US20090286838A1 - Treatment for cancer - Google Patents

Treatment for cancer Download PDF

Info

Publication number
US20090286838A1
US20090286838A1 US11/720,884 US72088405A US2009286838A1 US 20090286838 A1 US20090286838 A1 US 20090286838A1 US 72088405 A US72088405 A US 72088405A US 2009286838 A1 US2009286838 A1 US 2009286838A1
Authority
US
United States
Prior art keywords
unsubstituted
substituted
alkenylalkyl
cycloalkylalkyl
arylalkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/720,884
Inventor
David L. Morris
Mohammad Hossein Pourgholami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NewSouth Innovations Pty Ltd
Original Assignee
NewSouth Innovations Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2004906983A external-priority patent/AU2004906983A0/en
Application filed by NewSouth Innovations Pty Ltd filed Critical NewSouth Innovations Pty Ltd
Assigned to NEWSOUTH INNOVATIONS PTY LIMITED reassignment NEWSOUTH INNOVATIONS PTY LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MORRIS, DAVID L., POURGHOLAMI, MOHAMMAD HOSSEIN
Publication of US20090286838A1 publication Critical patent/US20090286838A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41841,3-Diazoles condensed with carbocyclic rings, e.g. benzimidazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates generally to methods and compositions for the treatment of tumours.
  • Paclitaxel has activity against a broad band of tumour types, including breast, ovarian, lung, head and neck cancers. Paclitaxel also has activity in other malignancies that are refractory to conventional chemotherapy, including previously-treated lymphoma and small cell lung cancers and oesophageal, gastric, endometrial, bladder and germ cell tumours (Mekhail and Markman, 2002; Yamazaki et al., 1998). It is one of the most unique, and successful, chemotherapeutic agents currently used in the clinic for cancer treatment. However major problems associated with paclitaxel therapy exist. One of these is toxicity.
  • Benzimidazole carbamates that have an opposing mode of action to the taxoids in that they inhibit microtubule polymerization rather than polymerize tubulin.
  • Benzimidazole carbamates include albendazole, a broad spectrum anthelmintic used clinically for the treatment of a number of parasitic infections (Horton, 2000).
  • albendazole has an anti-proliferative effect on a range of cancer cell lines in vitro and on cancers in animal models and clinical studies (WO 02/076454, the disclosure of which is incorporated herein by reference).
  • albendazole potentiates the effect of paclitaxel in human cancer cells, both in paclitaxel-sensitive and paclitaxel-resistant cell lines, such that used in combination these drugs have an additive or synergistic effect in inhibiting cancer cell proliferation.
  • a method for the treatment of a tumour in a subject comprising administering to the subject an effective amount of at least one taxoid and an effective amount of at least one benzimidazole carbamate compound of formula I:
  • the benzimidazole carbamate compound may be a compound of Formula II:
  • the benzimidazole carbamate compound may be selected from the group consisting of albendazole, albendazole sulphoxide, mebendazole, flubendazole, triclabendazole, oxfenbendazole, luxabendazole, cambendazole, oxibendazole, parbendazole, thiabendazole, cyclobendazole, dribendazole, etibendazole and fenbendazole.
  • the benzimidazole carbamate compound is albendazole, or a metabolite, derivative or analogue thereof.
  • the taxoid may be paclitaxel, docataxel, or a metabolite, derivative or analogue thereof.
  • the tumour may be a liver, ovarian, colorectal, lung, small cell lung, breast, prostate, pancreatic, renal, gastric, endometrial, oesophageal, head or neck tumour, peritoneal carcinomatosis, leukaemia, lymphoma, sarcoma or secondary metastases thereof.
  • the tumour may be insensitive to treatment with one or more antimitotic drugs.
  • the one or more antimitotic drugs may be selected from a taxoid, a Vinca alkaloid and a colchicinoid.
  • the tumour is a taxoid-insensitive tumour.
  • the amount of taxoid administered may be an amount otherwise ineffective to treat the tumour if administered alone.
  • the taxoid and the benzimidazole carbamate compound may be administered simultaneously or sequentially. Accordingly, the taxoid and the benzimidazole carbamate compound may be present in a single pharmaceutical composition or in separate compositions. The taxoid and the benzimidazole carbamate compound may be administered systemically.
  • a method for the treatment of a tumour in a subject comprising administering to the subject an effective amount of paclitaxel and an effective amount of albendazole.
  • the paclitaxel and albendazole may be administered simultaneously or sequentially. Accordingly, the paclitaxel and albendazole may be present in a single pharmaceutical composition or in separate compositions.
  • the taxoid and the benzimidazole carbamate compound may be administered systemically.
  • a pharmaceutical composition comprising at least one taxoid and at least one benzimidazole carbamate compound of formula I:
  • the benzimidazole carbamate compound may be a compound of Formula II:
  • the benzimidazole carbamate compound may be a compound of Formula III:
  • the benzimidazole carbamate compound may be selected from the group consisting of albendazole, albendazole sulphoxide, mebendazole, flubendazole, triclabendazole, oxfenbendazole, luxabendazole, cambendazole, oxibendazole, parbendazole, thiabendazole, cyclobendazole, dribendazole, etibendazole and fenbendazole.
  • the benzimidazole carbamate compound is albendazole, or a metabolite, derivative or analogue thereof.
  • the taxoid may be paclitaxel, docataxel, or a metabolite, derivative or analogue thereof.
  • composition may further comprise one or more pharmaceutically acceptable carriers, adjuvants or diluents.
  • composition may include one or more pharmaceutically acceptable carriers, adjuvants or diluents.
  • compositions for the treatment of a tumour in a subject comprising at least one taxoid and at least one benzimidazole carbamate compound of formula I.
  • the tumour may be a liver, ovarian, colorectal, lung, small cell lung, breast, prostate, pancreatic, renal, gastric, endometrial, oesophageal, head or neck tumour, peritoneal carcinomatosis, leukaemia, lymphoma, sarcoma or secondary metastases thereof.
  • the tumour may be insensitive to treatment with one or more antimitotic drugs.
  • the one or more antimitotic drugs may be selected from a taxoid, a Vinca alkaloid and a colchicinoid.
  • the tumour is a taxoid-insensitive tumour.
  • compositions for the treatment of a taxoid-insensitive tumour in a subject comprising paclitaxel and albendazole.
  • an eighth aspect of the present invention there is provided a method for the treatment of a tumour in a subject, the method comprising administering to the subject an effective amount of a composition according to the third, fourth or fifth aspect.
  • a ninth aspect of the present invention there is provided a use of at least one taxoid and at least one benzimidazole carbamate compound of formula I for the manufacture of a medicament for the treatment of a tumour in a subject.
  • a method for the treatment of a tumour in a subject comprising administering to the subject an effective amount of at least one benzimidazole carbamate compound of formula I:
  • the tumour may be insensitive to one or more of a taxoid, a Vinca alkaloid and a colchicinoid.
  • the taxoid may be paclitaxel.
  • the Vinca alkaloid may be vincristine.
  • the colchicinoid may be colchicine.
  • the tumour is insensitive to at least paclitaxel.
  • an eleventh aspect of the present invention there is provided the use of at least one benzimidazole carbamate compound of formula I for the manufacture of a medicament for the treatment of a tumour insensitive to at least one anti-mitotic drug.
  • the subject is typically human.
  • isomers including stereoisomers and geometric Isomers of the compounds of Formula I, II and III, as well as tautomeric forms thereof.
  • treating and “treatment” refer to any and all uses which remedy a condition or symptoms, prevent the establishment of a condition or disease, or otherwise prevent, hinder, retard, or reverse the progression of a condition or disease or other undesirable symptoms in any way whatsoever.
  • the term “effective amount” includes within its meaning a non-toxic but sufficient amount of an agent or compound to provide the desired effect. The exact amount required will vary from subject to subject depending on factors such as the species being treated, the age and general condition of the subject, the severity of the condition being treated, the particular agent being administered and the mode of administration and so forth. Thus, it is not possible to specify an exact “effective amount”. However, for any given case, an appropriate “effective amount” may be determined by one of ordinary skill in the art using only routine experimentation.
  • the term “insensitive” refers to a tumour or portion thereof which is refractory, to some degree, to treatment with a particular therapeutic agent.
  • the term “insensitive” therefore is used to describe tumours otherwise referred to as resistant, for example paclitaxel-resistant.
  • this term is not limited to tumours which show complete or even significant levels of resistance to the therapeutic agent in question, but rather includes within its scope tumours that retain sensitivity to the agent but which display a diminished responsiveness to the agent when compared to sensitive tumours.
  • alkyl as used herein, includes within its meaning monovalent, saturated, straight and branched chain hydrocarbon radicals.
  • alkenyl as used herein, includes within its meaning, monovalent, straight and branched chain hydrocarbon radicals having at least one double bond.
  • aryl as used herein, includes within its meaning monovalent, single, polynuclear, conjugated and fused aromatic hydrocarbon radicals.
  • FIG. 1 Cytotoxic activity of albendazole and paclitaxel in inhibiting proliferation of OVCAR-3 cells in vitro.
  • A Dose-response inhibition of cell proliferation by albendazole alone.
  • B Dose-related inhibition of proliferation by paclitaxel and potentiation of this effect when cells were co-incubated with 0.25 ⁇ M albendazole. Cell proliferation was measured using a sulforhodamine B assay. Results are presented as the % of control (vehicle treated cells).
  • FIG. 2 Cytotoxic activity of albendazole and paclitaxel in inhibiting proliferation of SKOV-3 cells in vitro.
  • A Dose-response inhibition of cell proliferation by albendazole alone.
  • B Dose-related inhibition of proliferation by paclitaxel and potentiation of this effect when cells were co-incubated with 0.25 ⁇ M albendazole. Cell proliferation was measured using a sulforhodamine B assay. Results are presented as the % of control (vehicle treated cells).
  • FIG. 3 Cytotoxic activity of albendazole and paclitaxel in inhibiting proliferation of 1A9 cells in vitro.
  • A Dose-response inhibition of cell proliferation by albendazole alone.
  • B Dose-related inhibition of proliferation by paclitaxel alone.
  • C Combined effect of co-incubation of 1A9 cells with varying doses of paclitaxel and 0.1 ⁇ M albendazole. Cell proliferation was measured using a sulforhodamine B assay. Results are presented as the % of control (vehicle treated cells).
  • FIG. 4 Cytotoxic activity of albendazole and paclitaxel in inhibiting proliferation of 1A9PTX22 cells in vitro.
  • A Dose-response inhibition of cell proliferation by albendazole alone.
  • B Dose-related inhibition of proliferation by paclitaxel alone.
  • C Combined effect of co-incubation of 1A9 cells with varying doses of paclitaxel and 0.1 ⁇ M albendazole. Cell proliferation was measured using a sulforhodamine B assay. Results are presented as the % of control (vehicle treated cells).
  • FIG. 5 Cytotoxic activity of vincristine (A) and colchicine (B) in inhibiting proliferation of 1A9 and 1A9PTX22 cells in vitro.
  • Concentrations of vincristine (A) shown are 0.1 nM, 0.5 nM, 1 nM, 5 nM, 10 nM, 50 nM and 100 nM.
  • Concentrations of colchicine (B) shown are 0.1 nM, 0.5 nM, 1 nM, 5 nM, 10 nM, 50 nM, 100 nM, 500 nM and 1000 nM.
  • Cell proliferation was measured using a sulforhodamine B assay—the percentage of cells alive (cell growth) was calculated by defining the optical density of untreated cells (control) as 100%. Values represent the mean ⁇ SD of 8 replicate experiments, each repeated at least twice.
  • Dose-related toxicity and resistance are significant factors limiting the adoption and efficacy of treatment of patients with cancer using antmitotic drugs such as paclitaxel.
  • the strategy of increasing the dose of paclitaxel to overcome resistance merely exacerbates the problems of paclitaxel toxicity and the occurrence of side effects, while also potentially promoting the development of increased drug resistance.
  • albendazole potentiates the effect of paclitaxel in inhibiting proliferation of human cancer cells.
  • the effect is observed both in paclitaxel-sensitive and paclitaxel-resistant human cancer cells.
  • the inventors have also demonstrated that the paclitaxel-resistant tumour cells are hypersensitive to albendazole, a member of a different class of anti-tubulin agents. This is a particularly surprising finding as one skilled in the art would expect that a cell resistant to one type of anti-tubulin agent would be equally resistant to another. The inventors have demonstrated that this is not necessarily the case.
  • the addition of albendazole to paclitaxel may lead to a reduction of the paclitaxel dose required to produce an antitumour effect.
  • the use of albendazole either in the presence or absence of a paclitaxel treatment regimen may lead to tumour responsiveness and thus a beneficial therapeutic effect previously unattainable.
  • typically in paclitaxel-resistant cell lines an approximately 50-fold increase in paclitaxel concentration is required to achieve a similar response to that observed in paclitaxel-sensitive cells.
  • one aspect of the present invention provides a method for the treatment of a tumour in a subject, the method comprising administering to the subject an effective amount of at least one taxoid and an effective amount of at least one benzimidazole carbamate compound of formula I:
  • benzimidazole carbamate compound is a compound of formula II
  • cancer cells highly resistant to paclitaxel and partially resistant to vincristine and colchicine are hypersensitive to the anti-proliferative effects of albendazole.
  • benzimidazole carbamates such as albendazole.
  • At present resistance is combated by increasing the dosage of the agent to which resistance has developed, thereby increasing the risk of side effects such as toxicity and leading to the development of greater resistance and failure of the therapy.
  • the clinical application of benzimidazole carbamates in the treatment of tumours resistant to drugs such as paclitaxel overcomes these inherent deficiencies in the prior art approach.
  • an aspect of the present invention provides a method for the treatment of a tumour in a subject, wherein the tumour is insensitive to one or more anti-mitotic drugs, the method comprising administering to the subject an effective amount of at least one benzimidazole carbamate compound of formula I, II, or III as defined above.
  • the tumour may show complete or partial resistance to one or more of the following: taxanes, Vinca alkaloids and colchicinoids, or derivatives or analogues thereof.
  • Albendazole or a metabolite, derivative or analogue thereof is one benzimidazole carbamate particularly useful in the methods and compositions of the present invention.
  • albendazole carbamate particularly useful in the methods and compositions of the present invention.
  • other benzimidazole carbamates may also be employed.
  • benzimidazole carbamates include, but are not limited to, mebendazole, flubendazole, triclabendazole, oxfenbendazole, luxabendazole, cambendazole, oxibendazole, parbendazole, thiabendazole, cyclobendazole, dribendazole, etibendazole and fenbendazole.
  • the taxoid is paclitaxel or a metabolite, derivative or analogue thereof, or doclitaxel or a metabolite, derivative or analogue thereof.
  • taxoids may also be employed.
  • a large number of derivatives of paclitaxel and docataxel are currently in the experimental phase or in clinical trial. It will be understood by those skilled in the art that such derivatives are within the scope of the methods and compositions of the invention.
  • each component of the combination may be administered at the same time, or sequentially in any order, or at different times, so as to provide the desired therapeutic effect.
  • the components may be administered by the same route of administration, although it is not necessary for this to be so.
  • the components may be formulated together in a single dosage unit as a combination product.
  • the methods of the present invention may further comprise the administration of one or more corticosteroids and/or antihistamines (such as diphenydramine), for example as a pre-treatment, to counteract the risk of the patient having an adverse reaction to the taxoid.
  • the methods of the invention may comprise the administration of one or more potentiators of the effect of the taxoid and/or benzimidazole carbamate compound on the tumour to be treated.
  • Such administration may be concomitant with the administration of either or both of the taxoid and the benzimidazole carbamate compound.
  • a suitable potentiator of benzimidazole carbamates is an isoquinoline such as praziquantel.
  • tumours which may be treated using methods and compositions of the present invention include liver, ovarian, colorectal, lung, small cell lung, breast, prostate, pancreatic, renal, gastric, endometrial, oesophageal, head or neck tumours, peritoneal carcinomatosis, leukaemia, lymphomas, sarcomas or secondary metastases thereof.
  • compounds and compositions may be administered by any suitable route, either systemically, regionally or locally.
  • the particular route of administration to be used in any given circumstance will depend on a number of factors, including the nature of the tumour to be treated, the severity and extent of the tumour, the required dosage of the particular compounds to be delivered and the potential side-effects of the compounds.
  • administration may be regional rather than systemic.
  • Regional administration provides the capability of delivering very high local concentrations of the desired compounds to the required site and thus is suitable for achieving the desired therapeutic or preventative effect whilst avoiding exposure of other organs of the body to the compounds and thereby potentially reducing side effects.
  • administration according to embodiments of the invention may be achieved by any standard routes, including intracavitary, intravesical, intramuscular, intraarterial, intravenous, subcutaneous, topical or oral.
  • Intracavitary administration may be intraperitoneal or intrapleural,
  • administration may be via intravenous infusion or intraperitoneal administration.
  • suitable compositions may be prepared according to methods which are known to those of ordinary skill in the art and may include pharmaceutically acceptable diluents, adjuvants and/or excipients.
  • the diluents, adjuvants and excipients must be “acceptable” in terms of being compatible with the other ingredients of the composition, and not deleterious to the recipient thereof.
  • Examples of pharmaceutically acceptable diluents are demineralised or distilled water, saline solution; vegetable based oils such as peanut oil, safflower oil, olive oil, cottonseed oil, maize oil, sesame oils such as peanut oil, safflower oil, olive oil, cottonseed oil, maize oil, sesame oil, arachis oil or coconut oil; silicone oils, including polysiloxanes, such as methyl polysiloxane, phenyl polysiloxane and methylphenyl polysolpoxane; volatile silicones; mineral oils such as liquid paraffin, soft paraffin or squalane; cellulose derivatives such as methyl cellulose, ethyl cellulose, carboxymethylcellulose, sodium carboxymethylcellulose or hydroxypropylmethylcellulose; lower alkanols, for example ethanol or iso-propanol; lower aralkanols; lower polyalkylene glycols or lower alkylene glycols, for example polyethylene glycol,
  • non-toxic parenterally acceptable diluents or carriers can include, Ringer's solution, medium chain triglyceride (MCT), isotonic saline, phosphate buffered saline, ethanol and 1,2 propylene glycol.
  • MCT medium chain triglyceride
  • isotonic saline phosphate buffered saline
  • ethanol 1,2 propylene glycol.
  • paclitaxel a commonly used carrier or vehicle for paclitaxel is Cremaphor EL.
  • Paclitaxel is typically prepared in 50% Cremaphor EL and 50% ethanol.
  • suitable carriers, diluents, excipients and adjuvants for oral use include peanut oil, liquid paraffin, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, gum acacia, gum tragacanth, dextrose, sucrose, sorbitol, mannitol, gelatine and lecithin.
  • these oral formulations may contain suitable flavouring and colourings agents.
  • the capsules When used in capsule form the capsules may be coated with compounds such as glyceryl monostearate or glyceryl distearate which delay disintegration.
  • Adjuvants typically include emollients, emulsifiers, thickening agents, preservatives, bactericides and buffering agents.
  • Solid forms for oral administration may contain binders acceptable in human and veterinary pharmaceutical practice, sweeteners, disintegrating agents, diluents, flavourings, coating agents, preservatives, lubricants and/or time delay agents.
  • Suitable binders include gum acacia, gelatine, corn starch, gum tragacanth, sodium alginate, carboxymethylcellulose, hydroxypropylmethylcellulose or polyethylene glycol.
  • Suitable sweeteners include sucrose, lactose, glucose, aspartame or saccharine.
  • Suitable disintegrating agents include corn starch, methylcellulose, polyvinylpyrrolidone, guar gum, xanthan gum, bentonite, alginic acid or agar.
  • Suitable diluents include lactose, sorbitol, mannitol, dextrose, kaolin, cellulose, calcium carbonate, calcium silicate or dicalcium phosphate.
  • Suitable flavouring agents include peppermint oil, oil of wintergreen, cherry, orange or raspberry flavouring.
  • Suitable coating agents include polymers or copolymers of acrylic acid and/or methacrylic acid and/or their esters, waxes, fatty alcohols, zein, shellac or gluten.
  • Suitable preservatives include sodium benzoate, vitamin E, alpha-tocopherol, ascorbic acid, methyl paraben, propyl paraben or sodium bisulphite.
  • Suitable lubricants include magnesium stearate, stearic acid, sodium oleate, sodium chloride or talc.
  • Suitable time delay agents include glyceryl monostearate or glyceryl distearate.
  • Liquid forms for oral administration may contain, in addition to the above agents, a liquid carrier.
  • suitable liquid carriers include water, oils such as olive oil, peanut oil, sesame oil, sunflower oil, safflower oil, arachis oil, coconut oil, liquid paraffin, ethylene glycol, propylene glycol, polyethylene glycol, ethanol, propanol, isopropanol, glycerol, fatty alcohols, triglycerides or mixtures thereof.
  • Suspensions for oral administration may further comprise dispersing agents and/or suspending agents.
  • Suitable suspending agents include sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, poly-vinyl-pyrrolidone, sodium alginate or acetyl alcohol.
  • Suitable dispersing agents include lecithin, polyoxyethylene esters of fatty acids such as stearic acid, polyoxyethylene sorbitol mono- or di-oleate, -stearate or -laurate, polyoxyethylene sorbitan mono- or di-oleate, -stearate or -laurate and the like.
  • Emulsions for oral administration may further comprise one or more emulsifying agents.
  • Suitable emulsifying agents include dispersing agents as exemplified above or natural gums such as guar gum, gum acacia or gum tragacanth.
  • parenterally administrable compositions are apparent to those skilled in the art, and are described in more detail in, for example, Remington's Pharmaceutical Science, 15th ed., Mack Publishing Company, Easton, Pa., hereby incorporated by reference herein.
  • the composition may Incorporate any suitable surfactant such as an anionic, cationic or non-ionic surfactant such as sorbitan esters or polyoxyethylene derivatives thereof.
  • suitable surfactant such as an anionic, cationic or non-ionic surfactant such as sorbitan esters or polyoxyethylene derivatives thereof.
  • Suspending agents such as natural gums, cellulose derivatives or inorganic materials such as silicaceous silicas, and other ingredients such as lanolin, may also be included.
  • compositions may also be administered in the form of liposomes.
  • Liposomes are generally derived from phospholipids or other lipid substances, and are formed by mono- or multi-lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolisable lipid capable of forming liposomes can be used.
  • the compositions in liposome form may contain stabilisers, preservatives, excipients and the like.
  • the preferred lipids are the phospholipids and the phosphatidyl cholines (lecithins), both natural and synthetic.
  • the effective dose level of the administered compound for any particular subject will depend upon a variety of factors including: the type of tumour being treated and the stage of the tumour; the activity of the compound employed; the composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration; the route of administration; the rate of sequestration of compounds; the duration of the treatment; drugs used in combination or coincidental with the treatment, together with other related factors well known in medicine.
  • the taxoid may be present in the composition in a concentration of at least about 1 pM.
  • concentration of the taxoid in the composition may be from about 1 pM to about 50 nM, from about 0.01 nM to about 10 nM, from about 0.05 nM to about 5 nM, or from about 0.1 nM to about 1 nM.
  • the benzimidazole carbamate compound may be present in the composition in a concentration of at least about 0.005 ⁇ M.
  • concentration of the benzimidazole carbamate in the composition may be from about 0.005 ⁇ M to about 10 ⁇ M, from about 0.01 ⁇ M to about 1 ⁇ M, from about 0.1 ⁇ M to about 0.5 ⁇ M, or from about 0.1 ⁇ M to about 0.25 ⁇ M.
  • an effective dosage of a composition for administration to a patient is expected to be in the range of about 0.01 mg to about 150 mg per kg body weight per 24 hours; typically, about 0.1 mg to about 150 mg per kg body weight per 24 hours; about 0.1 mg to about 100 mg per kg body weight per 24 hours; about 0.5 mg to about 100 mg per kg body weight per 24 hours; or about 1.0 mg to about 100 mg per kg body weight per 24 hours. More typically, an effective dose range is expected to be in the range of about 5 mg to about 50 mg per kg body weight per 24 hours.
  • an effective dosage may be up to about 5000 mg/m 2 .
  • an effective dosage is expected to be in the range of about 10 to about 5000 mg/m 2 , typically about 10 to about 2500 mg/m 2 , about 25 to about 2000 mg/m 2 , about 50 to about 1500 mg/m 2 , about 50 to about 1000 mg/m 2 , or about 75 to about 600 mg/m 2 .
  • OVCAR-3, SKOV-3, 1A9 and 1A9PTX22 were used.
  • OVCAR-3 and SKOV-3 cells were obtained from the American Type Culture Collection (ATCC) and maintained on RPMI medium and McCoy5A medium respectively according to ATCC instructions.
  • 1A9 is a clone of the human ovarian carcinoma cell line, A2780 (Sackett et al., 1997).
  • 1A9PTX22 is a paclitaxel resistant subclone of 1A9 cells, isolated as an individual clone in a single step selection by exposing 1A9 cells to 5 ng/ml paclitaxel in the presence of 5 ⁇ g/ml verapamil, a Pgp antagonist (Giannakakou et al., 1997). Cells were maintained in 15 ng/ml paclitaxel and 5 ⁇ g/ml verapamil continuously.
  • SRB Sulforhodamine B
  • Cells were harvested from exponential phase cultures by trypsinizabon, counted and plated in 96-well plates. Optimal seeding densities for each cell line were determined to ensure exponential growth during a 5-day assay. Seeding densities were 5000, 1000, 400 and 3500 cells per well for OVCAR-3, SKOV-3, 1A9 and 1A9PTX22 cells, respectively. Cells plated in 96-well tissue culture plates were treated with 100 ⁇ l cell culture medium containing various concentrations of albendazole, paclitaxel or a combination of the two. Both albendazole and paclitaxel were originally made up in absolute ethanol and subsequently diluted with cell culture medium to give the desired drug concentrations with a final ethanol concentration of 1%.
  • Treatment media were replaced on alternate days. At the end of the treatment period (5 days), wells were assayed for cellular protein content.
  • the SRB assay was performed according to the method described by Skehan et at. (1990) and Papazisis et al. (1997), with minor modifications.
  • the culture medium was aspirated prior to fixation of the cells by the addition of 100 ⁇ l 10% cold trichloroacetic acid. After an hour incubation at 4° C., cells were washed five times with water. The cells were then stained with 200 ⁇ l 0.4% SRB dissolved in 1% acetic acid for at least 15 min and subsequently washed four times with 1% acetic acid to remove unbound stain.
  • the plates were left to dry at room temperature and bound protein stain was solubilized with 100 ⁇ l 10 mM un-buffered Tris base [tris(hydroxymethyl)aminomethane)] before reading the optical density (OD) at 570 nm.
  • sensitivity of each line was initially tested by incubating cells with various concentrations of albendazole or paclitaxel for 5 days.
  • the SRB assay was performed at the end of the treatment period to determine cell response to drug treatment.
  • FIG. 1 Data from OVCAR-3 cells are presented in FIG. 1 , where response to various doses of albendazole is depicted in FIG. 1A and response to various doses of paclitaxel alone or in combination with albendazole (0.25 ⁇ M) is presented in FIG. 1B .
  • FIG. 1B the addition of 0.25 ⁇ M albendazole to the paclitaxel containing incubation medium led to a complete halt of cell proliferation.
  • SKOV-3 cells responded to albendazole, paclitaxel or the combination in a similar fashion.
  • a dose-response inhibition of cell proliferation by paclitaxel was profoundly potentiated upon co-incubation with albendazole.
  • Treatment of these cells with 0.01 nM paclitaxel alone led to 14.5% inhibition of cell proliferation and with 0.25 ⁇ M albendazole alone to a 48.4% reduction.
  • paclitaxel (0.01 nM) and albendazole (0.25 ⁇ M) there was 69.4% reduction in cell proliferation (p ⁇ 0.001 compared to paclitaxel alone).
  • FIG. 3 This inhibitory effect was more intense in 1A9 cells ( FIG. 3 ), where treatment with a low albendazole concentration of 0.1 ⁇ M alone ( FIG. 3A ) or treatment with 0.1 nM paclitaxel alone ( FIG. 3B ) led to 11.8% and 21.8% inhibition respectively. Co-incubation of the cells with the two drugs at these concentrations led to 87.7% inhibition of proliferation (p ⁇ 0.001) ( FIG. 3C ).
  • Taxoids such as paclitaxel
  • tubulin-binding drugs are the Vinca alkaloids, exemplified by vincristine, vinblastine and vinorelbine.
  • Vinca alkaloids interfere with a cells ability to properly form the mitotic spindle by preventing the normal polymerization of microtubules. They have importance in the treatment of leukemia, lymphomas, small cell lung cancer, and other malignancies.
  • a third class of anti-tubulin drugs exemplified by colchicine, is comprised of a structurally diverse collection of small molecules that are related by the fact that all bind to a common site on tubulin known as the colchicine site and prevent the normal polymerization of microtubules.
  • the present inventors have shown that the paclitaxel resistant cell line 1A9PTX22 displays increased sensitivity to the antiproliferative effects of albendazole compared to the paclitaxel sensitive parent line 1A9.
  • the inventors investigated the level of sensitivity of these cells to representatives of two other classes of antimitotic drugs, namely vincristine and colchicine.
  • 1A9 and 1A9PTX22 cells plated in 96-well tissue culture plates were treated with 100 ⁇ l cell culture medium containing various concentrations of vincristine and colchicine for 72 hours and SRB assays conducted as described above.
  • paclitaxel see Example 1
  • both vincristine and colchicine were originally made up in absolute ethanol and subsequently diluted with cell culture medium to give the desired drug concentrations with a final ethanol concentration of 1%.
  • the degree of sensitivity of 1A9PTX22 cells to both vincristine and colchicine is significantly reduced when compared to that of the parent cell line 1A9.
  • the partial resistance of 1A9PTX22 is apparent for vincristine at concentrations of 5 nM and above and for colchicine at 100 nM and above (p ⁇ 0.001).
  • compositions are outlined below. The following are to be construed as merely illustrative examples of compositions and not as a limitation of the scope of the present invention in any way.
  • composition for Parenteral Administration Composition for Parenteral Administration
  • a composition for parenteral injection could be prepared to contain 0.05 mg to 5 g of albendazole and 0.05 mg to 5 g of paclitaxel in 10 mls to 2 litres of 0.1-10% carboxymethylcellulose.
  • composition for intravenous infusion may comprise 250 ml of sterile Ringer's solution, and 0.05 mg to 5 g of albendazole and 0.05 mg to 5 g of paclitaxel.
  • a composition of a suitable agent in the form of a capsule may be prepared by filling a standard two-piece hard gelatin capsule with 500 mg of albendazole, in powdered form, 500 mg of paclitaxel, 100 mg of lactose, 35 mg of talc and 10 mg of magnesium stearate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Hematology (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention provides methods for the treatment of tumors, comprising administration of an effective amount of at least one taxoid and an effective amount of at least one benzimidazol carbamate compound of formula (I). The invention also provides a method for the treatment of tumors insensitive to one or more anti-mitotic drugs, the method comprising administering an effective amount of at least one benzimidazole carbamate compound of formula (I). Also provide are compositions for carrying out methods of the invention.

Description

    TECHNICAL FIELD
  • The present invention relates generally to methods and compositions for the treatment of tumours.
  • BACKGROUND OF THE INVENTION
  • Paclitaxel and docetaxel are members of the taxoid family of anti-mitotic drugs widely used as chemotherapeutic agents. Taxoids promote microtubule polymerization and stabilization. Their anti-mitotic properties are derived from their ability to bind tubulin and disrupt microtubule dynamics thereby inducing mitotic arrest and cell death.
  • Paclitaxel has activity against a broad band of tumour types, including breast, ovarian, lung, head and neck cancers. Paclitaxel also has activity in other malignancies that are refractory to conventional chemotherapy, including previously-treated lymphoma and small cell lung cancers and oesophageal, gastric, endometrial, bladder and germ cell tumours (Mekhail and Markman, 2002; Yamazaki et al., 1998). It is one of the most unique, and successful, chemotherapeutic agents currently used in the clinic for cancer treatment. However major problems associated with paclitaxel therapy exist. One of these is toxicity. Common toxicities of paclitaxel include total alopecia, hypersensitivity reactions, bone marrow suppression (principally neutropenia), arthralgia, myalgias, and peripheral neuropathy (Markman, 2003). The development of tolerance or drug resistance in tumour cells to paclitaxel is also a significant factor hindering the ongoing efficacy of paclitaxel treatment. To overcome resistance, typically the dosages of paclitaxel administered are increased thus leading to the development of side effects.
  • Accordingly, there is a clear need for alternative improved strategies for taxoid-based cancer treatments.
  • Another group of agents that target microtubules are the benzimidazole carbamates that have an opposing mode of action to the taxoids in that they inhibit microtubule polymerization rather than polymerize tubulin (Lacey, 1990; Lacey and Gill, 1994). Benzimidazole carbamates include albendazole, a broad spectrum anthelmintic used clinically for the treatment of a number of parasitic infections (Horton, 2000). The present inventors have previously found that albendazole has an anti-proliferative effect on a range of cancer cell lines in vitro and on cancers in animal models and clinical studies (WO 02/076454, the disclosure of which is incorporated herein by reference).
  • As disclosed herein, the present inventors have now surprisingly found that cancer cells highly resistant to paclitaxel and partially resistant to vincristine and colchicine are in fact hypersensitive to the anti-proliferative effects of albendazole. Further, albendazole potentiates the effect of paclitaxel in human cancer cells, both in paclitaxel-sensitive and paclitaxel-resistant cell lines, such that used in combination these drugs have an additive or synergistic effect in inhibiting cancer cell proliferation.
  • SUMMARY OF THE INVENTION
  • According to a first aspect of the present invention there is provided a method for the treatment of a tumour in a subject, the method comprising administering to the subject an effective amount of at least one taxoid and an effective amount of at least one benzimidazole carbamate compound of formula I:
  • Figure US20090286838A1-20091119-C00001
      • wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
      • R2 is selected from H, or substituted or unsubstituted alkyl;
      • R3 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, 5- or 6-membered heterocyclic ring the heteroatom(s) of which are selected from one or more of O, S and/or N, —SR14, —OR15, —SOR16, —SO2R17, —SCN, —C(O)—R18, —OR19, NR20COOR21, where R15 to R21 are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl or arylalkyl;
      • or a metabolite, derivative or analogue thereof.
      • The R1 substitution may occur in the 5 or 6 position.
  • The benzimidazole carbamate compound may be a compound of Formula II:
  • Figure US20090286838A1-20091119-C00002
      • wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
      • R21 is H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloakenylalkyl, aryl or arylalkyl.
  • The benzimidazole carbamate compound may be a compound of Formula III:
  • Figure US20090286838A1-20091119-C00003
      • wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4.
  • The benzimidazole carbamate compound may be selected from the group consisting of albendazole, albendazole sulphoxide, mebendazole, flubendazole, triclabendazole, oxfenbendazole, luxabendazole, cambendazole, oxibendazole, parbendazole, thiabendazole, cyclobendazole, dribendazole, etibendazole and fenbendazole.
  • In one embodiment the benzimidazole carbamate compound is albendazole, or a metabolite, derivative or analogue thereof.
  • The taxoid may be paclitaxel, docataxel, or a metabolite, derivative or analogue thereof.
  • The tumour may be a liver, ovarian, colorectal, lung, small cell lung, breast, prostate, pancreatic, renal, gastric, endometrial, oesophageal, head or neck tumour, peritoneal carcinomatosis, leukaemia, lymphoma, sarcoma or secondary metastases thereof.
  • The tumour may be insensitive to treatment with one or more antimitotic drugs. The one or more antimitotic drugs may be selected from a taxoid, a Vinca alkaloid and a colchicinoid. In one embodiment the tumour is a taxoid-insensitive tumour. According to this embodiment, the amount of taxoid administered may be an amount otherwise ineffective to treat the tumour if administered alone.
  • The taxoid and the benzimidazole carbamate compound may be administered simultaneously or sequentially. Accordingly, the taxoid and the benzimidazole carbamate compound may be present in a single pharmaceutical composition or in separate compositions. The taxoid and the benzimidazole carbamate compound may be administered systemically.
  • According to a second aspect of the present invention there is provided a method for the treatment of a tumour in a subject, the method comprising administering to the subject an effective amount of paclitaxel and an effective amount of albendazole.
  • The paclitaxel and albendazole may be administered simultaneously or sequentially. Accordingly, the paclitaxel and albendazole may be present in a single pharmaceutical composition or in separate compositions. The taxoid and the benzimidazole carbamate compound may be administered systemically.
  • According to a third aspect of the present invention there is provided a method for the treatment of a taxoid-insensitive tumour in a subject, the method comprising systemically administering to the subject paclitaxel and an effective amount of albendazole. The amount of paclitaxel administered may be an amount otherwise ineffective to treat the tumour if administered alone.
  • According to a fourth aspect of the present invention there is provided a pharmaceutical composition comprising at least one taxoid and at least one benzimidazole carbamate compound of formula I:
  • Figure US20090286838A1-20091119-C00004
      • wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
      • R2 is selected from H, or substituted or unsubstituted alkyl;
      • R3 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, 5- or 6-membered heterocyclic ring the heteroatom(s) of which are selected from one or more of O, S and/or N, —SR14, —OR15, —SOR16, —SO2R17, —SCN, —C(O)—R18, —OR19, NR20COOR21, where R15 to R21 are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl or arylalkyl;
      • or a metabolite, derivative or analogue thereof.
      • The R1 substitution may occur in the 5 or 6 position.
  • The benzimidazole carbamate compound may be a compound of Formula II:
  • Figure US20090286838A1-20091119-C00005
      • wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
      • R21 is H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloakenylalkyl, aryl or arylalkyl.
  • The benzimidazole carbamate compound may be a compound of Formula III:
  • Figure US20090286838A1-20091119-C00006
      • wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4.
  • The benzimidazole carbamate compound may be selected from the group consisting of albendazole, albendazole sulphoxide, mebendazole, flubendazole, triclabendazole, oxfenbendazole, luxabendazole, cambendazole, oxibendazole, parbendazole, thiabendazole, cyclobendazole, dribendazole, etibendazole and fenbendazole.
  • In one embodiment the benzimidazole carbamate compound is albendazole, or a metabolite, derivative or analogue thereof.
  • The taxoid may be paclitaxel, docataxel, or a metabolite, derivative or analogue thereof.
  • The composition may further comprise one or more pharmaceutically acceptable carriers, adjuvants or diluents.
  • According to a fifth aspect of the present invention there is provided a pharmaceutical composition comprising paclitaxel and albendazole.
  • The composition may include one or more pharmaceutically acceptable carriers, adjuvants or diluents.
  • According to a sixth aspect of the present invention there is provided a composition for the treatment of a tumour in a subject, the composition comprising at least one taxoid and at least one benzimidazole carbamate compound of formula I.
  • The tumour may be a liver, ovarian, colorectal, lung, small cell lung, breast, prostate, pancreatic, renal, gastric, endometrial, oesophageal, head or neck tumour, peritoneal carcinomatosis, leukaemia, lymphoma, sarcoma or secondary metastases thereof.
  • The tumour may be insensitive to treatment with one or more antimitotic drugs. The one or more antimitotic drugs may be selected from a taxoid, a Vinca alkaloid and a colchicinoid. In one embodiment the tumour is a taxoid-insensitive tumour.
  • According to a seventh aspect of the present invention there is provided a composition for the treatment of a taxoid-insensitive tumour in a subject, the composition comprising paclitaxel and albendazole.
  • According to an eighth aspect of the present invention there is provided a method for the treatment of a tumour in a subject, the method comprising administering to the subject an effective amount of a composition according to the third, fourth or fifth aspect.
  • According to a ninth aspect of the present invention there is provided a use of at least one taxoid and at least one benzimidazole carbamate compound of formula I for the manufacture of a medicament for the treatment of a tumour in a subject.
  • According to a tenth aspect of the present invention there is provided a method for the treatment of a tumour in a subject, wherein the tumour is insensitive to one or more anti-mitotic drugs, the method comprising administering to the subject an effective amount of at least one benzimidazole carbamate compound of formula I:
  • Figure US20090286838A1-20091119-C00007
      • wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
      • R2 is selected from H, or substituted or unsubstituted alkyl;
      • R3 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, 5- or 6-membered heterocyclic ring the heteroatom(s) of which are selected from one or more of O, S and/or N, —SR14, —OR15, —SOR16, —SO2R17, —SCN, —C(O)—R18, —OR19, NR20COOR21, where R15 is to R21 are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl or arylalkyl;
      • or a metabolite, derivative or analogue thereof.
  • The tumour may be insensitive to one or more of a taxoid, a Vinca alkaloid and a colchicinoid. The taxoid may be paclitaxel. The Vinca alkaloid may be vincristine. The colchicinoid may be colchicine. In one embodiment the tumour is insensitive to at least paclitaxel.
  • According to an eleventh aspect of the present invention there is provided the use of at least one benzimidazole carbamate compound of formula I for the manufacture of a medicament for the treatment of a tumour insensitive to at least one anti-mitotic drug.
  • In the aspects and embodiments of the invention described above the subject is typically human.
  • Also contemplated within the above aspects and embodiments are isomers, including stereoisomers and geometric Isomers of the compounds of Formula I, II and III, as well as tautomeric forms thereof.
  • DEFINITIONS
  • In the context of this specification, the term “comprising” means “including principally, but not necessarily solely”. Furthermore, variations of the word “comprising”, such as “comprise” and “comprises”, have correspondingly varied meanings.
  • As used herein the terms “treating” and “treatment” refer to any and all uses which remedy a condition or symptoms, prevent the establishment of a condition or disease, or otherwise prevent, hinder, retard, or reverse the progression of a condition or disease or other undesirable symptoms in any way whatsoever.
  • As used herein the term “effective amount” includes within its meaning a non-toxic but sufficient amount of an agent or compound to provide the desired effect. The exact amount required will vary from subject to subject depending on factors such as the species being treated, the age and general condition of the subject, the severity of the condition being treated, the particular agent being administered and the mode of administration and so forth. Thus, it is not possible to specify an exact “effective amount”. However, for any given case, an appropriate “effective amount” may be determined by one of ordinary skill in the art using only routine experimentation.
  • As used herein the term “insensitive” refers to a tumour or portion thereof which is refractory, to some degree, to treatment with a particular therapeutic agent. The term “insensitive” therefore is used to describe tumours otherwise referred to as resistant, for example paclitaxel-resistant. However this term is not limited to tumours which show complete or even significant levels of resistance to the therapeutic agent in question, but rather includes within its scope tumours that retain sensitivity to the agent but which display a diminished responsiveness to the agent when compared to sensitive tumours.
  • The term “alkyl” as used herein, includes within its meaning monovalent, saturated, straight and branched chain hydrocarbon radicals.
  • The term “alkenyl” as used herein, includes within its meaning, monovalent, straight and branched chain hydrocarbon radicals having at least one double bond.
  • The term “aryl” as used herein, includes within its meaning monovalent, single, polynuclear, conjugated and fused aromatic hydrocarbon radicals.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will now be described, by way of example only, with reference to the following drawings:
  • FIG. 1: Cytotoxic activity of albendazole and paclitaxel in inhibiting proliferation of OVCAR-3 cells in vitro. (A) Dose-response inhibition of cell proliferation by albendazole alone. (B) Dose-related inhibition of proliferation by paclitaxel and potentiation of this effect when cells were co-incubated with 0.25 μM albendazole. Cell proliferation was measured using a sulforhodamine B assay. Results are presented as the % of control (vehicle treated cells).
  • FIG. 2: Cytotoxic activity of albendazole and paclitaxel in inhibiting proliferation of SKOV-3 cells in vitro. (A) Dose-response inhibition of cell proliferation by albendazole alone. (B) Dose-related inhibition of proliferation by paclitaxel and potentiation of this effect when cells were co-incubated with 0.25 μM albendazole. Cell proliferation was measured using a sulforhodamine B assay. Results are presented as the % of control (vehicle treated cells).
  • FIG. 3: Cytotoxic activity of albendazole and paclitaxel in inhibiting proliferation of 1A9 cells in vitro. (A) Dose-response inhibition of cell proliferation by albendazole alone. (B) Dose-related inhibition of proliferation by paclitaxel alone. (C) Combined effect of co-incubation of 1A9 cells with varying doses of paclitaxel and 0.1 μM albendazole. Cell proliferation was measured using a sulforhodamine B assay. Results are presented as the % of control (vehicle treated cells).
  • FIG. 4: Cytotoxic activity of albendazole and paclitaxel in inhibiting proliferation of 1A9PTX22 cells in vitro. (A) Dose-response inhibition of cell proliferation by albendazole alone. (B) Dose-related inhibition of proliferation by paclitaxel alone. (C) Combined effect of co-incubation of 1A9 cells with varying doses of paclitaxel and 0.1 μM albendazole. Cell proliferation was measured using a sulforhodamine B assay. Results are presented as the % of control (vehicle treated cells).
  • FIG. 5: Cytotoxic activity of vincristine (A) and colchicine (B) in inhibiting proliferation of 1A9 and 1A9PTX22 cells in vitro. Concentrations of vincristine (A) shown are 0.1 nM, 0.5 nM, 1 nM, 5 nM, 10 nM, 50 nM and 100 nM. Concentrations of colchicine (B) shown are 0.1 nM, 0.5 nM, 1 nM, 5 nM, 10 nM, 50 nM, 100 nM, 500 nM and 1000 nM. Cell proliferation was measured using a sulforhodamine B assay—the percentage of cells alive (cell growth) was calculated by defining the optical density of untreated cells (control) as 100%. Values represent the mean±SD of 8 replicate experiments, each repeated at least twice.
  • BEST MODE OF PERFORMING THE INVENTION
  • Dose-related toxicity and resistance are significant factors limiting the adoption and efficacy of treatment of patients with cancer using antmitotic drugs such as paclitaxel. The strategy of increasing the dose of paclitaxel to overcome resistance merely exacerbates the problems of paclitaxel toxicity and the occurrence of side effects, while also potentially promoting the development of increased drug resistance. There is a clear need for strategies to maximise the benefits of paclitaxel, and other taxoid, treatments of tumours to increase drug efficacy without the need to increase dosages.
  • As disclosed herein, the present inventors have now found that albendazole potentiates the effect of paclitaxel in inhibiting proliferation of human cancer cells. The effect is observed both in paclitaxel-sensitive and paclitaxel-resistant human cancer cells. The inventors have also demonstrated that the paclitaxel-resistant tumour cells are hypersensitive to albendazole, a member of a different class of anti-tubulin agents. This is a particularly surprising finding as one skilled in the art would expect that a cell resistant to one type of anti-tubulin agent would be equally resistant to another. The inventors have demonstrated that this is not necessarily the case.
  • Accordingly, in the clinical setting the addition of albendazole to paclitaxel may lead to a reduction of the paclitaxel dose required to produce an antitumour effect. Furthermore, in paclitaxel resistant tumours, the use of albendazole, either in the presence or absence of a paclitaxel treatment regimen may lead to tumour responsiveness and thus a beneficial therapeutic effect previously unattainable. As exemplified herein, typically in paclitaxel-resistant cell lines an approximately 50-fold increase in paclitaxel concentration is required to achieve a similar response to that observed in paclitaxel-sensitive cells. However the inventors demonstrate here that in the presence of albendazole this paclitaxel concentration can be reduced by about 25 to 50-fold to achieve a similar response to that observed in paclitaxel-sensitive cells. That is, the addition of albendazole to an otherwise ineffective dose of paclitaxel can produce a beneficial response.
  • Accordingly, one aspect of the present invention provides a method for the treatment of a tumour in a subject, the method comprising administering to the subject an effective amount of at least one taxoid and an effective amount of at least one benzimidazole carbamate compound of formula I:
  • Figure US20090286838A1-20091119-C00008
      • wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S. S(O) or SO2 and n is 1 to 4;
      • R2 is selected from H, or substituted or unsubstituted alkyl;
      • R3 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, 5- or 6-membered heterocyclic ring the heteroatom(s) of which are selected from one or more of O, S and/or N, —SR14, —OR15, —SOR16, —SCN, —SO2R17, —C(O)—R18, —OR19, NR20COOR21, where R15 to R21 are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl or arylalkyl; or an analogue, metabolite or derivative thereof.
  • Typically the benzimidazole carbamate compound is a compound of formula II
  • Figure US20090286838A1-20091119-C00009
      • wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
      • R21 is H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloakenylalkyl, aryl or arylalkyl,
      • or of formula III
  • Figure US20090286838A1-20091119-C00010
      • wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4.
  • Those skilled in the art will readily appreciate that isomers, including stereoisomers and geometric isomers, of the above described benzimidazole carbamate compounds may exists and the use of such isomers are included within the scope of the present invention. Further, the use of tautomeric forms of the above compounds is also contemplated. For example the substituted benzimidazole group may exist in a number of tautomeric forms, including where the R1 substituent is in any one of the 4 to 7 positions.
  • As disclosed herein, the inventors have also found that cancer cells highly resistant to paclitaxel and partially resistant to vincristine and colchicine are hypersensitive to the anti-proliferative effects of albendazole. This opens previously unrealised avenues for the treatment of tumours resistant or insensitive to anti-mitotic drugs by using benzimidazole carbamates such as albendazole. At present resistance is combated by increasing the dosage of the agent to which resistance has developed, thereby increasing the risk of side effects such as toxicity and leading to the development of greater resistance and failure of the therapy. The clinical application of benzimidazole carbamates in the treatment of tumours resistant to drugs such as paclitaxel overcomes these inherent deficiencies in the prior art approach.
  • Accordingly, an aspect of the present invention provides a method for the treatment of a tumour in a subject, wherein the tumour is insensitive to one or more anti-mitotic drugs, the method comprising administering to the subject an effective amount of at least one benzimidazole carbamate compound of formula I, II, or III as defined above. For example, the tumour may show complete or partial resistance to one or more of the following: taxanes, Vinca alkaloids and colchicinoids, or derivatives or analogues thereof.
  • Albendazole or a metabolite, derivative or analogue thereof (such as albendazole sulphoxide or albendazole sulfone) is one benzimidazole carbamate particularly useful in the methods and compositions of the present invention. However it will be readily appreciated by those skilled in the art that other benzimidazole carbamates may also be employed. For example other suitable benzimidazole carbamates include, but are not limited to, mebendazole, flubendazole, triclabendazole, oxfenbendazole, luxabendazole, cambendazole, oxibendazole, parbendazole, thiabendazole, cyclobendazole, dribendazole, etibendazole and fenbendazole.
  • Typically in methods and compositions of the invention employing the use of taxoids, the taxoid is paclitaxel or a metabolite, derivative or analogue thereof, or doclitaxel or a metabolite, derivative or analogue thereof. However it will be readily appreciated by those skilled in the art that other taxoids may also be employed. For example a large number of derivatives of paclitaxel and docataxel are currently in the experimental phase or in clinical trial. It will be understood by those skilled in the art that such derivatives are within the scope of the methods and compositions of the invention.
  • The present invention further provides pharmaceutical compositions comprising at least one taxoid and at least one benzimidazole carbamate compound of formula I. Typically these compositions are used according to the methods of the invention.
  • It will be readily appreciated by those skilled in the art that according to the methods of the present invention each component of the combination may be administered at the same time, or sequentially in any order, or at different times, so as to provide the desired therapeutic effect. When administered separately, it may be preferred for the components to be administered by the same route of administration, although it is not necessary for this to be so. Alternatively, the components may be formulated together in a single dosage unit as a combination product.
  • The methods of the present invention may further comprise the administration of one or more corticosteroids and/or antihistamines (such as diphenydramine), for example as a pre-treatment, to counteract the risk of the patient having an adverse reaction to the taxoid. Similarly, the methods of the invention may comprise the administration of one or more potentiators of the effect of the taxoid and/or benzimidazole carbamate compound on the tumour to be treated. Such administration may be concomitant with the administration of either or both of the taxoid and the benzimidazole carbamate compound. For example, a suitable potentiator of benzimidazole carbamates is an isoquinoline such as praziquantel.
  • Tumours
  • Those skilled in the art will readily appreciate that the methods and compositions of the present invention find application in the treatment of any tumour type amenable to treatment with taxoids and benzimidazole carbamates independently. For example the tumours which may be treated using methods and compositions of the present invention include liver, ovarian, colorectal, lung, small cell lung, breast, prostate, pancreatic, renal, gastric, endometrial, oesophageal, head or neck tumours, peritoneal carcinomatosis, leukaemia, lymphomas, sarcomas or secondary metastases thereof.
  • Further those skilled in the art will appreciate that the present invention finds particular application in the treatment of taxoid resistant tumours, such as paclitaxel resistant tumours, as well as tumours resistant to treatment with Vinca alkaloids or colchicinoids.
  • Compositions and Routes of Administration
  • According to the methods of present invention compounds and compositions may be administered by any suitable route, either systemically, regionally or locally. The particular route of administration to be used in any given circumstance will depend on a number of factors, including the nature of the tumour to be treated, the severity and extent of the tumour, the required dosage of the particular compounds to be delivered and the potential side-effects of the compounds.
  • For example, in circumstances where it is required that appropriate concentrations of the desired compounds are delivered directly to the site in the body to be treated, administration may be regional rather than systemic. Regional administration provides the capability of delivering very high local concentrations of the desired compounds to the required site and thus is suitable for achieving the desired therapeutic or preventative effect whilst avoiding exposure of other organs of the body to the compounds and thereby potentially reducing side effects.
  • By way of example, administration according to embodiments of the invention may be achieved by any standard routes, including intracavitary, intravesical, intramuscular, intraarterial, intravenous, subcutaneous, topical or oral. Intracavitary administration may be intraperitoneal or intrapleural, In particular embodiments, administration may be via intravenous infusion or intraperitoneal administration.
  • In general, suitable compositions may be prepared according to methods which are known to those of ordinary skill in the art and may include pharmaceutically acceptable diluents, adjuvants and/or excipients. The diluents, adjuvants and excipients must be “acceptable” in terms of being compatible with the other ingredients of the composition, and not deleterious to the recipient thereof.
  • Examples of pharmaceutically acceptable diluents are demineralised or distilled water, saline solution; vegetable based oils such as peanut oil, safflower oil, olive oil, cottonseed oil, maize oil, sesame oils such as peanut oil, safflower oil, olive oil, cottonseed oil, maize oil, sesame oil, arachis oil or coconut oil; silicone oils, including polysiloxanes, such as methyl polysiloxane, phenyl polysiloxane and methylphenyl polysolpoxane; volatile silicones; mineral oils such as liquid paraffin, soft paraffin or squalane; cellulose derivatives such as methyl cellulose, ethyl cellulose, carboxymethylcellulose, sodium carboxymethylcellulose or hydroxypropylmethylcellulose; lower alkanols, for example ethanol or iso-propanol; lower aralkanols; lower polyalkylene glycols or lower alkylene glycols, for example polyethylene glycol, polypropylene glycol, ethylene glycol, propylene glycol, 1,3-butylene glycol or glycerin; fatty acid esters such as isopropyl palmitate, isopropyl myristate or ethyl oleate; polyvinylpyrridone; agar; carrageenan; gum tragacanth or gum acacia, and petroleum jelly. Typically, the carrier or carriers will form from 1% to 99.9% by weight of the compositions.
  • For administration as an injectable solution or suspension, non-toxic parenterally acceptable diluents or carriers can include, Ringer's solution, medium chain triglyceride (MCT), isotonic saline, phosphate buffered saline, ethanol and 1,2 propylene glycol. For example, a commonly used carrier or vehicle for paclitaxel is Cremaphor EL. Paclitaxel is typically prepared in 50% Cremaphor EL and 50% ethanol.
  • Some examples of suitable carriers, diluents, excipients and adjuvants for oral use include peanut oil, liquid paraffin, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, gum acacia, gum tragacanth, dextrose, sucrose, sorbitol, mannitol, gelatine and lecithin. In addition these oral formulations may contain suitable flavouring and colourings agents. When used in capsule form the capsules may be coated with compounds such as glyceryl monostearate or glyceryl distearate which delay disintegration.
  • Adjuvants typically include emollients, emulsifiers, thickening agents, preservatives, bactericides and buffering agents.
  • Solid forms for oral administration may contain binders acceptable in human and veterinary pharmaceutical practice, sweeteners, disintegrating agents, diluents, flavourings, coating agents, preservatives, lubricants and/or time delay agents. Suitable binders include gum acacia, gelatine, corn starch, gum tragacanth, sodium alginate, carboxymethylcellulose, hydroxypropylmethylcellulose or polyethylene glycol. Suitable sweeteners include sucrose, lactose, glucose, aspartame or saccharine. Suitable disintegrating agents include corn starch, methylcellulose, polyvinylpyrrolidone, guar gum, xanthan gum, bentonite, alginic acid or agar. Suitable diluents include lactose, sorbitol, mannitol, dextrose, kaolin, cellulose, calcium carbonate, calcium silicate or dicalcium phosphate. Suitable flavouring agents include peppermint oil, oil of wintergreen, cherry, orange or raspberry flavouring. Suitable coating agents include polymers or copolymers of acrylic acid and/or methacrylic acid and/or their esters, waxes, fatty alcohols, zein, shellac or gluten. Suitable preservatives include sodium benzoate, vitamin E, alpha-tocopherol, ascorbic acid, methyl paraben, propyl paraben or sodium bisulphite. Suitable lubricants include magnesium stearate, stearic acid, sodium oleate, sodium chloride or talc. Suitable time delay agents include glyceryl monostearate or glyceryl distearate.
  • Liquid forms for oral administration may contain, in addition to the above agents, a liquid carrier. Suitable liquid carriers include water, oils such as olive oil, peanut oil, sesame oil, sunflower oil, safflower oil, arachis oil, coconut oil, liquid paraffin, ethylene glycol, propylene glycol, polyethylene glycol, ethanol, propanol, isopropanol, glycerol, fatty alcohols, triglycerides or mixtures thereof.
  • Suspensions for oral administration may further comprise dispersing agents and/or suspending agents. Suitable suspending agents include sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, poly-vinyl-pyrrolidone, sodium alginate or acetyl alcohol. Suitable dispersing agents include lecithin, polyoxyethylene esters of fatty acids such as stearic acid, polyoxyethylene sorbitol mono- or di-oleate, -stearate or -laurate, polyoxyethylene sorbitan mono- or di-oleate, -stearate or -laurate and the like.
  • Emulsions for oral administration may further comprise one or more emulsifying agents. Suitable emulsifying agents include dispersing agents as exemplified above or natural gums such as guar gum, gum acacia or gum tragacanth.
  • Methods for preparing parenterally administrable compositions are apparent to those skilled in the art, and are described in more detail in, for example, Remington's Pharmaceutical Science, 15th ed., Mack Publishing Company, Easton, Pa., hereby incorporated by reference herein.
  • The composition may Incorporate any suitable surfactant such as an anionic, cationic or non-ionic surfactant such as sorbitan esters or polyoxyethylene derivatives thereof. Suspending agents such as natural gums, cellulose derivatives or inorganic materials such as silicaceous silicas, and other ingredients such as lanolin, may also be included.
  • The compositions may also be administered in the form of liposomes. Liposomes are generally derived from phospholipids or other lipid substances, and are formed by mono- or multi-lamellar hydrated liquid crystals that are dispersed in an aqueous medium. Any non-toxic, physiologically acceptable and metabolisable lipid capable of forming liposomes can be used. The compositions in liposome form may contain stabilisers, preservatives, excipients and the like. The preferred lipids are the phospholipids and the phosphatidyl cholines (lecithins), both natural and synthetic. Methods to form liposomes are known in the art, and in relation to this specific reference is made to: Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N.Y. (1976), p. 33 et seq., the contents of which is incorporated herein by reference.
  • The effective dose level of the administered compound for any particular subject will depend upon a variety of factors including: the type of tumour being treated and the stage of the tumour; the activity of the compound employed; the composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration; the route of administration; the rate of sequestration of compounds; the duration of the treatment; drugs used in combination or coincidental with the treatment, together with other related factors well known in medicine.
  • One skilled in the art would be able, by routine experimentation, to determine an effective, non-toxic dosage which would be required to treat applicable conditions. These will most often be determined on a case-by-case basis.
  • For compositions of the present invention, the taxoid may be present in the composition in a concentration of at least about 1 pM. The concentration of the taxoid in the composition may be from about 1 pM to about 50 nM, from about 0.01 nM to about 10 nM, from about 0.05 nM to about 5 nM, or from about 0.1 nM to about 1 nM.
  • The benzimidazole carbamate compound may be present in the composition in a concentration of at least about 0.005 μM. The concentration of the benzimidazole carbamate in the composition may be from about 0.005 μM to about 10 μM, from about 0.01 μM to about 1 μM, from about 0.1 μM to about 0.5 μM, or from about 0.1 μM to about 0.25 μM.
  • Generally, an effective dosage of a composition for administration to a patient is expected to be in the range of about 0.01 mg to about 150 mg per kg body weight per 24 hours; typically, about 0.1 mg to about 150 mg per kg body weight per 24 hours; about 0.1 mg to about 100 mg per kg body weight per 24 hours; about 0.5 mg to about 100 mg per kg body weight per 24 hours; or about 1.0 mg to about 100 mg per kg body weight per 24 hours. More typically, an effective dose range is expected to be in the range of about 5 mg to about 50 mg per kg body weight per 24 hours.
  • Alternatively, an effective dosage may be up to about 5000 mg/m2. Generally, an effective dosage is expected to be in the range of about 10 to about 5000 mg/m2, typically about 10 to about 2500 mg/m2, about 25 to about 2000 mg/m2, about 50 to about 1500 mg/m2, about 50 to about 1000 mg/m2, or about 75 to about 600 mg/m2.
  • Further, it will be apparent to one of ordinary skill in the art that the optimal quantity and spacing of individual dosages will be determined by the nature and extent of the condition being treated, the form, route and site of administration, and the nature of the particular individual being treated. Also, such optimum conditions can be determined by conventional techniques.
  • It will also be apparent to one of ordinary skill in the art that the optimal course of treatment, such as, the number of doses of the composition given per day for a defined number of days, can be ascertained by those skilled in the art using conventional course of treatment determination tests.
  • The present invention will now be further described in greater detail by reference to the following specific examples, which should not be construed as in any way limiting the scope of the invention.
  • EXAMPLES Example 1 Paclitaxel and Albendazole Administration to Human Ovarian Carcinoma Cells
  • Human ovarian carcinoma cell lines OVCAR-3, SKOV-3, 1A9 and 1A9PTX22 were used. OVCAR-3 and SKOV-3 cells were obtained from the American Type Culture Collection (ATCC) and maintained on RPMI medium and McCoy5A medium respectively according to ATCC instructions. 1A9 is a clone of the human ovarian carcinoma cell line, A2780 (Sackett et al., 1997). 1A9PTX22 is a paclitaxel resistant subclone of 1A9 cells, isolated as an individual clone in a single step selection by exposing 1A9 cells to 5 ng/ml paclitaxel in the presence of 5 μg/ml verapamil, a Pgp antagonist (Giannakakou et al., 1997). Cells were maintained in 15 ng/ml paclitaxel and 5 μg/ml verapamil continuously.
  • Sulforhodamine B (SRB) colorimetric assay was used to study the effect of albendazole, paclitaxel or their combination on tumour cell cytotoxicity in vitro.
  • Cells were harvested from exponential phase cultures by trypsinizabon, counted and plated in 96-well plates. Optimal seeding densities for each cell line were determined to ensure exponential growth during a 5-day assay. Seeding densities were 5000, 1000, 400 and 3500 cells per well for OVCAR-3, SKOV-3, 1A9 and 1A9PTX22 cells, respectively. Cells plated in 96-well tissue culture plates were treated with 100 μl cell culture medium containing various concentrations of albendazole, paclitaxel or a combination of the two. Both albendazole and paclitaxel were originally made up in absolute ethanol and subsequently diluted with cell culture medium to give the desired drug concentrations with a final ethanol concentration of 1%. Treatment media were replaced on alternate days. At the end of the treatment period (5 days), wells were assayed for cellular protein content. The SRB assay was performed according to the method described by Skehan et at. (1990) and Papazisis et al. (1997), with minor modifications. The culture medium was aspirated prior to fixation of the cells by the addition of 100 μl 10% cold trichloroacetic acid. After an hour incubation at 4° C., cells were washed five times with water. The cells were then stained with 200 μl 0.4% SRB dissolved in 1% acetic acid for at least 15 min and subsequently washed four times with 1% acetic acid to remove unbound stain. The plates were left to dry at room temperature and bound protein stain was solubilized with 100 μl 10 mM un-buffered Tris base [tris(hydroxymethyl)aminomethane)] before reading the optical density (OD) at 570 nm.
  • For each of the four cell lines used in this study, sensitivity of each line was initially tested by incubating cells with various concentrations of albendazole or paclitaxel for 5 days. The SRB assay was performed at the end of the treatment period to determine cell response to drug treatment.
  • Data from OVCAR-3 cells are presented in FIG. 1, where response to various doses of albendazole is depicted in FIG. 1A and response to various doses of paclitaxel alone or in combination with albendazole (0.25 μM) is presented in FIG. 1B. As can be seen from FIG. 1B, the addition of 0.25 μM albendazole to the paclitaxel containing incubation medium led to a complete halt of cell proliferation.
  • SKOV-3 cells (FIGS. 2A and 2B) responded to albendazole, paclitaxel or the combination in a similar fashion. A dose-response inhibition of cell proliferation by paclitaxel was profoundly potentiated upon co-incubation with albendazole. Treatment of these cells with 0.01 nM paclitaxel alone led to 14.5% inhibition of cell proliferation and with 0.25 μM albendazole alone to a 48.4% reduction. Upon co-incubation with paclitaxel (0.01 nM) and albendazole (0.25 μM) there was 69.4% reduction in cell proliferation (p<0.001 compared to paclitaxel alone).
  • This inhibitory effect was more intense in 1A9 cells (FIG. 3), where treatment with a low albendazole concentration of 0.1 μM alone (FIG. 3A) or treatment with 0.1 nM paclitaxel alone (FIG. 3B) led to 11.8% and 21.8% inhibition respectively. Co-incubation of the cells with the two drugs at these concentrations led to 87.7% inhibition of proliferation (p<0.001) (FIG. 3C).
  • Treatment of 1A9PTX22, a paclitaxel resistant sub-line of 1A9, with various concentrations of albendazole revealed the extra sensitivity of these cells to albendazole on one hand (FIG. 4A) and confirmed the resistant nature of the cells to paclitaxel on the other (FIG. 4B). From these results it can be seen that, compared to the parent line (1A9), the paclitaxel resistant sub-line 1A9PTX22 is even more sensitive to albendazole. The addition of a low concentration (0.1 μM) of albendazole to medium containing various concentrations of paclitaxel had a dramatic effect on cell proliferation (FIG. 4C). Whereas cell proliferation was not affected by the addition of 1.0 nM or 5.0 nM paclitaxel alone, at the same paclitaxel concentrations, co-incubation with albendazole (0.1 μM) led to 79.1% inhibition of cell proliferation at 1.0 nM paclitaxel and 99.1% inhibition of cell proliferation at 5.0 nM paclitaxel. Treatment with albendazole alone at 0.1 μM had a 53% inhibitory effect on proliferation of these cells.
  • Example 2 Cross Resistance in Paclitaxel Resistant Cell Line
  • Taxoids, such as paclitaxel, are one class of antimitotic drugs that target tubulin. A further well-characterized class of tubulin-binding drugs are the Vinca alkaloids, exemplified by vincristine, vinblastine and vinorelbine. The Vinca alkaloids interfere with a cells ability to properly form the mitotic spindle by preventing the normal polymerization of microtubules. They have importance in the treatment of leukemia, lymphomas, small cell lung cancer, and other malignancies. A third class of anti-tubulin drugs, exemplified by colchicine, is comprised of a structurally diverse collection of small molecules that are related by the fact that all bind to a common site on tubulin known as the colchicine site and prevent the normal polymerization of microtubules.
  • As described above in Example 1, the present inventors have shown that the paclitaxel resistant cell line 1A9PTX22 displays increased sensitivity to the antiproliferative effects of albendazole compared to the paclitaxel sensitive parent line 1A9. To investigate the properties of 1A9PTX22 cells further the inventors investigated the level of sensitivity of these cells to representatives of two other classes of antimitotic drugs, namely vincristine and colchicine.
  • 1A9 and 1A9PTX22 cells plated in 96-well tissue culture plates were treated with 100 μl cell culture medium containing various concentrations of vincristine and colchicine for 72 hours and SRB assays conducted as described above. As for paclitaxel (see Example 1), both vincristine and colchicine were originally made up in absolute ethanol and subsequently diluted with cell culture medium to give the desired drug concentrations with a final ethanol concentration of 1%. The results are illustrated in FIGS. 5A (vincristine) and 5B (colchicine). The degree of sensitivity of 1A9PTX22 cells to both vincristine and colchicine is significantly reduced when compared to that of the parent cell line 1A9. The partial resistance of 1A9PTX22 is apparent for vincristine at concentrations of 5 nM and above and for colchicine at 100 nM and above (p<0.001).
  • Example 3 Compositions for Treatment
  • In accordance with the best mode of performing the invention provided herein, specific preferred compositions are outlined below. The following are to be construed as merely illustrative examples of compositions and not as a limitation of the scope of the present invention in any way.
  • Example 3(A) Composition for Parenteral Administration
  • A composition for parenteral injection could be prepared to contain 0.05 mg to 5 g of albendazole and 0.05 mg to 5 g of paclitaxel in 10 mls to 2 litres of 0.1-10% carboxymethylcellulose.
  • Similarly, a composition for intravenous infusion may comprise 250 ml of sterile Ringer's solution, and 0.05 mg to 5 g of albendazole and 0.05 mg to 5 g of paclitaxel.
  • Example 3(B) Composition for Oral Administration
  • A composition of a suitable agent in the form of a capsule may be prepared by filling a standard two-piece hard gelatin capsule with 500 mg of albendazole, in powdered form, 500 mg of paclitaxel, 100 mg of lactose, 35 mg of talc and 10 mg of magnesium stearate.
  • REFERENCES
    • Giannakakou, P., Sackett, D. L., Kang, Y. K., Zhan, Z., Buters, J. T., Fojo, T., and Poruchynsky, M. S. Paclitaxel-resistant human ovarian cancer cells have mutant beta-tubulins that exhibit impaired paclitaxel-driven polymerization. Journal of Biological Chemistry, 272: 17118-17125, 1997.
    • Horton, J. Albendazole: a review of anthelmintic efficacy and safety in humans. Parasitology, 121, 2000.
    • Lacey, E. Mode of action of benzimidazoles. Parasitol. Today, 6: 112-115, 1990.
    • Lacey, E. and Gill, J. H. Biochemistry of benzimidazole resistance. Acta Tropica, 56: 245-262, 1994.
    • Markman, M. Management of toxicities associated with the administration of taxanes. Expert Opinion on Drug Safety, 2: 141-146, 2003.
    • Mekhail, T. M. and Markman, M. Paclitaxel in cancer therapy. Expert Opinion on Pharmacotherapy, 3: 755-766, 2002.
    • Papazisis, K. T., Geromichalos, G. D., Dimitriadis, K. A., and Kortsaris, A. H. Optimization of the sulforhodamine B colorimetric assay. Journal of Immunological Methods, 208: 151-158, 1997.
    • Sackett, D. L., Giannakakou, P., Poruchynsky, M., and Fojo, A. Tubulin from paclitaxel-resistant cells as a probe for novel antimicrotubule agents. Cancer Chemotherapy & Pharmacology, 40: 228-232, 1997.
    • Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., and Boyd, M. R. New colorimetric cytotoxicity assay for anticancer-drug screening. Journal of the National Cancer Institute, 82: 1107-1112, 1990.
    • Yamazaki, S., Sekine, I., and Saijo, N. [Paclitaxel (taxol): a review of its antitumour activity and toxicity in clinical studies]. Gan to Kagaku Ryoho [Japanese Journal of Cancer & Chemotherapy], 25: 605-615, 1998.

Claims (48)

1. A method for the treatment of a tumor in a subject, the method comprising administering to the subject an effective amount of at least one taxoid and an effective amount of at least one benzimidazole carbamate compound of formula I:
Figure US20090286838A1-20091119-C00011
wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
R2 is selected from H, or substituted or unsubstituted alkyl;
R3 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, 5- or 6-membered heterocyclic ring the heteroatom(s) of which are selected from one or more of O, S and/or N, —SR14, —OR15, —SOR16, —SO2R17, —SCN, —C(O)—R18, —OR19, NR20COOR21, where R15 to R21 are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl or arylalkyl;
or a metabolite, derivative or analog thereof and;
wherein the administration of the taxoid and benzimidazole carbamate has an additive and/or synergistic anti-tumor effect.
2. The method of claim 1 wherein the R1 substitution occurs in the 5 or 6 position.
3. The method of claim 1 wherein the benzimidazole carbamate compound is a compound of Formula II:
Figure US20090286838A1-20091119-C00012
wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11, or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
R21 is H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloakenylalkyl, aryl or arylalkyl.
4. The method of claim 1 wherein the benzimidazole carbamate compound is a compound of Formula III:
Figure US20090286838A1-20091119-C00013
wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4.
5. The method of claim 1 wherein the benzimidazole carbamate compound is selected from the group consisting of albendazole, albendazole sulphoxide, mebendazole, flubendazole, triclabendazole, oxfenbendazole, luxabendazole, cambendazole, oxibendazole, parbendazole, thiabendazole, cyclobendazole, dribendazole, etibendazole and fenbendazole.
6. The method of claim 5 wherein the benzimidazole carbamate compound is albendazole, or a metabolite, derivative or analog thereof.
7. The method of claim 1 wherein the taxoid is paclitaxel, docataxel, or a metabolite, derivative or analog thereof.
8. The method of claim 1 wherein the tumor is a liver, ovarian, colorectal, lung, small cell lung, breast, prostate, pancreatic, renal, gastric, endometrial, esophageal, head or neck tumor, peritoneal carcinomatosis, leukemia, lymphoma, sarcoma, or secondary metastases thereof.
9. The method of claim 1 wherein the tumor is insensitive to treatment with one or more antimitotic drugs.
10. The method of claim 9 wherein the one or more antimitotic drugs are selected from a taxoid, a Vinca alkaloid and a colchicinoid.
11. The method of claim 9 wherein the tumor is a taxoid-insensitive the tumor.
12. The method of claim 1 wherein the taxoid and the benzimidazole carbamate compound are administered simultaneously.
13. The method of claim 1 wherein the taxoid and the benzimidazole carbamate compound are administered sequentially.
14. The method of claim 1 wherein the taxoid and the benzimidazole carbamate are administered systemically.
15. A method for the treatment of a tumor in a subject, the method comprising administering to the subject an effective amount of paclitaxel and an effective amount of albendazole wherein the administration of paclitaxel and albendazole has an additive and/or synergistic anti-tumor effect.
16. A method for the treatment of a taxoid-insensitive tumor in a subject, the method comprising systemically administering to the subject paclitaxel and an effective amount of albendazole wherein the administration of paclitaxel and albendazole has an additive and/or synergistic anti-tumor effect.
17. The method of claim 16 wherein the paclitaxel is administered in an amount ineffective to treat the tumor if administered alone.
18. A pharmaceutical composition for the treatment and/or prevention of cancer comprising a synergistic combination of at least one taxoid and at least one benzimidazole carbamate compound of formula I:
Figure US20090286838A1-20091119-C00014
wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
R2 is selected from H, or substituted or unsubstituted alkyl;
R3 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, 5- or 6-membered heterocyclic ring the heteroatom(s) of which are selected from one or more of O, S and/or N, —SR14, —OR15, —SOR16, —SO2R17, —SCN, —C(O)—R18, —OR19, NR20COOR21, where R15 to R21 are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl or arylalkyl;
or a metabolite, derivative or analog thereof.
19. The composition of claim 18 wherein the R1 substitution occurs in the 5 or 6 position.
20. The composition of claim 18 wherein the benzimidazole carbamate compound is a compound of Formula II:
Figure US20090286838A1-20091119-C00015
wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
R21 is H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloakenylalkyl, aryl or arylalkyl.
21. The composition of claim 18 wherein the benzimidazole carbamate compound is a compound of Formula III:
Figure US20090286838A1-20091119-C00016
wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4.
22. The composition of claim 18 wherein the benzimidazole carbamate compound is selected from the group consisting of albendazole, albendazole sulphoxide, mebendazole, flubendazole, triclabendazole, oxfenbendazole, luxabendazole, cambendazole, oxibendazole, parbendazole, thiabendazole, cyclobendazole, dribendazole, etibendazole and fenbendazole.
23. The composition of claim 22 wherein the benzimidazole carbamate compound is albendazole, or a metabolite, derivative or analog thereof.
24. The composition of claim 18 wherein the taxoid is paclitaxel, docataxel, or a metabolite, derivative or analog thereof.
25. A pharmaceutical composition comprising a synergistic combination of paclitaxel and albendazole.
26. The composition of claim 18 or 25 further comprising one or more pharmaceutically acceptable carriers, adjuvants or diluents.
27. A composition for the treatment of a tumor in a subject, the composition comprising a synergistic combination of at least one taxoid and at least one benzimidazole carbamate compound of formula I.
28. The composition of claim 27 wherein the benzimidazole carbamate compound is albendazole, or a metabolite, derivative or analog thereof.
29. The composition of claim 27 wherein the taxoid is paclitaxel, docataxel, or a metabolite, derivative or analog thereof.
30. The composition of claim 27 wherein the tumor is a liver, ovarian, colorectal, lung, small cell lung, breast, prostate, pancreatic, renal, gastric, endometrial, esophageal, head or neck tumor, peritoneal carcinomatosis, leukemia, lymphoma, sarcoma or secondary metastases thereof.
31. The composition of claim 27 wherein the tumor is insensitive to treatment with one or more antimitotic drugs.
32. The composition of claim 31 wherein the one or more antimitotic drugs are selected from a taxoid, a Vinca alkaloid and a colchicine.
33. The composition of claim 31 wherein the tumor is a taxoid-insensitive tumor.
34. A composition for the treatment of a taxoid-insensitive tumor in a subject, the composition comprising paclitaxel and albendazole.
35. A method for the treatment of a tumor in a subject, the method comprising administering to the subject an effective amount of a composition according to any one of claim 18, 25, 27 or 34.
36. (canceled)
37. A method for the treatment of a tumor in a subject, wherein the tumor is insensitive to one or more anti-mitotic drugs, the method comprising administering to the subject an effective amount of at least one benzimidazole carbamate compound of formula I:
Figure US20090286838A1-20091119-C00017
wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
R2 is selected from H, or substituted or unsubstituted alkyl;
R3 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, 5- or 6-membered heterocyclic ring the heteroatom(s) of which are selected from one or more of O, S and/or N, —SR14, —OR15, —SOR16, —SO2R17, —SCN, —C(O)—R18, —OR19, NR20COOR21, where R15 to R21 are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl or arylalkyl;
or a metabolite, derivative or analog thereof.
38. The method of claim 37 wherein the R1 substitution occurs in the 5 or 6 position.
39. The method of claim 37 wherein the benzimidazole carbamate compound is a compound of Formula II:
Figure US20090286838A1-20091119-C00018
wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4;
R21 is H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloakenylalkyl, aryl or arylalkyl.
40. The method of claim 37 wherein the benzimidazole carbamate compound is a compound of Formula III:
Figure US20090286838A1-20091119-C00019
wherein R1 is selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, —SR7, —SOR8, —SO2R9, —SCN, B′(CH2)nBR10, —C(O)—R11 or —OR12, COOR13, —NO2, NR13aCOOR13b, isothiocyanato, or —CN where R7 to R13b are each independently selected from H, substituted or unsubstituted, straight or branch chain alkyl, alkenyl, alkenylalkyl, cycloalkyl, cycloalkylalkyl, cycloalkenylalkyl, aryl, arylalkyl, B and B′ are independently selected from O, S, S(O) or SO2 and n is 1 to 4.
41. The method of claim 37 wherein the benzimidazole carbamate compound is selected from the group consisting of albendazole, albendazole sulphoxide, mebendazole, flubendazole, triclabendazole, oxfenbendazole, luxabendazole, cambendazole, oxibendazole, parbendazole, thiabendazole, cyclobendazole, dribendazole, etibendazole and fenbendazole.
42. The method of claim 41 wherein the benzimidazole carbamate compound is albendazole, or a metabolite, derivative or analog thereof.
43. The method of claim 37 wherein the tumor is insensitive to one or more of a taxoid, a Vinca alkaloid and a colchicinoid.
44. The method of claim 43 wherein the tumor is insensitive to paclitaxel.
45. The method of claim 43 wherein the tumor is insensitive to vincristine.
46. The method of claim 43 wherein the tumor is insensitive to colchicine.
47. The method of claim 37 wherein the tumor is a liver, ovarian, colorectal, lung, small cell lung, breast, prostate, pancreatic, renal, gastric, endometrial, esophageal, head or neck tumor, peritoneal carcinomatosis, leukemia, lymphoma, sarcoma, or secondary metastases thereof.
48. (canceled)
US11/720,884 2004-12-06 2005-12-06 Treatment for cancer Abandoned US20090286838A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AU2004906983 2004-12-06
AU2004906983A AU2004906983A0 (en) 2004-12-06 Treatment for cancer
PCT/AU2005/001839 WO2006060853A1 (en) 2004-12-06 2005-12-06 Treatment for cancer

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/AU2005/001839 A-371-Of-International WO2006060853A1 (en) 2004-12-06 2005-12-06 Treatment for cancer

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/457,860 Division US8835478B2 (en) 2004-12-06 2012-04-27 Treatment for cancer

Publications (1)

Publication Number Publication Date
US20090286838A1 true US20090286838A1 (en) 2009-11-19

Family

ID=36577596

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/720,884 Abandoned US20090286838A1 (en) 2004-12-06 2005-12-06 Treatment for cancer
US13/457,860 Expired - Fee Related US8835478B2 (en) 2004-12-06 2012-04-27 Treatment for cancer

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/457,860 Expired - Fee Related US8835478B2 (en) 2004-12-06 2012-04-27 Treatment for cancer

Country Status (9)

Country Link
US (2) US20090286838A1 (en)
EP (1) EP1830847B1 (en)
JP (1) JP2008522984A (en)
KR (1) KR101287917B1 (en)
CN (1) CN101111248A (en)
CA (1) CA2589828C (en)
ES (1) ES2528363T3 (en)
PT (1) PT1830847E (en)
WO (1) WO2006060853A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009043093A1 (en) * 2007-10-04 2009-04-09 Newsouth Innovations Pty Limited Hif inhibition
KR20090046142A (en) 2007-11-05 2009-05-11 삼성전자주식회사 Automatic transformation system of input- handwriting and method thereof
EP2251010A1 (en) 2009-05-08 2010-11-17 Sygnis Bioscience GmbH & Co. KG Use of thiabendazole and derivatives thereof for the therapy of neurological conditions
US20120064008A1 (en) * 2009-05-20 2012-03-15 Bruce Zetter Compositions for the treatment of metastatic cancer and methods of use thereof
US20120202840A1 (en) * 2009-10-09 2012-08-09 University Health Network Use of Flubendazole and Vinca Alkaloids for Treatment of Hematological Diseases
JP2013520502A (en) 2010-02-25 2013-06-06 メルク・シャープ・エンド・ドーム・コーポレイション Novel cyclic benzimidazole derivatives that are useful anti-diabetic drugs
PL2880014T3 (en) * 2012-08-06 2017-10-31 Pitney Pharmaceuticals Pty Ltd Compounds for the treatment of mtor pathway related diseases
CN103054858A (en) * 2013-01-21 2013-04-24 杭州雷索药业有限公司 Application of oxibendazole in preparing anti-angiogenesis medicine
CA2922575C (en) * 2013-11-01 2022-10-11 Newsouth Innovations Pty Limited Pharmaceutical combinations for the treatment of cancer
EP4048284A4 (en) * 2019-10-21 2023-11-01 Acura Nanomedicine Corporation Method for treating cancers
CN111388469B (en) * 2019-10-21 2021-11-02 温州医科大学 Application of fenbendazole in preparation of antitumor drugs
KR102516896B1 (en) * 2020-10-19 2023-04-03 고려대학교 산학협력단 Benzimidazole derivatives or its pharmaceutically acceptable salts and use thereof
CN113648308A (en) * 2021-09-14 2021-11-16 东莞市人民医院 Application of oxfendazole as anti-ovarian cancer drug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041669A2 (en) * 1999-01-15 2000-07-20 Angiogene Pharmaceuticals Ltd. Benzimidazole vascular damaging agents
WO2001012169A2 (en) * 1999-08-13 2001-02-22 The Procter & Gamble Company Method of cancer treatment
WO2002076454A1 (en) * 2001-03-26 2002-10-03 Unisearch Limited Method for treatment of cancer and compositions for use therein

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900429A (en) * 1997-01-28 1999-05-04 The Procter & Gamble Company Method for inhibiting the growth of cancers
PE11499A1 (en) * 1997-05-16 1999-03-01 Procter & Gamble TREATMENT OF HIV AND CANCER
US6506783B1 (en) 1997-05-16 2003-01-14 The Procter & Gamble Company Cancer treatments and pharmaceutical compositions therefor
AU2001257325A1 (en) 2000-04-28 2001-11-12 The Procter And Gamble Company Cancer treatment
AU2002248341B8 (en) 2001-01-11 2007-03-29 Board Of Regents, The University Of Texas System Antihelminthic drugs as a treatment for hyperproliferative diseases
US6693125B2 (en) * 2001-01-24 2004-02-17 Combinatorx Incorporated Combinations of drugs (e.g., a benzimidazole and pentamidine) for the treatment of neoplastic disorders
PT1529044E (en) * 2002-08-02 2008-01-14 Nereus Pharmaceuticals Inc Dehydrophenylahistins and analogs thereof and the synthesis of dehydrophenylahistins and analogs thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000041669A2 (en) * 1999-01-15 2000-07-20 Angiogene Pharmaceuticals Ltd. Benzimidazole vascular damaging agents
WO2001012169A2 (en) * 1999-08-13 2001-02-22 The Procter & Gamble Company Method of cancer treatment
WO2002076454A1 (en) * 2001-03-26 2002-10-03 Unisearch Limited Method for treatment of cancer and compositions for use therein

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tahir et al. Cancer Research, 2001, vol. 61, pages 5480-5485 *

Also Published As

Publication number Publication date
JP2008522984A (en) 2008-07-03
US20120214856A1 (en) 2012-08-23
EP1830847A1 (en) 2007-09-12
WO2006060853A1 (en) 2006-06-15
KR20070112113A (en) 2007-11-22
CN101111248A (en) 2008-01-23
CA2589828A1 (en) 2006-06-15
PT1830847E (en) 2015-02-05
KR101287917B1 (en) 2013-07-23
EP1830847B1 (en) 2014-11-19
EP1830847A4 (en) 2012-09-12
CA2589828C (en) 2014-07-08
ES2528363T3 (en) 2015-02-09
US8835478B2 (en) 2014-09-16

Similar Documents

Publication Publication Date Title
US8835478B2 (en) Treatment for cancer
EP1181013B1 (en) Method and composition for the treatment of cancer
US6302838B1 (en) Cancer treatment with epothilones
EP1784181B1 (en) Vegf inhibition
US20040024033A1 (en) Cancer treatment with epothilones
US20050119352A1 (en) Method of treating cancers
WO2009043093A1 (en) Hif inhibition
KR20040025895A (en) Treatment of refractory tumors using epothilone derivatives
KR20040028720A (en) Epothilone derivatives for the treatment of refractory tumors
US11439625B2 (en) Combination therapy for proliferative diseases
AU2005313839B2 (en) Treatment for cancer
CA2849147A1 (en) Compositions comprising a taxoid and a benzimidazole carbamate for the treatment of cancer
JP2007523190A (en) Use of β-lapachone for the treatment of lung cancer
AU2005279701B2 (en) VEGF inhibition
JP2007523193A (en) Use of β-lapachone for the treatment of pancreatic cancer
RU2242229C2 (en) Applying epotilones for cancer treatment
Pavlica et al. Systemic therapy of ovarian cancer–the mechanism of action of antineoplastic drugs
JP2007523189A (en) Use of β-lapachone for the treatment of colon cancer
CA2530311A1 (en) Cancer treatment with epothilones
ZA200600158B (en) Composition of a VEGF antagonist and an anti-proliferative agent and its use for the treatment of cancer

Legal Events

Date Code Title Description
AS Assignment

Owner name: NEWSOUTH INNOVATIONS PTY LIMITED, AUSTRALIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MORRIS, DAVID L.;POURGHOLAMI, MOHAMMAD HOSSEIN;REEL/FRAME:022795/0925

Effective date: 20070821

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION