JP2003147403A - Niobium powder for manufacture of capacitor, and its manufacturing method - Google Patents

Niobium powder for manufacture of capacitor, and its manufacturing method

Info

Publication number
JP2003147403A
JP2003147403A JP2001348367A JP2001348367A JP2003147403A JP 2003147403 A JP2003147403 A JP 2003147403A JP 2001348367 A JP2001348367 A JP 2001348367A JP 2001348367 A JP2001348367 A JP 2001348367A JP 2003147403 A JP2003147403 A JP 2003147403A
Authority
JP
Japan
Prior art keywords
niobium
powder
niobium powder
capacitor
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001348367A
Other languages
Japanese (ja)
Inventor
Toshiyuki Osako
敏行 大迫
Tetsushi Komukai
哲史 小向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001348367A priority Critical patent/JP2003147403A/en
Publication of JP2003147403A publication Critical patent/JP2003147403A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide niobium powder having excellent characteristics and high reliability and suitable for capacitors and to provide its manufacturing method. SOLUTION: The niobium powder consists of, by mass, <=7,000 ppm oxygen, <=200 ppm of one or more kinds among alkali metals and alkaline-earth metals and the balance essentially niobium. In the manufacturing method, reduction is performed at 600 to 900 deg.C for a period of time equivalent to the time required for regulating oxygen content in the niobium powder to be manufactured to 1,000 to 7,000 ppm by mass in the final stage of a reduction step in a process for reducing niobium oxide using one or more kinds among alkali metals and alkaline-earth metals.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特性が優れ信頼性
が高いコンデンサの製造に用いて好適なニオブ粉末、お
よびその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a niobium powder suitable for manufacturing a capacitor having excellent characteristics and high reliability, and a manufacturing method thereof.

【0002】[0002]

【従来の技術】コンデンサの製造に用いるニオブ粉末
は、比表面積の大きい微粉末が、容量を大きくできるの
で好ましい。また、該コンデンサ製造用ニオブ粉末は、
焼結性をよくするために不純物としての酸素の含有量が
低いことが望まれる。
2. Description of the Related Art The niobium powder used for manufacturing a capacitor is preferably a fine powder having a large specific surface area because the capacity can be increased. Further, the niobium powder for manufacturing the capacitor is
It is desirable that the content of oxygen as an impurity is low in order to improve the sinterability.

【0003】また、ニオブ微粉末を製造するために、ア
ルカリ金属やアルカリ土類金属とニオブ酸化物やニオブ
フッ化物とを混合し、加熱して還元反応を生じさせた
後、反応生成物よりニオブ粉末を得る方法が知られてい
るが、この方法では、酸素含有量の低いニオブ粉末を製
造することはできる。しかし、過剰に上記金属を添加す
ると、これら元素がニオブ粉中に残留してしまう。残留
添加元素は金属ニオブ中に固溶していると考えられ、上
記方法で製造されたニオブ粉末から製造されるコンデン
サは、特性が不十分で信頼性が低かった。すなわち、ニ
オブ粉末焼結体表面を陽極酸化する際に誘電体層の形成
に、均質性、安定性の点で悪影響を与え、コンデンサと
したときに漏れ電流を大きくしてしまうという課題を有
していた。
Further, in order to produce fine niobium powder, an alkali metal or alkaline earth metal is mixed with niobium oxide or niobium fluoride and heated to cause a reduction reaction, and then niobium powder is produced from the reaction product. Is known, but this method can produce a niobium powder having a low oxygen content. However, if the above metals are added in excess, these elements will remain in the niobium powder. The residual additive element is considered to be solid-dissolved in niobium metal, and the capacitor manufactured from the niobium powder manufactured by the above method had insufficient characteristics and low reliability. That is, when anodizing the surface of the niobium powder sintered body, there is a problem that the formation of the dielectric layer is adversely affected in terms of homogeneity and stability, and the leakage current becomes large when used as a capacitor. Was there.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、特性
が優れ信頼性が高いコンデンサの製造に用いて好適なニ
オブ粉末、およびその製造方法を提供することにある。
具体的には、酸素量の低下により焼結性を向上させ、還
元剤に用いるアルカリ金属、アルカリ土類金属のニオブ
中の残留を低減することにより、ニオブ酸化被膜自身の
特性を向上させ、コンデンサ特性、特に漏れ電流の小さ
いコンデンサ用ニオブ粉末、およびその製造方法を提供
することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide niobium powder suitable for manufacturing a capacitor having excellent characteristics and high reliability, and a manufacturing method thereof.
Specifically, by improving the sinterability by reducing the amount of oxygen, and by reducing the residue of alkali metal or alkaline earth metal used as a reducing agent in niobium, the characteristics of the niobium oxide film itself are improved, and the capacitor is improved. It is an object of the present invention to provide niobium powder for capacitors, which has small characteristics, especially leakage current, and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明のコンデンサ製造
用ニオブ粉末は、酸素を7000質量ppm以下、並び
にアルカリ金属およびアルカリ土類金属のうちの1種以
上を200質量ppm以下含み、残部が実質的にニオブ
である。
The niobium powder for producing a capacitor of the present invention contains oxygen of 7,000 mass ppm or less and one or more kinds of alkali metals and alkaline earth metals of 200 mass ppm or less, and the balance is substantially the same. It is niobium.

【0006】また、本発明のコンデンサ製造用ニオブ粉
末の製造方法は、アルカリ金属およびアルカリ土類金属
のうちの1種以上でニオブ酸化物を還元する方法におい
て、還元工程の終期に、650℃以上、900℃以下の
温度で、製造するニオブ粉末の酸素含有量が7000質
量ppm以下、1000質量ppm以上になるのに相当
する時間、還元反応を保持することを特徴とする。これ
により、電解コンデンサとしての容量を維持できると共
に、粉末の焼結性及び酸化物誘電体層内の漏れ電流を抑
制できる。
The method for producing niobium powder for producing capacitors according to the present invention is a method of reducing niobium oxide with at least one of an alkali metal and an alkaline earth metal, and at the end of the reduction step, 650 ° C. or more. The reduction reaction is maintained at a temperature of 900 ° C. or lower for a time corresponding to the oxygen content of the niobium powder to be produced is 7,000 mass ppm or less and 1000 mass ppm or more. As a result, the capacity of the electrolytic capacitor can be maintained, and the sinterability of the powder and the leakage current in the oxide dielectric layer can be suppressed.

【0007】[0007]

【発明の実施の形態】上記課題を解決するために、本発
明者は、上記方法で得たニオブ粉末中の酸素の含有量と
アルカリ金属やアルカリ土類金属の含有量との関係を詳
しく調べた。その結果、これらの含有量の間には負の相
関があることを見出した。すなわち、上記方法で得たニ
オブ粉末は、酸素の含有量が減少すると、アルカリ金属
やアルカリ土類金属の含有量が増加しやすい。アルカリ
土類金属の中でMgを用いて実際に還元を行った場合を
例にして述べると、次のようである。すなわち、還元が
不十分で酸素含有量が10000質量ppm以上と高い
場合には、Mg含有量は10〜50質量ppmと低い。
BEST MODE FOR CARRYING OUT THE INVENTION In order to solve the above problems, the present inventor investigated in detail the relationship between the oxygen content and the alkali metal or alkaline earth metal content in the niobium powder obtained by the above method. It was As a result, they found that there was a negative correlation between these contents. That is, in the niobium powder obtained by the above method, the content of alkali metal or alkaline earth metal is likely to increase when the content of oxygen decreases. A case where Mg is actually reduced in an alkaline earth metal will be described below as an example. That is, when the reduction is insufficient and the oxygen content is as high as 10,000 mass ppm or more, the Mg content is as low as 10 to 50 mass ppm.

【0008】しかし、酸素含有量が5000ppm程度
になると、Mg含有量は200質量ppm程度に増加し
てしまう。このMgは金属ニオブ粉中に固溶していると
考えられた。
However, when the oxygen content is about 5000 ppm, the Mg content is increased to about 200 mass ppm. This Mg was considered to be a solid solution in the niobium metal powder.

【0009】このことから、次のように考え、本発明に
至った。すなわち、アルカリ金属やアルカリ土類金属
は、酸化物として金属ニオブの外部に残留するのではな
く、生成した金属ニオブ中に固溶している。そして、こ
のように固溶しているアルカリ金属やアルカリ土類金属
が、コンデンサの特性、ひいては信頼性を低下させる。
すなわち、固溶しているアルカリ金属やアルカリ土類金
属が多すぎると、ニオブ粉末焼結体表面を陽極酸化する
際に誘電体層の形成に悪影響を与え、コンデンサとした
ときに漏れ電流を大きくしてしまうと考えた。
Based on this, the present invention has been made on the basis of the following thoughts. That is, the alkali metal or the alkaline earth metal does not remain outside the metal niobium as an oxide, but forms a solid solution in the generated metal niobium. Then, the alkali metal or alkaline earth metal thus solid-dissolved deteriorates the characteristics of the capacitor and thus the reliability.
That is, if too much alkali metal or alkaline earth metal is dissolved, it adversely affects the formation of the dielectric layer when anodizing the surface of the niobium powder sinter, resulting in a large leakage current when used as a capacitor. I thought I would do it.

【0010】ニオブ粉末は、成形、焼結されて焼結体と
なる。さらに、焼結体は、陽極酸化されて、酸化物誘電
体被膜が形成される。
The niobium powder is molded and sintered into a sintered body. Further, the sintered body is anodized to form an oxide dielectric coating.

【0011】アルカリ金属やアルカリ土類金属で還元さ
れたコンデンサ製造用ニオブ粉末の酸素含有量が700
0質量ppmを超えると、ニオブ粉末の焼結性が低下す
る。ニオブ粉末の焼結が不十分であると、陽極酸化時に
均質で安定な酸化物誘電体被膜が形成されにくくなり、
ひいてはコンデンサの信頼性を十分改善することができ
ない。一方、1000質量ppmより低くなるような還
元では、アルカリ金属やアルカリ土類金属の残留量が多
くなり、コンデンサ製造用ニオブ粉末中のアルカリ金属
およびアルカリ土類金属の含有量が200質量ppmを
超えてしまい、この場合は、陽極酸化時に形成される酸
化物誘電体被膜のコンデンサ特性が低下する。すなわ
ち、漏れ電流が増加する。
The niobium powder for capacitor production reduced with an alkali metal or an alkaline earth metal has an oxygen content of 700.
When it exceeds 0 mass ppm, the sinterability of the niobium powder decreases. Insufficient sintering of niobium powder makes it difficult to form a homogeneous and stable oxide dielectric film during anodization.
Consequently, the reliability of the capacitor cannot be improved sufficiently. On the other hand, when the reduction is lower than 1000 mass ppm, the residual amount of alkali metal or alkaline earth metal increases, and the content of alkali metal or alkaline earth metal in the niobium powder for manufacturing capacitors exceeds 200 mass ppm. In this case, the capacitor characteristics of the oxide dielectric film formed during anodic oxidation deteriorate. That is, the leakage current increases.

【0012】本発明の製造方法は、上記コンデンサ製造
用ニオブ粉末を製造する方法である。 還元工程の終期
に900℃以下の温度で還元反応を保持することによ
り、特にニオブ粉末中のアルカリ金属およびアルカリ土
類金属の含有量を適量に抑制する。このように抑制する
ことができるのは、アルカリ金属およびアルカリ土類金
属のニオブ粉末中への拡散が抑制されるとともに、アル
カリ金属およびアルカリ土類金属のニオブ粉末に対する
溶解度が小さくなるためではないかと考えられる。一
方、650℃以下の温度では、還元反応が進まない。
The manufacturing method of the present invention is a method for manufacturing the above-mentioned niobium powder for manufacturing a capacitor. By holding the reduction reaction at a temperature of 900 ° C. or lower at the end of the reduction step, the content of alkali metal and alkaline earth metal in the niobium powder is suppressed to an appropriate amount. It can be suppressed in this way because the diffusion of alkali metals and alkaline earth metals into the niobium powder is suppressed and the solubility of the alkali metals and alkaline earth metals in the niobium powder is reduced. Conceivable. On the other hand, at a temperature of 650 ° C or lower, the reduction reaction does not proceed.

【0013】ニオブ粉末中の酸素の含有量は、還元工程
の終期での保持温度が上がるほど、および保持時間が長
いほど減少する傾向がある。従って、製造するニオブ粉
末の酸素含有量が7000質量ppm以下、1000質
量ppm以上になるのに相当する上記保持時間を求める
ことができる。還元工程の終期での保持時間は、1時間
以上が好ましく、2時間以上がより好ましいが、8時間
を越えるのは好ましくない。
The oxygen content in the niobium powder tends to decrease as the holding temperature at the end of the reduction step increases and as the holding time increases. Therefore, the holding time corresponding to the oxygen content of the manufactured niobium powder of 7,000 mass ppm or less and 1000 mass ppm or more can be obtained. The holding time at the end of the reduction step is preferably 1 hour or more, more preferably 2 hours or more, but not preferably more than 8 hours.

【0014】[0014]

【実施例】次に実施例を用いて本発明をさらに説明す
る。
EXAMPLES Next, the present invention will be further described with reference to examples.

【0015】[実施例1〜4]酸化ニオブ粉末100g
と金属マグネシウム片48gとをニオブ製容器に入れ、
内部を真空状態とした後アルゴン雰囲気とした。そのニ
オブ製容器ごとガス雰囲気にできる気密な電気炉にて9
50℃で1時間加熱・還元した後、次の温度で次の時間
保持して還元工程を終了させた。すなわち、実施例1は
800℃で3時間、実施例2は820℃で3時間、実施
例3は840℃で3時間、および実施例4は790℃で
6時間保持した。その後、ニオブ製容器をアルゴン気流
中で放冷した。
[Examples 1 to 4] 100 g of niobium oxide powder
And 48 g of magnesium metal pieces in a niobium container,
After the inside was evacuated, an argon atmosphere was created. 9 in an airtight electric furnace that can create a gas atmosphere with the niobium container
After heating and reducing at 50 ° C. for 1 hour, the temperature was maintained at the following temperature for the following time to complete the reduction step. That is, Example 1 was kept at 800 ° C. for 3 hours, Example 2 was kept at 820 ° C. for 3 hours, Example 3 was kept at 840 ° C. for 3 hours, and Example 4 was kept at 790 ° C. for 6 hours. Then, the niobium container was allowed to cool in an argon stream.

【0016】次に、アルゴン気流中で反応生成物をステ
ンレス容器から取り出し、11.5Nの塩酸溶液中に投
入した。そして、反応生成物を酸洗処理して、生成した
酸化マグネシウムを除去した。さらに、水洗、エタノー
ル洗浄の後に真空乾燥して、ニオブ粉末を得た。この粉
末の酸素、Mg、Ca、Naなどの含有量、および比表
面積を測定した。
Next, the reaction product was taken out of the stainless steel container in an argon stream and put into a 11.5N hydrochloric acid solution. Then, the reaction product was pickled to remove the produced magnesium oxide. Further, it was washed with water, washed with ethanol and then vacuum dried to obtain niobium powder. The contents of oxygen, Mg, Ca, Na and the like and the specific surface area of this powder were measured.

【0017】このニオブ粉末を0.5g計量し、圧粉成
形し、1300℃、1時間の真空焼結を行って多孔質焼
結体とした。この焼結体について、リン酸水溶液中10
Vの電圧で10時間の化成処理を行った。その後、35
質量%硫酸中でLCRメータ(Agilent社製42
63B型)を用いて、CV値(容量Cと化成電圧Vの積
で、電解コンデンサの特性を表す一般的指標)を測定し
た。また、エレクトロメータを用い、15Vの直流電圧
を印加して、漏れ電流を測定した。得られた結果を表1
に併せて示した。
0.5 g of this niobium powder was weighed, compacted, and vacuum sintered at 1300 ° C. for 1 hour to obtain a porous sintered body. About this sintered body, 10 in phosphoric acid aqueous solution
Chemical conversion treatment was performed at a voltage of V for 10 hours. Then 35
LCR meter (Agilent 42
63B type) was used to measure the CV value (a general index representing the characteristics of the electrolytic capacitor, which is the product of the capacitance C and the formation voltage V). In addition, a leak current was measured by applying a DC voltage of 15 V using an electrometer. The results obtained are shown in Table 1.
Are also shown.

【0018】なお、実施例1において950℃で1時間
加熱・還元したところで、還元を中止して粉末の酸素量
を分析したところ、13000ppmであった。また、
実施例4において、790℃で6時間保持したところ
で、還元を中止して粉末の酸素量を分析したところ、8
600ppmであった。
In Example 1, when the powder was heated and reduced at 950 ° C. for 1 hour, the reduction was stopped and the oxygen content of the powder was analyzed. As a result, it was 13000 ppm. Also,
In Example 4, after holding at 790 ° C. for 6 hours, reduction was stopped and the amount of oxygen in the powder was analyzed.
It was 600 ppm.

【0019】[実施例5]酸化ニオブ粉末100gと金
属カルシウム粉23gと金属マグネシウム片34gとを
ニオブ製容器に入れ、内部を真空状態とした後アルゴン
雰囲気とした。ここで、金属カルシウム粉と金属マグネ
シウム片とは、時間を前後させて酸化ニオブ粉末と反応
させることが可能なように、別々の小容器に入れた。そ
して、まず、上記ニオブ製容器ごと電気炉にて1200
℃に加熱して、酸化ニオブ粉末と金属カルシウム粉とを
1時間反応させた。次に、この反応生成物と金属マグネ
シウムとを900℃で1時間反応させた。さらに、82
0℃で3時間保持して還元工程を終了させた。その後、
ニオブ製容器をアルゴン気流中で放冷した。
Example 5 100 g of niobium oxide powder, 23 g of metallic calcium powder, and 34 g of metallic magnesium piece were placed in a niobium container, and the inside was evacuated to an argon atmosphere. Here, the metallic calcium powder and the metallic magnesium piece were put in separate small containers so that they could be reacted with the niobium oxide powder at different times. Then, first, the whole of the niobium container is heated to 1200 in an electric furnace.
The niobium oxide powder and the calcium metal powder were reacted with each other for 1 hour by heating to ° C. Next, this reaction product and metallic magnesium were reacted at 900 ° C. for 1 hour. In addition, 82
The reduction step was completed by holding at 0 ° C for 3 hours. afterwards,
The niobium container was allowed to cool in an argon stream.

【0020】次に、アルゴン気流中で反応生成物をステ
ンレス容器から取り出し、塩酸溶液中に投入すること以
後は、実施例1と同様に試験した。得られた結果を表1
に併せて示した。
Next, the reaction product was taken out of the stainless steel container in an argon stream and charged in a hydrochloric acid solution. Then, the same test as in Example 1 was performed. The results obtained are shown in Table 1.
Are also shown.

【0021】[0021]

【表1】 [Table 1]

【0022】実施例1〜5のニオブ粉末はいずれも、酸
素含有量が7000質量ppm以下であり、アルカリ金
属およびアルカリ土類金属の含有量が200ppm以下
である。そして、これらの粉末から作製した焼結体はい
ずれも、CV値が高く、漏れ電流が小さい。なお、実施
例1〜3は還元工程の終期での保持温度のみが互いに相
違する例であるが、これらの例によれば、還元工程の終
期での保持温度が高く(低く)なるとともに、酸素含有
量が減少(増大)し、Mg含有量が増大(減少)してい
る。
The niobium powders of Examples 1 to 5 all have an oxygen content of 7,000 mass ppm or less and an alkali metal or alkaline earth metal content of 200 ppm or less. The sintered bodies produced from these powders all have high CV values and small leakage currents. Although Examples 1 to 3 are examples in which only the holding temperature at the end of the reduction step is different from each other, according to these examples, the holding temperature at the end of the reduction step becomes higher (lower) and oxygen The content is decreasing (increasing), and the Mg content is increasing (decreasing).

【0023】[比較例1〜4]酸化ニオブ粉末100g
と金属マグネシウム片48gとをステンレス容器に入
れ、内部を真空状態とした後アルゴン雰囲気とした。そ
のステンレス容器ごと電気炉にて900℃で3時間加熱
した後、次の温度で次の時間保持して還元工程を終了さ
せた。すなわち、比較例1は600℃で2時間、比較例
2は820℃で0.5時間、比較例3は980℃で3時
間、および比較例4は1020℃で3時間保持した。そ
の後、ステンレス容器をアルゴン気流中で放冷した。
[Comparative Examples 1 to 4] 100 g of niobium oxide powder
And 48 g of metal magnesium pieces were placed in a stainless steel container, and the inside was evacuated to form an argon atmosphere. The stainless container was heated in an electric furnace at 900 ° C. for 3 hours, and then maintained at the following temperature for the following time to complete the reduction process. That is, Comparative Example 1 was kept at 600 ° C. for 2 hours, Comparative Example 2 was kept at 820 ° C. for 0.5 hours, Comparative Example 3 was kept at 980 ° C. for 3 hours, and Comparative Example 4 was kept at 1020 ° C. for 3 hours. Then, the stainless steel container was allowed to cool in an argon stream.

【0024】次に、アルゴン気流中で反応生成物をステ
ンレス容器から取り出し、塩酸溶液中に投入すること以
後は、実施例1と同様に試験した。得られた結果を表2
に併せて示した。
Next, the reaction product was taken out from the stainless steel container in an argon stream and charged in a hydrochloric acid solution. Thereafter, the same test as in Example 1 was conducted. Table 2 shows the obtained results.
Are also shown.

【0025】[0025]

【表2】 [Table 2]

【0026】比較例1、2のニオブ粉末は、漏れ電流が
100nA以上と、実施例に比べて著しく大きい。これ
は、保持時間つまり還元が不十分なため、アルカリ金属
およびアルカリ土類金属の含有量は低いものの、酸素含
有量が7000質量ppmより高くなったからである。
The niobium powders of Comparative Examples 1 and 2 have a leakage current of 100 nA or more, which is significantly larger than that of the Examples. This is because the retention time, that is, the reduction was insufficient, so that the oxygen content was higher than 7,000 mass ppm although the content of the alkali metal and the alkaline earth metal was low.

【0027】また、比較例3、4のニオブ粉末は、CV
値が低く、漏れ電流も著しく大きい。これは、還元工程
の終期での保持温度を900℃より高く上げすぎたた
め、酸素含有量は低いものの、アルカリ金属およびアル
カリ土類金属の含有量が200ppmより高くなったか
らである。
The niobium powders of Comparative Examples 3 and 4 were CV.
The value is low and the leakage current is extremely high. This is because the holding temperature at the end of the reduction step was raised above 900 ° C. too much, so that the oxygen content was low, but the alkali metal and alkaline earth metal contents were higher than 200 ppm.

【0028】[比較例5]酸化ニオブ粉末100gと金
属マグネシウム片48gとをニオブ製容器に入れ、内部
を真空状態とした後アルゴン雰囲気とした。そのニオブ
製容器ごと電気炉にて950℃で1時間加熱した後、7
90℃で3時間保持して還元工程を終了させた。その
後、ステンレス容器をアルゴン気流中で放冷した。
[Comparative Example 5] 100 g of niobium oxide powder and 48 g of magnesium metal pieces were placed in a niobium container, and the interior was evacuated to an argon atmosphere. After heating the entire niobium container in an electric furnace at 950 ° C. for 1 hour,
The reduction step was completed by holding at 90 ° C for 3 hours. Then, the stainless steel container was allowed to cool in an argon stream.

【0029】次に、アルゴン気流中で反応生成物をニオ
ブ製容器から取り出し、塩酸溶液中に投入すること以後
は、実施例1と同様にしてニオブ粉末を得た。そして、
この粉末の酸素含有量を測定した。その結果、約860
0質量ppmであった。
Then, the reaction product was taken out from the niobium container in an argon stream and charged into a hydrochloric acid solution, and thereafter niobium powder was obtained in the same manner as in Example 1. And
The oxygen content of this powder was measured. As a result, about 860
It was 0 mass ppm.

【0030】[従来例1]酸化ニオブ粉末100gと金
属マグネシウム片48gとをステンレス容器に入れ、内
部を真空状態とした後アルゴン雰囲気とした。そのステ
ンレス容器ごと電気炉にて950℃で3時間加熱した。
その後、ステンレス容器をアルゴン気流中で放冷した。
[Prior Art Example 1] 100 g of niobium oxide powder and 48 g of magnesium metal pieces were placed in a stainless steel container, the inside was evacuated, and an argon atmosphere was created. The stainless container was heated in an electric furnace at 950 ° C. for 3 hours.
Then, the stainless steel container was allowed to cool in an argon stream.

【0031】次に、アルゴン気流中で反応生成物をステ
ンレス容器から取り出し、11.5Nの塩酸溶液中に投
入した。そして、反応生成物を酸洗処理して、生成した
酸化マグネシウムを除去した。さらに、水洗、エタノー
ル洗浄の後に真空乾燥して、ニオブ粉末を得た。この粉
末の酸素、マグネシウム含有量を測定した。その結果、
酸素5500質量ppm、Mg240質量ppmであっ
た。
Next, the reaction product was taken out of the stainless steel container in an argon stream and put into a 11.5N hydrochloric acid solution. Then, the reaction product was pickled to remove the produced magnesium oxide. Further, it was washed with water, washed with ethanol and then vacuum dried to obtain niobium powder. The oxygen and magnesium contents of this powder were measured. as a result,
Oxygen was 5500 mass ppm and Mg was 240 mass ppm.

【0032】[0032]

【発明の効果】本発明によれば、特性が高く信頼性が高
いコンデンサの製造に用いて好適なニオブ粉末、および
その製造方法を提供することができる。
According to the present invention, it is possible to provide a niobium powder suitable for manufacturing a capacitor having high characteristics and high reliability, and a manufacturing method thereof.

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K017 AA01 BA07 BB10 BB11 BB18 DA08 EH01 EH07 FB03 FB04 4K018 AA40 AB01 BD10 KA39    ─────────────────────────────────────────────────── ─── Continued front page    F term (reference) 4K017 AA01 BA07 BB10 BB11 BB18                       DA08 EH01 EH07 FB03 FB04                 4K018 AA40 AB01 BD10 KA39

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 酸素を7000質量ppm以下、並びに
アルカリ金属およびアルカリ土類金属のうちの1種以上
を200質量ppm以下含み、残部が実質的にニオブで
あるコンデンサ製造用ニオブ粉末。
1. A niobium powder for producing a capacitor, which contains 7,000 mass ppm or less of oxygen and 200 mass ppm or less of one or more kinds of an alkali metal and an alkaline earth metal, and the balance is substantially niobium.
【請求項2】 アルカリ金属およびアルカリ土類金属の
うちの1種以上でニオブ酸化物を還元する方法におい
て、還元工程の終期に、650℃以上、900℃以下の
温度で、製造するニオブ粉末の酸素含有量が7000質
量ppm以下、1000質量ppm以上になるのに相当
する時間、還元反応を保持することを特徴とするコンデ
ンサ製造用ニオブ粉末の製造方法。
2. A method of reducing niobium oxide with at least one of an alkali metal and an alkaline earth metal, wherein the niobium powder produced at a temperature of 650 ° C. or higher and 900 ° C. or lower is used at the end of the reduction step. A method for producing niobium powder for producing a capacitor, which comprises holding the reduction reaction for a time corresponding to an oxygen content of 7,000 mass ppm or less and 1000 mass ppm or more.
JP2001348367A 2001-11-14 2001-11-14 Niobium powder for manufacture of capacitor, and its manufacturing method Pending JP2003147403A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001348367A JP2003147403A (en) 2001-11-14 2001-11-14 Niobium powder for manufacture of capacitor, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001348367A JP2003147403A (en) 2001-11-14 2001-11-14 Niobium powder for manufacture of capacitor, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2003147403A true JP2003147403A (en) 2003-05-21

Family

ID=19161195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001348367A Pending JP2003147403A (en) 2001-11-14 2001-11-14 Niobium powder for manufacture of capacitor, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2003147403A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100684416B1 (en) 2005-07-29 2007-02-16 한국원자력연구소 A method of producing tantalum or Niobium powder for capacitor
KR101129764B1 (en) * 2003-07-22 2012-03-26 하.체. 스타르크 게엠베하 Process for Producing Niobium Suboxide

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101129764B1 (en) * 2003-07-22 2012-03-26 하.체. 스타르크 게엠베하 Process for Producing Niobium Suboxide
KR100684416B1 (en) 2005-07-29 2007-02-16 한국원자력연구소 A method of producing tantalum or Niobium powder for capacitor

Similar Documents

Publication Publication Date Title
RU2230031C2 (en) Method for partial metal oxide reduction and metal oxide with lowered oxyg en content
US6391275B1 (en) Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
RU2363660C2 (en) Niobium suboxide, method of its preparation and capacitor containing niobium suboxide as anode
KR100850386B1 (en) Tantalum and Tantalum Nitride Powder Mixtures for Electrolytic Capacitors Substrates, Capacitor Using said Powder Mixtures and Their Preparation Method
CZ315994A3 (en) Process for producing tantallum powder of high quality and a high-capacitance electrode with low leads produced from this powder
RU2253919C2 (en) Capacitor powder
US6927967B2 (en) Capacitor substrates made of refractory metal nitrides
WO2005099935A1 (en) Tantalum powder and solid electrolytic capacitor utilizing the same
JP2003217980A (en) Nb SOLID ELECTROLYTIC CAPACITOR AND MANUFACTURING METHOD THEREFOR
EP2866238B1 (en) Capacitor production method
JP2003147403A (en) Niobium powder for manufacture of capacitor, and its manufacturing method
AU2005281918A1 (en) Deoxidisation of valve metal powders
US20040107797A1 (en) Niobium powder for capacitor, sintered body thereof and capacitor using the sintered body
JP5844953B2 (en) Anode body for tungsten capacitors
JP2007506634A (en) Preparation of niobium oxide powder for use in capacitors
TWI266661B (en) Niobium powder and solid electrolytic capacitor
JP2003073702A (en) Niobium powder and manufacturing method therefor
JP2003342603A (en) Niobium powder and solid electrolytic capacitor
JP2004360043A (en) Method for producing niobium and/or tantalum powder
JP5779741B1 (en) Method for producing anode body for tungsten capacitor
JP2008198984A (en) Niobium solid electrolytic capacitor and its manufacturing method
JP2004035989A (en) Niobium powder, anode for solid electrolytic capacitor and solid electrolytic capacitor
JPH11111575A (en) Manufacture of porous anode in solid electrolytic capacitor
WO2014142359A1 (en) Method to passivate sintered anodes having a wire