US20090285194A1 - Efficient Peak Cancellation Method for Reducing the Peak-To-Average Power Ratio in Wideband Communication Systems - Google Patents

Efficient Peak Cancellation Method for Reducing the Peak-To-Average Power Ratio in Wideband Communication Systems Download PDF

Info

Publication number
US20090285194A1
US20090285194A1 US12415676 US41567609A US2009285194A1 US 20090285194 A1 US20090285194 A1 US 20090285194A1 US 12415676 US12415676 US 12415676 US 41567609 A US41567609 A US 41567609A US 2009285194 A1 US2009285194 A1 US 2009285194A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
method
peak
signal
step
average power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12415676
Inventor
Wan Jong Kim
Kyoung Joon Cho
Jong Heon Kim
Shawn Patrick Stapleton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dali Systems Co Ltd
Original Assignee
Dali Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3247Modifications of amplifiers to reduce non-linear distortion using predistortion circuits using feedback acting on predistortion circuits
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3241Modifications of amplifiers to reduce non-linear distortion using predistortion circuits
    • H03F1/3258Modifications of amplifiers to reduce non-linear distortion using predistortion circuits based on polynomial terms
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/129Indexing scheme relating to amplifiers there being a feedback over the complete amplifier
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3224Predistortion being done for compensating memory effects
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3227Adaptive predistortion based on amplitude, envelope or power level feedback from the output of the main amplifier
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2201/00Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F1/00
    • H03F2201/32Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
    • H03F2201/3233Adaptive predistortion using lookup table, e.g. memory, RAM, ROM, LUT, to generate the predistortion

Abstract

An efficient peak cancellation method for reducing the peak-to-average power ratio in wideband communication systems uses repeated clipping and frequency domain filtering to achieve a desired peak-to-average power ratio for wideband code division multiple access and orthogonal frequency division multiplexing signals. The maximum magnitude of the filtered pulse is determined by a scaling factor which permits eliminating several iterations while still achieving convergence to the targeted peak-to-average power ratio, thereby reducing computational load and saving hardware resources. This results in improved performance in terms of error vector magnitude, adjacent channel leakage ratio and peak-to-average power ratio.

Description

    RELATED APPLICATION
  • This application incorporates by reference and claims the benefit of U.S. Provisional Patent Application Ser. No. 61/041,164, filed Mar. 31, 2008, and having the same inventors and title as the present application
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to wideband communication systems using multiplexing modulation techniques. More specifically, the present invention relates to methods for reducing the peak-to-average power ratio for wideband code division multiple access and orthogonal frequency division multiplexing signals.
  • 2. The Prior Art
  • As a result of the increasing importance of spectral efficiency in mobile communications, effective modulation techniques, such as wideband code division multiple access (WCDMA) and orthogonal frequency division multiplexing (OFDM), have been used. These modulations have large envelope fluctuations, since the transmitted signal is generated by adding a large number of statistically independent signals. The high peak-to-average power ratio (PAPR) sets strict requirements for the linearity of the power amplifier (PA) leading to low power efficiency, since it is desirable for the PA to operate in its linear region. The use of deliberate envelope clipping to digitally distort the signal while maintaining the signal quality at a sufficient level is a simple and practical way to decrease PAPR. Moreover, the reduced PAPR via clipping gives rise to the possibility of utilizing the dynamic range of the digital-to-analog-converter (DAC) more efficiently. The various PAPR techniques can be categorized into two groups depending on whether they use linear techniques (modulation-and-coding-dependent) or nonlinear techniques (modulation-and-coding-independent). Methods that use linear techniques for OFDM systems do not distort the signal in the time domain so that the spectral properties are not altered.
  • On the other hand, nonlinear techniques modify the envelope of the time domain signal and are mainly based on clipping-filtering (CF) and peak windowing (PW) clipping. The idea of the PW clipping method is to filter the clipped output signal using the window function with the coefficient weights. The windowed output signal must satisfy the inequality so as to achieve the desired clipping level. To minimize the resultant error in the time domain, the inequality must be as close to equality as possible. This is dependent on the type and length of the window. The resultant function is then multiplied by the delayed input signal [O. Vaananen, J. Vankka, and K. Halonen, “Effect of Clipping in Wideband CDMA System and Simple Algorithm for Peak Windowing,” World Wireless Congress, San Francisco, pp. 614-619, May 2002].
  • To suppress peak re-growth when filtering the out-of-band distortion of the clipped signal, iterative clipping and filtering for OFDM systems have been used. This approach has suggested iterative clipping and filtering of the clipped pulses, so as to reduce the convergence rate to the targeted PAPR. However, techniques based on repeated clipping and filtering that have been implemented for OFDM systems require several iterations to converge to the desired PAPR level, which implies that it is not an efficient algorithm for hardware implementation [J. Armstrong, “Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering,” IEE Electronics Letters, vol. 38, no. 5, pp. 246-247, February 2002], [S. H. Leung, S. M. Ju, and G. G. Bi, “Algorithm for repeated clipping and filtering in peak-to-average power reduction for OFDM,” IEE Electronics Letters, vol. 38, no. 25, pp. 1726-1727, December 2002].
  • Hence, a need remains in the art for an improved method for reducing the PAPR in wideband communication systems that is able to eliminate several iterations to converge to the desired PAPR level and to simplify the hardware implementation for multi-carrier systems, such as OFDM and WCDMA.
  • SUMMARY OF INVENTION
  • Accordingly, the present invention has been made in view of the above problems, and it is an object of the present invention to provide a novel efficient method of peak cancellation (PC) for reducing the PAPR for wideband communication system applications. To achieve the above objects, according to an embodiment of the present invention, the technique is based on a method of repeated clipping and filtering. While conventional repeated peak cancellation (RPC) requires several iterations so as to converge into the targeted PAPR, since filtering causes peak re-growth, the present invention is able to eliminate several iterations, which subsequently saves hardware resources by means of the proper scaling factor.
  • BRIEF DESCRIPTION OF DRAWINGS
  • Both the foregoing and further objects and advantages of the invention can be more fully understood from the following detailed description taken in conjunction with the accompanying drawings in which:
  • FIG. 1. is a schematic diagram showing a multi-stage scaled repeated peak cancellation (SRPC) method.
  • FIG. 2. is a schematic diagram showing a preferred embodiment of the present invention.
  • FIG. 3A. is a schematic diagram showing a noise shaper for multi-carrier.
  • FIG. 3B. is a schematic diagram showing a noise shaper for single-carrier.
  • FIG. 3C is a schematic diagram showing an embodiment of a clipper
  • FIG. 4A. is a graph showing a peak cancellation pulse in time domain before filtering, after filtering at each stage, respectively (Prior Art).
  • FIG. 4B. is a graph showing peak cancellation pulse in time domain before filtering, after filtering, and after filtering and scaling at each stage, respectively.
  • FIG. 5. is a graph showing simulation results of the PAPR versus EVM for four WCDMA carriers using just clipping method, the PW method and the SRPC method of the present invention respectively.
  • FIG. 6. is a graph showing simulation results of the ACLR versus PAPR for four WCDMA carriers using the PW method, the RPC method, and the SRPC method of the present invention respectively.
  • FIG. 7. is a table showing performance comparisons of simulation results of the RMS EVM for different number of WCDMA carriers using the PW method, the RPC method, and the SRPC method of the present invention respectively.
  • FIG. 8. is a graph showing simulation results of the PDF for four WCDMA carriers using the SRPC method of the present invention respectively.
  • DESCRIPTION OF PREFERRED EMBODIMENTS
  • The conventional repeated peak cancellation (RPC) method can effectively reduce the PAPR. However, the RPC method requires several iterations to converge to the desired PAPR level, which implies that it is not an efficient algorithm for hardware implementation. Instead, the present invention applies a scaling factor to the peak cancellation pulse after the noise shaper but inside the peak cancellation loop. The objective is to achieve fewer iterations during processing and thereby reduce the PAPR and EVM. Compared to the conventional RPC method, an embodiment of the present invention achieves lower PAPR for, for example, four WCDMA carriers although approach is expandable into an unlimited number of carriers. The method provided by the present invention is therefore referred to hereinafter as Scaled Repeated Peak Cancellation (SRPC).
  • Various embodiments of the SRPC method according to the present invention are described in detail below with reference to the accompanying drawings.
  • FIG. 1. is a schematic diagram showing an embodiment of the multi-stage SRPC method. As illustrated, the baseband signal x(n) 101 goes through the first SPC 102 with a scaling factor α(0) 107, and zn (1) 105 is the output from the first iteration of the peak cancellation. After the i-th iteration, the resulting signal can be represented by Z 110.
  • In the SRPC method of the present invention, as illustrated in FIG. 2, the baseband signal x(n) 201 first passes through the clipper 202. The clipper 202 output, cn, can be written as follows:
  • c n = { A x n , x n > A 1 , x n A
  • where A is the clipping threshold level. The clipped pulse or peak cancellation pulse, pn can be written as

  • p n =x n −x n ·c n
  • Finally the PAPR reduced signal, zn 212 is described by
  • z n = x n - d - α · pf n = x n - d - α · p n h n
  • where pfn, hn, and α denote the output signal of the noise shaper 206, the impulse response of the low pass filter (LPF), and the scaler 208, respectively. * denotes the convolution operation.
  • As shown in FIG. 3 a for multi-carrier operation, the peak cancellation pulse 301 is frequency translated by (On), filtered, frequency translated back to baseband and combined. This is because the out-of-band emissions reside between the different carriers and cannot be filtered out by line pass filter 304, as opposed to the single carrier applications in FIG. 3 b where only one finite impulse response (FIR) filter 304 can be used. The FIR filters 304 for the multi-carriers have the same coefficients as that of a signal carrier FIR filter 304. There is peak re-growth beyond the clipped signal. This occurs because the resultant peak cancellation pulse (pn) 301 is filtered by the noise shaper and subsequently subtracted from the delayed input signal. This has the net effect of increasing the peaks beyond that of the clipped signal. Let zn 212 be the output signal and zn (1) 105 be the output from the first iteration. After the i-th iteration, the resulting signal 110 can be represented by
  • z n ( 2 ) = z n ( 0 ) - α ( 1 ) · pf n ( 1 ) z n ( 3 ) = z n ( 2 ) - α ( 2 ) · pf n ( 2 ) = z n ( 0 ) - α ( 1 ) · pf n ( 1 ) - α ( 2 ) · pf n ( 2 ) z n ( i ) = z n ( i - 1 ) - α ( i ) · pf n ( i ) = z n ( 0 ) - j = 1 i α ( j ) · pf n ( j )
  • The scaler, α(i), 109, at i-th iteration can be calculated as
  • α ( i ) = max ( p m ( i ) ) max ( pf n ( i ) )
  • The envelope of the input signal has a Rayleigh distribution according to the central limit theorem, so that the maximum magnitude of the clipping pulse can be numerically found once the threshold level is set. This implies that the maximum magnitude of the filtered pulse can be accordingly determined.
  • Referring next to FIG. 3C, an embodiment of a clipper in accordance with the invention is shown in schematic block diagram form. In the embodiment shown, a clipper comprises an amplitude calculator 325 which receives the input signal and provides it to a comparator 327 and a lookup table (LUT) 329. A clipping threshold signal 331, which can be preset or variable according to the desired implementation, provides a second input to the second input to the comparator 327, and also provides an input to a multiplier 333. The output of the LUT provides the second input to the multiplier, the output of which is provided to a mux 335. The output of the comparator 327 provides a “select” input to the mux 335, while a constant 337 provides the second signal input to the mux. Thus, it can be appreciated that the mux selects either the output of the multiplier or a constant, depending on the comparison between the amplitude of the input signal and the clipping threshold. It will be appreciated by those skilled in the art that numerous alternatives and equivalents to the embodiment of FIG. 3C can be constructed given the teachings herein, and the illustrated embodiment is therefore not intended to be limiting and is just one of many that perform the requisite clipping function.
  • FIGS. 4 a and 4 b represent peak cancellation pulses in the time domain for the prior art and the present invention, respectively. As shown in FIG. 4 b, applying the scaling factor results in less iteration when compared to FIG. 4 a. Therefore, this scaling factor significantly reduces the computational load, which saves hardware resources in an implementation. According to numerical simulations, it has been found that two or three iterations of the SRPC is sufficient.
  • In examining the performance of an embodiment of the SRPC method, 3rd Generation Partnership Project (3GPP) standard specifications state that the EVM and ACLR at 5 MHz offset should be less than 17.5% and −45 dBc, respectively. The scrambling codes and the time offsets of the time slot duration for multi-carriers test model 1 (TM1) of the WCDMA downlink system is based on 3GPP TS 25.141, Section 6.1.1 of Release 6 (2002-12). The numerical simulations used a signal that is TM1 with 64 dedicated physical channels (DPCH) and 614,400 input samples (one radio frame at 61.44 Msamples/sec) that are processed in MATLAB. A low pass FIR filter with 129 taps was designed to meet out-of-band distortions specifications of −77 dBc.
  • FIG. 5. is a graph showing simulation results of the PAPR with respect to EVM for four WCDMA carriers using the peak windowing method with an 85 tap Hamming window length, just clipping, and an embodiment of the present invention's SRPC method with three stages of the present invention respectively, through which the performance of the PAPR reduction of the three methods can be compared. In the figure, the solid line with diamond markers represents the performance with just clipping; this sets the lower bound on the PAPR and EVM. It obviously has a large out-of-band spectral radiation. The three-stage PC compressed the PAPR by 0.8 dB more than the single stage at an EVM of 10%. Using the SRPC technique, the PAPR can be suppressed to approximately 5.7 dB at a fixed 10% of EVM after only three stages, while 6.7 dB is achievable with the PW method based on four WCDMA carrier input signal. It should be noted that even a single stage of the proposed algorithm outperforms the PW technique and it requires only two iterations to obtain the same performance that is achieved by seven iterations of the conventional RPC method.
  • FIG. 6. is a graph showing simulation results of the ACLR versus PAPR for four WCDMA carriers using the peak windowing method, the conventional RPC method, and the SRPC method of the present invention respectively. In the figure, the PW technique has a critical disadvantage that degrades ACLR as opposed to conventional RPC and SRPC method. The original input signal has an ACLR of approximately −77 dBc. Another point to note is that the conventional RPC and SRPC methods deteriorate the ACLR up to approximately 2 dB as the clipping threshold is reduced. This is a result of the decrease in the average power as clipping becomes more significant.
  • FIG. 7. is a table showing performance comparisons of simulation results of the RMS EVM for different numbers of WCDMA carriers using the PW method, the RPC method, and the SRPC method of the present invention respectively. Simulations were performed for a different number of carriers. For a single carrier, all three techniques represent a similar ability in terms of EVM and PAPR. However, the PW method still allows the ACLR to be compromised, unlike the other two methods. The conventional RPC method requires more than five iterations which increase its complexity, while the proposed SRPC method only requires two iterations. It is not possible for the PW method to achieve a PAPR of 5.5 dB, for the three carrier and four carrier cases, even without considering EVM and ACLR. This is because the window significantly alters many input samples due to the large clipping, which significantly changes the average power.
  • FIG. 8. is a graph showing simulation results of the PDF for four WCDMA carriers using the SRPC method of the present invention respectively. In the figure, the solid line shows the PDF of the original input signal and the PDF at each stage of three stage SRPC method is illustrated. The PDF difference can be minimized in the region of samples with magnitude less than 1 V, as illustrated in FIG. 8.
  • In summary, the SRPC method of the present invention, compared to the conventional RPC method, could reduce PAPR more effectively since the SRPC method is able to eliminate several iterations, which subsequently saves hardware resources. In four WCDMA carriers, the present invention could achieve the state of the art performance for WCDMA applications.
  • Although the present invention has been described with reference to the preferred embodiments, it will be understood that the invention is not limited to the details described thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims.

Claims (13)

  1. 1. A method for reducing peak-to-average power ratio in wideband communication systems using multiplexing modulation techniques comprising the steps of:
    (a) clipping a baseband input signal;
    (b) subtracting the baseband input signal from the result of said step (a);
    (c) noise shaping the result of step (b);
    (d) scaling the result of the said step (c); and
    (e) subtracting from the result of step (d) the delayed baseband input signal.
  2. 2. The method of claim 1 wherein steps (a) to (e) are iterated until a desired clipping level is achieved.
  3. 3. The method of claim 1 wherein the clipping step includes using at least one of a group comprising an amplitude calculator, a comparator, a lookup table, a multiplier, a constant and a multiplexer.
  4. 4. The method of claim 1 wherein the noise shaping step is performed by converting the digitally clipped signal to a frequency domain signal, filtering by at least one finite impulse response filter, reconverting the filtered frequency domain signal to the baseband signal, and combining to yield an output signal.
  5. 5. The method of claim 1 wherein said step (c) is performed by converting the digitally clipped signals for multi-carrier such as WCDMA to frequency domain signals by (ωn), filtering by finite impulse response filters, reconverting the filtered frequency domain signals to the baseband signals, and combining the signals.
  6. 6. The method of claim 1 wherein said step (d) is performed by scaling in accordance with the following equation:
    α ( i ) = max ( p m ( i ) ) max ( pf n ( i ) )
    wherein α(i) is a scaling factor at i-th iteration, pn the clipped signal or peak cancellation signal, and pfn the output signal of the noise shaper.
  7. 7. The method of claim 1 further comprising iterating steps (a) to (e) until a desired clipping level is achieved, and wherein the number of iterations needed to converge to the desired PAPR level is reduced by applying a scaling factor.
  8. 8. The method of claim 6 wherein applying a scaling factor reduces computational load for reducing PAPR.
  9. 9. The method of claim 6 wherein applying a scaling factor reduces hardware implementation complexity arising from the number of iterations.
  10. 10. The method of claim 6 wherein error vector magnitude is significantly improved.
  11. 11. The method of claim 6 wherein adjacent channel leakage ratio is significantly improved.
  12. 12. The method of claim 6 wherein peak-to-average power ratio is significantly improved.
  13. 13. The method of claim 1, further comprising the step of compensating for errors by combining power amplifier output with the signal resulting from step (d) through an additional digital-to-analog converter and an upconverter.
US12415676 2008-03-31 2009-03-31 Efficient Peak Cancellation Method for Reducing the Peak-To-Average Power Ratio in Wideband Communication Systems Abandoned US20090285194A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US4116408 true 2008-03-31 2008-03-31
US12415676 US20090285194A1 (en) 2008-03-31 2009-03-31 Efficient Peak Cancellation Method for Reducing the Peak-To-Average Power Ratio in Wideband Communication Systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12415676 US20090285194A1 (en) 2008-03-31 2009-03-31 Efficient Peak Cancellation Method for Reducing the Peak-To-Average Power Ratio in Wideband Communication Systems

Publications (1)

Publication Number Publication Date
US20090285194A1 true true US20090285194A1 (en) 2009-11-19

Family

ID=41135991

Family Applications (4)

Application Number Title Priority Date Filing Date
US12108502 Active US8811917B2 (en) 2002-05-01 2008-04-23 Digital hybrid mode power amplifier system
US12415676 Abandoned US20090285194A1 (en) 2008-03-31 2009-03-31 Efficient Peak Cancellation Method for Reducing the Peak-To-Average Power Ratio in Wideband Communication Systems
US14271881 Active 2029-03-07 US9768739B2 (en) 2002-05-01 2014-05-07 Digital hybrid mode power amplifier system
US15684580 Pending US20180102747A1 (en) 2002-05-01 2017-08-23 Digital hybrid mode power amplifier system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12108502 Active US8811917B2 (en) 2002-05-01 2008-04-23 Digital hybrid mode power amplifier system

Family Applications After (2)

Application Number Title Priority Date Filing Date
US14271881 Active 2029-03-07 US9768739B2 (en) 2002-05-01 2014-05-07 Digital hybrid mode power amplifier system
US15684580 Pending US20180102747A1 (en) 2002-05-01 2017-08-23 Digital hybrid mode power amplifier system

Country Status (2)

Country Link
US (4) US8811917B2 (en)
WO (1) WO2009122298A3 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8324953B1 (en) * 2009-10-21 2012-12-04 Vyycore Ltd. Method and a system for signal processing
US9179321B2 (en) 2012-08-09 2015-11-03 Axell Wireless Ltd. Digital capacity centric distributed antenna system
US9367828B2 (en) 2012-11-26 2016-06-14 Commscope Technologies Llc Forward-path digital summation in digital radio frequency transport
US9385797B2 (en) 2012-11-26 2016-07-05 Commscope Technologies Llc Flexible, reconfigurable multipoint-to-multipoint digital radio frequency transport architecture
WO2016122204A1 (en) * 2015-01-28 2016-08-04 삼성전자 주식회사 Method and device for controlling power in multi-carrier communication system
US9712343B2 (en) 2015-06-19 2017-07-18 Andrew Wireless Systems Gmbh Scalable telecommunications system
US9750082B2 (en) 2013-10-07 2017-08-29 Commscope Technologies Llc Systems and methods for noise floor optimization in distributed antenna system with direct digital interface to base station
US9787457B2 (en) 2013-10-07 2017-10-10 Commscope Technologies Llc Systems and methods for integrating asynchronous signals in distributed antenna system with direct digital interface to base station
US20170331599A1 (en) * 2016-05-13 2017-11-16 Industrial Technology Research Institute Wireless communication apparatus and the method thereof
US20180083820A1 (en) * 2016-09-22 2018-03-22 Apple Inc. System and method for peak-to-average power ratio reduction of ofdm signals via weighted gradient-based adaptive peak cancellation

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811917B2 (en) 2002-05-01 2014-08-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
US9026067B2 (en) * 2007-04-23 2015-05-05 Dali Systems Co. Ltd. Remotely reconfigurable power amplifier system and method
EP1756971B1 (en) * 2004-05-26 2013-04-10 Wireless Extenders, Inc. Wireless repeater for a duplex communication system implementing a protection based on oscillation detection
WO2008078195A3 (en) 2006-12-26 2011-03-17 Dali Systems Co., Ltd. System for baseband predistortion linearization in multi-channel communication
US8274332B2 (en) 2007-04-23 2012-09-25 Dali Systems Co. Ltd. N-way Doherty distributed power amplifier with power tracking
CN102150361B (en) 2007-12-07 2016-11-09 大力系统有限公司 RF digital baseband predistortion derived
GB0808453D0 (en) * 2008-05-09 2008-06-18 Nujira Ltd Modulated supply stage with feedback to switched supply
US20110076974A1 (en) * 2009-01-31 2011-03-31 Sei-Joo Jang Flexible wireless network system and method of use
KR20110026065A (en) * 2009-09-07 2011-03-15 삼성전자주식회사 Apparatus and method for envelope tracking power amplifier in wireless communication
US8892176B2 (en) * 2009-09-29 2014-11-18 Samsung Electronics Co., Ltd. Apparatus and method for reducing power consumption in multi antenna system
EP2487790B1 (en) * 2009-10-06 2015-04-01 Fujitsu Limited Papr (peak-to-average power ratio) determining apparatus and communication apparatus
EP2517353B1 (en) * 2009-12-21 2016-04-20 Dali Systems Co. Ltd. Modulation agnostic digital hybrid mode power amplifier system and method
US8542768B2 (en) 2009-12-21 2013-09-24 Dali Systems Co. Ltd. High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
US8446979B1 (en) 2010-03-02 2013-05-21 Pmc-Sierra, Inc. Predistortion with integral crest-factor reduction and reduced observation bandwidth
US8340210B2 (en) * 2010-04-21 2012-12-25 Samsung Electronics Co., Ltd. Apparatus and method for crest factor reduction architecture
CN103201949B (en) * 2010-11-16 2016-02-03 瑞典爱立信有限公司 Non-linear model having tap outputs normalized
US8351877B2 (en) * 2010-12-21 2013-01-08 Dali Systems Co. Ltfd. Multi-band wideband power amplifier digital predistorition system and method
CN102625433B (en) * 2011-01-31 2015-03-11 华为技术有限公司 Carrier bearing method, apparatuses and radio remote unit
US8750416B2 (en) * 2011-04-09 2014-06-10 Broadcast Electronics Compensating for a radio frequency amplifier
JP2014518495A (en) * 2011-07-11 2014-07-28 ロックスター コンソーティアム ユーエス エルピー Amplifier linearization using nonstandard feedback
WO2013078616A1 (en) * 2011-11-29 2013-06-06 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for monitoring performance, and remote radio unit
US8536943B2 (en) * 2012-02-03 2013-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Selective narrowband feedback for a digital predistorter
US8908798B2 (en) 2012-12-28 2014-12-09 Lsi Corporation Hybrid digital/analog power amplifier
CN103974395B (en) * 2013-01-29 2018-04-10 中兴通讯股份有限公司 Based on low-latency digital pre-power detecting before power adjustment method and apparatus for distortion
KR20140122475A (en) * 2013-04-10 2014-10-20 삼성전자주식회사 Apparatus and method for digital pre-distortion in a wireless communication system
EP3146630A1 (en) 2014-05-23 2017-03-29 Teko Telecom S.r.l. Power amplification system for radiofrequency communications
CN105227507A (en) * 2014-06-13 2016-01-06 中兴通讯股份有限公司 Non-linear system distortion correction apparatus and method
FR3024001A1 (en) * 2014-07-15 2016-01-22 Airbus Ds method of reducing the crest factor of a wideband signal
US10075310B2 (en) * 2014-08-28 2018-09-11 Lockheed Martin Corporation Adaptive linearizer
CN107078702A (en) * 2014-11-19 2017-08-18 华为技术有限公司 Pre-distortion processing device and method
US9998241B2 (en) * 2015-02-19 2018-06-12 Mediatek Inc. Envelope tracking (ET) closed-loop on-the-fly calibration
US9742360B2 (en) * 2015-03-22 2017-08-22 Dsp Group Ltd. Efficient smart wideband linear hybrid CMOS RF power amplifier
US9425837B1 (en) * 2015-09-25 2016-08-23 Qualcomm Incorporated Adaptive feed-forward power amplifier linearization methods using adaptive filters

Citations (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700151A (en) * 1985-03-20 1987-10-13 Nec Corporation Modulation system capable of improving a transmission system
US4929906A (en) * 1989-01-23 1990-05-29 The Boeing Company Amplifier linearization using down/up conversion
US5049832A (en) * 1990-04-20 1991-09-17 Simon Fraser University Amplifier linearization by adaptive predistortion
US5396190A (en) * 1993-04-20 1995-03-07 Mitsubishi Denki Kabushiki Kaisha Circuit for compensating for nonlinear distortion in transmit power amplifier
US5486789A (en) * 1995-02-28 1996-01-23 Motorola, Inc. Apparatus and method for providing a baseband digital error signal in an adaptive predistorter
US5579342A (en) * 1994-09-22 1996-11-26 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Communications Pre-compensated frequency modulation (PFM)
US5675287A (en) * 1996-02-12 1997-10-07 Motorola, Inc. Digital DC correction circuit for a linear transmitter
US5678198A (en) * 1991-05-22 1997-10-14 Southwestern Bell Technology Resources, Inc. System for controlling signal level at both ends of a transmission link, based upon a detected value
US5732333A (en) * 1996-02-14 1998-03-24 Glenayre Electronics, Inc. Linear transmitter using predistortion
US5757229A (en) * 1996-06-28 1998-05-26 Motorola, Inc. Bias circuit for a power amplifier
US5786728A (en) * 1995-06-30 1998-07-28 Nokia Mobile Phones, Ltd. Cuber based predistortion circuit and mobile station using the same
US5936464A (en) * 1997-11-03 1999-08-10 Motorola, Inc. Method and apparatus for reducing distortion in a high efficiency power amplifier
US5937011A (en) * 1996-03-26 1999-08-10 Airnet Communications Corp. Multi-carrier high power amplifier using digital pre-distortion
US5949283A (en) * 1996-09-20 1999-09-07 Spectrian Adaptive digital predistortion linearization and feed-forward correction of RF power amplifier
US5959499A (en) * 1997-09-30 1999-09-28 Motorola, Inc. Predistortion system and method using analog feedback loop for look-up table training
US6055418A (en) * 1996-07-05 2000-04-25 Thomcast Communications, Inc. Computer program product configured to control modular transmission system components
US6054896A (en) * 1998-12-17 2000-04-25 Datum Telegraphic Inc. Controller and associated methods for a linc linear power amplifier
US6091941A (en) * 1995-09-19 2000-07-18 Fujitsu Limited Radio apparatus
US6240144B1 (en) * 1998-08-06 2001-05-29 Samsung Electronics Co., Ltd. Apparatus and method of linearizing a power amplifier in a mobile radio communication system
US6242979B1 (en) * 2000-02-23 2001-06-05 Motorola, Inc. Linearization using parallel cancellation in linear power amplifier
US6246865B1 (en) * 1997-02-04 2001-06-12 Samsung Electronics Co., Ltd. Device and method for controlling distortion characteristic of predistorter
US6275685B1 (en) * 1998-12-10 2001-08-14 Nortel Networks Limited Linear amplifier arrangement
US6301579B1 (en) * 1998-10-20 2001-10-09 Silicon Graphics, Inc. Method, system, and computer program product for visualizing a data structure
US20020034260A1 (en) * 2000-09-15 2002-03-21 Lg Electronics Inc. Adaptive predistortion transmitter
US20020044014A1 (en) * 1999-07-13 2002-04-18 Wright Andrew S. Amplifier measurement and modeling processes for use in generating predistortion parameters
US6400774B1 (en) * 1997-12-10 2002-06-04 Matsushita Electric Industrial Co., Ltd. Nonlinearity-caused distortion compensating system
US20020080891A1 (en) * 2000-12-27 2002-06-27 Lg Electronics Base station transmitter having digital predistorter and predistortion method thereof
US6424225B1 (en) * 2000-11-27 2002-07-23 Conexant Systems, Inc. Power amplifier circuit for providing constant bias current over a wide temperature range
US20020101938A1 (en) * 2001-02-01 2002-08-01 Masato Horaguchi Predistortion type distortion compensation apparatus
US20020101937A1 (en) * 1998-06-26 2002-08-01 Franklin P. Antonio Predistortion technique for high power amplifiers
US20020179830A1 (en) * 2000-11-01 2002-12-05 Pearson Robert M. Halbach Dipole magnet shim system
US20020187761A1 (en) * 2001-02-21 2002-12-12 Solid Technologies, Inc. Device and method for compensating for nonlinearity of power amplifier with redistortion in if band
US20020193085A1 (en) * 2001-06-15 2002-12-19 Telefonaktiebolaget Lm Ericsson Systems and methods for amplification of a communication signal
US6512417B2 (en) * 2000-05-11 2003-01-28 Nortel Networks Limited Linear amplifier arrangement
US6552634B1 (en) * 1997-08-25 2003-04-22 Frederick Herbert Raab Wideband, minimum-rating filters and multicouplers for power amplifiers
US20030095608A1 (en) * 2001-11-16 2003-05-22 Koninklijke Philips Electronics N.V. Transmitter with transmitter chain phase adjustment on the basis of pre-stored phase information
US6625429B1 (en) * 1999-07-02 2003-09-23 Nec Corporation Mobile radio communication apparatus
US20030179829A1 (en) * 2002-03-19 2003-09-25 Motorola, Inc. Method and apparatus using base band transformation to improve transmitter performance
US20030179830A1 (en) * 2002-03-25 2003-09-25 Eidson Donald B. Efficient, high fidelity transmission of modulation schemes through power-constrained remote relay stations by local transmit predistortion and local receiver feedback
US6639050B1 (en) * 1997-07-21 2003-10-28 Ohio University Synthetic genes for plant gums and other hydroxyproline-rich glycoproteins
US20030207680A1 (en) * 2002-05-01 2003-11-06 Dali Yang System and method for digital memorized predistortion for wireless communication
US20040017859A1 (en) * 2002-07-25 2004-01-29 Sills James A. Transmitter with limited spectral regrowth and method therefor
US6697436B1 (en) * 1999-07-13 2004-02-24 Pmc-Sierra, Inc. Transmission antenna array system with predistortion
US6703897B2 (en) * 2001-12-26 2004-03-09 Nortel Networks Limited Methods of optimising power amplifier efficiency and closed-loop power amplifier controllers
US20040057533A1 (en) * 2002-09-23 2004-03-25 Kermalli Munawar Hussein System and method for performing predistortion at intermediate frequency
US6741663B1 (en) * 1998-04-30 2004-05-25 Nokia Corporation Linearization method for amplifier, and amplifier arrangement
US6747649B1 (en) * 2002-03-19 2004-06-08 Aechelon Technology, Inc. Terrain rendering in a three-dimensional environment
US6751447B1 (en) * 1999-12-30 2004-06-15 Samsung Electronics Cop., Ltd. Adaptive digital pre-distortion circuit using output reference signal and method of operation
US6781951B1 (en) * 1998-10-23 2004-08-24 Koninklijke Philips Electronics N.V. Radio communication system
US20040240585A1 (en) * 2001-06-15 2004-12-02 John Bishop Time alignment of signals
US20050079834A1 (en) * 2002-05-31 2005-04-14 Toru Maniwa Table reference type predistorter
US6895704B2 (en) * 2003-01-31 2005-05-24 Hni Technologies Inc. Work board assembly
US20050159117A1 (en) * 2002-01-15 2005-07-21 Igor Bausov Class-L power-output amplifier
US20050190857A1 (en) * 2004-03-01 2005-09-01 Braithwaite Richard N. Digital predistortion system and method for linearizing an RF power amplifier with nonlinear gain characteristics and memory effects
US20050262498A1 (en) * 2004-05-20 2005-11-24 Ferguson Alan L Systems and methods for remotely modifying software on a work machine
US6983025B2 (en) * 2001-04-11 2006-01-03 Tropian, Inc. High quality power ramping in a communications transmitter
US20060012426A1 (en) * 2004-07-14 2006-01-19 Raytheon Company Performing remote power amplifier linearization
US7035345B2 (en) * 2001-06-08 2006-04-25 Polyvalor S.E.C. Adaptive predistortion device and method using digital receiver
US7042287B2 (en) * 2003-07-23 2006-05-09 Northrop Grumman Corporation System and method for reducing dynamic range and improving linearity in an amplication system
US7061314B2 (en) * 2002-02-01 2006-06-13 Youngwoo Kwon High linearity doherty communication amplifier with phase control
US7064606B2 (en) * 2003-03-28 2006-06-20 Andrew Corporation High efficiency amplifier and method of designing same
US7079818B2 (en) * 2002-02-12 2006-07-18 Broadcom Corporation Programmable mutlistage amplifier and radio applications thereof
US7102442B2 (en) * 2004-04-28 2006-09-05 Sony Ericsson Mobile Communications Ab Wireless terminals, methods and computer program products with transmit power amplifier input power regulation
US7103329B1 (en) * 2001-10-25 2006-09-05 Rockwell Collins, Inc. Adaptive feedback channel for radio frequency power amplifiers
US7104310B2 (en) * 2004-12-27 2006-09-12 Hunter Automated Machinery Corporation Mold making machine with separated safety work zones
US7106806B1 (en) * 1999-06-30 2006-09-12 Andrew Corporation Reducing distortion of signals
US7109792B2 (en) * 2003-09-17 2006-09-19 Andrew Corporation Table-based pre-distortion for amplifier systems
US7109998B2 (en) * 2001-10-03 2006-09-19 Sun Microsystems, Inc. Stationary semantic zooming
US20060270366A1 (en) * 2005-05-24 2006-11-30 Dmitriy Rozenblit Dual voltage regulator for a supply voltage controlled power amplifier in a closed power control loop
US7151913B2 (en) * 2003-06-30 2006-12-19 M/A-Com, Inc. Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
US7158765B2 (en) * 2001-07-31 2007-01-02 Agere Systems, Inc. Method and apparatus for controlling power of a transmitted signal
US7193472B2 (en) * 2004-04-14 2007-03-20 Mitsubishi Denki Kabushiki Kaisha Power amplifier
US20070075780A1 (en) * 2005-10-05 2007-04-05 Enver Krvavac Apparatus and method for adaptive biasing of a Doherty amplifier
US20070140101A1 (en) * 2005-12-15 2007-06-21 Nortel Networks Limited System and method for reducing peak-to-average power ratio in orthogonal frequency division multiplexing signals using reserved spectrum
US7248642B1 (en) * 2002-02-05 2007-07-24 Andrew Corporation Frequency-dependent phase pre-distortion for reducing spurious emissions in communication networks
US20070171234A1 (en) * 2006-01-24 2007-07-26 Roger Crawfis System and method for asynchronous continuous-level-of-detail texture mapping for large-scale terrain rendering
US20070241812A1 (en) * 2002-05-01 2007-10-18 Dali Systems Co. Ltd. High efficiency linearization power amplifier for wireless communication
US7321636B2 (en) * 2001-05-31 2008-01-22 Magnolia Broadband Inc. Communication device with smart antenna using a quality-indication signal
US7372918B2 (en) * 2003-09-30 2008-05-13 Infineon Technologies Ag Transmission device with adaptive digital predistortion, transceiver with transmission device, and method for operating a transmission device
US7469491B2 (en) * 2004-01-27 2008-12-30 Crestcom, Inc. Transmitter predistortion circuit and method therefor
US7831221B2 (en) * 2005-12-13 2010-11-09 Andrew Llc Predistortion system and amplifier for addressing group delay modulation
USRE42287E1 (en) * 1998-03-17 2011-04-12 Pixar Stochastic level of detail in computer animation

Family Cites Families (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4638248A (en) * 1985-06-10 1987-01-20 Massachusetts Institute Of Technology Methods and apparatus for measuring relative gain and phase of voltage input signals versus voltage output signals
GB2204202B (en) 1987-04-28 1991-11-27 Racal Communications Equip Radio transmitters
US5121412A (en) * 1989-01-03 1992-06-09 Motorola, Inc. All-digital quadrature modulator
US5132639A (en) * 1989-09-07 1992-07-21 Ortel Corporation Predistorter for linearization of electronic and optical signals
US5973011A (en) 1994-03-30 1999-10-26 Isis Pharma Gmbh Pharmaceutical preparations and medicaments for the prevention and treatment of endothelial dysfunction
JPH09284149A (en) 1996-04-17 1997-10-31 Nec Corp Automatic gain control circuit for power amplifier section
US5831479A (en) 1996-06-13 1998-11-03 Motorola, Inc. Power delivery system and method of controlling the power delivery system for use in a radio frequency system
US5920808A (en) * 1996-12-12 1999-07-06 Glenayre Electronics, Inc. Method and apparatus for reducing key-up distortion by pre-heating transistors
US5923712A (en) * 1997-05-05 1999-07-13 Glenayre Electronics, Inc. Method and apparatus for linear transmission by direct inverse modeling
US5963549A (en) * 1997-12-10 1999-10-05 L-3 Communications Corporation Fixed wireless loop system having baseband combiner predistortion summing table
US6215354B1 (en) 1998-03-06 2001-04-10 Fujant, Inc. Closed loop calibration for an amplitude reconstruction amplifier
GB9804835D0 (en) 1998-03-06 1998-04-29 Wireless Systems Int Ltd Predistorter
US6124758A (en) 1998-08-19 2000-09-26 Harris Corporation RF power amplifier control system
US6430402B1 (en) * 1998-09-14 2002-08-06 Conexant Systems, Inc. Power amplifier saturation prevention method, apparatus, and communication system incorporating the same
US6315189B1 (en) * 1998-10-13 2001-11-13 Texas Instruments Incorporated Semiconductor package lead plating method and apparatus
US6166601A (en) * 1999-01-07 2000-12-26 Wiseband Communications Ltd. Super-linear multi-carrier power amplifier
JP2000278237A (en) 1999-03-25 2000-10-06 Toshiba Corp Repeater for ofdm
JP2000278166A (en) * 1999-03-26 2000-10-06 Nec Corp Software mobile phone
GB2348755B (en) 1999-04-01 2001-03-07 Wireless Systems Int Ltd Signal processing
US7409007B1 (en) * 1999-09-14 2008-08-05 Lucent Technologies Inc. Method and apparatus for reducing adjacent channel power in wireless communication systems
US6246286B1 (en) * 1999-10-26 2001-06-12 Telefonaktiebolaget Lm Ericsson Adaptive linearization of power amplifiers
US6359504B1 (en) 2000-01-28 2002-03-19 Lucent Technologies Inc. Power amplifier using upstream signal information
JP3578957B2 (en) 2000-02-03 2004-10-20 株式会社日立国際電気 Amplifier
GB2359681B (en) * 2000-02-25 2004-03-10 Wireless Systems Int Ltd Switched amplifier
JP4346200B2 (en) 2000-03-17 2009-10-21 株式会社東芝 Terrestrial broadcasting control system
US6639463B1 (en) * 2000-08-24 2003-10-28 Lucent Technologies Inc. Adaptive power amplifier system and method
FR2813487B1 (en) * 2000-08-31 2002-11-29 Cit Alcatel Method and control device for amplifying the signal emitted by a mobile terminal to increase the autonomy of said mobile terminal
JP2002111401A (en) * 2000-10-03 2002-04-12 Fujitsu Ltd Signal distortion compensation apparatus and signal distortion compensation method
US6977546B2 (en) * 2000-10-30 2005-12-20 Simon Fraser University High efficiency power amplifier systems and methods
WO2002087097A1 (en) * 2001-04-18 2002-10-31 Fujitsu Limited Distortion compensating device
US6404284B1 (en) * 2001-04-19 2002-06-11 Anadigics, Inc. Amplifier bias adjustment circuit to maintain high-output third-order intermodulation distortion performance
US6928122B2 (en) 2001-06-07 2005-08-09 Motorola, Inc. Amplifier predistortion system and method
US6566944B1 (en) * 2002-02-21 2003-05-20 Ericsson Inc. Current modulator with dynamic amplifier impedance compensation
US7197085B1 (en) 2002-03-08 2007-03-27 Andrew Corporation Frequency-dependent magnitude pre-distortion for reducing spurious emissions in communication networks
JP4071526B2 (en) 2002-04-10 2008-04-02 松下電器産業株式会社 Nonlinear distortion compensating apparatus and a transmission apparatus
US8811917B2 (en) 2002-05-01 2014-08-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
US9026067B2 (en) * 2007-04-23 2015-05-05 Dali Systems Co. Ltd. Remotely reconfigurable power amplifier system and method
WO2008154077A1 (en) 2007-04-23 2008-12-18 Dali Systems, Co., Ltd. Digital hybrid mode power amplifier system
JP2003347854A (en) 2002-05-29 2003-12-05 Matsushita Electric Ind Co Ltd Power amplifier
US7493094B2 (en) * 2005-01-19 2009-02-17 Micro Mobio Corporation Multi-mode power amplifier module for wireless communication devices
US7321635B2 (en) * 2002-08-16 2008-01-22 Andrew Corporation Linearization of amplifiers using baseband detection and non-baseband pre-distortion
EP1573993B1 (en) 2002-10-31 2010-01-13 ZTE Corporation A method and system for broadband predistortion linearizaion
US7206355B2 (en) * 2002-12-02 2007-04-17 Nortel Networks Limited Digitally convertible radio
KR100480278B1 (en) 2002-12-24 2005-04-07 삼성전자주식회사 Digital predistorter of a wideband power amplifier and adaptation method therefor
US7403573B2 (en) 2003-01-15 2008-07-22 Andrew Corporation Uncorrelated adaptive predistorter
US7123890B2 (en) 2003-03-11 2006-10-17 Andrew Corporation Signal sample acquisition techniques
US7251293B2 (en) 2003-06-27 2007-07-31 Andrew Corporation Digital pre-distortion for the linearization of power amplifiers with asymmetrical characteristics
KR100546245B1 (en) 2003-07-10 2006-01-26 단암유에스에이 인코포레이티드 Apparatus and method for power amplifying using predistortion and radio communication system having the apparatus
US7259630B2 (en) * 2003-07-23 2007-08-21 Andrew Corporation Elimination of peak clipping and improved efficiency for RF power amplifiers with a predistorter
US6963242B2 (en) * 2003-07-31 2005-11-08 Andrew Corporation Predistorter for phase modulated signals with low peak to average ratios
US7149482B2 (en) * 2003-09-16 2006-12-12 Andrew Corporation Compensation of filters in radio transmitters
JP2005150932A (en) 2003-11-12 2005-06-09 Hitachi Kokusai Electric Inc Predistortion device
KR20050052556A (en) 2003-11-28 2005-06-03 삼성전자주식회사 Multipath power amplifier using hybrid combiner
JP4296570B2 (en) * 2003-12-08 2009-07-15 日本光電工業株式会社 Vital telemetry
KR101058733B1 (en) 2004-01-02 2011-08-22 삼성전자주식회사 Predistortion apparatus for compensating for the nonlinear distortion characteristic of the power amplifier
JP2005229268A (en) * 2004-02-12 2005-08-25 Renesas Technology Corp High frequency power amplifier circuit and radio communication system
US6998909B1 (en) 2004-02-17 2006-02-14 Altera Corporation Method to compensate for memory effect in lookup table based digital predistorters
US7151405B2 (en) * 2004-07-14 2006-12-19 Raytheon Company Estimating power amplifier non-linearity in accordance with memory depth
EP1786128A1 (en) 2004-08-30 2007-05-16 Matsushita Electric Industrial Co., Ltd. Peak power suppressing apparatus and peak power suppressing method
US7433668B2 (en) * 2004-12-23 2008-10-07 Lucent Technologies Inc. Controlling Q-factor of filters
JP4683468B2 (en) * 2005-03-22 2011-05-18 ルネサスエレクトロニクス株式会社 High frequency power amplifier circuit
US7193462B2 (en) 2005-03-22 2007-03-20 Powerwave Technologies, Inc. RF power amplifier system employing an analog predistortion module using zero crossings
JP2006340166A (en) 2005-06-03 2006-12-14 Nippon Dengyo Kosaku Co Ltd Distortion compensation amplifier
US7301402B2 (en) * 2005-11-17 2007-11-27 Freescale Semiconductor, Inc. Soft saturation detection for power amplifiers
US7783260B2 (en) * 2006-04-27 2010-08-24 Crestcom, Inc. Method and apparatus for adaptively controlling signals
US7826810B2 (en) * 2006-05-08 2010-11-02 Harris Corporation Multiband radio with transmitter output power optimization
US20070264947A1 (en) * 2006-05-10 2007-11-15 Dmitriy Rozenblit System and method for saturation detection and compensation in a polar transmitter
JP2008078702A (en) 2006-09-19 2008-04-03 Fujitsu Ltd Amplifier fault detector
WO2008078195A3 (en) 2006-12-26 2011-03-17 Dali Systems Co., Ltd. System for baseband predistortion linearization in multi-channel communication
US20090013317A1 (en) * 2007-02-08 2009-01-08 Airnet Communications Corporation Software Management for Software Defined Radio in a Distributed Network
US20080240286A1 (en) * 2007-03-26 2008-10-02 Innofidei, Inc. Signal transmission system, method and apparatus
US7702300B1 (en) * 2007-07-12 2010-04-20 Panasonic Corporation Envelope modulator saturation detection using a DC-DC converter
FI20075690A0 (en) * 2007-10-01 2007-10-01 Nokia Corp Signal esivääristäminen radio transmitter
CN102150361B (en) * 2007-12-07 2016-11-09 大力系统有限公司 RF digital baseband predistortion derived
FI20085158A0 (en) * 2008-02-21 2008-02-21 Nokia Corp The apparatus and method
WO2010124297A8 (en) 2009-04-24 2011-07-07 Dali Systems Co. Ltd. Remotely reconfigurable power amplifier system and method
CN102460385B (en) 2009-04-24 2016-03-02 大力系统有限公司 Remote reconfigurable power amplifier system and method

Patent Citations (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700151A (en) * 1985-03-20 1987-10-13 Nec Corporation Modulation system capable of improving a transmission system
US4929906A (en) * 1989-01-23 1990-05-29 The Boeing Company Amplifier linearization using down/up conversion
US5049832A (en) * 1990-04-20 1991-09-17 Simon Fraser University Amplifier linearization by adaptive predistortion
US5678198A (en) * 1991-05-22 1997-10-14 Southwestern Bell Technology Resources, Inc. System for controlling signal level at both ends of a transmission link, based upon a detected value
US5396190A (en) * 1993-04-20 1995-03-07 Mitsubishi Denki Kabushiki Kaisha Circuit for compensating for nonlinear distortion in transmit power amplifier
US5579342A (en) * 1994-09-22 1996-11-26 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Communications Pre-compensated frequency modulation (PFM)
US5486789A (en) * 1995-02-28 1996-01-23 Motorola, Inc. Apparatus and method for providing a baseband digital error signal in an adaptive predistorter
US5786728A (en) * 1995-06-30 1998-07-28 Nokia Mobile Phones, Ltd. Cuber based predistortion circuit and mobile station using the same
US6091941A (en) * 1995-09-19 2000-07-18 Fujitsu Limited Radio apparatus
US5675287A (en) * 1996-02-12 1997-10-07 Motorola, Inc. Digital DC correction circuit for a linear transmitter
US5732333A (en) * 1996-02-14 1998-03-24 Glenayre Electronics, Inc. Linear transmitter using predistortion
US5937011A (en) * 1996-03-26 1999-08-10 Airnet Communications Corp. Multi-carrier high power amplifier using digital pre-distortion
US5757229A (en) * 1996-06-28 1998-05-26 Motorola, Inc. Bias circuit for a power amplifier
US6055418A (en) * 1996-07-05 2000-04-25 Thomcast Communications, Inc. Computer program product configured to control modular transmission system components
US5949283A (en) * 1996-09-20 1999-09-07 Spectrian Adaptive digital predistortion linearization and feed-forward correction of RF power amplifier
US6246865B1 (en) * 1997-02-04 2001-06-12 Samsung Electronics Co., Ltd. Device and method for controlling distortion characteristic of predistorter
US6639050B1 (en) * 1997-07-21 2003-10-28 Ohio University Synthetic genes for plant gums and other hydroxyproline-rich glycoproteins
US6552634B1 (en) * 1997-08-25 2003-04-22 Frederick Herbert Raab Wideband, minimum-rating filters and multicouplers for power amplifiers
US5959499A (en) * 1997-09-30 1999-09-28 Motorola, Inc. Predistortion system and method using analog feedback loop for look-up table training
US5936464A (en) * 1997-11-03 1999-08-10 Motorola, Inc. Method and apparatus for reducing distortion in a high efficiency power amplifier
US6400774B1 (en) * 1997-12-10 2002-06-04 Matsushita Electric Industrial Co., Ltd. Nonlinearity-caused distortion compensating system
USRE42287E1 (en) * 1998-03-17 2011-04-12 Pixar Stochastic level of detail in computer animation
US6741663B1 (en) * 1998-04-30 2004-05-25 Nokia Corporation Linearization method for amplifier, and amplifier arrangement
US20020101937A1 (en) * 1998-06-26 2002-08-01 Franklin P. Antonio Predistortion technique for high power amplifiers
US6240144B1 (en) * 1998-08-06 2001-05-29 Samsung Electronics Co., Ltd. Apparatus and method of linearizing a power amplifier in a mobile radio communication system
US6301579B1 (en) * 1998-10-20 2001-10-09 Silicon Graphics, Inc. Method, system, and computer program product for visualizing a data structure
US6781951B1 (en) * 1998-10-23 2004-08-24 Koninklijke Philips Electronics N.V. Radio communication system
US6275685B1 (en) * 1998-12-10 2001-08-14 Nortel Networks Limited Linear amplifier arrangement
US6054896A (en) * 1998-12-17 2000-04-25 Datum Telegraphic Inc. Controller and associated methods for a linc linear power amplifier
US7106806B1 (en) * 1999-06-30 2006-09-12 Andrew Corporation Reducing distortion of signals
US6625429B1 (en) * 1999-07-02 2003-09-23 Nec Corporation Mobile radio communication apparatus
US6697436B1 (en) * 1999-07-13 2004-02-24 Pmc-Sierra, Inc. Transmission antenna array system with predistortion
US20020044014A1 (en) * 1999-07-13 2002-04-18 Wright Andrew S. Amplifier measurement and modeling processes for use in generating predistortion parameters
US6751447B1 (en) * 1999-12-30 2004-06-15 Samsung Electronics Cop., Ltd. Adaptive digital pre-distortion circuit using output reference signal and method of operation
US6242979B1 (en) * 2000-02-23 2001-06-05 Motorola, Inc. Linearization using parallel cancellation in linear power amplifier
US6512417B2 (en) * 2000-05-11 2003-01-28 Nortel Networks Limited Linear amplifier arrangement
US20020034260A1 (en) * 2000-09-15 2002-03-21 Lg Electronics Inc. Adaptive predistortion transmitter
US20020179830A1 (en) * 2000-11-01 2002-12-05 Pearson Robert M. Halbach Dipole magnet shim system
US6424225B1 (en) * 2000-11-27 2002-07-23 Conexant Systems, Inc. Power amplifier circuit for providing constant bias current over a wide temperature range
US20020080891A1 (en) * 2000-12-27 2002-06-27 Lg Electronics Base station transmitter having digital predistorter and predistortion method thereof
US20020101938A1 (en) * 2001-02-01 2002-08-01 Masato Horaguchi Predistortion type distortion compensation apparatus
US6677870B2 (en) * 2001-02-21 2004-01-13 Solid Technologies, Inc. Device and method for compensating for nonlinearity of power amplifier with predistortion in IF band
US20020187761A1 (en) * 2001-02-21 2002-12-12 Solid Technologies, Inc. Device and method for compensating for nonlinearity of power amplifier with redistortion in if band
US6983025B2 (en) * 2001-04-11 2006-01-03 Tropian, Inc. High quality power ramping in a communications transmitter
US7321636B2 (en) * 2001-05-31 2008-01-22 Magnolia Broadband Inc. Communication device with smart antenna using a quality-indication signal
US7035345B2 (en) * 2001-06-08 2006-04-25 Polyvalor S.E.C. Adaptive predistortion device and method using digital receiver
US20020193085A1 (en) * 2001-06-15 2002-12-19 Telefonaktiebolaget Lm Ericsson Systems and methods for amplification of a communication signal
US20040240585A1 (en) * 2001-06-15 2004-12-02 John Bishop Time alignment of signals
US7158765B2 (en) * 2001-07-31 2007-01-02 Agere Systems, Inc. Method and apparatus for controlling power of a transmitted signal
US7109998B2 (en) * 2001-10-03 2006-09-19 Sun Microsystems, Inc. Stationary semantic zooming
US7103329B1 (en) * 2001-10-25 2006-09-05 Rockwell Collins, Inc. Adaptive feedback channel for radio frequency power amplifiers
US20030095608A1 (en) * 2001-11-16 2003-05-22 Koninklijke Philips Electronics N.V. Transmitter with transmitter chain phase adjustment on the basis of pre-stored phase information
US6703897B2 (en) * 2001-12-26 2004-03-09 Nortel Networks Limited Methods of optimising power amplifier efficiency and closed-loop power amplifier controllers
US20050159117A1 (en) * 2002-01-15 2005-07-21 Igor Bausov Class-L power-output amplifier
US7061314B2 (en) * 2002-02-01 2006-06-13 Youngwoo Kwon High linearity doherty communication amplifier with phase control
US7248642B1 (en) * 2002-02-05 2007-07-24 Andrew Corporation Frequency-dependent phase pre-distortion for reducing spurious emissions in communication networks
US7079818B2 (en) * 2002-02-12 2006-07-18 Broadcom Corporation Programmable mutlistage amplifier and radio applications thereof
US6747649B1 (en) * 2002-03-19 2004-06-08 Aechelon Technology, Inc. Terrain rendering in a three-dimensional environment
US20030179829A1 (en) * 2002-03-19 2003-09-25 Motorola, Inc. Method and apparatus using base band transformation to improve transmitter performance
US20030179830A1 (en) * 2002-03-25 2003-09-25 Eidson Donald B. Efficient, high fidelity transmission of modulation schemes through power-constrained remote relay stations by local transmit predistortion and local receiver feedback
US20070241812A1 (en) * 2002-05-01 2007-10-18 Dali Systems Co. Ltd. High efficiency linearization power amplifier for wireless communication
US20030207680A1 (en) * 2002-05-01 2003-11-06 Dali Yang System and method for digital memorized predistortion for wireless communication
US6985704B2 (en) * 2002-05-01 2006-01-10 Dali Yang System and method for digital memorized predistortion for wireless communication
US20050079834A1 (en) * 2002-05-31 2005-04-14 Toru Maniwa Table reference type predistorter
US20040017859A1 (en) * 2002-07-25 2004-01-29 Sills James A. Transmitter with limited spectral regrowth and method therefor
US20040057533A1 (en) * 2002-09-23 2004-03-25 Kermalli Munawar Hussein System and method for performing predistortion at intermediate frequency
US6895704B2 (en) * 2003-01-31 2005-05-24 Hni Technologies Inc. Work board assembly
US7064606B2 (en) * 2003-03-28 2006-06-20 Andrew Corporation High efficiency amplifier and method of designing same
US7151913B2 (en) * 2003-06-30 2006-12-19 M/A-Com, Inc. Electromagnetic wave transmitter, receiver and transceiver systems, methods and articles of manufacture
US7042287B2 (en) * 2003-07-23 2006-05-09 Northrop Grumman Corporation System and method for reducing dynamic range and improving linearity in an amplication system
US7109792B2 (en) * 2003-09-17 2006-09-19 Andrew Corporation Table-based pre-distortion for amplifier systems
US7372918B2 (en) * 2003-09-30 2008-05-13 Infineon Technologies Ag Transmission device with adaptive digital predistortion, transceiver with transmission device, and method for operating a transmission device
US7469491B2 (en) * 2004-01-27 2008-12-30 Crestcom, Inc. Transmitter predistortion circuit and method therefor
US20050190857A1 (en) * 2004-03-01 2005-09-01 Braithwaite Richard N. Digital predistortion system and method for linearizing an RF power amplifier with nonlinear gain characteristics and memory effects
US7193472B2 (en) * 2004-04-14 2007-03-20 Mitsubishi Denki Kabushiki Kaisha Power amplifier
US7102442B2 (en) * 2004-04-28 2006-09-05 Sony Ericsson Mobile Communications Ab Wireless terminals, methods and computer program products with transmit power amplifier input power regulation
US20050262498A1 (en) * 2004-05-20 2005-11-24 Ferguson Alan L Systems and methods for remotely modifying software on a work machine
US20060012426A1 (en) * 2004-07-14 2006-01-19 Raytheon Company Performing remote power amplifier linearization
US7104310B2 (en) * 2004-12-27 2006-09-12 Hunter Automated Machinery Corporation Mold making machine with separated safety work zones
US20060270366A1 (en) * 2005-05-24 2006-11-30 Dmitriy Rozenblit Dual voltage regulator for a supply voltage controlled power amplifier in a closed power control loop
US20070075780A1 (en) * 2005-10-05 2007-04-05 Enver Krvavac Apparatus and method for adaptive biasing of a Doherty amplifier
US7831221B2 (en) * 2005-12-13 2010-11-09 Andrew Llc Predistortion system and amplifier for addressing group delay modulation
US20070140101A1 (en) * 2005-12-15 2007-06-21 Nortel Networks Limited System and method for reducing peak-to-average power ratio in orthogonal frequency division multiplexing signals using reserved spectrum
US20070171234A1 (en) * 2006-01-24 2007-07-26 Roger Crawfis System and method for asynchronous continuous-level-of-detail texture mapping for large-scale terrain rendering

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8324953B1 (en) * 2009-10-21 2012-12-04 Vyycore Ltd. Method and a system for signal processing
US9179321B2 (en) 2012-08-09 2015-11-03 Axell Wireless Ltd. Digital capacity centric distributed antenna system
US9794791B2 (en) 2012-08-09 2017-10-17 Axell Wireless Ltd. Digital capacity centric distributed antenna system
US9367828B2 (en) 2012-11-26 2016-06-14 Commscope Technologies Llc Forward-path digital summation in digital radio frequency transport
US9385797B2 (en) 2012-11-26 2016-07-05 Commscope Technologies Llc Flexible, reconfigurable multipoint-to-multipoint digital radio frequency transport architecture
US9787457B2 (en) 2013-10-07 2017-10-10 Commscope Technologies Llc Systems and methods for integrating asynchronous signals in distributed antenna system with direct digital interface to base station
US9750082B2 (en) 2013-10-07 2017-08-29 Commscope Technologies Llc Systems and methods for noise floor optimization in distributed antenna system with direct digital interface to base station
WO2016122204A1 (en) * 2015-01-28 2016-08-04 삼성전자 주식회사 Method and device for controlling power in multi-carrier communication system
US9712343B2 (en) 2015-06-19 2017-07-18 Andrew Wireless Systems Gmbh Scalable telecommunications system
US20170331599A1 (en) * 2016-05-13 2017-11-16 Industrial Technology Research Institute Wireless communication apparatus and the method thereof
US9942011B2 (en) * 2016-05-13 2018-04-10 Industrial Technology Research Institute Wireless communication apparatus and the method thereof
US20180083820A1 (en) * 2016-09-22 2018-03-22 Apple Inc. System and method for peak-to-average power ratio reduction of ofdm signals via weighted gradient-based adaptive peak cancellation
US10084632B2 (en) * 2016-09-22 2018-09-25 Apple Inc. System and method for peak-to-average power ratio reduction of OFDM signals via weighted gradient-based adaptive peak cancellation

Also Published As

Publication number Publication date Type
US9768739B2 (en) 2017-09-19 grant
US8811917B2 (en) 2014-08-19 grant
US20140327481A1 (en) 2014-11-06 application
US20180102747A1 (en) 2018-04-12 application
WO2009122298A2 (en) 2009-10-08 application
US20080265996A1 (en) 2008-10-30 application
WO2009122298A3 (en) 2009-12-17 application

Similar Documents

Publication Publication Date Title
Van Nee et al. Reducing the peak-to-average power ratio of OFDM
Liang et al. Nonlinear amplifier effects in communications systems
US7467338B2 (en) Apparatus and method for generating an error signal
Jiang et al. On the nonlinear companding transform for reduction in PAPR of MCM signals
US20080152037A1 (en) Method and System for Baseband Predistortion Linearization in Multi-Channel Wideband Communication Systems
US7409009B2 (en) Method and apparatus of peak-to-average power ratio reduction
US20070121483A1 (en) Method and system for reducing peak-to-average power for OFDM signals
Armstrong New OFDM peak-to-average power reduction scheme
Deng et al. Recursive clipping and filtering with bounded distortion for PAPR reduction
Zhu et al. Simplified approach to optimized iterative clipping and filtering for PAPR reduction of OFDM signals
US20020101936A1 (en) Systems and methods for the reduction of peak to average signal levels of multi-bearer single-carrier and multi-carrier waveforms
US7319723B2 (en) Apparatus and method for reducing PAPR in an OFDM mobile communication system
JP2005020505A (en) Transmitter
US20100027690A1 (en) Apparatus and method for generating a multicarrier communication signal having a reduced crest factor
US20070140101A1 (en) System and method for reducing peak-to-average power ratio in orthogonal frequency division multiplexing signals using reserved spectrum
US20130315320A1 (en) Multi-Carrier/Technology Peak Power Reduction
US7634024B2 (en) Adaptive peak windowing for crest factor reduction in a communication system transmitter
Ciochina et al. An analysis of OFDM peak power reduction techniques for WiMAX systems
US20080112496A1 (en) Peak-to-average-power reduction of OFDM signals
Ochiai Performance analysis of peak power and band-limited OFDM system with linear scaling
Pratt et al. OFDM link performance with companding for PAPR reduction in the presence of non-linear amplification
US7643801B2 (en) Clipping of transmission signal
CN101136890A (en) Optimized multi-carrier signal slicing device and method therefor
Bo et al. Effects of PAPR reduction on HPA predistortion
Baig et al. PAPR reduction in OFDM systems: Zadoff-Chu matrix transform based pre/post-coding techniques

Legal Events

Date Code Title Description
AS Assignment

Owner name: DALI SYSTEMS CO. LTD., CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KIM, WAN JONG;CHO, KYOUNG JOON;KIM, JONG HEON;AND OTHERS;REEL/FRAME:023092/0568;SIGNING DATES FROM 20090522 TO 20090717