US20090269443A1 - Process for Preparation of Packaged Heat-Preserved Aqueous Drink Comprising Casein Micelles and Tryptophan-Rich Peptides, and Products so obtained - Google Patents
Process for Preparation of Packaged Heat-Preserved Aqueous Drink Comprising Casein Micelles and Tryptophan-Rich Peptides, and Products so obtained Download PDFInfo
- Publication number
- US20090269443A1 US20090269443A1 US12/430,946 US43094609A US2009269443A1 US 20090269443 A1 US20090269443 A1 US 20090269443A1 US 43094609 A US43094609 A US 43094609A US 2009269443 A1 US2009269443 A1 US 2009269443A1
- Authority
- US
- United States
- Prior art keywords
- tryptophan
- composition
- peptide
- peptides
- process according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000765 processed proteins & peptides Proteins 0.000 title claims abstract description 185
- 238000000034 method Methods 0.000 title claims abstract description 59
- 230000008569 process Effects 0.000 title claims abstract description 43
- 239000005018 casein Substances 0.000 title claims abstract description 38
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 235000021240 caseins Nutrition 0.000 title claims abstract description 38
- 239000000693 micelle Substances 0.000 title claims abstract description 38
- 102000004196 processed proteins & peptides Human genes 0.000 title claims description 86
- 238000002360 preparation method Methods 0.000 title description 16
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 claims abstract description 163
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 claims abstract description 162
- 235000018102 proteins Nutrition 0.000 claims abstract description 27
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 27
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 27
- 238000004321 preservation Methods 0.000 claims abstract description 20
- 235000013365 dairy product Nutrition 0.000 claims abstract description 9
- 239000000203 mixture Substances 0.000 claims description 197
- 239000000413 hydrolysate Substances 0.000 claims description 50
- 108010014251 Muramidase Proteins 0.000 claims description 48
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 claims description 48
- 235000010335 lysozyme Nutrition 0.000 claims description 48
- 229960000274 lysozyme Drugs 0.000 claims description 48
- 239000004325 lysozyme Substances 0.000 claims description 48
- 238000009472 formulation Methods 0.000 claims description 34
- 150000001413 amino acids Chemical group 0.000 claims description 27
- 239000007788 liquid Substances 0.000 claims description 26
- 235000013336 milk Nutrition 0.000 claims description 21
- 239000008267 milk Substances 0.000 claims description 21
- 210000004080 milk Anatomy 0.000 claims description 21
- 239000004475 Arginine Substances 0.000 claims description 16
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 16
- 238000004659 sterilization and disinfection Methods 0.000 claims description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 16
- 239000000679 carrageenan Substances 0.000 claims description 14
- 235000010418 carrageenan Nutrition 0.000 claims description 14
- 229920001525 carrageenan Polymers 0.000 claims description 14
- 229940113118 carrageenan Drugs 0.000 claims description 14
- 230000007062 hydrolysis Effects 0.000 claims description 14
- 238000006460 hydrolysis reaction Methods 0.000 claims description 14
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 14
- 239000000843 powder Substances 0.000 claims description 13
- 230000001954 sterilising effect Effects 0.000 claims description 13
- 229920002472 Starch Polymers 0.000 claims description 12
- 235000019698 starch Nutrition 0.000 claims description 12
- 239000008107 starch Substances 0.000 claims description 12
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 9
- 239000004472 Lysine Substances 0.000 claims description 9
- 235000013601 eggs Nutrition 0.000 claims description 9
- 230000003301 hydrolyzing effect Effects 0.000 claims description 9
- 238000009928 pasteurization Methods 0.000 claims description 8
- 229920002907 Guar gum Polymers 0.000 claims description 7
- 229920000161 Locust bean gum Polymers 0.000 claims description 7
- 239000000665 guar gum Substances 0.000 claims description 7
- 235000010417 guar gum Nutrition 0.000 claims description 7
- 229960002154 guar gum Drugs 0.000 claims description 7
- 239000000711 locust bean gum Substances 0.000 claims description 7
- 235000010420 locust bean gum Nutrition 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000000213 tara gum Substances 0.000 claims description 7
- 235000010491 tara gum Nutrition 0.000 claims description 7
- 229920000881 Modified starch Polymers 0.000 claims description 6
- 235000015155 buttermilk Nutrition 0.000 claims description 6
- 235000019426 modified starch Nutrition 0.000 claims description 6
- 102000014171 Milk Proteins Human genes 0.000 claims description 5
- 108010011756 Milk Proteins Proteins 0.000 claims description 5
- 235000021239 milk protein Nutrition 0.000 claims description 5
- 235000020183 skimmed milk Nutrition 0.000 claims description 5
- 230000008719 thickening Effects 0.000 claims description 5
- 239000012141 concentrate Substances 0.000 claims description 4
- 238000004806 packaging method and process Methods 0.000 claims description 4
- 239000012263 liquid product Substances 0.000 claims description 3
- 238000009455 aseptic packaging Methods 0.000 claims description 2
- 239000006172 buffering agent Substances 0.000 claims description 2
- 102000016943 Muramidase Human genes 0.000 claims 3
- 229960004799 tryptophan Drugs 0.000 description 141
- 102100033468 Lysozyme C Human genes 0.000 description 45
- 239000000047 product Substances 0.000 description 26
- 229940024606 amino acid Drugs 0.000 description 25
- 239000000243 solution Substances 0.000 description 15
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 12
- 238000004458 analytical method Methods 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000013049 sediment Substances 0.000 description 10
- 108010009736 Protein Hydrolysates Proteins 0.000 description 9
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 8
- 229920002774 Maltodextrin Polymers 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 235000013305 food Nutrition 0.000 description 8
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 8
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 7
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 7
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 7
- 210000002381 plasma Anatomy 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 239000005913 Maltodextrin Substances 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 6
- 229930195712 glutamate Natural products 0.000 description 6
- 108010021083 hen egg lysozyme Proteins 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 229940035034 maltodextrin Drugs 0.000 description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 5
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 230000002349 favourable effect Effects 0.000 description 5
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 5
- 238000004062 sedimentation Methods 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000000796 flavoring agent Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 230000007935 neutral effect Effects 0.000 description 4
- 239000003531 protein hydrolysate Substances 0.000 description 4
- 238000000746 purification Methods 0.000 description 4
- 239000001509 sodium citrate Substances 0.000 description 4
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- OCUSNPIJIZCRSZ-ZTZWCFDHSA-N (2s)-2-amino-3-methylbutanoic acid;(2s)-2-amino-4-methylpentanoic acid;(2s,3s)-2-amino-3-methylpentanoic acid Chemical compound CC(C)[C@H](N)C(O)=O.CC[C@H](C)[C@H](N)C(O)=O.CC(C)C[C@H](N)C(O)=O OCUSNPIJIZCRSZ-ZTZWCFDHSA-N 0.000 description 3
- 102100030840 AT-rich interactive domain-containing protein 4B Human genes 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 108010016626 Dipeptides Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 101000792935 Homo sapiens AT-rich interactive domain-containing protein 4B Proteins 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- 102000004407 Lactalbumin Human genes 0.000 description 3
- 108090000942 Lactalbumin Proteins 0.000 description 3
- 108090000284 Pepsin A Proteins 0.000 description 3
- 102000057297 Pepsin A Human genes 0.000 description 3
- 108090000787 Subtilisin Proteins 0.000 description 3
- 125000000637 arginyl group Chemical group N[C@@H](CCCNC(N)=N)C(=O)* 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004369 blood Anatomy 0.000 description 3
- 239000008280 blood Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 229940088598 enzyme Drugs 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 235000015203 fruit juice Nutrition 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 229940111202 pepsin Drugs 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 235000014214 soft drink Nutrition 0.000 description 3
- 238000004885 tandem mass spectrometry Methods 0.000 description 3
- 125000000430 tryptophan group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C2=C([H])C([H])=C([H])C([H])=C12 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 235000021241 α-lactalbumin Nutrition 0.000 description 3
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 2
- WUGMRIBZSVSJNP-UFBFGSQYSA-N Ala-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](N)C)C(O)=O)=CNC2=C1 WUGMRIBZSVSJNP-UFBFGSQYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 108090000317 Chymotrypsin Proteins 0.000 description 2
- 102000002322 Egg Proteins Human genes 0.000 description 2
- 108010000912 Egg Proteins Proteins 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 125000003798 L-tyrosyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C1=C([H])C([H])=C(O[H])C([H])=C1[H] 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 108010038807 Oligopeptides Proteins 0.000 description 2
- 102000015636 Oligopeptides Human genes 0.000 description 2
- 108091005804 Peptidases Proteins 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 101710118538 Protease Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 108010046377 Whey Proteins Proteins 0.000 description 2
- 235000021120 animal protein Nutrition 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 229960002376 chymotrypsin Drugs 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 235000014103 egg white Nutrition 0.000 description 2
- 210000000969 egg white Anatomy 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 238000004401 flow injection analysis Methods 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 238000001294 liquid chromatography-tandem mass spectrometry Methods 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 230000003278 mimic effect Effects 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000011176 pooling Methods 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 229960001322 trypsin Drugs 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- QMOQBVOBWVNSNO-UHFFFAOYSA-N 2-[[2-[[2-[(2-azaniumylacetyl)amino]acetyl]amino]acetyl]amino]acetate Chemical compound NCC(=O)NCC(=O)NCC(=O)NCC(O)=O QMOQBVOBWVNSNO-UHFFFAOYSA-N 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- 238000012371 Aseptic Filling Methods 0.000 description 1
- 108010075254 C-Peptide Proteins 0.000 description 1
- 102000018832 Cytochromes Human genes 0.000 description 1
- 108010052832 Cytochromes Proteins 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 240000009088 Fragaria x ananassa Species 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- 125000002707 L-tryptophyl group Chemical group [H]C1=C([H])C([H])=C2C(C([C@](N([H])[H])(C(=O)[*])[H])([H])[H])=C([H])N([H])C2=C1[H] 0.000 description 1
- 102000008192 Lactoglobulins Human genes 0.000 description 1
- 108010060630 Lactoglobulins Proteins 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- MSFSPUZXLOGKHJ-UHFFFAOYSA-N Muraminsaeure Natural products OC(=O)C(C)OC1C(N)C(O)OC(CO)C1O MSFSPUZXLOGKHJ-UHFFFAOYSA-N 0.000 description 1
- 240000008790 Musa x paradisiaca Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- WUGMRIBZSVSJNP-UHFFFAOYSA-N N-L-alanyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)C(N)C)C(O)=O)=CNC2=C1 WUGMRIBZSVSJNP-UHFFFAOYSA-N 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 244000299461 Theobroma cacao Species 0.000 description 1
- 239000005862 Whey Substances 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- 239000012223 aqueous fraction Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 230000004641 brain development Effects 0.000 description 1
- 230000003925 brain function Effects 0.000 description 1
- 150000005693 branched-chain amino acids Chemical class 0.000 description 1
- 235000015496 breakfast cereal Nutrition 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 238000013375 chromatographic separation Methods 0.000 description 1
- 238000011097 chromatography purification Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 235000021245 dietary protein Nutrition 0.000 description 1
- 235000015872 dietary supplement Nutrition 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 239000012149 elution buffer Substances 0.000 description 1
- 230000007071 enzymatic hydrolysis Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- 238000010812 external standard method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- 235000013355 food flavoring agent Nutrition 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-L glutamate group Chemical group N[C@@H](CCC(=O)[O-])C(=O)[O-] WHUUTDBJXJRKMK-VKHMYHEASA-L 0.000 description 1
- 108010001064 glycyl-glycyl-glycyl-glycine Proteins 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000031891 intestinal absorption Effects 0.000 description 1
- 230000000968 intestinal effect Effects 0.000 description 1
- 238000005040 ion trap Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000013580 millipore water Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 238000013365 molecular weight analysis method Methods 0.000 description 1
- 230000036651 mood Effects 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 235000008935 nutritious Nutrition 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 108010082406 peptide permease Proteins 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000002797 proteolythic effect Effects 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 235000021580 ready-to-drink beverage Nutrition 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 235000011888 snacks Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- AIDBEARHLBRLMO-UHFFFAOYSA-M sodium;dodecyl sulfate;2-morpholin-4-ylethanesulfonic acid Chemical compound [Na+].OS(=O)(=O)CCN1CCOCC1.CCCCCCCCCCCCOS([O-])(=O)=O AIDBEARHLBRLMO-UHFFFAOYSA-M 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 235000021119 whey protein Nutrition 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/152—Milk preparations; Milk powder or milk powder preparations containing additives
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/18—Peptides; Protein hydrolysates
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
- A23C11/00—Milk substitutes, e.g. coffee whitener compositions
- A23C11/02—Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins
- A23C11/08—Milk substitutes, e.g. coffee whitener compositions containing at least one non-milk component as source of fats or proteins containing caseinates but no other milk proteins nor milk fats
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23C—DAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING OR TREATMENT THEREOF
- A23C9/00—Milk preparations; Milk powder or milk powder preparations
- A23C9/152—Milk preparations; Milk powder or milk powder preparations containing additives
- A23C9/1526—Amino acids; Peptides; Protein hydrolysates; Nucleic acids; Derivatives thereof
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Preparation or treatment thereof
- A23L2/52—Adding ingredients
- A23L2/66—Proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/19—Dairy proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
Definitions
- the present invention relates to a process to prepare packaged heat-preserved (e.g. pasteurized or sterilized) aqueous drinkable products which comprise casein micelles (e.g. from dairy products) and peptide-fractions, which peptide fractions are rich in tryptophan, and the products so-obtained.
- packaged heat-preserved e.g. pasteurized or sterilized
- aqueous drinkable products which comprise casein micelles (e.g. from dairy products) and peptide-fractions, which peptide fractions are rich in tryptophan, and the products so-obtained.
- Tryptophan is an amino acid present in many proteins, like e.g. whey proteins, but also animal protein contains tryptophan. Tryptophan can be taken up in the blood, and from the blood into the brain, after ingestion of a protein which contains tryptophan. However, tryptophan is not the only amino acid taken up, and in fact when an average animal protein composition is ingested, the level of tryptophan taken up by the brain is so low due to competitive uptake of other amino acids that usually no significant effect can be observed attributable to tryptophan. Hence, most of the reports referred to above either use proteins or protein-fractions rich in tryptophan, or the free amino acid tryptophan (the latter optionally in combination with other free amino acids and/or proteins).
- Tryptophan-rich proteins have natural limits to the level of tryptophan and its ratio to large neutral amino acids, which is relevant for uptake of tryptophan by the brain.
- peptides rich in tryptophan can be a good source to get sufficient tryptophan in the brain for the desired effects and may be easier applied in foodstuffs than free amino acids.
- Such peptides rich in tryptophan are preferably low in amino acids with which competition in uptake into the brain is believed to be high: the so-called large neutral amino acids (LNAA), which are: leucine, isoleucine, valine, tyrosine, phenylalanine (and depending on the definition of LNAA one uses also methionine).
- LNAA large neutral amino acids
- Methionine is considered not to have any beneficial metabolic effect in the context of this invention, and is thus for the purpose of this invention not considered as one of the LNAA.
- WO 02/46210 describes a method for preparing tryptophan-rich peptides with a ratio tryptophan/LNAA of at least 0.3 on weight basis, by hydrolysis of e.g. alpha-lactalbumin and selective precipitation.
- Tryptophan-rich peptide preparations such as e.g. described above can be used in foodstuffs.
- Such foodstuffs can be dry, like a snack bar, or breakfast cereals, or a powder which can be dispersed/dissolved in a liquid like water or milk to obtain a drinkable product.
- liquid products containing tryptophan-sources and preferably a tryptophan-source which is/are a tryptophan-rich peptide fractions, and preferably having a beneficial tryptophan/LNAA ratio
- tryptophan-sources e.g. ready to drink (RTD) products
- RTD ready to drink
- RTD-products which have a mouthfeel and/or texture in the mouth related to or similar to milk
- RTD-products can be aimed at children (e.g. schoolchildren aged 6-12) and a product which (at least in mouthfeel and or texture) mimics (to some extent) milk (that is: more like milk than like e.g. a fruit juice or soft drink) is generally accepted by such children and/or their parents as being a nutritious product.
- colour and flavour can be made up by colourants and/or flavouring agents (and such is quite common for milk-like health drinks aimed at children, like flavouring with chocolate, banana or strawberry), the mouthfeel of milk or milk-like drinks is a bit more difficult to approach. It also requires that the formation of a sediment is preferably minimized, more preferably avoided. Even though a flavouring may be added, the presence of a cooked off-flavour is preferably avoided.
- the RTD is packaged and heat-preserved (e.g. by heat-pasteurization or heat-sterilization).
- the product shows minimal sedimentation upon production, and preferably shows no sedimentation at all upon production.
- DE 4130284 discloses a process for the preparation of proteins having a high nutritional value.
- the process discloses hydrolyzing whey containing alpha-lactalbumin high in tryptophan and cystein by pepsin, and the resulting product is blended with proteins, such as e.g. casein.
- RTD ready to drink
- tryptophan-comprising peptides preferably tryptophan-comprising peptides with a favourable tryptophan/LNAA ratio
- which RTD is heat-preserved, which contains casein-micelles to mimic or approach the mouthfeel or texture of milk or a milk-like product, and which product shows minimal sedimentation upon heat-preservation (such as heat-pasteurization or heat-sterilization) (less than 12% of the proteins sedimenting, preferably less than 6% sedimenting, more preferably free from sedimentation).
- casein micelles when aggregated as they are when in milk
- a heat preservation treatment preferably by heat-pasteurization or heat-sterilization, most preferably by an UHT sterilization treatment.
- the invention furthermore relates to a packaged heat-preserved (preferably heat-pasteurized or heat-sterilized, more preferably heat-sterilized) composition
- a packaged heat-preserved (preferably heat-pasteurized or heat-sterilized, more preferably heat-sterilized) composition comprising:
- tryptophan-comprising peptide composition having a level of tryptophan of 1-10% (by weight, on the tryptophan-containing peptides), which composition has a pH of 6 to 8.1, preferably 6.2 to 7.5, more preferably of 6.5 to 7.
- the heat preservation treatment comprises pasteurization by heat, or sterilization by heat, and most preferred UHT sterilization treatment.
- tryptophan-comprising peptide composition for use in such RTD formulation, which tryptophan-comprising peptide composition has a favourable level of tryptophan and a favourable level of tryptophan/LNAA (LNAA as expressed by the sum of tyrosine, phenylalanine, leucine, isoleucine, and valine), as well as a preparation method for such tryptophan source.
- LNAA tryptophan/LNAA
- the tryptophan-comprising peptide composition preferably comprises tryptophan-containing peptides which can be obtained by process to produce a composition comprising a water-soluble, tryptophan-comprising peptide, preferably at least two water-soluble, tryptophan-containing peptides, and preferably having a tryptophan/LNAA ratio of more than 0.15, preferably between 0.15 and 1.8, which comprises hydrolyzing lysozyme, preferably hen eggs lysozyme, to prepare a hydrolysate having a DH of between 5 and 45, and optionally removing part of the arginine or lysine containing peptides.
- such tryptophan-comprising peptides for use in the RTD formulation according to the present invention comprises AW or GNW, more preferably AW and GNW.
- Said hydrolysate has preferably a DH between 10 and 40.
- the tryptophan-comprising peptide composition is preferably in the form of a composition comprising at least two different water-soluble peptides and wherein the molar tryptophan/LNAA ratio of the composition is at least 0.15, preferably between 0.15 and 1.8.
- this tryptophan-comprising peptide composition comprises AW or GNW, preferably AW and GNW and most preferably AW and GNW whereby the molar ratio of AW to GNW is between 1 to 2 and 10 to 1, preferably between 1 to 2 and 5 to 1.
- the tryptophan-comprising peptide composition is preferably in the form of a composition of water-soluble peptides which are rich in tryptophan.
- the tryptophan-containing peptide composition preferably comprise at least two different di- or tripeptides, whereby two peptides selected from di- or tripeptides are present in an amount of at least 5 mol % of the total amount of di- and tripeptides, and in which tryptophan-comprising peptide composition more than 30 mol %, preferably more than 40 mol %, more preferably more than 50 mol %, even more preferably more than 60 mol %, still more preferably more than 70 mol % and most preferably more than 80 mol % of the peptide-bound tryptophan is present in the form of a di- or a tripeptide, preferably the tryptophan-comprising peptide composition has a trypto
- the tryptophan-comprising peptide composition which is preferably used in the RTD formulation according to the present invention is preferably a lysozyme hydrolysate or a purified lysozyme hydrolysate.
- said lysozyme hydrolysate is particularly rich in arginine residues.
- Arginine does not belong to the group large, neutral amino acids (LNAA's) but is known for its insulin stimulating effect. It has been found that the hydrolysate as herein disclosed can generate in vivo high blood plasma tryptophan/LNAA ratios. The tryptophan/LNAA ratios detected in blood plasma, were found to be higher than the tryptophan/LNAA ratio of the hydrolysate.
- tryptophan-containing peptide composition herein described is that the tryptophan-containing peptides are very small so that even in combination with protein-rich products with less favorable tryptophan/LNAA ratios, the hydrolysate can immediately generate high blood plasma tryptophan/LNAA ratios. This thus makes such tryptophan-containing peptide composition well suitable in the RTD formulations of the present invention.
- the tryptophan-containing peptide composition as used in the RTD formulation of the present invention may further comprise free tryptophan.
- the hydrolysate of the tryptophan-containing peptide composition does not contain more than 1 wt % (on dry matter) of free tryptophan.
- any particular upper concentration can be associated with any particular lower concentration or amount.
- the pH of the mixture to be subjected to the heat preservation should be within a certain limit.
- the pH may already by in the desired range, but in many cases it will be desired to adjust the pH of the matter which is to be subjected to heat preservation (e.g. pasteurization or sterilization, preferably UHT sterilization) is adjusted to the value as specified above.
- Such adjustment can be achieved by any suitable means, e.g. by adding an alkaline or buffering agent to e.g.
- the mixture to be heat preserved preferably pasteurized or sterilized, most preferably UHT sterilized
- the heat preservation preferably by heat-pasteurization or heat sterilization, most preferably by UHT sterilization
- UHT sterilization is herein to be understood as is known in the art: temperatures in the range of 120-150° C., for sufficient length of time to achieve an F 0 value of at least 3, preferably at least 5.
- the pH of the mixture subjected to the heat preservation (preferably UHT sterilization) treatment is preferably between 6.2 to 7.5, preferably to 6.5 to 7.
- the composition preferably comprises comprising 0.5-3% (dry weight, on total liquid composition) casein micelles, preferably 0.6-2%.
- a pH of 6.2 to 7.5 preferably to 6.5 to 7 with a concentration of casein micelles of 0.5-3% (dry weight, on total liquid composition) casein micelles, preferably 0.6-2%.
- a pH of 6.5 to 7 in combination with a concentration of casein micelles of 0.5-2%, even more preferably 0.6-2% (dry weight, on total liquid composition).
- the composition preferably further comprises 0.01-0.1% (preferably 0.01 to 0.08%, more preferably 0.02 to 0.05%, by weight based on the total composition) of a thickening gum selected from the group consisting of: carrageenan, locust bean gum, guar gum, tara gum, or mixtures thereof, as such may further support the mouthfeel and/or texture in the mouth to be close to milk or dairy products (that is: closer to milk or dairy products than e.g. fruit juices or soft drinks).
- a thickening gum selected from the group consisting of: carrageenan, locust bean gum, guar gum, tara gum, or mixtures thereof, as such may further support the mouthfeel and/or texture in the mouth to be close to milk or dairy products (that is: closer to milk or dairy products than e.g. fruit juices or soft drinks).
- carrageenan in said concentrations is most preferred.
- a thickening gum selected from the group consisting of: carrageenan, locust bean gum, guar gum, tara gum, or mixtures thereof (preferably carrageenan) in combination with a pH of the mixture to be sterilized and/or the RTD formulation of 6.2 to 7.5, preferably to 6.5 to 7 and/or with a concentration of casein micelles of 0.5-3% (dry weight, on total liquid composition) casein micelles, preferably 0.6-2%, and in particular in combination of a pH of 6.5 to 7 (of the mixture to be sterilized and/or the end product) and with a concentration of casein micelles of 0.5-2%, even more preferably 0.6-2% (dry weight, on total liquid composition).
- a thickening gum selected from the group consisting of: carrageenan, locust bean gum, guar gum, tara gum, or mixtures thereof (preferably carrageenan) in combination with a pH of the mixture to be sterilized and/or the RTD formulation of 6.2 to 7.5,
- the composition may comprise 0.5-5% (preferably 0.5-3%, more preferably 0.8-2%, by weight based on the total composition) of a starch or starch derivative or starch hydrolysate, preferably maltodextrine.
- a starch or starch derivative or starch hydrolysate preferably maltodextrine.
- maltodextrin may be employed over the larger ranges.
- Presence of starch or a starch derivative or hydrolysate like maltodextrin can be preferred for the same reason as the application of gums as set out above, and in the same combinations with preferred pH ranges and/or casein micelle concentrations.
- the casein micelles may be from any suitable source, such as for example from concentrated milk, milk, milk powder, skimmed milk powder, butter milk, butter milk powder, milk protein concentrate, milk protein isolate, and/or mixtures thereof.
- the heat-preserved (preferably UHT-treated) product is to be aseptically packaged, which can be in any suitable packaging, preferably such packaging is a Tetrapak, DOY pack (pouch), bottle, bag, or can.
- the tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention provides a composition comprising tryptophan present in peptide form which is very suitable for giving an effective increase of the tryptophan/LNAA ratio in plasma in a very short time interval.
- the di- and tripeptides comprising tryptophan advantageously contribute to this increase.
- lysozyme, preferably hen egg lysozyme is enzymatically (pre-)hydrolyzed in an industrial process i.e. (hen egg) lysozyme is preferably provided in the form of a hydrolysate.
- hen egg lysozyme is converted into a hydrolysate in which the levels of peptides comprising the positively charged arginine and lysine residues have been lowered.
- the latter hydrolysates are characterized by molecular tryptophan/LNAA ratios higher than 0.15.
- hen egg lysozyme is converted to a hydrolysate comprising a peptide population of which more than 50%, preferably more than 60%, more preferably more than 75% of the peptides present have a molecular weight below 500 Da.
- a hydrolysate comprising a peptide population of which more than 50%, preferably more than 60%, more preferably more than 75% of the peptides present have a molecular weight below 500 Da.
- the molecular weight distribution of the 25 peptides present in the hydrolysate is carried out as described in the Materials & Methods section of the present application.
- the preferred tryptophan/LNAA ratio (of at least 0.15): the amino acid analysis of the hydrolysate is carried out as described in the Materials & Methods section of the present application.
- a “protein” or “polypeptide” is defined herein as a chain comprising more than 30 amino acid residues.
- a “peptide” or “oligopeptide” is defined herein as a chain of at least two amino acids that are linked through peptide bonds.
- the terms “peptide” and “oligopeptide” are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires.
- a “water-soluble” peptide is a peptide which is soluble in water at a pH of 5.0.
- protein hydrolysate hydrolysate or hydrolyzed protein is meant the product that is formed by enzymatic hydrolysis of the protein, an enriched hydrolysate being a fraction of the protein hydrolysate for example enriched in selected peptides or wherein peptides or polypeptides have been removed from the hydrolysate.
- an enriched hydrolysate is preferably a mixture of peptides (or a peptide mixture).
- the peptide mixture of the invention is therefore a mixture of at least two, preferably at least three, more preferably at least four tryptophan containing peptides.
- the mixture comprises a peptide population of which more than 50%, preferably even more than 60%, and most preferably more than 75% of the peptides present have a molecular weight below 500 Da.
- a tryphophan containing peptide means a peptide which comprises at least one L-tryptophan amino acid residue.
- the tryptophan/LNAA ratio represents the molar ratio of tryptophan relative to the levels of other Large Neutral Amino Acids (LNAA:, i.e. the sum of tyrosine, phenylalanine, leucine, isoleucine and valine). Except for the plasma tryptophan/LNAA ratio, the tryptophan/LNAA ratio relates only to peptide-bound amino acids. Thus free tryptophan, tyrosine, phenylalanine, leucine, isoleucine and valine are not taken into account in the tryptophan/LNAA ratio.
- Peptide-bound amino acids are amino acids which are part of a peptide and not free amino acids.
- the Tyr/BCAA ratio represents the molar ratio of tyrosine relative to the levels of branched chain amino acids (BCAA; i.e. the sum of leucine, isoleucine and valine).
- BCAA branched chain amino acids
- the Tyr/BCAA ratio is higher than 0.1, preferably higher than 0.12.
- the tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention can be produced by a process as disclosed herein, and has a tryptophan yield of more than 30% on protein tryptophan basis and generates a water soluble peptide composition comprising tryptophan.
- Said tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention may also generate higher blood plasma tryptophan/LNAA ratios than the tryptophan/LNAA ratio of the actual hydrolysate.
- the tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention is also characterized by a very low antigenicity.
- tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention hen egg lysozyme is preferably used as a convenient substrate for providing preparations with a high tryptophan/LNAA ratio. Lysozyme is present in egg white in a concentration of 3-4%. By taking advantage of its exceptionally high isoelectric point, lysozyme is industrially isolated from egg white using a simple cation chromatographic purification step. The resulting product is almost pure and this industrially available product has a molecular tryptophan content of 7.8% and molecular tryptophan/LNAA ratio of at least 0.15.
- the lysozyme hydrolysates for the tryptophan-comprising peptide composition preferably used in the RTD formulation (and thus the tryptophan-comprising peptide composition themselves preferably used in the RTD formulation) of the present invention may have a molar tryptophan/LNAA ratio which is higher than 0.15, more preferably the tryptophan/LNAA ratio is higher than 0.20, even more preferably the tryptophan/LNAA ratio is higher than 0.23, still more preferably the tryptophan/LNAA ratio is higher than 0.25 and most preferably the tryptophan/LNAA ratio is higher than 0.30.
- Lysozyme (EC3.2.1.17) is an enzyme able to hydrolyze specific peptidoglycan bonds in bacterial cell walls leading to cell lysis.
- the hydrolysate preferably used for the tryptophan-comprising peptide composition in the RTD formulation according to the present invention is also effective if incorporated into high protein containing food matrices as presented by, for example, dairy products.
- protein containing food matrices represent high LNAA loads and thus can be expected to reduce the effect of products with high tryptophan/LNAA ratios.
- a possible explanation for this unexpected phenomenon is that the usual food products incorporate intact, rather than extensively hydrolyzed proteins.
- the majority of the tryptophan and tyrosine incorporating peptides of the preferred tryptophan-comprising peptide composition has a molecular weight below 500 Da.
- the lysozyme preferably hen egg lysozyme is enzymatically (pre-) hydrolyzed in an industrial process i.e. (hen egg) lysozyme is preferably provided in the form of a hydrolysate or an enriched hydrolysate.
- hen egg lysozyme is preferably provided in the form of a hydrolysate or an enriched hydrolysate.
- hen egg lysozyme is converted to a hydrolysate or enriched hydrolysate comprising a tryptophan comprising peptide population of which more than 50%, preferably more than 60%, more preferably more than 75% of the peptides present have a molecular weight below 500 Da.
- a hydrolysate or enriched hydrolysate comprising a tryptophan comprising peptide population of which more than 50%, preferably more than 60%, more preferably more than 75% of the peptides present have a molecular weight below 500 Da.
- an (enriched) hydrolysate does not contain more than 1 wt % (on dry matter) of free tryptophan.
- the molecular weight analysis of the tryptophan comprising peptides present in the hydrolysate is carried out as described in the Materials & Methods section.
- the tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention is fractionated in order to increase the tryptophan content of a fraction of the hydrolysate.
- This fraction or enriched hydrolysate has preferably an increased tryptophan/LNAA ratio as compared to the hydrolysate before fractionation.
- the enrichment of the hydrolysate or enriched hydrolysate with additional free tryptophan also forms part of the present invention.
- an enriched lysozyme hydrolysate according to the invention can be produced.
- an endoprotease having the right cleavage preference such as subtilisin
- an endoprotease having the right cleavage preference such as subtilisin
- incubation conditions that yield a high amount of di- and tri-peptides incorporating tryptophan but almost no arginine or lysine residues
- an enriched lysozyme hydrolysate can be produced.
- LNAA-containing peptides incorporating arginine or lysine residues can be separated from tryptophan containing peptides that do not have such basic residues.
- peptides without such a basic residue will have no charge and, therefore, a reduced hydrophilicity.
- pH of the hydrolysate a value between 4 and 6, more preferably between 5.0 and 5.5
- peptides without such a basic residue will have no charge and, therefore, a reduced hydrophilicity.
- Charged arginine or lysine incorporating peptides can be removed by known techniques such as ion chromatography, hydrophobic interaction chromatography or electrodialysis.
- a practical background on the use of such characteristics in the chromatographic separation of the relevant peptides, can be found in a.o. the Protein Purification Handbook (issued by Amersham Pharmacia Biotech, nowadays GE Healthcare Bio-Sciences, Diegem, Belgium).
- the presence of amino acids with acid side groups such as glutamate (Glu) and aspartate (Asp) residues in lysozyme is advantageously used.
- the pH of the lysozyme hydrolysate according to the invention is first adjusted to 3.0 and then chromatographed over a cation resin. At this pH value, peptides incorporating a Glu or Asp will run through the column, other peptides will bind. A subsequent elution with a pH 5 buffer will desorb all bound peptides without a lysine or an arginine residue as described. The majority of the tryptophan containing peptides will be in this desorbed fraction. The remaining bound peptides can then be removed from the column by elution with a buffer with an even higher pH value.
- the recovery of the tryptophan enriched peptides from resulting aqueous fractions can be done by methods that are known in the art. In order to obtain concentrated and shelf stable products, the recovery preferably incorporates an evaporation and (spray) drying step. Also nanofiltration and extraction processes involving organic solvents followed by evaporation/precipitation steps present options for the desired purification.
- the recovery of the tryptophan enriched peptides from organic solvents is preferably carried out by evaporation of the solvent.
- lysozyme hydrolysates as are preferably used in the RTD formulation of the present invention also can be obtained under such less favorable acid conditions.
- relatively harsh incubation conditions are required, such as much higher enzyme concentrations, higher temperatures and optionally additional endoproteases.
- a lysozyme hydrolysate obtained by incubating lysozyme at an alkaline pH with subtilisin was found particularly rich in the Ala-Trp (AW) dipeptide.
- Subtilisin under the commercial name of “Protex 6L” was obtained from Genencor (Leiden, The Netherlands), pepsin from Sigma and the mixture of trypsin/chymotrypsin (Porcine PEM) from Novozymes (Bagsvaerd, Denmark). Lysozyme was obtained as Delvozyme L (22% dry matter) from DSM Food Specialities (Delft, The Netherlands).
- the purity of the lysozyme preparations used was checked by SDS-PAGE. All materials used for SDS-PAGE and staining were purchased from Invitrogen (Carlsbad, Calif., US). Samples were prepared using SDS buffer according to manufacturers instructions and separated on 12% Bis-Tris gels using MES-SDS buffer system according to manufacturers instructions. Staining was performed using Simply Blue Safe Stain (Collodial Coomassie G250). Prior to hydrolysis the lysozyme appeared as a single band with a molecular weight of approx. 14 kDa on the gel.
- HPLC using an ion trap mass spectrometer (Thermo Electron, Breda, the Netherlands) coupled to a P4000 pump (Thermo Electron, Breda, the Netherlands) was used to determine the presence of tryptophan containing peptides (mainly di- and tri peptides) in the enzymatic protein hydrolysates produced by the process according to the invention.
- the peptides formed were separated using an Inertsil 3 ODS 3, 3 ⁇ m, 150*2.1 mm column (Varian Belgium, Belgium) in combination with a gradient of 0.1% formic acid in Milli Q water (Millipore, Bedford, Mass., USA; Solution A) and 0.1% formic acid in acetonitrile (Solution B) for elution.
- the gradient started at 100% of Solution A, kept here for 10 minutes, increasing linear to 20% B in 25 minutes and immediately going to the starting conditions, and kept here 15 minutes for stabilization.
- the injection volume used was 50 microliter, the flow rate was 200 microliter per minute and the column temperature was maintained at 55° C.
- Quantification of specific tryptophan containing peptides is performed by using an external standard method.
- Total Kjeldahl Nitrogen was measured by Flow Injection Analysis.
- a sample amount corresponding with the dynamic range of the method (0.5-20 mg N/l) was placed in the digestion tube together with 95-97% sulphuric acid and a Kjeltab subjected to a digestion program of 30 minutes at 200 degrees C. followed by 90 minutes at 360 degrees C.
- the nitrogen peak is measured from which the amount of protein measured can be inferred.
- the column used for this analysis was a Superdex Peptide HR 10/300 GL (Amersham) equilibrated with 20 mM Sodium Phosphate/250 mM Sodium Chloride pH 7.0 buffer. After injecting a sample (typically 50 microliter) the various components were eluted from the column with buffer in 90 min at a flow rate of 0.5 ml/min. The system was calibrated using a mixture of cytochrome C (Mw 13 500 Da), aprotinin (Mw 6510 Da) and tetra-glycine (Mw 246 Da) as molecular weight markers.
- the tryptophan-comprising peptide composition preferably comprises a peptide composition having a tryptophan to LNAA (weight) ratio of at least 0.1, preferably at least 0.15, more preferably 0.15-1.8, and preferably such is obtained by a process which comprises hydrolyzing lysozyme, more preferably hen eggs lysozyme, to prepare a hydrolysate having a DH of between 5 and 45, and optionally removing part of the arginine or lysine containing peptides.
- the tryptophan-comprising peptide composition preferably comprises AW or GNW, preferably AW and GNW (wherein the molar ratio of AW to GNW is preferably between 1 to 2 and 10 to 1, more preferably between 1 to 2 and 5 to 1).
- the tryptophan-comprising peptide composition comprises a peptide composition having a tryptophan to LNAA (weight) ratio of at least 0.1, preferably at least 0.15, more preferably 0.15-1.8, and preferably such is obtained by a process which comprises hydrolyzing lysozyme (more preferably hen eggs lysozyme, to prepare a hydrolysate having a DH of between 5 and 45, and optionally removing part of the arginine or lysine containing peptides, and/or preferably the tryptophan-comprising peptide composition preferably comprises AW or GNW, more preferably AW and GNW, wherein the molar ratio of AW to GNW is preferably between 1 to 2 and 10 to 1, more preferably between 1 to 2 and 5 to 1), and which may further comprises 0.01-0.1% (preferably 0.01 to 0.08%, more
- a tryptophan-containing peptide composition which comprises a peptide composition having a tryptophan to LNAA (weight) ratio of at least 0.1, preferably at least 0.15, more preferably 0.15-1.8, and which may be obtained by a process which comprises hydrolyzing lysozyme, in combination with a pH of the mixture to be heat-preserved (preferably sterilized) and/or the RTD-formulation of 6.2 to 7.5, preferably to 6.5 to 7 and/or with a concentration of casein micelles of 0.5-3% (dry weight, on total liquid composition) casein micelles, preferably 0.6-2%, and in particular in combination of a pH of 6.5 to 7 and with a concentration of casein micelles of 0.5-2%, even more preferably 0.6-2% (dry weight, on total liquid composition).
- the composition may further comprise 0.5-5% (preferably 0.5-3%, more preferably 0.8-2%, by weight based on the total composition) of a starch or starch derivative or starch hydrolysate, preferably maltodextrine.
- a starch or starch derivative or starch hydrolysate preferably maltodextrine.
- maltodextrin may be employed over the larger ranges (0.5-5%).
- the tryptophan-comprising peptide preparation comprises at least two different peptides selected from di- or tripeptides, whereby two peptides selected from di- or tripeptides are each present in an amount of at least 5 mol % of the total amount of di- and tripeptides, and in which more than 30 mol % of the total tryptophan is present as peptide bound tryptophan, and preferably more than 40 mol %, more preferably more than 50 mol %, even more preferably more than 60 mol %, still more preferably more than 70 mol % and most preferably more than 80 mol % of the peptide-bound tryptophan is present in the form of a di- or a tripeptide, preferably the composition has a tryptophan/LNAA ratio of more than 0.15, preferably between 0.15 and 1.8.
- tryptophan-comprising peptide formulation is preferably obtained by a process which comprises hydrolyzing lysozyme (more preferably hen eggs lysozyme, to prepare a hydrolysate having a DH of between 5 and 45, and optionally removing part of the arginine or lysine containing peptides, and/or preferably the tryptophan-comprising peptide composition preferably comprises AW or GNW, more preferably AW and GNW, wherein the molar ratio of AW to GNW is preferably between 1 to 2 and 10 to 1, more preferably between 1 to 2 and 5 to 1).
- the invention further relates to a food, pet food, feed, dietary supplement or neutraceutical composition and/or enteral composition comprising the RTD-formulation as herein disclosed.
- a solution containing 10% (w/w) pure lysozyme was adjusted to pH 8.2 using NaOH and heated to 52 degrees C. Hydrolysis was started by adding 25 microliter of Protex/g of protein present. Under continuous stirring and maintaining the pH at 8.2, the hydrolysis was continued for 5.5 hours to yield an almost clear solution without a visible precipitate. After a heating step to inactivate the Protex activity, a sample was taken for DH analysis. The DH of the solution turned out to be almost 30%. The heat treated solution was ultrafiltered over a 10 kDa filter to yield a completely clear liquid. This clear liquid was used for LC/MS analysis, for molecular weight distribution of peptides and proteins present as well as for ion exchange chromatography.
- LC/MS analysis was carried out according to the procedure as described in the Materials & Methods section. By selecting for those peptides containing a tryptophan (“W”), peptides AW, GNW, WIR, NAW, WVA, VAW, AWR, SLGNW and minor quantities of WW and SRWW could be detected. The level of free tryptophan in the hydrolysate after incubation was established to represent less than 1% of the total (lysozyme) tryptophan present.
- W tryptophan
- Lysozyme incorporates a surprising high amount of the basic arginine and lysine residues. Furthermore the lysozyme molecule incorporates a significant number of the acid glutamate and aspartate residues.
- This data has been used to devise an innovative and elegant purification route towards hydrolysates featuring high tryptophan/LNAA ratios. Essential requirement for this purification route is, however, that only very few of the tryptophan residues show up in peptides also containing either an arginine or lysine residue or a glutamate or aspartate residue.
- the specific hydrolysis route used here yields only few tryptophan containing peptides containing an arginine residue and no peptides containing a lysine, glutamate or aspartate residue.
- a lysozyme hydrolysate was prepared according to the procedure specified in Example 1. Then, the pH of the hydrolysate was adjusted to pH 3.1 using acetic acid and approximately 0.5 gram of protein was applied to a 15 ml bed volume of SP Sepharose FF (GE Healthcare, Diegem, Belgium) column equilibrated with 20 mm sodium citrate pH 3.1. After washing the column with one column volume of the sodium citrate buffer to remove the majority of the peptides incorporating a glutamate or aspartate, the elution buffer was changed to a 20 mm sodium citrate buffer pH 5.1.
- SP Sepharose FF GE Healthcare, Diegem, Belgium
- Example 2 In larger scale lysozyme hydrolysis procedures, essentially the procedure as described in Example 1 was followed with some minor modifications.
- a solution containing 7.3% (w/w) pure lysozyme was heated to 65 degrees C. after which the pH was adjusted to pH 8.2 using NaOH.
- Hydrolysis was started by adding 25 microliter of Protex 6 L/g dry matter. Under continuous stirring and maintaining the pH at 8.2 and the temperature at 53 degrees C., the hydrolysis was continued for 2 hours. Then the pH value was increased to 9.0 and incubation was pursued for another 3.5 hours to yield a solution with some precipitate. Then the pH of the solution was lowered to 4.5 and the solution was cooled to below 4 degrees C.
- the liquid was filtered over a Z 2000 filter (Pall) and subsequently excess water and salt was removed via nanofiltration.
- the resulting concentrate was then subjected to an UHT treatment of 7 seconds at 120 degrees C., evaporated and finally spray dried to obtain the lysozyme hydrolysate in a dry form.
- the product thus obtained has a molar tryptophan/LNAA ratio of about 0.19.
- a peptide composition comprising peptides with tryptophan was prepared along the lines as set out in example 3.
- the product obtained was an aqueous liquid having a peptide level of about 83%, a peptide-bound tryptophan content of about 5.5%, and having a TRP/LNAA ratio of about 0.19.
- Said product had the appearance of a light yellow powder, and gave, upon dissolving as 1% in water, a solution having a pH of about 4.3.
- compositions were subjected to in-line UHT (ultra high temperature) sterilization with heating to 143° C. ( ⁇ 1° C.) for about 8 to 8.5 seconds, which is sufficient for an F 0 value of 6 to 8.
- the products were filled in transparent bottles of 350 ml volume (about 250 ml of liquid), and after 24 hours it was checked if a sediment had formed, and if yes how much (measured in cm, which was calculated to a lo percentage of the height of the drink in the bottle).
- a peptide composition comprising peptides with tryptophan was prepared along the lines as set out in example 4, and which was manufactured with the same processing, except for that the UHT treatment was at a lower temperature, of 125° C. ( ⁇ 1° C.).
- the composition of the samples is in table 3.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Nutrition Science (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Mycology (AREA)
- Biochemistry (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Non-Alcoholic Beverages (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
Abstract
A process to prepare packaged pasteurized or sterilized aqueous drinkable products which comprise casein micelles (e.g. from dairy protein) and peptide-fractions, which peptide fractions are rich in tryptophan, and the products so-obtained. The process requires a heat preservation at a specific pH.
Description
- The present invention relates to a process to prepare packaged heat-preserved (e.g. pasteurized or sterilized) aqueous drinkable products which comprise casein micelles (e.g. from dairy products) and peptide-fractions, which peptide fractions are rich in tryptophan, and the products so-obtained.
- Recently, there have been various reports on the benefit which tryptophan is believed to have on several aspects of human behaviour, mood, brain function, brain development, when such tryptophan is taken up by the brain. Examples of such reports are WO 99/55174, WO 00/42868, WO 2005/023017.
- Tryptophan is an amino acid present in many proteins, like e.g. whey proteins, but also animal protein contains tryptophan. Tryptophan can be taken up in the blood, and from the blood into the brain, after ingestion of a protein which contains tryptophan. However, tryptophan is not the only amino acid taken up, and in fact when an average animal protein composition is ingested, the level of tryptophan taken up by the brain is so low due to competitive uptake of other amino acids that usually no significant effect can be observed attributable to tryptophan. Hence, most of the reports referred to above either use proteins or protein-fractions rich in tryptophan, or the free amino acid tryptophan (the latter optionally in combination with other free amino acids and/or proteins).
- Use of tryptophan as free amino acids has disadvantages, in that food legislation in many countries limits the use of tryptophan as free amino acid in foodstuffs.
- Tryptophan-rich proteins have natural limits to the level of tryptophan and its ratio to large neutral amino acids, which is relevant for uptake of tryptophan by the brain.
- Recent insight is that peptides rich in tryptophan can be a good source to get sufficient tryptophan in the brain for the desired effects and may be easier applied in foodstuffs than free amino acids. Such peptides rich in tryptophan are preferably low in amino acids with which competition in uptake into the brain is believed to be high: the so-called large neutral amino acids (LNAA), which are: leucine, isoleucine, valine, tyrosine, phenylalanine (and depending on the definition of LNAA one uses also methionine). Hence, it is preferred to make and use peptide preparations which contain a high level of tryptophan and have a high ratio tryptophan/LNAA. Methionine is considered not to have any beneficial metabolic effect in the context of this invention, and is thus for the purpose of this invention not considered as one of the LNAA.
- WO 02/46210 describes a method for preparing tryptophan-rich peptides with a ratio tryptophan/LNAA of at least 0.3 on weight basis, by hydrolysis of e.g. alpha-lactalbumin and selective precipitation.
- Tryptophan-rich peptide preparations such as e.g. described above can be used in foodstuffs. Such foodstuffs can be dry, like a snack bar, or breakfast cereals, or a powder which can be dispersed/dissolved in a liquid like water or milk to obtain a drinkable product.
- There is also a desire to manufacture liquid products containing tryptophan-sources (and preferably a tryptophan-source which is/are a tryptophan-rich peptide fractions, and preferably having a beneficial tryptophan/LNAA ratio) which are e.g. ready to drink (RTD) products as there is an increasing tendency in e.g. Europe to provide functional foods in the form of ready to drink beverages. For reasons of nutrition and/or for ease of formulation into drinks consumed (or likely to be consumed) by children and/or bought by parents to give to their children, presence in such RTD formulation of dairy components like casein micelles is preferred.
- In particular, there is a desire for such RTD products which have a mouthfeel and/or texture in the mouth related to or similar to milk, as e.g. such RTD-products can be aimed at children (e.g. schoolchildren aged 6-12) and a product which (at least in mouthfeel and or texture) mimics (to some extent) milk (that is: more like milk than like e.g. a fruit juice or soft drink) is generally accepted by such children and/or their parents as being a nutritious product. Whilst colour and flavour can be made up by colourants and/or flavouring agents (and such is quite common for milk-like health drinks aimed at children, like flavouring with chocolate, banana or strawberry), the mouthfeel of milk or milk-like drinks is a bit more difficult to approach. It also requires that the formation of a sediment is preferably minimized, more preferably avoided. Even though a flavouring may be added, the presence of a cooked off-flavour is preferably avoided.
- In addition to the milk-like mouthfeel or texture in the mouth, it is also desired that the RTD is packaged and heat-preserved (e.g. by heat-pasteurization or heat-sterilization). In addition to that, it is desired that the product shows minimal sedimentation upon production, and preferably shows no sedimentation at all upon production.
- DE 4130284 discloses a process for the preparation of proteins having a high nutritional value. The process discloses hydrolyzing whey containing alpha-lactalbumin high in tryptophan and cystein by pepsin, and the resulting product is blended with proteins, such as e.g. casein.
- Hence, there was a desire to develop a RTD (ready to drink) composition rich in tryptophan-comprising peptides, preferably tryptophan-comprising peptides with a favourable tryptophan/LNAA ratio, which RTD is heat-preserved, which contains casein-micelles to mimic or approach the mouthfeel or texture of milk or a milk-like product, and which product shows minimal sedimentation upon heat-preservation (such as heat-pasteurization or heat-sterilization) (less than 12% of the proteins sedimenting, preferably less than 6% sedimenting, more preferably free from sedimentation).
- Hence, formation of a sediment is preferably avoided or minimized. To achieve such, it was found that the presence of at least 0.5% of casein micelles (when aggregated as they are when in milk) can, at least in part, mimic the mouthfeel and/or texture in the mouth, of milk or a milk-like drink. However, wishing to achieve the desired preservation and/or shelf stability and avoiding the cooked off-flavour, necessitates a heat preservation treatment, preferably by heat-pasteurization or heat-sterilization, most preferably by an UHT sterilization treatment.
- This was achieved (at least in part) by a process for preparing a packaged, aqueous liquid composition comprising 0.5-4% (dry weight, on total liquid composition) of casein micelles and 0.1-5% (dry weight, on total liquid composition) of tryptophan-containing peptide composition having a level of tryptophan of 1-10% (by weight, on the tryptophan-containing peptides), which process involves the steps of:
-
- obtaining mixture comprising water (preferably 50-97% by weight based on the total composition), 0.5-4% (dry weight) casein micelles, and 0.1-5% (dry weight) tryptophan-containing peptide composition having a level of tryptophan of 1-10% (by weight, on the tryptophan-containing peptides),
- subjecting said mixture to a heat preservation treatment at a temperature of 80-150° C., preferably 120-150° C.,
- packaging the so-obtained liquid product by aseptic packaging,
wherein the mixture subjected to the heat preservation treatment has a pH of below 8.1 and above the pH given by the relationship (in which formula casein micelles is expressed as weight % on total formulation):
-
pH>0.02*T(° C.)+0.23*(casein micelles in dry weight %)+3.8. - The invention furthermore relates to a packaged heat-preserved (preferably heat-pasteurized or heat-sterilized, more preferably heat-sterilized) composition comprising:
- 50-97% (by weight based on the total composition) water,
- 5-0.5-4% (dry weight, on total liquid composition) of casein micelles,
- 0.1-5% (dry weight, on total liquid composition) of tryptophan-comprising peptide composition having a level of tryptophan of 1-10% (by weight, on the tryptophan-containing peptides), which composition has a pH of 6 to 8.1, preferably 6.2 to 7.5, more preferably of 6.5 to 7.
- Preferably, in the process according to this invention, the heat preservation treatment comprises pasteurization by heat, or sterilization by heat, and most preferred UHT sterilization treatment.
- There is furthermore a desire for a tryptophan-comprising peptide composition for use in such RTD formulation, which tryptophan-comprising peptide composition has a favourable level of tryptophan and a favourable level of tryptophan/LNAA (LNAA as expressed by the sum of tyrosine, phenylalanine, leucine, isoleucine, and valine), as well as a preparation method for such tryptophan source.
- In the RTD formulation according to the present invention, the tryptophan-comprising peptide composition preferably comprises tryptophan-containing peptides which can be obtained by process to produce a composition comprising a water-soluble, tryptophan-comprising peptide, preferably at least two water-soluble, tryptophan-containing peptides, and preferably having a tryptophan/LNAA ratio of more than 0.15, preferably between 0.15 and 1.8, which comprises hydrolyzing lysozyme, preferably hen eggs lysozyme, to prepare a hydrolysate having a DH of between 5 and 45, and optionally removing part of the arginine or lysine containing peptides. Preferably, such tryptophan-comprising peptides for use in the RTD formulation according to the present invention comprises AW or GNW, more preferably AW and GNW. Said hydrolysate has preferably a DH between 10 and 40.
- In the RTD formulation according to the present invention, the tryptophan-comprising peptide composition is preferably in the form of a composition comprising at least two different water-soluble peptides and wherein the molar tryptophan/LNAA ratio of the composition is at least 0.15, preferably between 0.15 and 1.8. Preferably this tryptophan-comprising peptide composition comprises AW or GNW, preferably AW and GNW and most preferably AW and GNW whereby the molar ratio of AW to GNW is between 1 to 2 and 10 to 1, preferably between 1 to 2 and 5 to 1. Thus, in the present RTD formulation the tryptophan-comprising peptide composition is preferably in the form of a composition of water-soluble peptides which are rich in tryptophan. Advantageously, in the present RTD formulation the tryptophan-containing peptide composition preferably comprise at least two different di- or tripeptides, whereby two peptides selected from di- or tripeptides are present in an amount of at least 5 mol % of the total amount of di- and tripeptides, and in which tryptophan-comprising peptide composition more than 30 mol %, preferably more than 40 mol %, more preferably more than 50 mol %, even more preferably more than 60 mol %, still more preferably more than 70 mol % and most preferably more than 80 mol % of the peptide-bound tryptophan is present in the form of a di- or a tripeptide, preferably the tryptophan-comprising peptide composition has a tryptophan/LNAA ratio of more than 0.15, preferably between 0.15 and 1.8. By peptide-bound tryptophan is meant a tryptophan which is present as amino acid in a peptide.
- The tryptophan-comprising peptide composition which is preferably used in the RTD formulation according to the present invention is preferably a lysozyme hydrolysate or a purified lysozyme hydrolysate. Preferably, said lysozyme hydrolysate is particularly rich in arginine residues. Arginine does not belong to the group large, neutral amino acids (LNAA's) but is known for its insulin stimulating effect. It has been found that the hydrolysate as herein disclosed can generate in vivo high blood plasma tryptophan/LNAA ratios. The tryptophan/LNAA ratios detected in blood plasma, were found to be higher than the tryptophan/LNAA ratio of the hydrolysate. Yet another advantage of the tryptophan-containing peptide composition herein described is that the tryptophan-containing peptides are very small so that even in combination with protein-rich products with less favorable tryptophan/LNAA ratios, the hydrolysate can immediately generate high blood plasma tryptophan/LNAA ratios. This thus makes such tryptophan-containing peptide composition well suitable in the RTD formulations of the present invention. The tryptophan-containing peptide composition as used in the RTD formulation of the present invention may further comprise free tryptophan. Preferably the hydrolysate of the tryptophan-containing peptide composition does not contain more than 1 wt % (on dry matter) of free tryptophan.
- Except in the examples, or where otherwise explicitly indicated, all numbers in this description indicating amounts of material or conditions of reaction, physical properties of materials and/or use are to be understood as modified by the word “about.” All amounts are by weight, unless otherwise specified.
- It should be noted that in specifying any range of concentration or amount, any particular upper concentration can be associated with any particular lower concentration or amount.
- For the avoidance of doubt, the word “comprising” is intended to mean “including” but not necessarily “consisting of” or “composed of.” In other words, the listed steps or options need not be exhaustive.
- It is quite surprising that the pH required prior to the heat preservation to avoid the formation of a sediment is dependent not only on the presence or not of casein micelles (or a source thereof, but also on the concentration of such casein micelles. Without wishing to be bound by theory, it is believed that this, and the variables, causes the relative complexity of the pH requirement.
- In the process according to the invention the pH of the mixture to be subjected to the heat preservation (like e.g. pasteurization, sterilization, e.g. UHT treatment) should be within a certain limit. Depending upon the ingredients chosen, the pH may already by in the desired range, but in many cases it will be desired to adjust the pH of the matter which is to be subjected to heat preservation (e.g. pasteurization or sterilization, preferably UHT sterilization) is adjusted to the value as specified above. Such adjustment can be achieved by any suitable means, e.g. by adding an alkaline or buffering agent to e.g. the mixture to be heat preserved (preferably pasteurized or sterilized, most preferably UHT sterilized), or to one or more of the components used in said mixture, prior to the heat preservation (preferably by heat-pasteurization or heat sterilization, most preferably by UHT sterilization) step. UHT sterilization is herein to be understood as is known in the art: temperatures in the range of 120-150° C., for sufficient length of time to achieve an F0 value of at least 3, preferably at least 5.
- Depending upon the concentration of casein micelles and the heat preservation treatment temperature (e.g. UHT conditions), the pH of the mixture subjected to the heat preservation (preferably UHT sterilization) treatment is preferably between 6.2 to 7.5, preferably to 6.5 to 7.
- In the process and product according to the present invention, the composition preferably comprises comprising 0.5-3% (dry weight, on total liquid composition) casein micelles, preferably 0.6-2%.
- Also preferred are combinations of a pH of 6.2 to 7.5, preferably to 6.5 to 7 with a concentration of casein micelles of 0.5-3% (dry weight, on total liquid composition) casein micelles, preferably 0.6-2%. In particular preferred in the present invention is a pH of 6.5 to 7 in combination with a concentration of casein micelles of 0.5-2%, even more preferably 0.6-2% (dry weight, on total liquid composition).
- In the process and product according to this invention, the composition preferably further comprises 0.01-0.1% (preferably 0.01 to 0.08%, more preferably 0.02 to 0.05%, by weight based on the total composition) of a thickening gum selected from the group consisting of: carrageenan, locust bean gum, guar gum, tara gum, or mixtures thereof, as such may further support the mouthfeel and/or texture in the mouth to be close to milk or dairy products (that is: closer to milk or dairy products than e.g. fruit juices or soft drinks). In this connection, the use carrageenan in said concentrations is most preferred. There is furthermore a preference for the use in the process and composition of this invention of 0.01-0.1% (preferably 0.01 to 0.08%, more preferably 0.02 to 0.05%, by weight based on the total composition) of a thickening gum selected from the group consisting of: carrageenan, locust bean gum, guar gum, tara gum, or mixtures thereof (preferably carrageenan) in combination with a pH of the mixture to be sterilized and/or the RTD formulation of 6.2 to 7.5, preferably to 6.5 to 7 and/or with a concentration of casein micelles of 0.5-3% (dry weight, on total liquid composition) casein micelles, preferably 0.6-2%, and in particular in combination of a pH of 6.5 to 7 (of the mixture to be sterilized and/or the end product) and with a concentration of casein micelles of 0.5-2%, even more preferably 0.6-2% (dry weight, on total liquid composition). In addition to or instead of such use or presence of a gum selected from the group consisting of: carrageenan, locust bean gum, guar gum, tara gum, or mixtures thereof (preferably carrageenan) as set out above, the composition may comprise 0.5-5% (preferably 0.5-3%, more preferably 0.8-2%, by weight based on the total composition) of a starch or starch derivative or starch hydrolysate, preferably maltodextrine. In this, the lower ends of these ranges are more applicable to starch, whereas maltodextrin may be employed over the larger ranges. Presence of starch or a starch derivative or hydrolysate like maltodextrin can be preferred for the same reason as the application of gums as set out above, and in the same combinations with preferred pH ranges and/or casein micelle concentrations.
- The casein micelles may be from any suitable source, such as for example from concentrated milk, milk, milk powder, skimmed milk powder, butter milk, butter milk powder, milk protein concentrate, milk protein isolate, and/or mixtures thereof.
- The heat-preserved (preferably UHT-treated) product is to be aseptically packaged, which can be in any suitable packaging, preferably such packaging is a Tetrapak, DOY pack (pouch), bottle, bag, or can.
- The tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention provides a composition comprising tryptophan present in peptide form which is very suitable for giving an effective increase of the tryptophan/LNAA ratio in plasma in a very short time interval. The di- and tripeptides comprising tryptophan advantageously contribute to this increase. In one embodiment for the tryptophan-comprising peptide composition in the RTD formulation of the present invention, lysozyme, preferably hen egg lysozyme is enzymatically (pre-)hydrolyzed in an industrial process i.e. (hen egg) lysozyme is preferably provided in the form of a hydrolysate. Offered in the form of a hydrolysate, the gastro-intestinal absorption of tryptophan containing peptides is greatly facilitated. In another embodiment, for the tryptophan-comprising peptide composition for the RTD formulation of the present application, hen egg lysozyme is converted into a hydrolysate in which the levels of peptides comprising the positively charged arginine and lysine residues have been lowered. The latter hydrolysates are characterized by molecular tryptophan/LNAA ratios higher than 0.15. In yet another embodiment of the RTD formulation of the present application comprising the preferred tryptophan-comprising peptide composition, hen egg lysozyme is converted to a hydrolysate comprising a peptide population of which more than 50%, preferably more than 60%, more preferably more than 75% of the peptides present have a molecular weight below 500 Da. This with the proviso that the molecular weight distribution of the 25 peptides present in the hydrolysate is carried out as described in the Materials & Methods section of the present application. Regarding the preferred tryptophan/LNAA ratio (of at least 0.15): the amino acid analysis of the hydrolysate is carried out as described in the Materials & Methods section of the present application.
- A “protein” or “polypeptide” is defined herein as a chain comprising more than 30 amino acid residues.
- A “peptide” or “oligopeptide” is defined herein as a chain of at least two amino acids that are linked through peptide bonds. The terms “peptide” and “oligopeptide” are considered synonymous (as is commonly recognized) and each term can be used interchangeably as the context requires.
- A “water-soluble” peptide is a peptide which is soluble in water at a pH of 5.0.
- All (oligo)peptide and polypeptide formulas or sequences herein are written from left to right in the direction from amino-terminus to carboxy-terminus, in accordance with common practice. The one-letter code of amino acids used herein is commonly known in the art and can be found in Sambrook, et al. (Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).
- By protein hydrolysate, hydrolysate or hydrolyzed protein is meant the product that is formed by enzymatic hydrolysis of the protein, an enriched hydrolysate being a fraction of the protein hydrolysate for example enriched in selected peptides or wherein peptides or polypeptides have been removed from the hydrolysate. So an enriched hydrolysate is preferably a mixture of peptides (or a peptide mixture). The peptide mixture of the invention is therefore a mixture of at least two, preferably at least three, more preferably at least four tryptophan containing peptides. More preferably the mixture comprises a peptide population of which more than 50%, preferably even more than 60%, and most preferably more than 75% of the peptides present have a molecular weight below 500 Da. A tryphophan containing peptide means a peptide which comprises at least one L-tryptophan amino acid residue. The tryptophan/LNAA ratio represents the molar ratio of tryptophan relative to the levels of other Large Neutral Amino Acids (LNAA:, i.e. the sum of tyrosine, phenylalanine, leucine, isoleucine and valine). Except for the plasma tryptophan/LNAA ratio, the tryptophan/LNAA ratio relates only to peptide-bound amino acids. Thus free tryptophan, tyrosine, phenylalanine, leucine, isoleucine and valine are not taken into account in the tryptophan/LNAA ratio.
- Peptide-bound amino acids are amino acids which are part of a peptide and not free amino acids.
- The Tyr/BCAA ratio represents the molar ratio of tyrosine relative to the levels of branched chain amino acids (BCAA; i.e. the sum of leucine, isoleucine and valine). Preferably the Tyr/BCAA ratio is higher than 0.1, preferably higher than 0.12.
- The tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention can be produced by a process as disclosed herein, and has a tryptophan yield of more than 30% on protein tryptophan basis and generates a water soluble peptide composition comprising tryptophan. The fact that the larger part of the tryptophan residues is encompassed in di- and tripeptides, implies an immediate uptake into the blood stream. Said tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention may also generate higher blood plasma tryptophan/LNAA ratios than the tryptophan/LNAA ratio of the actual hydrolysate. Finally, the tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention is also characterized by a very low antigenicity.
- In tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention hen egg lysozyme is preferably used as a convenient substrate for providing preparations with a high tryptophan/LNAA ratio. Lysozyme is present in egg white in a concentration of 3-4%. By taking advantage of its exceptionally high isoelectric point, lysozyme is industrially isolated from egg white using a simple cation chromatographic purification step. The resulting product is almost pure and this industrially available product has a molecular tryptophan content of 7.8% and molecular tryptophan/LNAA ratio of at least 0.15. Thus, pure lysozyme has a tryptophan/LNAA ratio that is significantly higher than pure alpha-lactalbumin and or beta-lactoglobulin. Therefore, the lysozyme hydrolysates for the tryptophan-comprising peptide composition preferably used in the RTD formulation (and thus the tryptophan-comprising peptide composition themselves preferably used in the RTD formulation) of the present invention may have a molar tryptophan/LNAA ratio which is higher than 0.15, more preferably the tryptophan/LNAA ratio is higher than 0.20, even more preferably the tryptophan/LNAA ratio is higher than 0.23, still more preferably the tryptophan/LNAA ratio is higher than 0.25 and most preferably the tryptophan/LNAA ratio is higher than 0.30. In general the molar tryptophan/LNAA ratio is below 3.0. As such lysozyme presents a preferred starting point for tryptophan containing peptides or compositions. Lysozyme (EC3.2.1.17) is an enzyme able to hydrolyze specific peptidoglycan bonds in bacterial cell walls leading to cell lysis.
- The hydrolysate preferably used for the tryptophan-comprising peptide composition in the RTD formulation according to the present invention is also effective if incorporated into high protein containing food matrices as presented by, for example, dairy products. This is quite surprising as protein containing food matrices represent high LNAA loads and thus can be expected to reduce the effect of products with high tryptophan/LNAA ratios. A possible explanation for this unexpected phenomenon is that the usual food products incorporate intact, rather than extensively hydrolyzed proteins. The majority of the tryptophan and tyrosine incorporating peptides of the preferred tryptophan-comprising peptide composition has a molecular weight below 500 Da. In view of the very high molecular weight of tryptophan (MW=186) and tyrosine (MW=163) and the fact that only very low levels of free tryptophan are present, the implication is that the majority of these peptides will be tri- or di-peptides.
- In a preferred way, the lysozyme, preferably hen egg lysozyme is enzymatically (pre-) hydrolyzed in an industrial process i.e. (hen egg) lysozyme is preferably provided in the form of a hydrolysate or an enriched hydrolysate. Offered in the form of such an (enriched) hydrolysate, the intestinal absorption of tryptophan containing peptides is greatly facilitated. In another embodiment of the present application, hen egg lysozyme is converted to a hydrolysate or enriched hydrolysate comprising a tryptophan comprising peptide population of which more than 50%, preferably more than 60%, more preferably more than 75% of the peptides present have a molecular weight below 500 Da. Preferably such an (enriched) hydrolysate does not contain more than 1 wt % (on dry matter) of free tryptophan. The molecular weight analysis of the tryptophan comprising peptides present in the hydrolysate is carried out as described in the Materials & Methods section.
- It may further be preferred that for the tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention the (hen egg) lysozyme hydrolysate is fractionated in order to increase the tryptophan content of a fraction of the hydrolysate. This fraction or enriched hydrolysate has preferably an increased tryptophan/LNAA ratio as compared to the hydrolysate before fractionation. The enrichment of the hydrolysate or enriched hydrolysate with additional free tryptophan, also forms part of the present invention. In a preferred option for preparing such an enriched hydrolysate, use is made of the observation that lysozyme incorporates an unusual high amount of the basic arginine and lysine residues. Surprisingly and as a result of selected enzyme incubation conditions i.e. choosing an endoprotease having the right cleavage preference (such as subtilisin) in combination with incubation conditions that yield a high amount of di- and tri-peptides incorporating tryptophan but almost no arginine or lysine residues, an enriched lysozyme hydrolysate according to the invention can be produced. Thus, LNAA-containing peptides incorporating arginine or lysine residues can be separated from tryptophan containing peptides that do not have such basic residues. For example, by adjusting the pH of the hydrolysate to a value between 4 and 6, more preferably between 5.0 and 5.5, peptides without such a basic residue will have no charge and, therefore, a reduced hydrophilicity. These features can be used e.g. in a chromatographic or another separation process to selectively remove a large proportion of the arginine or lysine containing peptides. As a result, the content of tryptophan-containing peptides is dramatically increased and optionally the tryptophan/LNAA ratio of this enriched hydrolysate. Charged arginine or lysine incorporating peptides can be removed by known techniques such as ion chromatography, hydrophobic interaction chromatography or electrodialysis. A practical background on the use of such characteristics in the chromatographic separation of the relevant peptides, can be found in a.o. the Protein Purification Handbook (issued by Amersham Pharmacia Biotech, nowadays GE Healthcare Bio-Sciences, Diegem, Belgium). In an even more advanced purification route towards preparations that combine a high tryptophan content with a high tryptophan/LNAA ratio, the presence of amino acids with acid side groups such as glutamate (Glu) and aspartate (Asp) residues in lysozyme is advantageously used. In this approach the pH of the lysozyme hydrolysate according to the invention is first adjusted to 3.0 and then chromatographed over a cation resin. At this pH value, peptides incorporating a Glu or Asp will run through the column, other peptides will bind. A subsequent elution with a pH 5 buffer will desorb all bound peptides without a lysine or an arginine residue as described. The majority of the tryptophan containing peptides will be in this desorbed fraction. The remaining bound peptides can then be removed from the column by elution with a buffer with an even higher pH value.
- Although for the preparation of the tryptophan-comprising peptide composition preferably used in the RTD formulation of the present invention preferably ion exchange chromatography and/or hydrophobic interaction chromatography are used, other suitable chromatrographic separation methods comprising affinity chromatography and size exclusion chromatography also are available. The recovery of the tryptophan enriched peptides from resulting aqueous fractions can be done by methods that are known in the art. In order to obtain concentrated and shelf stable products, the recovery preferably incorporates an evaporation and (spray) drying step. Also nanofiltration and extraction processes involving organic solvents followed by evaporation/precipitation steps present options for the desired purification. The recovery of the tryptophan enriched peptides from organic solvents is preferably carried out by evaporation of the solvent.
- Despite the fact that lysozyme turns out to be highly resistant to proteolytic hydrolysis under physiological conditions, i.e. at an acid pH using pepsin, trypsin and chymotrypsin as proteases, lysozyme hydrolysates as are preferably used in the RTD formulation of the present invention also can be obtained under such less favorable acid conditions. However, under such conditions relatively harsh incubation conditions are required, such as much higher enzyme concentrations, higher temperatures and optionally additional endoproteases. A lysozyme hydrolysate obtained by incubating lysozyme at an alkaline pH with subtilisin was found particularly rich in the Ala-Trp (AW) dipeptide.
- Materials and Methods
- Materials
- Subtilisin under the commercial name of “Protex 6L” was obtained from Genencor (Leiden, The Netherlands), pepsin from Sigma and the mixture of trypsin/chymotrypsin (Porcine PEM) from Novozymes (Bagsvaerd, Denmark). Lysozyme was obtained as Delvozyme L (22% dry matter) from DSM Food Specialities (Delft, The Netherlands).
- SDS-PAGE
- The purity of the lysozyme preparations used was checked by SDS-PAGE. All materials used for SDS-PAGE and staining were purchased from Invitrogen (Carlsbad, Calif., US). Samples were prepared using SDS buffer according to manufacturers instructions and separated on 12% Bis-Tris gels using MES-SDS buffer system according to manufacturers instructions. Staining was performed using Simply Blue Safe Stain (Collodial Coomassie G250). Prior to hydrolysis the lysozyme appeared as a single band with a molecular weight of approx. 14 kDa on the gel.
- LC/MS/MS Analysis
- HPLC using an ion trap mass spectrometer (Thermo Electron, Breda, the Netherlands) coupled to a P4000 pump (Thermo Electron, Breda, the Netherlands) was used to determine the presence of tryptophan containing peptides (mainly di- and tri peptides) in the enzymatic protein hydrolysates produced by the process according to the invention. The peptides formed were separated using an Inertsil 3 ODS 3, 3 μm, 150*2.1 mm column (Varian Belgium, Belgium) in combination with a gradient of 0.1% formic acid in Milli Q water (Millipore, Bedford, Mass., USA; Solution A) and 0.1% formic acid in acetonitrile (Solution B) for elution. The gradient started at 100% of Solution A, kept here for 10 minutes, increasing linear to 20% B in 25 minutes and immediately going to the starting conditions, and kept here 15 minutes for stabilization. The injection volume used was 50 microliter, the flow rate was 200 microliter per minute and the column temperature was maintained at 55° C. The protein concentration of the injected sample was approx. 50 micrograms/milliliter. Identification of the peptides of interest is based on the retention time, protonated molecule and by using dedicated MS/MS for the peptides of interest, using optimal collision energy of about 30%.
- Quantification of specific tryptophan containing peptides is performed by using an external standard method.
- The tetra peptide WPP (M=410.2) was used to tune for optimal sensitivity in MS mode and for optimal fragmentation in MS/MS mode, performing constant infusion of 5 μg/ml, resulting in a protonated molecule in MS mode, and an optimal collision energy of about 30% in MS/MS mode, generating a B- and Y-ion series.
- Prior to LC/MS/MS the enzymatic protein hydrolysates were centrifuged at ambient temperature and 13000 rpm for 10 minutes and the supernatant was diluted 1:100 with demineralized water filtered through Millipore water filtration equipment (MilliQ water).
- Degree of Hydrolysis
- The Degree of Hydrolysis (DH) as obtained during incubation with the various protolytic mixtures was monitored using a rapid OPA test (Nielsen, P. M.; Petersen, D.; Dambmann, C. Improved method for determining food protein degree of hydrolysis. Journal of Food Science 2001, 66, 642-646).
- Kjeldahl Nitrogen
- Total Kjeldahl Nitrogen was measured by Flow Injection Analysis. Using a Tecator FIASTAR 5000 Flow Injection System equipped with a TKN Method Cassette 5000-040, a Pentium 4 computer with SOFIA software and a Tecator 5027 Autosampler the ammonia released from protein containing solutions was quantitated at 590 nm. A sample amount corresponding with the dynamic range of the method (0.5-20 mg N/l) was placed in the digestion tube together with 95-97% sulphuric acid and a Kjeltab subjected to a digestion program of 30 minutes at 200 degrees C. followed by 90 minutes at 360 degrees C. After injection in the FIASTAR 5000 system the nitrogen peak is measured from which the amount of protein measured can be inferred.
- Molecular weight distribution of peptides and proteins present in hydrolysates.
- Analysis of the peptide size distribution of protease treated protein samples was done on an automated HPLC system equipped with a high pressure pump, an injection device able to inject 10-100 microliter sample and a UV detector able to monitor the column effluent at 214 nm.
- The column used for this analysis was a Superdex Peptide HR 10/300 GL (Amersham) equilibrated with 20 mM Sodium Phosphate/250 mM Sodium Chloride pH 7.0 buffer. After injecting a sample (typically 50 microliter) the various components were eluted from the column with buffer in 90 min at a flow rate of 0.5 ml/min. The system was calibrated using a mixture of cytochrome C (Mw 13 500 Da), aprotinin (Mw 6510 Da) and tetra-glycine (Mw 246 Da) as molecular weight markers.
- Hence, in the process and RTD formulation according to the present invention the tryptophan-comprising peptide composition preferably comprises a peptide composition having a tryptophan to LNAA (weight) ratio of at least 0.1, preferably at least 0.15, more preferably 0.15-1.8, and preferably such is obtained by a process which comprises hydrolyzing lysozyme, more preferably hen eggs lysozyme, to prepare a hydrolysate having a DH of between 5 and 45, and optionally removing part of the arginine or lysine containing peptides. In this, the tryptophan-comprising peptide composition preferably comprises AW or GNW, preferably AW and GNW (wherein the molar ratio of AW to GNW is preferably between 1 to 2 and 10 to 1, more preferably between 1 to 2 and 5 to 1).
- Regarding the above, it may be further preferred to have in the process and RTD formulation according to the present invention the tryptophan-comprising peptide composition comprises a peptide composition having a tryptophan to LNAA (weight) ratio of at least 0.1, preferably at least 0.15, more preferably 0.15-1.8, and preferably such is obtained by a process which comprises hydrolyzing lysozyme (more preferably hen eggs lysozyme, to prepare a hydrolysate having a DH of between 5 and 45, and optionally removing part of the arginine or lysine containing peptides, and/or preferably the tryptophan-comprising peptide composition preferably comprises AW or GNW, more preferably AW and GNW, wherein the molar ratio of AW to GNW is preferably between 1 to 2 and 10 to 1, more preferably between 1 to 2 and 5 to 1), and which may further comprises 0.01-0.1% (preferably 0.01 to 0.08%, more preferably 0.02 to 0.05%, by weight based on the total composition) of a thickening gum selected from the group consisting of: carrageenan, locust bean gum, guar gum, tara gum, or mixtures thereof, as such may further support the mouthfeel and/or texture in the mouth to be close to milk or dairy products (that is: closer to milk or dairy products than e.g. fruit juices or soft drinks). In this connection, the use carrageenan in said concentrations is most preferred.
- There is furthermore a preference for the use in the process and composition of this invention of a tryptophan-containing peptide composition which comprises a peptide composition having a tryptophan to LNAA (weight) ratio of at least 0.1, preferably at least 0.15, more preferably 0.15-1.8, and which may be obtained by a process which comprises hydrolyzing lysozyme, in combination with a pH of the mixture to be heat-preserved (preferably sterilized) and/or the RTD-formulation of 6.2 to 7.5, preferably to 6.5 to 7 and/or with a concentration of casein micelles of 0.5-3% (dry weight, on total liquid composition) casein micelles, preferably 0.6-2%, and in particular in combination of a pH of 6.5 to 7 and with a concentration of casein micelles of 0.5-2%, even more preferably 0.6-2% (dry weight, on total liquid composition). In addition to or instead of use or presence of a gum selected from the group consisting of: carrageenan, locust bean gum, guar gum, tara gum, or mixtures thereof (preferably carrageenan) as set out above, the composition may further comprise 0.5-5% (preferably 0.5-3%, more preferably 0.8-2%, by weight based on the total composition) of a starch or starch derivative or starch hydrolysate, preferably maltodextrine. In this, the lower ends (0.5-2%) of these ranges are more applicable to starch, whereas maltodextrin may be employed over the larger ranges (0.5-5%). Presence of starch or a starch derivative or hydrolysate like maltodextrin can be preferred for the same reason as the application of gums as set out above.
- In the process according to the present invention, and in the RTD according to the present invention, it may be preferred that the tryptophan-comprising peptide preparation comprises at least two different peptides selected from di- or tripeptides, whereby two peptides selected from di- or tripeptides are each present in an amount of at least 5 mol % of the total amount of di- and tripeptides, and in which more than 30 mol % of the total tryptophan is present as peptide bound tryptophan, and preferably more than 40 mol %, more preferably more than 50 mol %, even more preferably more than 60 mol %, still more preferably more than 70 mol % and most preferably more than 80 mol % of the peptide-bound tryptophan is present in the form of a di- or a tripeptide, preferably the composition has a tryptophan/LNAA ratio of more than 0.15, preferably between 0.15 and 1.8. In this process and RTD formulation preferably such tryptophan-comprising peptide formulation is preferably obtained by a process which comprises hydrolyzing lysozyme (more preferably hen eggs lysozyme, to prepare a hydrolysate having a DH of between 5 and 45, and optionally removing part of the arginine or lysine containing peptides, and/or preferably the tryptophan-comprising peptide composition preferably comprises AW or GNW, more preferably AW and GNW, wherein the molar ratio of AW to GNW is preferably between 1 to 2 and 10 to 1, more preferably between 1 to 2 and 5 to 1).
- The invention further relates to a food, pet food, feed, dietary supplement or neutraceutical composition and/or enteral composition comprising the RTD-formulation as herein disclosed.
- The following Examples illustrate the invention further.
- Hydrolyzing Lysozyme using Protex and Identity of the Peptides Formed.
- A solution containing 10% (w/w) pure lysozyme was adjusted to pH 8.2 using NaOH and heated to 52 degrees C. Hydrolysis was started by adding 25 microliter of Protex/g of protein present. Under continuous stirring and maintaining the pH at 8.2, the hydrolysis was continued for 5.5 hours to yield an almost clear solution without a visible precipitate. After a heating step to inactivate the Protex activity, a sample was taken for DH analysis. The DH of the solution turned out to be almost 30%. The heat treated solution was ultrafiltered over a 10 kDa filter to yield a completely clear liquid. This clear liquid was used for LC/MS analysis, for molecular weight distribution of peptides and proteins present as well as for ion exchange chromatography.
- To get an impression of the molecular weight distribution of peptides and proteins present, the clear liquid was subjected to a molecular size analysis as described in the Materials & Methods section. The results obtained clearly indicate that almost all peptides incorporating amino acids with an aromatic side chain (i.e. tryptophan, tyrosine and phenylalanine) have a molecular weight below 500 kDa. In view of the high molecular weight of these amino acids, the implication is most of these small peptides are either tri-or dipeptides.
- LC/MS analysis was carried out according to the procedure as described in the Materials & Methods section. By selecting for those peptides containing a tryptophan (“W”), peptides AW, GNW, WIR, NAW, WVA, VAW, AWR, SLGNW and minor quantities of WW and SRWW could be detected. The level of free tryptophan in the hydrolysate after incubation was established to represent less than 1% of the total (lysozyme) tryptophan present.
- As di- and tripeptides are readily absorbed by peptide transporters present in the intestinal wall, there is little doubt that tryptophan residues present in such peptides will be rapidly absorbed and lead to increased plasma tryptophan levels upon oral intake of the present lysozyme hydrolysate.
- Increasing the Tryptophan Content of the Hydrolysate
- Lysozyme incorporates a surprising high amount of the basic arginine and lysine residues. Furthermore the lysozyme molecule incorporates a significant number of the acid glutamate and aspartate residues. This data has been used to devise an innovative and elegant purification route towards hydrolysates featuring high tryptophan/LNAA ratios. Essential requirement for this purification route is, however, that only very few of the tryptophan residues show up in peptides also containing either an arginine or lysine residue or a glutamate or aspartate residue. As shown in Example 1, the specific hydrolysis route used here yields only few tryptophan containing peptides containing an arginine residue and no peptides containing a lysine, glutamate or aspartate residue.
- Theory predicts that a maximal charge difference between peptides with and without a glutamate or aspartate residue can be achieved around pH 3. A maximal charge difference between peptides with and without an arginine or lysine residue, can be achieved around pH 5.
- To illustrate the selective power of this approach, a lysozyme hydrolysate was prepared according to the procedure specified in Example 1. Then, the pH of the hydrolysate was adjusted to pH 3.1 using acetic acid and approximately 0.5 gram of protein was applied to a 15 ml bed volume of SP Sepharose FF (GE Healthcare, Diegem, Belgium) column equilibrated with 20 mm sodium citrate pH 3.1. After washing the column with one column volume of the sodium citrate buffer to remove the majority of the peptides incorporating a glutamate or aspartate, the elution buffer was changed to a 20 mm sodium citrate buffer pH 5.1. During washing of the column with three column volumes of the latter buffer, a range of tryptophan containing peptides was eluted. According to LC/MS analysis, the dipeptide AW was present in large amounts as well as the tripeptides GNW, NAW, WVA, VAW and a small amount of the pentapeptide SLGNW. Amino acid analysis of the various pH 5.1 fractions showed that selective pooling yielded a solution having a molecular tryptophan/LNAA ratio of 1.75 and a tryptophan yield of almost 30%. A less selective pooling yielded a solution with a molecular Trp/LNAA ratio of 0.4 and a tryptophan yield of 70%.
- Subsequently, the column was washed with three column volumes 20 mM sodium citrate pH 7.1. According to the LC/MS data, this step eluted arginine containing peptides WIR, AWIR and, surprisingly, peptide WW. A final washing of the column with 1 M of NaOH, water and 1M of acetic acid prepared the column for a next run.
- In larger scale lysozyme hydrolysis procedures, essentially the procedure as described in Example 1 was followed with some minor modifications. A solution containing 7.3% (w/w) pure lysozyme was heated to 65 degrees C. after which the pH was adjusted to pH 8.2 using NaOH. Hydrolysis was started by adding 25 microliter of Protex 6 L/g dry matter. Under continuous stirring and maintaining the pH at 8.2 and the temperature at 53 degrees C., the hydrolysis was continued for 2 hours. Then the pH value was increased to 9.0 and incubation was pursued for another 3.5 hours to yield a solution with some precipitate. Then the pH of the solution was lowered to 4.5 and the solution was cooled to below 4 degrees C. To obtain a completely clear product, the liquid was filtered over a Z 2000 filter (Pall) and subsequently excess water and salt was removed via nanofiltration. The resulting concentrate was then subjected to an UHT treatment of 7 seconds at 120 degrees C., evaporated and finally spray dried to obtain the lysozyme hydrolysate in a dry form. The product thus obtained has a molar tryptophan/LNAA ratio of about 0.19.
- A peptide composition comprising peptides with tryptophan was prepared along the lines as set out in example 3. The product obtained was an aqueous liquid having a peptide level of about 83%, a peptide-bound tryptophan content of about 5.5%, and having a TRP/LNAA ratio of about 0.19. Said product had the appearance of a light yellow powder, and gave, upon dissolving as 1% in water, a solution having a pH of about 4.3.
- With the above peptide preparation drinks were prepared having the composition as in table 1 below (ingredients in dry weight % on the water basis, remainder was water), which table also gives the pH of the composition, which was set using sodium hydroxide and citric acid. The process to prepare these compositions was:
-
- preparing a pre-mix of all ingredients in water (all ingredients other than water were particulate materials),
- stirring such for 10 minutes, and adjusting the pH towards the end of stirring, where desired,
- subject to UHT process
- homogenization by a high pressure homogenizer
- aseptic filling.
- Also, two preparations were made which contained none of the tryptophan-containing peptide preparation, to see the influence (control A and B) of the presence of such.
- Also, a preparation was prepared having a pH outside the claimed range (Control C).
-
TABLE 1 composition and pH example 4. Control Control Ex. Ex. Ex. Control A B 4a 4b 4c C Peptide preparation 0 0 1.14 1.14 1.14 1.14 containing tryptophan (wt. %) Skim milk powder 2.1 2.1 4.2 2.1 2.1 10 (%) Carrageenan (wt. %) 0.02 0.02 0.02 0.02 0.02 0.02 Maltodextrin (wt. %) 2.0 2.0 2.0 2.0 2.0 2.0 Sucrose (wt. %) 6.6 6.6 6.6 6.6 6.6 6.6 pH 6.0 7.0 7.0 6.5 7 7 Casein micelles 0.84 0.84 1.68 0.84 0.84 4 content from SMP (wt. %) - All these compositions were subjected to in-line UHT (ultra high temperature) sterilization with heating to 143° C. (±1° C.) for about 8 to 8.5 seconds, which is sufficient for an F0 value of 6 to 8.
- Directly after the UHT treatment, the products were filled in transparent bottles of 350 ml volume (about 250 ml of liquid), and after 24 hours it was checked if a sediment had formed, and if yes how much (measured in cm, which was calculated to a lo percentage of the height of the drink in the bottle).
-
TABLE 2 sediment formed example 4. Control Control A B Ex. 4a Ex. 4b Ex. 4c Control C Sediment 0 0 0.8 0.5 0 3.5 formed (cm) Sediment 0 0 10% 5% 0 30% in % height - A peptide composition comprising peptides with tryptophan was prepared along the lines as set out in example 4, and which was manufactured with the same processing, except for that the UHT treatment was at a lower temperature, of 125° C. (±1° C.). The composition of the samples is in table 3.
-
TABLE 3 composition and pH example 5. Ex. 5a Ex. 5b Ex. 5c 5d Peptide preparation containing 1.14 1.14 1.14 1.14 tryptophan (wt. %) Skim milk powder (%) 4.2 2.1 2.1 10 Carrageenan (wt. %) 0.02 0.02 0.02 0.02 Maltodextrin (wt. %) 2.0 2.0 2.0 2.0 Sucrose (wt. %) 6.6 6.6 6.6 6.6 pH 7.0 6.5 7 7.0 Casein micelles content from SMP 1.68 0.84 0.84 (wt. %) - Sedimentation was checked in the same way as for example 4. The results are set out in table 4.
-
TABLE 4 sediment formed example 5. Ex. 5a Ex. 5b Ex. 5c Ex. 5d Sediment formed (cm) 0 0 Sediment in % height 0% 1.1% 0% 9.1%
Claims (27)
1. A process for preparing a packaged, aqueous liquid composition comprising 0.5-4%, based on dry weight, on total liquid composition, of casein micelles and 0.1-5% based on dry weight, on total liquid composition, of tryptophan-containing peptide composition having a level of tryptophan of 1-10% by weight, on the tryptophan-containing peptides, which process involves the steps of:
obtaining mixture comprising water, in an amount of 50-97% by weight based on the total composition, 0.5-4% based on dry weight casein micelles, and 0.1-5% based on dry weight tryptophan-containing peptide composition having a level of tryptophan of 1-10% by weight, on the tryptophan-containing peptides,
subjecting said mixture to a heat preservation treatment at a temperature of 120-150° C.,
packaging the so-obtained liquid product by aseptic packaging, wherein the mixture subjected to a heat preservation treatment has a pH of below 8.1 and above the pH given by the relationship, in which formula casein micelles is expressed as weight % on total formulation:
pH>0.02*T(° C.)+0.23*(casein micelles in dry weight %)+3.8.
pH>0.02*T(° C.)+0.23*(casein micelles in dry weight %)+3.8.
2. The process according to claim 1 , wherein, prior to the heat preservation treatment, the pH of the matter which is to be subjected to the heat preservation is adjusted to:
pH>0.02*T(° C.)+0.23*(casein micelles in dry weight %)+3.8.
pH>0.02*T(° C.)+0.23*(casein micelles in dry weight %)+3.8.
3. The process according to claim 1 , wherein prior to the heat preservation treatment an alkaline or buffering agent is added to one or more of the components of the mixture.
4. The process according to claim 1 , wherein the mixture subjected to the heat preservation treatment has a pH of 6.5 to 7.
5. The process according to claim 1 , wherein the heat preservation treatment comprises pasteurization by heat, sterilization by heat, or UHT sterilization treatment.
6. The process according to claim 1 , wherein the composition comprises 0.5-3% in weight, on total liquid composition, casein micelles.
7. The process according to claim 1 , wherein the casein micelles are in the form of dairy protein, concentrated milk, milk, milk powder, skimmed milk powder, butter milk, butter milk powder, milk protein concentrate, or mixtures thereof.
8. The process according to claim 1 , wherein the composition is packaged in a Tetrapak, pouch, bottle, bag, or can.
9. The process according to claim 1 , wherein the composition further comprises 0.01-0.1% of a thickening gum selected from the group consisting of: carrageenan, locust bean gum, guar gum, tara gum, and mixtures thereof.
10. The process according to claim 1 , wherein the composition further comprises 0.5-5% of a starch or starch derivative or starch hydrolysate.
11. The process according to claim 1 , wherein the tryptophan-containing peptide composition comprises a peptide composition having a tryptophan to LNAA (weight) ratio of 0.15-1.8.
12. The process according to claim 11 , wherein the tryptophan-containing peptide composition is obtained by a process which comprises hydrolyzing hen eggs lysozyme.
13. The process according to claim 12 , wherein the lysozyme is hydrolyzed to a DH of 10-40.
14. The process according to claim 11 , wherein, after hydrolysis, part of the arginine or lysine containing peptides is removed.
15. The process according to claim 1 , wherein the tryptophan-containing peptide composition comprises at least two different di- or tripeptides, whereby two peptides selected from di- or tripeptides are present in an amount of at least 5 mol % of the total amount of di- and tripeptides, and in which tryptophan-comprising peptide composition more than 40 mol % of the peptide-bound tryptophan is present in the form of a di- or a tripeptide.
16. The process according to claim 11 , wherein the composition comprises peptides containing the amino acid sequence AW and GNW.
17. A packaged heat-pasteurized or heat-sterilized composition comprising:
50-97% by weight based on the total composition, water,
0.54% by dry weight, on total liquid composition, of casein micelles,
0.1-5% by dry weight, on total liquid composition, of tryptophan-containing peptide composition having a level of tryptophan of 1-10% by weight, on the tryptophan-containing peptides,
which composition has a pH of 6.5 to 7.
18. The packaged composition according to claim 17 , wherein the amount of casein micelles is 0.5-3% by dry weight, on total liquid composition.
19. The packaged composition according to claim 17 , wherein the casein micelles are in the form of concentrated milk, milk, milk powder, skimmed milk powder, butter milk, butter milk powder, milk protein concentrate, milk protein isolate, or mixtures thereof.
20. The packaged composition according to claim 17 , wherein the composition further comprises 0.01-0.1% of a thickening gum selected from the group consisting of: carrageenan, locust bean gum, guar gum, tara gum, or mixtures thereof.
21. The packaged composition according to claim 17 , wherein the composition further comprises 0.5-5% of a starch or starch derivative or starch hydrolysate.
22. The packaged composition according to claim 17 , wherein said tryptophan-containing peptide composition comprises a peptide composition having a tryptophan to LNAA weight ratio of at least 0.15-1.8.
23. The packaged composition according to claims 17 , wherein the tryptophan-containing peptide is obtained by hydrolyzing hen eggs lysozyme.
24. The packaged composition according to claim 23 , wherein the tryptophan-containing peptide has a DH of between 10 and 40.
25. A packaged composition according to claim 17 , wherein the tryptophan-containing peptide composition comprise at least two different di- or tripeptides, whereby two peptides selected from di- or tripeptides are present in an amount of at least 5 mol % of the total amount of di- and tripeptides, and in which tryptophan-comprising peptide composition more than 40 mol % of the peptide-bound tryptophan is present in the form of a di- or a tripeptide.
26. A packaged composition according to claim 17 , wherein said tryptophan-containing peptide composition comprises a peptide composition which comprises the amino acid sequences AW and GNW.
27. A packaged composition according to claim 26 , wherein the molar ratio of AW to GNW is between 1 to 2 and 5 to 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EPEP08155385 | 2008-04-29 | ||
EP08155385 | 2008-04-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090269443A1 true US20090269443A1 (en) | 2009-10-29 |
Family
ID=39816762
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/989,876 Active 2030-12-21 US8986773B2 (en) | 2008-04-29 | 2009-04-09 | Process for the preparation of packaged heat-preserved aqueous drink comprising casein micelles and tryptophan-rich peptides, and product so obtained |
US12/430,946 Abandoned US20090269443A1 (en) | 2008-04-29 | 2009-04-28 | Process for Preparation of Packaged Heat-Preserved Aqueous Drink Comprising Casein Micelles and Tryptophan-Rich Peptides, and Products so obtained |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/989,876 Active 2030-12-21 US8986773B2 (en) | 2008-04-29 | 2009-04-09 | Process for the preparation of packaged heat-preserved aqueous drink comprising casein micelles and tryptophan-rich peptides, and product so obtained |
Country Status (6)
Country | Link |
---|---|
US (2) | US8986773B2 (en) |
EP (1) | EP2271222B1 (en) |
JP (2) | JP5604764B2 (en) |
KR (1) | KR101915815B1 (en) |
CN (1) | CN102076221B (en) |
WO (1) | WO2009132950A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090270337A1 (en) * | 2008-04-29 | 2009-10-29 | Conopco, Inc., D/B/A Unilever | Composition Comprising Carbohydrates and Peptides which Comprise Tryptophan |
WO2014068499A1 (en) * | 2012-11-02 | 2014-05-08 | Dsm Ip Assets B.V. | Use of tryptophan rich protein hydrolysates |
US10369237B2 (en) * | 2014-03-10 | 2019-08-06 | 3-D Matrix, Ltd. | Sterilization and filtration of peptide compositions |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6210669B2 (en) * | 2012-10-18 | 2017-10-11 | 日清食品ホールディングス株式会社 | Salty taste enhancing peptide |
US11518797B2 (en) | 2014-11-11 | 2022-12-06 | Clara Foods Co. | Methods and compositions for egg white protein production |
US20180168176A1 (en) * | 2015-06-05 | 2018-06-21 | Frieslandcampina Nederland B.V. | Self-supporting dairy composition |
JP6745077B2 (en) * | 2015-08-26 | 2020-08-26 | キリンビバレッジ株式会社 | Beverage containing UHT pasteurized milk with excellent milk feel |
JP6495520B1 (en) * | 2018-03-01 | 2019-04-03 | 太陽化学株式会社 | Stabilizers for milk drinks |
US12096784B2 (en) | 2019-07-11 | 2024-09-24 | Clara Foods Co. | Protein compositions and consumable products thereof |
CN114375304A (en) | 2019-07-11 | 2022-04-19 | 克莱拉食品公司 | Protein composition and food thereof |
US10927360B1 (en) | 2019-08-07 | 2021-02-23 | Clara Foods Co. | Compositions comprising digestive enzymes |
US11771105B2 (en) | 2021-08-17 | 2023-10-03 | New Culture Inc. | Dairy-like compositions and related methods |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5378488A (en) * | 1993-06-10 | 1995-01-03 | Abbott Laboratories | Aseptic processing of infant formula |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4130284A1 (en) * | 1991-09-12 | 1993-03-18 | Willi Prof Dr Med Habil Heine | Prodn. of food protein of high biological value - with high tryptophan and cystine content by enzymatic hydrolysis of whey protein |
JP2793767B2 (en) | 1993-12-28 | 1998-09-03 | 鐘紡株式会社 | Food containing pasteurized milk ingredients |
EP0951842B1 (en) * | 1999-01-20 | 2002-12-04 | N.V. Nutricia | Infant formula |
WO2001032037A1 (en) * | 1999-11-01 | 2001-05-10 | Albion International, Inc. | Compositions and methods for calcium fortification of dairy products and oleaginous foods |
NL1016783C2 (en) * | 2000-12-04 | 2002-06-05 | Business Quarters B V | Continuous production of a tryptophan-enriched milk beverage comprises adding a homogenized concentrated mixture of L-tryptophan and water to a milk beverage |
AU2001228921A1 (en) * | 2000-12-06 | 2002-06-18 | Campina Melkunie B.V. | Method for preparing tryptophan rich peptides |
US6913778B2 (en) * | 2001-12-21 | 2005-07-05 | Wyeth | Infant formula compositions comprising increased amounts of alpha-lactalbumin |
EP1685764A1 (en) * | 2005-01-27 | 2006-08-02 | Globus Egg Sciences B.V. | Anti-hypertensive functional food products |
ES2259885B1 (en) * | 2004-09-29 | 2007-11-01 | Laboratorios Ordesa, S.L. | KIDS NUTRITIONAL KIT TO REGULATE THE DREAM-VIGILIA CYCLE. |
EP1762147A1 (en) * | 2005-09-09 | 2007-03-14 | Primalac Private Foundation | Nutritional concentrate for infants |
EP1956927A1 (en) * | 2005-11-14 | 2008-08-20 | Unilever N.V. | Sterilised nutritional beverage |
CN101384180A (en) * | 2006-02-22 | 2009-03-11 | 三荣源有限公司 | Milk beverage containing plant sterols and manufacturing method thereof |
JP4795180B2 (en) * | 2006-09-13 | 2011-10-19 | 株式会社明治 | Dairy beverage having a new texture and method for producing the same |
-
2009
- 2009-04-09 US US12/989,876 patent/US8986773B2/en active Active
- 2009-04-09 KR KR1020107026514A patent/KR101915815B1/en active IP Right Grant
- 2009-04-09 WO PCT/EP2009/054314 patent/WO2009132950A1/en active Application Filing
- 2009-04-09 CN CN200980125141.3A patent/CN102076221B/en active Active
- 2009-04-09 JP JP2011506642A patent/JP5604764B2/en active Active
- 2009-04-09 EP EP09737994.5A patent/EP2271222B1/en active Active
- 2009-04-28 US US12/430,946 patent/US20090269443A1/en not_active Abandoned
-
2014
- 2014-06-24 JP JP2014129397A patent/JP5924653B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5378488A (en) * | 1993-06-10 | 1995-01-03 | Abbott Laboratories | Aseptic processing of infant formula |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090270337A1 (en) * | 2008-04-29 | 2009-10-29 | Conopco, Inc., D/B/A Unilever | Composition Comprising Carbohydrates and Peptides which Comprise Tryptophan |
US20110166085A1 (en) * | 2008-04-29 | 2011-07-07 | Beck-Hoven Van Rudolf | Composition comprising carbohydrates and peptides which comprise tryptophan |
US10172375B2 (en) * | 2008-04-29 | 2019-01-08 | Dsm Ip Assets B.V. | Compositions comprising carbohydrates and peptides which comprise tryptophan |
US9516893B2 (en) | 2012-11-02 | 2016-12-13 | Dsm Ip Assets B.V. | Use of tryptophan rich protein hydrolysates |
AU2013340318B2 (en) * | 2012-11-02 | 2017-03-02 | Dsm Ip Assets B.V. | Use of tryptophan rich protein hydrolysates |
EA030683B1 (en) * | 2012-11-02 | 2018-09-28 | ДСМ АйПи АССЕТС Б.В. | Use of tryptophan rich protein hydrolysates |
WO2014068499A1 (en) * | 2012-11-02 | 2014-05-08 | Dsm Ip Assets B.V. | Use of tryptophan rich protein hydrolysates |
KR20200134342A (en) * | 2012-11-02 | 2020-12-01 | 디에스엠 아이피 어셋츠 비.브이. | Use of tryptophan rich protein hydrolysates |
KR102292817B1 (en) * | 2012-11-02 | 2021-08-25 | 디에스엠 아이피 어셋츠 비.브이. | Use of tryptophan rich protein hydrolysates |
US10369237B2 (en) * | 2014-03-10 | 2019-08-06 | 3-D Matrix, Ltd. | Sterilization and filtration of peptide compositions |
US11090398B2 (en) | 2014-03-10 | 2021-08-17 | 3-D Matrix, Ltd. | Sterilization and filtration of peptide compositions |
US20220001047A1 (en) * | 2014-03-10 | 2022-01-06 | 3-D Matrix, Ltd. | Sterilization and filtration of peptide compositions |
US12115264B2 (en) * | 2014-03-10 | 2024-10-15 | 3-D Matrix, Ltd. | Sterilization and filtration of peptide compositions |
Also Published As
Publication number | Publication date |
---|---|
JP2011519278A (en) | 2011-07-07 |
JP5604764B2 (en) | 2014-10-15 |
KR101915815B1 (en) | 2018-11-06 |
CN102076221A (en) | 2011-05-25 |
US8986773B2 (en) | 2015-03-24 |
EP2271222B1 (en) | 2015-02-25 |
KR20110016904A (en) | 2011-02-18 |
JP5924653B2 (en) | 2016-05-25 |
EP2271222A1 (en) | 2011-01-12 |
US20110165287A1 (en) | 2011-07-07 |
CN102076221B (en) | 2017-07-04 |
JP2014236732A (en) | 2014-12-18 |
WO2009132950A1 (en) | 2009-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8986773B2 (en) | Process for the preparation of packaged heat-preserved aqueous drink comprising casein micelles and tryptophan-rich peptides, and product so obtained | |
RU2292155C2 (en) | Method for milk proteins hydrolysis | |
JP5626807B2 (en) | Mixture of peptide-bound tryptophan and polypeptide-bound tryptophan | |
Turgeon et al. | Whey peptide fractions obtained with a two‐step ultrafiltration process: production and characterization | |
WO1996011584A1 (en) | Peptide mixture and products thereof | |
AU2002325890A1 (en) | Process for the hydrolysis of milk proteins | |
KR20130014532A (en) | Agent for preventing muscular atrophy | |
US10172375B2 (en) | Compositions comprising carbohydrates and peptides which comprise tryptophan | |
JP2007215474A (en) | Method for producing acid food and drink containing protein and/or protein hydrolyzate | |
JP5695326B2 (en) | Protein synthesis promoter | |
WO2011046101A1 (en) | Fat accumulation suppressor | |
CN118043335A (en) | Method for producing peptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CONOPCO, INC. D/B/A UNILEVER, NEW JERSEY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:VAN BECKHOVEN, RUDOLF FRANCISCUS W.C.;BOT, ARJEN;DUCHATEAU, ALEXANDER LUCIA L.;AND OTHERS;REEL/FRAME:022814/0119;SIGNING DATES FROM 20090505 TO 20090602 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |