US20090297499A1 - Use of charcoal for treating inflammatory conditions - Google Patents
Use of charcoal for treating inflammatory conditions Download PDFInfo
- Publication number
- US20090297499A1 US20090297499A1 US11/997,844 US99784406A US2009297499A1 US 20090297499 A1 US20090297499 A1 US 20090297499A1 US 99784406 A US99784406 A US 99784406A US 2009297499 A1 US2009297499 A1 US 2009297499A1
- Authority
- US
- United States
- Prior art keywords
- charcoal
- inflammatory
- mice
- agent
- inflammation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003610 charcoal Substances 0.000 title claims abstract description 85
- 230000004968 inflammatory condition Effects 0.000 title claims abstract description 40
- 238000011282 treatment Methods 0.000 claims abstract description 43
- 206010061218 Inflammation Diseases 0.000 claims abstract description 31
- 230000004054 inflammatory process Effects 0.000 claims abstract description 31
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 208000022559 Inflammatory bowel disease Diseases 0.000 claims abstract description 11
- 210000003734 kidney Anatomy 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 claims abstract description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 93
- 208000015181 infectious disease Diseases 0.000 claims description 20
- 210000004072 lung Anatomy 0.000 claims description 16
- 229940121363 anti-inflammatory agent Drugs 0.000 claims description 15
- 239000002260 anti-inflammatory agent Substances 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 14
- 239000002988 disease modifying antirheumatic drug Substances 0.000 claims description 11
- 229940021182 non-steroidal anti-inflammatory drug Drugs 0.000 claims description 11
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 claims description 10
- 239000008194 pharmaceutical composition Substances 0.000 claims description 10
- 229940123907 Disease modifying antirheumatic drug Drugs 0.000 claims description 9
- 150000003431 steroids Chemical class 0.000 claims description 8
- 241000282414 Homo sapiens Species 0.000 claims description 7
- 241000124008 Mammalia Species 0.000 claims description 6
- 239000003795 chemical substances by application Substances 0.000 claims description 6
- 239000002855 microbicide agent Substances 0.000 claims description 5
- 206010028980 Neoplasm Diseases 0.000 claims description 4
- 239000003124 biologic agent Substances 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 230000006378 damage Effects 0.000 claims description 4
- 239000003018 immunosuppressive agent Substances 0.000 claims description 4
- 229940125721 immunosuppressive agent Drugs 0.000 claims description 4
- 208000027866 inflammatory disease Diseases 0.000 claims description 4
- 230000002757 inflammatory effect Effects 0.000 claims description 4
- 229960001860 salicylate Drugs 0.000 claims description 4
- YGSDEFSMJLZEOE-UHFFFAOYSA-M salicylate Chemical compound OC1=CC=CC=C1C([O-])=O YGSDEFSMJLZEOE-UHFFFAOYSA-M 0.000 claims description 4
- 208000027418 Wounds and injury Diseases 0.000 claims description 3
- 230000003110 anti-inflammatory effect Effects 0.000 claims description 3
- 230000001363 autoimmune Effects 0.000 claims description 3
- 208000014674 injury Diseases 0.000 claims description 3
- 241000699670 Mus sp. Species 0.000 description 101
- 210000004027 cell Anatomy 0.000 description 28
- 208000009386 Experimental Arthritis Diseases 0.000 description 26
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 26
- 239000011780 sodium chloride Substances 0.000 description 25
- 238000002474 experimental method Methods 0.000 description 18
- 201000004792 malaria Diseases 0.000 description 15
- 206010063094 Cerebral malaria Diseases 0.000 description 13
- 239000002158 endotoxin Substances 0.000 description 13
- 230000004083 survival effect Effects 0.000 description 13
- 210000004369 blood Anatomy 0.000 description 11
- 239000008280 blood Substances 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- 206010039073 rheumatoid arthritis Diseases 0.000 description 11
- 102000004127 Cytokines Human genes 0.000 description 10
- 108090000695 Cytokines Proteins 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 10
- 206010040047 Sepsis Diseases 0.000 description 9
- 241000699666 Mus <mouse, genus> Species 0.000 description 8
- 230000034994 death Effects 0.000 description 8
- 231100000517 death Toxicity 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 206010022000 influenza Diseases 0.000 description 8
- 229920006008 lipopolysaccharide Polymers 0.000 description 8
- 210000002966 serum Anatomy 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 210000001519 tissue Anatomy 0.000 description 7
- 239000003981 vehicle Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 238000011740 C57BL/6 mouse Methods 0.000 description 6
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 6
- 201000010099 disease Diseases 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 208000037487 Endotoxemia Diseases 0.000 description 5
- 102100040247 Tumor necrosis factor Human genes 0.000 description 5
- 206010003246 arthritis Diseases 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 238000011161 development Methods 0.000 description 5
- 210000003743 erythrocyte Anatomy 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 230000001951 hemoperfusion Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 241000283690 Bos taurus Species 0.000 description 4
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 4
- 229920002472 Starch Polymers 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 210000000416 exudates and transudate Anatomy 0.000 description 4
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229910052737 gold Inorganic materials 0.000 description 4
- 230000000968 intestinal effect Effects 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 230000001698 pyrogenic effect Effects 0.000 description 4
- 235000019698 starch Nutrition 0.000 description 4
- 239000008107 starch Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000011725 BALB/c mouse Methods 0.000 description 3
- 206010010904 Convulsion Diseases 0.000 description 3
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 3
- 208000009182 Parasitemia Diseases 0.000 description 3
- 208000030852 Parasitic disease Diseases 0.000 description 3
- 208000005374 Poisoning Diseases 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 229960000074 biopharmaceutical Drugs 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 210000001035 gastrointestinal tract Anatomy 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 3
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 3
- BXFFHSIDQOFMLE-UHFFFAOYSA-N indoxyl sulfate Chemical compound C1=CC=C2C(OS(=O)(=O)O)=CNC2=C1 BXFFHSIDQOFMLE-UHFFFAOYSA-N 0.000 description 3
- 210000002540 macrophage Anatomy 0.000 description 3
- 229960000485 methotrexate Drugs 0.000 description 3
- 238000003305 oral gavage Methods 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 231100000572 poisoning Toxicity 0.000 description 3
- 230000000607 poisoning effect Effects 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000001397 quillaja saponaria molina bark Substances 0.000 description 3
- 108020003175 receptors Proteins 0.000 description 3
- 229930182490 saponin Natural products 0.000 description 3
- 150000007949 saponins Chemical class 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 208000024891 symptom Diseases 0.000 description 3
- 230000004580 weight loss Effects 0.000 description 3
- 101100339431 Arabidopsis thaliana HMGB2 gene Proteins 0.000 description 2
- 206010003591 Ataxia Diseases 0.000 description 2
- 201000001320 Atherosclerosis Diseases 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 235000001258 Cinchona calisaya Nutrition 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 2
- 206010015150 Erythema Diseases 0.000 description 2
- 206010015719 Exsanguination Diseases 0.000 description 2
- 239000001828 Gelatine Substances 0.000 description 2
- 208000010412 Glaucoma Diseases 0.000 description 2
- 108700010013 HMGB1 Proteins 0.000 description 2
- 101150021904 HMGB1 gene Proteins 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 102100037907 High mobility group protein B1 Human genes 0.000 description 2
- 206010060860 Neurological symptom Diseases 0.000 description 2
- 206010033799 Paralysis Diseases 0.000 description 2
- 241000224021 Plasmodium berghei ANKA Species 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 201000001263 Psoriatic Arthritis Diseases 0.000 description 2
- 208000036824 Psoriatic arthropathy Diseases 0.000 description 2
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 2
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 239000003430 antimalarial agent Substances 0.000 description 2
- 239000002256 antimetabolite Substances 0.000 description 2
- 239000003435 antirheumatic agent Substances 0.000 description 2
- AUJRCFUBUPVWSZ-XTZHGVARSA-M auranofin Chemical compound CCP(CC)(CC)=[Au]S[C@@H]1O[C@H](COC(C)=O)[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O AUJRCFUBUPVWSZ-XTZHGVARSA-M 0.000 description 2
- 229960005207 auranofin Drugs 0.000 description 2
- 150000001540 azides Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 210000004534 cecum Anatomy 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 230000036461 convulsion Effects 0.000 description 2
- -1 dexamethasone Chemical class 0.000 description 2
- 229960003957 dexamethasone Drugs 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 230000007717 exclusion Effects 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 229940015045 gold sodium thiomalate Drugs 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000008595 infiltration Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 210000001503 joint Anatomy 0.000 description 2
- 231100000518 lethal Toxicity 0.000 description 2
- 230000001665 lethal effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 206010025135 lupus erythematosus Diseases 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 230000000926 neurological effect Effects 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 229960001412 pentobarbital Drugs 0.000 description 2
- 206010034674 peritonitis Diseases 0.000 description 2
- 239000008177 pharmaceutical agent Substances 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 150000003077 polyols Chemical class 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000000770 proinflammatory effect Effects 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 229960000948 quinine Drugs 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000003118 sandwich ELISA Methods 0.000 description 2
- AGHLUVOCTHWMJV-UHFFFAOYSA-J sodium;gold(3+);2-sulfanylbutanedioate Chemical compound [Na+].[Au+3].[O-]C(=O)CC(S)C([O-])=O.[O-]C(=O)CC(S)C([O-])=O AGHLUVOCTHWMJV-UHFFFAOYSA-J 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- 241000712461 unidentified influenza virus Species 0.000 description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 description 2
- 239000008158 vegetable oil Substances 0.000 description 2
- WHTVZRBIWZFKQO-AWEZNQCLSA-N (S)-chloroquine Chemical compound ClC1=CC=C2C(N[C@@H](C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-AWEZNQCLSA-N 0.000 description 1
- FUFLCEKSBBHCMO-UHFFFAOYSA-N 11-dehydrocorticosterone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)C(=O)CO)C4C3CCC2=C1 FUFLCEKSBBHCMO-UHFFFAOYSA-N 0.000 description 1
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 1
- 206010002198 Anaphylactic reaction Diseases 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- 108020000948 Antisense Oligonucleotides Proteins 0.000 description 1
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N Aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 1
- 208000031729 Bacteremia Diseases 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 208000002177 Cataract Diseases 0.000 description 1
- 208000022306 Cerebral injury Diseases 0.000 description 1
- UDKCHVLMFQVBAA-UHFFFAOYSA-M Choline salicylate Chemical compound C[N+](C)(C)CCO.OC1=CC=CC=C1C([O-])=O UDKCHVLMFQVBAA-UHFFFAOYSA-M 0.000 description 1
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 1
- 102000000503 Collagen Type II Human genes 0.000 description 1
- 108010041390 Collagen Type II Proteins 0.000 description 1
- 206010010071 Coma Diseases 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- MFYSYFVPBJMHGN-ZPOLXVRWSA-N Cortisone Chemical compound O=C1CC[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 MFYSYFVPBJMHGN-ZPOLXVRWSA-N 0.000 description 1
- MFYSYFVPBJMHGN-UHFFFAOYSA-N Cortisone Natural products O=C1CCC2(C)C3C(=O)CC(C)(C(CC4)(O)C(=O)CO)C4C3CCC2=C1 MFYSYFVPBJMHGN-UHFFFAOYSA-N 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 206010013911 Dysgeusia Diseases 0.000 description 1
- 201000009273 Endometriosis Diseases 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108010008165 Etanercept Proteins 0.000 description 1
- 208000010201 Exanthema Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000003456 Juvenile Arthritis Diseases 0.000 description 1
- 206010059176 Juvenile idiopathic arthritis Diseases 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 208000019693 Lung disease Diseases 0.000 description 1
- MQHWFIOJQSCFNM-UHFFFAOYSA-L Magnesium salicylate Chemical compound [Mg+2].OC1=CC=CC=C1C([O-])=O.OC1=CC=CC=C1C([O-])=O MQHWFIOJQSCFNM-UHFFFAOYSA-L 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 238000000585 Mann–Whitney U test Methods 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 108010021466 Mutant Proteins Proteins 0.000 description 1
- 102000008300 Mutant Proteins Human genes 0.000 description 1
- 206010030113 Oedema Diseases 0.000 description 1
- 208000007117 Oral Ulcer Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 206010033661 Pancytopenia Diseases 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 241000223960 Plasmodium falciparum Species 0.000 description 1
- 206010035664 Pneumonia Diseases 0.000 description 1
- 208000028017 Psychotic disease Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 108091030071 RNAI Proteins 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 101710146873 Receptor-binding protein Proteins 0.000 description 1
- 208000001647 Renal Insufficiency Diseases 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- 206010040914 Skin reaction Diseases 0.000 description 1
- ABBQHOQBGMUPJH-UHFFFAOYSA-M Sodium salicylate Chemical compound [Na+].OC1=CC=CC=C1C([O-])=O ABBQHOQBGMUPJH-UHFFFAOYSA-M 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 208000007107 Stomach Ulcer Diseases 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- QJJXYPPXXYFBGM-LFZNUXCKSA-N Tacrolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1\C=C(/C)[C@@H]1[C@H](C)[C@@H](O)CC(=O)[C@H](CC=C)/C=C(C)/C[C@H](C)C[C@H](OC)[C@H]([C@H](C[C@H]2C)OC)O[C@@]2(O)C(=O)C(=O)N2CCCC[C@H]2C(=O)O1 QJJXYPPXXYFBGM-LFZNUXCKSA-N 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 229920000392 Zymosan Polymers 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229960001138 acetylsalicylic acid Drugs 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 229960002964 adalimumab Drugs 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000036783 anaphylactic response Effects 0.000 description 1
- 208000003455 anaphylaxis Diseases 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000000074 antisense oligonucleotide Substances 0.000 description 1
- 238000012230 antisense oligonucleotides Methods 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 229940009100 aurothiomalate Drugs 0.000 description 1
- XJHSMFDIQHVMCY-UHFFFAOYSA-M aurothiomalic acid Chemical compound OC(=O)CC(S[Au])C(O)=O XJHSMFDIQHVMCY-UHFFFAOYSA-M 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008499 blood brain barrier function Effects 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000001218 blood-brain barrier Anatomy 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- KQNZDYYTLMIZCT-KQPMLPITSA-N brefeldin A Chemical compound O[C@@H]1\C=C\C(=O)O[C@@H](C)CCC\C=C\[C@@H]2C[C@H](O)C[C@H]21 KQNZDYYTLMIZCT-KQPMLPITSA-N 0.000 description 1
- JUMGSHROWPPKFX-UHFFFAOYSA-N brefeldin-A Natural products CC1CCCC=CC2(C)CC(O)CC2(C)C(O)C=CC(=O)O1 JUMGSHROWPPKFX-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229940047495 celebrex Drugs 0.000 description 1
- RZEKVGVHFLEQIL-UHFFFAOYSA-N celecoxib Chemical compound C1=CC(C)=CC=C1C1=CC(C(F)(F)F)=NN1C1=CC=C(S(N)(=O)=O)C=C1 RZEKVGVHFLEQIL-UHFFFAOYSA-N 0.000 description 1
- 235000013330 chicken meat Nutrition 0.000 description 1
- 229960003677 chloroquine Drugs 0.000 description 1
- WHTVZRBIWZFKQO-UHFFFAOYSA-N chloroquine Natural products ClC1=CC=C2C(NC(C)CCCN(CC)CC)=CC=NC2=C1 WHTVZRBIWZFKQO-UHFFFAOYSA-N 0.000 description 1
- 229960002688 choline salicylate Drugs 0.000 description 1
- 208000023819 chronic asthma Diseases 0.000 description 1
- 208000019069 chronic childhood arthritis Diseases 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229960004544 cortisone Drugs 0.000 description 1
- 229940111134 coxibs Drugs 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 239000003255 cyclooxygenase 2 inhibitor Substances 0.000 description 1
- 108091008470 cytokine binding proteins Proteins 0.000 description 1
- 102000026898 cytokine binding proteins Human genes 0.000 description 1
- 230000016396 cytokine production Effects 0.000 description 1
- 208000024389 cytopenia Diseases 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 239000003937 drug carrier Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 208000010227 enterocolitis Diseases 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 231100000321 erythema Toxicity 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- 201000005884 exanthem Diseases 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 238000009093 first-line therapy Methods 0.000 description 1
- 206010016766 flatulence Diseases 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 201000005917 gastric ulcer Diseases 0.000 description 1
- 230000009368 gene silencing by RNA Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 150000002343 gold Chemical class 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 231100000753 hepatic injury Toxicity 0.000 description 1
- 230000036732 histological change Effects 0.000 description 1
- 210000003767 ileocecal valve Anatomy 0.000 description 1
- 238000003119 immunoblot Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 210000004969 inflammatory cell Anatomy 0.000 description 1
- 230000006749 inflammatory damage Effects 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 229960000598 infliximab Drugs 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 210000000936 intestine Anatomy 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- PGHMRUGBZOYCAA-UHFFFAOYSA-N ionomycin Natural products O1C(CC(O)C(C)C(O)C(C)C=CCC(C)CC(C)C(O)=CC(=O)C(C)CC(C)CC(CCC(O)=O)C)CCC1(C)C1OC(C)(C(C)O)CC1 PGHMRUGBZOYCAA-UHFFFAOYSA-N 0.000 description 1
- PGHMRUGBZOYCAA-ADZNBVRBSA-N ionomycin Chemical compound O1[C@H](C[C@H](O)[C@H](C)[C@H](O)[C@H](C)/C=C/C[C@@H](C)C[C@@H](C)C(/O)=C/C(=O)[C@@H](C)C[C@@H](C)C[C@@H](CCC(O)=O)C)CC[C@@]1(C)[C@@H]1O[C@](C)([C@@H](C)O)CC1 PGHMRUGBZOYCAA-ADZNBVRBSA-N 0.000 description 1
- 230000008407 joint function Effects 0.000 description 1
- 208000018937 joint inflammation Diseases 0.000 description 1
- 201000002215 juvenile rheumatoid arthritis Diseases 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 208000006443 lactic acidosis Diseases 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000011694 lewis rat Methods 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 238000001325 log-rank test Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 229940072082 magnesium salicylate Drugs 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 210000005015 mediastinal lymph node Anatomy 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 230000004066 metabolic change Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- HPNSFSBZBAHARI-UHFFFAOYSA-N micophenolic acid Natural products OC1=C(CC=C(C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-UHFFFAOYSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229960000951 mycophenolic acid Drugs 0.000 description 1
- HPNSFSBZBAHARI-RUDMXATFSA-N mycophenolic acid Chemical compound OC1=C(C\C=C(/C)CCC(O)=O)C(OC)=C(C)C2=C1C(=O)OC2 HPNSFSBZBAHARI-RUDMXATFSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 231100001078 no known side-effect Toxicity 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000012053 oil suspension Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 229940012843 omega-3 fatty acid Drugs 0.000 description 1
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 1
- 239000006014 omega-3 oil Substances 0.000 description 1
- 239000008203 oral pharmaceutical composition Substances 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 210000003200 peritoneal cavity Anatomy 0.000 description 1
- 210000003024 peritoneal macrophage Anatomy 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 210000001986 peyer's patch Anatomy 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- ZAHRKKWIAAJSAO-UHFFFAOYSA-N rapamycin Natural products COCC(O)C(=C/C(C)C(=O)CC(OC(=O)C1CCCCN1C(=O)C(=O)C2(O)OC(CC(OC)C(=CC=CC=CC(C)CC(C)C(=O)C)C)CCC2C)C(C)CC3CCC(O)C(C3)OC)C ZAHRKKWIAAJSAO-UHFFFAOYSA-N 0.000 description 1
- 206010037844 rash Diseases 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000029058 respiratory gaseous exchange Effects 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- RZJQGNCSTQAWON-UHFFFAOYSA-N rofecoxib Chemical compound C1=CC(S(=O)(=O)C)=CC=C1C1=C(C=2C=CC=CC=2)C(=O)OC1 RZJQGNCSTQAWON-UHFFFAOYSA-N 0.000 description 1
- 150000003873 salicylate salts Chemical class 0.000 description 1
- 201000000306 sarcoidosis Diseases 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000009528 severe injury Effects 0.000 description 1
- 229960002930 sirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-HPLJOQBZSA-N sirolimus Chemical compound C1C[C@@H](O)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 QFJCIRLUMZQUOT-HPLJOQBZSA-N 0.000 description 1
- 231100000046 skin rash Toxicity 0.000 description 1
- 231100000430 skin reaction Toxicity 0.000 description 1
- 230000035483 skin reaction Effects 0.000 description 1
- 229960004025 sodium salicylate Drugs 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 238000012453 sprague-dawley rat model Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- ASWVTGNCAZCNNR-UHFFFAOYSA-N sulfamethazine Chemical compound CC1=CC(C)=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1 ASWVTGNCAZCNNR-UHFFFAOYSA-N 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- QJJXYPPXXYFBGM-SHYZHZOCSA-N tacrolimus Natural products CO[C@H]1C[C@H](CC[C@@H]1O)C=C(C)[C@H]2OC(=O)[C@H]3CCCCN3C(=O)C(=O)[C@@]4(O)O[C@@H]([C@H](C[C@H]4C)OC)[C@@H](C[C@H](C)CC(=C[C@@H](CC=C)C(=O)C[C@H](O)[C@H]2C)C)OC QJJXYPPXXYFBGM-SHYZHZOCSA-N 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000000472 traumatic effect Effects 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 239000002451 tumor necrosis factor inhibitor Substances 0.000 description 1
- 239000002441 uremic toxin Substances 0.000 description 1
- 229940087652 vioxx Drugs 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 1
- 229960001600 xylazine Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K33/00—Medicinal preparations containing inorganic active ingredients
- A61K33/44—Elemental carbon, e.g. charcoal, carbon black
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
- A61P29/02—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID] without antiinflammatory effect
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
- A61P33/02—Antiprotozoals, e.g. for leishmaniasis, trichomoniasis, toxoplasmosis
- A61P33/06—Antimalarials
Definitions
- the present invention relates to use of charcoal in the manufacture of an oral composition for the treatment of an inflammatory condition other than an inflammatory bowel disease and other than intestinal or other inflammation within the kidney.
- the present invention also relates to a pharmaceutical composition comprising charcoal in combination with a further anti-inflammatory agent.
- the present invention further relates to a pharmaceutical composition comprising charcoal in combination with a further anti-inflammatory agent for the treatment of an inflammatory condition and also to a method of treating an inflammatory condition, other than an inflammatory bowel disease and other than intestinal or other inflammation within the kidney, comprising the oral administration of charcoal.
- Inflammation is a protective response by the immune system to tissue damage and infection. However, the inflammatory response, in some circumstances, can damage the body. In the acute phase, inflammation is characterised by pain, heat, redness, swelling and loss of function. There are a wide range of inflammatory conditions which affect millions of people worldwide. A significant inflammatory condition is rheumatoid arthritis. Rheumatoid arthritis affects 0.5-1% of the human population. This disease is characterised by joint inflammation and leads to progressive debilitation in joint function which results in pain, disability, loss of man power and shorter life expectancy. Multiple sclerosis, lupus, atherosclerosis and cardiovascular disease are also significant inflammatory conditions.
- steroids such as dexamethasone
- steroids are widely used in the treatment of inflammatory conditions. While treatment with steroids can be effective, there are a number of serious side effects. These side effects include hypertension, growth deficiencies in younger patients, osteoporosis, cataracts, psychosis, elevated blood sugar, glaucoma, etc.
- long-term use of steroids can lead to resistance in some patients.
- New and alternative treatment currently used for inflammatory conditions are based on biologicals such as antibodies and soluble receptors. The most widely used of these is based on blocking TNF function with neutralizing antibodies or soluble receptors.
- This type of anti-TNF therapy has been successful in the treatment of a number of diseases, with a substantial proportion of patients (approximately a third to a quarter) showing significant clinical benefit.
- it is extremely expensive and this places a heavy financial burden either on the patient or the healthcare system or both.
- Some patients in the developed world and the majority in the developing world are not able to afford this treatment.
- possible side effects of anti-TNF therapy include anaphylaxis, cytopenia and increased susceptibility to infection.
- DARDS disease modifying anti-rheumatic drugs
- methotrexate an anti-metabolite drug, which is widely used for the treatment of rheumatoid arthritis, psoriatic arthritis and psoriasis.
- Methotrexate has been successful in the treatment of these diseases, but can cause substantial side effects, such as severe skin reaction, infections such as pneumonia, severe damage to liver, kidneys, lungs and gastrointestinal tract.
- a number of DMARD pharmaceutical agents containing gold are also used in the treatment of inflammatory conditions, particularly rheumatoid arthritis.
- examples of such agents include gold sodium thiomalate and auranofin.
- Potential side effects from being treated with anti-inflammatory gold agents are oral ulcers, altered taste, serious skin rashes, renal problems, inflammation of the intestines (enterocolitis), liver injury and lung disease. Furthermore, resistance to gold has been known to develop in patients.
- a further class of drugs are the non-steroidal anti-inflammatory drugs (NSAID's). These are used to alleviate symptoms and includes the Cox 2 inhibitors “VIOXX”® (a registered trademark of Merck & Co., Inc) and “CELEBREX”®, (a registered trademark of G.D. Searle & Co).
- NSAID's non-steroidal anti-inflammatory drugs
- Charcoal is well known for use in emergency treatment for specific types of poisoning and blood overdoses. Charcoal is also used to treat digestive complaints such as intestinal gas (flatulence), diarrhoea, and stomach ulcer pain.
- a treatment for malaria is a world-wide aim. Although the pathophysiologic basis of severe malaria is yet to be fully defined, arguments have been put forward for the role of pro-inflammatory cytokines in the disease. Failure to break the vicious cycle of metabolic changes induced by excess cytokine production contributes significantly to the high mortality rates observed, in spite of increasingly effective anti-malarial drugs. Attempts to improve survival by targeting individual cytokines, notably TNF, have been largely unsuccessful.
- Severe sepsis the third leading cause of death in developed countries, is also mediated by cytokine over-expression, but anti-TNF therapies, and other strategies to target specific cytokines have yet to be proven effective in clinical trials.
- the first aspect of the present invention provides the use of charcoal in the manufacture of an oral composition for the treatment of an inflammatory condition other than an inflammatory bowel disease and other than interstitial or other inflammation within the kidney.
- inflammatory bowel disease is meant a general term for intestinal inflammation.
- Such a composition is preferably a medicament.
- charcoal is useful for treating inflammatory conditions such as autoimmune inflammatory conditions, particularly rheumatoid arthritis (including juvenile rheumatoid arthritis), psoriatic arthritis, cardiovascular disease, glaucoma, sarcoidosis, endometriosis, multiple sclerosis, ankylosing spondylitis, atherosclerosis, lupus, psoriasis, glomerulonephritis; malarial inflammatory conditions, particularly malaria (which may be severe malaria) including cerebral malaria; inflammation associated with cancer; lung associated inflammatory diseases particularly severe acute respiratory syndrome (SARS), influenza, in particular influenza induced inflammation, chronic asthma and chronic obstructive pulmonary disease (COPD); infection associated inflammation, including malaria, influenza, as well as other infections such as bacterial and viral infections, sepsis, endotoxemia; and/or injury-associated inflammation (as exemplified by air pouch model(s)) including burning, bruising, swelling, breakages and post surgery-associated inflammation.
- the charcoal can be used to treat any one inflammatory condition or a combination of inflammatory conditions at the same or different time(s).
- charcoal there is no limitation as to the type of charcoal to be used.
- the charcoal is activated charcoal.
- the activated charcoal is preferably of clinical grade.
- activated charcoal is produced by heating charcoal with steam to approximately 1000° C. in the absence of oxygen. This treatment removes residual non-carbon elements and produces a porous internal microstructure having an extremely high surface area.
- Activated charcoal typically has particle sizes of 0.05 to 2 mm, a specific surface area of 500 to 2 000 m 2 /g and a specific pore volume of 0.2 to 2.0 ml/g determined in the range of a pore radius of not more than 80 ⁇ .
- Charcoal has an inert and harmless structure and can be taken orally with no known side effects. In addition, charcoal does not suppress the immune system of a subject, and therefore does not make the subject more susceptible to infection.
- the charcoal-containing medicament is administered orally.
- the effect of the oral administration is understood to be systemic.
- the charcoal is effective in treating inflammatory conditions which afflict parts of the body that do not come into direct contact with the charcoal. This is particularly surprising in view of the teachings of the prior art.
- a dose of charcoal is preferably between 0.25 g and 100 g.
- One dose may be effective or more than one may be necessary.
- the dose regime may be once daily, more than once daily, weekly or monthly.
- the content of charcoal in the pharmaceutical compositions may be anywhere between 1 to 100 wt. % of the composition.
- a particular advantage of the present invention is that charcoal is extremely cheap in comparison to most of the treatments currently available for the treatment of inflammatory conditions and appear to have no known unacceptable side effects.
- charcoal Given the urgent need for treatment of life-threatening diseases such as severe malaria, the application of charcoal is particularly useful as it can be rapidly available for clinical use.
- the charcoal-containing medicament may be used in combination with a further anti-inflammatory agent.
- Administration of the charcoal and other anti-inflammatory agent can be simultaneous, separate and/or sequential.
- the charcoal, in combination with another pharmaceutical agent, can act additively or synergistically.
- the other anti-inflammatory agent may be termed a non-steroidal anti-inflammatory agent (NSAID), a disease modifying anti-rheumatic drug (DMARD), a biological agent (biologicals), a steroid, an immunosuppressive agent, a salicylate and/or a microbicidal agent.
- NSAID non-steroidal anti-inflammatory agent
- DMARD disease modifying anti-rheumatic drug
- biological agent biologicals
- Biologicals include anti-TNF agents (including adalimumab, etanercept, infliximab, anti-IL-1 reagents, anti-IL-6 reagents, anti-B cell reagents (retoximab), anti-T cell reagents (anti-CD4 antibodies), anti-IL-15 reagents, anti-CLTA4 reagents, anti-RAGE reagents), antibodies, soluble receptors, receptor binding proteins, cytokine binding proteins, mutant proteins with altered or attenuated functions, RNAi, polynucleotide aptmers, antisense oligonucleotides or omega 3 fatty acids.
- anti-TNF agents including adalimumab, etanercept, infliximab, anti-IL-1 reagents, anti-IL-6 reagents, anti-B cell reagents (retoximab), anti-T cell reagents (anti-CD4 antibodies), anti
- Steroids include cortisone, prednisolone or dexamethasone.
- Immunosuppresive agents include cylcosporin, FK506, rapamycin, mycophenolic acid.
- Salicylates include aspirin, sodium salicylate, choline salicylate and magnesium salicylate.
- Microbicidal agents include quinine and chloroquine.
- the further anti-inflammatory agent is administered by any appropriate route, for example oral (including buccal or sublingual), topical (including buccal, sublingual or transdermal), or parenteral (including subcutaneous, intramuscular, intravenous or intradermal) route.
- oral including buccal or sublingual
- topical including buccal, sublingual or transdermal
- parenteral including subcutaneous, intramuscular, intravenous or intradermal
- the further anti-inflammatory agent is administered orally, it may be administered as part of the same composition as the charcoal.
- the second aspect of the invention is a pharmaceutical composition comprising charcoal in combination with a further anti-inflammatory agent.
- the composition of the second aspect is an oral composition.
- the third aspect of the invention is a pharmaceutical composition comprising charcoal in combination with a further anti-inflammatory agent for the treatment of an inflammatory condition.
- the inflammatory condition may be other than an inflammatory bowel disease and other than interstitial or other inflammation within the kidney.
- the composition according to the third aspect of the invention is preferably an oral composition.
- the fourth aspect of the invention is a method of treating an inflammatory condition other than an inflammatory bowel disease and other than interstitial or other inflammation within the kidney comprising the oral administration of charcoal.
- the method is carried out on a subject in need of treatment or a subject whom has been identified as having an increased susceptibility (or disposition) to suffering from one or more of the inflammatory conditions according to the invention.
- it may involve one or more steps to either determine the subject's susceptibility to an inflammatory condition of the invention or it may involve one or more steps to monitor the subject after the treatment has been carried out.
- the subject's susceptibility may involve an invasive or non-invasive diagnostic test, including requesting information from the patient as to their family history health in relation to inflammatory conditions.
- Monitoring of the subject after treatment may involve invasive or non-invasive testing, including requesting information from the subject or testing as to one or more of the following; pain levels, comfort levels, mobility of joints, ease of breathing while resting or while exercising, body temperature levels, ability to exercise, vomiting levels etc.
- compositions in accordance with the invention may be supplied as part of a sterile, pharmaceutical composition which will normally include a pharmaceutically acceptable carrier.
- This pharmaceutical composition may be in any suitable form. It may be provided in unit dosage form, will generally be provided in a sealed container and may be provided as part of a kit. Such a kit would normally (although not necessarily) include instructions for use. It may include a plurality of said unit dosage forms.
- the oral pharmaceutical compositions may be presented as discrete units such as capsules or tablets; as powders or granules; as solutions, syrups or suspensions (in aqueous or non-aqueous liquids; or as edible foams or whips; or as emulsions).
- Suitable excipients for tablets or hard gelatine capsules include lactose, maize starch or derivatives thereof, stearic acid or salts thereof.
- Suitable excipients for use with soft gelatine capsules include for example vegetable oils, waxes, fats, semi-solid, or liquid polyols etc.
- excipients which may be used include for example water, polyols and sugars.
- suspensions oils e.g. vegetable oils
- oil-in-water or water in oil suspensions may be used.
- compositions may contain preserving agents, solubilising agents, stabilising agents, wetting agents, emulsifiers, sweeteners, colourants, odourants, salts, buffers, coating agents or antioxidants. They may also contain further therapeutically active agents in addition to the anti-inflammatory agents of the present invention.
- Dosages of the substances of the present invention can vary between wide limits, depending upon the condition to be treated, the health of the individual to be treated, etc. and a physician may determine appropriate dosages to be used. The dosage may be repeated as often as appropriate.
- compositions and uses described in this application are envisaged to have human, animal and veterinary applications. They are preferably applicable to mammals, in particular humans, but are also applicable for use in production animals, in particular sheep, cows, pigs, chickens and goats, as well as companion animals, in particular cats and dogs and sporting animals, such as horses.
- the term “treatment” includes prophylactic treatment (i.e. prevention) and therapeutic treatment. In most circumstances, prevention of an inflammatory condition is unlikely to be carried out. Usually, it is only when the presence of an inflammatory disease is diagnosed in a subject that prevention means are applied. However, prophylactic treatment may be appropriate if there is i) a known family history of significant inflammatory conditions or if tests (e.g. genetic tests) identify that an individual has a predisposition to one or more inflammatory conditions of the invention or ii) an increased risk of suffering from one or more inflammatory conditions, such as an increased risk of contracting malaria.
- prophylactic treatment may be appropriate if there is i) a known family history of significant inflammatory conditions or if tests (e.g. genetic tests) identify that an individual has a predisposition to one or more inflammatory conditions of the invention or ii) an increased risk of suffering from one or more inflammatory conditions, such as an increased risk of contracting malaria.
- FIG. 1 illustrates the clinical score of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis from experiment 1 of Example 1.
- FIG. 2 illustrates the paw thickness (mm) of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis from experiment 1 of Example 1.
- FIG. 3 illustrates the clinical score of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis from experiment 2 of Example 1.
- FIG. 4 illustrates the paw thickness (mm) of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis from experiment 2 of Example 1.
- FIG. 5 illustrates the clinical score of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis from experiment 3 of Example 1.
- FIG. 6 illustrates the paw thickness (mm) of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis from experiment 3 of Example 1.
- FIG. 7 illustrates the composite histological profile of all joints from mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis from experiments 1-3 of Example 1.
- FIG. 8 illustrates the serum anti bovine CII IgG (total) levels of all mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis from experiments 1-3 of Example 1.
- FIG. 9 illustrates the use of activated charcoal to protect mice against cerebral malaria (cm).
- FIG. 9 b Parasitemia in control ( ⁇ ) and charcoal-treated ( ⁇ ) mice (Example 2).
- FIG. 10 illustrates the total number of cells in the lungs of the influenza infected mice.
- the number 1 on the X axis represents the saline treated mice and the number 2 on the X axis represents the charcoal treated mice.
- the Y axis represents the number of cells (Example 3).
- FIG. 11 illustrates the total number of cells in the bronchoalveolar lavage, which represents the total number of cells in the airways of the lungs of the influenza infected mice.
- the number 1 on the X axis represents the saline treated mice and the number 2 on the X axis represents the charcoal treated mice.
- the Y axis represents the number of cells (Example 3).
- FIG. 12 illustrates the amount of TNF ⁇ release in starch elicited peritoneal exudates macrophages from mice orally gavaged with activated charcoal or with saline (Example 4).
- FIG. 13 illustrates the viable cell count from air pouch exudates, in an air pouch model inflammation, of mice orally gavaged with either saline or charcoal (Example 5).
- FIG. 14 illustrates percentage weight loss of mice over time (Example 6).
- FIGS. 15 a, b and c illustrate either white blood counts or amount of IL-10 in mice treated with charcoal compared to the control mice (Example 6).
- FIG. 16 a illustrates the serum TNF levels of mice in different experimental or control groups, over time (Example 7).
- FIG. 16 b illustrates percent survival of mice in different experimental or control groups, over time (Example 7).
- FIG. 16 c illustrates percentage survival of mice in different experimental or control groups, over time (Example 7).
- FIG. 16 d illustrates inhibition of HMGB1 levels by activated charcoal (Example 7).
- CIA murine collagen-induced arthritis
- DBA/1 male mice (experiment 1) or seven DBA/1 mice (experiments 2 and 3) at 10 weeks old were injected with a single injection of 100-200 ⁇ g of bovine type II collagen and Freund's complete adjuvant (FCA). DBA1 mice are susceptible to the induction of arthritis.
- mice The paws of the mice were examined for the clinical signs of arthritis characterised by oedema and erythema. Once the clinical signs had been observed the mice were orally administered with 400 mg/kg activated charcoal one day and five days after the onset of the clinical signs of arthritis. The mice were monitored for clinical scores and paw thickness (mm).
- mice After ten days from the onset of the clinical signs of arthritis, the mice were culled and the paws of the mice from experiment 1 were examined for histology and the blood of the mice from experiments 1-3 was examined for serology.
- mice treated with activated charcoal suffered less than half the percentage of severe joint erosions that untreated mice and saline treated mice suffered ( FIG. 7 ). This indicates that charcoal treated mice exhibit an increased degree of protection from inflammatory damage.
- CM cerebral malaria
- CNS central nervous system
- mice were infected by intravenous injection of 10 4 parasitized RBCs obtained from infected C57BL/6 mice, and were monitored daily for neurological signs of CM, including convulsions, ataxia and paralysis. Parasitaemias were determined from stained blood films. Actidose-Aqua activated charcoal (0.2 g charcoal/ml) was obtained from Paddock laboratories, Inc. (Cat# NDC0574-0121-04), and mice were dosed on days 3 and 5 post infection with 130 mg charcoal/kg mouse (administered orally in 100 ul volume saline), based on initial dose titration studies in a model of endotoxemia and on the known natural history of CM in C57BL/6 mice.
- mice were stained with hematoxylin and eosin, and examined using a Zeiss Axiophot microscope with an Optronics CCD camera.
- brains from vehicle-treated infected mice showed evidence of intra-cerebral injury, including peri-vascular haemorrhages containing parasitised red blood cells.
- many blood vessels were extensively occluded with thrombi composed of parasitized erythrocytes. In contrast, these histological changes were not observed in mice treated with activated charcoal.
- Activated charcoal is also be highly beneficial in this context.
- Oral activated charcoal has other attributes. It has been used for many years in the treatment of poisoning, including incidentally quinine poisoning. It is well tolerated and has a well-documented safety profile, is relatively inexpensive and administration is not technically demanding. The long shelf life, particularly in powdered form, makes it highly suited for use in remote rural communities.
- oral charcoal can be a readily-implemented therapy for the treatment of severe malaria.
- mice were intra-gastrically gavaged with 200 ⁇ l activated Charcoal (400 mg/kg) or 200 ⁇ l non-pyrogenic saline. Mice were infected intranasally with 50 HA units of influenza virus X31 in 50 ⁇ l non-pyrogenic saline. Mice were monitored daily and weight loss measured throughout infection. Mice were killed 7 days post infection (corresponding to height of immunopathology) by the injection of 3 mg pentobarbitone and exsanguination of the femoral vessels.
- Broncho-alveolar lavage (BAL) fluid, lung tissue, mediastinal lymph node, spleen and Peyer's patches were obtained from each mouse as described previously (Hussell, T et al. 1996. J. Gen. Virol. 77:2447-2455).
- lungs were inflated six times with 1.5 ml of Eagle's Minimum Essential Medium (Sigma) containing 10 mM EDTA and kept on ice (BAL fluid), centrifuged, the supernatant decanted and the cell pellet resuspended to 1 ⁇ 10 6 cells/ml in RPMI containing 10 % FCS, 2 mM/ml L-glutamine, 50 ⁇ g/ml penicillin and 50 ⁇ g/ml streptomycin (R10F).
- Solid tissue was disrupted using 0.8 ⁇ m filters to obtain single cell suspensions, the red blood cells lysed and the cell pellet re-suspended at 1 ⁇ 10 6 cells/ml in R10F. Cell number was quantified using a haemocytometer and trypan blue exclusion. A single lobe of lung tissue was fixed in 2% formaldehyde and embedded in paraffin. Sections were stained with H and E.
- 1 ⁇ 10 6 cells obtained from the airways or the lung were stained with the following antibody combinations: 1) anti-CD45RB-FITC, anti-CD103-PE anti-CD4-PerCP and anti-CD8-APC 2) anti-Ly6G-FITC, anti-CD86-PE, anti-CD11b-PerCP and anti-CD11c-APC 3) anti-CD45RB-FITC, anti-FoxP3-PE, anti-CD4-PerCP and anti-CD8-APC 4) to detect intracellular cytokines 1 ⁇ 10 6 cells were incubated with 50 ng/ml PMA (Sigma-Aldrich), 500 ng ionomycin (Calbiochem) and 10 ⁇ g/ml brefeldin A (Sigma) for 4 h at 37° C.
- PMA Sigma-Aldrich
- 500 ng ionomycin Calbiochem
- 10 ⁇ g/ml brefeldin A Sigma
- Cells were stained with anti-CD4-PerCP and anti-CD8-APC on ice for 30 min, washed and then fixed in 2% formaldehyde for 20 min at room temperature. Cells were permeabilised with 0.5% saponin in PBS containing 1% BSA and 0.1% azide for 10 min. A combination of anti-TNF- ⁇ -FITC anti-IL-4-PE, diluted in saponin buffer, was then added to the cells. After 30 min cells were washed once in saponin buffer and twice in PBS containing 0.1% azide and 1% BSA. Samples were analysed on an LSR flow cytometer (BD Biosciences), collecting data on at least 30,000 lymphocytes.
- LSR flow cytometer BD Biosciences
- FIGS. 10 and 11 The cell numbers in the BAL and lung tissue of the influenza infected mice, treated with saline and charcoal, are illustrated in FIGS. 10 and 11 . There is a substantially lower number of cells in the BAL of the charcoal treated mice in comparison with the saline treated mice ( FIG. 11 ).
- Starch elicited macrophages were obtained from DBA/1 mice by the intra peritoneal injection of a freshly prepared 1% starch solution. The mice were orally gavaged with either saline or charcoal (400 mg/kg) on day 1 and day 3 during the four day period. Macrophages were obtained as the plastic adherent cells from peritoneal exudates population and grown in culture in the presence or absence of LPS (10 ng/ml). Tumor necrosis factor was assayed from the culture supernatants harvested 24 h later by a sandwich ELISA.
- the results are shown in FIG. 12 .
- the results shows that oral gavaging with charcoal diminishes LPS (lipopolysaccharide) induced TNF ⁇ release from starch elicited peritoneal macrophages.
- LPS lipopolysaccharide
- mice were intra-gastrically gavaged with 100 ⁇ l activated charcoal (400 mg/kg) or 100 ⁇ l non-pyrogenic saline at day ⁇ 1 and/or day 2.
- mice were infected intranasally with 50 HA units of influenza virus X31 in 50 ⁇ l non-pyrogenic saline at day 0. Mice were monitored daily and weight loss measured throughout infection. Mice were killed 6/7 days post infection (corresponding to height of immunopathology) by the injection of 3 mg per pentobarbitone and exsanguination of the femoral vessels.
- Broncho-alveolar lavage (BAL) fluid and lung tissue were obtained from each mouse as described previously (Hussell, T et al 1996. J. Gen. Virol. 77:2447-2455).
- lungs were inflated six times with 1.5 ml of Eagle's Minimum Essential Medium (Sigma) containing 10 mM EDTA and kept on ice (BAL fluid), centrifuged, the supernatant collected to assay for cytokines by ELISA and the cell pellet re-suspended for counting.
- Solid tissue was disrupted using 0.8 ⁇ m filters to obtain single cell suspensions, the red blood cells lysed and the cell pellet re-suspended for counting.
- CLP cecal ligation and puncture
- mice were 6-8 week old BALB/c or C57BL/6 mice (20-25 g) purchased from Harlan-Sprague-Dawley and allowed to acclimate for 7 days. Rats were adult males (280-300 g) from Charles River Laboratories. Both species were housed at 25° C. on a 12 hours light/dark cycle and allowed free access to water and their appropriate food.
- mice were injected intraperitoneally with 7.5 mg endotoxin ( Eschericia coli LPS 0111:B4; Sigma) that was dissolved in sterile, pyrogen-free saline at 5 mg/ml concentration and sonicated from 30 mins before each use.
- endotoxin Eschericia coli LPS 0111:B4; Sigma
- mice were killed at either 3 or 5 hours after LPS injection.
- Blood was collected from the heart, allowed to clot for 2 hours at room temperature and centrifuged for 20 mins at 1,500 ⁇ g. Serum samples were stored at 20° C. before analysis.
- the mice were returned to their cages and observed till death or for two weeks. Blood was collected at different times after LPS administration, allowed to clot for 2 hours at room temperature, and centrifuged for 20 mins at 1,500 ⁇ g.
- mice peritonitis was created in mice by the method of ceal ligation and puncture first described by Wichman et al.
- the animals were anesthetized with ketamine (100 mg/kg, i.m.) and xylazine (10 mg/kg, i.m.) and laparotomized.
- the cecum was ligated at the junction of ileocecal valve and the distal part punctured once with a 22-guage needle. Through this opening, a 1 mm length of stool was expressed and allowed to fall into the peritoneal cavity. The cecum was returned to its proper location and the abdomen was closed. After surgery each mouse was given an antibiotic (primazin; 0.5 mg/kg s.c) and 20 ml/kg of normal saline s.c. The mice were observed for three weeks.
- Actidose-Aqua activated charcoal (0.2 g charcoal/ml) was obtained from Paddock laboratories, Inc. (Cat# NDC0574-0121-04). A range of concentration was first analyzed in endotoxemia to determine survival rate in a concentration dependent-fashion. Charcoal concentration range was obtained in water after a serial dilution from the original solution as follow; 1 ⁇ 4 (50 mg charcoal/ml); 1 ⁇ 2 (25 mg charcoal/ml) and 1 ⁇ 4 (6.25 mg charcoal/ml). Mice (25 g) were given a 100 ⁇ l of the solutions providing a final range of concentrations of 200, 100 and 25 mg charcoal/kg mouse. Mice were not anesthetized or sedated because mice with altered sensorial frequently resulted in airway contamination.
- FIGS. 16 ( a, b, c and d ) show that oral charcoal reduces serum cytokines and protects against lethal endotoxemia and sepsis. Details of FIGS. 16 ( a, b, c and d ) are as follows:
- mice Control untreated mice or mice receiving 15 mg/kg endotoxin followed by vehicle (LPS), or followed by activated charcoal (LPS+Ch) were bled at 30 hours and serum HMGB1 was measured by quantitative immuno-blot as described previously.
Landscapes
- Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Rheumatology (AREA)
- Inorganic Chemistry (AREA)
- Pain & Pain Management (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Tropical Medicine & Parasitology (AREA)
- Pulmonology (AREA)
- Dermatology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The invention relates to the use of charcoal in the manufacture of an oral composition for the treatment of an inflammatory condition other than an inflammatory bowel disease and other than interstitial or other inflammation within the kidney.
Description
- The present invention relates to use of charcoal in the manufacture of an oral composition for the treatment of an inflammatory condition other than an inflammatory bowel disease and other than intestinal or other inflammation within the kidney. The present invention also relates to a pharmaceutical composition comprising charcoal in combination with a further anti-inflammatory agent. The present invention further relates to a pharmaceutical composition comprising charcoal in combination with a further anti-inflammatory agent for the treatment of an inflammatory condition and also to a method of treating an inflammatory condition, other than an inflammatory bowel disease and other than intestinal or other inflammation within the kidney, comprising the oral administration of charcoal.
- Inflammation is a protective response by the immune system to tissue damage and infection. However, the inflammatory response, in some circumstances, can damage the body. In the acute phase, inflammation is characterised by pain, heat, redness, swelling and loss of function. There are a wide range of inflammatory conditions which affect millions of people worldwide. A significant inflammatory condition is rheumatoid arthritis. Rheumatoid arthritis affects 0.5-1% of the human population. This disease is characterised by joint inflammation and leads to progressive debilitation in joint function which results in pain, disability, loss of man power and shorter life expectancy. Multiple sclerosis, lupus, atherosclerosis and cardiovascular disease are also significant inflammatory conditions. The varied symptoms of severe malaria, which includes cerebral malaria largely reflect the consequences of excessive production, in the body, of inflammatory pathway components. Infection with Plasmodium falciparum (an infectious cause of malaria) causes 4-6 million cases of life-threatening severe malaria and over 1 million childhood deaths annually in Africa. A means to reduce/control the symptoms of malaria is hugely desirable. In addition, recent research has indicated that cancer may have an important inflammatory component.
- Current treatments for inflammatory conditions have a number of disadvantages, including expense and/or severe side effects. At present, steroids such as dexamethasone, are widely used in the treatment of inflammatory conditions. While treatment with steroids can be effective, there are a number of serious side effects. These side effects include hypertension, growth deficiencies in younger patients, osteoporosis, cataracts, psychosis, elevated blood sugar, glaucoma, etc. In addition, long-term use of steroids can lead to resistance in some patients.
- New and alternative treatment currently used for inflammatory conditions are based on biologicals such as antibodies and soluble receptors. The most widely used of these is based on blocking TNF function with neutralizing antibodies or soluble receptors. This type of anti-TNF therapy has been successful in the treatment of a number of diseases, with a substantial proportion of patients (approximately a third to a quarter) showing significant clinical benefit. However, it is extremely expensive and this places a heavy financial burden either on the patient or the healthcare system or both. Some patients in the developed world and the majority in the developing world are not able to afford this treatment. In addition, possible side effects of anti-TNF therapy include anaphylaxis, cytopenia and increased susceptibility to infection. Currently it is not possible to take anti-TNF drugs orally, which is a disadvantage.
- Another class of drugs are the disease modifying anti-rheumatic drugs (DMARDS). An example of these is methotrexate, an anti-metabolite drug, which is widely used for the treatment of rheumatoid arthritis, psoriatic arthritis and psoriasis. Methotrexate has been successful in the treatment of these diseases, but can cause substantial side effects, such as severe skin reaction, infections such as pneumonia, severe damage to liver, kidneys, lungs and gastrointestinal tract.
- A number of DMARD pharmaceutical agents containing gold are also used in the treatment of inflammatory conditions, particularly rheumatoid arthritis. Examples of such agents include gold sodium thiomalate and auranofin. Potential side effects from being treated with anti-inflammatory gold agents are oral ulcers, altered taste, serious skin rashes, renal problems, inflammation of the intestines (enterocolitis), liver injury and lung disease. Furthermore, resistance to gold has been known to develop in patients.
- A further class of drugs are the non-steroidal anti-inflammatory drugs (NSAID's). These are used to alleviate symptoms and includes the Cox 2 inhibitors “VIOXX”® (a registered trademark of Merck & Co., Inc) and “CELEBREX”®, (a registered trademark of G.D. Searle & Co).
- As a result of lack of efficacy, development of resistance, unacceptable side-effects and expense of existing treatments, it is hugely desirable to find an alternative treatment for inflammatory conditions.
- Charcoal is well known for use in emergency treatment for specific types of poisoning and blood overdoses. Charcoal is also used to treat digestive complaints such as intestinal gas (flatulence), diarrhoea, and stomach ulcer pain.
- There has been some investigation of the use of charcoal in the treatment of inflammatory bowel disease. U.S. Pat. No. 5,554,370 describes a method of treating a patient suffering from inflammatory bowel disease by oral administration of spherical activated charcoal. In the use described in U.S. Pat. No. 5,554,370 there is direct contact between the tissue to be treated and the charcoal. The charcoal has a local effect.
- There has been some investigation of the use of charcoal to reduce disorders within the kidney, including interstitial inflammation. Aoyama 1., Stimokata K., and Niwa T., Neptron, 2002, 92:635-651 describe the use of charcoal to delay the progression of renal failure. In the use described in this document (in a rat model only), the charcoal acts by removing uremic toxins, such as indoxyl sulphate in order to ameliorate the development of interstitial inflammation. Indoxyl sulphate is a metabolic product of indole and indole can be produced by gut flora. The literature suggests that the mechanism by which charcoal reduces inflammation in the kidney is the absorption of indole in the gut before it is metabolised to indoxyl sulphate and absorbed by the body.
- Charcoal has been used in various hemoperfusion treatments. These types of treatments involve removing blood from the body and circulating the blood past charcoal to remove toxins, drugs, etc for the treatment of sepsis or septic shock. Hemoperfusion treatment using charcoal has also been investigated for rheumatoid arthritis (Martynov et al., 1992 Ter Arkh. 64(7): 103-7). There is no suggestion in this document that charcoal could be effective for the treatment of rheumatoid arthritis, if taken orally. In fact, if the authors of this paper had any reason to believe that orally administered charcoal could be used to treat rheumatoid arthritis, then hemoperfusion using charcoal would not have been pursued. This is because hemoperfusion is considerably more traumatic for a patient than the oral administration of a medicament. Furthermore, hemoperfusion is expensive, as equipment and qualified medical personnel are required. The teaching of this Martynov et al paper is that the factors affecting rheumatoid arthritis are present in the blood and that the blood must be contacted directly with the charcoal to have the desired effect.
- A treatment for malaria is a world-wide aim. Although the pathophysiologic basis of severe malaria is yet to be fully defined, arguments have been put forward for the role of pro-inflammatory cytokines in the disease. Failure to break the vicious cycle of metabolic changes induced by excess cytokine production contributes significantly to the high mortality rates observed, in spite of increasingly effective anti-malarial drugs. Attempts to improve survival by targeting individual cytokines, notably TNF, have been largely unsuccessful.
- Severe sepsis, the third leading cause of death in developed countries, is also mediated by cytokine over-expression, but anti-TNF therapies, and other strategies to target specific cytokines have yet to be proven effective in clinical trials.
- The first aspect of the present invention provides the use of charcoal in the manufacture of an oral composition for the treatment of an inflammatory condition other than an inflammatory bowel disease and other than interstitial or other inflammation within the kidney. By inflammatory bowel disease is meant a general term for intestinal inflammation. Such a composition is preferably a medicament.
- In particular, charcoal is useful for treating inflammatory conditions such as autoimmune inflammatory conditions, particularly rheumatoid arthritis (including juvenile rheumatoid arthritis), psoriatic arthritis, cardiovascular disease, glaucoma, sarcoidosis, endometriosis, multiple sclerosis, ankylosing spondylitis, atherosclerosis, lupus, psoriasis, glomerulonephritis; malarial inflammatory conditions, particularly malaria (which may be severe malaria) including cerebral malaria; inflammation associated with cancer; lung associated inflammatory diseases particularly severe acute respiratory syndrome (SARS), influenza, in particular influenza induced inflammation, chronic asthma and chronic obstructive pulmonary disease (COPD); infection associated inflammation, including malaria, influenza, as well as other infections such as bacterial and viral infections, sepsis, endotoxemia; and/or injury-associated inflammation (as exemplified by air pouch model(s)) including burning, bruising, swelling, breakages and post surgery-associated inflammation.
- According to the present invention, the charcoal can be used to treat any one inflammatory condition or a combination of inflammatory conditions at the same or different time(s).
- There is no limitation as to the type of charcoal to be used. Preferably the charcoal is activated charcoal. The activated charcoal is preferably of clinical grade.
- Typically, activated charcoal is produced by heating charcoal with steam to approximately 1000° C. in the absence of oxygen. This treatment removes residual non-carbon elements and produces a porous internal microstructure having an extremely high surface area. Activated charcoal typically has particle sizes of 0.05 to 2 mm, a specific surface area of 500 to 2 000 m2/g and a specific pore volume of 0.2 to 2.0 ml/g determined in the range of a pore radius of not more than 80 Å.
- Charcoal has an inert and harmless structure and can be taken orally with no known side effects. In addition, charcoal does not suppress the immune system of a subject, and therefore does not make the subject more susceptible to infection.
- In the present invention, the charcoal-containing medicament is administered orally. The effect of the oral administration is understood to be systemic. As a result, the charcoal is effective in treating inflammatory conditions which afflict parts of the body that do not come into direct contact with the charcoal. This is particularly surprising in view of the teachings of the prior art.
- A dose of charcoal is preferably between 0.25 g and 100 g. One dose may be effective or more than one may be necessary. The dose regime may be once daily, more than once daily, weekly or monthly. The content of charcoal in the pharmaceutical compositions may be anywhere between 1 to 100 wt. % of the composition.
- A particular advantage of the present invention is that charcoal is extremely cheap in comparison to most of the treatments currently available for the treatment of inflammatory conditions and appear to have no known unacceptable side effects.
- Given the urgent need for treatment of life-threatening diseases such as severe malaria, the application of charcoal is particularly useful as it can be rapidly available for clinical use.
- The charcoal-containing medicament may be used in combination with a further anti-inflammatory agent. Administration of the charcoal and other anti-inflammatory agent can be simultaneous, separate and/or sequential. The charcoal, in combination with another pharmaceutical agent, can act additively or synergistically.
- The other anti-inflammatory agent may be termed a non-steroidal anti-inflammatory agent (NSAID), a disease modifying anti-rheumatic drug (DMARD), a biological agent (biologicals), a steroid, an immunosuppressive agent, a salicylate and/or a microbicidal agent. Non-steroidal anti-inflammatory agents include anti-metabolite agents (including methotrexate) and anti-inflammatory gold agents (including gold sodium thiomalate, aurothiomalate or gold salts, such as auranofin). Biologicals include anti-TNF agents (including adalimumab, etanercept, infliximab, anti-IL-1 reagents, anti-IL-6 reagents, anti-B cell reagents (retoximab), anti-T cell reagents (anti-CD4 antibodies), anti-IL-15 reagents, anti-CLTA4 reagents, anti-RAGE reagents), antibodies, soluble receptors, receptor binding proteins, cytokine binding proteins, mutant proteins with altered or attenuated functions, RNAi, polynucleotide aptemers, antisense oligonucleotides or
omega 3 fatty acids. Steroids include cortisone, prednisolone or dexamethasone. Immunosuppresive agents include cylcosporin, FK506, rapamycin, mycophenolic acid. Salicylates include aspirin, sodium salicylate, choline salicylate and magnesium salicylate. Microbicidal agents include quinine and chloroquine. - The further anti-inflammatory agent is administered by any appropriate route, for example oral (including buccal or sublingual), topical (including buccal, sublingual or transdermal), or parenteral (including subcutaneous, intramuscular, intravenous or intradermal) route. Where the further anti-inflammatory agent is administered orally, it may be administered as part of the same composition as the charcoal.
- The second aspect of the invention is a pharmaceutical composition comprising charcoal in combination with a further anti-inflammatory agent. Preferably, the composition of the second aspect is an oral composition.
- The third aspect of the invention is a pharmaceutical composition comprising charcoal in combination with a further anti-inflammatory agent for the treatment of an inflammatory condition. The inflammatory condition may be other than an inflammatory bowel disease and other than interstitial or other inflammation within the kidney. The composition according to the third aspect of the invention is preferably an oral composition.
- The fourth aspect of the invention is a method of treating an inflammatory condition other than an inflammatory bowel disease and other than interstitial or other inflammation within the kidney comprising the oral administration of charcoal. In the fourth aspect of the invention, the method is carried out on a subject in need of treatment or a subject whom has been identified as having an increased susceptibility (or disposition) to suffering from one or more of the inflammatory conditions according to the invention. In the method of the fourth aspect, it may involve one or more steps to either determine the subject's susceptibility to an inflammatory condition of the invention or it may involve one or more steps to monitor the subject after the treatment has been carried out. The subject's susceptibility may involve an invasive or non-invasive diagnostic test, including requesting information from the patient as to their family history health in relation to inflammatory conditions. Monitoring of the subject after treatment may involve invasive or non-invasive testing, including requesting information from the subject or testing as to one or more of the following; pain levels, comfort levels, mobility of joints, ease of breathing while resting or while exercising, body temperature levels, ability to exercise, vomiting levels etc.
- The preferred embodiments, as described for the first aspect of the invention, are the same for all aspects of the invention.
- Compositions in accordance with the invention may be supplied as part of a sterile, pharmaceutical composition which will normally include a pharmaceutically acceptable carrier. This pharmaceutical composition may be in any suitable form. It may be provided in unit dosage form, will generally be provided in a sealed container and may be provided as part of a kit. Such a kit would normally (although not necessarily) include instructions for use. It may include a plurality of said unit dosage forms.
- The oral pharmaceutical compositions may be presented as discrete units such as capsules or tablets; as powders or granules; as solutions, syrups or suspensions (in aqueous or non-aqueous liquids; or as edible foams or whips; or as emulsions). Suitable excipients for tablets or hard gelatine capsules include lactose, maize starch or derivatives thereof, stearic acid or salts thereof. Suitable excipients for use with soft gelatine capsules include for example vegetable oils, waxes, fats, semi-solid, or liquid polyols etc.
- For the preparation of solutions and syrups, excipients which may be used include for example water, polyols and sugars. For the preparation of suspensions oils (e.g. vegetable oils) may be used to provide oil-in-water or water in oil suspensions.
- The pharmaceutical compositions may contain preserving agents, solubilising agents, stabilising agents, wetting agents, emulsifiers, sweeteners, colourants, odourants, salts, buffers, coating agents or antioxidants. They may also contain further therapeutically active agents in addition to the anti-inflammatory agents of the present invention.
- Dosages of the substances of the present invention can vary between wide limits, depending upon the condition to be treated, the health of the individual to be treated, etc. and a physician may determine appropriate dosages to be used. The dosage may be repeated as often as appropriate.
- The compositions and uses described in this application are envisaged to have human, animal and veterinary applications. They are preferably applicable to mammals, in particular humans, but are also applicable for use in production animals, in particular sheep, cows, pigs, chickens and goats, as well as companion animals, in particular cats and dogs and sporting animals, such as horses.
- In the present invention, the term “treatment” includes prophylactic treatment (i.e. prevention) and therapeutic treatment. In most circumstances, prevention of an inflammatory condition is unlikely to be carried out. Usually, it is only when the presence of an inflammatory disease is diagnosed in a subject that prevention means are applied. However, prophylactic treatment may be appropriate if there is i) a known family history of significant inflammatory conditions or if tests (e.g. genetic tests) identify that an individual has a predisposition to one or more inflammatory conditions of the invention or ii) an increased risk of suffering from one or more inflammatory conditions, such as an increased risk of contracting malaria.
- The present invention is described with references to the drawings, in which:
-
FIG. 1 illustrates the clinical score of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis fromexperiment 1 of Example 1. -
FIG. 2 illustrates the paw thickness (mm) of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis fromexperiment 1 of Example 1. -
FIG. 3 illustrates the clinical score of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis fromexperiment 2 of Example 1. -
FIG. 4 illustrates the paw thickness (mm) of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis fromexperiment 2 of Example 1. -
FIG. 5 illustrates the clinical score of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis fromexperiment 3 of Example 1. -
FIG. 6 illustrates the paw thickness (mm) of mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis fromexperiment 3 of Example 1. -
FIG. 7 illustrates the composite histological profile of all joints from mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis from experiments 1-3 of Example 1. -
FIG. 8 illustrates the serum anti bovine CII IgG (total) levels of all mice with collagen induced arthritis treated with activated charcoal compared to the controls of untreated mice with collagen induced arthritis and saline treated mice with collagen induced arthritis from experiments 1-3 of Example 1. -
FIG. 9 illustrates the use of activated charcoal to protect mice against cerebral malaria (cm). InFIG. 9 a C57BL/6 mice were infected with P. berghei ANKA and either left untreated (□) or treated with activated charcoal ondays 3 and 5 (▪). Mice were monitored daily for the development of CM and for survival. Results represent pooled data derived from 3 independent experiments (n=13 per group). Differences in survival were highly significant (X2=19.18; P<<0.0001). InFIG. 9 b Parasitemia in control (□) and charcoal-treated (▪) mice (Example 2). -
FIG. 10 illustrates the total number of cells in the lungs of the influenza infected mice. Thenumber 1 on the X axis represents the saline treated mice and thenumber 2 on the X axis represents the charcoal treated mice. The Y axis represents the number of cells (Example 3). -
FIG. 11 illustrates the total number of cells in the bronchoalveolar lavage, which represents the total number of cells in the airways of the lungs of the influenza infected mice. Thenumber 1 on the X axis represents the saline treated mice and thenumber 2 on the X axis represents the charcoal treated mice. The Y axis represents the number of cells (Example 3). -
FIG. 12 illustrates the amount of TNFα release in starch elicited peritoneal exudates macrophages from mice orally gavaged with activated charcoal or with saline (Example 4). -
FIG. 13 illustrates the viable cell count from air pouch exudates, in an air pouch model inflammation, of mice orally gavaged with either saline or charcoal (Example 5). -
FIG. 14 illustrates percentage weight loss of mice over time (Example 6). -
FIGS. 15 a, b and c illustrate either white blood counts or amount of IL-10 in mice treated with charcoal compared to the control mice (Example 6). -
FIG. 16 a illustrates the serum TNF levels of mice in different experimental or control groups, over time (Example 7). -
FIG. 16 b illustrates percent survival of mice in different experimental or control groups, over time (Example 7). -
FIG. 16 c illustrates percentage survival of mice in different experimental or control groups, over time (Example 7). -
FIG. 16 d illustrates inhibition of HMGB1 levels by activated charcoal (Example 7). - The present invention is described with reference to the following non-limiting examples:
- Treatment of rheumatoid arthritis with charcoal was investigated using the murine collagen-induced arthritis (CIA) model. This model is widely used as an experimental model for rheumatoid arthritis.
- Six DBA/1 male mice (experiment 1) or seven DBA/1 mice (
experiments 2 and 3) at 10 weeks old were injected with a single injection of 100-200 μg of bovine type II collagen and Freund's complete adjuvant (FCA). DBA1 mice are susceptible to the induction of arthritis. - The paws of the mice were examined for the clinical signs of arthritis characterised by oedema and erythema. Once the clinical signs had been observed the mice were orally administered with 400 mg/kg activated charcoal one day and five days after the onset of the clinical signs of arthritis. The mice were monitored for clinical scores and paw thickness (mm).
- After ten days from the onset of the clinical signs of arthritis, the mice were culled and the paws of the mice from
experiment 1 were examined for histology and the blood of the mice from experiments 1-3 was examined for serology. - The results indicated a reduction in the clinical score and reduced paw thickness (mm) in response to the activated charcoal treatment when compared to the untreated and saline treated mice in all three experiments (
FIGS. 1-6 ). - The histological profile of the mice from
experiment 1 demonstrated that the mice treated with activated charcoal suffered less than half the percentage of severe joint erosions that untreated mice and saline treated mice suffered (FIG. 7 ). This indicates that charcoal treated mice exhibit an increased degree of protection from inflammatory damage. - In addition, the serum anti bovine CII IgG (total) levels in activated charcoal treated mice from experiments 1-3 were significantly lower (p<0.05 Mann-Whitney U-test) than saline treated mice (
FIG. 8 ). - We used the model of cerebral malaria (CM) caused by Plasmodium berghei ANKA infection in C57BL/6 mice. This is a well-accepted model for many aspects of human disease; pro-inflammatory cytokines are abundant; mice develop central nervous system (CNS) lactic acidosis, increased blood-brain barrier permeability, paralysis, seizures and death; and there are similarities in brain histopathology. 6 to 8-week old C57BL/6 mice (20-25 g) were purchased from Charles River Laboratories and maintained under barrier conditions with free access to water and diet. Mice were infected by intravenous injection of 104 parasitized RBCs obtained from infected C57BL/6 mice, and were monitored daily for neurological signs of CM, including convulsions, ataxia and paralysis. Parasitaemias were determined from stained blood films. Actidose-Aqua activated charcoal (0.2 g charcoal/ml) was obtained from Paddock laboratories, Inc. (Cat# NDC0574-0121-04), and mice were dosed on
days day 7 survival rate of approximately 95% compared to approximately 20% in control mice;FIG. 9 a). Only approximately 15% of the activated charcoal-treated animals developed any clinical evidence of CM. As no anti-malarial agents were administered, activated charcoal-treated mice eventually became hyper-parasitemic, and died presumably from anemia. Nevertheless, administration of activated charcoal significantly prolonged overall survival time (FIG. 9 a x2=19.18, P<0.00001). Strikingly, some treated animals survived for long periods despite parasitemia in excess of 75% (FIG. 9 b). To our knowledge there is no comparable treatment that confers this level of protection against CM and malaria-induced death. - To determine whether activated charcoal inhibited brain histopathology, brain sections were stained with hematoxylin and eosin, and examined using a Zeiss Axiophot microscope with an Optronics CCD camera. Compared to normal brain, brains from vehicle-treated infected mice showed evidence of intra-cerebral injury, including peri-vascular haemorrhages containing parasitised red blood cells. In addition, many blood vessels were extensively occluded with thrombi composed of parasitized erythrocytes. In contrast, these histological changes were not observed in mice treated with activated charcoal.
- Our data indicate that oral administration of activated charcoal almost completely inhibits the clinical and histopathological signs of CM in mice. In those mice that do develop CM (approximately 15%), onset is delayed, and in surviving mice charcoal also appears to provide a degree of protection against death due to high parasitemia. Activated charcoal may provide a first line therapy in the immediate absence of alternate treatment. Severe malaria is an acute illness, with neurological symptoms occurring often within 96 hours of the onset of fever; much of this time may be spent traveling from remote villages to health clinics and consequently many children arrive in coma. Our study indicates that charcoal therapy alone given early in the course of infection can dramatically prolong survival and restrict the development of neurological sequelae. In addition, recent studies indicate that “adjunctive” therapy during the first 24 hours of hospitalization may significantly decrease mortality associated with severe malaria. Activated charcoal is also be highly beneficial in this context. Oral activated charcoal has other attributes. It has been used for many years in the treatment of poisoning, including incidentally quinine poisoning. It is well tolerated and has a well-documented safety profile, is relatively inexpensive and administration is not technically demanding. The long shelf life, particularly in powdered form, makes it highly suited for use in remote rural communities.
- In conclusion, oral charcoal can be a readily-implemented therapy for the treatment of severe malaria.
- BALB/c mice were intra-gastrically gavaged with 200 μl activated Charcoal (400 mg/kg) or 200 μl non-pyrogenic saline. Mice were infected intranasally with 50 HA units of influenza virus X31 in 50 μl non-pyrogenic saline. Mice were monitored daily and weight loss measured throughout infection. Mice were killed 7 days post infection (corresponding to height of immunopathology) by the injection of 3 mg pentobarbitone and exsanguination of the femoral vessels.
- Broncho-alveolar lavage (BAL) fluid, lung tissue, mediastinal lymph node, spleen and Peyer's patches were obtained from each mouse as described previously (Hussell, T et al. 1996. J. Gen. Virol. 77:2447-2455). In brief, lungs were inflated six times with 1.5 ml of Eagle's Minimum Essential Medium (Sigma) containing 10 mM EDTA and kept on ice (BAL fluid), centrifuged, the supernatant decanted and the cell pellet resuspended to 1×106 cells/ml in RPMI containing 10 % FCS, 2 mM/ml L-glutamine, 50 μg/ml penicillin and 50 μg/ml streptomycin (R10F). Solid tissue was disrupted using 0.8 μm filters to obtain single cell suspensions, the red blood cells lysed and the cell pellet re-suspended at 1×106 cells/ml in R10F. Cell number was quantified using a haemocytometer and trypan blue exclusion. A single lobe of lung tissue was fixed in 2% formaldehyde and embedded in paraffin. Sections were stained with H and E.
- 1×106 cells obtained from the airways or the lung were stained with the following antibody combinations: 1) anti-CD45RB-FITC, anti-CD103-PE anti-CD4-PerCP and anti-CD8-APC 2) anti-Ly6G-FITC, anti-CD86-PE, anti-CD11b-PerCP and anti-CD11c-APC 3) anti-CD45RB-FITC, anti-FoxP3-PE, anti-CD4-PerCP and anti-CD8-APC 4) to detect
intracellular cytokines 1×106 cells were incubated with 50 ng/ml PMA (Sigma-Aldrich), 500 ng ionomycin (Calbiochem) and 10 μg/ml brefeldin A (Sigma) for 4 h at 37° C. Cells were stained with anti-CD4-PerCP and anti-CD8-APC on ice for 30 min, washed and then fixed in 2% formaldehyde for 20 min at room temperature. Cells were permeabilised with 0.5% saponin in PBS containing 1% BSA and 0.1% azide for 10 min. A combination of anti-TNF-α-FITC anti-IL-4-PE, diluted in saponin buffer, was then added to the cells. After 30 min cells were washed once in saponin buffer and twice in PBS containing 0.1% azide and 1% BSA. Samples were analysed on an LSR flow cytometer (BD Biosciences), collecting data on at least 30,000 lymphocytes. - The cell numbers in the BAL and lung tissue of the influenza infected mice, treated with saline and charcoal, are illustrated in
FIGS. 10 and 11 . There is a substantially lower number of cells in the BAL of the charcoal treated mice in comparison with the saline treated mice (FIG. 11 ). - Influenza induces infiltration of inflammatory cells into the lungs causing inflammation. These results clearly demonstrate that charcoal suppresses infiltration of cells into the airways, which suppresses inflammation in the lungs.
- Starch elicited macrophages were obtained from DBA/1 mice by the intra peritoneal injection of a freshly prepared 1% starch solution. The mice were orally gavaged with either saline or charcoal (400 mg/kg) on
day 1 andday 3 during the four day period. Macrophages were obtained as the plastic adherent cells from peritoneal exudates population and grown in culture in the presence or absence of LPS (10 ng/ml). Tumor necrosis factor was assayed from the culture supernatants harvested 24 h later by a sandwich ELISA. - The results are shown in
FIG. 12 . The results shows that oral gavaging with charcoal diminishes LPS (lipopolysaccharide) induced TNFα release from starch elicited peritoneal macrophages. - An air pouch model of inflammatory mediator accumulation and cellular recruitment was set up in DBA/1 mice. Mice were orally gavaged with either saline or charcoal (400 mg/kg), two hours post per os treatment the air pouches on these mice were challenged with zymosan and four hours later the cellular pouch exudates were harvested and viable cell counts were taken from each mouse. The results are shown in
FIG. 13 . The results show that oral gavaging with activated charcoal reduces cell ingress at the site of inflammation. - BALB/c mice were intra-gastrically gavaged with 100 μl activated charcoal (400 mg/kg) or 100 μl non-pyrogenic saline at day −1 and/or
day 2. - Mice were infected intranasally with 50 HA units of influenza virus X31 in 50 μl non-pyrogenic saline at
day 0. Mice were monitored daily and weight loss measured throughout infection. Mice were killed 6/7 days post infection (corresponding to height of immunopathology) by the injection of 3 mg per pentobarbitone and exsanguination of the femoral vessels. - Broncho-alveolar lavage (BAL) fluid and lung tissue were obtained from each mouse as described previously (Hussell, T et al 1996. J. Gen. Virol. 77:2447-2455). In brief, lungs were inflated six times with 1.5 ml of Eagle's Minimum Essential Medium (Sigma) containing 10 mM EDTA and kept on ice (BAL fluid), centrifuged, the supernatant collected to assay for cytokines by ELISA and the cell pellet re-suspended for counting. Solid tissue was disrupted using 0.8 μm filters to obtain single cell suspensions, the red blood cells lysed and the cell pellet re-suspended for counting.
- Cell number was quantified using a haemocytometer and trypan blue exclusion. Cytokines in the BAL fluid were assayed by sandwich ELISA.
- The results are shown in
FIGS. 14 and 15 a, b and c. - The conclusions from this work are:
-
- Charcoal given at either 1 day prior to or 2 days after the Influenza infection reduces WBC trafficking to the lung (site of inflammation).
- Mice given charcoal before infection seem to lose less body weight after infection.
- The most widely studied animal model of severe sepsis is lethal polymicrobial peritonitis caused by a surgical procedure termed “cecal ligation and puncture” (CLP). Here, mice were subjected to CLP, and treated orally with clinically achievable doeses of activated charcoal. Survival increased from 30% in vehicle-treated controls to 80% in activated charcoal-treated mice (
FIG. 16 d). Animals were followed for three weeks after the onset of sepsis, and no late deaths were observed, indicating that orally administered charcoal confers lasting protection, and does not merely delay death. - Mice were 6-8 week old BALB/c or C57BL/6 mice (20-25 g) purchased from Harlan-Sprague-Dawley and allowed to acclimate for 7 days. Rats were adult males (280-300 g) from Charles River Laboratories. Both species were housed at 25° C. on a 12 hours light/dark cycle and allowed free access to water and their appropriate food.
- Mice were injected intraperitoneally with 7.5 mg endotoxin (Eschericia coli LPS 0111:B4; Sigma) that was dissolved in sterile, pyrogen-free saline at 5 mg/ml concentration and sonicated from 30 mins before each use. For the TNF blood determinations, the mice were killed at either 3 or 5 hours after LPS injection. Blood was collected from the heart, allowed to clot for 2 hours at room temperature and centrifuged for 20 mins at 1,500×g. Serum samples were stored at 20° C. before analysis. For the survival experiments, the mice were returned to their cages and observed till death or for two weeks. Blood was collected at different times after LPS administration, allowed to clot for 2 hours at room temperature, and centrifuged for 20 mins at 1,500×g.
- To induce a correlation of clinical bacteremia and sepsis, peritonitis was created in mice by the method of ceal ligation and puncture first described by Wichman et al. The animals were anesthetized with ketamine (100 mg/kg, i.m.) and xylazine (10 mg/kg, i.m.) and laparotomized. The cecum was ligated at the junction of ileocecal valve and the distal part punctured once with a 22-guage needle. Through this opening, a 1 mm length of stool was expressed and allowed to fall into the peritoneal cavity. The cecum was returned to its proper location and the abdomen was closed. After surgery each mouse was given an antibiotic (primazin; 0.5 mg/kg s.c) and 20 ml/kg of normal saline s.c. The mice were observed for three weeks.
- Actidose-Aqua activated charcoal (0.2 g charcoal/ml) was obtained from Paddock laboratories, Inc. (Cat# NDC0574-0121-04). A range of concentration was first analyzed in endotoxemia to determine survival rate in a concentration dependent-fashion. Charcoal concentration range was obtained in water after a serial dilution from the original solution as follow; ¼ (50 mg charcoal/ml); ½ (25 mg charcoal/ml) and ¼ (6.25 mg charcoal/ml). Mice (25 g) were given a 100 μl of the solutions providing a final range of concentrations of 200, 100 and 25 mg charcoal/kg mouse. Mice were not anesthetized or sedated because mice with altered sensorial frequently resulted in airway contamination. In all experiments charcoal or water was administered 30 mins before endotoxin injection. Charcoal (100 mg Charcoal/kg mouse) was also analyzed in sepsis induced by CLP. Mice were also subjected to (100 or 5 mg Charcoal/kg mouse) to analyze the production of cytokines in the serum.
- The results are shown in
FIGS. 16 (a, b, c and d), which show that oral charcoal reduces serum cytokines and protects against lethal endotoxemia and sepsis. Details ofFIGS. 16 (a, b, c and d) are as follows: - a Lewis rats (n=5) received endotoxin (15 mg/kg, i.v.l), and vehicle (o) or 25(▴) or 100 (♦) mg/kg activated charcoal by oral gavage immediately thereafter. Animals were euthanized at the times indicated and serum TNF measured by ELISA. ** P<0.05 for both charcoal-treated groups compared to control mice. B BALB/c mice (n=30) received endotoxin (7.5 mg/kg, i.p.) and control vehicle (o) or 25 (X), 100 (▴) or 200 (♦) mg/kg activated charcoal by oral gavage. Survival was monitored over 120 hours. **P<0.05 for groups treated with 100 or 200 mg/kg activated charcoal compared to control. c Control untreated mice or mice receiving 15 mg/kg endotoxin followed by vehicle (LPS), or followed by activated charcoal (LPS+Ch) were bled at 30 hours and serum HMGB1 was measured by quantitative immuno-blot as described previously. d Mice were subjected to cecal ligation and puncture (n=20 per group) and received either control vehicle (o) or 100 mg/kg activated charcoal (♦) by oral gavage. Survival was monitored over 120 hours. ** P<0.05, two-tailed Logrank Test.
Claims (19)
1. Use of charcoal in the manufacture of an oral composition for the treatment of an inflammatory condition other than an inflammatory bowel disease and other than interstitial or other inflammation within the kidney.
2. The use according to claim 1 , wherein the charcoal is activated charcoal.
3. The use according to claim 1 , wherein the anti -inflammatory condition is one or more of: an autoimmune inflammatory conditions, a malarial inflammatory condition, inflammation associated with cancer, lung associated inflammatory disease, infection associated inflammation and injury associated inflammation.
4. The use according to claim 1 , wherein the oral composition also comprises a further anti-inflammatory agent.
5. The use according to claim 4 , wherein the further anti-inflammatory agent is a non-steroidal anti-inflammatory agent (NSAID) a disease modifying anti-rheumatic drug (DMARD), a biological agent, a steroid, an immunosuppressive agent, a salicylate and/or a microbicidal agent.
6. The use according to claim 1 , for the treatment of a mammal, in particular a human.
7. A pharmaceutical composition comprising charcoal in combination with a further anti-inflammatory agent.
8. The composition according to claim 7 , wherein the charcoal is activated charcoal.
9. The composition according to claim 7 , wherein the further anti-inflammatory agent is a non-steroidal anti-inflammatory agent (NSAID), a disease modifying anti-rheumatic drug (DMARD), a biological agent, a steroid, an immunosuppressive agent, salicylate and/or a microbicidal agent.
10. A pharmaceutical composition, as claimed in claim 7 , for use in the treatment of an inflammatory condition.
11. The composition according to claim 10 , wherein the inflammatory condition is in a mammal.
12. The composition according to claim 11 , wherein the mammal is a human.
13. A method of treating an inflammatory condition in a subject, other than an inflammatory bowel disease and other than interstitial or other inflammation within the kidney, comprising the oral administration of charcoal to the subject.
14. The method according to claim 13 , wherein the charcoal is activated charcoal.
15. A method according to claim 13 , wherein the charcoal is used in combination with a further inflammatory agent.
16. A method according to claim 13 wherein the further anti-inflammatory agent is a non-steroidal anti-inflammatory agent (NSAID), a disease modifying anti-rheumatic drug (DMARD), a biological agent, a steroid, an immunosuppressive agent, a salicylate and/or a microbicidal agent.
17. The method of claim 13 , wherein the subject is a mammal.
18. The method of claim 17 , wherein the mammal is a human.
19. The method of claim 13 , wherein the inflammatory condition is one or more of an autoimmune inflammatory condition, a malarial inflammatory condition, inflammation associated with cancer, a lung associated inflammatory disease, infection associated inflammation and injury associated inflammation.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB0516069.2 | 2005-08-04 | ||
GBGB0516069.2A GB0516069D0 (en) | 2005-08-04 | 2005-08-04 | Pharmaceutical and use thereof |
PCT/GB2006/002908 WO2007015102A1 (en) | 2005-08-04 | 2006-08-04 | The use of charcoal for treating inflammatory conditions |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090297499A1 true US20090297499A1 (en) | 2009-12-03 |
Family
ID=34984102
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/997,844 Abandoned US20090297499A1 (en) | 2005-08-04 | 2006-08-04 | Use of charcoal for treating inflammatory conditions |
Country Status (6)
Country | Link |
---|---|
US (1) | US20090297499A1 (en) |
EP (1) | EP1915164A1 (en) |
JP (1) | JP2009503044A (en) |
AU (1) | AU2006274680A1 (en) |
GB (1) | GB0516069D0 (en) |
WO (1) | WO2007015102A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013070856A1 (en) * | 2011-11-09 | 2013-05-16 | Denovo Inc. | Toxin decontaminant food product and method of treating disorders of the gastrointestinal tract |
WO2017075053A1 (en) * | 2015-10-26 | 2017-05-04 | Cour Pharmaceuticals Development Company Inc. | Immune-modifying particles for the treatment of malaria |
US10364296B2 (en) | 2014-08-13 | 2019-07-30 | Calypso Biotech Sa | Antibodies specific for MMP9 |
CN113730437A (en) * | 2020-11-20 | 2021-12-03 | 亚洲硅业(青海)股份有限公司 | Novel application of carbon material |
US20220000915A1 (en) * | 2020-06-01 | 2022-01-06 | Buffalo Biomedical Technology Co., Ltd. | Pharmaceutical Composition for Improving Respiratory Damage and Use for Manufacturing Pharmaceutical Composition for Improving Respiratory Damage |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
UY31410A1 (en) * | 2007-10-30 | 2009-05-29 | COMPOSITION THAT INCLUDES POLYINSATURATED FATTY ACIDS AND ACTIVATED VEGETABLE CARBON | |
EA017359B1 (en) * | 2007-11-23 | 2012-11-30 | Фармалунденсис Аб | Method and composition for obtaining bronchorelaxation |
WO2009078782A1 (en) * | 2007-12-19 | 2009-06-25 | Pharmalundensis Ab | Method and means for producing bronchorelaxation |
US8323702B2 (en) * | 2010-01-28 | 2012-12-04 | Okoro Chuks I | Composition and method for treating ulcers |
DE102010051776A1 (en) * | 2010-11-18 | 2012-05-24 | Feng Chia University | Composition, useful to treat urinary tract diseases, preferably cystitis comprises a carbon with specified range of charcoal, which carried by an aqueous vector to become a carbon-basic aqueous vector |
EP2642910B1 (en) * | 2010-11-26 | 2020-10-07 | DEMCON hemics B.V. | Device and method for determining a disease activity |
JP2012116818A (en) * | 2010-12-03 | 2012-06-21 | Feng Chia Univ | Pharmaceutical composition for treatment of urinary system disease |
EP3344325A4 (en) * | 2015-08-31 | 2019-05-15 | Mercator Medsystems, Inc. | Local administration of drugs for the treatment of asthma |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU680125B2 (en) * | 1994-05-27 | 1997-07-17 | Kureha Kagaku Kogyo Kabushiki Kaisha | Pharmaceutical composition for treating hemorrhoidal diseases |
AU2027595A (en) * | 1994-05-27 | 1995-12-07 | Kureha Kagaku Kogyo Kabushiki Kaisha | Pharmaceutical composition for treating inflammatory bowel diseases |
US20030003095A1 (en) * | 2002-08-08 | 2003-01-02 | The Procter & Gamble Company | Activated carbon for preventing pregnancy and sexually transmitted disease |
CN1557386A (en) * | 2004-01-16 | 2004-12-29 | 林 刘 | Angitis treating medicinal liquor |
US20060134096A1 (en) * | 2004-12-22 | 2006-06-22 | Supracarbonic, Llc | Compositions and methods for medical use of graphene-containing compositions |
CN100441166C (en) * | 2005-01-17 | 2008-12-10 | 闫彬 | Combination of medication of containing medicinal rhubarb and activated carbon or carbo medicinalis |
-
2005
- 2005-08-04 GB GBGB0516069.2A patent/GB0516069D0/en not_active Ceased
-
2006
- 2006-08-04 JP JP2008524587A patent/JP2009503044A/en active Pending
- 2006-08-04 EP EP06765212A patent/EP1915164A1/en not_active Withdrawn
- 2006-08-04 WO PCT/GB2006/002908 patent/WO2007015102A1/en active Application Filing
- 2006-08-04 US US11/997,844 patent/US20090297499A1/en not_active Abandoned
- 2006-08-04 AU AU2006274680A patent/AU2006274680A1/en not_active Abandoned
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013070856A1 (en) * | 2011-11-09 | 2013-05-16 | Denovo Inc. | Toxin decontaminant food product and method of treating disorders of the gastrointestinal tract |
US10364296B2 (en) | 2014-08-13 | 2019-07-30 | Calypso Biotech Sa | Antibodies specific for MMP9 |
WO2017075053A1 (en) * | 2015-10-26 | 2017-05-04 | Cour Pharmaceuticals Development Company Inc. | Immune-modifying particles for the treatment of malaria |
US20220000915A1 (en) * | 2020-06-01 | 2022-01-06 | Buffalo Biomedical Technology Co., Ltd. | Pharmaceutical Composition for Improving Respiratory Damage and Use for Manufacturing Pharmaceutical Composition for Improving Respiratory Damage |
CN113730437A (en) * | 2020-11-20 | 2021-12-03 | 亚洲硅业(青海)股份有限公司 | Novel application of carbon material |
Also Published As
Publication number | Publication date |
---|---|
JP2009503044A (en) | 2009-01-29 |
AU2006274680A1 (en) | 2007-02-08 |
EP1915164A1 (en) | 2008-04-30 |
WO2007015102A1 (en) | 2007-02-08 |
GB0516069D0 (en) | 2005-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090297499A1 (en) | Use of charcoal for treating inflammatory conditions | |
JP5612030B2 (en) | A composition for treating hepatic encephalopathy comprising ornithine and phenylacetate or phenylbutyrate | |
JP6441888B2 (en) | Use of levocetirizine and montelukast in the treatment of autoimmune disorders | |
CA2336593C (en) | Methods and compositions for treatment of disorders associated with chlamydial and similar bacterial infection | |
US7261891B2 (en) | Antibodies to cytokines in the prevention and treatment of inflammatory bowel disease | |
AU775483B2 (en) | Antibodies to cytokines in the prevention and treatment of inflammatory bowel disease | |
CN110177547B (en) | Compositions for the treatment of inflammatory bowel disease and enterocolitis | |
CA2555304A1 (en) | Use of aminosalicylates in diarrhoea-predominent irritable bowel syndrome | |
WO2022253034A1 (en) | Use of pyrrolopyrimidine compound | |
WO2016063085A9 (en) | Use of pemirolast in the treatment of acute asthma | |
JP2002241301A (en) | Mitigating agent for symptom caused by inflammation | |
Kumagai et al. | Extracorporeal leukocyte removal therapy for patients with ulcerative colitis | |
US20210187064A1 (en) | Mutated e. coli enterotoxins as anti-inflammatory agents | |
WO2023249651A1 (en) | Compositions and method for effective management of peritonitis | |
JP2000309537A (en) | Prevention and/or curing agent for entric disease | |
JP2022548788A (en) | rifaximin liquid formulation | |
Tarello et al. | Complete remission after treatment of Capripoxvirus infection in sheep using potassium arsenite 0.5%(Fowler's solution) | |
AU2009100893A4 (en) | Treatment of neonate foals with meloxicam | |
WO2012110946A1 (en) | Pharmaceutical composition comprising the pde4 enzyme inhibitor revamilast and a disease modifying agent, preferably methotrexate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |