US20090242853A1 - Process For Producing Niobium Suboxide - Google Patents

Process For Producing Niobium Suboxide Download PDF

Info

Publication number
US20090242853A1
US20090242853A1 US11/930,649 US93064907A US2009242853A1 US 20090242853 A1 US20090242853 A1 US 20090242853A1 US 93064907 A US93064907 A US 93064907A US 2009242853 A1 US2009242853 A1 US 2009242853A1
Authority
US
United States
Prior art keywords
niobium
nbo
powder
niobium suboxide
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/930,649
Inventor
Christoph Schnitter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HC Starck GmbH
Original Assignee
HC Starck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HC Starck GmbH filed Critical HC Starck GmbH
Priority to US11/930,649 priority Critical patent/US20090242853A1/en
Publication of US20090242853A1 publication Critical patent/US20090242853A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6265Thermal treatment of powders or mixtures thereof other than sintering involving reduction or oxidation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/20Powder free flowing behaviour
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3253Substoichiometric niobium or tantalum oxides, e.g. NbO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/528Spheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5481Monomodal
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Definitions

  • the present invention relates to a process for producing niobium suboxide of the approximate composition NbO, the niobium suboxide being suitable in particular for the production of anodes for solid electrolyte capacitors.
  • Solid electrolyte capacitors with a very large active capacitor surface area and therefore a small overall construction suitable for mobile communications electronics used are predominantly capacitors with a niobium or tantalum pentoxide barrier layer applied to a corresponding conductive substrate, utilizing the stability of these compounds (“valve metals”), the relatively high dielectric constants and the fact that the insulating pentoxide layer can be produced with a very uniform layer thickness by electrochemical means.
  • the substrates used are metallic or conductive lower oxide (suboxide) precursors of the corresponding pentoxides.
  • the substrate, which simultaneously forms a capacitor electrode (anode) comprises a highly porous, sponge-like structure which is produced by sintering extremely fine-particle primary structures or secondary structures which are already in sponge-like form.
  • the surface of the substrate structure is electrolytically oxidized (“formed”) to produce the pentoxide, with the thickness of the pentoxide layer being determined by the maximum voltage of the electrolytic oxidation (“forming voltage”).
  • the counterelectrode is produced by impregnating the sponge-like structure with manganese nitrate, which is thermally converted into manganese dioxide, or with a liquid precursor of a polymer electrolyte followed by polymerization.
  • the electrical contacts to the electrodes are produced on one side by a tantalum or niobium wire which is sintered in during production of the substrate structure and on the other side by the metallic capacitor sheath, which is insulated with respect to the wire.
  • the capacitance C of a capacitor is calculated using the following formula:
  • NbO x Trivial differences in details concerning specific weight-related capacitances result from the different densities of Nb, NbO x (0.7 ⁇ 1.3; in particular 0.95 ⁇ 1.1) and Ta.
  • NbO x is more favourable than Nb, since some of the volume of the anode structure is provided by oxygen.
  • niobium suboxide powders are produced using the standard metallurgical reaction and alloying processes, according to which a mean oxide content is produced by exposing niobium pentoxide and niobium metal, in the presence of hydrogen, to a temperature at which an oxygen concentration balancing takes place, cf. for example WO 00/15555 A1:
  • the process therefore comprises the use of a high-purity commercially available niobium pentoxide and mixing it with high-purity niobium metal, both in powder form corresponding to the stoichiometric proportions and treating them for several hours at a temperature of from 800 to 1600° C. in a hydrogen-containing atmosphere, which should preferably contain up to 10% of hydrogen. It is preferable for both the pentoxide and the metal to have primary particle sizes which, after the oxygen balancing has taken place, correspond to the desired primary particle size of less than or slightly over 1 ⁇ m (smallest) cross-sectional dimension.
  • crucibles made from niobium or tantalum which have been filled with a mixture of niobium pentoxide and niobium metal powders are heated to the reaction temperature in a furnace under a hydrogen-containing atmosphere.
  • the niobium metal required for the oxygen exchange with niobium pentoxide is preferably produced by reduction of high-purity niobium pentoxide to form the metal.
  • This can be effected aluminothermically by igniting an Nb 2 O 5 /A1 mixture and washing out the aluminium oxide which is formed and then purifying the niobium metal ingot by means of electron beams.
  • the niobium metal ingot obtained after reduction and electron beam melting can be embrittled using hydrogen in a known way and milled, producing plateletlike powders.
  • the high-purity niobium pentoxide powder is firstly reduced by means of hydrogen at 1000 to 1600° C. to form the niobium dioxide of approximately the formula NbO 2 , and is then reduced to the metal using magnesium vapour at 750 to 1100° C.
  • Magnesium oxide which is formed in the process is washed out by means of acids.
  • the latter process is preferred in particular on account of its considerably lower energy demand, on account of the fact that the primary particle size of the niobium pentoxide is in principle maintained and that there is a lower risk of contamination with substances which are harmful to the capacitor properties.
  • reaction Equation (1) One drawback of the reaction in accordance with reaction Equation (1) is that the volumetric shrinkage of the niobium pentoxide during the transition to the niobium suboxide amounts to approx. 50%, which causes a very loose crystal microstructure of the suboxide which can only be densified by conditioning with a risk of crystal defects being incorporated, and therefore may ultimately have an adverse effect on the capacitor properties.
  • the poor crystal quality of the suboxide is evidently also a reason for its inadequate flow properties.
  • Good flow properties of the capacitor powders represent a significant process parameter in the production of the capacitors, since the powders are pressed by means of automatic high-speed pressers which are supplied with the powder to be pressed via storage containers.
  • Good flow properties represent a precondition for a defined quantity of powder to flow into the press mould with an accuracy which satisfies modern-day requirements, for example of +/ ⁇ 0.5 mg.
  • a further object of the invention is to reduce the consumption of high-purity magnesium and the production of magnesium oxide, and at the same time to reduce the outlay involved in washing out the magnesium oxide. Furthermore, it is an object of the invention to increase the capacity of the furnaces significantly.
  • Another object of the invention is to further reduce the risk of contamination during the production of the niobium metal required for the production of niobium suboxide.
  • a niobium dioxide of the approximate composition NbO 2 be used as starting oxide for the metallurgical oxygen balancing with the niobium metal powder.
  • the niobium dioxide is preferably produced by reduction of niobium pentoxide under flowing hydrogen at a temperature of from 1000 to 1600° C.
  • the subject matter of the present invention is therefore a process for producing NbO x where 0.7 ⁇ 1.3, preferably 0.9 ⁇ 1.15, particularly preferably 1 ⁇ 1.05, by reacting NbO y where 1.8 ⁇ y ⁇ 2.1, preferably 1.9 ⁇ y ⁇ 2, with a stoichiometric quantity of niobium metal in the presence of hydrogen.
  • the temperature and duration of the reaction are to be determined in such a way that the reaction takes place substantially completely.
  • a further subject of the invention is niobium suboxide powders of the formula NbO x , where 0.7 ⁇ 1.3, preferably 0.9 ⁇ 1.15, particularly preferably 1 ⁇ 1.05, which have ASTM B 213 flow properties of at most 60 s/25 g, preferably at most 50 s/25 g, particularly preferably at most 40 s/25 g.
  • reaction temperature of from 900 to 1600° C. is preferred for the process according to the invention.
  • the reaction time can be selected to be between 0.5 and 4 hours, depending on the reaction temperature and the composition and particle structure of the starting substances and the composition of the end product.
  • the starting niobium dioxide to be used for the process according to the invention is preferably produced by reduction of niobium pentoxide in flowing hydrogen. It is preferable for the reaction to take place at a hydrogen partial pressure of from 50 to 1100 mbar. It can be detected that the reaction has ended when the flowing hydrogen is free of water vapour. After the reaction has ended, it is preferable for the reaction product still to be held for a certain time, for example 0.1 to 0.5 hours, at a temperature of from 900 to 1600° C., preferably from 1200 to 1600° C., in order to stabilize and densify the NbO y crystal lattice.
  • the temperature during the reduction of the pentoxide to form the dioxide is gradually increased from a starting temperature in the range from 950 to 1100° C. to a maximum temperature in the range from 1300 to 1600° C., particularly preferably from a starting temperature in the range from 1000 to 1050° C. to a maximum temperature in the range from 1350 to 1600° C., and then for the reduction to be continued with a gradually decreasing temperature, if appropriate after a certain residence time at the maximum temperature.
  • the reduction rate can be substantially maintained by the increasing temperature, or excessively quick lattice widening as a result of an excessively fast reduction rate can be avoided by using a lower starting temperature.
  • the high final temperature in the range from 1300 to 1600° C. is then held for a certain time, so that the crystal lattice can density and lattice defects are largely annealed,
  • the reduction times required are dependent on the particle size of the niobium pentoxide used and on the reduction temperature selected. With a pentoxide primary particle size of 0.3 to 0.5 ⁇ m, a reduction time of from 20 to 40 minutes is generally sufficient.
  • the niobium suboxide is produced in accordance with the following formula
  • the volumetric shrinkage during the transition of the NbO 2 to the NbO is just 13%. Although the majority of the volumetric shrinkage of the pentoxide of 42% has been shifted to the production of the NbO 2 , is has no adverse effect, since it is possible to effect intermediate stabilizing of the crystal microstructure as NbO 2 during the hydrogen reduction.
  • a further advantage is that the magnesium consumption, the washing outlay and the proportion of magnesium oxide which has to be processed for the production of the niobium metal are in each case reduced by 20% by the process according to the invention (based on the final yield of NbO).
  • a further advantage of the invention is the increase in the capacity of the furnaces for the reaction to form the NbO.
  • reaction Equation (1) the volumetric shrinkage from the starting mixture to the product is 23.5%
  • reaction equation of the invention there is an increase in volume of (in theory) just 6%, which is practically compensated for by sintering shrinkage.
  • the crucible of the furnace, which according to Equation (1) is initially 100% fill, after the reaction has ended is (in theory) only 81% fill with NbO.
  • the pentoxide is reduced to the niobium dioxide under flowing hydrogen at a temperature which rises over the course of 40 minutes from 950 to 1300° C., is then held at the latter temperature for 30 minutes and then lowered to 1200° C. over the course of 30 minutes and then held for 1 hour at this temperature.
  • the niobium dioxide had a composition corresponding to the formula NbO 2.01 .
  • the primary grain size had been coarsened to approximately 0.9 ⁇ m (determined visually from SEM images), and the BET surface area was 1.1 m 2 /g.
  • Part of the niobium dioxide obtained under a) was placed, in a reactor, onto a mesh of niobium wire. 1.1 times the stoichiometric quantity of magnesium, based on the oxygen content of the dioxide, was placed beneath the mesh in a crucible. The reactor was purged with argon from the bottom upwards. Then, the reactor was heated to 1050° C. After 8 hours, the reactor was cooled and air was slowly admitted in order to passivate the metal surface.
  • the niobium metal powder obtained had a primary grain size of 0.85 ⁇ m, a BET surface area of 1.32 m 2 /g and, after being pushed through a sieve, with a mesh width of 300 ⁇ m, had a D10 value of 33 ⁇ m, a D50 value of 176 ⁇ m and a D90 value of 263 ⁇ m.
  • a niobium suboxide powder corresponding to the formula NbO 0.96 was obtained.
  • the suboxide powder had a primary grain size of 0.95 ⁇ m and a BET surface area of 1.1 m 2 /g.
  • the D10 value was 41 ⁇ m
  • the D50 value was 182 ⁇ m
  • the D90 value was 258 ⁇ m.
  • the pressed bodies were sintered standing freely on a niobium platform under high vacuum of 10 ⁇ 3 Pa for 20 minutes at a temperature of 1450° C.
  • the anodes were formed in an electrolyte comprising 0.1% strength phosphoric acid at a temperature of 85° C. and a forming current of 150 mA up to a forming voltage of 30 V, which was maintained for 2 hours after the current had decayed.
  • the capacitance and residual current of the anode bodies which had been provided with a barrier layer of niobium pentoxide by the forming, were measured by the counterelectrode being simulated by an 18% strength sulphuric acid at 25° C. The measurements were carried out at a voltage of 21 V (70% of the forming voltage), a frequency of 120 Hz and a bias voltage of 10 V after a charging time of 3 minutes.
  • the mean specific capacitance was determined as 75 158 ⁇ FV/g and the residual current as 0.76 nA/ ⁇ FV.
  • the starting material used was a partially agglomerated, high-purity, virtually spherical Nb 2 O 5 after sieving to ⁇ 300 ⁇ m with a specific surface area determined in accordance with BET (ASTM D 3663) of 2.3 m 2 .
  • Part of this Nb 2 O 5 is reduced to an oxide of the composition NbO 2.02 under flowing hydrogen at a temperature which rises from 1000° C. to 1450° C. over the course of 60 minutes and is then held at 1450° C. for 200 minutes.
  • the specific surface area of the dioxide was 0.32 m 2 /g, and the grain size distribution determined by laser diffraction (ASTM B 822) had a D10 value of 67 ⁇ m, a D50 value of 176 ⁇ m and a D90 value of 284 ⁇ m.
  • Part of the niobium dioxide produced under a) was placed onto a wire mesh in a reactor, and beneath the wire mesh there was a crucible holding 1.2 times the stoichiometric quantity (based on the O content of the niobium dioxide) of magnesium.
  • the reactor was then heated under flowing argon for 4 h to 900° C., during which period the magnesium evaporated and reduced the niobium dioxide above it to the metal. After cooling and passivation, the magnesium oxide formed was removed from the niobium metal formed by washing repeatedly with sulphuric acid followed by water.
  • the niobium metal powder formed had a primary grain size of from 0.4 to 0.6 ⁇ m (determined visually from SEM images), a specific surface area of 3.87 m 2 /g and a D10 value of 54 ⁇ m, determined by laser diffraction (ASTM D 3663, Malvern Mastersizer), a D50 value of 161 ⁇ m and a D90 value of 272 ⁇ m.
  • Half of the niobium metal produced under b) is mixed with the Nb 2 O 5 described under a) in a weight ratio of 1:0.95 and then heated in a furnace to 1400° C. for 3 h under a hydrogen partial pressure of 67 mbar absolute. Then, the powder was pushed through a sieve of mesh width 300 ⁇ m.
  • the niobium suboxide obtained in this way (“powder A”) had a composition NbO 1.01 and a primary grain size of from 0.95 to 1.1 ⁇ m (determined visually from SEM images).
  • the specific surface area was 1.07 m 2 /g, and the D10 value determined by laser diffraction was 71 ⁇ m, the D50 value 165 ⁇ m and the D90 value 263 ⁇ m.
  • the other half of the niobium metal produced under b) is mixed with part of the NbO 2.02 produced under a) in a weight ratio of 1:1.34 and then heated in a furnace for 2 h under a hydrogen partial pressure of 67 mbar absolute to 1210° C.
  • the niobium suboxide obtained (“Powder B”) had a composition NbO 0.93 and a specific surface area of 1.13 m 2 /g.
  • the flow properties of both powders were determined in accordance with ASTM B 213. The following values resulted:
  • the procedure of the invention leads to niobium suboxides which are distinguished by improved flow properties compared to products obtained conventionally.

Abstract

A method is described for preparing a niobium suboxide represented by the formula, NbOx, in which 0.7<×<1.3. The method involves reacting NbOy (in which y<1.8<2.1) with a stoichiomerc amount of niobium metal, in the presence of hydrogen. The niobium suboxide produced by such method may be used to fabricate anodes for solid electrolyte capacitors.

Description

    CROSS REFERENCE TO RELATED PATENT APPLICATION
  • The present patent application claims the right of priority under 35 U.S.C. §119 (a)-(d) of German Patent Application No. 103 33 156.5, filed Jul. 22, 2003.
  • FIELD OF THE INVENTION
  • The present invention relates to a process for producing niobium suboxide of the approximate composition NbO, the niobium suboxide being suitable in particular for the production of anodes for solid electrolyte capacitors.
  • BACKGROUND OF THE INVENTION
  • Solid electrolyte capacitors with a very large active capacitor surface area and therefore a small overall construction suitable for mobile communications electronics used are predominantly capacitors with a niobium or tantalum pentoxide barrier layer applied to a corresponding conductive substrate, utilizing the stability of these compounds (“valve metals”), the relatively high dielectric constants and the fact that the insulating pentoxide layer can be produced with a very uniform layer thickness by electrochemical means. The substrates used are metallic or conductive lower oxide (suboxide) precursors of the corresponding pentoxides. The substrate, which simultaneously forms a capacitor electrode (anode) comprises a highly porous, sponge-like structure which is produced by sintering extremely fine-particle primary structures or secondary structures which are already in sponge-like form. The surface of the substrate structure is electrolytically oxidized (“formed”) to produce the pentoxide, with the thickness of the pentoxide layer being determined by the maximum voltage of the electrolytic oxidation (“forming voltage”). The counterelectrode is produced by impregnating the sponge-like structure with manganese nitrate, which is thermally converted into manganese dioxide, or with a liquid precursor of a polymer electrolyte followed by polymerization. The electrical contacts to the electrodes are produced on one side by a tantalum or niobium wire which is sintered in during production of the substrate structure and on the other side by the metallic capacitor sheath, which is insulated with respect to the wire.
  • The capacitance C of a capacitor is calculated using the following formula:

  • C=(F·ε)/(d·VF)
  • where F denotes the capacitor surface area, s the dielectric constant, d the thickness of the insulator layer per V of forming voltage and VF the forming voltage. Since the dielectric constant ε is 27.6 or 41 for tantalum pentoxide or niobium pentoxide, respectively, but the growth in the layer thickness per volt of forming voltage d is 16.6 or 25 ∪/V, both pentoxides have an almost identical quotient ε/d=1.64 or 1.69, respectively. Capacitors based on both pentoxides, with the same geometry of the anode structures, therefore have the same capacitance. Trivial differences in details concerning specific weight-related capacitances result from the different densities of Nb, NbOx (0.7<×<1.3; in particular 0.95<×<1.1) and Ta. Anode structures made from Nb and NbOx therefore have the advantage of saving weight when used, for example, in mobile telephones, in which every gram of weight saving is a priority. With regard to cost aspects, NbOx is more favourable than Nb, since some of the volume of the anode structure is provided by oxygen.
  • The niobium suboxide powders are produced using the standard metallurgical reaction and alloying processes, according to which a mean oxide content is produced by exposing niobium pentoxide and niobium metal, in the presence of hydrogen, to a temperature at which an oxygen concentration balancing takes place, cf. for example WO 00/15555 A1:

  • 2Nb2O5+3Nb→5NbO   (1)
  • The process therefore comprises the use of a high-purity commercially available niobium pentoxide and mixing it with high-purity niobium metal, both in powder form corresponding to the stoichiometric proportions and treating them for several hours at a temperature of from 800 to 1600° C. in a hydrogen-containing atmosphere, which should preferably contain up to 10% of hydrogen. It is preferable for both the pentoxide and the metal to have primary particle sizes which, after the oxygen balancing has taken place, correspond to the desired primary particle size of less than or slightly over 1 μm (smallest) cross-sectional dimension.
  • In is process, crucibles made from niobium or tantalum which have been filled with a mixture of niobium pentoxide and niobium metal powders are heated to the reaction temperature in a furnace under a hydrogen-containing atmosphere. The niobium metal required for the oxygen exchange with niobium pentoxide is preferably produced by reduction of high-purity niobium pentoxide to form the metal.
  • This can be effected aluminothermically by igniting an Nb2O5/A1 mixture and washing out the aluminium oxide which is formed and then purifying the niobium metal ingot by means of electron beams. The niobium metal ingot obtained after reduction and electron beam melting can be embrittled using hydrogen in a known way and milled, producing plateletlike powders.
  • According to a preferred process for producing the niobium metal in accordance with WO 00/67936 A1, the high-purity niobium pentoxide powder is firstly reduced by means of hydrogen at 1000 to 1600° C. to form the niobium dioxide of approximately the formula NbO2, and is then reduced to the metal using magnesium vapour at 750 to 1100° C. Magnesium oxide which is formed in the process is washed out by means of acids. The latter process is preferred in particular on account of its considerably lower energy demand, on account of the fact that the primary particle size of the niobium pentoxide is in principle maintained and that there is a lower risk of contamination with substances which are harmful to the capacitor properties.
  • One drawback of the reaction in accordance with reaction Equation (1) is that the volumetric shrinkage of the niobium pentoxide during the transition to the niobium suboxide amounts to approx. 50%, which causes a very loose crystal microstructure of the suboxide which can only be densified by conditioning with a risk of crystal defects being incorporated, and therefore may ultimately have an adverse effect on the capacitor properties. The poor crystal quality of the suboxide is evidently also a reason for its inadequate flow properties.
  • Good flow properties of the capacitor powders represent a significant process parameter in the production of the capacitors, since the powders are pressed by means of automatic high-speed pressers which are supplied with the powder to be pressed via storage containers. Good flow properties represent a precondition for a defined quantity of powder to flow into the press mould with an accuracy which satisfies modern-day requirements, for example of +/−0.5 mg.
  • SUMMARY OF THE INVENTION
  • It is an object of the invention to overcome the drawbacks of the prior art, It is a further object of the invention to provide a niobium suboxide powder with improved flow properties.
  • A further object of the invention is to reduce the consumption of high-purity magnesium and the production of magnesium oxide, and at the same time to reduce the outlay involved in washing out the magnesium oxide. Furthermore, it is an object of the invention to increase the capacity of the furnaces significantly.
  • Another object of the invention is to further reduce the risk of contamination during the production of the niobium metal required for the production of niobium suboxide.
  • In accordance with the present invention there is provided a method of producing NbOx comprising
      • reacting NbOy, where 1.8<y<2.1,
        • with a stoichiometric quantity of niobium metal, in the presence of hydrogen,
          wherein for NbOx, 0.7<×<1.3.
    DETAILED DESCRIPTION OF THE INVENTION
  • Accordingly, according to the invention it is proposed that a niobium dioxide of the approximate composition NbO2 be used as starting oxide for the metallurgical oxygen balancing with the niobium metal powder. The niobium dioxide is preferably produced by reduction of niobium pentoxide under flowing hydrogen at a temperature of from 1000 to 1600° C.
  • The subject matter of the present invention is therefore a process for producing NbOx where 0.7<×<1.3, preferably 0.9<×<1.15, particularly preferably 1<×<1.05, by reacting NbOy where 1.8<y<2.1, preferably 1.9<y<2, with a stoichiometric quantity of niobium metal in the presence of hydrogen. The temperature and duration of the reaction are to be determined in such a way that the reaction takes place substantially completely.
  • A further subject of the invention is niobium suboxide powders of the formula NbOx, where 0.7<×<1.3, preferably 0.9<×<1.15, particularly preferably 1<×<1.05, which have ASTM B 213 flow properties of at most 60 s/25 g, preferably at most 50 s/25 g, particularly preferably at most 40 s/25 g.
  • A reaction temperature of from 900 to 1600° C. is preferred for the process according to the invention. The reaction time can be selected to be between 0.5 and 4 hours, depending on the reaction temperature and the composition and particle structure of the starting substances and the composition of the end product.
  • The starting niobium dioxide to be used for the process according to the invention is preferably produced by reduction of niobium pentoxide in flowing hydrogen. It is preferable for the reaction to take place at a hydrogen partial pressure of from 50 to 1100 mbar. It can be detected that the reaction has ended when the flowing hydrogen is free of water vapour. After the reaction has ended, it is preferable for the reaction product still to be held for a certain time, for example 0.1 to 0.5 hours, at a temperature of from 900 to 1600° C., preferably from 1200 to 1600° C., in order to stabilize and densify the NbOy crystal lattice.
  • Furthermore, it is preferable for the temperature during the reduction of the pentoxide to form the dioxide to be gradually increased from a starting temperature in the range from 950 to 1100° C. to a maximum temperature in the range from 1300 to 1600° C., particularly preferably from a starting temperature in the range from 1000 to 1050° C. to a maximum temperature in the range from 1350 to 1600° C., and then for the reduction to be continued with a gradually decreasing temperature, if appropriate after a certain residence time at the maximum temperature. On account of the decreasing oxygen concentration in the first reduction phase, the reduction rate can be substantially maintained by the increasing temperature, or excessively quick lattice widening as a result of an excessively fast reduction rate can be avoided by using a lower starting temperature. The high final temperature in the range from 1300 to 1600° C. is then held for a certain time, so that the crystal lattice can density and lattice defects are largely annealed,
  • On the other hand, it is possible to bring about initially very rapid reduction and therefore very extensive widening of the crystal lattice as early as during production of the dioxide, by means of very rapid heating to a reduction temperature of from 1450 to 1600° C., so that the lattice becomes highly unstable, producing a relatively strong primary particle growth. This may be desirable if a very fine-particle niobium pentoxide is used as starting material, with the intention being to produce capacitors with a medium capacitance in the range from 30 000 to 70 000 μFV/g. In this case too, holding at a temperature of from 1200 to 1600° C. in order to consolidate the dioxide crystal lattice is advantageous.
  • The reduction times required are dependent on the particle size of the niobium pentoxide used and on the reduction temperature selected. With a pentoxide primary particle size of 0.3 to 0.5 μm, a reduction time of from 20 to 40 minutes is generally sufficient.
  • On account of the relatively high reduction temperatures (including the maximum temperature in the first case), sintered bridges with an advantageously extremely high strength even in the niobium dioxide are formed.
  • Further reduction of the dioxide to form the metal by means of magnesium vapour can be carried out at a relatively low temperature, for example 900 to 1100° C. At these low temperatures, only minimal primary grain coarsening occurs. As a result, it is possible for niobium dioxide from a single source on the one hand in part to be reduced further to form the metal and on the other hand to be mixed with the metal without further treatment and then to carry out the oxygen balancing to form the suboxide, since primary grain and agglomerate sizes of dioxide and metal are no different, approximately matching one another in particular after the oxygen balancing.
  • According to the invention, therefore, the niobium suboxide is produced in accordance with the following formula;

  • NbO2+Nb→2NbO   (2).
  • The volumetric shrinkage during the transition of the NbO2 to the NbO is just 13%. Although the majority of the volumetric shrinkage of the pentoxide of 42% has been shifted to the production of the NbO2, is has no adverse effect, since it is possible to effect intermediate stabilizing of the crystal microstructure as NbO2 during the hydrogen reduction.
  • A further advantage is that the magnesium consumption, the washing outlay and the proportion of magnesium oxide which has to be processed for the production of the niobium metal are in each case reduced by 20% by the process according to the invention (based on the final yield of NbO).
  • A further advantage of the invention is the increase in the capacity of the furnaces for the reaction to form the NbO. Whereas according to reaction Equation (1) the volumetric shrinkage from the starting mixture to the product is 23.5%, according to the reaction equation of the invention there is an increase in volume of (in theory) just 6%, which is practically compensated for by sintering shrinkage. The crucible of the furnace, which according to Equation (1) is initially 100% fill, after the reaction has ended is (in theory) only 81% fill with NbO.
  • In the case of the reaction according to the invention corresponding to Equation (2), therefore, the capacity can (theoretically) be increased by (19%/81%=) 23%. In reality, taking the sintering shrinkage into account, the increase in capacity is even greater.
  • EXAMPLES Example 1
  • a) Production of the niobium dioxide NbOy
  • A partially agglomerated, high-purity, spherical niobium pentoxide, which has been sieved through a sieve of mesh width 300 μm, with a primary grain size of approximately 0.7 μm diameter and a specific surface area, determined in accordance with BET (ASTM D 3663), of 2.4 m2/g is used.
  • The pentoxide is reduced to the niobium dioxide under flowing hydrogen at a temperature which rises over the course of 40 minutes from 950 to 1300° C., is then held at the latter temperature for 30 minutes and then lowered to 1200° C. over the course of 30 minutes and then held for 1 hour at this temperature.
  • The niobium dioxide had a composition corresponding to the formula NbO2.01. The primary grain size had been coarsened to approximately 0.9 μm (determined visually from SEM images), and the BET surface area was 1.1 m2/g.
  • Measurement of the grain size distribution using a Mastersizer Sμ produced by Malvern (ASTM B 822, wetting agent Daxad 11) after pushing through a sieve of 300 μm mesh width, gave a D10 value of 32 μm, a D50 value of 164 μm and a D90 value of 247μm.
  • b) Production of the niobium metal
  • Part of the niobium dioxide obtained under a) was placed, in a reactor, onto a mesh of niobium wire. 1.1 times the stoichiometric quantity of magnesium, based on the oxygen content of the dioxide, was placed beneath the mesh in a crucible. The reactor was purged with argon from the bottom upwards. Then, the reactor was heated to 1050° C. After 8 hours, the reactor was cooled and air was slowly admitted in order to passivate the metal surface.
  • The niobium metal powder obtained had a primary grain size of 0.85 μm, a BET surface area of 1.32 m2/g and, after being pushed through a sieve, with a mesh width of 300 μm, had a D10 value of 33 μm, a D50 value of 176 μm and a D90 value of 263 μm.
  • c) Production of the niobium suboxide NbOx
  • 43 parts by weight of the niobium powder obtained under b) and 57 parts by weight of the niobium dioxide powder obtained under a) were mixed and introduced into a crucible which was filled up to the brim. The crucible was then heated to 1380° C. over a period of 2.5 hours in a furnace which was purged with a gas mixture comprising 85% by volume of argon and 15% by volume of hydrogen.
  • After cooling, a niobium suboxide powder corresponding to the formula NbO0.96 was obtained. The suboxide powder had a primary grain size of 0.95 μm and a BET surface area of 1.1 m2/g. After sieving through a sieve with mesh width 300 μm, the D10 value was 41 μm, the D50 value was 182 μm and the D90 value was 258 μm.
  • d) Capacitor production
  • In each case 103 mg of the niobium suboxide powder in accordance with c) were introduced into press moulds, so as to surround a niobium contact wire, and then pressed to form pressed bodies with a pressed density of 2.8 g/cm3.
  • The pressed bodies were sintered standing freely on a niobium platform under high vacuum of 10−3 Pa for 20 minutes at a temperature of 1450° C. The anodes were formed in an electrolyte comprising 0.1% strength phosphoric acid at a temperature of 85° C. and a forming current of 150 mA up to a forming voltage of 30 V, which was maintained for 2 hours after the current had decayed.
  • The capacitance and residual current of the anode bodies, which had been provided with a barrier layer of niobium pentoxide by the forming, were measured by the counterelectrode being simulated by an 18% strength sulphuric acid at 25° C. The measurements were carried out at a voltage of 21 V (70% of the forming voltage), a frequency of 120 Hz and a bias voltage of 10 V after a charging time of 3 minutes. The mean specific capacitance was determined as 75 158 μFV/g and the residual current as 0.76 nA/μFV.
  • Example 2
  • a) Production of the niobium dioxide NbOy
  • The starting material used was a partially agglomerated, high-purity, virtually spherical Nb2O5 after sieving to <300 μm with a specific surface area determined in accordance with BET (ASTM D 3663) of 2.3 m2. Part of this Nb2O5 is reduced to an oxide of the composition NbO2.02 under flowing hydrogen at a temperature which rises from 1000° C. to 1450° C. over the course of 60 minutes and is then held at 1450° C. for 200 minutes. The specific surface area of the dioxide was 0.32 m2/g, and the grain size distribution determined by laser diffraction (ASTM B 822) had a D10 value of 67 μm, a D50 value of 176 μm and a D90 value of 284 μm.
  • b) Production of the niobium metal.
  • Part of the niobium dioxide produced under a) was placed onto a wire mesh in a reactor, and beneath the wire mesh there was a crucible holding 1.2 times the stoichiometric quantity (based on the O content of the niobium dioxide) of magnesium. The reactor was then heated under flowing argon for 4 h to 900° C., during which period the magnesium evaporated and reduced the niobium dioxide above it to the metal. After cooling and passivation, the magnesium oxide formed was removed from the niobium metal formed by washing repeatedly with sulphuric acid followed by water.
  • The niobium metal powder formed had a primary grain size of from 0.4 to 0.6 μm (determined visually from SEM images), a specific surface area of 3.87 m2/g and a D10 value of 54 μm, determined by laser diffraction (ASTM D 3663, Malvern Mastersizer), a D50 value of 161 μm and a D90 value of 272 μm.
  • c) Production of the niobium suboxides NbO
  • 1. Procedure according to the prior art;
  • Half of the niobium metal produced under b) is mixed with the Nb2O5 described under a) in a weight ratio of 1:0.95 and then heated in a furnace to 1400° C. for 3 h under a hydrogen partial pressure of 67 mbar absolute. Then, the powder was pushed through a sieve of mesh width 300 μm. The niobium suboxide obtained in this way (“powder A”) had a composition NbO1.01 and a primary grain size of from 0.95 to 1.1 μm (determined visually from SEM images). The specific surface area was 1.07 m2/g, and the D10 value determined by laser diffraction was 71 μm, the D50 value 165 μm and the D90 value 263 μm.
  • 2. Procedure according to the invention:
  • The other half of the niobium metal produced under b) is mixed with part of the NbO2.02 produced under a) in a weight ratio of 1:1.34 and then heated in a furnace for 2 h under a hydrogen partial pressure of 67 mbar absolute to 1210° C. The niobium suboxide obtained (“Powder B”) had a composition NbO0.93 and a specific surface area of 1.13 m2/g. The primary grain size, determined visually from SEM images, was on average 1.0 μm, and the grain size distribution determined from laser diffraction resulted in a D10 value of 62 μm, a D50 value of 158 μm and a D90 value of 269 μm. The flow properties of both powders were determined in accordance with ASTM B 213. The following values resulted:
      • Powder A: 65 s/25 g
      • Powder B; 26 s/25 g.
  • Accordingly, the procedure of the invention leads to niobium suboxides which are distinguished by improved flow properties compared to products obtained conventionally.
  • Although the invention has been described in detail in the foregoing for the purpose of illustration, it is to be understood that such detail is solely for that purpose and that variations can be made therein by those skilled in the art without departing from the spirit and scope of the invention except as it may be limited by the claims.

Claims (10)

1-9. (canceled)
10. A niobium suboxide powder represented by the following formula, NbOx,
wherein 0.7<×<1.3,
further wherein said niobium suboxide has a flow rate of at most 60 seconds/25 grams, as determined in accordance with ASTM B 213.
11. A capacitor comprising an anode, wherein said anode comprises a sintered powder of the niobium suboxide of claim 10.
12. The niobium suboxide powder as claimed 10, wherein the flow rate is at most of 50 seconds/25 grams, as determined in accordance with ASTM B 213.
13. The niobium suboxide powder as claimed 10, wherein the flow rate is at most of 40 seconds/25 grams, as determined in accordance with ASTM B 213.
14. The niobium suboxide powder as claimed 10, wherein x is between 0.95 and 1.1
15. The niobium suboxide powder as claimed 13, wherein x is between 0.95 and 1.1.
16. The niobium suboxide powder as claimed 10, wherein x is between 1 and 1.05
17. The niobium suboxide powder as claimed 13, wherein x is between 1 and 1.05.
18. A capacitor comprising an anode, wherein said anode comprises a sintered powder of the niobium suboxide of claim 17.
US11/930,649 2003-07-22 2007-10-31 Process For Producing Niobium Suboxide Abandoned US20090242853A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/930,649 US20090242853A1 (en) 2003-07-22 2007-10-31 Process For Producing Niobium Suboxide

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE2003133156 DE10333156A1 (en) 2003-07-22 2003-07-22 Process for the preparation of niobium suboxide
DE10333156.5 2003-07-22
US10/894,279 US7341705B2 (en) 2003-07-22 2004-07-19 Process for producing niobium suboxide
US11/930,649 US20090242853A1 (en) 2003-07-22 2007-10-31 Process For Producing Niobium Suboxide

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/894,279 Division US7341705B2 (en) 2003-07-22 2004-07-19 Process for producing niobium suboxide

Publications (1)

Publication Number Publication Date
US20090242853A1 true US20090242853A1 (en) 2009-10-01

Family

ID=34042009

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/894,279 Active 2025-04-28 US7341705B2 (en) 2003-07-22 2004-07-19 Process for producing niobium suboxide
US11/930,649 Abandoned US20090242853A1 (en) 2003-07-22 2007-10-31 Process For Producing Niobium Suboxide

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/894,279 Active 2025-04-28 US7341705B2 (en) 2003-07-22 2004-07-19 Process for producing niobium suboxide

Country Status (15)

Country Link
US (2) US7341705B2 (en)
EP (2) EP2078699A1 (en)
JP (2) JP4317091B2 (en)
KR (1) KR101129764B1 (en)
CN (2) CN101298340A (en)
AU (1) AU2004203208B2 (en)
BR (1) BRPI0402986A (en)
DE (2) DE10333156A1 (en)
IL (1) IL163104A (en)
MX (1) MXPA04007024A (en)
PH (1) PH12008000260A1 (en)
PT (1) PT1508550E (en)
RU (1) RU2363660C2 (en)
TW (1) TWI355424B (en)
ZA (1) ZA200405851B (en)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10333156A1 (en) * 2003-07-22 2005-02-24 H.C. Starck Gmbh Process for the preparation of niobium suboxide
DE10347702B4 (en) * 2003-10-14 2007-03-29 H.C. Starck Gmbh Sintered body based on niobium suboxide
US8362987B2 (en) * 2004-09-27 2013-01-29 Qualcomm Mems Technologies, Inc. Method and device for manipulating color in a display
US7399335B2 (en) * 2005-03-22 2008-07-15 H.C. Starck Inc. Method of preparing primary refractory metal
US7399341B2 (en) * 2005-04-26 2008-07-15 Uop Llc Gas purification process
EP1922739A1 (en) * 2005-08-19 2008-05-21 Avx Limited Solid state capacitors and method of manufacturing them
GB0517952D0 (en) * 2005-09-02 2005-10-12 Avx Ltd Method of forming anode bodies for solid state capacitors
JP4969233B2 (en) * 2006-12-20 2012-07-04 三洋電機株式会社 Solid electrolytic capacitor and niobium anode lead manufacturing method for solid electrolytic capacitor
US7760487B2 (en) * 2007-10-22 2010-07-20 Avx Corporation Doped ceramic powder for use in forming capacitor anodes
US7768773B2 (en) * 2008-01-22 2010-08-03 Avx Corporation Sintered anode pellet etched with an organic acid for use in an electrolytic capacitor
US7852615B2 (en) 2008-01-22 2010-12-14 Avx Corporation Electrolytic capacitor anode treated with an organometallic compound
US7760488B2 (en) * 2008-01-22 2010-07-20 Avx Corporation Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor
US7826200B2 (en) * 2008-03-25 2010-11-02 Avx Corporation Electrolytic capacitor assembly containing a resettable fuse
US8094434B2 (en) 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
US8199462B2 (en) 2008-09-08 2012-06-12 Avx Corporation Solid electrolytic capacitor for embedding into a circuit board
JP5276109B2 (en) * 2008-09-09 2013-08-28 株式会社エヌディーシー Gloves and accessories
DE102008048614A1 (en) * 2008-09-23 2010-04-01 H.C. Starck Gmbh Valve metal and valve metal oxide agglomerate powder and process for their preparation
US20100085685A1 (en) * 2008-10-06 2010-04-08 Avx Corporation Capacitor Anode Formed From a Powder Containing Coarse Agglomerates and Fine Agglomerates
US8203827B2 (en) * 2009-02-20 2012-06-19 Avx Corporation Anode for a solid electrolytic capacitor containing a non-metallic surface treatment
US8405956B2 (en) * 2009-06-01 2013-03-26 Avx Corporation High voltage electrolytic capacitors
US8441777B2 (en) * 2009-05-29 2013-05-14 Avx Corporation Solid electrolytic capacitor with facedown terminations
US8279583B2 (en) * 2009-05-29 2012-10-02 Avx Corporation Anode for an electrolytic capacitor that contains individual components connected by a refractory metal paste
US8199461B2 (en) * 2009-05-29 2012-06-12 Avx Corporation Refractory metal paste for solid electrolytic capacitors
US8139344B2 (en) * 2009-09-10 2012-03-20 Avx Corporation Electrolytic capacitor assembly and method with recessed leadframe channel
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8125768B2 (en) 2009-10-23 2012-02-28 Avx Corporation External coating for a solid electrolytic capacitor
US8339771B2 (en) 2010-02-19 2012-12-25 Avx Corporation Conductive adhesive for use in a solid electrolytic capacitor
US8125769B2 (en) 2010-07-22 2012-02-28 Avx Corporation Solid electrolytic capacitor assembly with multiple cathode terminations
US8259436B2 (en) 2010-08-03 2012-09-04 Avx Corporation Mechanically robust solid electrolytic capacitor assembly
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
US8605411B2 (en) 2010-09-16 2013-12-10 Avx Corporation Abrasive blasted conductive polymer cathode for use in a wet electrolytic capacitor
US8199460B2 (en) 2010-09-27 2012-06-12 Avx Corporation Solid electrolytic capacitor with improved anode termination
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8514547B2 (en) 2010-11-01 2013-08-20 Avx Corporation Volumetrically efficient wet electrolytic capacitor
US8259435B2 (en) 2010-11-01 2012-09-04 Avx Corporation Hermetically sealed wet electrolytic capacitor
US8355242B2 (en) 2010-11-12 2013-01-15 Avx Corporation Solid electrolytic capacitor element
US8576543B2 (en) 2010-12-14 2013-11-05 Avx Corporation Solid electrolytic capacitor containing a poly(3,4-ethylenedioxythiophene) quaternary onium salt
US8493713B2 (en) 2010-12-14 2013-07-23 Avx Corporation Conductive coating for use in electrolytic capacitors
US8582278B2 (en) 2011-03-11 2013-11-12 Avx Corporation Solid electrolytic capacitor with improved mechanical stability
US8451588B2 (en) 2011-03-11 2013-05-28 Avx Corporation Solid electrolytic capacitor containing a conductive coating formed from a colloidal dispersion
US8514550B2 (en) 2011-03-11 2013-08-20 Avx Corporation Solid electrolytic capacitor containing a cathode termination with a slot for an adhesive
US8379372B2 (en) 2011-04-07 2013-02-19 Avx Corporation Housing configuration for a solid electrolytic capacitor
US9767964B2 (en) 2011-04-07 2017-09-19 Avx Corporation Multi-anode solid electrolytic capacitor assembly
US8300387B1 (en) 2011-04-07 2012-10-30 Avx Corporation Hermetically sealed electrolytic capacitor with enhanced mechanical stability
US8947857B2 (en) 2011-04-07 2015-02-03 Avx Corporation Manganese oxide capacitor for use in extreme environments
GB2498066B (en) 2011-12-20 2015-09-23 Avx Corp Wet electrolytic capacitor containing an improved anode
WO2013106659A1 (en) 2012-01-13 2013-07-18 Avx Corporation Solid electrolytic capacitor with integrated fuse assembly
DE102013101443A1 (en) 2012-03-01 2013-09-05 Avx Corporation Ultrahigh voltage solid electrolytic capacitor
US8971019B2 (en) 2012-03-16 2015-03-03 Avx Corporation Wet capacitor cathode containing an alkyl-substituted poly(3,4-ethylenedioxythiophene)
JP2013219362A (en) 2012-04-11 2013-10-24 Avx Corp Solid electrolytic capacitor with enhanced mechanical stability under extreme conditions
US9776281B2 (en) 2012-05-30 2017-10-03 Avx Corporation Notched lead wire for a solid electrolytic capacitor
JP5933397B2 (en) 2012-08-30 2016-06-08 エイヴィーエックス コーポレイション Solid electrolytic capacitor manufacturing method and solid electrolytic capacitor
KR101702790B1 (en) 2012-11-13 2017-02-06 제이엑스금속주식회사 NbO2 SINTERED BODY, SPUTTERING TARGET COMPRISING SINTERED BODY AND METHOD OF PRODUCING NbO2 SINTERED BODY
GB2512480B (en) 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
US9324503B2 (en) 2013-03-15 2016-04-26 Avx Corporation Solid electrolytic capacitor
US9240285B2 (en) 2013-04-29 2016-01-19 Avx Corporation Multi-notched anode for electrolytic capacitor
GB2514486B (en) 2013-05-13 2018-08-29 Avx Corp Solid electrolytic capacitor containing a pre-coat layer
US9472350B2 (en) 2013-05-13 2016-10-18 Avx Corporation Solid electrolytic capacitor containing a multi-layered adhesion coating
GB2517019B (en) 2013-05-13 2018-08-29 Avx Corp Solid electrolytic capacitor containing conductive polymer particles
US9236192B2 (en) 2013-08-15 2016-01-12 Avx Corporation Moisture resistant solid electrolytic capacitor assembly
US9269499B2 (en) 2013-08-22 2016-02-23 Avx Corporation Thin wire/thick wire lead assembly for electrolytic capacitor
US9916935B2 (en) 2014-11-07 2018-03-13 Avx Corporation Solid electrolytic capacitor with increased volumetric efficiency
US9620293B2 (en) 2014-11-17 2017-04-11 Avx Corporation Hermetically sealed capacitor for an implantable medical device
US9892860B2 (en) 2014-11-24 2018-02-13 Avx Corporation Capacitor with coined lead frame
US10290430B2 (en) 2014-11-24 2019-05-14 Avx Corporation Wet Electrolytic Capacitor for an Implantable Medical Device
US9837216B2 (en) 2014-12-18 2017-12-05 Avx Corporation Carrier wire for solid electrolytic capacitors
US9620294B2 (en) 2014-12-30 2017-04-11 Avx Corporation Wet electrolytic capacitor containing a recessed planar anode and a restraint
US9754730B2 (en) 2015-03-13 2017-09-05 Avx Corporation Low profile multi-anode assembly in cylindrical housing
US10297393B2 (en) 2015-03-13 2019-05-21 Avx Corporation Ultrahigh voltage capacitor assembly
US10014108B2 (en) 2015-03-13 2018-07-03 Avx Corporation Low profile multi-anode assembly
US9928963B2 (en) 2015-03-13 2018-03-27 Avx Corporation Thermally conductive encapsulant material for a capacitor assembly
US9842704B2 (en) 2015-08-04 2017-12-12 Avx Corporation Low ESR anode lead tape for a solid electrolytic capacitor
US9905368B2 (en) 2015-08-04 2018-02-27 Avx Corporation Multiple leadwires using carrier wire for low ESR electrolytic capacitors
US9545008B1 (en) 2016-03-24 2017-01-10 Avx Corporation Solid electrolytic capacitor for embedding into a circuit board
US9907176B2 (en) 2016-03-28 2018-02-27 Avx Corporation Solid electrolytic capacitor module with improved planarity
US9870869B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor
US9870868B1 (en) 2016-06-28 2018-01-16 Avx Corporation Wet electrolytic capacitor for use in a subcutaneous implantable cardioverter-defibrillator
WO2018057682A1 (en) 2016-09-22 2018-03-29 Avx Corporation Electrolytic capacitor containing a valve metal sourced from a conflict-free mine site and a method of forming thereof
US10431389B2 (en) 2016-11-14 2019-10-01 Avx Corporation Solid electrolytic capacitor for high voltage environments
DE112018004392T5 (en) 2017-09-21 2020-05-14 Avx Corporation ELECTRONIC COMPONENT CONTAINING A METAL COMPONENT OBTAINED FROM A CONFLICT-FREE MINING LOCATION, AND A METHOD FOR TRAINING IT
US11081288B1 (en) 2018-08-10 2021-08-03 Avx Corporation Solid electrolytic capacitor having a reduced anomalous charging characteristic
CN110963529B (en) * 2018-09-30 2021-12-07 中国科学院上海硅酸盐研究所 Pure-phase niobium lower-valence oxide nano powder and preparation method and application thereof
US11380492B1 (en) 2018-12-11 2022-07-05 KYOCERA AVX Components Corporation Solid electrolytic capacitor
WO2020218319A1 (en) 2019-04-25 2020-10-29 ローム株式会社 Solid electrolytic capacitor
JP7406569B2 (en) 2019-05-17 2023-12-27 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション solid electrolytic capacitor
US11756742B1 (en) 2019-12-10 2023-09-12 KYOCERA AVX Components Corporation Tantalum capacitor with improved leakage current stability at high temperatures
US11763998B1 (en) 2020-06-03 2023-09-19 KYOCERA AVX Components Corporation Solid electrolytic capacitor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180549B1 (en) * 1998-09-10 2001-01-30 The B. F. Goodrich Company Modified zeolites and methods of making thereof
US6322912B1 (en) * 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6373685B1 (en) * 1998-09-16 2002-04-16 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US20020172861A1 (en) * 2000-11-06 2002-11-21 Kimmel Jonathan L. Modified oxygen reduced valve metal oxides
US6558447B1 (en) * 1999-05-05 2003-05-06 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
US20030104923A1 (en) * 2001-05-15 2003-06-05 Showa Denko K.K. Niobium oxide powder, niobium oxide sintered body and capacitor using the sintered body
US20030170169A1 (en) * 2001-05-15 2003-09-11 Showa Denko K.K. Niobium monoxide powder,niobium monoxide sintered body using the niobium powder and capacitor using the sintered body
US20040028922A1 (en) * 2000-06-21 2004-02-12 Karlheinz Reichert Capacitor powder
US20050008564A1 (en) * 2003-02-26 2005-01-13 Reed David M. Phase formation of oxygen reduced valve metal oxides and granulation methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19831280A1 (en) * 1998-07-13 2000-01-20 Starck H C Gmbh Co Kg Acidic earth metal, specifically tantalum or niobium, powder for use, e.g., in capacitor production is produced by two-stage reduction of the pentoxide using hydrogen as the first stage reducing agent for initial suboxide formation
WO2000067936A1 (en) 1998-05-06 2000-11-16 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
US7149074B2 (en) 2001-04-19 2006-12-12 Cabot Corporation Methods of making a niobium metal oxide
EP1402079B1 (en) 2001-05-15 2014-12-03 Showa Denko K.K. Niobium sintered body and capacitor using the sintered body
CN101866754B (en) * 2001-05-15 2014-02-26 昭和电工株式会社 Capacitor electrode, capacitor, manufacturing method thereof, electronic circuit and electronic device
JP2003147403A (en) * 2001-11-14 2003-05-21 Sumitomo Metal Mining Co Ltd Niobium powder for manufacture of capacitor, and its manufacturing method
PT1505611E (en) * 2003-07-22 2012-01-12 Starck H C Gmbh Method of making capacitors
DE10333156A1 (en) * 2003-07-22 2005-02-24 H.C. Starck Gmbh Process for the preparation of niobium suboxide

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180549B1 (en) * 1998-09-10 2001-01-30 The B. F. Goodrich Company Modified zeolites and methods of making thereof
US6322912B1 (en) * 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6373685B1 (en) * 1998-09-16 2002-04-16 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6558447B1 (en) * 1999-05-05 2003-05-06 H.C. Starck, Inc. Metal powders produced by the reduction of the oxides with gaseous magnesium
US20040028922A1 (en) * 2000-06-21 2004-02-12 Karlheinz Reichert Capacitor powder
US20020172861A1 (en) * 2000-11-06 2002-11-21 Kimmel Jonathan L. Modified oxygen reduced valve metal oxides
US20030104923A1 (en) * 2001-05-15 2003-06-05 Showa Denko K.K. Niobium oxide powder, niobium oxide sintered body and capacitor using the sintered body
US20030170169A1 (en) * 2001-05-15 2003-09-11 Showa Denko K.K. Niobium monoxide powder,niobium monoxide sintered body using the niobium powder and capacitor using the sintered body
US20050008564A1 (en) * 2003-02-26 2005-01-13 Reed David M. Phase formation of oxygen reduced valve metal oxides and granulation methods

Also Published As

Publication number Publication date
TWI355424B (en) 2012-01-01
US20050019581A1 (en) 2005-01-27
CN1576234A (en) 2005-02-09
EP1508550A1 (en) 2005-02-23
JP2009143804A (en) 2009-07-02
KR101129764B1 (en) 2012-03-26
AU2004203208A1 (en) 2005-02-10
PH12008000260A1 (en) 2006-03-07
KR20050011700A (en) 2005-01-29
CN100404428C (en) 2008-07-23
JP2005041774A (en) 2005-02-17
RU2004122053A (en) 2006-01-27
DE502004009299D1 (en) 2009-05-20
IL163104A (en) 2007-10-31
CN101298340A (en) 2008-11-05
TW200516157A (en) 2005-05-16
ZA200405851B (en) 2005-09-28
JP4317091B2 (en) 2009-08-19
AU2004203208B2 (en) 2009-07-23
DE10333156A1 (en) 2005-02-24
PT1508550E (en) 2009-05-22
EP2078699A1 (en) 2009-07-15
US7341705B2 (en) 2008-03-11
RU2363660C2 (en) 2009-08-10
JP5630962B2 (en) 2014-11-26
BRPI0402986A (en) 2005-05-24
EP1508550B1 (en) 2009-04-08
MXPA04007024A (en) 2005-03-23

Similar Documents

Publication Publication Date Title
US7341705B2 (en) Process for producing niobium suboxide
KR102546515B1 (en) Anodes containing spherical powder and capacitors
US20180308641A1 (en) Method for the production of valve metal powders
AU2004203145B2 (en) Niobium suboxide powder
AU2010201394B2 (en) Process for producing capacitors
MX2007015004A (en) Capacitor.
AU2012233031A1 (en) Process for producing capacitors

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION