US20090269236A1 - Ductile magnesium alloy - Google Patents

Ductile magnesium alloy Download PDF

Info

Publication number
US20090269236A1
US20090269236A1 US12/426,028 US42602809A US2009269236A1 US 20090269236 A1 US20090269236 A1 US 20090269236A1 US 42602809 A US42602809 A US 42602809A US 2009269236 A1 US2009269236 A1 US 2009269236A1
Authority
US
United States
Prior art keywords
magnesium alloy
relative
total weight
content
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/426,028
Inventor
Carsten Blawert
Ulrich Kainer
Wolfgang Dietzel
Andre Ditze
Christiane Scharf
Predrag Zivanovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKSS Forshungszentrum Geesthacht GmbH
Original Assignee
GKSS Forshungszentrum Geesthacht GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GKSS Forshungszentrum Geesthacht GmbH filed Critical GKSS Forshungszentrum Geesthacht GmbH
Assigned to GKSS-FORSCHUNGSZENTRUM GEESTHACHT GMBH reassignment GKSS-FORSCHUNGSZENTRUM GEESTHACHT GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BLAWERT, CARSTEN, DIETZEL, WOLFGANG, DITZE, ANDRE, KAINER, ULRICH, SCHARF, CHRISTIANE, ZIVANOVIC, PREDRAG
Publication of US20090269236A1 publication Critical patent/US20090269236A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/04Alloys based on magnesium with zinc or cadmium as the next major constituent

Definitions

  • the present invention relates to a corrosion-resistant magnesium alloy.
  • magnesium alloys are corrosion-resistant if the copper, iron and nickel contents are very small.
  • the maximum permitted levels are mostly set at 250 ppm copper, 10 ppm nickel and 50 ppm iron. According to Bakke et al., Soc.
  • Secondary magnesium alloys can be prepared with much less expenditure of energy than primary alloys, but inevitably contain copper, nickel and iron in quantities above the maximum permitted levels. Magnesium alloys with copper, nickel and/or iron contents below the maximum permitted levels can be produced only at very high cost, or not at all, by recycling bought scrap.
  • a corrosion-resistant secondary magnesium alloy is however known from WO 2007/009435 A1.
  • the magnesium alloys disclosed in WO 2007/009435 A1 display corrosion properties comparable with or better than a high-purity primary magnesium alloy, and contain 10-20 wt.-% aluminium, 2.5 to 10 wt.-% zinc, 0.1 to 2 wt.-% manganese, 0.3 to 2 wt.-% copper and/or up to 1.5 wt.-% total nickel, cobalt, iron, silicon, zirkon, beryllium.
  • these alloys have the drawback that they are comparatively brittle, which makes them unusable for some processing methods such as extrusion, forging, rolling but also for applications which require energy absorption via plastic deformation.
  • the object of the present invention is thus to provide a corrosion-resistant magnesium alloy which can be prepared without a very high expenditure of energy by recycling bought scrap and is ductile.
  • This object is achieved by a magnesium alloy containing, relative to the total weight of the magnesium alloy, 1 to 9 wt.-% aluminium, 0.6 to 6 wt.-% zinc, 0.1 to 2 wt.-% manganese, 0 to 2 wt.-% rare earth elements, 0.5 to 2 wt.-% copper, wherein the weight ratio of aluminium to zinc lies in the range from 1:1 to 2:1.
  • Preferred embodiments result from the dependent claims.
  • the corrosion behaviour is similarly good compared with high-purity primary magnesium alloys. Furthermore, the magnesium alloy according to the invention remains ductile.
  • the aluminium content of the magnesium alloy according to the is preferably, relative to the total weight of the magnesium alloy, 2 to 7.5 wt.-%, more preferably 3 to 6 wt.-%.
  • the zinc content of the magnesium alloy according to the invention is preferably, relative to the total weight of the magnesium alloy, 1 to 5 wt.-%, more preferably 2 to 4 wt.-%.
  • T he manganese content of the magnesium alloy according to the invention is preferably 0.1 to 1 wt.-%, more preferably 0.2 to 0.75 wt.-%.
  • the copper content of the magnesium alloy according to the invention is preferably 0.5 to 1 wt.-%, more preferably 0.5 to 0.7 wt.-%.
  • the corrosion behaviour is further improved.
  • the negative influence of nickel can—if present—thus be reduced.
  • the total rare earth elements content preferably lies in the range of up to 2 wt.-%, relative to the total weight of the magnesium alloy.
  • the magnesium alloy according to the invention can further contain nickel, iron and/or silicon. It is preferred that the nickel content is less than 0.005 wt.-%, relative to the total weight of the magnesium alloy, more preferably less than 0.001 wt.-%, even more preferably less than 0.0005.
  • the iron content should be less than 0.05 wt.-%, relative to the total weight of the magnesium alloy, preferably less than 0.01 wt.-%, more preferably less than 0.005 wt.-% and the silicon content should be less than 0.1 wt.-%, relative to the total weight of the magnesium alloy, preferably less than 0.05 wt.-%.
  • the magnesium alloy according to the invention can be prepared as a secondary alloy by melting scrap or impure magnesium precursors which contain copper, nickel and/or iron, after which the level of constituents in the alloy is set to correspond to that of a magnesium alloy according to the invention.
  • Such a magnesium alloy can be prepared at favourable cost with a comparatively small expenditure of energy.
  • the magnesium alloy according to the invention can be used both as a casting material (sand, ingot, die- and semi-solid casting) and as a kneading material for extrusion, forging, rolling, etc.
  • the comparative corrosion examinations took place by immersion in 3.5% sodium chloride solution and using the salt-spray test according to DIN 50021.
  • the rate of corrosion was determined by measuring the developed quantity of hydrogen.
  • the salt-spray test the mass loss is determined.
  • Table 1 the rates of corrosion of a magnesium alloy according to the invention (AMZC), a pure, zinc-containing magnesium alloy (AMZ 503), a pure AM50 alloy and a copper-modified AM50 alloy (AMC) are compared.
  • Table 3 shows the mechanical properties of the alloy according to the invention and the comparison alloys AMZ501, AMZ502, AMZ505 and AM50 and also AZC1231 according to WO 2007/009435 A1, wherein the remainder is always magnesium.
  • the data show that the rate of corrosion of the magnesium alloys according to the invention (AMZC) is comparable with the rate of corrosion of the pure alloys AMZ503 and AM50 or is even improved.
  • the copper modified AM50 alloy displays an unacceptable rate of corrosion.
  • the microstructure of the magnesium alloy according to the invention is characterized by a low level of secondary phases and a change in the beta phase Mg17Al12.
  • the secondary phases do not form a network structure. This has a positive effect on the ductility of the alloys according to the invention, as is shown in Table 3.
  • the beta phase is presumably modified by alloying with zinc and partially suppressed and replaced by quaternary MgAlZnCu phases.
  • the local element formers copper, nickel, cobalt and iron and their intermetallic phases are bound in this phase and nickel, cobalt and iron additionally via Al8Mn5 phases and their negative influence on corrosion resistance clearly reduced.
  • the microstructure of the pure AM50 alloy contains predominantly the beta phase as secondary phase, which accelerates the corrosion via local element formation without formation as a network.
  • the alloy according to the invention can therefore tolerate higher copper, nickel, cobalt and iron contents.
  • the zinc and copper contents increase the strength of the alloy without greatly influencing ductility (see Table 3) and in addition make the alloy more creep resistant.
  • the magnesium alloys according to the invention unlike the pure alloys AMZ503 or AM50, can be prepared with a justifiable expenditure of energy as secondary alloys by melting scrap or impure precursors which contain copper, nickel and/or iron, after which the level of the constituents of the alloy can be set.

Abstract

The present invention relates to a corrosion resistant magnesium alloy which can be prepared with a justifiable expenditure of energy from scrap or impure copper containing precursors and displays a ductility such that it can be used as a casting or kneading material. The magnesium alloy contains, relative to the total weight of the magnesium alloy, 1 to 9 wt. % aluminium, 0.6 to 6 wt. % zinc, 0.1 to 2 wt. % manganese, 0 to 2 wt. % rare earth elements, 0.5 to 2 wt. % copper, wherein the weight ratio of aluminium to zinc lies in the range from 1:1 to 2:1.

Description

  • The present invention relates to a corrosion-resistant magnesium alloy.
  • It is known that magnesium alloys are corrosion-resistant if the copper, iron and nickel contents are very small. In the alloys of the AZ (magnesium with aluminium and zinc), AM (magnesium with aluminium and manganese), AS (magnesium with aluminium and silicon) and AJ (magnesium with aluminium and strontium) groups, the maximum permitted levels are mostly set at 250 ppm copper, 10 ppm nickel and 50 ppm iron. According to Bakke et al., Soc. Automotive Engineers, paper 1999-01-0926, 1999, pages 1-10 and Kammer (Ed.): Magnesiumtaschenbuch, Aluminiumverlag Düsseldorf, 2000, 1st edition, marked corrosion occurs above all due to pitting if the maximum permitted levels of copper, nickel and/or iron are exceeded.
  • Secondary magnesium alloys can be prepared with much less expenditure of energy than primary alloys, but inevitably contain copper, nickel and iron in quantities above the maximum permitted levels. Magnesium alloys with copper, nickel and/or iron contents below the maximum permitted levels can be produced only at very high cost, or not at all, by recycling bought scrap. A corrosion-resistant secondary magnesium alloy is however known from WO 2007/009435 A1. Despite higher copper and nickel contents, the magnesium alloys disclosed in WO 2007/009435 A1 display corrosion properties comparable with or better than a high-purity primary magnesium alloy, and contain 10-20 wt.-% aluminium, 2.5 to 10 wt.-% zinc, 0.1 to 2 wt.-% manganese, 0.3 to 2 wt.-% copper and/or up to 1.5 wt.-% total nickel, cobalt, iron, silicon, zirkon, beryllium. However, these alloys have the drawback that they are comparatively brittle, which makes them unusable for some processing methods such as extrusion, forging, rolling but also for applications which require energy absorption via plastic deformation.
  • The object of the present invention is thus to provide a corrosion-resistant magnesium alloy which can be prepared without a very high expenditure of energy by recycling bought scrap and is ductile.
  • This object is achieved by a magnesium alloy containing, relative to the total weight of the magnesium alloy, 1 to 9 wt.-% aluminium, 0.6 to 6 wt.-% zinc, 0.1 to 2 wt.-% manganese, 0 to 2 wt.-% rare earth elements, 0.5 to 2 wt.-% copper, wherein the weight ratio of aluminium to zinc lies in the range from 1:1 to 2:1. Preferred embodiments result from the dependent claims.
  • Surprisingly it was found that, despite higher copper contents in the magnesium alloy according to the invention, the corrosion behaviour is similarly good compared with high-purity primary magnesium alloys. Furthermore, the magnesium alloy according to the invention remains ductile.
  • The aluminium content of the magnesium alloy according to the is preferably, relative to the total weight of the magnesium alloy, 2 to 7.5 wt.-%, more preferably 3 to 6 wt.-%. The zinc content of the magnesium alloy according to the invention is preferably, relative to the total weight of the magnesium alloy, 1 to 5 wt.-%, more preferably 2 to 4 wt.-%. T he manganese content of the magnesium alloy according to the invention is preferably 0.1 to 1 wt.-%, more preferably 0.2 to 0.75 wt.-%. The copper content of the magnesium alloy according to the invention is preferably 0.5 to 1 wt.-%, more preferably 0.5 to 0.7 wt.-%.
  • Furthermore, it was surprisingly found that, by adding rare earths such as cerium, neodymium, yttrium, scandium, gadolinium or mixtures of same, the corrosion behaviour is further improved. In particular the negative influence of nickel can—if present—thus be reduced. The total rare earth elements content preferably lies in the range of up to 2 wt.-%, relative to the total weight of the magnesium alloy.
  • The magnesium alloy according to the invention can further contain nickel, iron and/or silicon. It is preferred that the nickel content is less than 0.005 wt.-%, relative to the total weight of the magnesium alloy, more preferably less than 0.001 wt.-%, even more preferably less than 0.0005. The iron content should be less than 0.05 wt.-%, relative to the total weight of the magnesium alloy, preferably less than 0.01 wt.-%, more preferably less than 0.005 wt.-% and the silicon content should be less than 0.1 wt.-%, relative to the total weight of the magnesium alloy, preferably less than 0.05 wt.-%.
  • The magnesium alloy according to the invention can be prepared as a secondary alloy by melting scrap or impure magnesium precursors which contain copper, nickel and/or iron, after which the level of constituents in the alloy is set to correspond to that of a magnesium alloy according to the invention. Such a magnesium alloy can be prepared at favourable cost with a comparatively small expenditure of energy.
  • The magnesium alloy according to the invention can be used both as a casting material (sand, ingot, die- and semi-solid casting) and as a kneading material for extrusion, forging, rolling, etc.
  • EXAMPLE
  • The invention will now be explained in more detail with the help of the following examples. The comparative corrosion examinations took place by immersion in 3.5% sodium chloride solution and using the salt-spray test according to DIN 50021. In the immersion measurements, the rate of corrosion was determined by measuring the developed quantity of hydrogen. In the salt-spray test, the mass loss is determined.
  • In Table 1 the rates of corrosion of a magnesium alloy according to the invention (AMZC), a pure, zinc-containing magnesium alloy (AMZ 503), a pure AM50 alloy and a copper-modified AM50 alloy (AMC) are compared. The aluminium, zinc, manganese, copper, nickel, iron and silicon contents of the magnesium alloys listed in Table 1 (in wt.-%) are given in Table 2. Table 3 shows the mechanical properties of the alloy according to the invention and the comparison alloys AMZ501, AMZ502, AMZ505 and AM50 and also AZC1231 according to WO 2007/009435 A1, wherein the remainder is always magnesium.
  • TABLE 1
    Corrosion rate Corrosion rate
    Salt-spray test Immersion
    Alloy (mm/year) (mm/year)
    AMZC 0.6 1.7
    AMZ503 0.17 1.1
    AM50 0.63 4.5
    AMC 8.99 32.9
    AZC1231 1.00 6.57
  • TABLE 2
    Alloy Al Zn Mn Cu Ni Fe Si
    AMZC 5.59 3.18 0.25 0.54 0.00014 0.0013 0.026
    AMZ503 5.3 3.19 0.25 0.0077 0.00021 0.0015 0.028
    AM50 4.9 0.02 0.26 0.0077 0.00017 0.00068 0.026
    AMC 4.84 0.023 0.26 0.52 0.000082 0.00092 0.028
    AZC1231 11.7 3.04 0.48 0.47 0.0032 0.0087 0.39
  • TABLE 3
    Tensile Elongation
    Yield point strength at break
    Alloy (MPa) (MPa) (%)
    AMZC 73 226 10.9
    AMZ501 67 214 13.2
    AMZ502 65 207 10.2
    AMZ505 67 193 11.2
    AM50 54 199 13.2
    AZC1231 152 189 0.5
  • The data show that the rate of corrosion of the magnesium alloys according to the invention (AMZC) is comparable with the rate of corrosion of the pure alloys AMZ503 and AM50 or is even improved. On the other hand, the copper modified AM50 alloy displays an unacceptable rate of corrosion.
  • Without wishing to be bound to a theory, it is presumed that the microstructure of the magnesium alloy according to the invention is characterized by a low level of secondary phases and a change in the beta phase Mg17Al12. Unlike the alloys known from WO 2007/009435 A1, the secondary phases do not form a network structure. This has a positive effect on the ductility of the alloys according to the invention, as is shown in Table 3. The beta phase is presumably modified by alloying with zinc and partially suppressed and replaced by quaternary MgAlZnCu phases. The local element formers copper, nickel, cobalt and iron and their intermetallic phases are bound in this phase and nickel, cobalt and iron additionally via Al8Mn5 phases and their negative influence on corrosion resistance clearly reduced. The microstructure of the pure AM50 alloy, on the other hand, contains predominantly the beta phase as secondary phase, which accelerates the corrosion via local element formation without formation as a network. The alloy according to the invention can therefore tolerate higher copper, nickel, cobalt and iron contents. The zinc and copper contents increase the strength of the alloy without greatly influencing ductility (see Table 3) and in addition make the alloy more creep resistant. Also, the magnesium alloys according to the invention, unlike the pure alloys AMZ503 or AM50, can be prepared with a justifiable expenditure of energy as secondary alloys by melting scrap or impure precursors which contain copper, nickel and/or iron, after which the level of the constituents of the alloy can be set.

Claims (21)

1. Magnesium alloy, containing, relative to the total weight of the magnesium alloy, 1 to 9 wt. % aluminium, 0.6 to 6 wt. % zinc, 0.1 to 2 wt. % manganese, 0 to 2 wt. % rare earth elements, 0.5 to 2 wt. % copper, wherein the weight ratio of aluminium to zinc lies in the range from 1:1 to 2:1.
2. Magnesium alloy according to claim 1, characterized in that the aluminium content, relative to the total weight of the magnesium alloy, is 2 to 7.5 wt. %.
3. Magnesium alloy according to claim 1, characterized in that the zinc content, relative to the total weight of the magnesium alloy, is 1 to 5 wt. %.
4. Magnesium alloy according to claim 1, characterized in that the manganese content, relative to the total weight of the magnesium alloy, is 0.1 to 1 wt. %.
5. Magnesium alloy according claim 1, characterized in that the copper content, relative to the total weight of the magnesium alloy, is 0.5 to 1 wt. %.
6. Magnesium alloy according to claim 1, characterized in that it further contains nickel, iron and/or silicon.
7. Magnesium alloy according to claim 6, characterized in that the nickel content, relative to the total weight of the magnesium alloy, is less than 0.005 wt. %.
8. Magnesium alloy according to claim 6, characterized in that the iron content, relative to the total weight of the magnesium alloy, is less than 0.01 Wt. %.
9. Magnesium alloy according to claim 6, characterized in that the silicon content, relative to the total weight of the magnesium alloy, is less than 0.1 wt. %.
10. A method for the preparation of a magnesium alloy comprising melting magnesium scrap or impure, copper-containing precursors and then setting the level of constituents of the alloy to correspond to the composition of claim 1.
11. (canceled)
12. Magnesium alloy according to claim 2, characterized in that the zinc content, relative to the total weight of the magnesium alloy, is 1 to 5 wt. %.
13. Magnesium alloy according to claim 2, characterized in that the manganese content, relative to the total weight of the magnesium alloy, is 0.1 to 1 wt. %.
14. Magnesium alloy according to claim 3, characterized in that the manganese content, relative to the total weight of the magnesium alloy, is 0.1 to 1 wt. %.
15. Magnesium alloy according claim 2, characterized in that the copper content, relative to the total weight of the magnesium alloy, is 0.5 to 1 wt. %.
16. Magnesium alloy according claim 3, characterized in that the copper content, relative to the total weight of the magnesium alloy, is 0.5 to 1 wt. %.
17. Magnesium alloy according to claim 7, characterized in that the iron content, relative to the total weight of the magnesium alloy, is less than 0.01 Wt. %.
18. Magnesium alloy according claim 4, characterized in that the copper content, relative to the total weight of the magnesium alloy, is 0.5 to 1 wt. %.
19. A method of forming a magnesium alloy product comprising casting the magnesium alloy of claim 1 into a cast product.
20. A method of forming a magnesium alloy material comprising kneading the magnesium alloy of claim 1.
21. The method of claim 19, wherein the product is kneaded by a method selected from forging or rolling the magnesium alloy material.
US12/426,028 2008-04-23 2009-04-17 Ductile magnesium alloy Abandoned US20090269236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008020523.0A DE102008020523B4 (en) 2008-04-23 2008-04-23 Ductile magnesium alloy
DE10-2008-020-523.0 2008-04-23

Publications (1)

Publication Number Publication Date
US20090269236A1 true US20090269236A1 (en) 2009-10-29

Family

ID=40886583

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/426,028 Abandoned US20090269236A1 (en) 2008-04-23 2009-04-17 Ductile magnesium alloy

Country Status (8)

Country Link
US (1) US20090269236A1 (en)
EP (1) EP2116622B1 (en)
JP (1) JP2009263792A (en)
CN (1) CN101565789A (en)
AU (1) AU2009201545B2 (en)
CA (1) CA2662603C (en)
DE (1) DE102008020523B4 (en)
IL (1) IL198126A0 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169542B2 (en) 2009-06-17 2015-10-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Recycled magnesium alloy, process for producing the same, and magnesium alloy
CN114277297A (en) * 2021-12-22 2022-04-05 重庆大学 Magnesium-based composite material with improved heat resistance and preparation method thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435444B2 (en) 2009-08-26 2013-05-07 Techmag Ag Magnesium alloy
JP5595891B2 (en) * 2010-12-17 2014-09-24 株式会社豊田中央研究所 Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
CN102260811A (en) * 2011-07-22 2011-11-30 曹金 Magnesium-based blocking explosion-proof alloy material
CN103397235B (en) * 2013-08-16 2015-08-12 重庆大学 A kind of magnesium-aluminum-zinc-manganese-copper alloy and preparation method thereof
CN104630474A (en) * 2013-11-07 2015-05-20 丹阳智盛合金有限公司 Technology for production of iron-chromium-aluminum alloy by submerged arc furnace
KR102542754B1 (en) * 2016-03-31 2023-06-12 가부시키가이샤 구리모토 뎃코쇼 Degradable Mg alloy

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188239A (en) * 1937-12-30 1940-01-23 Christen Fritz Magnesium alloy
US2264310A (en) * 1940-03-09 1941-12-02 Dow Chemical Co Magnesium base alloy
US2264309A (en) * 1940-03-09 1941-12-02 Dow Chemical Co Magnesium base alloy
GB723483A (en) * 1952-10-02 1955-02-09 Magnesium Elektron Ltd Improvements in or relating to the production of magnesium base alloys
US3653880A (en) * 1970-01-08 1972-04-04 Norsk Hydro As Magnesium cast alloys with little tendency to hot-crack
US3892565A (en) * 1973-10-01 1975-07-01 Nl Industries Inc Magnesium alloy for die casting
US4908181A (en) * 1988-03-07 1990-03-13 Allied-Signal Inc. Ingot cast magnesium alloys with improved corrosion resistance
US5681403A (en) * 1993-06-28 1997-10-28 Nissan Motor Co., Ltd. Magnesium alloy
US20080017286A1 (en) * 2004-03-04 2008-01-24 Gm Global Technology Operations, Inc. Methods of extruding magnesium alloys
US20090104070A1 (en) * 2005-07-20 2009-04-23 Andre Ditze Magnesium alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2022138B (en) * 1978-05-31 1982-06-23 Magnesium Elektron Ltd Magnesium alloys
DE10003970B4 (en) * 2000-01-25 2005-09-22 Technische Universität Clausthal Process for producing magnesium alloys having a superplastic microstructure
DE102006057719A1 (en) * 2005-12-15 2007-07-05 Salzgitter Magnesium Technologie Gmbh Magnesium sheet metal and strip obtained by cast rolling, thin strip- and/or thin slab-casting of an alloy composition having e.g. magnesium and aluminum and finish-rolling the composition, useful in vehicle lightweight constructions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2188239A (en) * 1937-12-30 1940-01-23 Christen Fritz Magnesium alloy
US2264310A (en) * 1940-03-09 1941-12-02 Dow Chemical Co Magnesium base alloy
US2264309A (en) * 1940-03-09 1941-12-02 Dow Chemical Co Magnesium base alloy
GB723483A (en) * 1952-10-02 1955-02-09 Magnesium Elektron Ltd Improvements in or relating to the production of magnesium base alloys
US3653880A (en) * 1970-01-08 1972-04-04 Norsk Hydro As Magnesium cast alloys with little tendency to hot-crack
US3892565A (en) * 1973-10-01 1975-07-01 Nl Industries Inc Magnesium alloy for die casting
US4908181A (en) * 1988-03-07 1990-03-13 Allied-Signal Inc. Ingot cast magnesium alloys with improved corrosion resistance
US5681403A (en) * 1993-06-28 1997-10-28 Nissan Motor Co., Ltd. Magnesium alloy
US20080017286A1 (en) * 2004-03-04 2008-01-24 Gm Global Technology Operations, Inc. Methods of extruding magnesium alloys
US20090104070A1 (en) * 2005-07-20 2009-04-23 Andre Ditze Magnesium alloy

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9169542B2 (en) 2009-06-17 2015-10-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Recycled magnesium alloy, process for producing the same, and magnesium alloy
CN114277297A (en) * 2021-12-22 2022-04-05 重庆大学 Magnesium-based composite material with improved heat resistance and preparation method thereof

Also Published As

Publication number Publication date
IL198126A0 (en) 2009-12-24
AU2009201545B2 (en) 2014-03-27
JP2009263792A (en) 2009-11-12
DE102008020523A1 (en) 2009-10-29
CA2662603C (en) 2016-02-09
EP2116622A1 (en) 2009-11-11
CN101565789A (en) 2009-10-28
AU2009201545A1 (en) 2009-11-12
EP2116622B1 (en) 2015-07-22
CA2662603A1 (en) 2009-10-23
DE102008020523B4 (en) 2014-05-15

Similar Documents

Publication Publication Date Title
US20090269236A1 (en) Ductile magnesium alloy
CA2615835C (en) Magnesium alloy
EP1897962B1 (en) Creep resistant magnesium alloy with improved ductility and fracture toughness for gravity casting applications
EP3121302B1 (en) Aluminum alloy for die casting, and die-cast aluminum alloy using same
Zhang et al. Microstructures, tensile properties and corrosion behavior of die-cast Mg–4Al-based alloys containing La and/or Ce
WO2010146804A1 (en) Recycled magnesium alloy, process for producing the same, and magnesium alloy
US5855697A (en) Magnesium alloy having superior elevated-temperature properties and die castability
US20080138236A1 (en) Mg Alloys Containing Misch Metal Manufacturing Method of Wrought Mg Alloys Containing Misch Metal, and Wrought Mg Alloys Thereby
KR20070102952A (en) Magnesium alloys
Rajeshkumar et al. Investigation on the microstructure, mechanical properties and corrosion behavior of Mg-Sb and Mg-Sb-Si alloys
US20110286880A1 (en) HIGH STRENGTH Mg-Al-Sn-Ce AND HIGH STRENGTH/DUCTILITY Mg-Al-Sn-Y CAST ALLOYS
JP5595891B2 (en) Method for producing heat-resistant magnesium alloy, heat-resistant magnesium alloy casting and method for producing the same
EP1967600B1 (en) Creep-resistant magnesium alloy for casting
CN108251731A (en) A kind of magnesium-rare earth and preparation method thereof
JP3916452B2 (en) High corrosion resistance magnesium alloy and method for producing the same
US20030086811A1 (en) Creep resistant magnesium alloys with improved castability
Wan et al. Microstructure, mechanical properties and creep resistance of Mg–(8%–12%) Zn–(2%–6%) Al alloys
Fechner et al. Development of a magnesium secondary alloy system for mixed magnesium post-consumer scrap
JP4526769B2 (en) Magnesium alloy
WO2011067682A1 (en) Low lead brass alloy
CN113444939A (en) Corrosion-resistant aluminum alloy material and preparation method thereof
KR20180125487A (en) Heat resistant magnesium alloy
US20120269674A1 (en) Magnesium alloy and method of making the same
US20230279524A1 (en) Cast magnesium alloy with improved ductility
Thompson Surface Corrosion Response of Al Alloys A383 and Aural 2 with Ce Additions in Aqueous NaCl and Salt-fog Environments

Legal Events

Date Code Title Description
AS Assignment

Owner name: GKSS-FORSCHUNGSZENTRUM GEESTHACHT GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BLAWERT, CARSTEN;KAINER, ULRICH;DIETZEL, WOLFGANG;AND OTHERS;REEL/FRAME:022745/0213

Effective date: 20090427

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION