound CC1=CSC(N)=N1 OUQMXTJYCAJLGO-UHFFFAOYSA-N 0.000 description 1
- JGBZPLSFZVKDDV-UHFFFAOYSA-N CC1=CSC(NC(=O)OC(C)(C)C)=N1 Chemical compound CC1=CSC(NC(=O)OC(C)(C)C)=N1 JGBZPLSFZVKDDV-UHFFFAOYSA-N 0.000 description 1
- RAECFQNUIFBPCT-UHFFFAOYSA-N CC1=NN(C)C(O)=C1 Chemical compound CC1=NN(C)C(O)=C1 RAECFQNUIFBPCT-UHFFFAOYSA-N 0.000 description 1
- HVRBCXZGTURXBT-UHFFFAOYSA-N CC1=NN(C)N=N1 Chemical compound CC1=NN(C)N=N1 HVRBCXZGTURXBT-UHFFFAOYSA-N 0.000 description 1
- XJPHNILSKBWYBQ-UHFFFAOYSA-N CC1=NN(CC(C)C)N=N1 Chemical compound CC1=NN(CC(C)C)N=N1 XJPHNILSKBWYBQ-UHFFFAOYSA-N 0.000 description 1
- UCRRHMRGQBFYIU-UHFFFAOYSA-N CC1=NN(CCC(C)C)N=N1 Chemical compound CC1=NN(CCC(C)C)N=N1 UCRRHMRGQBFYIU-UHFFFAOYSA-N 0.000 description 1
- AFQWXALEKKOTHP-UHFFFAOYSA-N CC1=NOC(C(=O)N(C)C)=N1 Chemical compound CC1=NOC(C(=O)N(C)C)=N1 AFQWXALEKKOTHP-UHFFFAOYSA-N 0.000 description 1
- RIZZIZOOMFEJDM-UHFFFAOYSA-N CC1=NOC(C(C)(C)C)=N1 Chemical compound CC1=NOC(C(C)(C)C)=N1 RIZZIZOOMFEJDM-UHFFFAOYSA-N 0.000 description 1
- ORSAVZVDXMPURX-UHFFFAOYSA-N CC1=NOC(C(C)(C)F)=N1 Chemical compound CC1=NOC(C(C)(C)F)=N1 ORSAVZVDXMPURX-UHFFFAOYSA-N 0.000 description 1
- GOHVMJHIKKCOTE-UHFFFAOYSA-N CC1=NOC(C(C)C)=N1 Chemical compound CC1=NOC(C(C)C)=N1 GOHVMJHIKKCOTE-UHFFFAOYSA-N 0.000 description 1
- ZHFWJCUKKDMFIV-UHFFFAOYSA-N CC1=NOC(C(Cl)(Cl)Cl)=N1 Chemical compound CC1=NOC(C(Cl)(Cl)Cl)=N1 ZHFWJCUKKDMFIV-UHFFFAOYSA-N 0.000 description 1
- OWCYCCLPKZBHOD-UHFFFAOYSA-N CC1=NOC(C(F)(F)F)=N1 Chemical compound CC1=NOC(C(F)(F)F)=N1 OWCYCCLPKZBHOD-UHFFFAOYSA-N 0.000 description 1
- KWGYLYKIEODAOY-UHFFFAOYSA-N CC1=NOC(C2CC2)=N1 Chemical compound CC1=NOC(C2CC2)=N1 KWGYLYKIEODAOY-UHFFFAOYSA-N 0.000 description 1
- JKYWQVCSFFZMSB-UHFFFAOYSA-N CC1=NOC(Cl)=C1 Chemical compound CC1=NOC(Cl)=C1 JKYWQVCSFFZMSB-UHFFFAOYSA-N 0.000 description 1
- QDBFRHGFMDYIIT-UHFFFAOYSA-N CC1=NOC(Cl)=N1 Chemical compound CC1=NOC(Cl)=N1 QDBFRHGFMDYIIT-UHFFFAOYSA-N 0.000 description 1
- RKRLQDJTVWZXMM-UHFFFAOYSA-N CC1=NOC(O)=N1 Chemical compound CC1=NOC(O)=N1 RKRLQDJTVWZXMM-UHFFFAOYSA-N 0.000 description 1
- FZAXBPZVVJOFKX-UHFFFAOYSA-N CC1=NOC=N1 Chemical compound CC1=NOC=N1 FZAXBPZVVJOFKX-UHFFFAOYSA-N 0.000 description 1
- MPBPVACPFBSAFW-UHFFFAOYSA-N CC1=NSC(C)=N1 Chemical compound CC1=NSC(C)=N1 MPBPVACPFBSAFW-UHFFFAOYSA-N 0.000 description 1
- UIOXNNAWANDJCZ-UHFFFAOYSA-N CCC(OC)OC Chemical compound CCC(OC)OC UIOXNNAWANDJCZ-UHFFFAOYSA-N 0.000 description 1
- BVOKJOZBJOWZNJ-UHFFFAOYSA-N CCC1=NC(C)=C(C)S1 Chemical compound CCC1=NC(C)=C(C)S1 BVOKJOZBJOWZNJ-UHFFFAOYSA-N 0.000 description 1
- VGRVKVGGUPOCMT-UHFFFAOYSA-N CCC1=NC(C)=CS1 Chemical compound CCC1=NC(C)=CS1 VGRVKVGGUPOCMT-UHFFFAOYSA-N 0.000 description 1
- KQZVZSLSSZSTTE-UHFFFAOYSA-N CCC1=NN(C)N=N1 Chemical compound CCC1=NN(C)N=N1 KQZVZSLSSZSTTE-UHFFFAOYSA-N 0.000 description 1
- NOOKURJVNMYQEF-UHFFFAOYSA-N CCC1=NN(CC(C)C)N=N1 Chemical compound CCC1=NN(CC(C)C)N=N1 NOOKURJVNMYQEF-UHFFFAOYSA-N 0.000 description 1
- MRTHIBSYBORMSI-UHFFFAOYSA-N CCC1=NN(CC)N=N1 Chemical compound CCC1=NN(CC)N=N1 MRTHIBSYBORMSI-UHFFFAOYSA-N 0.000 description 1
- FIDZAYWTIJEMOX-UHFFFAOYSA-N CCC1=NN(CCC(C)C)N=N1 Chemical compound CCC1=NN(CCC(C)C)N=N1 FIDZAYWTIJEMOX-UHFFFAOYSA-N 0.000 description 1
- CZRJXSZTCQGVTC-UHFFFAOYSA-N CCC1=NOC(C(C)(C)C)=N1 Chemical compound CCC1=NOC(C(C)(C)C)=N1 CZRJXSZTCQGVTC-UHFFFAOYSA-N 0.000 description 1
- ZSAMZUFTCDEYFP-UHFFFAOYSA-N CCC1=NOC(C(C)(C)F)=N1 Chemical compound CCC1=NOC(C(C)(C)F)=N1 ZSAMZUFTCDEYFP-UHFFFAOYSA-N 0.000 description 1
- LLZHTBYXZZOVDM-UHFFFAOYSA-N CCC1=NOC(C(C)C)=N1 Chemical compound CCC1=NOC(C(C)C)=N1 LLZHTBYXZZOVDM-UHFFFAOYSA-N 0.000 description 1
- DVYINRQRPXBEKP-UHFFFAOYSA-N CCC1=NOC(C(F)(F)F)=N1 Chemical compound CCC1=NOC(C(F)(F)F)=N1 DVYINRQRPXBEKP-UHFFFAOYSA-N 0.000 description 1
- VYOKPNRCLLJIFR-UHFFFAOYSA-N CCC1=NOC(C)=N1 Chemical compound CCC1=NOC(C)=N1 VYOKPNRCLLJIFR-UHFFFAOYSA-N 0.000 description 1
- DUZRNBQRIVQWPP-UHFFFAOYSA-N CCC1=NOC(C2CC2)=N1 Chemical compound CCC1=NOC(C2CC2)=N1 DUZRNBQRIVQWPP-UHFFFAOYSA-N 0.000 description 1
- ARCSBFATIFHVTF-UHFFFAOYSA-N CCC1=NOC=N1 Chemical compound CCC1=NOC=N1 ARCSBFATIFHVTF-UHFFFAOYSA-N 0.000 description 1
- JMMZCWZIJXAGKW-UHFFFAOYSA-N CCC=C(C)C Chemical compound CCC=C(C)C JMMZCWZIJXAGKW-UHFFFAOYSA-N 0.000 description 1
- CXOWYJMDMMMMJO-UHFFFAOYSA-N CCCC(C)(C)C Chemical compound CCCC(C)(C)C CXOWYJMDMMMMJO-UHFFFAOYSA-N 0.000 description 1
- ZBJMICVHYLEBSP-UHFFFAOYSA-N CCCCCCN1N=NC(C)=N1 Chemical compound CCCCCCN1N=NC(C)=N1 ZBJMICVHYLEBSP-UHFFFAOYSA-N 0.000 description 1
- SSEPAWXPNBPRDH-UHFFFAOYSA-N CCCN1N=NC(C)=N1 Chemical compound CCCN1N=NC(C)=N1 SSEPAWXPNBPRDH-UHFFFAOYSA-N 0.000 description 1
- VAWOHBQSCWGHQC-UHFFFAOYSA-N CCCN1N=NC(CC)=N1 Chemical compound CCCN1N=NC(CC)=N1 VAWOHBQSCWGHQC-UHFFFAOYSA-N 0.000 description 1
- GQNMIARMOZAUPM-UHFFFAOYSA-N CCN1N=NC(C)=N1 Chemical compound CCN1N=NC(C)=N1 GQNMIARMOZAUPM-UHFFFAOYSA-N 0.000 description 1
- BXOIIRQIGYJTTB-UHFFFAOYSA-N CCOC(=O)C1=C(C)N=C(C)S1 Chemical compound CCOC(=O)C1=C(C)N=C(C)S1 BXOIIRQIGYJTTB-UHFFFAOYSA-N 0.000 description 1
- JRPMRQTZCURBRG-UHFFFAOYSA-N CCOC(=O)C1=COC(C)=N1 Chemical compound CCOC(=O)C1=COC(C)=N1 JRPMRQTZCURBRG-UHFFFAOYSA-N 0.000 description 1
- QWWPUBQHZFHZSF-UHFFFAOYSA-N CCOC(=O)C1=CSC(C)=N1 Chemical compound CCOC(=O)C1=CSC(C)=N1 QWWPUBQHZFHZSF-UHFFFAOYSA-N 0.000 description 1
- YJWKNFZGGQBYGD-UHFFFAOYSA-N CCOC(=O)C1=NC(C)=CS1 Chemical compound CCOC(=O)C1=NC(C)=CS1 YJWKNFZGGQBYGD-UHFFFAOYSA-N 0.000 description 1
- RGPWSBLQRKGRSH-UHFFFAOYSA-N CCOC(=O)CC1=CN=C(C)S1 Chemical compound CCOC(=O)CC1=CN=C(C)S1 RGPWSBLQRKGRSH-UHFFFAOYSA-N 0.000 description 1
- LJNZEYWFIRHRFE-UHFFFAOYSA-N CCSC1=NN=NN1C Chemical compound CCSC1=NN=NN1C LJNZEYWFIRHRFE-UHFFFAOYSA-N 0.000 description 1
- OXHNLMTVIGZXSG-UHFFFAOYSA-N CN1C=CC=C1 Chemical compound CN1C=CC=C1 OXHNLMTVIGZXSG-UHFFFAOYSA-N 0.000 description 1
- MWZDIEIXRBWPLG-UHFFFAOYSA-N CN1C=NC=N1 Chemical compound CN1C=NC=N1 MWZDIEIXRBWPLG-UHFFFAOYSA-N 0.000 description 1
- SECWWGNUVQLGDU-UHFFFAOYSA-N CN1N=C(C#N)C=C1N Chemical compound CN1N=C(C#N)C=C1N SECWWGNUVQLGDU-UHFFFAOYSA-N 0.000 description 1
- FVCMAPVHWDUQCH-UHFFFAOYSA-N CN1N=NN=C1SCC1CC1 Chemical compound CN1N=NN=C1SCC1CC1 FVCMAPVHWDUQCH-UHFFFAOYSA-N 0.000 description 1
- GCZWFFUTPLPLQD-UHFFFAOYSA-N COC(C[Y])OC Chemical compound COC(C[Y])OC GCZWFFUTPLPLQD-UHFFFAOYSA-N 0.000 description 1
- HFAWOOHMLSEISY-UHFFFAOYSA-N COC1=CC=C(C2=NC(C)=CS2)C=C1 Chemical compound COC1=CC=C(C2=NC(C)=CS2)C=C1 HFAWOOHMLSEISY-UHFFFAOYSA-N 0.000 description 1
- BIHKMPQQASOGPQ-UHFFFAOYSA-N COCC1=CC(C)=NO1 Chemical compound COCC1=CC(C)=NO1 BIHKMPQQASOGPQ-UHFFFAOYSA-N 0.000 description 1
- LXYHDGHYFGKBMN-UHFFFAOYSA-N CSC1=NN=NN1C Chemical compound CSC1=NN=NN1C LXYHDGHYFGKBMN-UHFFFAOYSA-N 0.000 description 1
- XZGLNCKSNVGDNX-UHFFFAOYSA-N [H]N1N=NC(C)=N1 Chemical compound [H]N1N=NC(C)=N1 XZGLNCKSNVGDNX-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/30—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
- C07D207/32—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
- C07D207/325—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals directly attached to the ring nitrogen atom
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/34—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
- A01N43/36—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom five-membered rings
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/48—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
- A01N43/56—1,2-Diazoles; Hydrogenated 1,2-diazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/64—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
- A01N43/647—Triazoles; Hydrogenated triazoles
- A01N43/653—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/713—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with four or more nitrogen atoms as the only ring hetero atoms
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/72—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
- A01N43/74—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
- A01N43/76—1,3-Oxazoles; Hydrogenated 1,3-oxazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/72—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
- A01N43/74—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,3
- A01N43/78—1,3-Thiazoles; Hydrogenated 1,3-thiazoles
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/72—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
- A01N43/80—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with one nitrogen atom and either one oxygen atom or one sulfur atom in positions 1,2
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/72—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms
- A01N43/82—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with nitrogen atoms and oxygen or sulfur atoms as ring hetero atoms five-membered rings with three ring hetero atoms
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/90—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N47/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
- A01N47/08—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
- A01N47/10—Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
- A01N47/18—Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof containing a —O—CO—N< group, or a thio analogue thereof, directly attached to a heterocyclic or cycloaliphatic ring
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N47/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid
- A01N47/08—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom not being member of a ring and having no bond to a carbon or hydrogen atom, e.g. derivatives of carbonic acid the carbon atom having one or more single bonds to nitrogen atoms
- A01N47/10—Carbamic acid derivatives, i.e. containing the group —O—CO—N<; Thio analogues thereof
- A01N47/20—N-Aryl derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/30—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
- C07D207/32—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
- C07D207/33—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms with substituted hydrocarbon radicals, directly attached to ring carbon atoms
- C07D207/333—Radicals substituted by oxygen or sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/30—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members
- C07D207/34—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/12—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/14—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D231/18—One oxygen or sulfur atom
- C07D231/20—One oxygen atom attached in position 3 or 5
- C07D231/22—One oxygen atom attached in position 3 or 5 with aryl radicals attached to ring nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/14—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D231/38—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
- C07D249/10—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D257/00—Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms
- C07D257/02—Heterocyclic compounds containing rings having four nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D257/04—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D261/00—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
- C07D261/02—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
- C07D261/06—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
- C07D261/08—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D261/00—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
- C07D261/02—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
- C07D261/06—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
- C07D261/10—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D261/00—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings
- C07D261/02—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings
- C07D261/06—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members
- C07D261/10—Heterocyclic compounds containing 1,2-oxazole or hydrogenated 1,2-oxazole rings not condensed with other rings having two or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D261/18—Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/30—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D263/32—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D263/00—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
- C07D263/02—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
- C07D263/30—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D263/34—Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D271/00—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
- C07D271/02—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
- C07D271/06—1,2,4-Oxadiazoles; Hydrogenated 1,2,4-oxadiazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D271/00—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms
- C07D271/02—Heterocyclic compounds containing five-membered rings having two nitrogen atoms and one oxygen atom as the only ring hetero atoms not condensed with other rings
- C07D271/06—1,2,4-Oxadiazoles; Hydrogenated 1,2,4-oxadiazoles
- C07D271/07—1,2,4-Oxadiazoles; Hydrogenated 1,2,4-oxadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/20—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D277/22—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
- C07D277/24—Radicals substituted by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/20—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D277/22—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
- C07D277/30—Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/20—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D277/32—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D277/38—Nitrogen atoms
- C07D277/40—Unsubstituted amino or imino radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/20—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D277/32—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D277/38—Nitrogen atoms
- C07D277/44—Acylated amino or imino radicals
- C07D277/48—Acylated amino or imino radicals by radicals derived from carbonic acid, or sulfur or nitrogen analogues thereof, e.g. carbonylguanidines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/02—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
- C07D277/20—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D277/32—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D277/56—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/01—Five-membered rings
- C07D285/02—Thiadiazoles; Hydrogenated thiadiazoles
- C07D285/04—Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
- C07D285/08—1,2,4-Thiadiazoles; Hydrogenated 1,2,4-thiadiazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/01—Five-membered rings
- C07D285/02—Thiadiazoles; Hydrogenated thiadiazoles
- C07D285/04—Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
- C07D285/12—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/06—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
- C07D333/14—Radicals substituted by singly bound hetero atoms other than halogen
- C07D333/16—Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/26—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D333/38—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D471/00—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
- C07D471/02—Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
- C07D471/04—Ortho-condensed systems
Definitions
- a 0 , A 1 and A 2 are each independently of the other a bond or a C 1 -C 6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl-C 1 -C 6 alkyl and C 1 -C 3 haloalkyl;
- D is CH or N
- X 1 and X 2 are each independently of the other fluorine, chlorine or bromine;
- R 1 , R 2 and R 3 are each independently of the others H, halogen, OH, SH, CN, nitro, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 alkylcarbonyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 1 -C 6 alkoxy, C 1 -C 6 haloalkoxy, C 2 -C 6 alkenyloxy, C 2 -C 6 haloalkenyloxy, C 2 -C 6 alkynyloxy, —S( ⁇ O)—C 1 -C 6 alkyl, —S(O) 2 —C 1 -C 6 alkyl, C 1 -C 6 alkoxycarbonyl or C 3 -C 6 haloalkynyloxy; the substituents R 3 being independent of one another when m is 2;
- R 5 together form a four- to eight-membered, straight-chain or branched alkylene bridge wherein a CH 2 group may have been replaced by O, S or NR 9 , and the alkylene bridge is unsubstituted or substituted by from one to four identical or different substituents selected from C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl-C 1 -C 6 alkyl and C 1 -C 3 haloalkyl;
- Q is O, NR 6 , S, SO or SO 2 ;
- Y is O, NR 6 , S, SO or SO 2 ;
- R 6 and R 7 are independently of each other H, C 1 -C 6 alkyl, C 1 -C 3 haloalkyl, C 1 -C 6 alkylcarbonyl, C 1 -C 3 haloalkylcarbonyl, C 1 -C 6 alkoxyalkyl, C 3 -C 8 cycloalkyl or benzyl;
- R 8 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 1 -C 6 alkoxy, C 1 -C 6 haloalkoxy, C 2 -C 6 alkenyloxy, C 2 -C 6 haloalkenyloxy, C 2 -C 6 alkynyloxy, C 3 -C 6 cycloalkyl, phenyl, benzyl; or phenyl or benzyl each of which is unsubstituted or substituted by from one to three identical or different substituents selected from halogen, CN, nitro, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 alkylcarbonyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkeny
- R 11 is H, OH, C 1 -C 6 alkyl, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl-C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 alkoxy, C 3 -C 8 cycloalkoxy, C 3 -C 8 cycloalkyl-C 1 -C 6 alkoxy, C 1 -C 6 haloalkoxy, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkenyloxy, C 2 -C 6 haloalkenyloxy, C 2 -C 6 alkynyl, C 2 -C 6 haloalkynyl, C 2 -C 6 alkynyloxy, C 2 -C 6 haloalkynyloxy, NH 2 , NH—C 1 -C 6 alkyl, —
- compounds of formula (I) having at least one acid group are able to form salts with bases.
- Suitable salts with bases are, for example, metal salts, such as alkali metal or alkaline earth metal salts, e.g.
- sodium, potassium or magnesium salts or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower alkylamine, e.g. ethyl-, diethyl-, triethyl- or dimethyl-propyl-amine, or a mono-, di- or tri-hydroxy-lower alkylamine, e.g. mono-, di- or tri-ethanolamine. It may also be possible for corresponding internal salts to be formed. The free form is preferred. Of the salts of compounds of formula (I), preference is given to agrochemically advantageous salts.
- any reference to the free compounds of formula (I) or to their salts is to be understood as including, where appropriate, also the corresponding salts or the free compounds of formula (I), respectively.
- Halogen as a group per se and as a structural element of other groups and compounds, such as haloalkyl, halocycloalkyl, haloalkenyl, haloalkynyl and haloalkoxy, is fluorine, chlorine, bromine or iodine, especially fluorine, chlorine or bromine, more especially fluorine or chlorine, especially chlorine.
- Alkylene is a straight-chain or branched bridging member and is especially —CH 2 —, —CH 2 CH 2 —, —CH 2 —CH 2 —CH 2 —, —CH 2 —CH 2 —CH 2 —, —CH 2 —CH 2 —CH 2 —CH 2 —, —CH(CH 3 )—, —CH 2 (CH 3 )CH 2 —CH 2 —, —CH(C 2 H 5 )—, —C(CH 3 ) 2 —, —CH(CH 3 )CH 2 —, —CH(CH 3 )CH(CH 3 )— or —CH 2 C(CH 3 ) 2 —CH 2 —.
- Alkyl as a group per se and as a structural element of other groups and compounds, such as haloalkyl, alkoxy, alkoxyalkyl, haloalkoxy, alkoxycarbonyl, alkylthio, haloalkylthio, alkylsulfonyl and alkylsulfonyloxy, is—in each case giving due consideration to the number of carbon atoms contained in the group or compound in question—either straight-chain, e.g.
- haloalkenyl, haloalkynyl, alkenyloxy, haloalkenyloxy, alkynyloxy or haloalkynyloxy are straight-chain or branched and each contains two or preferably one unsaturated carbon-carbon bond(s).
- Cycloalkyl as a group per se and as a structural element of other groups and compounds, such as alkyl—is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl. Cyclopentyl and cyclohexyl, and especially cyclopropyl, are preferred.
- Halo-substituted carbon-containing groups and compounds such as haloalkyl and haloalkoxy, may be partially halogenated or perhalogenated, the halogen substituents in the case of polyhalogenation being the same or different.
- haloalkyl as a group per se and as a structural element of other groups and compounds, such as haloalkoxy—are methyl substituted from one to three times by fluorine, chlorine and/or bromine, such as CHF 2 , CF 3 or CH 2 Cl; ethyl substituted from one to five times by fluorine, chlorine and/or bromine, such as CH 2 CF 3 , CF 2 CF 3 , CF 2 CCl 3 , CF 2 CHCl 2 , CF 2 CHF 2 , CF 2 CFCl 2 , CH 2 CH 2 C 1 , CF 2 CHBr 2 , CF 2 CHClF, CF 2 CHBrF or CClFCHClF; propyl or isopropyl each substituted from one to seven times by fluorine, chlorine and/or bromine, such as CH 2 CHBrCH 2 Br, CF 2 CHFCF 3 , CH 2 CF 2 CF 3 , CF 2 CF
- Aryl is especially phenyl or naphthyl, preferably phenyl.
- Heteroaryl is to be understood as meaning a five- to seven-membered, especially a five-membered, monocyclic aromatic ring which contains from one to four hetero atoms selected from the group consisting of N, O and S, especially N and S, or a bicyclic heteroaryl which may contain, either in one ring only—as in quinolinyl, quinoxalinyl, indolinyl, benzothiophenyl or benzofuranyl, for example—or in both rings—as in pteridinyl or purinyl, for example—one or more hetero atoms selected independently of one another from N, O and S.
- thienyl pyrrolyl, pyrazolyl, imidazolyl, 1,3-thiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,3,4-thiadiazolyl, 1,2,4-thiadiazolyl, oxazolyl, isoxazolyl, 1,2,4-oxadiazolyl or tetrazolyl.
- R 6 is —C( ⁇ O)R 8 or —C( ⁇ S)R 8
- R 8 is C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 1 -C 6 alkoxy, C 1 -C 6 haloalkoxy, C 2 -C 6 alkenyloxy, C 2 -C 6 haloalkenyloxy, C 2 -C 6 alkynyloxy, C 3 -C 6 cycloalkyl or phenyl;
- E is a five- to seven-membered, monocyclic heteroaryl having from one to four hetero atoms selected from the group consisting of N, O and S, or bicyclic heteroaryl which may contain, either in one ring only or in both rings, one or more hetero atoms selected independently of one another from N, O and S, and which is unsubstituted or carries one or two substituents R 10 , which are independent of each other; especially which is unsubstituted or carries one substituent R 10 ;
- R 10 is H, CN, OH, NO 2 , SH, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 1 -C 6 alkoxy, C 1 -C 6 alkylcarbonyl, C 1 -C 6 -alkoxycarbonyl, C 1 -C 6 alkylthio, C 1 -C 6 haloalkoxy, C 2 -C 6 alkenyloxy, C 2 -C 6 alkynyloxy, C 2 -C 6 -alkenylthio, C 3 -C 8 cycloalkyl, C 3 -C 8 cycloalkyl-C 1 -C 6 alkyl, cycloalkyl-C 1 -C 6 alkoxy or cycloalkyl-C 1 -C 6 alkylthio;
- E is 1,3,4-thiadiazol-2-yl which is unsubstituted or monosubstituted by halogen, CN, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 3 -C 6 cycloalkyl-C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 haloalkoxy, C 2 -C 6 alkenyloxy, C 2 -C 6 haloalkenyloxy, C 3 -C 6 alkynyloxy, C 3 -C 6 cycloalkyl-C 1 -C 6 alkoxy, C 1 -C 6 -alkylthio, C 1 -C 6 haloalkylthio, C 2 -C 6 alkenylthio, C 2 -C 6 alkenylthio, C 2 -C 6
- E is 1,2,4-triazol-3-yl which is unsubstituted or substituted on the nitrogen in the 1-, 2- or 4-position by C 1 -C 6 alkyl and is unsubstituted or substituted in the 5-position by halogen, NO 2 , C 1 -C 6 alkyl, C 1 -C 6 -haloalkyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 3 -C 6 cycloalkyl-C 1 -C 6 alkyl, C 1 -C 6 alkoxy, C 1 -C 6 -haloalkoxy, C 2 -C 6 alkenyloxy, C 2 -C 6 haloalkenyloxy, C 3 -C 6 alkynyloxy, C 3 -C 6 cycloalkyl-C 1 -C 6 -alkoxy, C 1 -C 6 alkyl
- the invention relates also to a process for the preparation of a compound of formula (I), or a salt thereof, wherein
- a 0 , A 1 , A 2 , A 3 , D, E, W, Q, T, R 1 , R 2 , R 3 , R 4 , m and k are as defined for formula (I) under (1), Z 1 is —C( ⁇ O)R 12 and R 12 is H or C 1 -C 6 alkyl, is converted in the presence of an oxidising agent, especially a peracid, into a compound of formula
- G denotes the part of the formula in brackets designated G in formula (II)
- Z 2b is a radical of formula —Y—C( ⁇ O)R 14
- Y is as defined for formula (I) under (1)
- R 14 is C 1 -C 12 alkyl unsubstituted or substituted by from one to three identical or different halogen substituents, or is phenyl unsubstituted or substituted by from one to three identical or different substituents selected from halogen, CN, nitro, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 alkylcarbonyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 1 -C 6 alkoxy, C 1 -C 6 haloalkoxy, C 1 -C 6 alkoxycarbonyl and C 2 -C 6 haloalkenyl
- Z 4 is Y—CH 2 -phenyl, wherein the phenyl radical is unsubstituted or substituted by from one to three identical or different substituents selected from halogen, CN, nitro, C 1 -C 6 alkyl, C 1 -C 6 haloalkyl, C 1 -C 6 alkylcarbonyl, C 2 -C 6 alkenyl, C 2 -C 6 haloalkenyl, C 2 -C 6 alkynyl, C 1 -C 6 alkoxy, C 1 -C 6 haloalkoxy, C 1 -C 6 alkoxycarbonyl and C 2 -C 6 haloalkenyloxy, G denotes the part of the formula in brackets designated G in formula (II), and Y is as defined for formula (I), is converted by removal of the benzyl group into a compound of formula (IV), as defined above;
- Hal is halogen, preferably bromine or chlorine, and alkyl is C 1 -C 6 alkyl, or the two alkyl radicals together form a C 3 -C 8 alkylene bridge, to form a compound of formula
- alkyl and Y are as defined above;
- Z 6 is a group —Y—CH 2 —C( ⁇ O)H
- G is as defined above for the compound of formula (II)
- Y is as defined for formula (I) under (1), either
- L 3 is a leaving group, preferably chlorine or bromine, and Hal is chlorine or bromine;
- Hal is halogen and X is chlorine or bromine.
- the invention relates also to
- a 0 , A 1 , A 2 , A 3 , D, E, W, T, R 4 , R 5 , R 6 and k are as defined for formula (I) under (1) and L 1 is a leaving group, is reacted in the presence of a base with a compound of formula
- R 1 , R 2 , R 3 and m are as defined for formula (I) under (1), Q is O, NR 6 or S and Z is one of the radicals Z 1 to Z 6 as defined for the above formulae (II) to (VII), and R 6 is as defined for formula (I) under (1), and the resulting compound of formula
- a 0 , A 1 , A 2 , A 3 , D, E, W, Q, T, R 1 , R 2 , R 3 , R 4 , m and k are as defined for formula (I) under (1) and Z is one of the radicals Z 1 to Z 6 as defined for formulae (II) to (VII) indicated above, is, as necessary, that is to say according to the meaning of the radical Z, reacted further analogously to one or more of process steps (a) to (g).
- Z in compound X/a has the same meanings as Z 1 in the compound of formula (II), and Z in compound X/b has the same meanings as Z 2 as defined for formula (III), and so on.
- the invention relates also to
- a 0 , A 1 , A 2 , A 3 , D, T, R 4 and k are as defined for formula (I) under (1)
- W 1 is O, NR 6 , S or —NR 7 —
- R 6 is as defined for formula (I) under (1), is reacted with a compound of formula
- L 2 is a leaving group or a group Hal-C( ⁇ O)— wherein Hal is a halogen atom, preferably chlorine or bromine, and Z is one of the radicals Z 1 to Z 6 as defined in formulae (II) to (VII) indicated above; or
- a 0 , A 1 , A 2 , D, E, T, R 4 and k are as defined for formula (I) under (1) and L 1 is a leaving group or a group —C( ⁇ O)—Hal wherein Hal is a halogen atom, preferably chlorine or bromine, is reacted with a compound of formula
- the radicals Z are as defined above for the compounds X/a to X/f; that is to say, for example, Z in the compound of formula XII/a has the same meanings as Z 1 in the compound of formula (II), and Z in compound XII/b has the same meanings as Z 2 as defined for formula (III), and so on.
- the invention relates also to
- the invention relates also to
- R 3 , Q, Y and m are as defined for formula (I) under (1), with a compound of the formula Hal-C( ⁇ O)—R 13 wherein R 13 is as defined above, halogenating the resulting compound of formula
- R 3 , Q, Y and m are as defined for formula (I) under (1) and R 1 and R 2 are halogen, analogously to Process (k).
- the invention relates also to
- the invention relates also to
- the invention relates also to
- the invention relates also to
- the invention relates also to
- the invention relates also to
- the invention relates also to
- the invention relates also to
- the invention relates also to
- the reactions described hereinabove and hereinbelow are carried out in a manner known per se, for example in the absence or, where appropriate, in the presence of a suitable solvent or diluent or of a mixture thereof, the reactions being carried out, as required, with cooling, at room temperature or with heating, for example in a temperature range of approximately from ⁇ 80° C. to the boiling temperature of the reaction mixture, preferably from approximately ⁇ 20° C. to approximately +150° C., and, if necessary, in a closed vessel, under pressure, under an inert gas atmosphere and/or under anhydrous conditions.
- Especially advantageous reaction conditions can be found in the Examples.
- oxidising agents there are used, for example, hydrogen peroxide, a peracid, such as peracetic acid, trifluoroperacetic acid, 3-chloroperbenzoic acid or a mixture thereof, such as sodium perborate in acetic acid.
- an inorganic base such as NaOH or KOH
- aminolysis with a primary amine, such as n-butylamine can be carried out in a hydrocarbon, such as toluene or benzene, at temperatures of from 0° C. to 150° C., preferably at from 20° C. to 80° C.
- the preferred reaction temperature is from 0° C. to 120° C., especially from 20° C. to 80° C.
- a base such as potassium or sodium carbonate
- phase transfer catalysts such as crown ethers or quaternary ammonium salts
- a strong mineral acid for example hydrochloric acid, sulfuric acid or 4-toluenesulfonic acid.
- the reaction is carried out in an inert solvent such as, for example, benzene or toluene, or an ether, such as diethyl ether, diisopropyl ether, dioxane or tetrahydrofuran, at temperatures of from 0° C. to 150° C., preferably at from 20° C. to 80° C.
- an inert solvent such as, for example, benzene or toluene
- an ether such as diethyl ether, diisopropyl ether, dioxane or tetrahydrofuran
- dichlorovinyl compounds it is also possible for the process to be carried out in dimethylformamide, benzene, toluene, or in an ether, at temperatures of from 0° C. to 120° C., preferably from 20° C. to 80° C., and in the presence of trichloroacetic acid/sodium trichloroacetate, then by addition of acetic anhydride, optionally with the addition of base, for example triethylamine, and finally by addition of zinc and acetic acid.
- a coupling reagent for example azodicarboxylic acid diethyl or diisopropyl ester and triphenylphosphine, can be used.
- L 2 is a group Hal-C( ⁇ O)—
- the process can be carried out in an inert solvent, such as in an ether or in toluene, at from 0° C. to 80° C., and in the presence of a suitable base, for example a trialkylamine.
- reaction is carried out in an ether, in an amide, such as dimethylformamide or N-methylpyrrolidone, and at from 0° C. to 150° C.
- amide such as dimethylformamide or N-methylpyrrolidone
- Sodium hydride for example, can be used as base.
- solvents for example, toluene, benzene, ethanol, propanol, isopropanol, methoxyethanol, ethoxyethanol or dimethylformamide.
- the reaction is carried out at from 20 to 200° C., preferably at from 80 to 150° C., where appropriate with the addition of lithium chloride, ammonium chloride or triethylammonium chloride.
- a base such as triethylamine, for example in ethanol, isopropanol, dimethylformamide or N-methylpyrrolidone
- the further reaction is carried out, for example, in toluene, benzene, THF, dioxane or dichloromethane, at from 0 to 120° C. in the presence of a base, such as triethylamine or pyridine.
- a base such as triethylamine or pyridine.
- the further reaction with an alkyne is carried out in the presence of a base, such as triethylamine or pyridine, at from ⁇ 20 to 120° C., preferably at from 0 to 80° C.
- a base such as triethylamine or pyridine
- a base for example aqueous sodium carbonate solution
- a palladium catalyst such as palladium tetrakis(triphenylphosphine
- a base for example potassium or sodium hydroxide
- aldehyde and keto groups are protected in the form of acetals or ketals, acids in the form of their esters, hydroxy groups in the form of ethers or esters, and phenolic hydroxy groups in the form of benzyl ethers or methyl ethers.
- Salts of compounds of formula (I) can be prepared in a manner known per se.
- salts of compounds of formula (I) with bases are obtained by treatment of the free compounds with a suitable base or with a suitable ion exchange reagent.
- enantiomers such as racemates
- Mixtures of enantiomers, such as racemates, that are obtainable in a corresponding manner can be resolved into the enantiomers by known methods, for example by recrystallisation from an optically active solvent, by chromatography on chiral adsorbents, for example high pressure liquid chromatography (HPLC) on acetylcellulose, with the aid of suitable microorganisms, by cleavage with specific, immobilised enzymes, via the formation of inclusion compounds, for example using chiral crown ethers, only one enantiomer being complexed, or by conversion into diastereoisomeric salts and separation of the mixture of diastereoisomers so obtained, for example on the basis of their different solubilities by fractional crystallisation, into the diastereoisomers, from which the desired enantiomer can be freed by the action of suitable agents.
- HPLC high pressure liquid chromatography
- the compounds of formula (I), in free form or in salt form, can also be obtained in the form of their hydrates and/or may include other solvents, for example solvents which may have been used for the crystallisation of compounds in solid form.
- the invention relates also to the intermediates of formulae (II) to (XIX), where novel, and to the corresponding compounds wherein CN, NCS, C(H)O, B(OH) 2 , —C(H) ⁇ NOH, —C(Cl) ⁇ NOH, —C( ⁇ NH)NH 2 or —C( ⁇ S)NH 2 is present instead of the heterocyclic radical E, and, where applicable, to their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form.
- E heterocyclic radical
- Successful control within the scope of the subject of the invention is possible, in particular, of pests from the orders Lepidoptera, Coleoptera, Orthoptera, Isoptera, Psocoptera, Anoplura, Mallophaga, Thysanoptera, Heteroptera, Homoptera, Hymenoptera, Diptera, Siphonaptera, Thysanura and Acarina, mainly Acarina, Diptera, Thysanoptera, Lepidoptera and Coleoptera. Very especially good control is possible of the following pests:
- pests of the class Nematoda using the compounds according to the invention.
- pests include, for example,
- Suitable additives include, for example, representatives of the following classes of active ingredient: organophosphorus compounds, nitrophenols and derivatives, formamidines, ureas, carbamates, pyrethroids, chlorinated hydrocarbons, neonicotinoids and Bacillus thuringiensis preparations.
- the compounds according to the invention can be used to control, i.e. to inhibit or destroy, pests of the mentioned type occurring on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forestry, or on parts of such plants, such as the fruits, blossoms, leaves, stems, tubers or roots, while in some cases plant parts that grow later are still protected against those pests.
- strawberries, raspberries and blackberries leguminous plants, such as beans, lentils, peas and soybeans; oil plants, such as rape, mustard, poppy, olives, sunflowers, coconut, castor oil, cocoa and groundnuts; cucurbitaceae, such as marrows, cucumbers and melons; fibre plants, such as cotton, flax, hemp and jute; citrus fruits, such as oranges, lemons, grapefruit and mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes and paprika; lauraceae, such as avocado, cinnamon and camphor; and tobacco, nuts, coffee, aubergines, sugar cane, tea, pepper, vines, hops, bananas, natural rubber plants and ornamentals.
- the invention therefore relates also to pesticidal compositions, such as emulsifiable concentrates, suspension concentrates, directly sprayable or dilutable solutions, spreadable pastes, dilute emulsions, wettable powders, soluble powders, dispersible powders, wettable powders, dusts, granules and encapsulations of polymer substances, that comprise at least one of the compounds according to the invention, the choice of formulation being made in accordance with the intended objectives and the prevailing circumstances.
- pesticidal compositions such as emulsifiable concentrates, suspension concentrates, directly sprayable or dilutable solutions, spreadable pastes, dilute emulsions, wettable powders, soluble powders, dispersible powders, wettable powders, dusts, granules and encapsulations of polymer substances, that comprise at least one of the compounds according to the invention, the choice of formulation being made in accordance with the intended objectives and the prevailing circumstances.
- the active ingredient is used in those compositions in pure form, a solid active ingredient, for example, in a specific particle size, or preferably together with at least one of the adjuvants customary in formulation technology, such as extenders, e.g. solvents or solid carriers, or surface-active compounds (surfactants).
- extenders e.g. solvents or solid carriers
- surfactants surface-active compounds
- Solvents are, for example: non-hydrogenated or partly hydrogenated aromatic hydrocarbons, preferably fractions C 8 to C 12 of alkylbenzenes, such as xylene mixtures, alkylated naphthalenes or tetrahydronaphthalene, aliphatic or cycloaliphatic hydrocarbons, such as paraffins or cyclohexane, alcohols, such as ethanol, propanol or butanol, glycols and ethers and esters thereof, such as propylene glycol, dipropylene glycol ether, ethylene glycol or ethylene glycol monomethyl or -ethyl ether, ketones, such as cyclohexanone, isophorone or diacetone alcohol, strongly polar solvents, such as N-methylpyrrolid-2-one, dimethyl sulfoxide or N,N-dimethylformamide, water, non-epoxidized or epoxidized plant oils, such as non-epoxidized
- the solid carriers used are as a rule natural rock powders, such as calcite, talc, kaolin, montmorillonite or attapulgite. Highly disperse silicic acids or highly disperse absorbent polymers can also be added to improve the physical properties.
- Granular adsorptive granule carriers are porous types, such as pumice, crushed brick, sepiolite or bentonite, and non-sorbent carrier materials are calcite or sand. A large number of granular materials of inorganic or organic nature can furthermore be used, in particular dolomite or comminuted plant residues.
- Surface-active compounds are, depending on the nature of the active compound to be formulated, nonionic, cationic and/or anionic surfactants or surfactant mixtures with good emulsifying, dispersing and wetting properties.
- the surfactants listed below are to be regarded only as examples; many other surfactants which are customary in formulation technology and are suitable according to the invention are described in the relevant literature.
- Nonionic surfactants are, in particular, polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols, saturated or unsaturated fatty acids and alkylphenols, which can contain 3 to 30 glycol ether groups and 8 to 20 carbon atoms in the (aliphatic) hydrocarbon radical and 6 to 18 carbon atoms in the alkyl radical of the alkylphenols.
- Substances which are furthermore suitable are water-soluble polyethylene oxide adducts, containing 20 to 250 ethylene glycol ether and 10 to 100 propylene glycol ether groups, on propylene glycol, ethylene diaminopolypropylene glycol and alkyl polypropylene glycol having 1 to 10 carbon atoms in the alkyl chain.
- the compounds mentioned usually contain 1 to 5 ethylene glycol units per propylene glycol unit.
- examples are nonylphenol-polyethoxyethanols, castor oil polyglycol ethers, polypropylene-polyethylene oxide adducts, tributylphenoxypolyethoxyethanol, polyethylene glycol and octylphenoxypolyethoxyethanol.
- Other substances are fatty acid esters of polyoxyethylene sorbitan, such as polyoxyethylene sorbitan trioleate.
- the cationic surfactants are, in particular, quaternary ammonium salts which contain, as substituents, at least one alkyl radical having 8 to 22 C atoms and, as further substituents, lower, non-halogenated or halogenated alkyl, benzyl or lower hydroxyalkyl radicals.
- the salts are preferably in the form of halides, methyl-sulfates or ethyl-sulfates. Examples are stearyl-trimethyl-ammonium chloride and benzyl-di-(2-chloroethyl)-ethyl-ammonium bromide.
- Suitable anionic surfactants can be both water-soluble soaps and water-soluble synthetic surface-active compounds.
- Suitable soaps are the alkali metal, alkaline earth metal and substituted or unsubstituted ammonium salts of higher fatty acids (C 10 -C 22 ), such as the sodium or potassium salts of oleic or stearic acid, or of naturally occurring fatty acid mixtures, which can be obtained, for example, from coconut oil or tall oil; and furthermore also the fatty acid methyl-taurine salts.
- synthetic surfactants are more frequently used, in particular fatty sulfonates, fatty sulfates, sulfonated benzimidazole derivatives or alkylarylsulfonates.
- the fatty sulfonates and sulfates are as a rule in the form of alkali metal, alkaline earth metal or substituted or unsubstituted ammonium salts and in general have an alkyl radical of 8 to 22 C atoms, alkyl also including the alkyl moiety of acyl radicals; examples are the sodium or calcium salt of ligninsulfonic acid, of dodecylsulfuric acid ester or of a fatty alcohol sulfate mixture prepared from naturally occurring fatty acids. These also include the salts of sulfuric acid esters and sulfonic acids of fatty alcohol-ethylene oxide adducts.
- the sulfonated benzimidazole derivatives preferably contain 2 sulfonic acid groups and a fatty acid radical having about 8 to 22 C atoms.
- Alkylarylsulfonates are, for example, the sodium, calcium or triethanolammonium salts of dodecylbenzenesulfonic acid, of dibutylnaphthalenesulfonic acid or of a naphthalenesulfonic acid-formaldehyde condensation product.
- Corresponding phosphates such as salts of the phosphoric acid ester of a p-nonylphenol-(4-14)-ethylene oxide adduct or phospholipids, can further also be used.
- active ingredient 1 to 90%, preferably 5 to 20% surfactant: 1 to 30%, preferably 10 to 20% solvent: 5 to 98%, preferably 70 to 85%
- active ingredient 0.1 to 10%, preferably 0.1 to 1% solid carrier: 99.9 to 90%, preferably 99.9 to 99%
- active ingredient 5 to 75%, preferably 10 to 50% water: 94 to 24%, preferably 88 to 30% surfactant: 1 to 40%, preferably 2 to 30%
- active ingredient 0.5 to 90%, preferably 1 to 80% surfactant: 0.5 to 20%, preferably 1 to 15% solid carrier: 5 to 99%, preferably 15 to 98%
- active ingredient 0.5 to 30%, preferably 3 to 15% solid carrier: 99.5 to 70%, preferably 97 to 85%
- compositions according to the invention may also comprise further solid or liquid adjuvants, such as stabilisers, e.g. vegetable oils or epoxidised vegetable oils (e.g. epoxidised coconut oil, rapeseed oil or soybean oil), antifoams, e.g. silicone oil, preservatives, viscosity regulators, binders and/or tackifiers as well as fertilisers or other active ingredients for obtaining special effects, e.g. acaricides, bactericides, fungicides, nematicides, molluscicides or selective herbicides.
- stabilisers e.g. vegetable oils or epoxidised vegetable oils (e.g. epoxidised coconut oil, rapeseed oil or soybean oil), antifoams, e.g. silicone oil, preservatives, viscosity regulators, binders and/or tackifiers as well as fertilisers or other active ingredients for obtaining special effects, e.g
- the crop protection products according to the invention are prepared in known manner, in the absence of adjuvants, e.g. by grinding, sieving and/or compressing a solid active ingredient or mixture of active ingredients, for example to a certain particle size, and in the presence of at least one adjuvant, for example by intimately mixing and/or grinding the active ingredient or mixture of active ingredients with the adjuvant(s).
- the invention relates likewise to those processes for the preparation of the compositions according to the invention and to the use of the compounds of formula (I) in the preparation of those compositions.
- the invention relates also to the methods of application of the crop protection products, i.e. the methods of controlling pests of the mentioned type, such as spraying, atomising, dusting, coating, dressing, scattering or pouring, which are selected in accordance with the intended objectives and the prevailing circumstances, and to the use of the compositions for controlling pests of the mentioned type.
- Typical rates of concentration are from 0.1 to 1000 ppm, preferably from 0.1 to 500 ppm, of active ingredient.
- the rates of application per hectare are generally from 1 to 2000 g of active ingredient per hectare, especially from 10 to 1000 g/ha, preferably from 20 to 600 g/ha.
- a preferred method of application in the area of crop protection is application to the foliage of the plants (foliar application), the frequency and the rate of application being dependent upon the risk of infestation by the pest in question.
- the active ingredient can also penetrate the plants through the roots (systemic action) when the locus of the plants is impregnated with a liquid formulation or when the active ingredient is incorporated in solid form into the locus of the plants, for example into the soil, e.g. in granular form (soil application). In the case of paddy rice crops, such granules may be applied in metered amounts to the flooded rice field.
- P2.2 2 g of 4- ⁇ 3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy ⁇ -benzonitrile, 1.2 g of ammonium chloride and 1.5 g of sodium azide are stirred for 48 hours at 100° C. in 50 ml of dimethylformamide. The reaction mixture is poured onto cold dilute hydrochloric acid and extracted with ethyl acetate.
- P4.1 307 mg of tert-butyl hypochloride in 5 ml of carbon tetrachloride are added dropwise over a period of 10 minutes, at 20-30° C., to 1.3 g of 4- ⁇ 3-[2,6-dichloro-4-(3,3-di-chloro-allyloxy)-phenoxy]-propoxy ⁇ -N-hydroxy-benzimide in 15 ml of carbon tetrachloride. After 3 hours at room temperature, the reaction mixture is washed with water and concentrated. Crystallisation from hexane yields 4- ⁇ 3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy ⁇ -N-hydroxy-benzimidoyl chloride.
- P5.2 400 mg of 4-(5-isopropylsulfanyl-tetrazol-1-yl)-phenol, 471 mg of bromopropanol, 473 mg of potassium carbonate and 10 mg of potassium iodide are stirred for 15 hours at reflux in 10 ml of acetone. The reaction mixture is filtered and concentrated. The residue is taken up in ethyl acetate, washed with water and concentrated. Purification over silica gel yields 3-[4-(5-isopropylsulfanyl-tetrazol-1-yl)-phenoxy]-propan-1-ol.
- Table 2 A compound of the general formula (Ib) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 3 A compound of the general formula (Ib) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 5 A compound of the general formula (Ib) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 6 A compound of the general formula (Ic) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 8 A compound of the general formula (Ic) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 9 A compound of the general formula (Ic) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 10 A compound of the general formula (Id) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 11 A compound of the general formula (Id) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 12 A compound of the general formula (Id) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 13 A compound of the general formula (Id) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 14 A compound of the general formula (Ie) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 16 A compound of the general formula (Ie) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 17 A compound of the general formula (Ie) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 18 A compound of the general formula (If) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 19 A compound of the general formula (If) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 20 A compound of the general formula (If) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 21 A compound of the general formula (If) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 22 A compound of the general formula (Ig) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 23 A compound of the general formula (Ig) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 24 A compound of the general formula (Ig) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 25 A compound of the general formula (Ig) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 26 A compound of the general formula (Ih) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 27 A compound of the general formula (Ih) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 28 A compound of the general formula (Ih) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 29 A compound of the general formula (Ih) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 30 A compound of the general formula (Ii) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 31 A compound of the general formula (Ii) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 32 A compound of the general formula (Ii) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 33 A compound of the general formula (Ii) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 34 A compound of the general formula (Ik) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 35 A compound of the general formula (Ik) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 36 A compound of the general formula (Ik) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 37 A compound of the general formula (Ik) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 38 A compound of the general formula (Im) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 39 A compound of the general formula (Im) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 40 A compound of the general formula (Im) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 41 A compound of the general formula (Im) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 42 A compound of the general formula (In) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 43 A compound of the general formula (In) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 44 A compound of the general formula (In) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 45 A compound of the general formula (In) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 46 A compound of the general formula (Io) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 47 A compound of the general formula (Io) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 48 A compound of the general formula (Io) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 49 A compound of the general formula (Io) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 51 A compound of the general formula (Ip) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 52 A compound of the general formula (Ip) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 53 A compound of the general formula (Ip) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 54 A compound of the general formula (Iq) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 55 A compound of the general formula (Iq) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 57 A compound of the general formula (Iq) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 58 A compound of the general formula (Ir) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 59 A compound of the general formula (Ir) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 60 A compound of the general formula (Ir) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 61 A compound of the general formula (Ir) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 62 A compound of the general formula (Is) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 63 A compound of the general formula (Is) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 64 A compound of the general formula (Is) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 67 A compound of the general formula (It) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 68 A compound of the general formula (It) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 69 A compound of the general formula (It) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 70 A compound of the general formula (Iu) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 71 A compound of the general formula (Iu) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 72 A compound of the general formula (Iu) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 73 A compound of the general formula (Iu) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 74 A compound of the general formula (Iv) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 75 A compound of the general formula (Iv) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 76 A compound of the general formula (Iv) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 77 A compound of the general formula (Iv) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 78 A compound of the general formula (Iw) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 79 A compound of the general formula (Iw) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 80 A compound of the general formula (Iw) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 81 A compound of the general formula (Iw) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 82 A compound of the general formula (Ix) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 83 A compound of the general formula (Ix) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 84 A compound of the general formula (Ix) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 85 A compound of the general formula (Ix) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 86 A compound of the general formula (Iy) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 87 A compound of the general formula (Iy) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 88 A compound of the general formula (Iy) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 89 A compound of the general formula (Iy) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 90 A compound of the general formula (Iz) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 91 A compound of the general formula (Iz) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 92 A compound of the general formula (Iz) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 93 A compound of the general formula (Iz) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 94 A compound of the general formula (Iz 1 ) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 95 A compound of the general formula (Iz 1 ) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 96 A compound of the general formula (Iz 1 ) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 97 A compound of the general formula (Iz 1 ) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 98 A compound of the general formula (Iz 2 ) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 99 A compound of the general formula (Iz 2 ) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 100 A compound of the general formula (Iz 2 ) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 101 A compound of the general formula (Iz 2 ) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 102 A compound of the general formula (Iz 3 ) wherein n is 2 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 103 A compound of the general formula (Iz 3 ) wherein n is 3 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 104 A compound of the general formula (Iz 3 ) wherein n is 4 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 105 A compound of the general formula (Iz 3 ) wherein n is 5 and the combination of the substituents R 10 , X 1 and X 2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Example F1 Emulsifiable concentrates a) b) c) active ingredient 25% 40% 50% calcium dodecylbenzenesulfonate 5% 8% 6% castor oil polyethylene glycol ether (36 mol EO) 5% — — tributylphenol polyethylene glycol ether — 12% 4% (30 mol EO) cyclohexanone — 15% 20% xylene mixture 65% 25% 20% Mixing finely ground active ingredient and additives gives an emulsifiable concentrate which yields emulsions of the desired concentration on dilution with water.
- Example F2 Solutions a) b) c) d) active ingredient 80% 10% 5% 95% ethylene glycol monomethyl ether 20% — — — polyethylene glycol (MW 400) — 70% — — N-methylpyrrolid-2-one — 20% — — epoxidised coconut oil — — 1% 5% benzine (boiling range: 160-190°) — — 94% — Mixing finely ground active ingredient and additives gives a solution suitable for use in the form of microdrops.
- Young soybean plants are sprayed with an aqueous emulsion spray mixture comprising 400 ppm of test compound. After the spray-coating has dried, the soybean plants are populated with 10 caterpillars of Heliothis virescens in the first stage and placed in a plastics container. Evaluation is made 6 days later. The percentage reduction in population and the percentage reduction in feeding damage (% activity) are determined by comparing the number of dead caterpillars and the feeding damage on the treated plants with that on the untreated plants.
- Young cabbage plants are sprayed with an aqueous emulsion spray mixture comprising 400 ppm of test compound. After the spray-coating has dried, the cabbage plants are populated with 10 caterpillars of Plutella xylostella in the third stage and placed in a plastics container. Evaluation is made 3 days later. The percentage reduction in population and the percentage reduction in feeding damage (% activity) are determined by comparing the number of dead caterpillars and the feeding damage on the treated plants with that on the untreated plants.
- the compounds of the Tables exhibit good activity against Plutella xylostella .
- the compounds 1.3, 1.4, 1.5, 1.10 to 1.13, 1.16, 1.17, 1.19 and 1.21 are more than 80% effective.
- Young soybean plants are sprayed with an aqueous emulsion spray mixture comprising 400 ppm of test compound and, after the spray-coating has dried, the plants are populated with 10 caterpillars of Spodoptera littoralis in the first stage and then placed in a plastics container. 3 days later, the percentage reduction in population and the percentage reduction in feeding damage (% activity) are determined by comparing the number of dead caterpillars and the feeding damage on the treated plants with that on untreated plants.
- the compounds of the Tables exhibit good activity in this test.
- the compounds 1.3, 1.4, 1.5, 1.10 to 1.13, 1.16, 1.17, 1.19 and 1.21 are more than 80% effective.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Indole Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
- Pyrrole Compounds (AREA)
- Thiazole And Isothizaole Compounds (AREA)
Abstract
Compounds of formula
wherein A0 is a bond or a C1-C6alkylene bridge;
- A1, A2 and A3 are a C1-C6alkylene bridge;
- D is CH or N;
- W is, for example, O, S, SO, SO2, —C(═O)—O— or —O—C(═O)—;
- T is a bond or, for example, O, NH, S, SO or SR2;
- Q is, for example, O, S, SO or SO2;
- Y is, for example, O, S, SO or SO2;
- X1 and X2 are each independently of the other fluorine, chlorine or bromine;
- R1, R2 and R3 are, for example, H, halogen, OH, SH, CN or nitro;
- R4 is, for example, H, halogen, OH, SH, CN, nitro or C1-C6alkyl;
- R5 is, for example, H, CN, OH, C1-C6alkyl or C3-C8cycloalkyl;
- k is 1, 2 or 3 when D is nitrogen; or is 1, 2, 3 or 4 when D is CH;
- m is 1 or 2;
- E is heteroaryl which is unsubstituted or substituted—depending upon the substitutions possible on the ring—by from one to four identical or different substituents selected from R10; and
- R10 is, for example, halogen, CN, NO2, OH, SH or C1-C6alkyl;
- and, where applicable, their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form, a process for the preparation of those compounds and their use, pesticidal compositions in which the active ingredient has been selected from those compounds or an agrochemically acceptable salt thereof, a process for the preparation of those compositions and their use, plant propagation material treated with those compositions, and a method of controlling pests.
Description
- The present invention relates (1) to compounds of formula
- wherein
- A0, A1 and A2 are each independently of the other a bond or a C1-C6alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl and C1-C3haloalkyl;
- A3 is a C1-C6alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl and C1-C3haloalkyl;
- D is CH or N;
- X1 and X2 are each independently of the other fluorine, chlorine or bromine;
- R1, R2 and R3 are each independently of the others H, halogen, OH, SH, CN, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkylcarbonyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy, —S(═O)—C1-C6alkyl, —S(O)2—C1-C6alkyl, C1-C6alkoxycarbonyl or C3-C6haloalkynyloxy; the substituents R3 being independent of one another when m is 2;
- R4 is H, halogen, OH, SH, CN, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkylcarbonyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy, —S(═O)—C1-C6alkyl, —S(═O)2—C1-C6alkyl or C1-C6alkoxycarbonyl; the substituents R4 being independent of one another when k is greater than 1; or N(R5)2 wherein the two substituents R5 are independent of one another;
- R5 is H, CN, OH, C1-C6alkyl, C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy, —C(═O)R8, —C(═S)R8, phenyl, benzyl; or phenyl or benzyl each of which is substituted in the aromatic ring by from one to five identical or different substituents selected from the group consisting of halogen, C1-C6alkyl, halo-C1-C6alkyl, C1-C6alkoxy, halo-C1-C6-alkoxy, hydroxy, cyano and nitro;
- or the two substituents R5 together form a four- to eight-membered, straight-chain or branched alkylene bridge wherein a CH2 group may have been replaced by O, S or NR9, and the alkylene bridge is unsubstituted or substituted by from one to four identical or different substituents selected from C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl and C1-C3haloalkyl;
- W is O, NR6, S, SO, SO2, —C(═O)—O—, —O—C(═O)—, —C(═O)—NR7— or —NR7—C(═O)—;
- T is a bond, O, NH, NR6, S, SO, SO2, —C(═O)—O—, —O—C(═O)—, —C(═O)—NR7— or —NR7—C(═O)—;
- Q is O, NR6, S, SO or SO2;
- Y is O, NR6, S, SO or SO2;
- R6 and R7 are independently of each other H, C1-C6alkyl, C1-C3haloalkyl, C1-C6alkylcarbonyl, C1-C3haloalkylcarbonyl, C1-C6alkoxyalkyl, C3-C8cycloalkyl or benzyl;
- R8 is C1-C6alkyl, C1-C6haloalkyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy, C3-C6cycloalkyl, phenyl, benzyl; or phenyl or benzyl each of which is unsubstituted or substituted by from one to three identical or different substituents selected from halogen, CN, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkylcarbonyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C1-C6alkoxycarbonyl, C1-C3haloalkoxycarbonyl and C2-C6haloalkenyloxy;
- R9 is H, C1-C6alkyl, C1-C3haloalkyl, C1-C6-alkylcarbonyl, C1-C6haloalkylcarbonyl, C1-C6alkoxyalkyl, C3-C8cycloalkyl or benzyl;
- k is 1, 2 or 3 when D is nitrogen; or is 1, 2, 3 or 4 when D is CH;
- m is 1 or 2;
- E is heteroaryl which is unsubstituted or substituted—depending upon the substitutions possible on the ring—by from one to four identical or different substituents selected from R10;
- R10 is halogen, CN, NO2, OH, SH, C1-C6alkyl, C1-C6haloalkyl, C1-C6hydroxyalkyl, C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl, C2-C6alkenyl, C2-C6haloalkenyl, C3-C6alkynyl, C3-C6haloalkynyl, C1-C6alkoxy, C1-C6alkoxy-C1-C6alkyl, C1-C6haloalkoxy, C1-C6haloalkoxy-C1-C6alkyl, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkenyloxy-C1-C6alkyl, C2-C6haloalkenyloxy-C1-C6alkyl, C3-C6alkynyloxy, C3-C6haloalkynyloxy, C3-C6alkynyloxy-C1-C6alkyl, C3-C8cycloalkoxy, C3-C8cycloalkyl-C1-C6alkoxy, C3-C8cycloalkoxy-C1-C6alkyl, C3-C8cycloalkoxy-C1-C6alkoxy, C3-C8cycloalkyl-C1-C6alkoxy-C1-C6alkyl, C1-C6alkylcarbonyl-C1-C6alkyl, C1-C6alkoxycarbonyl-C1-C6alkyl, C1-C6alkylthio, C2-C6alkenylthio, C3-C6alkynylthio, C3-C6cycloalkylthio, C3-C6cycloalkyl-C1-C6alkylthio, C2-C6haloalkenylthio, C1-C6haloalkylthio, NH2, NH(C1-C6alkyl), N(C1-C6alkyl)2, C1-C6alkylcarbonylamino, C1-C6haloalkylcarbonylamino, C1-C6alkoxycarbonylamino, C1-C6alkylaminocarbonylamino, —SO—C1-C6alkyl, —SO-halo-C1-C6alkyl, —SO2—C1-C6alkyl, —SO2-halo-C1-C6alkyl, —C(═O)R11, phenyl or benzyl; wherein the phenyl and benzyl radicals may be unsubstituted or may carry independently of each other one to three substituents selected form the group consisting of halogen, OH, SH, CN, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkylcarbonyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy, —S(═O)—C1-C6alkyl, —S(O)2—C1-C6alkyl, C1-C6alkoxycarbonyl and C2-C6haloalkenyloxy; and
- R11 is H, OH, C1-C6alkyl, C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxy, C3-C8cycloalkoxy, C3-C8cycloalkyl-C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyl, C2-C6haloalkynyl, C2-C6alkynyloxy, C2-C6haloalkynyloxy, NH2, NH—C1-C6alkyl, —N(C1-C6alkyl)2, NH-phenyl, NH-benzyl, phenoxy or benzyloxy;
- and, where applicable, their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form, to a process for the preparation of those compounds, E/Z isomers and tautomers and to their use, to pesticidal compositions in which the active ingredient has been selected from those compounds, E/Z isomers and tautomers, and to a process for the preparation of those compositions and to their use, to intermediates and, where applicable, their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in free form or in salt form, for the preparation of those compounds, where applicable to tautomers, in free form or in salt form, of those intermediates and to a process for the preparation of those intermediates and their tautomers and to their use.
- Certain dihaloallyl derivatives are proposed in the literature as active ingredients in pesticidal compositions. The biological properties of those known compounds are not entirely satisfactory in the field of pest control, however, for which reason there is a need to provide further compounds having pesticidal properties, especially for controlling insects and members of the order Acarina, that problem being solved according to the invention by the provision of the present compounds of formula (I).
- The compounds of formula (I) and, where applicable, their tautomers are able to form salts, e.g. acid addition salts. The latter are formed, for example, with strong inorganic acids, such as mineral acids, e.g. sulfuric acid, a phosphoric acid or a hydrohalic acid, with strong organic carboxylic acids, such as unsubstituted or substituted, e.g. halo-substituted, C1-C4alkanecarboxylic acids, for example acetic acid, saturated or unsaturated dicarboxylic acids, e.g. oxalic, malonic, maleic, fumaric or phthalic acid, hydroxycarboxylic acids, e.g. ascorbic, lactic, malic, tartaric or citric acid, or benzoic acid, or with organic sulfonic acids, such as unsubstituted or substituted, e.g. halo-substituted, C1-C4alkane- or aryl-sulfonic acids, e.g. methane- or p-toluene-sulfonic acid. Furthermore, compounds of formula (I) having at least one acid group are able to form salts with bases. Suitable salts with bases are, for example, metal salts, such as alkali metal or alkaline earth metal salts, e.g. sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower alkylamine, e.g. ethyl-, diethyl-, triethyl- or dimethyl-propyl-amine, or a mono-, di- or tri-hydroxy-lower alkylamine, e.g. mono-, di- or tri-ethanolamine. It may also be possible for corresponding internal salts to be formed. The free form is preferred. Of the salts of compounds of formula (I), preference is given to agrochemically advantageous salts. Hereinabove and hereinbelow any reference to the free compounds of formula (I) or to their salts is to be understood as including, where appropriate, also the corresponding salts or the free compounds of formula (I), respectively. The same applies to tautomers of compounds of formula (I) and their salts.
- The general terms used hereinabove and hereinbelow have the meanings given below, unless defined otherwise.
- Halogen, as a group per se and as a structural element of other groups and compounds, such as haloalkyl, halocycloalkyl, haloalkenyl, haloalkynyl and haloalkoxy, is fluorine, chlorine, bromine or iodine, especially fluorine, chlorine or bromine, more especially fluorine or chlorine, especially chlorine.
- Unless defined otherwise, carbon-containing groups and compounds each contain from 1 up to and including 20, preferably from 1 up to and including 18, especially from 1 up to and including 10, more especially from 1 up to and including 6, especially from 1 up to and including 4, especially from 1 up to and including 3, more especially 1 or 2, carbon atoms; methyl is especially preferred.
- Alkylene is a straight-chain or branched bridging member and is especially —CH2—, —CH2CH2—, —CH2—CH2—CH2—, —CH2—CH2—CH2—CH2—, —CH2—CH2—CH2—CH2—CH2—, —CH(CH3)—, —CH2(CH3)CH2—CH2—, —CH(C2H5)—, —C(CH3)2—, —CH(CH3)CH2—, —CH(CH3)CH(CH3)— or —CH2C(CH3)2—CH2—.
- Alkyl, as a group per se and as a structural element of other groups and compounds, such as haloalkyl, alkoxy, alkoxyalkyl, haloalkoxy, alkoxycarbonyl, alkylthio, haloalkylthio, alkylsulfonyl and alkylsulfonyloxy, is—in each case giving due consideration to the number of carbon atoms contained in the group or compound in question—either straight-chain, e.g. methyl, ethyl, n-propyl, n-butyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-hexadecyl or n-octadecyl, or branched, e.g. isopropyl, isobutyl, sec-butyl, tert-butyl, isopentyl, neopentyl or isohexyl.
- Alkenyl and alkynyl—as groups per se and as structural elements of other groups and compounds, such as haloalkenyl, haloalkynyl, alkenyloxy, haloalkenyloxy, alkynyloxy or haloalkynyloxy—are straight-chain or branched and each contains two or preferably one unsaturated carbon-carbon bond(s). There may be mentioned by way of example vinyl, prop-2-en-1-yl, 2-methylprop-2-en-1-yl, but-2-en-1-yl, but-3-en-1-yl, prop-2-yn-1-yl, but-2-yn-1-yl and but-3-yn-1-yl.
- Cycloalkyl—as a group per se and as a structural element of other groups and compounds, such as alkyl—is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctyl. Cyclopentyl and cyclohexyl, and especially cyclopropyl, are preferred.
- Halo-substituted carbon-containing groups and compounds, such as haloalkyl and haloalkoxy, may be partially halogenated or perhalogenated, the halogen substituents in the case of polyhalogenation being the same or different. Examples of haloalkyl—as a group per se and as a structural element of other groups and compounds, such as haloalkoxy—are methyl substituted from one to three times by fluorine, chlorine and/or bromine, such as CHF2, CF3 or CH2Cl; ethyl substituted from one to five times by fluorine, chlorine and/or bromine, such as CH2CF3, CF2CF3, CF2CCl3, CF2CHCl2, CF2CHF2, CF2CFCl2, CH2CH2C1, CF2CHBr2, CF2CHClF, CF2CHBrF or CClFCHClF; propyl or isopropyl each substituted from one to seven times by fluorine, chlorine and/or bromine, such as CH2CHBrCH2Br, CF2CHFCF3, CH2CF2CF3, CF2CF2CF3, CH(CF3)2 or CH2CH2CH2Cl; and butyl or an isomer thereof substituted from one to nine times by fluorine, chorine and/or bromine, such as CF(CF3)CHFCF3, CF2(CF2)2CF3 or CH2(CF2)2CF3.
- Aryl is especially phenyl or naphthyl, preferably phenyl.
- Heteroaryl is to be understood as meaning a five- to seven-membered, especially a five-membered, monocyclic aromatic ring which contains from one to four hetero atoms selected from the group consisting of N, O and S, especially N and S, or a bicyclic heteroaryl which may contain, either in one ring only—as in quinolinyl, quinoxalinyl, indolinyl, benzothiophenyl or benzofuranyl, for example—or in both rings—as in pteridinyl or purinyl, for example—one or more hetero atoms selected independently of one another from N, O and S. Preference is given to pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, s-triazinyl, 1,2,4-triazinyl, thienyl, furanyl, pyranyl, pyrrolyl, pyrazolyl, imidazolyl, thiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, oxazolyl, isoxazolyl, thiadiazolyl, oxadiazolyl, tetrazolyl, benzothienyl, quinolinyl, quinoxalinyl, benzofuranyl, benzimidazolyl, benzopyrrolyl, benzthiazolyl, indolyl, coumarinyl, or indazolyl, which are preferably bonded via a carbon atom;
- special preference is given to thienyl, pyrrolyl, pyrazolyl, imidazolyl, 1,3-thiazolyl, 1,2,3-triazolyl, 1,2,4-triazolyl, 1,3,4-thiadiazolyl, 1,2,4-thiadiazolyl, oxazolyl, isoxazolyl, 1,2,4-oxadiazolyl or tetrazolyl.
- Preferred embodiments within the scope of the invention are
- (2) compounds of formula (I) according to (1), wherein X1 and X2 are chlorine or bromine, especially chlorine;
- (3) compounds of formula (I) according to (1) or (2), wherein the group A1-T-A2 is a bond;
- (4) compounds of formula (I) according to (1) to (3), wherein W is oxygen, —C(═O)O— or —C(═O)NH—, especially 0;
- (5) compounds of formula (I) according to (1) to (4), wherein A3 is a straight-chain alkylene bridge, especially ethylene, propylene or butylene, more especially propylene;
- (6) compounds of formula (I) according to (1) to (5), wherein Q is oxygen;
- (7) compounds of formula (I) according to (1) to (6), wherein Y is oxygen;
- (8) compounds of formula (I) according to (1) to (7), wherein R1 and R2 are bromine or chlorine, especially chlorine;
- (9) compounds of formula (I) according to (1) to (8), wherein R3 is hydrogen;
- (10) compounds of formula (I) according to (1) to (9), wherein R4 is hydrogen;
- (11) compounds of formula (I) according to (1) to (10), wherein R5 is H, C1-C6alkyl, C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy;
- (12) compounds of formula (I) according to (1) to (11), wherein R6 is —C(═O)R8 or —C(═S)R8, and R8 is C1-C6alkyl, C1-C6haloalkyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy, C3-C6cycloalkyl or phenyl;
- (13) compounds of formula (I) according to (1) or (2) and (4) to (11), wherein A1 is a bond, T is oxygen and A2 is a C1-C6alkylene bridge;
- (14) compounds of formula (I) according to (1) or (2), wherein A1 is a bond, T is —C(═O)O— wherein the oxygen is bonded to A2, or is —C(═O)NH— wherein NH is bonded to A2, and A2 is a C1-C6alkylene bridge;
- (15) compounds of formula (I) according to (1) to (14), wherein E is a five- to seven-membered, monocyclic heteroaryl having from one to four hetero atoms selected from the group consisting of N, O and S, or bicyclic heteroaryl which may contain, either in one ring only or in both rings, one or more hetero atoms selected independently of one another from N, O and S, and which is unsubstituted or carries one or two substituents R10, which are independent of each other; especially which is unsubstituted or carries one substituent R10;
- especially five-membered monocyclic heteroaryl having from two to four hetero atoms selected from the group consisting of N, O and S;
- more especially five-membered monocyclic heteroaryl having one or two nitrogen atoms and one oxygen atom;
- also more especially five-membered monocyclic heteroaryl having three or four nitrogen atoms;
- (16) compounds of formula (I) according to (1) to (15), wherein R10 is H, CN, OH, NO2, SH, C1-C6alkyl, C1-C6haloalkyl, C2-C6alkenyl, C1-C6alkoxy, C1-C6alkylcarbonyl, C1-C6-alkoxycarbonyl, C1-C6alkylthio, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6alkynyloxy, C2-C6-alkenylthio, C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl, cycloalkyl-C1-C6alkoxy or cycloalkyl-C1-C6alkylthio;
- especially C1-C6alkyl, C1-C6haloalkyl, C2-C6alkenyl, C1-C6alkoxy, C1-C6alkylthio, C2-C6-alkenyloxy, C2-C6alkenylthio, C3-C8cycloalkyl, cycloalkyl-C1-C6alkoxy or cycloalkyl-C1-C6-alkylthio;
- (17) compounds of formula (I) according to (1) to (15), wherein E is tetrazol-1-yl which is unsubstituted or monosubstituted by C1-C6alkyl, C1-C6haloalkyl, C2-C6alkenyl, C2-C6haloalkenyl, C3-C6cycloalkyl-C1-C6alkyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6-haloalkenyloxy, C3-C6alkynyloxy, C3-C6cycloalkyl-C1-C6alkoxy, C1-C6alkylthio, C1-C6haloalkylthio, C2-C6alkenylthio, C2-C6haloalkenylthio, C3-C6alkynylthio or by C3-C6cycloalkyl-C1-C6alkylthio;
- (18) compounds of formula (I) according to (1) to (15), wherein E is tetrazol-5-yl which is unsubstituted or monosubstituted in the 2-position by C1-C6alkyl, C1-C6haloalkyl, C2-C6-alkenyl, C2-C6haloalkenyl or by C3-C6cycloalkyl-C1-C6alkyl;
- (19) compounds of formula (I) according to (1) to (15), wherein E is 1,2,4-oxadiazol-3-yl which is unsubstituted or monosubstituted by CN, halogen, C1-C6alkyl, C1-C6haloalkyl, C2-C6alkenyl, C2-C6haloalkenyl, C3-C6alkynyl, C3-C6cycloalkyl, C1-C6alkylcarbonyl, C1-C6-haloalkylcarbonyl or by C1-C6alkoxycarbonyl;
- (20) compounds of formula (I) according to (1) to (15), wherein E is isoxazol-3-yl which is unsubstituted or monosubstituted by halogen, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxymethyl, C1-C6haloalkoxy-methyl, C1-C6alkylcarbonyloxy-methyl, C1-C6haloalkylcarbonyloxymethyl, C1-C6alkylcarbonyl, C1-C6haloalkylcarbonyl or by C1-C6alkoxycarbonyl;
- (21) compounds of formula (I) according to (1) to (15), wherein E is thiazol-2-yl which is unsubstituted or mono- or disubstituted by halogen, OH, CN, C1-C6alkyl, C1-C6haloalkyl, C3-C6cycloalkyl, C1-C6alkylcarbonyl, C1-C6haloalkylcarbonyl or by C1-C6alkoxycarbonyl, and wherein the substituents are independent of each other;
- (22) compounds of formula (I) according to (1) to (15), wherein E is 1,3,4-thiadiazol-2-yl which is unsubstituted or monosubstituted by halogen, CN, C1-C6alkyl, C1-C6haloalkyl, C2-C6alkenyl, C2-C6haloalkenyl, C3-C6cycloalkyl-C1-C6alkyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C3-C6alkynyloxy, C3-C6cycloalkyl-C1-C6alkoxy, C1-C6-alkylthio, C1-C6haloalkylthio, C2-C6alkenylthio, C2-C6haloalkenylthio, C3-C6alkynylthio or by C3-C6cycloalkyl-C1-C6alkylthio;
- (23) compounds of formula (I) according to (1) to (15), wherein E is 1,2,4-triazol-3-yl which is unsubstituted or substituted on the nitrogen in the 1-, 2- or 4-position by C1-C6alkyl and is unsubstituted or substituted in the 5-position by halogen, NO2, C1-C6alkyl, C1-C6-haloalkyl, C2-C6alkenyl, C2-C6haloalkenyl, C3-C6cycloalkyl-C1-C6alkyl, C1-C6alkoxy, C1-C6-haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C3-C6alkynyloxy, C3-C6cycloalkyl-C1-C6-alkoxy, C1-C6alkylthio, C1-C6haloalkylthio, C2-C6alkenylthio, C2-C6haloalkenylthio, C3-C6-alkynylthio, C3-C6cycloalkyl-C1-C6alkylthio, NH2, NHC(═O)C1-C6alkyl, NHC(═O)C1-C6haloalkyl or by NHC(═O)O—C1-C6alkyl;
- (24) compounds of formula (I) according to (1) to (15), wherein E is thiazol-4-yl, which is mono- or disubstituted by halogen, OH, CN, C1-C6alkyl, C1-C6haloalkyl, C3-C6cycloalkyl, C1-C6alkylcarbonyl, C1-C6haloalkylcarbonyl or by C1-C6alkoxycarbonyl, and wherein the substituents are independent of each other;
- (25) compounds of formula (I) according to (1) to (24), wherein D is CH;
- (26) compounds of formula (I) according to (1) to (24), wherein D is N;
- (27) compounds of formula (I) according to (1) to (26), wherein A0 is —CH2—;
- (28) compounds of formula (I) according to (1) to (26), wherein A0 is a bond.
- Special preference is given to the compounds listed in the Tables.
- The invention relates also to a process for the preparation of a compound of formula (I), or a salt thereof, wherein
- (a) a compound of formula
- wherein A0, A1, A2, A3, D, E, W, Q, T, R1, R2, R3, R4, m and k are as defined for formula (I) under (1), Z1 is —C(═O)R12 and R12 is H or C1-C6alkyl, is converted in the presence of an oxidising agent, especially a peracid, into a compound of formula
-
G-Z2a (IIIa), - wherein Z2a is O—C(═O)—R13 and R13 is C1-C6alkyl, and G denotes the part of the formula in brackets designated G in formula (II); either
- (b) a compound of formula (IIIa) above or of formula
-
G-Z2b (IIIb), - wherein G denotes the part of the formula in brackets designated G in formula (II), Z2b is a radical of formula —Y—C(═O)R14, Y is as defined for formula (I) under (1), and R14 is C1-C12alkyl unsubstituted or substituted by from one to three identical or different halogen substituents, or is phenyl unsubstituted or substituted by from one to three identical or different substituents selected from halogen, CN, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkylcarbonyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C1-C6alkoxycarbonyl and C2-C6haloalkenyloxy, is converted by hydrolytic cleavage into a compound of formula
-
G-Z3 (IV), - wherein G denotes the part of the formula in brackets designated G in formula (II), Z3 is YH, and Y is as defined for formula (I) under (1); or
- (c) a compound of formula
-
G-Z4 (V), - wherein Z4 is Y—CH2-phenyl, wherein the phenyl radical is unsubstituted or substituted by from one to three identical or different substituents selected from halogen, CN, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkylcarbonyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C1-C6alkoxycarbonyl and C2-C6haloalkenyloxy, G denotes the part of the formula in brackets designated G in formula (II), and Y is as defined for formula (I), is converted by removal of the benzyl group into a compound of formula (IV), as defined above;
- (d) the compound of formula (IV) so obtained is reacted in the presence of a base with a compound of formula
- wherein Hal is halogen, preferably bromine or chlorine, and alkyl is C1-C6alkyl, or the two alkyl radicals together form a C3-C8alkylene bridge, to form a compound of formula
-
G-Z5 (VI), - wherein G denotes the part of the formula in brackets designated G in formula (II), and Z5 is
- wherein alkyl and Y are as defined above;
- (e) the compound of formula (VI) so obtained is converted by deprotection of the acetal function in the presence of an acid into a compound of formula
-
G-Z6 (VII), - wherein Z6 is a group —Y—CH2—C(═O)H, G is as defined above for the compound of formula (II), and Y is as defined for formula (I) under (1), either
- (f1) for the preparation of a compound of formula (I) wherein X1 and X2 are chlorine or bromine, a compound of formula (VII) is reacted in the presence of a phosphine with a compound of formula C(X)4 wherein X is chlorine or bromine; or
- (f2) for the preparation of a compound of formula (I) wherein X1 and X2 are chlorine, a compound of formula (VII) is reacted first with CCl3-COOH or with chloroform in the presence of a strong base, then with acetic anhydride and subsequently with powdered zinc in acetic acid; or
- (f3) for the preparation of a compound of formula (I) wherein X1 is fluorine and X2 is chlorine or bromine, a compound of formula (VII) is reacted in the presence of a phosphine with a compound of the formula CF2X2, of the formula CFX3, of the formula CF2XCOONa or of the formula CFX2COONa; or
- (g1) for the preparation of a compound of formula (I) wherein X1 and X2 are chlorine or bromine, a compound of formula (IV) is reacted in the presence of a base with a compound of formula
- wherein L3 is a leaving group, preferably chlorine or bromine, and Hal is chlorine or bromine; or
- (g2) for the preparation of a compound of formula (I) wherein X1 and X2 are chlorine or bromine, a compound of formula (IV) is reacted in the presence of a base with a compound of formula
- wherein Hal is halogen and X is chlorine or bromine.
- The invention relates also to
- (h) a process for the preparation of a compound of formula (I) as defined under (1) and wherein Q is O, NR6 or S and R6 is as defined for formula (I) under (1), wherein a compound of formula
- wherein A0, A1, A2, A3, D, E, W, T, R4, R5, R6 and k are as defined for formula (I) under (1) and L1 is a leaving group, is reacted in the presence of a base with a compound of formula
- wherein R1, R2, R3 and m are as defined for formula (I) under (1), Q is O, NR6 or S and Z is one of the radicals Z1 to Z6 as defined for the above formulae (II) to (VII), and R6 is as defined for formula (I) under (1), and the resulting compound of formula
- wherein A0, A1, A2, A3, D, E, W, Q, T, R1, R2, R3, R4, m and k are as defined for formula (I) under (1) and Z is one of the radicals Z1 to Z6 as defined for formulae (II) to (VII) indicated above, is, as necessary, that is to say according to the meaning of the radical Z, reacted further analogously to one or more of process steps (a) to (g).
- In the compounds of formulae X/a to X/f, Z in compound X/a has the same meanings as Z1 in the compound of formula (II), and Z in compound X/b has the same meanings as Z2 as defined for formula (III), and so on.
- The invention relates also to
- (i1) a process for the preparation of a compound of formula (I) as defined above wherein W is O, NR6, S, —O—C(═O)— or —NR7—C(═O)— and R6 and R7 are as defined for formula (I) under (1), wherein a compound of formula
- wherein A0, A1, A2, A3, D, T, R4 and k are as defined for formula (I) under (1), W1 is O, NR6, S or —NR7— and R6 is as defined for formula (I) under (1), is reacted with a compound of formula
- wherein A3, R1, R2, R3, Q and m are as defined for formula (I) under (1), L2 is a leaving group or a group Hal-C(═O)— wherein Hal is a halogen atom, preferably chlorine or bromine, and Z is one of the radicals Z1 to Z6 as defined in formulae (II) to (VII) indicated above; or
- (i2) for the preparation of a compound of formula (I) as defined above wherein W is O, NR6, S, —C(═O)—O— or —C(═O)—NR7— and R6 and R7 are as defined for formula (I) under (1), wherein a compound of formula
- wherein A0, A1, A2, D, E, T, R4 and k are as defined for formula (I) under (1) and L1 is a leaving group or a group —C(═O)—Hal wherein Hal is a halogen atom, preferably chlorine or bromine, is reacted with a compound of formula
- wherein W2 is O, NR6, S or NR7 and R1, R2, R3 and m are as defined for formula (I) under (1),
- and a resulting compound of formula (Xa) to (Xf) as defined above is, as necessary, that is to say according to the meaning of the radical Z, reacted further analogously to one or more of process steps (a) to (g).
- In the compounds of formulae XII/a to XII/f and XIV/a to XIV/f, the radicals Z are as defined above for the compounds X/a to X/f; that is to say, for example, Z in the compound of formula XII/a has the same meanings as Z1 in the compound of formula (II), and Z in compound XII/b has the same meanings as Z2 as defined for formula (III), and so on.
- The invention relates also to
- (k) a process for the preparation of a compound of formula (I) as defined above under (1), wherein a compound of formula (VIII) as defined above is reacted in the presence of a base with a compound of formula
- wherein R1, R2, R3, Q, X1, X2, Y and m are as defined for formula (I) under (1).
- The invention relates also to
- (I) a process for the preparation of a compound of formula (I) as defined above under (1), wherein a compound of formula (XI) as defined above is reacted in a manner analogous to that in process variant (i) with a compound of formula
- wherein A3, R1, R2, R3, Q, Y, X1, X2 and m are as defined for formula (I) under (1) and L2 is as defined for formula (XII).
- The compounds of formulae (IIIa) and (IIIb) wherein R1 and R2 are halogen can be obtained by reacting a compound of formula
- wherein R3, Q, Y and m are as defined for formula (I) under (1), with a compound of the formula Hal-C(═O)—R13 wherein R13 is as defined above, halogenating the resulting compound of formula
- wherein R3, Q, Y and m are as defined for formula (I) under (1), and further reacting the resulting compound of formula
- wherein R3, Q, Y and m are as defined for formula (I) under (1) and R1 and R2 are halogen, analogously to Process (k).
- The invention relates also to
- (m) a process for the preparation of a compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein E is unsubstituted or substituted 1,2,3,4-tetrazol-5-yl, wherein any compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein CN is present instead of the heterocyclic radical E is reacted with sodium azide and then substituted further, if desired.
- The invention relates also to
- (n) a process for the preparation of a compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein E is unsubstituted or substituted 1,2,3,4-tetrazol-1-yl, wherein any compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII), wherein NCS is present instead of the heterocyclic radical E, is reacted with sodium azide and then substituted further, if desired.
- The invention relates also to
- (o) a process for the preparation of a compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein E is unsubstituted or substituted 1,2,4-oxadiazol-3-yl, wherein any compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein CN is present instead of the heterocyclic radical E is reacted with hydroxylamine and then with an acid chloride, acid anhydride or orthoformic acid ester, and is then substituted further, if desired.
- The invention relates also to
- (p) a process for the preparation of a compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein E is isoxazol-3-yl, wherein any compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII), wherein CHO is present instead of the heterocyclic radical E, is reacted with hydroxylamine, then with a halogenating agent and subsequently, in the presence of a base, with an alkyne.
- The invention relates also to
- (q) a process for the preparation of a compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein E is 5-chloro-isoxazol-3-yl, wherein any compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII), wherein CHO is present instead of the heterocyclic radical E, is reacted with hydroxylamine, then with a halogenating agent and subsequently, in the presence of a base, with 1,1-dichloroethane.
- The invention relates also to
- (r) a process for the preparation of a compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein E is thiazol-2-yl, said thiazole optionally being substituted in the 4-position with alkyl, haloalkyl, hydroxyalkyl, cycloalkyl, cycloalkyl-alkyl, alkenyl, haloalkenyl, alkynyl or haloalkynyl, wherein any compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII), wherein C(═S)NH2 is present instead of the heterocyclic radical E, is reacted with a suitable α-haloketone or an α-halocarboxylic acid ester; or
- (s) a process for the preparation of a compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein E is thiazol-4-yl, said thiazole optionally being substituted in the 2- and in the 4-position independently of each other with alkyl, haloalkyl, hydroxyalkyl, cycloalkyl, cycloalkyl-alkyl, alkenyl, haloalkenyl, alkynyl or haloalkynyl, wherein any compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII), wherein —C(═O)C1-C4alkyl is present instead of the heterocyclic radical E, is reacted with an halogenating agent followed by a reaction with a suitable thioamide;
- The invention relates also to
- (t) a process for the preparation of a compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein E is 1,3,4-thiadiazol-2-yl, wherein any compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII), wherein B(OH)2 is present instead of the heterocyclic radical E, is reacted in the presence of a palladium catalyst with a 2-halo-1,3,4-thiadiazole.
- The invention relates also to
- (t1) a process for the preparation of a compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein E is 1,3,4-thiadiazol-2-yl, wherein any compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII), wherein halogen or OS(O2)CF3 is present instead of the heterocyclic radical E, is reacted in the presence of a palladium catalyst with 1,3,4-thiadiazole-2-boronic acid or a 1,3,4-thiadiazole-2-boronic acid ester.
- The invention relates also to
- (u) a process for the preparation of a compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) wherein E is 1,2,4-triazol-3-yl, wherein any compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII), wherein —C(═NH)NH2 is present instead of the heterocyclic radical E, is reacted in the presence of a base with a carboxylic acid hydrazide.
- The reactions described hereinabove and hereinbelow are carried out in a manner known per se, for example in the absence or, where appropriate, in the presence of a suitable solvent or diluent or of a mixture thereof, the reactions being carried out, as required, with cooling, at room temperature or with heating, for example in a temperature range of approximately from −80° C. to the boiling temperature of the reaction mixture, preferably from approximately −20° C. to approximately +150° C., and, if necessary, in a closed vessel, under pressure, under an inert gas atmosphere and/or under anhydrous conditions. Especially advantageous reaction conditions can be found in the Examples.
- A leaving group, for example the leaving groups L1 and L2 defined above, or a counter-ion is to be understood hereinabove and hereinbelow as being any removable group that customarily comes into consideration for chemical reactions, such as are known to the person skilled in the art; especially OH, halogens, such as fluorine, chlorine, bromine, iodine, —O—Si(C1-C8alkyl)3, —O-aryl, —S—(C1-C8alkyl), —S-aryl, —O—S(═O)2U, —S(═O)U or —S(═O)2U, wherein U is unsubstituted or substituted C1-C8alkyl, C2-C8alkenyl, C2-C8alkynyl, unsubstituted or substituted aryl or unsubstituted or substituted benzyl. Especially preferred as leaving group are chlorine and bromine, mesylate, triflate, tosylate, especially chlorine; and chloride and bromide, especially chloride.
- Process (a): The reaction is carried out in acetic acid or a halogenated hydrocarbon, such as dichloromethane, at temperatures of from −20° C. to 100° C., preferably at from 20° C. to 50° C. As oxidising agents there are used, for example, hydrogen peroxide, a peracid, such as peracetic acid, trifluoroperacetic acid, 3-chloroperbenzoic acid or a mixture thereof, such as sodium perborate in acetic acid.
- Process (b): The reaction is preferably carried out in an alcohol, such as methanol, ethanol or an alcohol/water mixture, in the presence of an inorganic base, such as NaOH or KOH, and at temperatures of from 0° C. to 150° C., preferably from 20° C. to 80° C. Alternatively aminolysis with a primary amine, such as n-butylamine, can be carried out in a hydrocarbon, such as toluene or benzene, at temperatures of from 0° C. to 150° C., preferably at from 20° C. to 80° C.
- Process (c): Depending upon the nature of the benzyl substituent to be removed, the reaction can be carried out, for example, under a hydrogen atmosphere, at a pressure of from 1 to 150 bar, especially at from 1 to 20 bar, and with the addition of a catalyst, such as palladium/carbon, in an alcohol or ether. The preferred reaction temperature is from 0° C. to 120° C., especially from 20° C. to 80° C.
- Processes (d) and (g): The reactions are preferably carried out in the presence of a base, such as potassium or sodium carbonate, in acetone or dimethylformamide, at temperatures of from 0° C. to 150° C., preferably from 20° C. to 80° C. If necessary, catalytic amounts of potassium iodide or sodium iodide, or phase transfer catalysts, such as crown ethers or quaternary ammonium salts, are added.
- Process (e): The reaction is preferably carried out in acetone, dichloromethane, acetic acid, or especially in water, optionally with the addition of a mineral acid, at temperatures of from 0° C. to 120° C., preferably at from 20° C. to 50° C. For complete cleavage of the acetal it is preferable to add a strong mineral acid, for example hydrochloric acid, sulfuric acid or 4-toluenesulfonic acid.
- Process (f): For the preparation of the difluoro-, dichloro-, dibromo-, chlorofluoro- and bromofluoro-vinyl compounds, reaction with CCl4, CBr4, CF2X2, CFX3, CF2XC(═O)ONa or CFX2C(═O)ONa wherein X is bromine or chlorine is carried out in the presence of a trialkyl- or triaryl-phosphine, optionally with the addition of powdered zinc. The reaction is carried out in an inert solvent such as, for example, benzene or toluene, or an ether, such as diethyl ether, diisopropyl ether, dioxane or tetrahydrofuran, at temperatures of from 0° C. to 150° C., preferably at from 20° C. to 80° C.
- For the preparation of the dichlorovinyl compounds it is also possible for the process to be carried out in dimethylformamide, benzene, toluene, or in an ether, at temperatures of from 0° C. to 120° C., preferably from 20° C. to 80° C., and in the presence of trichloroacetic acid/sodium trichloroacetate, then by addition of acetic anhydride, optionally with the addition of base, for example triethylamine, and finally by addition of zinc and acetic acid.
- Processes (h) and (k): The reactions are preferably carried out in an ether, dimethylformamide, dimethylacetamide or N-methylpyrrolidone, at temperatures of from 0° C. to 150° C., preferably at from 20° C. to 80° C., with the addition of a base, such as potassium or sodium carbonate. Alternatively a coupling reagent, for example azodicarboxylic acid diethyl or diisopropyl ester and triphenylphosphine, can be used.
- Processes (i) and (l):
- Where L2 is a group Hal-C(═O)—, the process can be carried out in an inert solvent, such as in an ether or in toluene, at from 0° C. to 80° C., and in the presence of a suitable base, for example a trialkylamine.
- In the other cases the reaction is carried out in an ether, in an amide, such as dimethylformamide or N-methylpyrrolidone, and at from 0° C. to 150° C. Sodium hydride, for example, can be used as base.
- Process (m): There are suitable as solvents, for example, toluene, benzene, ethanol, propanol, isopropanol, methoxyethanol, ethoxyethanol or dimethylformamide. The reaction is carried out at from 20 to 200° C., preferably at from 80 to 150° C., where appropriate with the addition of lithium chloride, ammonium chloride or triethylammonium chloride.
- The further reaction is carried out, for example, in dimethylformamide, dimethyl sulfoxide, tetrahydrofuran, acetonitrile or toluene, in the presence of a base, for example potassium or sodium carbonate.
- Process (n): The reaction is carried out, for example, in toluene, benzene, dioxane, tetrahydrofuran, dimethylformamide or N-methylpyrrolidone, at from 0 to 130° C., preferably at from 20 to 80° C.
- Process (o): The reaction is carried out with hydroxylamine hydrochloride in the presence of a base, such as triethylamine, for example in ethanol, isopropanol, dimethylformamide or N-methylpyrrolidone, at from 0 to 120° C., preferably at from 20 to 80° C.
- The further reaction is carried out, for example, in toluene, benzene, THF, dioxane or dichloromethane, at from 0 to 120° C. in the presence of a base, such as triethylamine or pyridine.
- Process (p): The reaction with hydroxylamine hydrochloride is carried out in the presence of a base, such as triethylamine. The halogenation of the resulting oxime is carried out, for example, using sodium hypochlorite or tert-butyl hypochlorite in carbon tetrachloride, chloroform or dichloromethane.
- The further reaction with an alkyne is carried out in the presence of a base, such as triethylamine or pyridine, at from −20 to 120° C., preferably at from 0 to 80° C.
- Process (q): The process is carried out analogously to procedure (p). Instead of an alkyne, 1,1-dichloroethane is used.
- Processes (r) and (s): The reaction is carried out, for example, in ethanol, propanol or dimethylformamide, at from 0 to 120° C., preferably at from 20 to 80° C.
- Process (t): The Reaction is for example carried out in toluene, benzene, an ether, such as dimethoxyethane, in the presence of a base, for example aqueous sodium carbonate solution, and a palladium catalyst, such as palladium tetrakis(triphenylphosphine), at temperatures of from 0 to 150° C., preferably at from 20 to 100° C.
- Process (u): The reaction of the amidine is carried out, for example, in benzene, toluene, diethyl ether, diisopropyl ether, tert-butyl methyl ether, in the presence of a base, for example potassium or sodium hydroxide, at from 0 to 150° C., preferably at from 20 to 100° C.
- It will be understood that in the above-described Processes (m) to (u), in which a compound of formula (II), (III), (IV), (V), (VI), (VII), (VIII), (X), (XI) or (XIII) carrying a substituent, such as CN, —NCS, B(OH)2, —OS(O2)CF3, —C(═O)O-alkyl, —C(═NH)NH2, 1, Br or CHO instead of the heterocyclic radical E is processed further, further functional groups likewise carried by those intermediate compounds must under certain circumstances be protected by protecting groups. Such protecting groups are introduced according to the nature of the substituent in question. They include any removable group that customarily comes into consideration for chemical reactions, such as are known to the person skilled in the art. For example, aldehyde and keto groups are protected in the form of acetals or ketals, acids in the form of their esters, hydroxy groups in the form of ethers or esters, and phenolic hydroxy groups in the form of benzyl ethers or methyl ethers.
- Compounds of formula (I) obtainable in accordance with the process or by other means can be converted into other compounds of formula (I) in a manner known per se by replacement of one or more substituents in the starting compound of formula (I) in customary manner by another (other) substituent(s) according to the invention.
- In the case of such replacement, depending upon the choice of reaction conditions and starting materials suitable therefor, it is possible for only one substituent to be replaced by another substituent according to the invention in a reaction step or for a plurality of substituents to be replaced by other substituents according to the invention in the same reaction step.
- Salts of compounds of formula (I) can be prepared in a manner known per se. For example, salts of compounds of formula (I) with bases are obtained by treatment of the free compounds with a suitable base or with a suitable ion exchange reagent.
- Salts of compounds of formula (I) can be converted into the free compounds of formula (I) in customary manner, for example by treatment with a suitable acid or with a suitable ion exchange reagent.
- Salts of compounds of formula (I) can be converted in a manner known per se into other salts of a compound of formula (I).
- The compounds of formula (I), in free form or in salt form, may be in the form of one of the possible isomers or in the form of a mixture thereof, for example, depending upon the number of asymmetric carbon atoms occurring in the molecule and their absolute and relative configuration, and/or depending upon the configuration of non-aromatic double bonds occurring in the molecule, in the form of pure isomers, such as antipodes and/or diastereoisomers, or in the form of mixtures of isomers, such as mixtures of enantiomers, for example racemates, mixtures of diastereoisomers or mixtures of racemates. The invention relates both to the pure isomers and to all possible mixtures of isomers and is to be interpreted as such hereinbefore and hereinafter, even if stereochemical details are not mentioned specifically in every case.
- Mixtures of diastereoisomers, mixtures of racemates and mixtures of double bond isomers of compounds of formula (I), in free form or in salt form, which may be obtained in accordance with the process—depending upon the starting materials and procedures chosen—or by some other method, can be separated into the pure diastereoisomers or racemates in known manner on the basis of the physico-chemical differences between the constituents, for example by means of fractional crystallisation, distillation and/or chromatography.
- Mixtures of enantiomers, such as racemates, that are obtainable in a corresponding manner can be resolved into the enantiomers by known methods, for example by recrystallisation from an optically active solvent, by chromatography on chiral adsorbents, for example high pressure liquid chromatography (HPLC) on acetylcellulose, with the aid of suitable microorganisms, by cleavage with specific, immobilised enzymes, via the formation of inclusion compounds, for example using chiral crown ethers, only one enantiomer being complexed, or by conversion into diastereoisomeric salts and separation of the mixture of diastereoisomers so obtained, for example on the basis of their different solubilities by fractional crystallisation, into the diastereoisomers, from which the desired enantiomer can be freed by the action of suitable agents.
- Apart from by separation of corresponding mixtures of isomers, pure diastereoisomers or enantiomers can be obtained according to the invention also by generally known methods of diastereoselective or enantioselective synthesis, for example by carrying out the process according to the invention using starting materials having correspondingly suitable stereochemistry.
- In each case it is advantageous to isolate or synthesise the biologically more active isomer, e.g. enantiomer or diastereoisomer, or isomeric mixture, e.g. enantiomeric mixture or diastereoisomeric mixture, where the individual components have different biological activity.
- The compounds of formula (I), in free form or in salt form, can also be obtained in the form of their hydrates and/or may include other solvents, for example solvents which may have been used for the crystallisation of compounds in solid form.
- The invention relates to all those embodiments of the process according to which a compound obtainable as starting material or intermediate at any stage of the process is used as starting material and some or all of the remaining steps are carried out or a starting material is used in the form of a derivative or salt and/or its racemates or antipodes or, especially, is formed under the reaction conditions.
- In the process of the present invention it is preferable to use those starting materials and intermediates, in each case in free form or in salt form, which result in the compounds of formula (I) and their salts described at the beginning as being especially valuable.
- The invention relates especially to the preparation processes described in Examples P1 to P11.
- The invention relates also to the intermediates of formulae (II) to (XIX), where novel, and to the corresponding compounds wherein CN, NCS, C(H)O, B(OH)2, —C(H)═NOH, —C(Cl)═NOH, —C(═NH)NH2 or —C(═S)NH2 is present instead of the heterocyclic radical E, and, where applicable, to their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form. The preferences applying to such compounds are the same as those for the compounds of formula (I).
- In the area of pest control, the compounds of formula (I) according to the invention are active ingredients exhibiting valuable preventive and/or curative activity with a very advantageous biocidal spectrum and a very broad spectrum, even at low rates of concentration, while being well tolerated by warm-blooded animals, fish and plants. They are, surprisingly, equally suitable for controlling both plant pests and ecto- and endo-parasites in humans and more especially in productive livestock, domestic animals and pets. They are effective against all or individual development stages of normally sensitive animal pests, but also of resistant animal pests, such as insects and representatives of the order Acarina, nematodes, cestodes and trematodes, while at the same time protecting useful organisms. The insecticidal or acaricidal activity of the active ingredients according to the invention may manifest itself directly, i.e. in the mortality of the pests, which occurs immediately or only after some time, for example during moulting, or indirectly, for example in reduced oviposition and/or hatching rate, good activity corresponding to a mortality of at least 50 to 60%.
- Successful control within the scope of the subject of the invention is possible, in particular, of pests from the orders Lepidoptera, Coleoptera, Orthoptera, Isoptera, Psocoptera, Anoplura, Mallophaga, Thysanoptera, Heteroptera, Homoptera, Hymenoptera, Diptera, Siphonaptera, Thysanura and Acarina, mainly Acarina, Diptera, Thysanoptera, Lepidoptera and Coleoptera. Very especially good control is possible of the following pests:
- Abagrotis spp., Abraxas spp., Acantholeucania spp., Acanthoplusia spp., Acarus spp., Acarus siro, Aceria spp., Aceria sheldoni, Acleris spp., Acoloithus spp., Acompsia spp., Acossus spp., Acria spp., Acrobasis spp., Acrocercops spp., Acrolepia spp., Acrolepiopsis spp., Acronicta spp., Acropolitis spp., Actebia spp., Aculus spp., Aculus schlechtendali, Adoxophyes spp., Adoxophyes reticulana, Aedes spp., Aegeria spp., Aethes spp., Agapeta spp., Agonopterix spp., Agriopis spp., Agriotes spp., Agriphila spp., Agrochola spp., Agroperina spp., Alabama ssp., Alabama argillaceae, Agrotis spp., Albuna spp., Alcathoe spp., Alcis spp., Aleimma spp., Aletia spp., Aleurothrixus spp., Aleurothrixus floccosus, Aleyrodes spp., Aleyrodes brassicae, Allophyes spp., Alsophila spp., Amata spp., Amathes spp., Amblyomma spp., Amblyptilia spp., Ammoconia spp., Amorbia spp., Amphion spp., Amphipoea spp., Amphipyra spp., Amyelois spp., Anacamptodes spp., Anagrapha spp., Anarsia spp., Anatrychyntis spp., Anavitrinella spp., Ancylis spp., Andropolia spp., Anhimella spp., Antheraea spp., Antherigona spp., Antherigona soccata, Anthonomus ssp., Anthonomus grandis, Anticarsia spp., Anticarsia gemmatalis, Aonidiella spp., Apamea spp., Aphania spp., Aphelia spp., Aphididae, Aphis spp., Apotomis spp., Aproaerema spp., Archippus spp., Archips spp., Acromyrmex, Arctia spp., Argas spp., Argolamprotes spp., Argyresthia spp., Argyrogramma spp., Argyroploce spp., Argyrotaenia spp., Arotrophora spp., Ascotis spp., Aspidiotus spp., Aspilapteryx spp., Asthenoptycha spp., Aterpia spp., Athetis spp., Atomaria spp., Atomaria linearis, Atta spp., Atypha spp., Autographa spp., Axylia spp., Bactra spp., Barbara spp., Batrachedra spp., Battaristis spp., Bembecia spp., Bemisia spp., Bemisia tabaci, Bibio spp., Bibio hortulanis, Bisigna spp., Blastesthia spp., Blatta spp., Blatella spp., Blepharosis spp., Bleptina spp., Boarmia spp., Bombyx spp., Bomolocha spp., Boophilus spp., Brachmia spp., Bradina spp., Brevipalpus spp., Brithys spp., Bryobia spp., Bryobia praetiosa, Bryotropha spp., Bupalus spp., Busseola spp., Busseola fusca, Cabera spp., Cacoecimorpha spp., Cadra spp., Cadra cautella, Caenurgina spp., Calipitrimerus spp., Callierges spp., Callophpora spp., Callophpora erythrocephala, Calophasia spp., Caloptilia spp., Calybites spp., Capnoptycha spp., Capua spp., Caradrina spp., Caripeta spp., Carmenta spp., Carposina spp., Carposina nipponensis, Catamacta spp., Catelaphris spp., Catoptria spp., Caustoloma spp., Celaena spp., Celypha spp., Cenopis spp., Cephus spp., Ceramica spp., Cerapteryx spp., Ceratitis spp, Ceratophyllus spp., Ceroplaster spp., Chaetocnema spp., Chaetocnema tibialis, Chamaesphecia spp., Charanvca spp., Chemophila spp., Chersotis spp., Chiasmia spp., Chilo spp., Chionodes spp., Chorioptes spp., Choristoneura spp., Chrysaspidia spp., Chrysodeixis spp., Chrysomya spp., Chrysomphalus spp., Chrysomphalus dictyospermi, Chrysomphalus aonidium, Chrysoteuchia spp., Cilix spp., Cimex spp., Clysia spp., Clysia ambiguella, Clepsis spp., Cnaemidophorus spp., Cnaphalocrocis spp., Cnephasia spp., Coccus spp., Coccus hesperidum, Cochylis spp., Coleophora spp., Colotois spp., Commophila spp., Conistra spp., Conopomorpha spp., Corcyra spp., Cornutiplusia spp., Cosmia spp., Cosmopolites spp., Cosmopterix spp., Cossus spp., Costaeonvexa spp., Crambus spp., Creatonotos spp., Crocidolomia spp., Crocidolomia binotalis, Croesia spp., Crymodes spp., Cryptaspasma spp., Cryptoblabes spp., Cryptocala spp., Cryptophlebia spp., Cryptophlebia leucotreta, Cryptoptila spp., Ctenopseustis spp., Cucullia spp., Curculio spp., Culex spp., Cuterebra spp., Cydia spp., Cydia pomonella, Cymbalophora spp., Dactylethra spp., Dacus spp., Dadica spp., Damalinea spp., Dasychira spp., Decadarchis spp., Decodes spp., Deilephila spp., Deltodes spp., Dendrolimus spp., Depressaria spp., Dermestes spp., Dermanyssus spp., Dermanyssus gallinae, Diabrotica spp., Diachrysia spp., Diaphania spp., Diarsia spp., Diasemia spp., Diatraea spp., Diceratura spp., Dichomeris spp., Dichrocrocis spp., Dichrorampha spp., Dicycla spp., Dioryctria spp., Diparopsis spp., Diparopsis castanea, Dipleurina spp., Diprion spp., Diprionidae, Discestra spp., Distantiella spp., Distantiella theobroma, Ditula spp., Diurnea spp., Doratopteryx spp., Drepana spp., Drosphila spp., Drosphila melanogaster, Dysauxes spp., Dysdercus spp., Dysstroma spp., Eana spp., Earias spp., Ecclitica spp., Ecdytolopha spp., Ecpyrrhorrhoe spp., Ectomyelois spp., Eetropis spp., Egira spp., Elasmopalpus spp., Emmelia spp., Empoasca spp., Empyreuma spp., Enargia spp., Enarmonia spp., Endopiza spp., Endothenia spp., Endotricha spp., Eoreuma spp., Eotetranychus spp., Eotetranychus carpini, Epagoge spp., Epelis spp., Ephestia spp., Ephestiodes spp., Epiblema spp., Epiehoristodes spp., Epinotia spp., Epiphyas spp., Epiplema spp., Epipsestis spp., Epirrhoe spp., Episimus spp., Epitymbia spp., Epllachna spp., Erannis spp., Erastria spp., Eremnus spp., Ereunetis spp., Eriophyes spp., Eriosoma spp., Eriosoma lanigerum, Erythroneura spp., Estigmene spp., Ethmia spp., Etiella spp., Euagrotis spp., Eucosma spp., Euehlaena spp., Euelidia spp., Eueosma spp., Euchistus spp., Eucosmomorpha spp., Eudonia spp., Eufidonia spp., Euhyponomeutoides spp., Eulepitodes spp., Eulia spp., Eulithis spp., Eupithecia spp., Euplexia spp., Eupoecilia spp., Eupoecilia ambiguella, Euproctis spp., Eupsilia spp., Eurhodope spp., Eurois spp., Eurygaster spp., Eurythmia spp., Eustrotia spp., Euxoa spp., Euzophera spp., Evergestis spp., Evippe spp., Exartema spp., Fannia spp., Faronta spp., Feltia spp., Filatima spp., Fishia spp., Frankliniella spp., Fumibotys spp., Gaesa spp., Gasgardia spp., Gastrophilus spp., Gelechia spp., Gilpinia spp., Gilpinia polytoma, Glossina spp., Glyphipterix spp., Glyphodes spp., Gnorimoschemini spp., Gonodonta spp., Gortyna spp., Gracillaria spp., Graphania spp., Grapholita spp., Grapholitha spp., Gravitarmata spp., Gretchena spp., Griselda spp., Gryllotalpa spp., Gynaephora spp., Gypsonoma spp., Hada spp., Haematopinus spp., Halisidota spp., Harpipteryx spp., Harrisina spp., Hedya spp., Helicoverpa spp., Heliophobus spp., Heliothis spp., Hellula spp., Helotropa spp., Hemaris spp., Hercinothrips spp., Herculia spp., Hermonassa spp., Heterogenea spp., Holomelina spp., Homadaula spp., Homoeosoma spp., Homoglaea spp., Homohadena spp., Homona spp., Homonopsis spp., Hoplocampa spp., Hoplodrina spp., Hoshinoa spp., Hxalomma spp., Hydraecia spp., Hydriomena spp., Hyles spp., Hyloicus spp., Hypagyrtis spp., Hypatima spp., Hyphantria spp., Hyphantria cunea, Hypocala spp., Hypocoena spp., Hypodema spp., Hyppobosca spp., Hypsipyla spp., Hyssia spp., Hysterosia spp., Idaea spp., Idia spp., Ipimorpha spp., Isia spp., Isochorista spp., Isophrictis spp., Isopolia spp., Isotrias spp., Ixodes spp., Itame spp., Jodia spp., Jodis spp., Kawabea spp., Keiferia spp., Keiferia lycopersicella, Labdia spp., Lacinipolia spp., Lambdina spp., Lamprothritpa spp., Laodelphax spp., Lasius spp., Laspeyresia spp., Leptinotarsa spp., Leptinotarsa decemlineata, Leptocorisa spp., Leptostales spp., Lecanium spp., Lecanium comi, Lepidosaphes spp., Lepisma spp., Lepisma saccharina, Lesmone spp., Leucania spp., Leucinodes spp., Leucophaea spp., Leucophaea maderae, Leucoptera spp., Leucoptera scitella, Linognathus spp., Liposcelis spp., Lissorhoptrus spp., Lithacodia spp., Lithocolletis spp., Lithomoia spp., Lithophane spp., Lixodessa spp., Lobesia spp., Lobesia botrana, Lobophora spp., Locusta spp., Lomanaltes spp., Lomographa spp., Loxagrotis spp., Loxostege spp., Lucilia spp., Lymantria spp., Lymnaecia spp., Lyonetia spp., Lyriomyza spp., Macdonnoughia spp., Macrauzata spp., Macronoctua spp., Macrosiphus spp., Malacosoma spp., Maliarpha spp., Mamestra spp., Mamestra brassicae, Manduca spp., Manduca sexta, Marasmia spp., Margaritia spp., Matratinea spp., Matsumuraeses spp., Melanagromyza spp., Melipotes spp., Melissopus spp., Melittia spp., Melolontha spp., Meristis spp., Meritastis spp., Merophyas spp., Mesapamea spp., Mesogona spp., Mesoleuca spp., Metanema spp., Metendothenia spp., Metzneria spp., Micardia spp., Microcorses spp., Microleon spp., Mnesictena spp., Mocis spp., Monima spp., Monochroa spp., Monomorium spp., Monomorium pharaonis, Monopsis spp., Morrisonia spp., Musca spp., Mutuuraia spp., Myelois spp., Mythimna spp., Myzus spp., Naranga spp., Nedra spp., Nemapogon spp., Neodiprion spp., Neosphaleroptera spp., Nephelodes spp., Nephotettix spp., Nezara spp., Nilaparvata spp., Niphonympha spp., Nippoptilia spp., Noctua spp., Nola spp., Notocelia spp., Notodonta spp., Nudaurelia spp., Ochropleura spp., Ocnerostoma spp., Oestrus spp., Olethreutes spp., Oligia spp., Olindia spp., Olygonychus spp., Olygonychus gallinae, Oncocnemis spp., Operophtera spp., Ophisma spp., Opogona spp., Oraesia spp., Orniodoros spp., Orgyia spp., Oria spp., Orseolia spp., Orthodes spp., Orthogonia spp., Orthosia spp., Oryzaephilus spp., Oscinella spp., Oscinella frit, Osminia spp., Ostrinia spp., Ostrinia nubilalis, Otiorhynchus spp., Ourapteryx spp., Pachetra spp., Pachysphinx spp., Pagyda spp., Paleacrita spp., Paliga spp., Palthis spp., Pammene spp., Pandemis spp., Panemeria spp., Panolis spp., Panolis flammea, Panonychus spp., Parargyresthia spp., Paradiarsia spp., Paralobesia spp., Paranthrene spp., Parapandemis spp., Parapediasia spp., Parastichtis spp., Parasyndemis spp., Paratoria spp., Pareromeme spp., Pectinophora spp., Pectinophora gossypiella, Pediculus spp., Pegomyia spp., Pegomyia hyoscyami, Pelochrista spp., Pennisetia spp., Penstemonia spp., Pemphigus spp., Peribatodes spp., Peridroma spp., Perileucoptera spp., Periplaneta spp., Perizoma spp., Petrova spp., Pexicopia spp., Phalonia spp., Phalonidia spp., Phaneta spp., Phlyctaenia spp., Phlyctinus spp., Phorbia spp., Phragmatobia spp., Phricanthes spp., Phthorimaea spp., Phthorimaea operculella, Phyllocnistis spp., Phyllocoptruta spp., Phyllocoptruta oleivora, Phyllonorycter spp., Phyllophila spp., Phylloxera spp., Pieris spp., Pieris rapae, Piesma spp., Planococus spp., Planotortrix spp., Platyedra spp., Platynota spp., Platyptilia spp., Platysenta spp., Plodia spp., Plusia spp., Plutella spp., Plutella xylostella, Podosesia spp., Polia spp., Popillia spp., Polymixis spp., Polyphagotarsonemus spp., Polyphagotarsonemus latus, Prays spp., Prionoxystus spp., Probole spp., Proceras spp., Prochoerodes spp., Proeulia spp., Proschistis spp., Proselena spp., Proserpinus spp., Protagrotis spp., Proteoteras spp., Protobathra spp., Protoschinia spp., Pselnophorus spp., Pseudaletia spp., Pseudanthonomus spp., Pseudaternelia spp., Pseudaulacaspis spp., Pseudexentera spp., Pseudococus spp., Pseudohermenias spp., Pseudoplusia spp., Psoroptes spp., Psylla spp., Psylliodes spp., Pterophorus spp., Ptycholoma spp., Pulvinaria spp., Pulvinaria aethiopica, Pyralis spp., Pyrausta spp., Pyrgotis spp., Pyrreferra spp., Pyrrharctia spp., Quadraspidiotus spp., Rancora spp., Raphia spp., Reticultermes spp., Retinia spp., Rhagoletis spp, Rhagoletis pomonella, Rhipicephalus spp., Rhizoglyphus spp., Rhizopertha spp., Rhodnius spp., Rhophalosiphum spp., Rhopobota spp., Rhyacia spp., Rhyacionia spp., Rhynchopacha spp., Rhyzosthenes spp., Rivula spp., Rondotia spp., Rusidrina spp., Rynchaglaea spp., Sabulodes spp., Sahlbergella spp., Sahlbergella singularis, Saissetia spp., Samia spp., Sannina spp., Sanninoidea spp., Saphoideus spp., Sarcoptes spp., Sathrobrota spp., Scarabeidae, Sceliodes spp., Schinia spp., Schistocerca spp., Schizaphis spp., Schizura spp., Schreckensteinia spp., Sciara spp., Scirpophaga spp., Scirthrips auranti, Scoparia spp., Scopula spp., Scotia spp., Scotinophara spp., Scotogramma spp., Scrobipalpa spp., Scrobipalpopsis spp., Semiothisa spp., Sereda spp., Sesamia spp., Sesia spp., Sicya spp., Sideridis spp., Simyra spp., Sineugraphe spp., Sitochroa spp., Sitobion spp., Sitophilus spp., Sitotroga spp., Solenopsis spp., Smerinthus spp., Sophronia spp., Spaelotis spp., Spargaloma spp., Sparganothis spp., Spatalistis spp., Sperchia spp., Sphecia spp., Sphinx spp., Spilonota spp., Spodoptera spp., Spodoptera littoralis, Stagmatophora spp., Staphylinochrous spp., Stathmopoda spp., Stenodes spp., Sterrha spp., Stomoxys spp., Strophedra spp., Sunira spp., Sutyna spp., Swammerdamia spp., Syllomatia spp., Sympistis spp., Synanthedon spp., Synaxis spp., Syncopacma spp., Syndemis spp., Syngrapha spp., Synthomeida spp., Tabanus spp., Taeniarchis spp., Taeniothrips spp., Tannia spp., Tarsonemus spp., Tegulifera spp., Tehama spp., Teleiodes spp., Telorta spp., Tenebrio spp., Tephrina spp., Teratoglaea spp., Terricula spp., Tethea spp., Tetranychus spp., Thalpophila spp., Thaumetopoea spp., Thiodia spp., Thrips spp., Thrips palmi, Thrips tabaci, Thyridopteryx spp., Thyris spp., Tineola spp., Tipula spp., Tortricidia spp., Tortrix spp., Trachea spp., Trialeurodes spp., Trialeurodes vaporariorum, Triatoma spp., Triaxomera spp., Tribolium spp., Tricodectes spp., Trichoplusia spp., Trichoplusia ni, Trichoptilus spp., Trioza spp., Trioza erytreae, Triphaenia spp., Triphosa spp., Trogoderma spp., Tyria spp., Udea spp., Unaspis spp., Unaspis citri, Utetheisa spp., Valeriodes spp., Vespa spp., Vespamima spp., Vitacea spp., Vitula spp., Witlesia spp., Xanthia spp., Xanthorhoe spp., Xanthotype spp., Xenomicta spp., Xenopsylla spp., Xenopsylla cheopsis, Xestia spp., Xylena spp., Xylomyges spp., Xyrosaris spp., Yponomeuta spp., Ypsolopha spp., Zale spp., Zanclognathus spp., Zeiraphera spp., Zenodoxus spp., Zeuzera spp., Zygaena spp.,
- It is also possible to control pests of the class Nematoda using the compounds according to the invention. Such pests include, for example,
- root knot nematodes, cyst-forming nematodes and also stem and leaf nematodes;
- especially of Heterodera spp., e.g. Heterodera schachtii, Heterodora avenae and Heterodora trifolii; Globodera spp., e.g. Globodera rostochiensis; Meloidogyne spp., e.g. Meloidogyne incognita and Meloidogyne javanica; Radopholus spp., e.g. Radopholus similis; Pratylenchus, e.g. Pratylenchus neglectans and Pratylenchus penetrans; Tylenchulus, e.g. Tylenchulus semipenetrans; Longidorus, Trichodorus, Xiphinema, Ditylenchus, Apheenchoides and Anguina; especially Meloidogyne, e.g. Meloidogyne incognita, and Heterodera, e.g. Heterodera glycines.
- An especially important aspect of the present invention is the use of the compounds of formula (I) according to the invention in the protection of plants against parasitic feeding pests.
- The action of the compounds according to the invention and the compositions comprising them against animal pests can be significantly broadened and adapted to the given circumstances by the addition of other insecticides, acaricides or nematicides. Suitable additives include, for example, representatives of the following classes of active ingredient: organophosphorus compounds, nitrophenols and derivatives, formamidines, ureas, carbamates, pyrethroids, chlorinated hydrocarbons, neonicotinoids and Bacillus thuringiensis preparations.
- Examples of especially suitable mixing partners include: azamethiphos; chlorfenvinphos; cypermethrin, cypermethrin high-cis; cyromazine; diafenthiuron; diazinon; dichlorvos; dicrotophos; dicyclanil; fenoxycarb; fluazuron; furathiocarb; isazofos; iodfenphos; kinoprene; lufenuron; methacriphos; methidathion; monocrotophos; phosphamidon; profenofos; diofenolan; a compound obtainable from the Bacillus thuringiensis strain GC91 or from strain NCTC11821; pymetrozine; bromopropylate; methoprene; disulfoton; quinalphos; taufluvalinate; thiocyclam; thiometon; aldicarb; azinphos-methyl; benfuracarb; bifenthrin; buprofezin; carbofuran; dibutylaminothio; cartap; chlorfluazuron; chlorpyrifos; clothianidin; cyfluthrin; lambda-cyhalothrin; alpha-cypermethrin; zeta-cypermethrin; deltamethrin; diflubenzuron; endosulfan; ethiofencarb; fenitrothion; fenobucarb; fenvalerate; formothion; methiocarb; heptenophos; imidacloprid; isoprocarb; methamidophos; methomyl; mevinphos; parathion; parathion-methyl; phosalone; pirimicarb; propoxur; teflubenzuron; terbufos; triazamate; fenobucarb; tebufenozide; fipronil; beta-cyfluthrin; silafluofen; fenpyroximate; pyridaben; fenazaquin; pyriproxyfen; pyrimidifen; nitenpyram; acetamiprid; emamectin; emamectin-benzoate; spinosad; a plant extract that is active against insects; a preparation that comprises nematodes and is active against insects; a preparation obtainable from Bacillus subtilis; a preparation that comprises fungi and is active against insects; a preparation that comprises viruses and is active against insects; chlorfenapyr; acephate; acrinathrin; alanycarb; alphamethrin; amitraz; AZ 60541; azinphos A; azinphos M; azocyclotin; bendiocarb; bensultap; beta-cyfluthrin; BPMC; brofenprox; bromophos A; bufencarb; butocarboxin; butylpyridaben; cadusafos; carbaryl; carbophenothion; chloethocarb; chlorethoxyfos; chlormephos; cis-resmethrin; clocythrin; clofentezine; cyanophos; cycloprothrin; cyhexatin; demeton M; demeton S; demeton-S-methyl; dichlofenthion; dicliphos; diethion; dimethoate; dimethylvinphos; dioxathion; edifenphos; esfenvalerate; ethion; ethofenprox; ethoprophos; etrimphos; fenamiphos; fenbutatin oxide; fenothiocarb; fenpropathrin; fenpyrad; fenthion; fluazinam; flucycloxuron; flucythrinate; flufenoxuron; flufenprox; fonophos; fosthiazate; fubfenprox; HCH; hexaflumuron; hexythiazox; IKI-220; iprobenfos; isofenphos; isoxathion; ivermectin; malathion; mecarbam; mesulfenphos; metaldehyde; metolcarb; milbemectin; moxidectin; naled; NC 184; nithiazine; omethoate; oxamyl; oxydemethon M; oxydeprofos; permethrin; phenthoate; phorate; phosmet; phoxim; pirimiphos M; pirimiphos E; promecarb; propaphos; prothiofos; prothoate; pyrachlophos; pyradaphenthion; pyresmethrin; pyrethrum; tebufenozide; salithion; sebufos; sulfotep; sulprofos; tebufenpyrad; tebupirimphos; tefluthrin; temephos; terbam; tetrachlorvinphos; thiacloprid; thiafenox; thiamethoxam; thiodicarb; thiofanox; thionazin; thuringiensin; tralomethrin; triarathene; triazophos; triazuron; trichlorfon; triflumuron; trimethacarb; vamidothion; xylylcarb; YI 5301/5302; zetamethrin; DPX-MP062—indoxacarb; methoxyfenozide; bifenazate; XMC (3,5-xylyl methylcarbamate); or the fungus pathogen Metarhizium anisopliae.
- The compounds according to the invention can be used to control, i.e. to inhibit or destroy, pests of the mentioned type occurring on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forestry, or on parts of such plants, such as the fruits, blossoms, leaves, stems, tubers or roots, while in some cases plant parts that grow later are still protected against those pests.
- Target crops include especially cereals, such as wheat, barley, rye, oats, rice, maize and sorghum; beet, such as sugar beet and fodder beet; fruit, e.g. pomes, stone fruit and soft fruit, such as apples, pears, plums, peaches, almonds, cherries and berries, e.g. strawberries, raspberries and blackberries; leguminous plants, such as beans, lentils, peas and soybeans; oil plants, such as rape, mustard, poppy, olives, sunflowers, coconut, castor oil, cocoa and groundnuts; cucurbitaceae, such as marrows, cucumbers and melons; fibre plants, such as cotton, flax, hemp and jute; citrus fruits, such as oranges, lemons, grapefruit and mandarins; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes and paprika; lauraceae, such as avocado, cinnamon and camphor; and tobacco, nuts, coffee, aubergines, sugar cane, tea, pepper, vines, hops, bananas, natural rubber plants and ornamentals.
- Further areas of use of the compounds according to the invention are the protection of stored goods and storerooms and the protection of raw materials, and also in the hygiene sector, especially the protection of domestic animals and productive livestock against pests of the mentioned type, more especially the protection of domestic animals, especially cats and dogs, from infestation by fleas, ticks and nematodes.
- The invention therefore relates also to pesticidal compositions, such as emulsifiable concentrates, suspension concentrates, directly sprayable or dilutable solutions, spreadable pastes, dilute emulsions, wettable powders, soluble powders, dispersible powders, wettable powders, dusts, granules and encapsulations of polymer substances, that comprise at least one of the compounds according to the invention, the choice of formulation being made in accordance with the intended objectives and the prevailing circumstances.
- The active ingredient is used in those compositions in pure form, a solid active ingredient, for example, in a specific particle size, or preferably together with at least one of the adjuvants customary in formulation technology, such as extenders, e.g. solvents or solid carriers, or surface-active compounds (surfactants). In the area of parasite control in humans, domestic animals, productive livestock and pets it will be self-evident that only physiologically tolerable additives are used.
- Solvents are, for example: non-hydrogenated or partly hydrogenated aromatic hydrocarbons, preferably fractions C8 to C12 of alkylbenzenes, such as xylene mixtures, alkylated naphthalenes or tetrahydronaphthalene, aliphatic or cycloaliphatic hydrocarbons, such as paraffins or cyclohexane, alcohols, such as ethanol, propanol or butanol, glycols and ethers and esters thereof, such as propylene glycol, dipropylene glycol ether, ethylene glycol or ethylene glycol monomethyl or -ethyl ether, ketones, such as cyclohexanone, isophorone or diacetone alcohol, strongly polar solvents, such as N-methylpyrrolid-2-one, dimethyl sulfoxide or N,N-dimethylformamide, water, non-epoxidized or epoxidized plant oils, such as non-epoxidized or epoxidized rapeseed, castor, coconut or soya oil, and silicone oils.
- The solid carriers used, for example for dusts and dispersible powders, are as a rule natural rock powders, such as calcite, talc, kaolin, montmorillonite or attapulgite. Highly disperse silicic acids or highly disperse absorbent polymers can also be added to improve the physical properties. Granular adsorptive granule carriers are porous types, such as pumice, crushed brick, sepiolite or bentonite, and non-sorbent carrier materials are calcite or sand. A large number of granular materials of inorganic or organic nature can furthermore be used, in particular dolomite or comminuted plant residues.
- Surface-active compounds are, depending on the nature of the active compound to be formulated, nonionic, cationic and/or anionic surfactants or surfactant mixtures with good emulsifying, dispersing and wetting properties. The surfactants listed below are to be regarded only as examples; many other surfactants which are customary in formulation technology and are suitable according to the invention are described in the relevant literature.
- Nonionic surfactants are, in particular, polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols, saturated or unsaturated fatty acids and alkylphenols, which can contain 3 to 30 glycol ether groups and 8 to 20 carbon atoms in the (aliphatic) hydrocarbon radical and 6 to 18 carbon atoms in the alkyl radical of the alkylphenols. Substances which are furthermore suitable are water-soluble polyethylene oxide adducts, containing 20 to 250 ethylene glycol ether and 10 to 100 propylene glycol ether groups, on propylene glycol, ethylene diaminopolypropylene glycol and alkyl polypropylene glycol having 1 to 10 carbon atoms in the alkyl chain. The compounds mentioned usually contain 1 to 5 ethylene glycol units per propylene glycol unit. Examples are nonylphenol-polyethoxyethanols, castor oil polyglycol ethers, polypropylene-polyethylene oxide adducts, tributylphenoxypolyethoxyethanol, polyethylene glycol and octylphenoxypolyethoxyethanol. Other substances are fatty acid esters of polyoxyethylene sorbitan, such as polyoxyethylene sorbitan trioleate.
- The cationic surfactants are, in particular, quaternary ammonium salts which contain, as substituents, at least one alkyl radical having 8 to 22 C atoms and, as further substituents, lower, non-halogenated or halogenated alkyl, benzyl or lower hydroxyalkyl radicals. The salts are preferably in the form of halides, methyl-sulfates or ethyl-sulfates. Examples are stearyl-trimethyl-ammonium chloride and benzyl-di-(2-chloroethyl)-ethyl-ammonium bromide.
- Suitable anionic surfactants can be both water-soluble soaps and water-soluble synthetic surface-active compounds. Suitable soaps are the alkali metal, alkaline earth metal and substituted or unsubstituted ammonium salts of higher fatty acids (C10-C22), such as the sodium or potassium salts of oleic or stearic acid, or of naturally occurring fatty acid mixtures, which can be obtained, for example, from coconut oil or tall oil; and furthermore also the fatty acid methyl-taurine salts. However, synthetic surfactants are more frequently used, in particular fatty sulfonates, fatty sulfates, sulfonated benzimidazole derivatives or alkylarylsulfonates. The fatty sulfonates and sulfates are as a rule in the form of alkali metal, alkaline earth metal or substituted or unsubstituted ammonium salts and in general have an alkyl radical of 8 to 22 C atoms, alkyl also including the alkyl moiety of acyl radicals; examples are the sodium or calcium salt of ligninsulfonic acid, of dodecylsulfuric acid ester or of a fatty alcohol sulfate mixture prepared from naturally occurring fatty acids. These also include the salts of sulfuric acid esters and sulfonic acids of fatty alcohol-ethylene oxide adducts. The sulfonated benzimidazole derivatives preferably contain 2 sulfonic acid groups and a fatty acid radical having about 8 to 22 C atoms. Alkylarylsulfonates are, for example, the sodium, calcium or triethanolammonium salts of dodecylbenzenesulfonic acid, of dibutylnaphthalenesulfonic acid or of a naphthalenesulfonic acid-formaldehyde condensation product. Corresponding phosphates, such as salts of the phosphoric acid ester of a p-nonylphenol-(4-14)-ethylene oxide adduct or phospholipids, can further also be used.
- The compositions as a rule comprise 0.1 to 99%, in particular 0.1 to 95%, of active compound and 1 to 99.9%, in particular 5 to 99.9%, of—at least—one solid or liquid auxiliary, it being possible as a rule for 0 to 25%, in particular 0.1 to 20%, of the composition to be surfactants (% is in each case percent by weight). While concentrated compositions are more preferred as commercial goods, the end user as a rule uses dilute compositions which comprise considerably lower concentrations of active compound. Preferred compositions are composed, in particular, as follows (%=percent by weight):
-
-
active ingredient: 1 to 90%, preferably 5 to 20% surfactant: 1 to 30%, preferably 10 to 20% solvent: 5 to 98%, preferably 70 to 85% -
-
active ingredient: 0.1 to 10%, preferably 0.1 to 1% solid carrier: 99.9 to 90%, preferably 99.9 to 99% -
-
active ingredient: 5 to 75%, preferably 10 to 50% water: 94 to 24%, preferably 88 to 30% surfactant: 1 to 40%, preferably 2 to 30% -
-
active ingredient: 0.5 to 90%, preferably 1 to 80% surfactant: 0.5 to 20%, preferably 1 to 15% solid carrier: 5 to 99%, preferably 15 to 98% -
-
active ingredient: 0.5 to 30%, preferably 3 to 15% solid carrier: 99.5 to 70%, preferably 97 to 85% - The compositions according to the invention may also comprise further solid or liquid adjuvants, such as stabilisers, e.g. vegetable oils or epoxidised vegetable oils (e.g. epoxidised coconut oil, rapeseed oil or soybean oil), antifoams, e.g. silicone oil, preservatives, viscosity regulators, binders and/or tackifiers as well as fertilisers or other active ingredients for obtaining special effects, e.g. acaricides, bactericides, fungicides, nematicides, molluscicides or selective herbicides.
- The crop protection products according to the invention are prepared in known manner, in the absence of adjuvants, e.g. by grinding, sieving and/or compressing a solid active ingredient or mixture of active ingredients, for example to a certain particle size, and in the presence of at least one adjuvant, for example by intimately mixing and/or grinding the active ingredient or mixture of active ingredients with the adjuvant(s). The invention relates likewise to those processes for the preparation of the compositions according to the invention and to the use of the compounds of formula (I) in the preparation of those compositions.
- The invention relates also to the methods of application of the crop protection products, i.e. the methods of controlling pests of the mentioned type, such as spraying, atomising, dusting, coating, dressing, scattering or pouring, which are selected in accordance with the intended objectives and the prevailing circumstances, and to the use of the compositions for controlling pests of the mentioned type. Typical rates of concentration are from 0.1 to 1000 ppm, preferably from 0.1 to 500 ppm, of active ingredient. The rates of application per hectare are generally from 1 to 2000 g of active ingredient per hectare, especially from 10 to 1000 g/ha, preferably from 20 to 600 g/ha.
- A preferred method of application in the area of crop protection is application to the foliage of the plants (foliar application), the frequency and the rate of application being dependent upon the risk of infestation by the pest in question. However, the active ingredient can also penetrate the plants through the roots (systemic action) when the locus of the plants is impregnated with a liquid formulation or when the active ingredient is incorporated in solid form into the locus of the plants, for example into the soil, e.g. in granular form (soil application). In the case of paddy rice crops, such granules may be applied in metered amounts to the flooded rice field.
- The crop protection products according to the invention are also suitable for protecting plant propagation material, e.g. seed, such as fruits, tubers or grains, or plant cuttings, against animal pests. The propagation material can be treated with the composition before planting: seed, for example, can be dressed before being sown. The active ingredients according to the invention can also be applied to grains (coating), either by impregnating the seeds in a liquid formulation or by coating them with a solid formulation. The composition can also be applied to the planting site when the propagation material is being planted, for example to the seed furrow during sowing. The invention relates also to such methods of treating plant propagation material and to the plant propagation material so treated.
- The following Examples serve to illustrate the invention. They do not limit the invention. Temperatures are given in degrees Celsius; mixing ratios of solvents are given in parts by volume.
- P1.1: 2 g of methanesulfonic acid 3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propyl ester, 1.14 g of 4-iodophenol and 1.96 g of potassium carbonate are stirred for 24 hours at 50° C. in 20 ml of dimethylformamide. The reaction mixture is poured onto water and extracted with ethyl acetate. The organic phase is washed with water and potassium carbonate solution and concentrated. Purification over silica gel yields 1,3-dichloro-5-(3,3-dichloro-allyloxy)-2-[3-(4-iodo-phenoxy)-propoxy]-benzene. 1H-NMR (CDCl3) 300 MHz: 2.28 (m, 2H), 4.13 (t, 2H), 4.22 (t, 2H), 4.58 (d, 2H), 6.10 (t, 1H), 6.71 (d, 2H), 6.81 (s, 2H), 7.55 (d, 2H).
- P1.2: 200 mg of 1,3-dichloro-5-(3,3-dichloro-allyloxy)-2-[3-(4-iodo-phenoxy)-propoxy]-benzene, 29 mg of pyrrole, 6.9 mg of copper(I) iodide, 2.2 mg of ethylenediamine and 155 mg of potassium triphosphate are stirred for 24 hours at 110° C. in 4 ml of dioxane. The reaction mixture is diluted with ethyl acetate and filtered. Concentration and purification over silica gel yield the title compound (compound 1.1).
- P2.1: 3 g of methanesulfonic acid 3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propyl ester, 0.93 g of 4-hydroxybenzonitrile and 2.9 g of potassium carbonate are stirred for 17 hours at 40° C. in 30 ml of dimethylformamide. The reaction mixture is poured onto water and extracted with ethyl acetate. Concentration of the organic phase yields 4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-benzonitrile. 1H-NMR (CDCl3) 300 MHz: 2.30 (m, 2H), 4.14 (t, 2H), 4.32 (t, 2H), 4.58 (d, 2H), 6.10 (t, 1H), 6.83 (s, 2H), 7.00 (d, 2H), 7.60 (d, 2H).
- P2.2: 2 g of 4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-benzonitrile, 1.2 g of ammonium chloride and 1.5 g of sodium azide are stirred for 48 hours at 100° C. in 50 ml of dimethylformamide. The reaction mixture is poured onto cold dilute hydrochloric acid and extracted with ethyl acetate. Concentration of the organic phase and crystallisation from diethyl ether/hexane yield 5-(4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-phenyl)-2H-tetrazole having a melting point of 159-161° C.
- P2.3: 100 mg of 5-(4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-phenyl)-2H-tetrazole, 48 mg of ethyl iodide and 141 mg of potassium carbonate are stirred for 4 hours at 50° C. in 3 ml of dimethylformamide. The reaction mixture is poured onto water and extracted with ethyl acetate. Concentration of the organic phase and purification over silica gel yield 5-(4-[3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy]-phenyl)-2-ethyl-2H-tetrazole (compound 1.4).
- P3.1: 1.1 g of 4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-benzonitrile, 247 mg of hydroxylamine hydrochloride and 430 mg of triethylamine are stirred for 48 hours at 80° C. in 25 ml of ethanol. The reaction mixture is poured onto water and extracted with ethyl acetate. Concentration of the organic phase and crystallisation from diethyl ether yield 4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-N-hydroxy-benzamidine having a melting point of 144-146° C.
- P3.2: 100 mg of 4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-N-hydroxy-benzamidine are placed in 2 ml of toluene. 20 mg of acetyl chloride and 2 ml of pyridine are added, and heating is carried out for 4 hours at 120° C. The reaction mixture is concentrated, and the residue is taken up in ethyl acetate and washed with dilute hydrochloric acid and water. Concentration of the organic phase and purification over silica gel yield the title compound (compound 1.10).
- P4.1: 307 mg of tert-butyl hypochloride in 5 ml of carbon tetrachloride are added dropwise over a period of 10 minutes, at 20-30° C., to 1.3 g of 4-{3-[2,6-dichloro-4-(3,3-di-chloro-allyloxy)-phenoxy]-propoxy}-N-hydroxy-benzimide in 15 ml of carbon tetrachloride. After 3 hours at room temperature, the reaction mixture is washed with water and concentrated. Crystallisation from hexane yields 4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-N-hydroxy-benzimidoyl chloride.
- P4.2: 150 mg of 4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-N-hydroxy-benzimidoyl chloride are placed in 1 ml of 1,1-dichloroethane at 0° C., and a solution of 76 mg of triethylamine in 1 ml of 1,1-dichloroethane is added dropwise thereto over a period of one hour. After one hour at 0° C. and 18 hours at 25° C., the reaction mixture is poured onto water and extracted with ethyl acetate. Concentration and purification over silica gel yield the title compound (compound 1.17).
- P5.1: 388 mg of 4-(5-mercapto-tetrazol-1-yl)-phenol, 430 mg of isopropyl iodide and 168 mg of sodium hydrogen carbonate are stirred for 5 hours at 80° C. in 4 ml of acetonitrile. The reaction mixture is diluted with ethyl acetate, washed with sodium hydrogen carbonate solution and water, and concentrated. 4-(5-Isopropylsulfanyl-tetrazol-1-yl)-phenol is obtained in that manner. 1H-NMR [(CD3)2SO] 300 MHz: 1.38 (d, 6H), 3.78 (m, 1H), 6.80 (d, 2H), 7.25 (d, 2H), 10.08 (s, 1H).
- P5.2: 400 mg of 4-(5-isopropylsulfanyl-tetrazol-1-yl)-phenol, 471 mg of bromopropanol, 473 mg of potassium carbonate and 10 mg of potassium iodide are stirred for 15 hours at reflux in 10 ml of acetone. The reaction mixture is filtered and concentrated. The residue is taken up in ethyl acetate, washed with water and concentrated. Purification over silica gel yields 3-[4-(5-isopropylsulfanyl-tetrazol-1-yl)-phenoxy]-propan-1-ol. 1H-NMR (CDCl3) 300 MHz: 1.50 (d, 6H), 2.09 (m, 2H), 3.90 (t, 2H), 4.12 (m, 1H), 4.19 (t, 2H), 7.03 (d, 2H), 7.43 (d, 2H).
- P5.3: 1.41 g of azodicarboxylic acid diisopropyl ester are added at 0° C. to 1.83 g of triphenylphosphine in 30 ml of THF. After 30 minutes, a solution of 1.96 g of 3-[4-(5-isopropylsulfanyl-tetrazol-1-yl)-phenoxy]-propan-1-ol and 1.88 g of benzoic acid 3,5-dichloro-4-hydroxy-phenyl ester in 30 ml of THF is added dropwise. After one hour at 0° C. and 24 hours at room temperature, the reaction mixture is concentrated. Purification over silica gel yields benzoic acid 3,5-dichloro-4-{3-[4-(5-isopropylsulfanyl-tetrazol-1-yl)-phenoxy]-propoxy}-phenyl ester. 1H-NMR (CDCl3) 300 MHz: 1.50 (d, 2H), 2.33 (m, 2H), 4.26 (t, 2H), 4.38 (t, 2H), 4.99 (m, 1H), 7.09 (d, 2H), 7.23 (s, 2H), 7.42-7.70 (m, 5H), 8.15 (d, 2H).
- P5.4: 3.5 ml of n-butylamine are added dropwise at 0-5° C. to a solution of 2 g of benzoic acid 3,5-dichloro-4-{3-[4-(5-isopropylsulfanyl-tetrazol-1-yl)-phenoxy]-propoxy}-phenyl ester. After 30 minutes at 0-5° C. and one hour at room temperature, the reaction mixture is concentrated. Purification over silica gel yields 3,5-dichloro-4-{3-[4-(5-isopropylsulfanyl-tetrazol-1-yl)-phenoxy]-propoxy}-phenol. 1H-NMR (CDCl3) 300 MHz: 1.50 (d, 2H), 2.32 (m, 2H), 4.08-4.20 (m, 3H), 4.35 (t, 2H), 5.62 (s, 1H), 6.82 (s, 2H), 7.09 (d, 2H), 7.45 (d, 2H).
- P5.5: 900 mg of 3,5-dichloro-4-{3-[4-(5-isopropylsulfanyl-tetrazol-1-yl)-phenoxy]-propoxy}-phenol, 720 mg of 1,1,1,3-tetrachloropropane, 691 mg of potassium carbonate and 10 mg of potassium iodide are stirred for 48 hours at 60° C. in 30 ml of acetone. The reaction mixture is filtered and the filtrate is concentrated. Purification over silica gel yields the title compound (compound 1.20).
- 90 mg of chloroformic acid ethyl ester in 1 ml of acetone are added dropwise at 5° C. to 400 mg of 4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-N-hydroxy-benzamidine and 127 mg of potassium carbonate in 3 ml of acetone. After 3 hours at 0-5° C., the reaction mixture is poured onto water and extracted with dichloromethane. Concentration of the organic phase and purification over silica gel yield the title compound (compound 1.15).
- 90 mg of 3-(4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-phenyl)-4H-[1,2,4]oxadiazol-5-one, 14 mg of pyridine and 0.2 ml of phosphorus oxychloride are stirred for 14 hours at 130° C. The reaction mixture is poured onto ice-water and extracted with ethyl acetate. Concentration of the organic phase and purification over silica gel yield the title compound (compound 1.16).
- 150 mg of 4-{3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propoxy}-N-hydroxy-benzamidine and 15 mg of boron trifluoride ethyl etherate are stirred for 2 hours at 140° C. in 2 ml of triethyl orthoformate. The reaction mixture is concentrated, and the residue is taken up in ethyl acetate and washed with water. Concentration of the organic phase and purification over silica gel yield the title compound (compound 1.14).
- P9.1: Preparation of 4-(4-methyl-thiazol-2-yl)-phenol. 200 mg of 4-hydroxy-thiobenzamide and 144 mg of chloroacetone are stirred for 17 hours at room temperature and for 24 hours at 80° C. in 2 ml of ethanol. The reaction mixture is concentrated completely. The title compound so obtained is reacted further in the form of the crude product.
- P9.2: 96 mg of 4-(4-methyl-thiazol-2-yl)-phenol, 212 mg of methanesulfonic acid 3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propyl ester and 207 mg of potassium carbonate are stirred for 24 hours at 50° C. in 3 ml of dimethylformamide. The reaction mixture is poured onto water and extracted with ethyl acetate. Concentration of the organic phase and purification over silica gel yield the title compound (compound 1.23).
- 125 mg of 4-[1,2,4]triazol-1-yl-phenol, 212 mg of methanesulfonic acid 3-[2,6-dichloro-4-(3,3-dichloro-allyloxy)-phenoxy]-propyl ester and 207 mg of potassium carbonate are stirred for 24 hours at 50° C. in 4 ml of dimethylformamide. The reaction mixture is poured onto water and extracted with ethyl acetate. Concentration of the organic phase and purification over silica gel yield the title compound (compound 1.9).
- In a manner analogous to that described above it is also possible to prepare the further compounds of the following Tables. The bond given with the symbol ••••••••••• in the said tables indicates the connection of the substituent E with the remainder of the chemical structure.
-
TABLE 1 Compounds of formula (Ia) No. E 1H-NMR (CDCl3) 300 MHz 1.1 2.30 (m, 2H), 4.16 (t, 2H), 4.28 (t, 2H), 4.59 (d, 2H) 6.10 (t, 1H), 6.31 (s, 2H), 6.82 (s, 2H), 6.93-7.01 (d + s, 4H), 7.30 (d, 2H) 1.2 Solvent (CD3)2SO: 2.24 (m, 2H), 4.12 (t, 2H), 4.31 (t, 2H), 4.70 (d, 2H), 6.50 (t, 1H), 7.17 (s, 2H), 7.20 (d, 2H), 7.98 (d, 2H) 1.3 2.32 (m, 2H), 4.18 (t, 2H), 4.33 (t, 2H), 4.39 (s, 3H), 4.58 (d, 2H), 6.11 (t, 1H), 6.82 (s, 2H), 7.03 (d, 2H), 8.07 (d, 2H) 1.4 1.69 (t, 3H), 2.32 (m, 2H), 4.18 (t, 2H), 4.32 (t, 2H), 4.58 (d, 2H), 4.68 (q, 2H), 6.10 (t, 1H), 6.82 (s, 2H), 7.03 (d, 2H), 8.08 (d, 2H) 1.5 1.00 (t, 3H), 2.10 (m, 2H), 2.32 (m, 2H), 4.18 (t, 2H), 4.32 (t, 2H), 4.53-4.67 (m, 4H), 6.10 (t, 1H), 6.82 (s, 2H), 7.03 (d, 2H), 8.08 (d, 2H) 1.6 1.00 (d, 6H), 2.23-2.53 (m, 3H), 4.18 (t, 2H), 4.32 (t, 2H), 4.43 (d 2H), 4.58 (d, 2H), 6.11 (t, 1H), 6.82 (s, 2H), 7.03 (d, 2H), 8.08 (d, 2H) 1.7 1.00 (d, 6H), 1.53-1.71 (m 1H), 1.96 (m, 2H), 2.32 (m, 2H), 4.18 (t, 2H), 4.33 (t, 2H), 4.58 (d, 2H), 4.65 (t, 2H), 6.11 (t, 1H), 6.82 (s, 2H), 7.03 (d, 2H), 8.08 (d, 2H) 1.8 0.89 (t, 3H), 1.20-1.43 (m, 6H), 1.93-2.12 (m, 2H), 2.32 (m, 2H), 4.18 (t, 2H), 4.33 (t, 2H), 4.52-4.69 (m, 4H), 6.11 (t, 1H), 6.82 (s, 2H), 7.03 (d, 2H), 8.08 (d, 2H) 1.9 2.31 (m, 2H), 4.17 (t, 2H), 4.31 (t, 2H), 4.59 (d, 2H), 6.11 (t, 1H), 6.83 (s, 2H), 7.04 (d, 2H), 7.58 (d, 2H), 8.08 (s, 1H), 8.45 (s, 1H) 1.10 2.32 (m, 2H), 2.62 (s, 3H), 4.18 (t, 2H), 4.32 (t, 2H), 4.59 (d, 2H), 6.10 (t, 1H), 6.82 (s, 2H), 7.01 (d, 2H), 8.00 (d, 2H) 1.11 1.42 (t, 3H), 2.30 (m, 2H), 2.97 (q, 2H), 4.18 (t, 2H), 4.32 (t, 2H), 4.58 (d, 2H), 6.10 (t, 1H), 6.82 (s, 2H), 7.01 (d, 2H), 8.00 (d, 2H) 1.12 1.13-1.36 (m, 4H), 2.17-2.38 (m, 4H), 4.18 (t, 2H), 4.32 (t, 2H), 4.58 (d, 2H), 6.12 (t, 1H), 6.82 (s, 2H), 7.00 (d, 2H), 7.98 (d, 2H) 1.13 2.32 (m, 2H), 4.19 (t, 2H), 4.35 (t, 2H), 4.58 (d, 2H), 6.10 (t, 1H), 6.83 (s, 2H), 7.06 (d, 2H), 8.06 (d, 2H) 1.14 2.32 (m, 2H), 4.18 (t, 2H), 4.33 (t, 2H), 4.58 (d, 2H), 6.10 (t, 1H), 6.83 (s, 2H), 7.03 (d, 2H), 8.07 (d, 2H), 8.70 (s, 1H) 1.15 Solvent (CD3)2SO: 2.12 (m, 2H), 4.00 (t, 2H), 4.20 (t, 2H), 4.59 (d, 2H), 6.48 (t, 1H), 7.02-7.10 (s + d, 4H), 7.67 (d, 2H), 12.30-12.95 (s, 1H) 1.16 2.31 (m, 2H), 4.18 (t, 2H), 4.32 (t, 2H), 4.58 (d, 2H), 6.10 (t, 1H), 6.82 (s, 2H), 7.02 (d, 2H), 7.98 (d, 2H) 1.17 2.32 (m, 2H), 4.18 (t, 2H), 4.31 (t, 2H), 4.59 (d, 2H), 6.10 (t, 1H), 6.42 (s, 1H), 6.82 (s, 2H), 7.00 (d, 2H), 7.70 (d, 2H) 1.18 2.32 (m, 2H), 2.83 (s, 3H), 4.18 (t, 2H), 4.37 (t, 2H), 4.60 (d, 2H), 6.12 (t, 1H), 6.83 (s, 2H), 7.09 (d, 2H), 7.47 (d, 2H) 1.19 1.50 (t, 3H), 2.32 (m, 2H), 3.49 (q, 2H), 4.18 (t, 2H), 4.35 (t, 2H), 4.59 (d, 2H), 6.11 (t, 1H), 6.83 (s, 2H), 7.08 (d, 2H), 7.47 (d, 2H) 1.20 1.50 (d, 6H), 2.32 (m, 2H), 4.08-4.20 (m, 4H), 4.33 (t, 2H), 4.59 (d, 2H), 6.11 (t, 1H), 6.83 (s, 2H), 7.08 (d, 2H), 7.47 (d, 2H) 1.21 0.38 (m, 2H), 0.68 (m, 2H), 1.28 (m, 1H), 2.32 (m, 2H), 3.45 (d, 2H), 4.19 (t, 2H), 4.33 (t, 2H), 4.59 (d, 2H), 6.11 (t, 1H), 6.83 (s, 2H), 7.08 (d, 2H), 7.48 (d, 2H) 1.22 2.33 (m, 2H), 4.00 (t, 2H), 4.35 (t, 2H), 4.59 (d, 2H), 5.21 (d, 1H), 5.39 (d, 1H), 5.92-6.07 (m, 1H), 6.10 (t, 1H), 6.83 (s, 2H), 7.09 (d, 2H), 7.47 (d, 2H) 1.23 2.30 (m, 2H), 2.50 (s, 3H), 4.17 (t, 2H), 4.30 (t, 2H), 4.59 (d, 2H), 6.10 (t, 1H), 6.80 (s, 1H), 6.82 (s, 2H), 6.98 (d, 2H), 7.88 (d, 2H) 1.24 1.25 1.26 1.27 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.35 1.36 1.37 1.38 1.39 1.40 1.41 1.42 1.43 1.44 1.45 1.46 1.47 1.48 1.49 1.50 1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 2.20-2.40 (m, 8H), 4.15 (t, 2H), 4.35 (t, 2H), 4.59 (d, 2H), 5.95 (s, 1H), 6.10 (t, 1H), 6.80 (s, 2H), 6.95 (d, 2H), 7.35 (d, 2H) 1.59 2.2-2.4 (m, 5H), 4.15 (t, 2H), 4.35 (t, 2H), 4.59 (d, 2H), 6.10 (t, 1H), 6.40 (s, 1H), 6.80 (s, 2H), 7.00 (d, 2H), 7.35 (d, 2H) 1.60 2.20-2.40 (m, 5H), 4.15 (t, 2H), 4.35 (t, 2H), 4.59 (d, 2H), 6.10 (t, 1H), 6.55 (s, 1H), 6.80 (s, 2H), 6.95 (d, 2H), 7.35 (d, 2H) 1.61 1.62 1.63 1.64 1.65 1.66 1.67 1.68 1.69 1.70 1.71 1.72 1.73 1.74 1.75 1.76 1.77 -
No. X1 X2 R10 A.1 Cl Cl H A.2 Cl Cl CN A.3 Cl Cl Cl A.4 Cl Cl Br A.5 Cl Cl CH3 A.6 Cl Cl C2H5 A.7 Cl Cl n-C3H7 A.8 Cl Cl n-C4H9 A.9 Cl Cl n-C5H11 A.10 Cl Cl n-C6H13 A.11 Cl Cl iso-C3H7 A.12 Cl Cl iso-C4H9 A.13 Cl Cl iso-C5H11 A.14 Cl Cl tert-C4H9 A.15 Cl Cl CH2C(CH3)3 A.16 Cl Cl c-propyl A.17 Cl Cl CH2(c-propyl) A.18 Cl Cl CF3 A.19 Cl Cl CH2CF3 A.20 Cl Cl CH2CHF2 A.21 Cl Cl CH2CH2F A.22 Cl Cl CH2CH═CH2 A.23 Cl Cl CH2C≡CH A.24 Cl Cl CH2C≡CCH3 A.25 Cl Cl CH2CH═CCl2 A.26 Cl Cl OH A.27 Cl Cl OCH3 A.28 Cl Cl O—C2H5 A.29 Cl Cl O-n-C3H7 A.30 Cl Cl O-n-C4H9 A.31 Cl Cl O-n-C5H11 A.32 Cl Cl O-n-C6H13 A.33 Cl Cl O-iso-C3H7 A.34 Cl Cl O-iso-C4H9 A.35 Cl Cl O-iso-C5H11 A.36 Cl Cl O-tert-C4H9 A.37 Cl Cl O—CH2C(CH3)3 A.38 Cl Cl O-c-propyl A.39 Cl Cl O—CH2(c-propyl) A.40 Cl Cl O—CF3 A.41 Cl Cl O—CH2CF3 A.42 Cl Cl O—CH2CHF2 A.43 Cl Cl O—CH2CH2F A.44 Cl Cl O—CH2CH═CH2 A.45 Cl Cl O—CH2C≡CH A.46 Cl Cl O—CH2C≡CCH3 A.47 Cl Cl O—CH2CH═CCl2 A.48 Cl Cl SH A.49 Cl Cl SCH3 A.50 Cl Cl S—C2H5 A.51 Cl Cl S-n-C3H7 A.52 Cl Cl S-n-C4H9 A.53 Cl Cl S-n-C5H11 A.54 Cl Cl S-n-C6H13 A.55 Cl Cl S-iso-C3H7 A.56 Cl Cl S-iso-C4H9 A.57 Cl Cl S-iso-C5H11 A.58 Cl Cl S-tert-C4H9 A.59 Cl Cl S—CH2C(CH3)3 A.60 Cl Cl S-c-propyl A.61 Cl Cl S—CH2(c-propyl) A.62 Cl Cl S—CF3 A.63 Cl Cl S—CH2CF3 A.64 Cl Cl S—CH2CHF2 A.65 Cl Cl S—CH2CH2F A.66 Cl Cl S—CH2CH═CH2 A.67 Cl Cl S—CH2C≡CH A.68 Cl Cl S—CH2C≡CCH3 A.69 Cl Cl S—CH2CH═CCl2 A.70 Cl Cl CH2OH A.71 Cl Cl CH2OCH3 A.72 Cl Cl CH2O—C2H5 A.73 Cl Cl CH2O-n-C3H7 A.74 Cl Cl CH2O-n-C4H9 A.75 Cl Cl CH2O-n-C5H11 A.76 Cl Cl CH2O-n-C6H13 A.77 Cl Cl CH2O-iso-C3H7 A.78 Cl Cl CH2O-iso-C4H9 A.79 Cl Cl CH2O-iso-C5H11 A.80 Cl Cl CH2O-tert-C4H9 A.81 Cl Cl CH2O—CH2C(CH3)3 A.82 Cl Cl CH2O-c-propyl A.83 Cl Cl CH2O—CH2(c-propyl) A.84 Cl Cl CH2O—CF3 A.85 Cl Cl CH2O—CH2CF3 A.86 Cl Cl CH2O—CH2CHF2 A.87 Cl Cl CH2O—CH2CH2F A.88 Cl Cl CH2O—CH2CH═CH2 A.89 Cl Cl CH2O—CH2C≡CH A.90 Cl Cl CH2O—CH2C≡CCH3 A.91 Cl Cl CH2O—CH2CH═CCl2 A.92 Cl Cl C(═O)OH A.93 Cl Cl C(═O)OCH3 A.94 Cl Cl C(═O)O—C2H5 A.95 Cl Cl C(═O)O-n-C3H7 A.96 Cl Cl C(═O)O-n-C4H9 A.97 Cl Cl C(═O)O-n-C5H11 A.98 Cl Cl C(═O)O-n-C6H13 A.99 Cl Cl C(═O)O-iso-C3H7 A.100 Cl Cl C(═O)O-iso-C4H9 A.101 Cl Cl C(═O)O-iso-C5H11 A.102 Cl Cl C(═O)O-tert-C4H9 A.103 Cl Cl C(═O)O—CH2C(CH3)3 A.104 Cl Cl C(═O)O-c-propyl A.105 Cl Cl C(═O)O—CH2(c-propyl) A.106 Cl Cl C(═O)O—CF3 A.107 Cl Cl C(═O)O—CH2CF3 A.108 Cl Cl C(═O)O—CH2CHF2 A.109 Cl Cl C(═O)O—CH2CH2F A.110 Cl Cl C(═O)O—CH2CH═CH2 A.111 Cl Cl C(═O)O—CH2C≡CH A.112 Cl Cl C(═O)O—CH2C≡CCH3 A.113 Cl Cl C(═O)O—CH2CH═CCl2 A.114 Cl Cl C(═O)CH3 A.115 Cl Cl C(═O)—C2H5 A.116 Cl Cl C(═O)-n-C3H7 A.117 Cl Cl C(═O)-n-C4H9 A.118 Cl Cl C(═O)-n-C5H11 A.119 Cl Cl C(═O)-n-C6H13 A.120 Cl Cl C(═O)-iso-C3H7 A.121 Cl Cl C(═O)-iso-C4H9 A.122 Cl Cl C(═O)-iso-C5H11 A.123 Cl Cl C(═O)-tert-C4H9 A.124 Cl Cl C(═O)—CH2C(CH3)3 A.125 Cl Cl C(═O)-c-propyl A.126 Cl Cl C(═O)—CH2(c-propyl) A.127 Cl Cl C(═O)—CF3 A.128 Cl Cl C(═O)—CH2CF3 A.129 Cl Cl C(═O)—CH2CHF2 A.130 Cl Cl C(═O)—CH2CH2F A.131 Cl Cl C(═O)—CH2CH═CH2 A.132 Cl Cl C(═O)—CH2C≡CH A.133 Cl Cl C(═O)—CH2C≡CCH3 A.134 Cl Cl C(═O)—CH2CH═CCl2 A.135 Br Br H A.136 Br Br CN A.137 Br Br Cl A.138 Br Br Br A.139 Br Br CH3 A.140 Br Br C2H5 A.141 Br Br n-C3H7 A.142 Br Br n-C4H9 A.143 Br Br n-C5H11 A.144 Br Br n-C6H13 A.145 Br Br iso-C3H7 A.146 Br Br iso-C4H9 A.147 Br Br iso-C5H11 A.148 Br Br tert-C4H9 A.149 Br Br CH2C(CH3)3 A.150 Br Br c-propyl A.151 Br Br CH2(c-propyl) A.152 Br Br CF3 A.153 Br Br CH2CF3 A.154 Br Br CH2CHF2 A.155 Br Br CH2CH2F A.156 Br Br CH2CH═CH2 A.157 Br Br CH2C≡CH A.158 Br Br CH2C≡CCH3 A.159 Br Br CH2CH═CCl2 A.160 Br Br OH A.161 Br Br OCH3 A.162 Br Br O—C2H5 A.163 Br Br O-n-C3H7 A.164 Br Br O-n-C4H9 A.165 Br Br O-n-C5H11 A.166 Br Br O-n-C6H13 A.167 Br Br O-iso-C3H7 A.168 Br Br O-iso-C4H9 A.169 Br Br O-iso-C5H11 A.170 Br Br O-tert-C4H9 A.171 Br Br O—CH2C(CH3)3 A.172 Br Br O-c-propyl A.173 Br Br O—CH2(c-propyl) A.174 Br Br O—CF3 A.175 Br Br O—CH2CF3 A.176 Br Br O—CH2CHF2 A.177 Br Br O—CH2CH2F A.178 Br Br O—CH2CH═CH2 A.179 Br Br O—CH2C≡CH A.180 Br Br O—CH2C≡CCH3 A.181 Br Br O—CH2CH═CCl2 A.182 Br Br SH A.183 Br Br SCH3 A.184 Br Br S—C2H5 A.185 Br Br S-n-C3H7 A.186 Br Br S-n-C4H9 A.187 Br Br S-n-C5H11 A.188 Br Br S-n-C6H13 A.189 Br Br S-iso-C3H7 A.190 Br Br S-iso-C4H9 A.191 Br Br S-iso-C5H11 A.192 Br Br S-tert-C4H9 A.193 Br Br S—CH2C(CH3)3 A.194 Br Br S-c-propyl A.195 Br Br S—CH2(c-propyl) A.196 Br Br S—CF3 A.197 Br Br S—CH2CF3 A.198 Br Br S—CH2CHF2 A.199 Br Br S—CH2CH2F A.200 Br Br S—CH2CH═CH2 A.201 Br Br S—CH2C≡CH A.202 Br Br S—CH2C≡CCH3 A.203 Br Br S—CH2CH═CCl2 A.204 Br Br CH2OH A.205 Br Br CH2OCH3 A.206 Br Br CH2O—C2H5 A.207 Br Br CH2O-n-C3H7 A.208 Br Br CH2O-n-C4H9 A.209 Br Br CH2O-n-C5H11 A.210 Br Br CH2O-n-C6H13 A.211 Br Br CH2O-iso-C3H7 A.212 Br Br CH2O-iso-C4H9 A.213 Br Br CH2O-iso-C5H11 A.214 Br Br CH2O-tert-C4H9 A.215 Br Br CH2O—CH2C(CH3)3 A.216 Br Br CH2O-c-propyl A.217 Br Br CH2O—CH2(c-propyl) A.218 Br Br CH2O—CF3 A.219 Br Br CH2O—CH2CF3 A.220 Br Br CH2O—CH2CHF2 A.221 Br Br CH2O—CH2CH2F A.222 Br Br CH2O—CH2CH═CH2 A.223 Br Br CH2O—CH2C≡CH A.224 Br Br CH2O—CH2C≡CCH3 A.225 Br Br CH2O—CH2CH═CCl2 A.226 Br Br C(═O)OH A.227 Br Br C(═O)OCH3 A.228 Br Br C(═O)O—C2H5 A.229 Br Br C(═O)O-n-C3H7 A.230 Br Br C(═O)O-n-C4H9 A.231 Br Br C(═O)O-n-C5H11 A.232 Br Br C(═O)O-n-C6H13 A.233 Br Br C(═O)O-iso-C3H7 A.234 Br Br C(═O)O-iso-C4H9 A.235 Br Br C(═O)O-iso-C5H11 A.236 Br Br C(═O)O-tert-C4H9 A.237 Br Br C(═O)O—CH2C(CH3)3 A.238 Br Br C(═O)O-c-propyl A.239 Br Br C(═O)O—CH2(c-propyl) A.240 Br Br C(═O)O—CF3 A.241 Br Br C(═O)O—CH2CF3 A.242 Br Br C(═O)O—CH2CHF2 A.243 Br Br C(═O)O—CH2CH2F A.244 Br Br C(═O)O—CH2CH═CH2 A.245 Br Br C(═O)O—CH2C≡CH A.246 Br Br C(═O)O—CH2C≡CCH3 A.247 Br Br C(═O)O—CH2CH═CCl2 A.248 Br Br C(═O)CH3 A.249 Br Br C(═O)—C2H5 A.250 Br Br C(═O)n-C3H7 A.251 Br Br C(═O)-n-C4H9 A.252 Br Br C(═O)-n-C5H11 A.253 Br Br C(═O)-n-C6H13 A.254 Br Br C(═O)-iso-C3H7 A.255 Br Br C(═O)-iso-C4H9 A.256 Br Br C(═O)-iso-C5H11 A.257 Br Br C(═O)-tert-C4H9 A.258 Br Br C(═O)—CH2C(CH3)3 A.259 Br Br C(═O)-c-propyl A.260 Br Br C(═O)—CH2(c-propyl) A.261 Br Br C(═O)—CF3 A.262 Br Br C(═O)—CH2CF3 A.263 Br Br C(═O)—CH2CHF2 A.264 Br Br C(═O)—CH2CH2F A.265 Br Br C(═O)—CH2CH═CH2 A.266 Br Br C(═O)—CH2C≡CH A.267 Br Br C(═O)—CH2C≡CCH3 A.268 Br Br C(═O)—CH2CH═CCl2 - Table 2: A compound of the general formula (Ib) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 3: A compound of the general formula (Ib) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 4: A compound of the general formula (Ib) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 5: A compound of the general formula (Ib) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 6: A compound of the general formula (Ic) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 7: A compound of the general formula (Ic) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 8: A compound of the general formula (Ic) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 9: A compound of the general formula (Ic) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 10: A compound of the general formula (Id) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 11: A compound of the general formula (Id) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 12: A compound of the general formula (Id) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 13: A compound of the general formula (Id) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 14: A compound of the general formula (Ie) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 15: A compound of the general formula (Ie) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 16: A compound of the general formula (Ie) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 17: A compound of the general formula (Ie) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 18: A compound of the general formula (If) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 19: A compound of the general formula (If) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 20: A compound of the general formula (If) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 21: A compound of the general formula (If) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 22: A compound of the general formula (Ig) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 23: A compound of the general formula (Ig) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 24: A compound of the general formula (Ig) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 25: A compound of the general formula (Ig) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 26: A compound of the general formula (Ih) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 27: A compound of the general formula (Ih) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 28: A compound of the general formula (Ih) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 29: A compound of the general formula (Ih) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 30: A compound of the general formula (Ii) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 31: A compound of the general formula (Ii) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 32: A compound of the general formula (Ii) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 33: A compound of the general formula (Ii) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 34: A compound of the general formula (Ik) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 35: A compound of the general formula (Ik) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 36: A compound of the general formula (Ik) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 37: A compound of the general formula (Ik) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 38: A compound of the general formula (Im) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 39: A compound of the general formula (Im) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 40: A compound of the general formula (Im) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 41: A compound of the general formula (Im) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 42: A compound of the general formula (In) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 43: A compound of the general formula (In) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 44: A compound of the general formula (In) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 45: A compound of the general formula (In) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 46: A compound of the general formula (Io) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 47: A compound of the general formula (Io) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 48: A compound of the general formula (Io) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 49: A compound of the general formula (Io) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 50: A compound of the general formula (Ip) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 51: A compound of the general formula (Ip) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 52: A compound of the general formula (Ip) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 53: A compound of the general formula (Ip) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 54: A compound of the general formula (Iq) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 55: A compound of the general formula (Iq) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 56: A compound of the general formula (Iq) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 57: A compound of the general formula (Iq) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 58: A compound of the general formula (Ir) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 59: A compound of the general formula (Ir) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 60: A compound of the general formula (Ir) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 61: A compound of the general formula (Ir) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 62: A compound of the general formula (Is) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 63: A compound of the general formula (Is) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 64: A compound of the general formula (Is) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 65: A compound of the general formula (Is) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 66: A compound of the general formula (It) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 67: A compound of the general formula (It) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 68: A compound of the general formula (It) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 69: A compound of the general formula (It) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 70: A compound of the general formula (Iu) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 71: A compound of the general formula (Iu) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 72: A compound of the general formula (Iu) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 73: A compound of the general formula (Iu) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 74: A compound of the general formula (Iv) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 75: A compound of the general formula (Iv) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 76: A compound of the general formula (Iv) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 77: A compound of the general formula (Iv) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 78: A compound of the general formula (Iw) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 79: A compound of the general formula (Iw) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 80: A compound of the general formula (Iw) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 81: A compound of the general formula (Iw) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 82: A compound of the general formula (Ix) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 83: A compound of the general formula (Ix) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 84: A compound of the general formula (Ix) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 85: A compound of the general formula (Ix) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 86: A compound of the general formula (Iy) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 87: A compound of the general formula (Iy) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 88: A compound of the general formula (Iy) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 89: A compound of the general formula (Iy) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 90: A compound of the general formula (Iz) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 91: A compound of the general formula (Iz) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 92: A compound of the general formula (Iz) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 93: A compound of the general formula (Iz) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 94: A compound of the general formula (Iz1) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 95: A compound of the general formula (Iz1) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 96: A compound of the general formula (Iz1) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 97: A compound of the general formula (Iz1) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 98: A compound of the general formula (Iz2) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 99: A compound of the general formula (Iz2) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 100: A compound of the general formula (Iz2) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 101: A compound of the general formula (Iz2) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 102: A compound of the general formula (Iz3) wherein n is 2 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 103: A compound of the general formula (Iz3) wherein n is 3 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 104: A compound of the general formula (Iz3) wherein n is 4 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
- Table 105: A compound of the general formula (Iz3) wherein n is 5 and the combination of the substituents R10, X1 and X2 for each compound corresponds to a line A.1 to A.268 of Table A.
-
-
Example F1: Emulsifiable concentrates a) b) c) active ingredient 25% 40% 50% calcium dodecylbenzenesulfonate 5% 8% 6% castor oil polyethylene glycol ether (36 mol EO) 5% — — tributylphenol polyethylene glycol ether — 12% 4% (30 mol EO) cyclohexanone — 15% 20% xylene mixture 65% 25% 20% Mixing finely ground active ingredient and additives gives an emulsifiable concentrate which yields emulsions of the desired concentration on dilution with water. -
Example F2: Solutions a) b) c) d) active ingredient 80% 10% 5% 95% ethylene glycol monomethyl ether 20% — — — polyethylene glycol (MW 400) — 70% — — N-methylpyrrolid-2-one — 20% — — epoxidised coconut oil — — 1% 5% benzine (boiling range: 160-190°) — — 94% — Mixing finely ground active ingredient and additives gives a solution suitable for use in the form of microdrops. -
Example F3: Granules a) b) c) d) active ingredient 5% 10% 8% 21% kaolin 94% — 79% 54% highly dispersed silicic acid 1% — 13% 7% attapulgite — 90% — 18% The active ingredient is dissolved in dichloromethane, the solution is sprayed onto the carrier mixture and the solvent is evaporated off in vacuo. - Young soybean plants are sprayed with an aqueous emulsion spray mixture comprising 400 ppm of test compound. After the spray-coating has dried, the soybean plants are populated with 10 caterpillars of Heliothis virescens in the first stage and placed in a plastics container. Evaluation is made 6 days later. The percentage reduction in population and the percentage reduction in feeding damage (% activity) are determined by comparing the number of dead caterpillars and the feeding damage on the treated plants with that on the untreated plants.
- The compounds of the Tables exhibit good activity against Heliothis virescens in this test. In particular, the compounds 1.3, 1.4, 1.5, 1.10 to 1.13, 1.16, 1.17, 1.19 and 1.21 are more than 80% effective.
- Young cabbage plants are sprayed with an aqueous emulsion spray mixture comprising 400 ppm of test compound. After the spray-coating has dried, the cabbage plants are populated with 10 caterpillars of Plutella xylostella in the third stage and placed in a plastics container. Evaluation is made 3 days later. The percentage reduction in population and the percentage reduction in feeding damage (% activity) are determined by comparing the number of dead caterpillars and the feeding damage on the treated plants with that on the untreated plants.
- The compounds of the Tables exhibit good activity against Plutella xylostella. In particular, the compounds 1.3, 1.4, 1.5, 1.10 to 1.13, 1.16, 1.17, 1.19 and 1.21 are more than 80% effective.
- Young soybean plants are sprayed with an aqueous emulsion spray mixture comprising 400 ppm of test compound and, after the spray-coating has dried, the plants are populated with 10 caterpillars of Spodoptera littoralis in the first stage and then placed in a plastics container. 3 days later, the percentage reduction in population and the percentage reduction in feeding damage (% activity) are determined by comparing the number of dead caterpillars and the feeding damage on the treated plants with that on untreated plants.
- The compounds of the Tables exhibit good activity in this test. In particular, the compounds 1.3, 1.4, 1.5, 1.10 to 1.13, 1.16, 1.17, 1.19 and 1.21 are more than 80% effective.
Claims (7)
1. A compound of formula
wherein
A0, A1 and A2 are each independently of the other a bond or a C1-C6alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl and C1-C3haloalkyl;
A3 is a C1-C6alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl and C1-C3haloalkyl;
D is CH or N;
X1 and X2 are each independently of the other fluorine, chlorine or bromine;
R1, R2 and R3 are each independently of the others H, halogen, OH, SH, CN, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkylcarbonyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy, —S(═O)—C1-C6alkyl, —S(O)2—C1-C6alkyl, C1-C6alkoxycarbonyl or C3-C6haloalkynyloxy; the substituents R3 being independent of one another when m is 2;
R4 is H, halogen, OH, SH, CN, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkylcarbonyl, C2-C6-alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy, —S(═O)—C1-C6alkyl, —S(═O)2—C1-C6alkyl or C1-C6alkoxycarbonyl; the substituents R4 being independent of one another when k is greater than 1; or N(R5)2 wherein the two substituents R5 are independent of one another;
R5 is H, CN, OH, C1-C6alkyl, C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy, —C(═O)R8, —C(═S)R8, phenyl, benzyl; or phenyl or benzyl each of which is substituted in the aromatic ring by from one to five identical or different substituents selected from the group consisting of halogen, C1-C6alkyl, halo-C1-C6alkyl, C1-C6alkoxy, halo-C1-C6-alkoxy, hydroxy, cyano and nitro;
or the two substituents R5 together form a four- to eight-membered, straight-chain or branched alkylene bridge wherein a CH2 group may have been replaced by O, S or NR9, and the alkylene bridge is unsubstituted or substituted by from one to four identical or different substituents selected from C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl and C1-C3haloalkyl;
W is O, NR6, S, SO, SO2, —C(═O)—O—, —O—C(═O)—, —C(═O)—NR7— or —NR7—C(═O)—;
T is a bond, O, NH, NR6, S, SO, SO2, —C(═O)—O—, —O—C(═O)—, —C(═O)—NR7— or —NR7—C(═O)—;
Q is O, NR6, S, SO or SO2;
Y is O, NR6, S, SO or SO2;
R6 and R7 are independently of each other H, C1-C6alkyl, C1-C3haloalkyl, C1-C6alkylcarbonyl, C1-C3haloalkylcarbonyl, C1-C6alkoxyalkyl, C3-C8cycloalkyl or benzyl;
R8 is C1-C6alkyl, C1-C6haloalkyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy, C3-C6cycloalkyl, phenyl, benzyl; or phenyl or benzyl each of which is unsubstituted or substituted by from one to three identical or different substituents selected from halogen, CN, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkylcarbonyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C1-C6alkoxycarbonyl, C1-C3haloalkoxycarbonyl and C2-C6haloalkenyloxy;
R9 is H, C1-C6alkyl, C1-C3haloalkyl, C1-C6-alkylcarbonyl, C1-C6haloalkylcarbonyl, C1-C6alkoxyalkyl, C3-C8cycloalkyl or benzyl;
k is 1, 2 or 3 when D is nitrogen; or is 1, 2, 3 or 4 when D is CH;
m is 1 or 2;
E is heteroaryl which is unsubstituted or substituted—depending upon the substitutions possible on the ring—by from one to four identical or different substituents selected from R10;
R10 is halogen, CN, NO2, OH, SH, C1-C6alkyl, C1-C6haloalkyl, C1-C6 hydroxyalkyl, C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl, C2-C6alkenyl, C2-C6haloalkenyl, C3-C6alkynyl, C3-C6haloalkynyl, C1-C6alkoxy, C1-C6alkoxy-C1-C6alkyl, C1-C6haloalkoxy, C1-C6haloalkoxy-C1-C6alkyl, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkenyloxy-C1-C6alkyl, C2-C6haloalkenyloxy-C1-C6alkyl, C3-C6alkynyloxy, C3-C6haloalkynyloxy, C3-C6alkynyloxy-C1-C6alkyl, C3-C8-cycloalkoxy, C3-C8cycloalkyl-C1-C6alkoxy, C3-C8cycloalkoxy-C1-C6alkyl, C3-C8cycloalkoxy-C1-C6alkoxy, C3-C8cycloalkyl-C1-C6alkoxy-C1-C6alkyl, C1-C6alkylcarbonyl-C1-C6alkyl, C1-C6alkoxycarbonyl-C1-C6alkyl, C1-C6alkylthio, C2-C6alkenylthio, C3-C6alkynylthio, C3-C6cycloalkylthio, C3-C6cycloalkyl-C1-C6alkylthio, C2-C6haloalkenylthio, C1-C6haloalkylthio, NH2, NH(C1-C6alkyl), N(C1-C6alkyl)2, C1-C6alkylcarbonylamino, C1-C6haloalkylcarbonylamino, C1-C6alkoxycarbonylamino, C1-C6alkylaminocarbonylamino, —SO—C1-C6alkyl, —SO-halo-C1-C6alkyl, —SO2—C1-C6alkyl, —SO2-halo-C1-C6alkyl, —C(═O)R11, phenyl or benzyl; wherein the phenyl and benzyl radicals may be unsubstituted or may carry independently of each other one to three substituents selected form the group consisting of halogen, OH, SH, CN, nitro, C1-C6alkyl, C1-C6haloalkyl, C1-C6alkylcarbonyl, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkynyl, C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyloxy, —S(═O)—C1-C6alkyl, —S(O)2—C1-C6alkyl, C1-C6alkoxycarbonyl and C2-C6haloalkenyloxy; and
R11 is H, OH, C1-C6alkyl, C3-C8cycloalkyl, C3-C8cycloalkyl-C1-C6alkyl, C1-C6haloalkyl, C1-C6alkoxy, C3-C8cycloalkoxy, C3-C8cycloalkyl-C1-C6alkoxy, C1-C6haloalkoxy, C2-C6alkenyl, C2-C6haloalkenyl, C2-C6alkenyloxy, C2-C6haloalkenyloxy, C2-C6alkynyl, C2-C6haloalkynyl, C2-C6alkynyloxy, C2-C6haloalkynyloxy, NH2, NH—C1-C6alkyl, —N(C1-C6alkyl)2, NH-phenyl, NH-benzyl, phenoxy or benzyloxy;
and, where applicable, their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form.
2. A compound according to claim 1 of formula (I) in free form.
3. A compound according to claim 1 , of formula (I), wherein X1 and X2 are chlorine or bromine.
4. A pesticidal composition which comprises as active ingredient at least one compound according to claim 1 of formula (I), in free form or in agrochemically acceptable salt form, and at least one adjuvant.
5. A process for the preparation of a composition as described in claim 4 , which comprises intimately mixing the active ingredient with the adjuvant(s).
6. A method of controlling pests, which comprises applying a pesticidal composition as described in claim 4 to the pests or to the locus thereof.
7. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/564,995 US20100016383A1 (en) | 2002-08-30 | 2009-09-23 | 4-(3,3-dihalo-allyloxy)phenol derivatives having pesticidal properties |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH1487/02 | 2002-08-30 | ||
CH14872002 | 2002-08-30 | ||
US10/525,891 US7608631B2 (en) | 2002-08-30 | 2003-08-29 | 4-(3,3-dihalo-allyloxy) phenol derivatives having pesticidal properties |
PCT/EP2003/009636 WO2004020445A2 (en) | 2002-08-30 | 2003-08-29 | 4-(3,3-dihalo-allyloxy) phenol derivatives having pesticidal properties |
US12/564,995 US20100016383A1 (en) | 2002-08-30 | 2009-09-23 | 4-(3,3-dihalo-allyloxy)phenol derivatives having pesticidal properties |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2003/009636 Division WO2004020445A2 (en) | 2002-08-30 | 2003-08-29 | 4-(3,3-dihalo-allyloxy) phenol derivatives having pesticidal properties |
US10/525,891 Division US7608631B2 (en) | 2002-08-30 | 2003-08-29 | 4-(3,3-dihalo-allyloxy) phenol derivatives having pesticidal properties |
Publications (1)
Publication Number | Publication Date |
---|---|
US20100016383A1 true US20100016383A1 (en) | 2010-01-21 |
Family
ID=31954540
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/525,891 Expired - Fee Related US7608631B2 (en) | 2002-08-30 | 2003-08-29 | 4-(3,3-dihalo-allyloxy) phenol derivatives having pesticidal properties |
US12/564,995 Abandoned US20100016383A1 (en) | 2002-08-30 | 2009-09-23 | 4-(3,3-dihalo-allyloxy)phenol derivatives having pesticidal properties |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/525,891 Expired - Fee Related US7608631B2 (en) | 2002-08-30 | 2003-08-29 | 4-(3,3-dihalo-allyloxy) phenol derivatives having pesticidal properties |
Country Status (7)
Country | Link |
---|---|
US (2) | US7608631B2 (en) |
EP (1) | EP1537077A2 (en) |
JP (1) | JP2006507245A (en) |
AR (1) | AR043048A1 (en) |
AU (1) | AU2003266333A1 (en) |
TW (1) | TW200406152A (en) |
WO (1) | WO2004020445A2 (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200406370A (en) * | 2002-06-28 | 2004-05-01 | Syngenta Participations Ag | 4-(3,3-Dihalo-allyloxy)phenoxy alkyl derivatives |
TW200406152A (en) * | 2002-08-30 | 2004-05-01 | Syngenta Participations Ag | 4-(3,3-Dihalo-allyloxy) phenol derivatives having pesticidal properties |
US6987194B2 (en) | 2003-04-30 | 2006-01-17 | Fmc Corporation | Insecticidal (dihalopropenyl) phenylalkyl substituted dihydrobenzofuran and dihydrobenzopyran derivatives |
TW200507752A (en) * | 2003-06-23 | 2005-03-01 | Syngenta Participations Ag | Pesticidally active ketone and oxime derivatives |
TW200612961A (en) * | 2004-05-18 | 2006-05-01 | Fmc Corp | Substituted cyclic urea derivatives |
AU2008293542B9 (en) * | 2007-08-27 | 2014-08-07 | Dart Neuroscience (Cayman) Ltd. | Therapeutic isoxazole compounds |
PT2484676E (en) | 2008-12-18 | 2015-05-18 | Bayer Cropscience Ag | Tetrazol-substituted anthranilic acid amides as pesticides |
SI2582694T1 (en) | 2010-06-15 | 2015-11-30 | Bayer Intellectual Property Gmbh | Process for manufacturing tetrazole- substituted anthranilic acid diamide derivatives and novel crystalline modification of these derivatives |
CN102718701B (en) * | 2011-03-30 | 2014-05-07 | 中国中化股份有限公司 | Aryloxy dihalide propylene ether compound and application thereof |
EP2729462B1 (en) | 2011-07-08 | 2017-10-04 | Bayer Intellectual Property GmbH | Method for manufacturing tetrazole substituted anthranilic acid derivatives by converting pyrazole acids with anthranilic acid esters |
WO2013030100A1 (en) | 2011-08-26 | 2013-03-07 | Bayer Intellectual Property Gmbh | Method for producing tetrazole-substituted anthranilic acid diamide derivatives by reacting benzoxazinones with amines |
CN103102322B (en) * | 2011-11-14 | 2016-02-24 | 上海交通大学 | Oxazole compounds and preparation method thereof, medical composition and its use |
CN103145637A (en) * | 2013-03-17 | 2013-06-12 | 石家庄学院 | Novel synthetic process of 3-phenyl-5-bromine-1,2,4-oxadiazole derivative |
CA3002299A1 (en) | 2015-11-05 | 2017-05-11 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
EP3376867A1 (en) * | 2015-11-19 | 2018-09-26 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
CA3003949A1 (en) | 2015-11-19 | 2017-05-26 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
EP3439477B1 (en) | 2016-04-08 | 2020-05-06 | Syngenta Participations AG | Microbiocidal oxadiazole derivatives |
CN108884062A (en) | 2016-04-11 | 2018-11-23 | 巴斯夫欧洲公司 | For preventing and treating the Qu Dai oxadiazole class of plant pathogenic fungi |
CA3027013A1 (en) | 2016-06-09 | 2017-12-14 | Basf Se | Substituted oxadiazoles for combating phytopathogenic fungi |
EP3468953B1 (en) | 2016-06-13 | 2024-05-22 | GlaxoSmithKline Intellectual Property Development Limited | Substituted pyridines as inhibitors of dnmt1 |
WO2020117493A1 (en) | 2018-12-03 | 2020-06-11 | Fmc Corporation | Method for preparing n-phenylpyrazole-1-carboxamides |
CN113636987B (en) * | 2021-08-12 | 2022-09-20 | 南通慧源塑胶有限公司 | Preparation and application of chloropropene derivative containing thiadiazole unit |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5869506A (en) * | 1996-01-31 | 1999-02-09 | Sumitomo Chemical Company, Limited | Fluoropropene compound, an insecticide containing the same and an intermediate for production thereof |
US6140274A (en) * | 1996-01-30 | 2000-10-31 | Sumitomo Chemical Company, Limited | Dihalopropene compounds, their use as insecticides/acaricides and intermediates for their production |
US6437184B1 (en) * | 1997-04-08 | 2002-08-20 | Sumitomo Chemical Company, Limited | Oxime compounds, their use, and intermediates for their production |
US7414064B2 (en) * | 2002-06-28 | 2008-08-19 | Syngenta Crop Protection, Inc. | 4-(3,3-dihalo-allyloxy) phenoxy alkyl derivatives |
US7608631B2 (en) * | 2002-08-30 | 2009-10-27 | Syngenta Crop Protection, Inc. | 4-(3,3-dihalo-allyloxy) phenol derivatives having pesticidal properties |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR9506309A (en) * | 1994-08-04 | 1997-08-05 | Sumitomo Chemical Co | Dihalopropene compounds insecticidal / acaricidal agents containing the same and intermediates for their production |
JP3834838B2 (en) * | 1994-08-04 | 2006-10-18 | 住友化学株式会社 | Dihalopropene compounds, insecticides, acaricides and production intermediates containing them as active ingredients |
JPH08109156A (en) * | 1994-10-12 | 1996-04-30 | Sumitomo Chem Co Ltd | Dihalopropene compound and insecticidal miticide containing the compound as active component |
TW307746B (en) * | 1994-10-14 | 1997-06-11 | Sumitomo Chemical Co | |
US5952386A (en) * | 1995-04-18 | 1999-09-14 | Sumitomo Chemical Company, Limited | Dihalopropene compounds, insecticides containing them as active ingredients, and intermediates for their production |
JP3814866B2 (en) * | 1995-04-18 | 2006-08-30 | 住友化学株式会社 | Dihalopropene compounds, insecticides containing them as active ingredients and intermediates for their production |
WO1997027173A2 (en) * | 1996-01-24 | 1997-07-31 | Sumitomo Chemical Company, Limited | Dihalopropene compounds, their use as insecticides/acaricides and intermediates for their production |
JPH09263572A (en) * | 1996-01-24 | 1997-10-07 | Sumitomo Chem Co Ltd | Dihalopropene compound, its use and production intermediate thereof |
JP4209995B2 (en) * | 1998-04-27 | 2009-01-14 | クミアイ化学工業株式会社 | 3-Arylphenyl sulfide derivatives and insecticides, acaricides |
JP2001114737A (en) * | 1999-01-12 | 2001-04-24 | Sumitomo Chem Co Ltd | Oxime derivative and use thereof |
JP4798410B2 (en) * | 1999-06-25 | 2011-10-19 | 日本農薬株式会社 | Benzamide derivatives, agricultural and horticultural insecticides and methods of use thereof |
DE10155385A1 (en) * | 2001-11-10 | 2003-05-28 | Bayer Cropscience Gmbh | Dihalopropene compounds, processes for their preparation, compositions containing them and their use as pesticides |
-
2003
- 2003-08-28 TW TW092123705A patent/TW200406152A/en unknown
- 2003-08-28 AR ARP030103119A patent/AR043048A1/en unknown
- 2003-08-29 EP EP03790947A patent/EP1537077A2/en not_active Withdrawn
- 2003-08-29 AU AU2003266333A patent/AU2003266333A1/en not_active Abandoned
- 2003-08-29 US US10/525,891 patent/US7608631B2/en not_active Expired - Fee Related
- 2003-08-29 JP JP2004532153A patent/JP2006507245A/en active Pending
- 2003-08-29 WO PCT/EP2003/009636 patent/WO2004020445A2/en active Application Filing
-
2009
- 2009-09-23 US US12/564,995 patent/US20100016383A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6140274A (en) * | 1996-01-30 | 2000-10-31 | Sumitomo Chemical Company, Limited | Dihalopropene compounds, their use as insecticides/acaricides and intermediates for their production |
US5869506A (en) * | 1996-01-31 | 1999-02-09 | Sumitomo Chemical Company, Limited | Fluoropropene compound, an insecticide containing the same and an intermediate for production thereof |
US6437184B1 (en) * | 1997-04-08 | 2002-08-20 | Sumitomo Chemical Company, Limited | Oxime compounds, their use, and intermediates for their production |
US6448444B2 (en) * | 1997-04-08 | 2002-09-10 | Sumitomo Chemical Company, Limited | Oxime compounds, their use, and intermediates for their production |
US7414064B2 (en) * | 2002-06-28 | 2008-08-19 | Syngenta Crop Protection, Inc. | 4-(3,3-dihalo-allyloxy) phenoxy alkyl derivatives |
US7608631B2 (en) * | 2002-08-30 | 2009-10-27 | Syngenta Crop Protection, Inc. | 4-(3,3-dihalo-allyloxy) phenol derivatives having pesticidal properties |
Also Published As
Publication number | Publication date |
---|---|
WO2004020445A3 (en) | 2004-04-15 |
EP1537077A2 (en) | 2005-06-08 |
US20050288186A1 (en) | 2005-12-29 |
AU2003266333A1 (en) | 2004-03-19 |
TW200406152A (en) | 2004-05-01 |
AU2003266333A8 (en) | 2004-03-19 |
WO2004020445A2 (en) | 2004-03-11 |
AR043048A1 (en) | 2005-07-13 |
US7608631B2 (en) | 2009-10-27 |
JP2006507245A (en) | 2006-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20100016383A1 (en) | 4-(3,3-dihalo-allyloxy)phenol derivatives having pesticidal properties | |
US7414064B2 (en) | 4-(3,3-dihalo-allyloxy) phenoxy alkyl derivatives | |
US20060205595A1 (en) | Avermectin monosaccharide derivatives having pesticidal properties | |
US7378399B2 (en) | Avermectins substituted in the 4″ and 4′-positions having pesticidal properties | |
US7569727B2 (en) | Pesticidally active ketone and oxime derivatives | |
US7638514B2 (en) | Pesticidally active phenol derivatives | |
EP1572612B1 (en) | Dihalo-allyloxy-phenol derivatives having pesticidal activity | |
US20060063820A1 (en) | 2,6-dihalo-4-(3,3-dichloro-allyloxy)-benzylalcohole derivatives having insecticidal and acaricidal properties | |
US7632820B2 (en) | Avermectin and avemectin monosaccharide derivatives substituted in the 4″- or 4′-position having pesticidal properties | |
US7704961B2 (en) | Avermectins and avermectin monosacharides substituted in the 4′-and 4″ position having pesticidal properties | |
US7521429B2 (en) | Avermectin B1 monosaccharide derivatives | |
KR20050016949A (en) | 4-(3,3-Dihalo-allyloxy)phenoxy alkyl derivatives |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |