US20090257478A1 - Spread spectrum rake receiver - Google Patents
Spread spectrum rake receiver Download PDFInfo
- Publication number
- US20090257478A1 US20090257478A1 US12/476,473 US47647309A US2009257478A1 US 20090257478 A1 US20090257478 A1 US 20090257478A1 US 47647309 A US47647309 A US 47647309A US 2009257478 A1 US2009257478 A1 US 2009257478A1
- Authority
- US
- United States
- Prior art keywords
- path
- paths
- timing
- inverse spreading
- interference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/7103—Interference-related aspects the interference being multiple access interference
- H04B1/7107—Subtractive interference cancellation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/7097—Interference-related aspects
- H04B1/711—Interference-related aspects the interference being multi-path interference
- H04B1/7115—Constructive combining of multi-path signals, i.e. RAKE receivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
- H04B1/709—Correlator structure
Definitions
- the present invention relates generally to a spread spectrum scheme, and more particularly, to a rake receiver that executes, as a reception diversity scheme in a multi-path environment, maximal-ratio composition in the time domain of signals arriving at an antenna with various differences in delay time thereof caused by multiple reflections of propagation paths of the signals.
- Spread spectrum or spread spectrum communication scheme is utilized extensively as a basic technique for mobile communication.
- DS direct spread
- an information signal is transmitted to the receiving side after the spectrum of the information signal is spread by modulating, that is, multiplying the information signal to be transmitted by a PN signal having the chip width Tc of 1/100 to 1/1000 of the cycle T of the information signal to be transmitted as a spread signal.
- the inverse spreading basically refers to executing demodulation by multiplying a received signal by a same PN signal having the same phase as that of the PN signal in the received signal.
- a rake scheme can be listed. “Rake” means a rake in English and the rake scheme is a diversity scheme for executing the maximal-ratio composition by collecting power dispersed due to the delay dispersion of transmission paths, into one like a “rake”.
- a desired signal is demodulated by finding a plurality of path timings at which multiple paths arrive using a known signal, informing a demodulator of these path timings, executing inverse spreading at these timings in the demodulator and composing signals of the multiple paths.
- FIG. 1 is a block diagram showing generally an example of the construction of a rake receiver as, for example, a mobile communication terminal.
- the receiver has an antenna 100 , a wireless receiving unit 101 , an A/D converting unit 102 , a searcher 103 for detecting a plurality of timings of the multiple paths and an inverse spreading timing generating and inverse spreading unit 104 for executing an inverse spreading to the plurality of paths according to the timings of the plurality of paths detected by the searcher 103 .
- the receiver further has a signal composing unit 105 for composing signals of the plurality of paths obtained by the inverse spreading timing generating and inverse spreading unit 104 , a signal processing unit 106 such as a channel codec for receiving an output of the signal composing unit 105 and outputting received signals to a display, speaker, etc., and a level measuring unit 107 for measuring the level of the received signals of the plurality of paths, providing reliability degree information and signal level information to the signal composing unit 105 and providing to a transmission unit 108 control information of transmission power to a base station.
- a signal composing unit 105 for composing signals of the plurality of paths obtained by the inverse spreading timing generating and inverse spreading unit 104
- a signal processing unit 106 such as a channel codec for receiving an output of the signal composing unit 105 and outputting received signals to a display, speaker, etc.
- a level measuring unit 107 for measuring the level of the received signals of the plurality of paths, providing reliability degree information and signal level information to the signal
- the transmission unit 108 transmits input from a keyboard or a microphone, from the antenna 100 through a duplexer 109 in response to the control information from the level measuring unit 107 .
- FIG. 2 is a block diagram of the detailed construction of the inverse spreading timing generating and inverse spreading unit 104 of FIG. 1 , that is, a signal demodulating unit.
- the signal demodulating unit comprises a spread code generator 110 , a plurality of delay control units 111 - 1 to 111 -n and a plurality of correlators 112 - 1 to 112 -n corresponding thereto.
- the spread code generator 110 generates a code for inverse spreading.
- the plurality of delay control units 111 - 1 to 111 -n control respectively delay operations of the plurality of correlators 112 - 1 to 112 -n corresponding respectively to timings t 1 to 1N of the multiple paths detected by the searcher 103 .
- Each of the correlators 112 - 1 to 112 -n executes inverse spreading on the received signals from the A/D converting unit 102 according to the inverse spread timings controlled by the corresponding delay control units 111 - 1 to 111 -n.
- the correlators 112 - 1 to 112 -n respectively provide inverse spread signals 1 to N to the signal composing unit 105 and the signal composing unit 105 composes these signals and outputs a demodulated signal.
- Such an inverse spread signal includes a channel estimation signal corresponding to a propagation coefficient of each of the multiple paths.
- inverse spreading is executed using the timings themselves of each path of the multiple paths.
- signals corresponding to paths other than the path of this timing are all interference.
- an orthogonal spread code is used for a plurality of channels in a downlink from a base station in the CDMA scheme, a problem exists that the reception property is degraded due to the multi-path interference.
- the inventor has previously proposed a rake receiver capable of suppressing multi-path interference when the spread spectrum scheme is used in a multi-path environment in Japanese Patent No. 2001-332510.
- FIG. 3 is a block diagram of the principle construction of a rake receiver constituting a spread spectrum communication system in a multi-path environment, previously proposed.
- path timing detecting 1 correspond to, for example, the path searcher 103 of FIG. 1 and FIG. 2 detect timings of, for example, N paths.
- Inverse spreading timing setting 2 set the detected timings of the paths as timings for inverse spreading, that is, timings for demodulating spread encoding signal by multiplying an inverse spread code. Concurrently, settings are made to all combinations of two (2) paths such that, taking the center at a timing of one (1) path of arbitrary two (2) paths, two (2) timings at positions symmetrical to the timing of the other path on the time axis by the delayed time of the timings of the two (2) paths are timings of the inverse spreading.
- a plurality of correlators 3 - 1 to 3 -n respectively obtains an inverse spreading signal of a signal resulted from, for example, A/D conversion of a signal sent from the transmitting side in response to each timing having been set.
- Signal composing 4 compose outputs of the plurality of correlators 3 - 1 to 3 -n and output a demodulated signal.
- interference component contained in a desired signal is reduced using a multi-path interference correlative signal (MICS) reproduced using only information of selected two (2) paths.
- MIMS multi-path interference correlative signal
- the rake receiver may further comprise, between the correlators and the signal composing, a circuit operable to compose a multi-path interference signal (mics (i,j,k)) of a path k (k ⁇ j) from the following Eq. (1),
- coefficients r i,j and r' k of Eq. (1) may be obtained from the following Eq. (2) and Eq. (3),
- the multi-path interference signal (mics(i,j,k)) may be composed using the maximal ratio composition.
- the multi-path interference signal (i, j, k)
- the multi-path interference signal may be composed using the maximal ratio composition.
- the circuit operable to subtract the interference MICS(i,j) may include a circuit operable to select a plurality of paths having high power, and the circuit operable to subtract the interference MICS(i,j) may subject the selected paths to processes for composing the multi-path interference signal (mics(i,j,k)) and subtracting the interference MICS(i,j).
- the circuit operable to subtract MICS(i,j) from the ith path may select a plurality of paths i having high power and may be provided in the quantity corresponding to the number of the selected paths.
- the inverse spreading timing setting may detect coincidence between the timing t i,j,k for the inverse spreading and a reception timing t i and, may not subject the paths between which the coincidence has been detected, to the processes for composing the multi-path interference signal (mics(i,j,k)) and subtracting the interference MICS(i,j).
- the rake receiver may further comprise a level compensating circuit disposed between the circuit operable to subtract the interference MICS(i,j) and the signal composing , the level compensating circuit acting to compensate the levels of signals after reduction of the interference in the circuit operable to reduce the interference MICS(i,j) to keep the level of the noises constant.
- the rake receiver may further comprise, at the preceding stage of the correlators, a circuit operable to compose a multi-path interference signal (mics(i,j,k) of a path k (k ⁇ j) from Eq. (1)
- the circuit operable to subtract the interference MICS(i,j) may include a circuit operable to select a plurality of paths having high power, thereby subjecting the selected paths to the processes for composing the multi-path interference signal (mics(i,j,k)) and subtracting the interference MICS(i,j).
- the circuit operable to subtract the interference MICS(i,j) from the ith path may select a plurality of paths i having high power and may be provided in the quantity corresponding to the number of the selected paths.
- FIGS. 1 is a block diagram showing generally an example of the construction of a rake receiver as a mobile communication terminal
- FIG. 2 is a block diagram of the detailed construction of the inverse spreading timing creating and inverse spreading unit 104 of FIG. 1 , that is, a signal demodulating unit;
- FIG. 3 is a block diagram of the principle construction of a rake receiver constituting a spread spectrum communication system in a multi-path environment, previously proposed;
- FIG. 4 shows timings of signals of two (2) paths received by a CDMA (Code Division Multiple Access) mobile terminal
- FIG. 5 shows N path signals, and a plurality of Multi-path Interference Correlative Timings (MICTs) that can be utilized for reduction of interference of a path j contained in a path i;
- MICTs Multi-path Interference Correlative Timings
- FIG. 6 shows an example of the construction of a CDMA receiver applied with the present invention
- FIG. 7 shows an example of the construction of a composing unit 27 of FIG. 6 ;
- FIG. 8 shows another exemplary embodiment of the present invention
- FIG. 9 shows the detailed construction of a multi-path interference exchange reduction circuit 28 ;
- FIG. 10 shows the details of MICS units 280 - 1 to 280 -N represented by a MICS unit 280 -i;
- FIG. 11 shows an example of the construction of an MRC 128 ;
- FIG. 12 shows another example of the construction of the MICS unit 280 -i
- FIG. 13 shows a construction that is provided with a selector circuit 31 at the preceding stage of a MIXR circuit 28 , as an exemplary embodiment
- FIG. 14 shows yet another example of the construction of the MICS unit 280 -i:
- FIG. 15 shows a construction that is provided with a level correcting unit 32 between the MIXR unit 28 and a rake composing unit 27 that is the following stage of the level correcting unit 32 ;
- FIG. 16 shows yet another exemplary embodiment of the present invention.
- FIG. 17 shows the construction of the MICS unit 280 -i constituting the MIXR unit 28 in the construction of FIG. 16 .
- signals of paths that occur interference are determined by mutual correlation value of an inverse spreading signal, the attenuation coefficient of a propagation path, etc.
- the correlation value of an inverse spreading signal is a constant determined by the delay between the timing of a signal arrived through a path and the timing of inverse spreading.
- FIG. 4 shows timings of signals of two (2) paths received by a CDMA (Code Division Multiple Access) mobile terminal.
- ••YZABCD•• are labels indicating signal timings of each path and “A” is assumed to be the correct inverse spreading timing.
- the channels of a path 1 and a path 2 are denoted respectively by ⁇ 1 and ⁇ 2 .
- Inverse spreading timings are respectively denoted by t 1 and t 2 and signals inversely spread at these timings are respectively denoted by x 1 and x 2.
- ⁇ 1 S is a desired signal obtained by inversely spreading the path 1 from A and ⁇ 2 I Z is interference obtained by inversely spreading the path 2 from Z.
- ⁇ 2 I Y is a signal obtained by inversely spreading the path 2 from Y, and n 1 and n 0 are respectively noises thereof.
- the above signal x 0 is a signal obtained by inversely spreading at a timing that can not be obtained, of a received signal S, and ⁇ 1 I Z is contained therein. That is, it can be seen that ⁇ 1 I Z has correlation with an interference component ⁇ 2 I Z of x 1 .
- a signal like x 0 is referred to a “Multi-path Interference Correlative Signal (MICS)” of the path 1 to the path 2
- a timing like t 0 is referred to as a “Multi-path Interference Correlative Timing (MICT)” of the path 1 to the path 2.
- the interference component of x 1 can be reduced by multiplying an appropriate coefficient r from x 1 to x 0 because x 0 has correlation with the interference component of x 1.
- the present invention solves such a drawback of the previously applied invention and improves the interference reproduction accuracy by using all the paths except interference sources in order to reproduce interference components.
- the principle of the present invention will be described as follows.
- FIG. 5 shows N path signals, and a plurality of Multi-path Interference Correlative Timings (MICTs) that can be utilized for reduction of interference of a path j contained in a path i.
- MICTs Multi-path Interference Correlative Timings
- S is a desired signal
- I i,j is an interference component by the path j contained in x i .
- a timing t i,j,i is a multi-path interference correlative timing (MICT) used in the previous application.
- the timing t i,j,i is a timing shifted from the timing t i by the time difference ⁇ t between the path i and the path j.
- a signal having a correlation with I i,j can be obtained by inversely spreading at this timing t i,j,i .
- a signal having a correlation with I i,j can be obtained by inversely spreading at a timing t i,j,k (k is a value from 1 to N except j. ) shifted from each of the paths by ⁇ t.
- the signals obtained by inversely spreading at the timings t i,j,k and t i,j,k are represented as follows.
- FIG. 6 shows an example of the construction of a CDMA receiver applied with the present invention.
- a CDMA signal received by an antenna 20 is converted into a base-band signal by a down-converter 21 .
- the base-band signal is inputted into an A/D converter 23 through an AGC amplifier 22 .
- the base-band signal is converted into a digital signal and is inputted into inverse spreading circuit units 24 - 1 to 24 -n corresponding to the number of paths n and into a path searching unit 25 .
- a timing of each of the paths of the multi-paths is obtained from the received signal. Based on these path timings, inverse spreading timings t i,j,k,n are created by a timing generating circuit 26 according to the following equation.
- the inverse spreading timings t i,j,k,n are sent respectively to the corresponding inverse spreading circuit units 24 - 1 to 24 -n and inverse spreading processes are executed at the respective timings.
- Inverse spread outputs obtained in the inverse spreading circuit units 24 - 1 to 24 -n are composed in the composing unit 27 and an inverse spread signal is obtained.
- FIG. 7 shows an example of the construction of a composing unit 27 of FIG. 6 .
- the construction of an MMSE receiver is shown as an embodiment. Therefore, the composing unit 27 has an MMSE coefficient generating unit 270 .
- the MMSE coefficient generating unit 270 obtains composition coefficients that maximizes the S/N of received signals. These coefficients are multiplied as the coefficients to multipliers 271 - 1 to 271 -n respectively corresponding to each of fingers.
- the MMSE coefficient generating unit 270 further comprises an adder 272 that adds the outputs of these multipliers 271 - 1 to 271 -n. Thereby, an output that maximizes the S/N of the received signals can be obtained from the adder 272 .
- FIG. 8 shows another exemplary embodiment of the present invention.
- a multi-path interference exchange reduction (MIXR) circuit 28 is provided between the inverse spreading circuit units 24 - 1 to 24 -n and a rake composing unit 27 compared to the exemplary embodiment of the construction of FIG. 6 . Interference of each finger is reduced by this multi-path interference exchange reduction (MIXR) circuit 28 .
- MIXR multi-path interference exchange reduction
- FIG. 9 shows the detailed construction of the multi-path interference exchange reduction circuit 28 . Interference is reduced by reproducing the interference caused by the path j contained in the path i in the MICS units 280 - 1 to 280 -N, adding all outputs of MICS units 280 - 1 to 280 -N in the adder 281 and subtracting the result of the adding from a signal of the path i.
- Each of the above MICS units 280 - 1 to 280 -N reproduces interference entering from the path j to the path i (j ⁇ i).
- FIG. 10 shows the details of the MICS units 280 - 1 to 280 -N represented by a MICS unit 280 -i.
- multi-path interference correlative timings (MICT) t i,j,k are obtained in the timing generating circuit 26 i according to the following equation.
- a signal mics(i,j,k) inversely spread by the respectively corresponding inverse spreading circuits 104 -il to 104 iN at this obtained timing t i,j,k is obtained and these signals are composed and outputted by an MRC unit 128 .
- FIG. 11 shows an example of the construction of the MRC 128 .
- the output of the adder 128 - 3 is multiplied by a coefficient r i,j in an adder 128 - 4 and the MICS(i,j) is obtained. Therefore, the MICS(i,j) is represented by the following equation.
- (I/N) j is the ratio of interference to be reproduced and the power of interference other than that and is obtained as follows.
- the coefficient r i is obtained as follows using only the path i as represented in Eq. 3 when the MICS(i,j) is obtained.
- MICS(i, j) r i mics (i, j, i)
- the accuracy of the MICS(i, j) can be improved and the reduction effect of interference can be improved by composing using paths other than the path i as already shown.
- the coefficient r′ k to multiply mics(i,j,k) is obtained as follows approximating the noises to be constant when the MICS(i,j) is obtained.
- r′ k ⁇ * k
- r i,j ⁇ j ( I/N ) j / ⁇ ( ⁇ k ⁇ j
- FIG. 12 shows another example of the construction of the MICS unit 280 -i.
- this construction has a selector unit 129 as a characteristic thereof.
- the selector unit 129 determines the magnitude of a path based on a channel estimation value from the channel estimating unit 29 and obtains mics(i,j,k) only for large paths. Thereby, the size of the circuitry and the amount to be processed can be reduced without degrading considerably the performance.
- FIG. 13 shows a construction that is provided with a selector circuit 31 at the preceding stage of a MIXR circuit 28 , as an exemplary embodiment.
- the selector unit 31 controls such that the magnitude of the path is determined based on the channel estimation value from the channel estimating unit 29 and the MIXR processes are executed only on large paths.
- FIG. 13 is a construction for MIXR-processing two (2) paths and not executing any processes to other (N- 2 ) processes.
- FIG. 14 shows yet another example of the construction of the MICS unit 280 -i.
- the inverse spreading timing t i,j,k of the mics(i,j,k) may be different from the timing t i of the desired signal.
- t i,j,k may coincide with any one (1) of t i .
- the case where the timing t i,j,k coincides with t i is detected by the timing generating circuit 26 i and the signal of the case of the coincidence is blocked by switches 130 - 1 to 130 -N. Thereby, the degradation of the characteristic can be prevented.
- the timing generating unit 26 i in the exemplary embodiment of FIG. 14 creates the timing t i,j,k to correspond to the above operation and executes comparison with t i . Then, when coincidence or approximation almost equal to coincidence is found, the signal is prevented from being inputted into the MRC unit 128 by controlling accordingly a switch 130 -i of an outputting unit of the mics(i,j,k) corresponding to the found timing.
- the mics(i,j,k) of the timing coinciding with a signal can be masked.
- the noise level of each finger is constant in any finger in the rake composing unit 27 at the following stage of the MIXR unit 28 . Furthermore, (2) that the amplitude of the data delivered from the rake composing unit 27 to a correcting unit not shown indicates the likelihood of the signal, is a precondition for the process.
- the noise level of each finger is constant in any finger in the rake composing unit 27 at the following stage of the MIXR unit 28 .
- the noise level of each finger containing interference is reduced and dispersion occurs in noise power that was at an almost same level in any finger. Consequently, effect of the rake composition and error correction may not be exerted.
- a level compensating unit 32 between the MIXR unit 28 and the rake composing unit 27 as a construction shown in FIG. 15 .
- the noise power can be made same as that before the MIXR process by amplifying appropriately the signal after the MIXR process.
- FIG. 16 shows yet another exemplary embodiment of the present invention. Compared to the exemplary embodiment shown in FIG. 8 , the embodiment is characterized in that the positions of the MIXR unit 28 and the inverse spreading circuit unit 24 are exchanged.
- the MICS unit 280 -i constituting the MIXR unit 28 has a construction shown in FIG. 17 .
- the inverse spreading circuit 104 -i is replaced by the delay circuit 105 -i.
- the circuit construction can be simplified by arranging the MIXR unit 28 before the inverse spreading circuit unit 24 .
- a rake receiver that executes the effective maximal ratio composition in the time domain of signals arriving at an antenna with various differences in delay time thereof caused by multiple reflections of propagation paths of the signals in a multi-path environment.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Noise Elimination (AREA)
Abstract
Even when the number of paths is increased, interfering noises can be effectively reduced by a rake receiver for use in a spread spectrum communication system. The rake receiver includes a timing detecting unit detecting a reception timing ti (i=1 to N) of each of N paths when direct spread spectrum signals of the N paths are received; an inverse spreading timing setting unit setting, as a timing for inverse spreading, a timing ti,j,k (k=1 to N, k≠j) at which an inverse spread value is obtained that has interference and correlation from the jth (j=1 to N, j≠i) path included in the inverse spread value of the ith path counted from the reception timing ti (i=1 to N) detected by the timing detecting unit; a plurality of correlators each obtaining an inverse spread signal of the received signal corresponding to each timing set by the inverse spreading timing setting unit; and a signal composing unit composing outputs of the plurality of correlators.
Description
- 1. Field of the Invention
- The present invention relates generally to a spread spectrum scheme, and more particularly, to a rake receiver that executes, as a reception diversity scheme in a multi-path environment, maximal-ratio composition in the time domain of signals arriving at an antenna with various differences in delay time thereof caused by multiple reflections of propagation paths of the signals.
- 2. Description of the Related Art
- Spread spectrum or spread spectrum communication scheme is utilized extensively as a basic technique for mobile communication. In the direct spread (DS) scheme as the simplest model of the spread spectrum communication, an information signal is transmitted to the receiving side after the spectrum of the information signal is spread by modulating, that is, multiplying the information signal to be transmitted by a PN signal having the chip width Tc of 1/100 to 1/1000 of the cycle T of the information signal to be transmitted as a spread signal.
- On the receiving side, the signal component is detected from the signal buried in noises by inverse spreading. The inverse spreading basically refers to executing demodulation by multiplying a received signal by a same PN signal having the same phase as that of the PN signal in the received signal.
- However, in a multi-path environment for many reflected waves to be present in addition to a direct wave, it is necessary to detect a true signal component by composing appropriately signals received with various differences in delay time.
- As one of such conventional techniques, a rake scheme can be listed. “Rake” means a rake in English and the rake scheme is a diversity scheme for executing the maximal-ratio composition by collecting power dispersed due to the delay dispersion of transmission paths, into one like a “rake”.
- In a conventional rake receiver, a desired signal is demodulated by finding a plurality of path timings at which multiple paths arrive using a known signal, informing a demodulator of these path timings, executing inverse spreading at these timings in the demodulator and composing signals of the multiple paths.
-
FIG. 1 is a block diagram showing generally an example of the construction of a rake receiver as, for example, a mobile communication terminal. In the figure, the receiver has anantenna 100, awireless receiving unit 101, an A/D converting unit 102, asearcher 103 for detecting a plurality of timings of the multiple paths and an inverse spreading timing generating andinverse spreading unit 104 for executing an inverse spreading to the plurality of paths according to the timings of the plurality of paths detected by thesearcher 103. - The receiver further has a
signal composing unit 105 for composing signals of the plurality of paths obtained by the inverse spreading timing generating andinverse spreading unit 104, asignal processing unit 106 such as a channel codec for receiving an output of thesignal composing unit 105 and outputting received signals to a display, speaker, etc., and alevel measuring unit 107 for measuring the level of the received signals of the plurality of paths, providing reliability degree information and signal level information to thesignal composing unit 105 and providing to atransmission unit 108 control information of transmission power to a base station. - The
transmission unit 108 transmits input from a keyboard or a microphone, from theantenna 100 through aduplexer 109 in response to the control information from thelevel measuring unit 107. -
FIG. 2 is a block diagram of the detailed construction of the inverse spreading timing generating and inverse spreadingunit 104 ofFIG. 1 , that is, a signal demodulating unit. In the figure, the signal demodulating unit comprises aspread code generator 110, a plurality of delay control units 111-1 to 111-n and a plurality of correlators 112-1 to 112-n corresponding thereto. - The
spread code generator 110 generates a code for inverse spreading. The plurality of delay control units 111-1 to 111-n control respectively delay operations of the plurality of correlators 112-1 to 112-n corresponding respectively to timings t1 to 1N of the multiple paths detected by thesearcher 103. Each of the correlators 112-1 to 112-n executes inverse spreading on the received signals from the A/D converting unit 102 according to the inverse spread timings controlled by the corresponding delay control units 111-1 to 111-n. - Thereby, the correlators 112-1 to 112-n respectively provide
inverse spread signals 1 to N to thesignal composing unit 105 and thesignal composing unit 105 composes these signals and outputs a demodulated signal. - Such an inverse spread signal includes a channel estimation signal corresponding to a propagation coefficient of each of the multiple paths.
- As described above, for example, in
FIG. 2 , inverse spreading is executed using the timings themselves of each path of the multiple paths. When inverse spreading is executed at a timing, signals corresponding to paths other than the path of this timing are all interference. Especially, in the case where an orthogonal spread code is used for a plurality of channels in a downlink from a base station in the CDMA scheme, a problem exists that the reception property is degraded due to the multi-path interference. - Considering the above point, the inventor has previously proposed a rake receiver capable of suppressing multi-path interference when the spread spectrum scheme is used in a multi-path environment in Japanese Patent No. 2001-332510.
- Here, the schematic construction of such a rake receiver as proposed previously will be described.
FIG. 3 is a block diagram of the principle construction of a rake receiver constituting a spread spectrum communication system in a multi-path environment, previously proposed. - In
FIG. 3 , path timing detecting 1 correspond to, for example, thepath searcher 103 ofFIG. 1 andFIG. 2 detect timings of, for example, N paths. - Inverse
spreading timing setting 2 set the detected timings of the paths as timings for inverse spreading, that is, timings for demodulating spread encoding signal by multiplying an inverse spread code. Concurrently, settings are made to all combinations of two (2) paths such that, taking the center at a timing of one (1) path of arbitrary two (2) paths, two (2) timings at positions symmetrical to the timing of the other path on the time axis by the delayed time of the timings of the two (2) paths are timings of the inverse spreading. - A plurality of correlators 3-1 to 3-n respectively obtains an inverse spreading signal of a signal resulted from, for example, A/D conversion of a signal sent from the transmitting side in response to each timing having been set. Signal composing 4 compose outputs of the plurality of correlators 3-1 to 3-n and output a demodulated signal.
- As described above, in the present invention proposed in the previous application, interference component contained in a desired signal is reduced using a multi-path interference correlative signal (MICS) reproduced using only information of selected two (2) paths.
- However, as described above, in the present invention of the previous application, a drawback is recognized that the effect of the reduction of the interference component becomes smaller as the number of the paths increases because the information of only selected two (2) paths is utilized when the interference component is reproduced. That is, information that must be contained in paths other than the noted two (2) paths can not be utilized.
- It is therefore the object of the present invention to provide a spread spectrum rake receiver capable of overcoming such disadvantage of the present invention of the previous application.
- In order to achieve the above object, according to a first aspect of the present invention there is provided a rake receiver for use in a spread spectrum communication system, comprising timing detecting operable to detect a reception timing ti (i=1 to N) of each of N paths when direct spread spectrum signals of the N paths are received; inverse spreading timing setting operable to set, as a timing for inverse spreading, a timing ti,j,k (k=1 to N, k≠j) at which an inverse spread value is obtained that has interference and correlation from the jth (j=1 to N, j≠i) path included in the inverse spread value of the ith path counted from the reception timing ti (i=1 to N) detected by the timing detecting; a plurality of correlators each operable to obtain an inverse spread signal of the received signal corresponding to each timing set by the inverse spreading timing setting; and signal composing operable to compose outputs of the plurality of correlators.
- The rake receiver may further comprise, between the correlators and the signal composing, a circuit operable to compose a multi-path interference signal (mics (i,j,k)) of a path k (k≠j) from the following Eq. (1),
-
- to reproduce interference αjIi,j and subtract the interference MICS(i,j) from the ith path.
- When the multi-path interference signal (mics (i,j,k)) is composed, coefficients ri,j and r'k of Eq. (1) may be obtained from the following Eq. (2) and Eq. (3),
-
r i,j=αj I 2/{(I/N)j+1} Eq. (2), -
r' k=α*k/{Σ I≠k|αI|2 I 2 +n 2} Eq. (3), - and the multi-path interference signal (mics(i,j,k)) may be composed using the maximal ratio composition.
- When the multi-path interference signal (mics(i,j,k)) is composed, noises of the multi-path interference signal (mics(i,j,k)) may be approximated to be constant and the coefficients ri,j and r'k of Eq. (1) may be obtained from the following Eq. (4) and Eq. (5),
-
r i,j=αj(I/N)j/{(Σk≠j|αk|2) ((I/N)j+1)} Eq. (4), -
r' k=α*k Eq. (5), - and the multi-path interference signal (mics (i, j, k)) may be composed using the maximal ratio composition.
- The circuit operable to subtract the interference MICS(i,j) may include a circuit operable to select a plurality of paths having high power, and the circuit operable to subtract the interference MICS(i,j) may subject the selected paths to processes for composing the multi-path interference signal (mics(i,j,k)) and subtracting the interference MICS(i,j).
- The circuit operable to subtract MICS(i,j) from the ith path may select a plurality of paths i having high power and may be provided in the quantity corresponding to the number of the selected paths.
- The inverse spreading timing setting may detect coincidence between the timing ti,j,k for the inverse spreading and a reception timing ti and, may not subject the paths between which the coincidence has been detected, to the processes for composing the multi-path interference signal (mics(i,j,k)) and subtracting the interference MICS(i,j).
- The rake receiver may further comprise a level compensating circuit disposed between the circuit operable to subtract the interference MICS(i,j) and the signal composing , the level compensating circuit acting to compensate the levels of signals after reduction of the interference in the circuit operable to reduce the interference MICS(i,j) to keep the level of the noises constant.
- The rake receiver may further comprise, at the preceding stage of the correlators, a circuit operable to compose a multi-path interference signal (mics(i,j,k) of a path k (k≠j) from Eq. (1)
-
- to reproduce interference αjIi,j, and subtract the interference MICS(i,j) from the ith path.
- The circuit operable to subtract the interference MICS(i,j) may include a circuit operable to select a plurality of paths having high power, thereby subjecting the selected paths to the processes for composing the multi-path interference signal (mics(i,j,k)) and subtracting the interference MICS(i,j).
- The circuit operable to subtract the interference MICS(i,j) from the ith path may select a plurality of paths i having high power and may be provided in the quantity corresponding to the number of the selected paths.
- The above and other features of the present invention will become more apparent from the description of the embodiments of the invention when taken in conjunction with the accompanying drawings which follow.
-
FIGS. 1 is a block diagram showing generally an example of the construction of a rake receiver as a mobile communication terminal; -
FIG. 2 is a block diagram of the detailed construction of the inverse spreading timing creating andinverse spreading unit 104 ofFIG. 1 , that is, a signal demodulating unit; -
FIG. 3 is a block diagram of the principle construction of a rake receiver constituting a spread spectrum communication system in a multi-path environment, previously proposed; -
FIG. 4 shows timings of signals of two (2) paths received by a CDMA (Code Division Multiple Access) mobile terminal; -
FIG. 5 shows N path signals, and a plurality of Multi-path Interference Correlative Timings (MICTs) that can be utilized for reduction of interference of a path j contained in a path i; -
FIG. 6 shows an example of the construction of a CDMA receiver applied with the present invention; -
FIG. 7 shows an example of the construction of a composingunit 27 ofFIG. 6 ; -
FIG. 8 shows another exemplary embodiment of the present invention; -
FIG. 9 shows the detailed construction of a multi-path interferenceexchange reduction circuit 28; -
FIG. 10 shows the details of MICS units 280-1 to 280-N represented by a MICS unit 280-i; -
FIG. 11 shows an example of the construction of anMRC 128; -
FIG. 12 shows another example of the construction of the MICS unit 280-i; -
FIG. 13 shows a construction that is provided with aselector circuit 31 at the preceding stage of aMIXR circuit 28, as an exemplary embodiment; -
FIG. 14 shows yet another example of the construction of the MICS unit 280-i: -
FIG. 15 shows a construction that is provided with alevel correcting unit 32 between theMIXR unit 28 and arake composing unit 27 that is the following stage of thelevel correcting unit 32; -
FIG. 16 shows yet another exemplary embodiment of the present invention; and -
FIG. 17 shows the construction of the MICS unit 280-i constituting theMIXR unit 28 in the construction of FIG. 16. - Here, prior to the description of an exemplary embodiments of the present invention, the principle of the previously applied invention by the present inventor described above will be further described for the full understanding of the present invention.
- When signals of multiple paths are inversely spread at a timing, signals of paths that occur interference are determined by mutual correlation value of an inverse spreading signal, the attenuation coefficient of a propagation path, etc. The correlation value of an inverse spreading signal is a constant determined by the delay between the timing of a signal arrived through a path and the timing of inverse spreading.
-
FIG. 4 shows timings of signals of two (2) paths received by a CDMA (Code Division Multiple Access) mobile terminal. In the figure, ••YZABCD•• are labels indicating signal timings of each path and “A” is assumed to be the correct inverse spreading timing. The channels of apath 1 and apath 2 are denoted respectively by α1 and α2. Inverse spreading timings are respectively denoted by t1 and t2 and signals inversely spread at these timings are respectively denoted by x1 and x2. - Here, defining a special timing t0=t1−(t2−t1) and denoting a signal inversely spread at the timing t0 by x0, x1 and x0 can be represented as follows.
-
x 1=α1 S+α 2 I z +n 1 -
x 0=α1 I z+α2 I y +n 0 - α1S is a desired signal obtained by inversely spreading the
path 1 from A and α2IZ is interference obtained by inversely spreading thepath 2 from Z. Furthermore, α2IY is a signal obtained by inversely spreading thepath 2 from Y, and n1 and n0 are respectively noises thereof. - The above signal x0 is a signal obtained by inversely spreading at a timing that can not be obtained, of a received signal S, and α1IZ is contained therein. That is, it can be seen that α1IZ has correlation with an interference component α2IZ of x1. In this sense, a signal like x0 is referred to a “Multi-path Interference Correlative Signal (MICS)” of the
path 1 to thepath 2, and a timing like t0 is referred to as a “Multi-path Interference Correlative Timing (MICT)” of thepath 1 to thepath 2. - The interference component of x1 can be reduced by multiplying an appropriate coefficient r from x1 to x0 because x0 has correlation with the interference component of x1.
- However, here, it should be noted that another interference component IY contained in x0 is increased when the coefficient r is determined such that IZ contained in x1 is completely cancelled. Therefore, the total magnitude of the interference may be increased instead of being decreased. Therefore, the appropriate coefficient r needs to be a coefficient that is determined such that the total power of the interference becomes minimum remaining the original interference IZ.
- In the previously applied invention described above, the information of only two (2) paths selected when interference components are reproduced is used. Therefore, information contained in paths other than the noted two (2) paths can not be utilized. Therefore, the reduction effect of the interference components is small.
- Therefore, the present invention solves such a drawback of the previously applied invention and improves the interference reproduction accuracy by using all the paths except interference sources in order to reproduce interference components. The principle of the present invention will be described as follows.
-
FIG. 5 shows N path signals, and a plurality of Multi-path Interference Correlative Timings (MICTs) that can be utilized for reduction of interference of a path j contained in a path i. A signal inversely spread at a timing of the path i is represented as follows. -
- Here, S is a desired signal, Ii,j is an interference component by the path j contained in xi. In
FIG. 5 , a timing ti,j,i is a multi-path interference correlative timing (MICT) used in the previous application. The timing ti,j,i is a timing shifted from the timing ti by the time difference Δ t between the path i and the path j. A signal having a correlation with Ii,j can be obtained by inversely spreading at this timing ti,j,i. - Here, noting paths other than the paths i and j, similarly to the timing ti,j,i, a signal having a correlation with Ii,j can be obtained by inversely spreading at a timing ti,j,k (k is a value from 1 to N except j. ) shifted from each of the paths by Δ t. The signals obtained by inversely spreading at the timings ti,j,k and ti,j,k are represented as follows.
-
- where Ii,j,k,I=I (ti−tj+tk−tI) and, especially Ii,j,k,k=Ii,j.
- Next, an embodiment of the present invention will be described based on the above principle of the present invention.
-
FIG. 6 shows an example of the construction of a CDMA receiver applied with the present invention. A CDMA signal received by anantenna 20 is converted into a base-band signal by a down-converter 21. - The base-band signal is inputted into an A/
D converter 23 through anAGC amplifier 22. Here, the base-band signal is converted into a digital signal and is inputted into inverse spreading circuit units 24-1 to 24-n corresponding to the number of paths n and into apath searching unit 25. - In the
path searching unit 25, a timing of each of the paths of the multi-paths is obtained from the received signal. Based on these path timings, inverse spreading timings ti,j,k,n are created by atiming generating circuit 26 according to the following equation. -
t i,j,k,n =t i−(t j −t k) n - The inverse spreading timings ti,j,k,n are sent respectively to the corresponding inverse spreading circuit units 24-1 to 24-n and inverse spreading processes are executed at the respective timings. Inverse spread outputs obtained in the inverse spreading circuit units 24-1 to 24-n are composed in the composing
unit 27 and an inverse spread signal is obtained. -
FIG. 7 shows an example of the construction of a composingunit 27 ofFIG. 6 . Here, the construction of an MMSE receiver is shown as an embodiment. Therefore, the composingunit 27 has an MMSEcoefficient generating unit 270. - The MMSE
coefficient generating unit 270 obtains composition coefficients that maximizes the S/N of received signals. These coefficients are multiplied as the coefficients to multipliers 271-1 to 271-n respectively corresponding to each of fingers. The MMSEcoefficient generating unit 270 further comprises anadder 272 that adds the outputs of these multipliers 271-1 to 271-n. Thereby, an output that maximizes the S/N of the received signals can be obtained from theadder 272. - With the construction of
FIG. 6 applied with the present invention, effective timings for inverse spreading can be easily obtained and, therefore, a preferable effect can be obtained with a few inverse spread fingers. -
FIG. 8 shows another exemplary embodiment of the present invention. A multi-path interference exchange reduction (MIXR)circuit 28 is provided between the inverse spreading circuit units 24-1 to 24-n and arake composing unit 27 compared to the exemplary embodiment of the construction ofFIG. 6 . Interference of each finger is reduced by this multi-path interference exchange reduction (MIXR)circuit 28. -
FIG. 9 shows the detailed construction of the multi-path interferenceexchange reduction circuit 28. Interference is reduced by reproducing the interference caused by the path j contained in the path i in the MICS units 280-1 to 280-N, adding all outputs of MICS units 280-1 to 280-N in theadder 281 and subtracting the result of the adding from a signal of the path i. - Each of the above MICS units 280-1 to 280-N reproduces interference entering from the path j to the path i (j≠i).
-
FIG. 10 shows the details of the MICS units 280-1 to 280-N represented by a MICS unit 280-i. Based on timing information ti of a rake path obtained by thepath searching unit 25, multi-path interference correlative timings (MICT) ti,j,k are obtained in thetiming generating circuit 26 i according to the following equation. -
t i,j,k =t i −t j +t k (j≠i) - A signal mics(i,j,k) inversely spread by the respectively corresponding inverse spreading circuits 104-il to 104iN at this obtained timing ti,j,k is obtained and these signals are composed and outputted by an
MRC unit 128. -
FIG. 11 shows an example of the construction of theMRC 128. In theMRC 128, the signal mics(i,j,k) is multiplied in a multiplier 128-2i by an appropriate coefficient r′k obtained by a coefficient generating unit 128-1 based on a channel estimation value α i (i=1 to N) obtained from achannel estimating unit 29 and the noise power n2 obtained from alevel measuring unit 30, and the products are added by an adder 128-3. Furthermore, the output of the adder 128-3 is multiplied by a coefficient ri,j in an adder 128-4 and the MICS(i,j) is obtained. Therefore, the MICS(i,j) is represented by the following equation. -
- Here, the coefficient r′k and ri,j are obtained as follows.
-
r′ k=αk*/{ΣI≠k|αI|2 I 2 +n 2} -
r i,j=αj I 2/{(I/N)j+1} - where (I/N) j is the ratio of interference to be reproduced and the power of interference other than that and is obtained as follows.
-
- In the previously applied invention, the coefficient ri is obtained as follows using only the path i as represented in Eq. 3 when the MICS(i,j) is obtained.
-
MICS(i, j)=r imics (i, j, i) -
r i=αi*αj I 2/{Σ|αI|2 I 2 +n 2} - In contrast, in the present invention, the accuracy of the MICS(i, j) can be improved and the reduction effect of interference can be improved by composing using paths other than the path i as already shown.
- Here, in the process of the
MRC unit 128 ofFIG. 11 , the coefficient r′k to multiply mics(i,j,k) is obtained as follows approximating the noises to be constant when the MICS(i,j) is obtained. r′ k=α*k r i,j=αj (I/N)j/{(Σk≠j|αk|2) ( (I/N) j+1)} - Thereby, the size of the circuitry and the amount to be processed can be reduced.
-
FIG. 12 shows another example of the construction of the MICS unit 280-i. Compared toFIG. 10 , this construction has aselector unit 129 as a characteristic thereof. Theselector unit 129 determines the magnitude of a path based on a channel estimation value from thechannel estimating unit 29 and obtains mics(i,j,k) only for large paths. Thereby, the size of the circuitry and the amount to be processed can be reduced without degrading considerably the performance. - In the example of the construction of
FIG. 12 , two with k=s1 and s2 are selected from the inverse spreading circuits 104-ia and ib. - The MIXR process of the
MIXR circuit 28 ofFIG. 8 exerts a high effect when the MIXR process is applied to large paths.FIG. 13 shows a construction that is provided with aselector circuit 31 at the preceding stage of aMIXR circuit 28, as an exemplary embodiment. Theselector unit 31 controls such that the magnitude of the path is determined based on the channel estimation value from thechannel estimating unit 29 and the MIXR processes are executed only on large paths. - Paths that are not targets of the MIXR process are lead directly to the
rake circuit 27 to undergo a rake process without undergoing any other process before undergoing the rake processes. The example of the construction ofFIG. 13 is a construction for MIXR-processing two (2) paths and not executing any processes to other (N-2) processes. -
FIG. 14 shows yet another example of the construction of the MICS unit 280-i. While MIXR-processing, the inverse spreading timing ti,j,k of the mics(i,j,k) may be different from the timing ti of the desired signal. For example, in the case where each of ti is lining spaced equally from each other, ti,j,k may coincide with any one (1) of ti. Then, the case where the timing ti,j,k coincides with ti is detected by thetiming generating circuit 26 i and the signal of the case of the coincidence is blocked by switches 130-1 to 130-N. Thereby, the degradation of the characteristic can be prevented. - The
timing generating unit 26 i in the exemplary embodiment ofFIG. 14 creates the timing ti,j,k to correspond to the above operation and executes comparison with ti. Then, when coincidence or approximation almost equal to coincidence is found, the signal is prevented from being inputted into theMRC unit 128 by controlling accordingly a switch 130-i of an outputting unit of the mics(i,j,k) corresponding to the found timing. - Thereby, the mics(i,j,k) of the timing coinciding with a signal can be masked.
- Here, in
FIG. 8 , (1) the noise level of each finger is constant in any finger in therake composing unit 27 at the following stage of theMIXR unit 28. Furthermore, (2) that the amplitude of the data delivered from therake composing unit 27 to a correcting unit not shown indicates the likelihood of the signal, is a precondition for the process. - In many cases, in the
rake composing unit 27, in order to create appropriate signals for the correcting unit as above, the noise level of each finger is constant in any finger in therake composing unit 27 at the following stage of theMIXR unit 28. However, when a MIXR process has been executed to each rake finger respectively, the noise level of each finger containing interference is reduced and dispersion occurs in noise power that was at an almost same level in any finger. Consequently, effect of the rake composition and error correction may not be exerted. - Therefore, it is preferable to provide a
level compensating unit 32 between theMIXR unit 28 and therake composing unit 27 as a construction shown inFIG. 15 . Thereby, the noise power can be made same as that before the MIXR process by amplifying appropriately the signal after the MIXR process. -
FIG. 16 shows yet another exemplary embodiment of the present invention. Compared to the exemplary embodiment shown inFIG. 8 , the embodiment is characterized in that the positions of theMIXR unit 28 and the inverse spreadingcircuit unit 24 are exchanged. - In the construction of
FIG. 16 , the MICS unit 280-i constituting theMIXR unit 28 has a construction shown inFIG. 17 . Compared toFIG. 10 , the inverse spreading circuit 104-i is replaced by the delay circuit 105-i. - As described above, the circuit construction can be simplified by arranging the
MIXR unit 28 before the inverse spreadingcircuit unit 24. - As set forth hereinabove on the exemplary embodiments, even when the number of paths is increased, interfering noises can be effectively reduced by applying the present invention.
- Thereby, a rake receiver can be provided, that executes the effective maximal ratio composition in the time domain of signals arriving at an antenna with various differences in delay time thereof caused by multiple reflections of propagation paths of the signals in a multi-path environment.
Claims (7)
1-11. (canceled)
12. A receiver which receives signals through multi-paths, comprising:
a multi-path interference reducing unit to reduce an interference from another path to an inverse spreading result, at a receiving timing for a corresponding path;
a rake synthesizing unit to synthesize inverse spreading results at receiving timings for respective paths among the multi-paths; and
a selector to select a path for which the interference is reduced by the multi-path interference reducing unit, based on a channel estimated value for the path, wherein
an inverse spreading result at a receiving timing corresponding to the path selected by the selector is applied to synthesizing unit after the interference is reduced by the multi-path interference reducing unit.
13. A receiver which receives signals through multi-paths, comprising:
an inverse spreading unit to obtain a first inverse spreading result at a first receiving timing for a first path among multi-paths; and
a multi-path interference reducing unit to synthesize the first inverse spreading result with a second inverse spreading result, which is obtained at a second receiving timing preceded by a difference between receiving timings for the first path and a second path which is later than the first path, from a receiving timing for any path among the multi-paths except the second path, wherein
the second inverse spreading result synthesized with the first inverse spreading result is limited to an inverse spreading result obtained at a timing different from receiving timings for any paths among the multi-paths.
14. A receiver which receives signals through multi-paths, comprising:
a first multi-path interference reducing unit to perform multi-path reducing process for an inverse spreading result obtained by inverse spreading at a timing for a first path among the multi-paths;
a second multi-path interference reducing unit to perform multi-path reducing process for an inverse spreading result obtained by inverse spreading at a timing for a second path among the multi-paths;
a level adjusting unit to adjust levels of output signals from the first multi-path interference reducing unit and the second multi-path interference reducing unit, respectively; and
a rake synthesizing unit to synthesize the level adjusted output signals from the first multi-path interference reducing unit and the second multi-path interference reducing unit.
15. A method for use in a receiver which receives signals through multi-paths, comprising:
reducing an interference from another path to an inverse spreading result, at a receiving timing for a corresponding path;
synthesizing inverse spreading results at receiving timings for respective paths among the multi-paths; and
selecting a path for which the interference is reduced, based on a channel estimated value for the path, wherein
an inverse spreading result at a receiving timing corresponding to the selected path is applied to the synthesizing after the interference is reduced.
16. A method for use in a receiver which receives signals through multi-paths, comprising:
obtaining a first inverse spreading result at a first receiving timing for a first path among multi-paths; and
synthesizing the first inverse spreading result with a second inverse spreading result, which is obtained at a second receiving timing preceded by a difference between receiving timings for the first path and a second path which is later than the first path, from a receiving timing for any path among the multi-paths except the second path, wherein
the second inverse spreading result synthesized with the first inverse spreading result is limited to an inverse spreading result obtained at a timing different from receiving timings for any paths among the multi-paths.
17. A method for use in a receiver which receives signals through multi-paths, comprising:
performing a first multi-path interference reducing process for an inverse spreading result obtained by inverse spreading at a timing for a first path among the multi-paths;
performing a second multi-path interference reducing process for an inverse spreading result obtained by inverse spreading at a timing for a second path among the multi-paths;
adjusting levels of output signals from the first multi-path interference reducing proces and the second multi-path interference reducing process, respectively; and
synthesizing the level adjusted output signals from the first multi-path interference reducing process and the second multi-path interference reducing process.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/476,473 US20090257478A1 (en) | 2002-09-13 | 2009-06-02 | Spread spectrum rake receiver |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2002/009414 WO2004025860A1 (en) | 2002-09-13 | 2002-09-13 | Spread spectrum rake receiver |
US11/039,009 US7573934B2 (en) | 2002-09-13 | 2005-01-13 | Spread spectrum rake receiver |
US12/476,473 US20090257478A1 (en) | 2002-09-13 | 2009-06-02 | Spread spectrum rake receiver |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/039,009 Division US7573934B2 (en) | 2002-09-13 | 2005-01-13 | Spread spectrum rake receiver |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090257478A1 true US20090257478A1 (en) | 2009-10-15 |
Family
ID=34632418
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/039,009 Expired - Fee Related US7573934B2 (en) | 2002-09-13 | 2005-01-13 | Spread spectrum rake receiver |
US12/476,473 Abandoned US20090257478A1 (en) | 2002-09-13 | 2009-06-02 | Spread spectrum rake receiver |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/039,009 Expired - Fee Related US7573934B2 (en) | 2002-09-13 | 2005-01-13 | Spread spectrum rake receiver |
Country Status (1)
Country | Link |
---|---|
US (2) | US7573934B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013525742A (en) * | 2010-05-04 | 2013-06-20 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Improved method and apparatus for transport and storage of cryogenic equipment |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7852902B2 (en) * | 2005-09-30 | 2010-12-14 | Telefonaktiebolaget L M Ericsson (Publ) | Method of and apparatus for multi-path signal component combining |
US7680176B2 (en) * | 2005-11-21 | 2010-03-16 | Telefonaktiebolaget Lm Ericsson (Publ) | Simplified generalized rake receiver method and apparatus |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6064338A (en) * | 1998-03-19 | 2000-05-16 | Fujitsu Limited | Array antenna system of wireless base station |
US20020037028A1 (en) * | 2000-01-14 | 2002-03-28 | Jens Baltersee | Method and rake receiver for code-tracking in communication systems |
US20020131479A1 (en) * | 2000-10-17 | 2002-09-19 | Butler Brian K. | Method and apparatus for canceling pilot interference in a CDMA communication system |
US20020154717A1 (en) * | 2000-12-19 | 2002-10-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Weighting factor setting method for subtractive interference canceller, interference canceller unit using said weighting factor and interference canceller |
US20020159422A1 (en) * | 2001-03-09 | 2002-10-31 | Xiaodong Li | Communication system using OFDM for one direction and DSSS for another direction |
US20030031234A1 (en) * | 2001-05-17 | 2003-02-13 | Smee John Edward | System and method for received signal prediction in wireless communications systems |
US6570909B1 (en) * | 1999-07-09 | 2003-05-27 | Nokia Mobile Phones | Interference suppression in a CDMA receiver |
US6618433B1 (en) * | 2000-08-04 | 2003-09-09 | Intel Corporation | Family of linear multi-user detectors (MUDs) |
US6625201B1 (en) * | 1998-10-12 | 2003-09-23 | Sony International (Europe) Gmbh | Coherent receiver with channel estimator |
US6628700B1 (en) * | 1998-08-24 | 2003-09-30 | Nec Corporation | CDMA reception method and CDMA receiver |
US6865218B1 (en) * | 2000-11-27 | 2005-03-08 | Ericsson Inc. | Multipath interference reduction for a CDMA system |
US7103117B2 (en) * | 2002-03-12 | 2006-09-05 | Oki Techno Centre (Singapore) Pte Ltd | Reduced-complexity multipath interference cancellation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6201799B1 (en) | 1997-05-01 | 2001-03-13 | Lucent Technologies, Inc | Partial decorrelation for a coherent multicode code division multiple access receiver |
JP3462364B2 (en) | 1997-06-02 | 2003-11-05 | 株式会社エヌ・ティ・ティ・ドコモ | RAKE receiver in direct spread CDMA transmission system |
JP2853742B2 (en) | 1997-06-10 | 1999-02-03 | 日本電気株式会社 | Direct Spread / Code Division Multiplexing Interference Cancellation Receiver |
-
2005
- 2005-01-13 US US11/039,009 patent/US7573934B2/en not_active Expired - Fee Related
-
2009
- 2009-06-02 US US12/476,473 patent/US20090257478A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6064338A (en) * | 1998-03-19 | 2000-05-16 | Fujitsu Limited | Array antenna system of wireless base station |
US6628700B1 (en) * | 1998-08-24 | 2003-09-30 | Nec Corporation | CDMA reception method and CDMA receiver |
US6625201B1 (en) * | 1998-10-12 | 2003-09-23 | Sony International (Europe) Gmbh | Coherent receiver with channel estimator |
US6570909B1 (en) * | 1999-07-09 | 2003-05-27 | Nokia Mobile Phones | Interference suppression in a CDMA receiver |
US20020037028A1 (en) * | 2000-01-14 | 2002-03-28 | Jens Baltersee | Method and rake receiver for code-tracking in communication systems |
US6618433B1 (en) * | 2000-08-04 | 2003-09-09 | Intel Corporation | Family of linear multi-user detectors (MUDs) |
US20020131479A1 (en) * | 2000-10-17 | 2002-09-19 | Butler Brian K. | Method and apparatus for canceling pilot interference in a CDMA communication system |
US6865218B1 (en) * | 2000-11-27 | 2005-03-08 | Ericsson Inc. | Multipath interference reduction for a CDMA system |
US20020154717A1 (en) * | 2000-12-19 | 2002-10-24 | Telefonaktiebolaget Lm Ericsson (Publ) | Weighting factor setting method for subtractive interference canceller, interference canceller unit using said weighting factor and interference canceller |
US20020159422A1 (en) * | 2001-03-09 | 2002-10-31 | Xiaodong Li | Communication system using OFDM for one direction and DSSS for another direction |
US20030031234A1 (en) * | 2001-05-17 | 2003-02-13 | Smee John Edward | System and method for received signal prediction in wireless communications systems |
US7103117B2 (en) * | 2002-03-12 | 2006-09-05 | Oki Techno Centre (Singapore) Pte Ltd | Reduced-complexity multipath interference cancellation |
Non-Patent Citations (1)
Title |
---|
Ning Kong, "Average Signal-to-Interference-plus-Noise Ratio of A Generalized Optimum. Selection Combiner for Non-identical Independent Rayleigh Fading Channels in the Presence of Co-channel Interference", 3G Cellular, Inc. eAnywhere Telecom Group, 2001, IEEE * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013525742A (en) * | 2010-05-04 | 2013-06-20 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Improved method and apparatus for transport and storage of cryogenic equipment |
Also Published As
Publication number | Publication date |
---|---|
US20050123026A1 (en) | 2005-06-09 |
US7573934B2 (en) | 2009-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6404759B1 (en) | CDMA multi-user receiving apparatus including interference canceller with optimal receiving state | |
US10153805B2 (en) | Iterative interference suppressor for wireless multiple-access systems with multiple receive antennas | |
JP3202754B2 (en) | How to handle multiple multiple access transmissions | |
US6904076B1 (en) | Interference canceller device and radio communication device | |
JPH11186991A (en) | Rake receiver by direct spread cdma transmission system | |
US7889809B2 (en) | Weight vector calculation unit for beamforming using received and/or integrated signal without training signal | |
EP0986204A1 (en) | Method and apparatus for interference rejection | |
US6275521B1 (en) | Demodulating apparatus and demodulating method | |
US7151792B2 (en) | Spread spectrum rake receiver | |
US7746942B2 (en) | Apparatus and method for controlling dynamic range of weight vectors according to combining methods in a mobile station equipped with multiple antennas in high rate packet data system using code division multiple access scheme | |
US20050276314A1 (en) | Interference eliminating apparatus and method | |
US7526012B2 (en) | Interference reduction apparatus and method | |
KR100958596B1 (en) | Finger using Mixed Weighting, and Its Application for Demodulation Apparatus and Method | |
US20090257478A1 (en) | Spread spectrum rake receiver | |
US20040141469A1 (en) | Rake receiver for operating in FDD and TDD modes | |
US6233272B1 (en) | Spread spectrum communication receiver | |
JP4188238B2 (en) | Finger that waits at symbol rate that can be used in smart antenna system, and demodulator and method using the same {FingerforSymbol-RateWeightingusinginSmartAntennaSystem, andItsApplication for DemodulationApparatus and Method} | |
EP1548953B1 (en) | Spread spectrum rake receiver | |
US20080031390A1 (en) | Antenna diversity receiver | |
US20060274819A1 (en) | Truncation and level adjustment of rake output symbols | |
EP1443668A1 (en) | Truncation and level adjustment of RAKE output symbols | |
JP2001024553A (en) | Interference canceller system for cdma receiver | |
JP2003324367A (en) | Apparatus and method for radio reception |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |