US20090264918A1 - Clevis assemblies for medical instruments and methods of manufacture of same - Google Patents
Clevis assemblies for medical instruments and methods of manufacture of same Download PDFInfo
- Publication number
- US20090264918A1 US20090264918A1 US12/385,514 US38551409A US2009264918A1 US 20090264918 A1 US20090264918 A1 US 20090264918A1 US 38551409 A US38551409 A US 38551409A US 2009264918 A1 US2009264918 A1 US 2009264918A1
- Authority
- US
- United States
- Prior art keywords
- clevis
- axle
- arms
- end effector
- effector assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title description 17
- 238000004519 manufacturing process Methods 0.000 title description 7
- 230000000712 assembly Effects 0.000 title 1
- 238000000429 assembly Methods 0.000 title 1
- 239000000463 material Substances 0.000 abstract description 8
- 239000012636 effector Substances 0.000 description 36
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- 238000001574 biopsy Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000003466 welding Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 238000005219 brazing Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000001861 endoscopic biopsy Methods 0.000 description 1
- 230000002496 gastric effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 229920009441 perflouroethylene propylene Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
- A61B10/02—Instruments for taking cell samples or for biopsy
- A61B10/06—Biopsy forceps, e.g. with cup-shaped jaws
Definitions
- Embodiments of the invention relate to medical devices, for example endoscopic instruments. More particularly, embodiments of the invention relate to features on the distal clevis portion of such devices and instruments.
- the devises may be stamped from a sheet material and formed to obtain a substantially cylindrical end and at least one clevis arm.
- Endoscopic medical devices may be used in cooperation with an endoscope to perform a medical procedure on a patent.
- an endoscopic biopsy forceps may be used for taking tissue samples from the human body for analysis.
- Endoscopic instruments typically include a proximal handle, a distal end effector assembly, and a long, slender, flexible member connecting the handle to the distal assembly.
- the elongate member is covered with a PTFE, FEP or polyolefin sheath along substantially its entire length.
- the member may include a pair of axially displaceable control wires extending therethrough.
- the control wires may be flexible and longitudinally inelastic, and may be formed from metal such as steel.
- the control wires are coupled to on their proximal ends to a portion of the handle and on their distal ends to a portion of the end effector assembly.
- An endoscopic medical procedure is typically accomplished in HENDERSON connection with an endoscope which is inserted into a body and guided by medical device, for example a biopsy forceps.
- the practitioner guides the endoscope to the procedure site, with appropriate imaging through use of the optical lens, and inserts the endoscopic medical device through the lumen of the endoscope to the procedure site.
- the practitioner manipulates the actuating handle cause the end effector, for example, biopsy forceps jaws, to perform the medical procedure.
- the practitioner and/or an assistant carefully withdraws the medical instrument from the endoscope.
- the distal assembly of many endoscopic instruments include a clevis that connects the distal assembly to the elongate member and also holds the distal end effectors, such as biopsy forceps jaws.
- One current cast clevis design has two opposing distal arms. An axle protrudes from one of the distal arms, while the opposing distal arm has a through hole. When the jaws are placed onto the axle, the opposing distal arm is folded over to place the axle in the through hole, and then the end of the axle protruding past the through hole is riveted so as to prevent the distal arms from spreading.
- Other clevis arrangements are shown and described in U.S. Pat. No. 5,716,374, the complete disclosure of which is incorporated by reference herein.
- An embodiment of the invention includes a clevis assembly for a medical instrument.
- the medical instrument includes a clevis having a base and a plurality of arms extending from the base and an axle to extend between the plurality of arms.
- Each of the plurality of arms is configured to accommodate a portion of the axle and an end of the axle includes a flared portion to engage an outer surface of one of the plurality of arms.
- the invention in another embodiment, includes a medical instrument including a handle portion, an end effector assembly, and an elongate member connecting the handle portion to the end effector assembly.
- the end effector assembly includes a clevis having a base and a plurality of arms extending from the base and an axle to extend between the plurality of arms.
- Each of the plurality of arms is configured to accommodate a portion of the axle and an end of the axle includes a flared portion to engage an outer surface of one of the plurality of arms.
- the invention includes a method of manufacturing an end effector assembly of a medical instrument.
- the method includes manipulating a sheet of material to form a clevis, the clevis including a base and a plurality of arms extending from the base and mounting an axle to the plurality of arms, the axle holding an end effector and including a first flared portion at a first end of the axle.
- Mounting the axle includes engaging the first flared portion with an outer surface of one of the plurality of arms.
- the invention includes a clevis for a medical instrument including a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
- the invention in still another embodiment, includes a medical instrument including a handle portion, an end effector assembly, and an elongate member connecting the handle portion to the end effector assembly.
- the end effector assembly includes a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
- the invention includes a method of manufacturing a clevis of a medical instrument, the method including manipulating a sheet of material to form a clevis, the clevis including a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
- the invention in another embodiment, includes a clevis for a medical instrument including a base and a plurality of arms extending from the base. At least one of the plurality of arms includes a reinforcing portion.
- FIG. 1 is a schematic view of a medical instrument according to an embodiment of the present invention.
- FIG. 2 is a partial cross-sectional view of an end effector assembly of the medical instrument of FIG. 1 .
- FIG. 3A is a perspective view of a clevis of the end effector assembly of FIG. 2 .
- FIG. 3B is a schematic view of a production layout of the clevis of FIG. 3A .
- FIG. 3C is a perspective view of an axle for use with the clevis of FIG. 3A .
- FIG. 4A is a perspective view of a clevis of an end effector assembly for us in a medical instrument, according to another embodiment of the present invention.
- FIG. 4B is a schematic view of a production layout of the clevis of FIG. 4A .
- FIG. 4C is a perspective view of an axle for use with the clevis of FIG. 4B .
- FIG. 1 An exemplary embodiment of an endoscopic instrument 10 is depicted in FIG. 1 .
- the endoscopic instrument 10 includes a handle portion 11 and an end effector assembly 12 connected to each other by a flexible elongate member 13 .
- Control wires 26 , 27 extend between the handle portion 11 and the end effector assembly 12 through the flexible elongate member 13 .
- the handle portion 11 includes a ring portion 11 c disposed at the proximal end of an elongate portion 11 b .
- a spool portion 11 a is disposed around the elongate portion 11 b and is configured to move longitudinally relative to the elongate portion 11 b .
- the spool portion 11 a is connected to the control wires 26 , 27 .
- the elongate member 13 may include an inner coiled portion 13 b (see FIG. 2 ) surrounded by an outer covering or jacket portion 13 a .
- the inner coiled portion 13 b is hollow, and configured to accommodate control wires 26 , 27 and allow the longitudinal movement of the control wires 26 , 27 therethrough.
- the handle portion 11 and elongate member 13 described are exemplary only and may have other suitable configurations.
- FIG. 2 An exemplary embodiment of an end effector assembly 12 is depicted in FIG. 2 .
- the end effector assembly 12 has a clevis 21 which is coupled, on its proximal end to the elongate member 13 .
- the end effector assembly 12 also has a pair of forceps jaws 22 , 23 that may be substantially similar in shape and appearance.
- the clevis 21 has a pair of clevis arms 24 which accommodate an axle 25 therethrough. Jaws 22 , 23 are rotatably mounted on the portion of the axle 25 between the clevis arms 24 . Each jaw 22 , 23 has a distal cutting edge 22 a , 23 a , a proximal tang 22 b , 23 b , and a mounting hole 22 c , 23 c on the proximal tang 22 b , 23 b .
- the proximal tangs 22 b , 23 b are each coupled to the distal end of a respective control wire 26 , 27 which run through the hollow center of the elongate member 13 .
- Manipulation of the handle portion 11 results in the longitudinal movement of the control wires 26 , 27 relative to the elongate member 13 .
- the movement of the control wires 26 , 27 acts on the proximal tangs 22 b , 23 b of the jaws 22 , 23 , resulting in the opening and closing of the jaws 22 , 23 relative to each other.
- the end effector assembly 12 may also include a flat knife or spike 28 which is mounted on the distal end of the clevis 21 and disposed between the jaws 22 , 23 .
- the clevis 21 may be formed as a unitary molded or cast member.
- the clevis 21 has a proximal end 29 from which the clevis arms 24 extend, and the proximal end 29 may be configured so that is can be crimped or welded to the distal end of the elongate member 13 .
- the proximal end 29 can be wrapped to form a cylinder or a broken cylinder 33 configured to centrally receive, or be received by, the elongate member 13 .
- Each of the clevis arms 24 have a mounting hole 30 for receiving an axle 25 .
- the clevis arms 24 are joined by a substantially orthogonal cross member 31 disposed distal to the proximal end and proximal to the mounting holes 30 .
- a central tab 32 may extend distally from the cross member 31 to spike 28 and be FINNEGAN provided with a third mounting hole 30 that is located at a substantially similar position to the other mounting holes 30 on the clevis arms 24 .
- This third mounting hole 30 may improve stability of the axle 25 .
- the jaws 22 , 23 may be mounted on both sides or either side of the central tab 32 with the spike 28 extending between the jaws 22 , 23 .
- clevis 21 may include stiffening ribs along the arms 24 to provide additional strength and make the arms 24 less flexible in certain directions.
- the clevis 21 may be stamped from a stainless steel sheet 34 which is cut (stamped) to form at least two relatively broad proximal bases 39 and at least two relatively narrow substantially parallel clevis arms 24 , one arm 24 extending from each base 39 .
- the cut sheet is formed by bending the cross member 31 on either side of the central tab in an “S” configuration so that the mounting holes 30 of each clevis arm 24 and the central tab 32 are aligned substantially coaxially with each other.
- the steel sheet 34 may also be cut so that a distal spike 28 may extend from the central tab 32 .
- the arms 24 may be bent inward at an angle, for example, of approximately 15 degrees along a portion 24 a just proximal of the mounting holes 30 .
- the at least two proximal bases 39 are bent towards each other to form a bifurcated cylinder 33 .
- the bifurcated cylinder 33 can be crimped, welded, or otherwise affixed to the distal end of the elongate member 13 .
- the axle 25 may have a substantially circular cross-section with a substantially constant inner circumference (e.g., inner diameter) for the entire length of the axle 25 .
- the flared end or flange 25 a may also have a substantially circular cross section that tapers from a maximum outer circumference (e.g., outer diameter) at the portion configured to contact an outer surface of the arms 24 , to a minimum circumference (e.g., inner diameter) substantially similar to the either the outer circumference of the non-flared portion of the axle 25 or the inner circumference of the axle 25 .
- the end effector assembly 12 may be placed on the axle 25 via the end 25 b opposite the flared end or flange 25 a .
- the end effector assembly 12 may be placed on the axle 25 after placing end 25 b of the axle 25 through the first mounting hole 30 , and then the end 25 b may be placed through the other mounting hole 30 .
- end 25 b may first be placed through one mounting hole 30 , a portion of the end effector assembly 12 , for example a jaw, may be placed on the axle 25 .
- the end 25 b may then be placed through the mounting hole on the central arm 24 , the other portion of the end effector assembly 12 may then be placed on the axle 25 , and then the end 25 b may be placed through the remaining mounting hole 30 .
- the flared end or flange 25 a may contact the outer surface of an arm 24 , while the outer surface of the rest of the axle 25 may contact the inner surfaces of the mounting holes 30 and rotate within the mounting holes 30 .
- the other end 25 b of the axle 25 is then flared out, or otherwise configured, to lodge the axle 25 in the arms 24 of the clevis 21 , making the axle 25 and the end effector assembly 12 relatively difficult to dislodge from the mounting holes 30 , for example, during the actuation of the end effector assembly 12 .
- portions of the end 25 b are in contact with the outer surface of an arm 24 and flared out portions of the end 25 b may also be disposed within the adjacent mounting hole 30 (i.e., the a circumference of the end 25 b in the mounting hole 30 may increase and form a press-fit with the mounting hole 30 due to the flaring out of the rest of the end 25 b ).
- the inner portion of the axle 25 may be hollow or solid, and may have any desired cross-sectional shape, and may even have a cross-sectional shape that varies along its length.
- the outer surface of the axle 25 may not be smooth. That surface may have grooves or other features, for example, to assist in the alignment of portions of the end effector assembly 12 on the axle 25 . That surface may also have a roughened surface at certain portions to interact with portions of the clevis 21 defining holes 30 and thereby limit its rotational motion relative to those arms.
- the flared end or flange 25 a may not be disposed around the entire circumference of an end of the axle 25 , but may instead be a tab or a plurality of tabs disposed around the end of the axle 25 that function substantially similarly to the flange 25 a .
- the other end 25 b of the axle 25 may be threaded so that a nut may be screwed on, may be configured to be riveted, or may be configured to accept an adhesive.
- the design of the axle 25 and its use during the forming of clevis 21 may improve manufacturability of the end effector assembly 12 by utilizing the placement of the axle 25 in the mounting holes 30 as an alignment aid, if necessary, for the clevis 21 and the jaws 22 , 23 . Furthermore, by flaring out each end 25 a , 25 b of the axle 25 , the axle 25 , and anything mounted to the axle 25 , for example, the jaws 22 , 23 , may be prevented from axially shifting in the mounting holes 30 . However, in some cases, it may be desirable to flare out the ends 25 a , 25 b of the axle 25 in a manner so as to allow axial shifting of the axle 25 and/or the jaws 22 , 23 in the mounting holes 30 .
- the design of the axle 25 with a flared end 25 a may improve the manufacturability of the axle 25 by utilizing the central orifice of the axle 25 as an alignment in the production of the axle 25 .
- manufacturability may be improved because the design of the axle 25 may ensure riveting accuracy axially.
- FIGS. 4A-4B Another exemplary embodiment of a clevis is shown in FIGS. 4A-4B .
- the clevis 121 is formed as a unitary molded or cast member and has a substantially cylindrical proximal end 129 from which the clevis arms 124 extend.
- the proximal end 129 of the clevis 121 is wrapped to form a cylinder or a broken cylinder 133 , and may be crimped, welded, or otherwise affixed to the distal end of the elongate member 13 .
- the clevis arms 124 each define at least one U-shaped groove 130 for receiving an axle pin 125 shown in FIG. 4C .
- the clevis arms 124 are joined by a substantially orthogonal cross member 131 disposed proximal to the U-shaped grooves 130 .
- a central tab 132 may extend distally from the cross member 131 and be provided with a third U-shaped groove 130 .
- the jaws 22 , 23 may be mounted on both sides or either side of the central tab 132 with a spike 128 extending between the jaws 22 , 23 .
- the clevis arms 121 may also include stiffening ribs 135 on the outside surfaces 136 of each of the clevis arms 121 so as to provide FINNEGAN additional strength, and make the arms 121 less flexible in certain directions.
- the clevis 121 may be stamped from a stainless steel sheet 134 which is cut (stamped) to form at least two relatively broad proximal bases 139 and at least two relatively narrow substantially parallel clevis arms 124 , one arm 124 extending from each base 139 .
- the cut sheet is formed by bending the cross member 131 on either side of the central tab in an “S” configuration so that the U-shaped grooves 130 of each clevis arm 124 and the central tab 132 are aligned substantially coaxially with each other.
- the steel sheet 134 may also be cut so that a distal spike 128 may extend from the central tab 132 .
- the arms 124 may be bent inward at an angle, for example, of approximately 15 degrees along a portion 124 a just proximal of the U-shaped grooves 130 .
- the at least two proximal bases 139 are bent towards each other to form a bifurcated cylinder 133 .
- the bifurcated cylinder 133 can be crimped, welded, or otherwise affixed to the distal end of the elongate member 13 .
- the U-shaped grooves 130 are configured to receive and retain an axle pin 125 , for example, as depicted in FIG. 4C , configured to accommodate the jaws 22 , 23 .
- the axle pin 125 may be snapped or otherwise affixed into place in the U-shaped grooves 130 .
- the U-shaped grooves 130 may have protrusions or bumps 137 (shown in FIG. 4B ) on the inside portions of their ends configured to retain the axle pin 125 . Bumps 137 would overlie pin 125 once pin 125 is in place within grooves 130 .
- pin 125 may be bonded within grooves 130 with a suitable biocompatible adhesive.
- Other contemplated methods of retaining the axle pin include spot welding, seam welding, brazing, resistance welding of contact areas, and any other method known in the art.
- the jaws 22 , 23 may be placed on the axle pin 125 , and then the axle pin 125 may be placed in the U-shaped grooves 130 , simplifying the process of both installing the jaws 22 , 23 and aligning axle pin 125 in the U-shaped grooves 130 .
- this configuration is also tolerant of slight axial misalignments of the U-shaped grooves 130 during the bending of the sheet 134 .
- the stiffening ribs 135 may be stamped on the sheet 134 , and displace some of the material on the inside surface 138 of the sheet to the outside surface 136 . This configuration imparts greater stability on the arms 124 , and makes it more resistant to bending or torqueing either due to outside forces, or due to the actuation of the end effector assembly 112 .
- the pin 125 may have a substantially circular cross-section with a substantially constant inner circumference (e.g., inner diameter) for the entire length of the pin 125 .
- the flared ends or flanges 125 a , 125 b may also have a substantially circular cross section that tapers from a maximum outer circumference (e.g., outer diameter) at the portion configured to contact an outer surface of the arms 24 , to a minimum circumference (e.g., inner diameter) substantially similar to either the outer circumference of the non-flared portion of the pin 125 of the inner circumference of the pin 125 .
- the end effector assembly 12 for example jaws, may be placed on the pin 125 , and then the pin 125 may be inserted into the grooves 130 .
- the flared ends or flanges 125 a , 125 b may contact the outer surface of an arm 24 , while the outer surface of the rest of the pin 125 may contact the inner surfaces of the grooves 130 and rotate within the grooves 130 .
- the pin 125 and the end effector assembly 12 may be relatively difficult to dislodge from the grooves 30 , for example, during the actuation of the end effector assembly 12 .
- Portions of the pin 125 may also be in contact with bumps or protrusions 137 which may assist in retaining the pin 125 in the grooves 130 .
- the inner portion of the pin 125 may be hollow or solid, and may have any desired cross-sectional shape, and may even have a cross-sectional shape that varies along its length.
- the outer surface of the pin 125 may not be smooth. That surface may have grooves or other features, for example, to assist in the alignment of portions of the end effector assembly 12 on the pin 125 . That surface may also have a roughened surface at certain portions to interact with portions of the clevis 121 defining U-shaped grooves 130 and thereby limit its rotational motion relative to those arms 124 .
- the flared ends or flanges 125 a , 125 b may not be disposed around the entire circumference of an end of the pin 125 , but may instead be a tab or a plurality of tabs disposed around the ends of the pin 125 that function substantially similarly to the flange 25 a in FIG. 3C .
- either end 125 a , 125 b of the pin 125 may be threaded so that a nut may be screwed on, may be configured to be riveted, or may be configured to accept an adhesive.
- the disclosed clevises may be formed of any suitable biocompatible material including various metals and non-metals.
- cylindrical portions have been shown as incomplete or broken cylinders, it will be recognized that welding, soldering, brazing, or other operations may be used to complete the cylindrical portions if desired.
- the clevis and end effector may not only be stamped out of steel, but may also be cast, molded, or machined out of bronze, plastics, metals, ceramics, or other suitable materials known in the art.
- the jaws may be substantially similar in shape to each other, however, they may also be different in configuration from each other.
- the clevis is shown with respect to use in a biopsy forceps instrument, the clevis could be used with any of a variety of end effectors as part of any endoscopic or non-endoscopic medical device, including, for example, clamp, scissors, dissectors, graspers, etc.
- the invention is not limited to use in endoscopic procedures or medical instruments, but may also be used in any other medical procedure (e.g., gastrointestinal, urological, gynecological, cardiological, etc.) or non-medical procedure, or in medical or non-medical instruments.
- clevis may have arms where at least one of the arms has a mounting hole, while at least one other arm has a U-shaped grooves. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as so claimed.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Biodiversity & Conservation Biology (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Surgical Instruments (AREA)
- Endoscopes (AREA)
- Table Equipment (AREA)
Abstract
Embodiments of the invention relate to endoscopic instruments. More particularly, embodiments of the invention relate to features on the clevis portion of endoscopic instruments. The devises may be formed from a sheet material to obtain a substantially cylindrical end and at least one clevis arm. The clevis features may include an axle having at least one flared end to engage a clevis arm, one or more U-shaped grooves on the clevis arms to receive an axle, and stiffening ribs to strengthen the clevis arms.
Description
- Embodiments of the invention relate to medical devices, for example endoscopic instruments. More particularly, embodiments of the invention relate to features on the distal clevis portion of such devices and instruments. The devises may be stamped from a sheet material and formed to obtain a substantially cylindrical end and at least one clevis arm.
- Endoscopic medical devices may be used in cooperation with an endoscope to perform a medical procedure on a patent. For example, an endoscopic biopsy forceps may be used for taking tissue samples from the human body for analysis. Endoscopic instruments typically include a proximal handle, a distal end effector assembly, and a long, slender, flexible member connecting the handle to the distal assembly. The elongate member is covered with a PTFE, FEP or polyolefin sheath along substantially its entire length. The member may include a pair of axially displaceable control wires extending therethrough. The control wires may be flexible and longitudinally inelastic, and may be formed from metal such as steel. The control wires are coupled to on their proximal ends to a portion of the handle and on their distal ends to a portion of the end effector assembly.
- An endoscopic medical procedure is typically accomplished in HENDERSON connection with an endoscope which is inserted into a body and guided by medical device, for example a biopsy forceps. The practitioner guides the endoscope to the procedure site, with appropriate imaging through use of the optical lens, and inserts the endoscopic medical device through the lumen of the endoscope to the procedure site. While viewing the procedure site through use of the optical lens of the endoscope, the practitioner manipulates the actuating handle cause the end effector, for example, biopsy forceps jaws, to perform the medical procedure. After the procedure, the practitioner and/or an assistant carefully withdraws the medical instrument from the endoscope.
- The distal assembly of many endoscopic instruments include a clevis that connects the distal assembly to the elongate member and also holds the distal end effectors, such as biopsy forceps jaws. One current cast clevis design has two opposing distal arms. An axle protrudes from one of the distal arms, while the opposing distal arm has a through hole. When the jaws are placed onto the axle, the opposing distal arm is folded over to place the axle in the through hole, and then the end of the axle protruding past the through hole is riveted so as to prevent the distal arms from spreading. Other clevis arrangements are shown and described in U.S. Pat. No. 5,716,374, the complete disclosure of which is incorporated by reference herein.
- An embodiment of the invention includes a clevis assembly for a medical instrument. The medical instrument includes a clevis having a base and a plurality of arms extending from the base and an axle to extend between the plurality of arms. Each of the plurality of arms is configured to accommodate a portion of the axle and an end of the axle includes a flared portion to engage an outer surface of one of the plurality of arms.
- In another embodiment, the invention includes a medical instrument including a handle portion, an end effector assembly, and an elongate member connecting the handle portion to the end effector assembly. The end effector assembly includes a clevis having a base and a plurality of arms extending from the base and an axle to extend between the plurality of arms. Each of the plurality of arms is configured to accommodate a portion of the axle and an end of the axle includes a flared portion to engage an outer surface of one of the plurality of arms.
- In a further embodiment, the invention includes a method of manufacturing an end effector assembly of a medical instrument. The method includes manipulating a sheet of material to form a clevis, the clevis including a base and a plurality of arms extending from the base and mounting an axle to the plurality of arms, the axle holding an end effector and including a first flared portion at a first end of the axle. Mounting the axle includes engaging the first flared portion with an outer surface of one of the plurality of arms.
- In yet another embodiment, the invention includes a clevis for a medical instrument including a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
- In still another embodiment, the invention includes a medical instrument including a handle portion, an end effector assembly, and an elongate member connecting the handle portion to the end effector assembly. The end effector assembly includes a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
- In a still further embodiment, the invention includes a method of manufacturing a clevis of a medical instrument, the method including manipulating a sheet of material to form a clevis, the clevis including a base and a plurality of arms extending from the base, at least one of the plurality of arms defining a groove configured to receive an axle.
- In another embodiment, the invention includes a clevis for a medical instrument including a base and a plurality of arms extending from the base. At least one of the plurality of arms includes a reinforcing portion.
- Additional objects and advantages of the invention will be set forth in part in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
- It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed.
- The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description, serve to explain the principles of the invention.
-
FIG. 1 is a schematic view of a medical instrument according to an embodiment of the present invention. -
FIG. 2 is a partial cross-sectional view of an end effector assembly of the medical instrument ofFIG. 1 . -
FIG. 3A is a perspective view of a clevis of the end effector assembly ofFIG. 2 . -
FIG. 3B is a schematic view of a production layout of the clevis ofFIG. 3A . -
FIG. 3C is a perspective view of an axle for use with the clevis ofFIG. 3A . -
FIG. 4A is a perspective view of a clevis of an end effector assembly for us in a medical instrument, according to another embodiment of the present invention. -
FIG. 4B is a schematic view of a production layout of the clevis ofFIG. 4A . -
FIG. 4C is a perspective view of an axle for use with the clevis ofFIG. 4B . - Reference will now be made in detail to embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
- An exemplary embodiment of an
endoscopic instrument 10 is depicted inFIG. 1 . Theendoscopic instrument 10 includes ahandle portion 11 and anend effector assembly 12 connected to each other by a flexibleelongate member 13.Control wires handle portion 11 and theend effector assembly 12 through the flexibleelongate member 13. - The
handle portion 11 includes aring portion 11 c disposed at the proximal end of anelongate portion 11 b. Aspool portion 11 a is disposed around theelongate portion 11 b and is configured to move longitudinally relative to theelongate portion 11 b. Thespool portion 11 a is connected to thecontrol wires elongate member 13 may include an inner coiledportion 13 b (seeFIG. 2 ) surrounded by an outer covering orjacket portion 13 a. The inner coiledportion 13 b is hollow, and configured to accommodatecontrol wires control wires handle portion 11 andelongate member 13 described are exemplary only and may have other suitable configurations. - An exemplary embodiment of an
end effector assembly 12 is depicted inFIG. 2 . Theend effector assembly 12 has aclevis 21 which is coupled, on its proximal end to theelongate member 13. Theend effector assembly 12 also has a pair offorceps jaws - The
clevis 21 has a pair of clevisarms 24 which accommodate anaxle 25 therethrough.Jaws axle 25 between theclevis arms 24. Eachjaw distal cutting edge proximal tang hole proximal tang proximal tangs respective control wire elongate member 13. Manipulation of thehandle portion 11, for example the movement of thespool portion 11 a relative to theelongate portion 11 b, results in the longitudinal movement of thecontrol wires elongate member 13. The movement of thecontrol wires proximal tangs jaws jaws end effector assembly 12 may also include a flat knife or spike 28 which is mounted on the distal end of theclevis 21 and disposed between thejaws - An exemplary embodiment of a clevis is shown in
FIGS. 3A-3C . Theclevis 21 may be formed as a unitary molded or cast member. Theclevis 21 has aproximal end 29 from which theclevis arms 24 extend, and theproximal end 29 may be configured so that is can be crimped or welded to the distal end of theelongate member 13. For example, theproximal end 29 can be wrapped to form a cylinder or abroken cylinder 33 configured to centrally receive, or be received by, theelongate member 13. Each of theclevis arms 24 have a mountinghole 30 for receiving anaxle 25. Theclevis arms 24 are joined by a substantiallyorthogonal cross member 31 disposed distal to the proximal end and proximal to the mounting holes 30. Acentral tab 32 may extend distally from thecross member 31 to spike 28 and be FINNEGAN provided with a third mountinghole 30 that is located at a substantially similar position to the other mountingholes 30 on theclevis arms 24. This third mountinghole 30 may improve stability of theaxle 25. Thejaws central tab 32 with thespike 28 extending between thejaws FIGS. 4A-4B , clevis 21 may include stiffening ribs along thearms 24 to provide additional strength and make thearms 24 less flexible in certain directions. - As shown in
FIG. 3B , theclevis 21 may be stamped from astainless steel sheet 34 which is cut (stamped) to form at least two relatively broadproximal bases 39 and at least two relatively narrow substantiallyparallel clevis arms 24, onearm 24 extending from each base 39. The cut sheet is formed by bending thecross member 31 on either side of the central tab in an “S” configuration so that the mountingholes 30 of eachclevis arm 24 and thecentral tab 32 are aligned substantially coaxially with each other. Thesteel sheet 34 may also be cut so that adistal spike 28 may extend from thecentral tab 32. Thearms 24 may be bent inward at an angle, for example, of approximately 15 degrees along aportion 24 a just proximal of the mounting holes 30. The at least twoproximal bases 39 are bent towards each other to form abifurcated cylinder 33. Thebifurcated cylinder 33 can be crimped, welded, or otherwise affixed to the distal end of theelongate member 13. - An
axle 25 with one flared end orflange 25 a as shown inFIG. 3C is then provided. Theaxle 25 may have a substantially circular cross-section with a substantially constant inner circumference (e.g., inner diameter) for the entire length of theaxle 25. The flared end orflange 25 a may also have a substantially circular cross section that tapers from a maximum outer circumference (e.g., outer diameter) at the portion configured to contact an outer surface of thearms 24, to a minimum circumference (e.g., inner diameter) substantially similar to the either the outer circumference of the non-flared portion of theaxle 25 or the inner circumference of theaxle 25. Theend effector assembly 12, for example jaws, may be placed on theaxle 25 via theend 25 b opposite the flared end orflange 25 a. Theend effector assembly 12 may be placed on theaxle 25 after placingend 25 b of theaxle 25 through the first mountinghole 30, and then theend 25 b may be placed through the other mountinghole 30. In embodiments wherein there is athird arm 24 between theouter arms 24, end 25 b may first be placed through one mountinghole 30, a portion of theend effector assembly 12, for example a jaw, may be placed on theaxle 25. Theend 25 b may then be placed through the mounting hole on thecentral arm 24, the other portion of theend effector assembly 12 may then be placed on theaxle 25, and then theend 25 b may be placed through the remaining mountinghole 30. At this time, the flared end orflange 25 a may contact the outer surface of anarm 24, while the outer surface of the rest of theaxle 25 may contact the inner surfaces of the mountingholes 30 and rotate within the mounting holes 30. Theother end 25 b of theaxle 25 is then flared out, or otherwise configured, to lodge theaxle 25 in thearms 24 of theclevis 21, making theaxle 25 and theend effector assembly 12 relatively difficult to dislodge from the mountingholes 30, for example, during the actuation of theend effector assembly 12. In such a state, portions of theend 25 b are in contact with the outer surface of anarm 24 and flared out portions of theend 25 b may also be disposed within the adjacent mounting hole 30 (i.e., the a circumference of theend 25 b in the mountinghole 30 may increase and form a press-fit with the mountinghole 30 due to the flaring out of the rest of theend 25 b). - In various embodiments, the inner portion of the
axle 25 may be hollow or solid, and may have any desired cross-sectional shape, and may even have a cross-sectional shape that varies along its length. The outer surface of theaxle 25 may not be smooth. That surface may have grooves or other features, for example, to assist in the alignment of portions of theend effector assembly 12 on theaxle 25. That surface may also have a roughened surface at certain portions to interact with portions of theclevis 21defining holes 30 and thereby limit its rotational motion relative to those arms. The flared end orflange 25 a may not be disposed around the entire circumference of an end of theaxle 25, but may instead be a tab or a plurality of tabs disposed around the end of theaxle 25 that function substantially similarly to theflange 25 a. In addition to being flared out, theother end 25 b of theaxle 25 may be threaded so that a nut may be screwed on, may be configured to be riveted, or may be configured to accept an adhesive. - The design of the
axle 25 and its use during the forming ofclevis 21 may improve manufacturability of theend effector assembly 12 by utilizing the placement of theaxle 25 in the mountingholes 30 as an alignment aid, if necessary, for theclevis 21 and thejaws axle 25, theaxle 25, and anything mounted to theaxle 25, for example, thejaws axle 25 in a manner so as to allow axial shifting of theaxle 25 and/or thejaws - The design of the
axle 25 with a flaredend 25 a may improve the manufacturability of theaxle 25 by utilizing the central orifice of theaxle 25 as an alignment in the production of theaxle 25. For example, manufacturability may be improved because the design of theaxle 25 may ensure riveting accuracy axially. With this design of theaxle 25 with an orifice, rework or replacement of theaxle 25 is possible during manufacturing, possibly avoiding disposal of the entire axle or device. - Another exemplary embodiment of a clevis is shown in
FIGS. 4A-4B . Theclevis 121 is formed as a unitary molded or cast member and has a substantially cylindricalproximal end 129 from which theclevis arms 124 extend. Theproximal end 129 of theclevis 121 is wrapped to form a cylinder or abroken cylinder 133, and may be crimped, welded, or otherwise affixed to the distal end of theelongate member 13. Theclevis arms 124 each define at least oneU-shaped groove 130 for receiving anaxle pin 125 shown inFIG. 4C . Theclevis arms 124 are joined by a substantiallyorthogonal cross member 131 disposed proximal to theU-shaped grooves 130. Acentral tab 132 may extend distally from thecross member 131 and be provided with a thirdU-shaped groove 130. Thejaws central tab 132 with aspike 128 extending between thejaws clevis arms 121 may also include stiffeningribs 135 on theoutside surfaces 136 of each of theclevis arms 121 so as to provide FINNEGAN additional strength, and make thearms 121 less flexible in certain directions. - As shown in
FIG. 4B , theclevis 121 may be stamped from a stainless steel sheet 134 which is cut (stamped) to form at least two relatively broadproximal bases 139 and at least two relatively narrow substantiallyparallel clevis arms 124, onearm 124 extending from each base 139. The cut sheet is formed by bending thecross member 131 on either side of the central tab in an “S” configuration so that theU-shaped grooves 130 of eachclevis arm 124 and thecentral tab 132 are aligned substantially coaxially with each other. The steel sheet 134 may also be cut so that adistal spike 128 may extend from thecentral tab 132. Thearms 124 may be bent inward at an angle, for example, of approximately 15 degrees along aportion 124 a just proximal of theU-shaped grooves 130. The at least twoproximal bases 139 are bent towards each other to form abifurcated cylinder 133. Thebifurcated cylinder 133 can be crimped, welded, or otherwise affixed to the distal end of theelongate member 13. - The
U-shaped grooves 130 are configured to receive and retain anaxle pin 125, for example, as depicted inFIG. 4C , configured to accommodate thejaws axle pin 125 may be snapped or otherwise affixed into place in theU-shaped grooves 130. For example, theU-shaped grooves 130 may have protrusions or bumps 137 (shown inFIG. 4B ) on the inside portions of their ends configured to retain theaxle pin 125.Bumps 137 would overlie pin 125 oncepin 125 is in place withingrooves 130. Alternatively or additionally, pin 125 may be bonded withingrooves 130 with a suitable biocompatible adhesive. Other contemplated methods of retaining the axle pin include spot welding, seam welding, brazing, resistance welding of contact areas, and any other method known in the art. - The
jaws axle pin 125, and then theaxle pin 125 may be placed in theU-shaped grooves 130, simplifying the process of both installing thejaws axle pin 125 in theU-shaped grooves 130. As in the embodiment ofFIGS. 3A-3C , this configuration is also tolerant of slight axial misalignments of theU-shaped grooves 130 during the bending of the sheet 134. - The stiffening
ribs 135 may be stamped on the sheet 134, and displace some of the material on the inside surface 138 of the sheet to theoutside surface 136. This configuration imparts greater stability on thearms 124, and makes it more resistant to bending or torqueing either due to outside forces, or due to the actuation of the end effector assembly 112. - The
pin 125 may have a substantially circular cross-section with a substantially constant inner circumference (e.g., inner diameter) for the entire length of thepin 125. The flared ends orflanges arms 24, to a minimum circumference (e.g., inner diameter) substantially similar to either the outer circumference of the non-flared portion of thepin 125 of the inner circumference of thepin 125. Theend effector assembly 12, for example jaws, may be placed on thepin 125, and then thepin 125 may be inserted into thegrooves 130. At this time, the flared ends orflanges arm 24, while the outer surface of the rest of thepin 125 may contact the inner surfaces of thegrooves 130 and rotate within thegrooves 130. In such a state, thepin 125 and theend effector assembly 12 may be relatively difficult to dislodge from thegrooves 30, for example, during the actuation of theend effector assembly 12. Portions of thepin 125 may also be in contact with bumps orprotrusions 137 which may assist in retaining thepin 125 in thegrooves 130. - In various embodiments, the inner portion of the
pin 125 may be hollow or solid, and may have any desired cross-sectional shape, and may even have a cross-sectional shape that varies along its length. The outer surface of thepin 125 may not be smooth. That surface may have grooves or other features, for example, to assist in the alignment of portions of theend effector assembly 12 on thepin 125. That surface may also have a roughened surface at certain portions to interact with portions of theclevis 121 definingU-shaped grooves 130 and thereby limit its rotational motion relative to thosearms 124. The flared ends orflanges pin 125, but may instead be a tab or a plurality of tabs disposed around the ends of thepin 125 that function substantially similarly to theflange 25 a inFIG. 3C . Furthermore, instead of being flared out, either end 125 a, 125 b of thepin 125 may be threaded so that a nut may be screwed on, may be configured to be riveted, or may be configured to accept an adhesive. - There have been described and illustrated herein several embodiments of a clevis for an endoscopic instrument and methods of making the same. While particular embodiments of the invention have been described, it is not intended that the invention be limited thereto, as it is intended that the invention be as broad in scope as the art will allow and that the specification be read likewise.
- Thus, while particular materials have been disclosed, it will be appreciated that other materials could be utilized. For example, the disclosed clevises may be formed of any suitable biocompatible material including various metals and non-metals. In addition, while cylindrical portions have been shown as incomplete or broken cylinders, it will be recognized that welding, soldering, brazing, or other operations may be used to complete the cylindrical portions if desired. For example, the clevis and end effector may not only be stamped out of steel, but may also be cast, molded, or machined out of bronze, plastics, metals, ceramics, or other suitable materials known in the art. Additionally, the jaws may be substantially similar in shape to each other, however, they may also be different in configuration from each other.
- In a further example, while the clevis is shown with respect to use in a biopsy forceps instrument, the clevis could be used with any of a variety of end effectors as part of any endoscopic or non-endoscopic medical device, including, for example, clamp, scissors, dissectors, graspers, etc. In various embodiments, the invention is not limited to use in endoscopic procedures or medical instruments, but may also be used in any other medical procedure (e.g., gastrointestinal, urological, gynecological, cardiological, etc.) or non-medical procedure, or in medical or non-medical instruments.
- Moreover, while particular configurations have been disclosed in reference to the mounting holes and the spike, other configurations could be used as well. In yet another example, any of the features disclosed in the specification may be rearranged to be on any other portion disclosed in the specification. For example, a clevis may have arms where at least one of the arms has a mounting hole, while at least one other arm has a U-shaped grooves. It will therefore be appreciated by those skilled in the art that yet other modifications could be made to the provided invention without deviating from its spirit and scope as so claimed.
- Other embodiments of the invention will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. The specification and examples are exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Claims (2)
1. A clevis assembly for a medical instrument comprising:
a clevis having a base and a plurality of arms extending from the base; and
an axle to extend between the plurality of arms,
wherein each of the plurality of arms is configured to accommodate a portion of the axle, and
wherein an end of the axle includes a flared portion to engage a first outer surface of one of the plurality of arms.
2.-65. (canceled)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/385,514 US20090264918A1 (en) | 2003-12-10 | 2009-04-09 | Clevis assemblies for medical instruments and methods of manufacture of same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/731,153 US7534253B2 (en) | 2003-12-10 | 2003-12-10 | Clevis assemblies for medical instruments and methods of manufacture of same |
US12/385,514 US20090264918A1 (en) | 2003-12-10 | 2009-04-09 | Clevis assemblies for medical instruments and methods of manufacture of same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/731,153 Continuation US7534253B2 (en) | 2003-12-10 | 2003-12-10 | Clevis assemblies for medical instruments and methods of manufacture of same |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090264918A1 true US20090264918A1 (en) | 2009-10-22 |
Family
ID=34652741
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/731,153 Active 2026-01-06 US7534253B2 (en) | 2003-12-10 | 2003-12-10 | Clevis assemblies for medical instruments and methods of manufacture of same |
US12/385,514 Abandoned US20090264918A1 (en) | 2003-12-10 | 2009-04-09 | Clevis assemblies for medical instruments and methods of manufacture of same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/731,153 Active 2026-01-06 US7534253B2 (en) | 2003-12-10 | 2003-12-10 | Clevis assemblies for medical instruments and methods of manufacture of same |
Country Status (9)
Country | Link |
---|---|
US (2) | US7534253B2 (en) |
EP (1) | EP1703843B1 (en) |
JP (1) | JP5340541B2 (en) |
AT (1) | ATE424766T1 (en) |
AU (1) | AU2004305507A1 (en) |
CA (1) | CA2549187C (en) |
DE (1) | DE602004019976D1 (en) |
ES (1) | ES2324103T3 (en) |
WO (1) | WO2005060834A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050043758A1 (en) * | 2003-08-18 | 2005-02-24 | Scimed Life Systems, Inc. | Endoscopic medical instrument and related methods of use |
US20120296167A1 (en) * | 2011-05-18 | 2012-11-22 | Three-In-One Enterprises Co., Ltd. | Flexible-Tubed Structure of Endoscope |
US8317726B2 (en) | 2005-05-13 | 2012-11-27 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US8469993B2 (en) | 2003-06-18 | 2013-06-25 | Boston Scientific Scimed, Inc. | Endoscopic instruments |
US20170020370A1 (en) * | 2014-08-19 | 2017-01-26 | Olympus Corporation | Transmission mechanism, raising device, and inserting apparatus |
US9681857B2 (en) | 2003-06-18 | 2017-06-20 | Boston Scientific Scimed, Inc. | Endoscopic instruments and methods of manufacture |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070239202A1 (en) * | 2006-04-10 | 2007-10-11 | Rodriguez Richard A | Abrasively coated surgical end effector |
US7998167B2 (en) * | 2006-04-14 | 2011-08-16 | Ethicon Endo-Surgery, Inc. | End effector and method of manufacture |
US7857827B2 (en) * | 2006-04-14 | 2010-12-28 | Ethicon Endo-Surgery, Inc. | Endoscopic device |
US20070244510A1 (en) * | 2006-04-14 | 2007-10-18 | Ethicon Endo-Surgery, Inc. | Endoscopic device |
USD785793S1 (en) * | 2016-06-14 | 2017-05-02 | Landanger | Device for mitral prosthesis rope laying |
US10502091B2 (en) | 2016-12-12 | 2019-12-10 | United Technologies Corporation | Sync ring assembly and associated clevis including a rib |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1641038A (en) * | 1923-01-30 | 1927-08-30 | Hudson Motor Car Co | Rod clamp and clevis |
US4744278A (en) * | 1985-04-22 | 1988-05-17 | Weyerhaeuser Company | Rotary machining tool and method of its manufacture |
US4750261A (en) * | 1987-09-22 | 1988-06-14 | Amp Incorporated | Pick up head |
US5391166A (en) * | 1991-06-07 | 1995-02-21 | Hemostatic Surgery Corporation | Bi-polar electrosurgical endoscopic instruments having a detachable working end |
US5482054A (en) * | 1990-05-10 | 1996-01-09 | Symbiosis Corporation | Edoscopic biopsy forceps devices with selective bipolar cautery |
US5707392A (en) * | 1995-09-29 | 1998-01-13 | Symbiosis Corporation | Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same |
US5716374A (en) * | 1995-10-10 | 1998-02-10 | Symbiosis Corporation | Stamped clevis for endoscopic instruments and method of making the same |
US5722421A (en) * | 1995-09-15 | 1998-03-03 | Symbiosis Corporation | Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument |
US5898980A (en) * | 1998-04-23 | 1999-05-04 | Casket Hardware Development, Llc | Casket handle with separately demountable lug |
US5924655A (en) * | 1997-02-27 | 1999-07-20 | Sigma-Aldrich, Co. | Clevis hanger |
US6168605B1 (en) * | 1999-07-08 | 2001-01-02 | Ethicon Endo-Surgery, Inc. | Curved laparoscopic scissor having arcs of curvature |
US6206903B1 (en) * | 1999-10-08 | 2001-03-27 | Intuitive Surgical, Inc. | Surgical tool with mechanical advantage |
US20020013595A1 (en) * | 2000-06-13 | 2002-01-31 | Olympus Optical Co., Ltd. | Endoscopic treating instrument |
US6427509B1 (en) * | 1999-11-18 | 2002-08-06 | Asahi Kogaku Kogyo Kabusihi Kaisha | Process for producing a distal end support member of an endoscopic treatment tool |
US20030191464A1 (en) * | 2002-04-09 | 2003-10-09 | Pentax Corporation | Endoscopic forceps instrument |
US20040084928A1 (en) * | 2002-11-06 | 2004-05-06 | Bacon Bruce C. | Prop assembly for vehicle bed covers and the like |
US20040260337A1 (en) * | 2003-06-18 | 2004-12-23 | Scimed Life Systems, Inc. | Endoscopic instruments and methods of manufacture |
US20050054946A1 (en) * | 2003-09-04 | 2005-03-10 | Jacek Krzyzanowski | Variations of biopsy jaw and clevis and method of manufacture |
US7942885B2 (en) * | 2001-06-25 | 2011-05-17 | Ethicon Endo-Surgery, Inc. | Surgical clip applier having clip chamber with clip chain |
US7998167B2 (en) * | 2006-04-14 | 2011-08-16 | Ethicon Endo-Surgery, Inc. | End effector and method of manufacture |
US8070759B2 (en) * | 2008-05-30 | 2011-12-06 | Ethicon Endo-Surgery, Inc. | Surgical fastening device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2065987A1 (en) * | 1991-04-19 | 1992-10-20 | Lutz Kothe | Surgical instrument |
DK200001520A (en) | 1999-10-18 | 2001-04-19 | Asahi Optical Co Ltd | Component of endoscopic treatment instrument |
-
2003
- 2003-12-10 US US10/731,153 patent/US7534253B2/en active Active
-
2004
- 2004-12-09 WO PCT/US2004/038237 patent/WO2005060834A1/en active Application Filing
- 2004-12-09 ES ES04811088T patent/ES2324103T3/en active Active
- 2004-12-09 AT AT04811088T patent/ATE424766T1/en not_active IP Right Cessation
- 2004-12-09 AU AU2004305507A patent/AU2004305507A1/en not_active Abandoned
- 2004-12-09 JP JP2006543833A patent/JP5340541B2/en active Active
- 2004-12-09 EP EP04811088A patent/EP1703843B1/en not_active Not-in-force
- 2004-12-09 DE DE602004019976T patent/DE602004019976D1/en active Active
- 2004-12-09 CA CA2549187A patent/CA2549187C/en not_active Expired - Fee Related
-
2009
- 2009-04-09 US US12/385,514 patent/US20090264918A1/en not_active Abandoned
Patent Citations (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1641038A (en) * | 1923-01-30 | 1927-08-30 | Hudson Motor Car Co | Rod clamp and clevis |
US4744278A (en) * | 1985-04-22 | 1988-05-17 | Weyerhaeuser Company | Rotary machining tool and method of its manufacture |
US4750261A (en) * | 1987-09-22 | 1988-06-14 | Amp Incorporated | Pick up head |
US5482054A (en) * | 1990-05-10 | 1996-01-09 | Symbiosis Corporation | Edoscopic biopsy forceps devices with selective bipolar cautery |
US5391166A (en) * | 1991-06-07 | 1995-02-21 | Hemostatic Surgery Corporation | Bi-polar electrosurgical endoscopic instruments having a detachable working end |
US5722421A (en) * | 1995-09-15 | 1998-03-03 | Symbiosis Corporation | Clevis having deflection limiting stops for use in an endoscopic biopsy forceps instrument |
US5707392A (en) * | 1995-09-29 | 1998-01-13 | Symbiosis Corporation | Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same |
US5716374A (en) * | 1995-10-10 | 1998-02-10 | Symbiosis Corporation | Stamped clevis for endoscopic instruments and method of making the same |
US5924655A (en) * | 1997-02-27 | 1999-07-20 | Sigma-Aldrich, Co. | Clevis hanger |
US5898980A (en) * | 1998-04-23 | 1999-05-04 | Casket Hardware Development, Llc | Casket handle with separately demountable lug |
US6168605B1 (en) * | 1999-07-08 | 2001-01-02 | Ethicon Endo-Surgery, Inc. | Curved laparoscopic scissor having arcs of curvature |
US6206903B1 (en) * | 1999-10-08 | 2001-03-27 | Intuitive Surgical, Inc. | Surgical tool with mechanical advantage |
US6427509B1 (en) * | 1999-11-18 | 2002-08-06 | Asahi Kogaku Kogyo Kabusihi Kaisha | Process for producing a distal end support member of an endoscopic treatment tool |
US20020013595A1 (en) * | 2000-06-13 | 2002-01-31 | Olympus Optical Co., Ltd. | Endoscopic treating instrument |
US6514269B2 (en) * | 2000-06-13 | 2003-02-04 | Olympus Optical Co., Ltd. | Endoscopic treating instrument |
US7942885B2 (en) * | 2001-06-25 | 2011-05-17 | Ethicon Endo-Surgery, Inc. | Surgical clip applier having clip chamber with clip chain |
US20030191464A1 (en) * | 2002-04-09 | 2003-10-09 | Pentax Corporation | Endoscopic forceps instrument |
US6964662B2 (en) * | 2002-04-09 | 2005-11-15 | Pentax Corporation | Endoscopic forceps instrument |
US20040084928A1 (en) * | 2002-11-06 | 2004-05-06 | Bacon Bruce C. | Prop assembly for vehicle bed covers and the like |
US20040260337A1 (en) * | 2003-06-18 | 2004-12-23 | Scimed Life Systems, Inc. | Endoscopic instruments and methods of manufacture |
US20050054946A1 (en) * | 2003-09-04 | 2005-03-10 | Jacek Krzyzanowski | Variations of biopsy jaw and clevis and method of manufacture |
US7998167B2 (en) * | 2006-04-14 | 2011-08-16 | Ethicon Endo-Surgery, Inc. | End effector and method of manufacture |
US8070759B2 (en) * | 2008-05-30 | 2011-12-06 | Ethicon Endo-Surgery, Inc. | Surgical fastening device |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8469993B2 (en) | 2003-06-18 | 2013-06-25 | Boston Scientific Scimed, Inc. | Endoscopic instruments |
US9681857B2 (en) | 2003-06-18 | 2017-06-20 | Boston Scientific Scimed, Inc. | Endoscopic instruments and methods of manufacture |
US20050043758A1 (en) * | 2003-08-18 | 2005-02-24 | Scimed Life Systems, Inc. | Endoscopic medical instrument and related methods of use |
US7951165B2 (en) | 2003-08-18 | 2011-05-31 | Boston Scientific Scimed, Inc. | Endoscopic medical instrument and related methods of use |
US8317726B2 (en) | 2005-05-13 | 2012-11-27 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US8672859B2 (en) | 2005-05-13 | 2014-03-18 | Boston Scientific Scimed, Inc. | Biopsy forceps assemblies |
US20120296167A1 (en) * | 2011-05-18 | 2012-11-22 | Three-In-One Enterprises Co., Ltd. | Flexible-Tubed Structure of Endoscope |
US20170020370A1 (en) * | 2014-08-19 | 2017-01-26 | Olympus Corporation | Transmission mechanism, raising device, and inserting apparatus |
Also Published As
Publication number | Publication date |
---|---|
EP1703843B1 (en) | 2009-03-11 |
EP1703843A1 (en) | 2006-09-27 |
US20050131312A1 (en) | 2005-06-16 |
US7534253B2 (en) | 2009-05-19 |
JP5340541B2 (en) | 2013-11-13 |
ES2324103T3 (en) | 2009-07-30 |
AU2004305507A1 (en) | 2005-07-07 |
WO2005060834A1 (en) | 2005-07-07 |
ATE424766T1 (en) | 2009-03-15 |
DE602004019976D1 (en) | 2009-04-23 |
CA2549187A1 (en) | 2005-07-07 |
CA2549187C (en) | 2013-04-16 |
JP2007516030A (en) | 2007-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090264918A1 (en) | Clevis assemblies for medical instruments and methods of manufacture of same | |
US5716374A (en) | Stamped clevis for endoscopic instruments and method of making the same | |
US5707392A (en) | Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same | |
US7951165B2 (en) | Endoscopic medical instrument and related methods of use | |
US6743185B2 (en) | Handle assembly for surgical instrument and method of making the assembly | |
JP4907555B2 (en) | Surgical instrument end effector, surgical instrument, and method of forming an end effector | |
US5967997A (en) | Endoscopic surgical instrument with deflectable and rotatable distal end | |
US6273882B1 (en) | Snap handle assembly for an endoscopic instrument | |
US9254128B2 (en) | Re-shapeable medical device | |
JP3696621B2 (en) | Jaw-like member assembly for endoscopic inspection instruments | |
JP5020942B2 (en) | Biopsy forceps assembly | |
US20130253530A1 (en) | Endoscopic instruments and methods of manufacture | |
JP2006061704A (en) | Super-elastic flexible jaw assembly | |
JP2009533155A (en) | Endoscope device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |