US20090286898A1 - Hydrofluorocarbon compositions - Google Patents

Hydrofluorocarbon compositions Download PDF

Info

Publication number
US20090286898A1
US20090286898A1 US12/400,345 US40034509A US2009286898A1 US 20090286898 A1 US20090286898 A1 US 20090286898A1 US 40034509 A US40034509 A US 40034509A US 2009286898 A1 US2009286898 A1 US 2009286898A1
Authority
US
United States
Prior art keywords
hfc
polyurethane
365mfc
composition
polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/400,345
Inventor
Lothar Zipfel
Werner Kruecke
Karsten Boerner
Pierre Dournel
Dierk-Ingolf Recke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay SA
Original Assignee
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay SA filed Critical Solvay SA
Priority to US12/400,345 priority Critical patent/US20090286898A1/en
Publication of US20090286898A1 publication Critical patent/US20090286898A1/en
Priority to US14/712,175 priority patent/US9963539B2/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/16Catalysts
    • C08G18/18Catalysts containing secondary or tertiary amines or salts thereof
    • C08G18/1816Catalysts containing secondary or tertiary amines or salts thereof having carbocyclic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/4009Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
    • C08G18/4018Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/143Halogen containing compounds
    • C08J9/144Halogen containing compounds containing carbon, halogen and hydrogen only
    • C08J9/146Halogen containing compounds containing carbon, halogen and hydrogen only only fluorine as halogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0025Foam properties rigid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0041Foam properties having specified density
    • C08G2110/005< 50kg/m3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Definitions

  • the present invention relates to compositions of 1,1,1,3,3-pentafluorobutane (HFC-365mfc) and 1,1,1,3,3-pentafluoropropane (HFC-245fa), which are useful as blowing agents for polymer foams.
  • HFC-365mfc 1,1,1,3,3-pentafluorobutane
  • HFC-245fa 1,1,1,3,3-pentafluoropropane
  • HFC-365mfc and HFC-245fa are suitable in particular for the manufacture of polyurethane foams and modified polyurethane foams such as polyisocyanurate foams.
  • U.S. Pat. No. 6,080,799 discloses inter alia a blowing agent mixture of HFC-365mfc/HFC-245fa.
  • blowing agent composition which does not display a flash point when used in fully formulated systems and which allows for manufacture of foams which display good insulation properties over a wide temperature range.
  • the invention concerns a composition which comprises 1,1,1,3,3 -pentafluorobutane (HFC-365mfc) and 1,1,1,3,3-pentafluoropropane (HFC-245fa) in a weight ratio HFC-365mfc/HFC-245fa of from 60:40 to 75:25.
  • compositions according to the invention allow for safe manufacture of (modified) polyurethane foams with fully formulated systems having no flash point whereas obtained closed-cell foams are particularly suitable for thermal insulation at low temperatures, as condensation of the cell gas can be substantially avoided.
  • Polyurethane is understood to mean the polymers resulting essentially from the reaction of polyols and of isocyanates. These polymers are typically obtained from formulations exhibiting an isocyanate number from 100 to 180.
  • Modified polyurethane is understood to mean the polymers resulting from the reaction of polyols and of isocyanates which contain in addition to urethane functional groups, other types of functional groups, in particular triisocyanuric rings formed by trimerization of isocyanates. These modified polyurethanes are normally known as polyisocyanurates. These polymers are typically obtained from formulations exhibiting an isocyanate number from 180 to 550.
  • the weight ratio HFC-365mfc/HFC-245fa is greater than or equal to 60:40. Often the weight ratio HFC-365mfc/HFC-245fa is greater than or equal to 65:35. Preferably, the weight ratio HFC-365mfc/HFC-245fa is greater than or equal to 67:33. A weight ratio HFC-365mfc/HFC-245fa of about 70:30 is particularly preferred.
  • the weight ratio HFC-365mfc/HFC-245fa is lower than or equal to 75:25. Often the weight ratio HFC-365mfc/HFC-245fa is lower than or equal to 73:27. Preferably, the weight ratio HFC-365mfc/HFC-245fa is lower than or equal to 72:28.
  • compositions according to the invention which consist essentially of HFC-365mfc and HFC-245fa are particularly preferred.
  • the invention concerns also a premix intended for the preparation of polyurethane or modified polyurethane foams comprising
  • premix is understood to mean any composition comprising at least one polyol, at least one blowing agent and at least one catalyst.
  • compositions according to the invention are chemically stable in the premix. Consequently, the latter can optionally be formulated without a stabilizer against the potential degradation of the composition according to the invention.
  • polyol is understood to mean any compound containing at least two functional groups which react with isocyanates. These functional groups contain at least one active hydrogen atom, such as defined by the Zerewittinoff reaction.
  • the active hydrogen atom is generally a hydrogen atom bonded to an oxygen, nitrogen or sulphur atom.
  • Any polyol conventionally used to prepare polyurethane foams can be used in the premixes according to the invention. Mention may in particular be made of polyether polyols and polyester polyols.
  • the catalyst of the premixes according to the invention comprises a compound with catalyses the formation of the —NH—CO—O— urethane bond by reaction between a polyol and an isocyanate or which activates the reaction between an isocyanate and water, such as tertiary amines and organic tin, iron, mercury or lead compounds.
  • Mention may in particular by made, as tertiary amines, of triethylamine, N,N-dimethylcyclohexylamine (DMCHA), N-methylmorpholine (NMM), N-ethylmorpholine, dimethylethanolamine, diaza[2.2.2]bicyclooctane (triethylenediamine) and substituted benzylamines, such as N,N-dimethylbenzylamine (DB).
  • Mention may in particular be made, as organic tin or lead compounds, of dibutyltin dilaurate, stannous octanoate and lead octanoate.
  • the catalyst of the premixes according to the invention can, in particular when the latter are intended for the manufacture of modified polyurethane (polyisocyanurate) foams, comprise a compound which catalyses the trimerization of isocyanates to triisocyanurates.
  • Compounds which catalyse the trimerization of isocyanates which can be used in the premixes according to the invention are in particular triazines.
  • the premixes according to the invention can additionally contain various additives commonly used to prepare polyurethane or modified polyurethane foams, such as, in particular, water, surface-active agents, antioxidizing agents, flame-retardant agents and/or pigments.
  • various additives commonly used to prepare polyurethane or modified polyurethane foams such as, in particular, water, surface-active agents, antioxidizing agents, flame-retardant agents and/or pigments.
  • the more particularly preferred premixes according to the invention are essentially composed of at least one polyol, the composition according to the invention, at least one catalyst which promotes the polyol/isocyanate reaction and at least one of the usual additives mentioned above.
  • proportions of polyol, catalyst, the composition according to the invention and optional additives in the premixes according to the invention vary, in particular according to the application, the type of foam prepared, the nature of the polyol and the nature of the catalyst.
  • the amount of catalyst used generally varies from approximately 0.050 to 10 parts by weight per 100 parts by weight of polyol.
  • the amount of the composition according to the invention is from 1 to 80 parts by weight per 100 parts by weight of polyol. It is preferably from 10 to 60 parts by weight per 100 parts by weight of polyol.
  • the amounts of water, surface-active agents, plasticizing agents and/or flame-retardant agents are those conventionally used to prepare polyurethane or modified polyurethane foams.
  • the invention also relates to a process for the manufacture of polyurethane or modified polyurethane foams, in which at least one isocyanate is reacted with at least one polyol in the presence of the composition according to the invention, of at least one catalyst and, optionally, of other usual additives.
  • Any isocyanate conventionally used to manufacture such foams can be used in the process according to the invention. Mention may be made, by way of example, of aliphatic isocyanates, such as hexamethylene diisocyanate, and aromatic isocyanates, such as tolylene diisocyanate or diphenylmethane diisocyanate.
  • the process according to the invention is carried out in the presence of water.
  • the amount of water used is preferably equal to or greater than 1 part by weight per 100 parts of polyol. More preferably, the amount of water used equal to or greater than 1.5 parts by weight per 100 parts of polyol.
  • the amount of water used is preferably equal to or less than 2.5 parts by weight per 100 parts of polyol. More preferably, the amount of water used equal to or less than 2 parts by weight per 100 parts of polyol.
  • the composition according to the invention can be supplied to the reaction in the form of the premix according to the invention.
  • the composition according to the invention can also be supplied to the reaction in the form of a mixture of the composition with the isocyanate.
  • the invention concerns also a polyurethane or modified polyurethane foam which is obtainable according to the process according to the invention.
  • the polyurethane or modified polyurethane foam according to the invention is preferably a rigid closed-cell foam.
  • the polyurethane or modified polyurethane foam can also be selected from a flexible or semi-flexible foam, an integral skin foam and a monocomponent foam.
  • the invention concerns also a thermal insulation material, which comprises a polyurethane or modified polyurethane foam according to the invention.
  • thermal insulation material according to the invention include insulation panels, tubes for pipe insulation, sandwich panels, laminates and block foams.
  • the thermal insulation material according to the invention generally substantially keeps its insulating properties when used in contact with an atmosphere having a temperature of 10° C. or lower. Often the temperature of use can be 5° C. or lower. The temperature can even be 0° C. or lower without substantial condensation.
  • the thermal insulation material according to the invention is particularly suitable when used in contact with an atmosphere having a temperature of ⁇ 10° C. or higher.
  • a rigid foam was obtained with a density of 35 kg/m 3 .
  • Example 1 was repeated with 20 g of HFC-365mfc/HFC-245fa in a ratio 75:25 having a boiling start of 28° C.
  • the density was the same as in Example 1.
  • Example 1 was repeated, adding the blowing agent composition separately, at first 14 g HFC-365mfc and then 6 g of HFC-245fa, using a dip tube. A rigid foam was obtained with a density of 35 kg/m 3 .
  • compositions do not present any flash point when used in a premix with polyols.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Detergent Compositions (AREA)

Abstract

A composition which comprises 1,1,1,3,3-pentafluorobutane (HFC-365mfc) and 1,1,1,3,3-pentafluoropropane (HFC-245fa) in a weight ratio HFC-365mfc/HFC-245fa of from 60:40 to 75:25.

Description

  • The present invention relates to compositions of 1,1,1,3,3-pentafluorobutane (HFC-365mfc) and 1,1,1,3,3-pentafluoropropane (HFC-245fa), which are useful as blowing agents for polymer foams.
  • Mixtures HFC-365mfc and HFC-245fa are suitable in particular for the manufacture of polyurethane foams and modified polyurethane foams such as polyisocyanurate foams. U.S. Pat. No. 6,080,799 discloses inter alia a blowing agent mixture of HFC-365mfc/HFC-245fa.
  • It has been discovered that in certain formulated systems for polyurethanes containing polyols and mixtures of HFC-365mfc and HFC-245fa, a flash point may be observed in spite of the nonflammable nature of the polyols and of the mixtures of HFC-365mfc and HFC-245fa respectively.
  • It was desirable to find a blowing agent composition which does not display a flash point when used in fully formulated systems and which allows for manufacture of foams which display good insulation properties over a wide temperature range.
  • Consequently, the invention concerns a composition which comprises 1,1,1,3,3 -pentafluorobutane (HFC-365mfc) and 1,1,1,3,3-pentafluoropropane (HFC-245fa) in a weight ratio HFC-365mfc/HFC-245fa of from 60:40 to 75:25.
  • It has been found, surprisingly, that the compositions according to the invention allow for safe manufacture of (modified) polyurethane foams with fully formulated systems having no flash point whereas obtained closed-cell foams are particularly suitable for thermal insulation at low temperatures, as condensation of the cell gas can be substantially avoided.
  • Polyurethane is understood to mean the polymers resulting essentially from the reaction of polyols and of isocyanates. These polymers are typically obtained from formulations exhibiting an isocyanate number from 100 to 180. Modified polyurethane is understood to mean the polymers resulting from the reaction of polyols and of isocyanates which contain in addition to urethane functional groups, other types of functional groups, in particular triisocyanuric rings formed by trimerization of isocyanates. These modified polyurethanes are normally known as polyisocyanurates. These polymers are typically obtained from formulations exhibiting an isocyanate number from 180 to 550.
  • In the composition according to the invention, the weight ratio HFC-365mfc/HFC-245fa is greater than or equal to 60:40. Often the weight ratio HFC-365mfc/HFC-245fa is greater than or equal to 65:35. Preferably, the weight ratio HFC-365mfc/HFC-245fa is greater than or equal to 67:33. A weight ratio HFC-365mfc/HFC-245fa of about 70:30 is particularly preferred.
  • In the composition according to the invention, the weight ratio HFC-365mfc/HFC-245fa is lower than or equal to 75:25. Often the weight ratio HFC-365mfc/HFC-245fa is lower than or equal to 73:27. Preferably, the weight ratio HFC-365mfc/HFC-245fa is lower than or equal to 72:28.
  • The compositions according to the invention which consist essentially of HFC-365mfc and HFC-245fa are particularly preferred.
  • The invention concerns also a premix intended for the preparation of polyurethane or modified polyurethane foams comprising
  • a) at least one polyol
    b) a catalyst for the reaction of isocyanates with polyols
    c) a composition according to the invention
  • For the purposes of the present invention, premix is understood to mean any composition comprising at least one polyol, at least one blowing agent and at least one catalyst.
  • Surprisingly, the compositions according to the invention are chemically stable in the premix. Consequently, the latter can optionally be formulated without a stabilizer against the potential degradation of the composition according to the invention.
  • For the purposes of the present invention, polyol is understood to mean any compound containing at least two functional groups which react with isocyanates. These functional groups contain at least one active hydrogen atom, such as defined by the Zerewittinoff reaction. The active hydrogen atom is generally a hydrogen atom bonded to an oxygen, nitrogen or sulphur atom. Any polyol conventionally used to prepare polyurethane foams can be used in the premixes according to the invention. Mention may in particular be made of polyether polyols and polyester polyols.
  • The catalyst of the premixes according to the invention comprises a compound with catalyses the formation of the —NH—CO—O— urethane bond by reaction between a polyol and an isocyanate or which activates the reaction between an isocyanate and water, such as tertiary amines and organic tin, iron, mercury or lead compounds. Mention may in particular by made, as tertiary amines, of triethylamine, N,N-dimethylcyclohexylamine (DMCHA), N-methylmorpholine (NMM), N-ethylmorpholine, dimethylethanolamine, diaza[2.2.2]bicyclooctane (triethylenediamine) and substituted benzylamines, such as N,N-dimethylbenzylamine (DB). Mention may in particular be made, as organic tin or lead compounds, of dibutyltin dilaurate, stannous octanoate and lead octanoate.
  • The catalyst of the premixes according to the invention can, in particular when the latter are intended for the manufacture of modified polyurethane (polyisocyanurate) foams, comprise a compound which catalyses the trimerization of isocyanates to triisocyanurates. Compounds which catalyse the trimerization of isocyanates which can be used in the premixes according to the invention are in particular triazines.
  • In addition to the polyol, the composition according to the invention and the catalyst, the premixes according to the invention can additionally contain various additives commonly used to prepare polyurethane or modified polyurethane foams, such as, in particular, water, surface-active agents, antioxidizing agents, flame-retardant agents and/or pigments. The more particularly preferred premixes according to the invention are essentially composed of at least one polyol, the composition according to the invention, at least one catalyst which promotes the polyol/isocyanate reaction and at least one of the usual additives mentioned above.
  • The proportions of polyol, catalyst, the composition according to the invention and optional additives in the premixes according to the invention vary, in particular according to the application, the type of foam prepared, the nature of the polyol and the nature of the catalyst.
  • In practice, the amount of catalyst used generally varies from approximately 0.050 to 10 parts by weight per 100 parts by weight of polyol. In general, the amount of the composition according to the invention is from 1 to 80 parts by weight per 100 parts by weight of polyol. It is preferably from 10 to 60 parts by weight per 100 parts by weight of polyol. The amounts of water, surface-active agents, plasticizing agents and/or flame-retardant agents are those conventionally used to prepare polyurethane or modified polyurethane foams.
  • The invention also relates to a process for the manufacture of polyurethane or modified polyurethane foams, in which at least one isocyanate is reacted with at least one polyol in the presence of the composition according to the invention, of at least one catalyst and, optionally, of other usual additives.
  • Any isocyanate conventionally used to manufacture such foams can be used in the process according to the invention. Mention may be made, by way of example, of aliphatic isocyanates, such as hexamethylene diisocyanate, and aromatic isocyanates, such as tolylene diisocyanate or diphenylmethane diisocyanate.
  • Generally, the process according to the invention is carried out in the presence of water. In this case the amount of water used is preferably equal to or greater than 1 part by weight per 100 parts of polyol. More preferably, the amount of water used equal to or greater than 1.5 parts by weight per 100 parts of polyol.
  • In this case the amount of water used is preferably equal to or less than 2.5 parts by weight per 100 parts of polyol. More preferably, the amount of water used equal to or less than 2 parts by weight per 100 parts of polyol.
  • In the process according to the invention, the composition according to the invention can be supplied to the reaction in the form of the premix according to the invention. The composition according to the invention can also be supplied to the reaction in the form of a mixture of the composition with the isocyanate.
  • The invention concerns also a polyurethane or modified polyurethane foam which is obtainable according to the process according to the invention. The polyurethane or modified polyurethane foam according to the invention is preferably a rigid closed-cell foam. The polyurethane or modified polyurethane foam can also be selected from a flexible or semi-flexible foam, an integral skin foam and a monocomponent foam.
  • The invention concerns also a thermal insulation material, which comprises a polyurethane or modified polyurethane foam according to the invention.
  • Specific examples of thermal insulation material according to the invention include insulation panels, tubes for pipe insulation, sandwich panels, laminates and block foams.
  • The thermal insulation material according to the invention generally substantially keeps its insulating properties when used in contact with an atmosphere having a temperature of 10° C. or lower. Often the temperature of use can be 5° C. or lower. The temperature can even be 0° C. or lower without substantial condensation. The thermal insulation material according to the invention is particularly suitable when used in contact with an atmosphere having a temperature of −10° C. or higher.
  • The examples here after are intended to illustrate the invention in a non-limitative manner.
  • EXAMPLE 1 PUR Manufacture with a 70:30 Composition of HFC-365mfc and HFC-245 fa
  • A preparation of HFC-365mfc/HFC-245fa in a ratio 70:30 starts boiling at 27° C. 100 g Polyol-composition of an aromatic Polyesterpolyol and an aromatic Polyetherolyol with an OH number of 450 and 15 g Tris-Chioroisopropylphosphate as a flame retardant, 2 g Mimethylcyclohexylamine as a catalyst and 1.5 g of a Siloxanepolyalkeneoxide-Copolymer as a stabilizer, 2 g of water and 20 g of HFC-365mfc/HFC-245fa in a ratio 70:30 were blended and then mixed with 130 g of 4,4-Diisocyanatediphenylmethane. A rigid foam was obtained with a density of 35 kg/m3.
  • EXAMPLE 2 PUR Manufacture with a 75:25 Composition of HFC-365mfc/HFC-245fa
  • Example 1 was repeated with 20 g of HFC-365mfc/HFC-245fa in a ratio 75:25 having a boiling start of 28° C. The density was the same as in Example 1.
  • EXAMPLE 3
  • Example 1 was repeated, adding the blowing agent composition separately, at first 14 g HFC-365mfc and then 6 g of HFC-245fa, using a dip tube. A rigid foam was obtained with a density of 35 kg/m3.
  • The compositions do not present any flash point when used in a premix with polyols.

Claims (20)

1-10. (canceled)
11. A composition which consists of 1,1,1,3,3-pentafluorobutane (HFC-365mfc) and 1,1,1,3,3-pentafluoropropane (HFC-245fa) in a weight ratio HFC-365mfc/HFC-245fa of from 60:40 to 73:27.
12. The composition according to claim 11, wherein the weight ratio HFC-365mfc/HFC-245fa is from 65:35 to 73:27.
13. The composition according to claim 11, wherein the weight ratio HFC-365mfc/HFC-245fa is from 67:33 to 72:28.
14. The composition according to claim 12, wherein the weight ratio HFC-365mfc/HFC-245fa is about 70:30.
15. A premix intended for the preparation of polyurethane or modified polyurethane foams comprising
a) at least one polyol
b) a catalyst for the reaction of isocyanates with polyols
c) a composition according to claim 12.
16. A process for the manufacture of polyurethane or modified polyurethane foams in which at least one isocyanate is reacted with at least one polyol in the presence of at least one catalyst and in the presence of the composition according to claim 12.
17. A polyurethane or modified polyurethane foam which is obtainable according to the process of claim 16.
18. The polyurethane or modified polyurethane foam according to claim 17, which is a rigid closed cell foam.
19. A thermal insulation material, which comprises a polyurethane or modified polyurethane foam according to claim 17.
20. A thermal insulation material, which comprises the polyurethane or modified polyurethane foam according to claim 18.
21. A composition which consists of 1,1,1,3,3-pentafluorobutane (HFC-365mfc) and 1,1,1,3,3-pentafluoropropane (HFC-245fa) in a weight ratio HFC-365mfc/HFC-245fa of from 60:40 to 65:35.
22. The composition according to claim 21, wherein the weight ratio HFC-365mfc/HFC-245fa is 60:40.
23. A premix intended for the preparation of polyurethane or modified polyurethane foams comprising
a) at least one polyol
b) a catalyst for the reaction of isocyanates with polyols
c) a composition according to claim 21.
24. A process for the manufacture of polyurethane or modified polyurethane foams in which at least one isocyanate is reacted with at least one polyol in the presence of at least one catalyst and in the presence of the composition according to claim 21.
25. A polyurethane or modified polyurethane foam which is obtainable according to the process of claim 24.
26. The polyurethane or modified polyurethane foam according to claim 25, which is a rigid closed cell foam.
27. A thermal insulation material, which comprises a polyurethane or modified polyurethane foam according to claim 25.
28. A thermal insulation material, which comprises the polyurethane or modified polyurethane foam according to claim 26.
29. The composition as claimed in claim 12, wherein the composition when used in a premix with polyols does not present a flash point.
US12/400,345 2003-03-13 2009-03-09 Hydrofluorocarbon compositions Abandoned US20090286898A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/400,345 US20090286898A1 (en) 2003-03-13 2009-03-09 Hydrofluorocarbon compositions
US14/712,175 US9963539B2 (en) 2003-03-13 2015-05-14 Hydrofluorocarbon compositions

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP03100641.4 2003-03-13
EP03100641A EP1475404A1 (en) 2003-03-13 2003-03-13 Hydrofluorocarbon compositions
US46597903P 2003-04-28 2003-04-28
US10/548,895 US20060160910A1 (en) 2003-03-13 2004-03-12 Hydrofluorocarbon compositions
PCT/EP2004/002656 WO2004081092A1 (en) 2003-03-13 2004-03-12 Hydrofluorocarbon compositions
US12/400,345 US20090286898A1 (en) 2003-03-13 2009-03-09 Hydrofluorocarbon compositions

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
PCT/EP2004/002656 Continuation WO2004081092A1 (en) 2003-03-13 2004-03-12 Hydrofluorocarbon compositions
US10/548,895 Continuation US20060160910A1 (en) 2003-03-13 2004-03-12 Hydrofluorocarbon compositions
US10548895 Continuation 2004-03-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/712,175 Continuation US9963539B2 (en) 2003-03-13 2015-05-14 Hydrofluorocarbon compositions

Publications (1)

Publication Number Publication Date
US20090286898A1 true US20090286898A1 (en) 2009-11-19

Family

ID=32981922

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/548,895 Abandoned US20060160910A1 (en) 2003-03-13 2004-03-12 Hydrofluorocarbon compositions
US12/400,345 Abandoned US20090286898A1 (en) 2003-03-13 2009-03-09 Hydrofluorocarbon compositions
US14/712,175 Expired - Lifetime US9963539B2 (en) 2003-03-13 2015-05-14 Hydrofluorocarbon compositions

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/548,895 Abandoned US20060160910A1 (en) 2003-03-13 2004-03-12 Hydrofluorocarbon compositions

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/712,175 Expired - Lifetime US9963539B2 (en) 2003-03-13 2015-05-14 Hydrofluorocarbon compositions

Country Status (14)

Country Link
US (3) US20060160910A1 (en)
EP (2) EP1475404A1 (en)
JP (1) JP2007524716A (en)
KR (3) KR20050109554A (en)
CN (1) CN100372884C (en)
AU (1) AU2004220348B2 (en)
BR (1) BRPI0408294A (en)
CA (1) CA2518050C (en)
ES (1) ES2393920T3 (en)
IL (1) IL170449A (en)
MX (1) MXPA05009797A (en)
RU (1) RU2395539C2 (en)
WO (1) WO2004081092A1 (en)
ZA (1) ZA200506880B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106750488B (en) 2016-12-26 2019-05-17 浙江衢化氟化学有限公司 A kind of low-carbon environment-friendly foaming agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080799A (en) * 1996-12-17 2000-06-27 Solvay Fluor Und Derivate Gmbh Mixtures containing 1,1,1,3,3 pentafluorobutane
US6380275B1 (en) * 1998-05-22 2002-04-30 Solvay Fluor Und Derivate Gmbh Production of polyurethane foams and of foamed thermoplastic synthetic resins
US6451867B1 (en) * 2001-03-21 2002-09-17 Honeywell International Inc. Mixtures containing 1,1,1,3,3-pentafluoropropane and 1,1,1,3,3-pentafluorobutane
US20020198274A1 (en) * 2001-06-01 2002-12-26 Bogdan Mary C. Compositions of hydrofluorocarbons and methanol
US20030050351A1 (en) * 1999-12-16 2003-03-13 Norbert Eisen Method for producing soft to semirigid polyurethane integral foamed materials

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10028226A1 (en) * 2000-06-07 2001-12-13 Bayer Ag Production of flexible to semirigid integral polyurethane foam molding, e.g. for cycle saddle, head restraint or medical treatment chair, uses blowing agent mixture of 1,1,1,3,3-pentafluorobutane and other fluoroalkane
JP2001247645A (en) * 1999-12-28 2001-09-11 Bridgestone Corp Rigid polyurethane foam and method for producing the same
JP2001310923A (en) * 2000-02-22 2001-11-06 Bridgestone Corp Hard polyurethane foam, and production method of the same
WO2001072880A2 (en) * 2000-03-29 2001-10-04 Dow Global Technologies Inc. Integral skin foams employing pentafluorobutane blowing agents
DE10123604A1 (en) * 2001-05-16 2002-11-21 Solvay Fluor & Derivate Non-flammable premix for the production of polyurethane foam products comprises binary propellant mixture and phosphorous compound
US6790820B2 (en) * 2001-06-01 2004-09-14 Honeywell International, Inc. Compositions of hydrofluorocarbons and trans-1,2-dichloroethylene
JP2003201327A (en) * 2002-01-09 2003-07-18 Nippon Pafutemu Kk Method for manufacturing hard polyurethane foam

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6080799A (en) * 1996-12-17 2000-06-27 Solvay Fluor Und Derivate Gmbh Mixtures containing 1,1,1,3,3 pentafluorobutane
US6380275B1 (en) * 1998-05-22 2002-04-30 Solvay Fluor Und Derivate Gmbh Production of polyurethane foams and of foamed thermoplastic synthetic resins
US20030050351A1 (en) * 1999-12-16 2003-03-13 Norbert Eisen Method for producing soft to semirigid polyurethane integral foamed materials
US6590003B2 (en) * 1999-12-16 2003-07-08 Bayer Aktiengesellschaft Method for producing soft to semi-rigid polyurethane integral foamed materials
US6451867B1 (en) * 2001-03-21 2002-09-17 Honeywell International Inc. Mixtures containing 1,1,1,3,3-pentafluoropropane and 1,1,1,3,3-pentafluorobutane
US20020198274A1 (en) * 2001-06-01 2002-12-26 Bogdan Mary C. Compositions of hydrofluorocarbons and methanol

Also Published As

Publication number Publication date
EP1606340B1 (en) 2012-08-29
ES2393920T3 (en) 2013-01-02
CN100372884C (en) 2008-03-05
US9963539B2 (en) 2018-05-08
RU2395539C2 (en) 2010-07-27
US20150246997A1 (en) 2015-09-03
EP1606340A1 (en) 2005-12-21
WO2004081092A1 (en) 2004-09-23
CN1756793A (en) 2006-04-05
KR20130087539A (en) 2013-08-06
AU2004220348A1 (en) 2004-09-23
KR20050109554A (en) 2005-11-21
BRPI0408294A (en) 2006-03-07
JP2007524716A (en) 2007-08-30
US20060160910A1 (en) 2006-07-20
KR20110135424A (en) 2011-12-16
AU2004220348B2 (en) 2009-10-29
EP1475404A1 (en) 2004-11-10
ZA200506880B (en) 2007-04-25
CA2518050A1 (en) 2004-09-21
RU2005131618A (en) 2006-02-10
IL170449A (en) 2011-03-31
CA2518050C (en) 2012-05-22
MXPA05009797A (en) 2005-10-26

Similar Documents

Publication Publication Date Title
CN105324404B (en) Isocyanates/polyether silicon composition
US5032623A (en) Rigid foams using CHClF2 as a blowing agent
US5130345A (en) Method of preparing foam using a partially fluorinated alkane having a tertiary structure as a blowing agent
CA2031970A1 (en) Process for producing foams with the aid of fluoroalkanes
US4624970A (en) Foaming system for rigid urethane and isocyanurate foams based on polyethers and aromatic polyester polyols
RU2298020C2 (en) Foaming agent mixture, component, incombustible mixture precursor for preparing foamed plastics, and foamed plastics
JP4166571B2 (en) Method for producing polyurethane integral skin foams
US9963539B2 (en) Hydrofluorocarbon compositions
AU2002234544A1 (en) Process for making polyurethane integral skin foams
EP0914369B1 (en) Use of blowing agent blends in the preparation of polyisocyanate-based foams
JPH09136936A (en) Rigid polyurethane foam
KR20140046871A (en) Rigid polyurethane foams for spray
GB2265378A (en) Blowing agent-containing polymeric mdi compositions
JP2005206762A (en) Rigid polyurethane foam and its manufacturing method
JPH06199983A (en) Production of rigid polyurethane foam
JPH0827245A (en) Production of rigid urethane foam

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION