US20090215189A1 - Sensor of species including toxins and chemical warfare agents - Google Patents
Sensor of species including toxins and chemical warfare agents Download PDFInfo
- Publication number
- US20090215189A1 US20090215189A1 US11/588,881 US58888106A US2009215189A1 US 20090215189 A1 US20090215189 A1 US 20090215189A1 US 58888106 A US58888106 A US 58888106A US 2009215189 A1 US2009215189 A1 US 2009215189A1
- Authority
- US
- United States
- Prior art keywords
- emission
- analyte
- wavelength
- metal complex
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002575 chemical warfare agent Substances 0.000 title abstract description 4
- 239000003053 toxin Substances 0.000 title abstract description 3
- 231100000765 toxin Toxicity 0.000 title abstract description 3
- 108700012359 toxins Proteins 0.000 title abstract description 3
- 239000012491 analyte Substances 0.000 claims abstract description 111
- 238000000034 method Methods 0.000 claims abstract description 111
- 239000000463 material Substances 0.000 claims abstract description 92
- 229910052751 metal Inorganic materials 0.000 claims abstract description 81
- 239000002184 metal Substances 0.000 claims abstract description 67
- 230000008859 change Effects 0.000 claims abstract description 55
- 238000006464 oxidative addition reaction Methods 0.000 claims abstract description 38
- 150000001875 compounds Chemical class 0.000 claims abstract description 21
- 230000003287 optical effect Effects 0.000 claims abstract description 10
- 150000004696 coordination complex Chemical class 0.000 claims description 117
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 84
- 239000003446 ligand Substances 0.000 claims description 77
- 238000004020 luminiscence type Methods 0.000 claims description 75
- -1 cyanogen halide Chemical class 0.000 claims description 68
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical group [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 59
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical group BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 claims description 39
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 28
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 27
- 125000003118 aryl group Chemical group 0.000 claims description 19
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical group [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 18
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 claims description 17
- 229910052697 platinum Inorganic materials 0.000 claims description 17
- QLPKTAFPRRIFQX-UHFFFAOYSA-N 2-thiophen-2-ylpyridine Chemical compound C1=CSC(C=2N=CC=CC=2)=C1 QLPKTAFPRRIFQX-UHFFFAOYSA-N 0.000 claims description 16
- 229920000642 polymer Polymers 0.000 claims description 15
- 125000001072 heteroaryl group Chemical group 0.000 claims description 13
- JMANVNJQNLATNU-UHFFFAOYSA-N glycolonitrile Natural products N#CC#N JMANVNJQNLATNU-UHFFFAOYSA-N 0.000 claims description 11
- 230000003993 interaction Effects 0.000 claims description 11
- PJRGDKFLFAYRBV-UHFFFAOYSA-N 2-phenylthiophene Chemical compound C1=CSC(C=2C=CC=CC=2)=C1 PJRGDKFLFAYRBV-UHFFFAOYSA-N 0.000 claims description 10
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 10
- WZJYKHNJTSNBHV-UHFFFAOYSA-N benzo[h]quinoline Chemical compound C1=CN=C2C3=CC=CC=C3C=CC2=C1 WZJYKHNJTSNBHV-UHFFFAOYSA-N 0.000 claims description 10
- 229910052741 iridium Inorganic materials 0.000 claims description 9
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical group [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052763 palladium Chemical group 0.000 claims description 9
- 150000001350 alkyl halides Chemical class 0.000 claims description 7
- 230000002140 halogenating effect Effects 0.000 claims description 7
- RDHPKYGYEGBMSE-UHFFFAOYSA-N bromoethane Chemical compound CCBr RDHPKYGYEGBMSE-UHFFFAOYSA-N 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 6
- AGEZXYOZHKGVCM-UHFFFAOYSA-N benzyl bromide Chemical compound BrCC1=CC=CC=C1 AGEZXYOZHKGVCM-UHFFFAOYSA-N 0.000 claims description 5
- QPJDMGCKMHUXFD-UHFFFAOYSA-N cyanogen chloride Chemical compound ClC#N QPJDMGCKMHUXFD-UHFFFAOYSA-N 0.000 claims description 5
- 230000005670 electromagnetic radiation Effects 0.000 claims description 5
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 claims description 4
- 230000015572 biosynthetic process Effects 0.000 claims description 4
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 claims description 4
- 230000002194 synthesizing effect Effects 0.000 claims description 4
- WITMXBRCQWOZPX-UHFFFAOYSA-N 1-phenylpyrazole Chemical compound C1=CC=NN1C1=CC=CC=C1 WITMXBRCQWOZPX-UHFFFAOYSA-N 0.000 claims description 3
- TVNDPZYOQCCHTJ-UHFFFAOYSA-N 5-thiophen-2-yl-1h-pyrazole Chemical compound C1=CSC(C=2NN=CC=2)=C1 TVNDPZYOQCCHTJ-UHFFFAOYSA-N 0.000 claims description 3
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 claims description 2
- 229920002261 Corn starch Polymers 0.000 claims description 2
- 239000005062 Polybutadiene Substances 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004743 Polypropylene Substances 0.000 claims description 2
- 229910052794 bromium Inorganic materials 0.000 claims description 2
- 229920002678 cellulose Polymers 0.000 claims description 2
- 239000001913 cellulose Substances 0.000 claims description 2
- 239000008120 corn starch Substances 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 229920000075 poly(4-vinylpyridine) Polymers 0.000 claims description 2
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 2
- 229920002401 polyacrylamide Polymers 0.000 claims description 2
- 229920002857 polybutadiene Polymers 0.000 claims description 2
- 239000004417 polycarbonate Substances 0.000 claims description 2
- 229920000515 polycarbonate Polymers 0.000 claims description 2
- 229920000728 polyester Polymers 0.000 claims description 2
- 229920000570 polyether Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920001155 polypropylene Polymers 0.000 claims description 2
- 229920001296 polysiloxane Polymers 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 239000004814 polyurethane Substances 0.000 claims description 2
- 229920002689 polyvinyl acetate Polymers 0.000 claims description 2
- 239000011118 polyvinyl acetate Substances 0.000 claims description 2
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 2
- 239000004800 polyvinyl chloride Substances 0.000 claims description 2
- 239000004593 Epoxy Substances 0.000 claims 1
- 239000004677 Nylon Substances 0.000 claims 1
- 239000004721 Polyphenylene oxide Substances 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 38
- 238000001514 detection method Methods 0.000 abstract description 8
- 239000000126 substance Substances 0.000 abstract description 8
- 230000035945 sensitivity Effects 0.000 abstract description 6
- 230000008901 benefit Effects 0.000 abstract description 3
- 238000012544 monitoring process Methods 0.000 abstract description 3
- 230000009141 biological interaction Effects 0.000 abstract description 2
- 239000002360 explosive Substances 0.000 abstract description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 54
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 54
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 48
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 46
- 239000000243 solution Substances 0.000 description 42
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 33
- 241000894007 species Species 0.000 description 25
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 21
- 238000000295 emission spectrum Methods 0.000 description 21
- 239000010408 film Substances 0.000 description 21
- 239000012530 fluid Substances 0.000 description 19
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 18
- 239000000741 silica gel Substances 0.000 description 16
- 229910002027 silica gel Inorganic materials 0.000 description 16
- 238000005160 1H NMR spectroscopy Methods 0.000 description 14
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 13
- 230000007246 mechanism Effects 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 9
- 239000013078 crystal Substances 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 125000001424 substituent group Chemical group 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- 125000004429 atom Chemical group 0.000 description 8
- 229960004132 diethyl ether Drugs 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- NFHFRUOZVGFOOS-UHFFFAOYSA-N Pd(PPh3)4 Substances [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 7
- 229910019032 PtCl2 Inorganic materials 0.000 description 7
- 230000005281 excited state Effects 0.000 description 7
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 7
- 238000005259 measurement Methods 0.000 description 7
- 239000002243 precursor Substances 0.000 description 7
- 238000012546 transfer Methods 0.000 description 7
- 238000002371 ultraviolet--visible spectrum Methods 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- VQGHOUODWALEFC-UHFFFAOYSA-N 2-phenylpyridine Chemical compound C1=CC=CC=C1C1=CC=CC=N1 VQGHOUODWALEFC-UHFFFAOYSA-N 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000004587 chromatography analysis Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 229910001385 heavy metal Inorganic materials 0.000 description 6
- 125000005842 heteroatom Chemical group 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- IMRWILPUOVGIMU-UHFFFAOYSA-N 2-bromopyridine Chemical compound BrC1=CC=CC=N1 IMRWILPUOVGIMU-UHFFFAOYSA-N 0.000 description 5
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 150000002894 organic compounds Chemical class 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 229910052723 transition metal Inorganic materials 0.000 description 5
- 150000003624 transition metals Chemical group 0.000 description 5
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 4
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- BETXQXQHZLMWEG-UHFFFAOYSA-N C.C.CC.CC(C)C.CC(C)C Chemical compound C.C.CC.CC(C)C.CC(C)C BETXQXQHZLMWEG-UHFFFAOYSA-N 0.000 description 4
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 4
- 0 Nc1*(*(c2c-3[n]cc2)(c2c(-c4ccc5)[n]cc2)*4c5N)c-3ccc1 Chemical compound Nc1*(*(c2c-3[n]cc2)(c2c(-c4ccc5)[n]cc2)*4c5N)c-3ccc1 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 238000002835 absorbance Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000000539 dimer Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000005284 excitation Effects 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 229910052736 halogen Inorganic materials 0.000 description 4
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 230000003647 oxidation Effects 0.000 description 4
- 238000007254 oxidation reaction Methods 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 4
- 238000006862 quantum yield reaction Methods 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 230000003595 spectral effect Effects 0.000 description 4
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 238000006138 lithiation reaction Methods 0.000 description 3
- UBJFKNSINUCEAL-UHFFFAOYSA-N lithium;2-methylpropane Chemical compound [Li+].C[C-](C)C UBJFKNSINUCEAL-UHFFFAOYSA-N 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 125000006413 ring segment Chemical group 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- UKTDFYOZPFNQOQ-UHFFFAOYSA-N tributyl(thiophen-2-yl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CC=CS1 UKTDFYOZPFNQOQ-UHFFFAOYSA-N 0.000 description 3
- SOHDPICLICFSOP-UHFFFAOYSA-N 2-bromo-6-methylpyridine Chemical compound CC1=CC=CC(Br)=N1 SOHDPICLICFSOP-UHFFFAOYSA-N 0.000 description 2
- PHKRQYLYOWOUDX-UHFFFAOYSA-N C.C.CC Chemical compound C.C.CC PHKRQYLYOWOUDX-UHFFFAOYSA-N 0.000 description 2
- LUXDJJZIRZNCSH-UHFFFAOYSA-N C1=CC=N2C(=C1)C1=C(C3=C(C=CC=C3)S1)[Pt]21C2=C(SC3=C2C=CC=C3)C2=C/C=C/C=N\21 Chemical compound C1=CC=N2C(=C1)C1=C(C3=C(C=CC=C3)S1)[Pt]21C2=C(SC3=C2C=CC=C3)C2=C/C=C/C=N\21 LUXDJJZIRZNCSH-UHFFFAOYSA-N 0.000 description 2
- YZTGKEGEPIPXPO-UHFFFAOYSA-N C1=CC=N2C(=C1)C1=C(C=CC=C1)[Pt]21C2=C(SC=C2)C2=C/C=C/C=N\21 Chemical compound C1=CC=N2C(=C1)C1=C(C=CC=C1)[Pt]21C2=C(SC=C2)C2=C/C=C/C=N\21 YZTGKEGEPIPXPO-UHFFFAOYSA-N 0.000 description 2
- BDYYZQJVZFYXLH-UHFFFAOYSA-N CC.CC(C)C.CC(C)C Chemical compound CC.CC(C)C.CC(C)C BDYYZQJVZFYXLH-UHFFFAOYSA-N 0.000 description 2
- IJQLNFDNQMPKCT-UHFFFAOYSA-N CC1=CC2=C(S1)C1=CC=CC=N1[Pt]21C2=C(SC(C)=C2)C2=CC=CC=N21 Chemical compound CC1=CC2=C(S1)C1=CC=CC=N1[Pt]21C2=C(SC(C)=C2)C2=CC=CC=N21 IJQLNFDNQMPKCT-UHFFFAOYSA-N 0.000 description 2
- GGMDWNNGZARHAH-UHFFFAOYSA-N CC1=CC=C2C3=C(C=CS3)[Pt]3(C4=C(SC=C4)C4=CC=C(C)C=N43)N2=C1 Chemical compound CC1=CC=C2C3=C(C=CS3)[Pt]3(C4=C(SC=C4)C4=CC=C(C)C=N43)N2=C1 GGMDWNNGZARHAH-UHFFFAOYSA-N 0.000 description 2
- VRHYVXKDEWCMEP-UHFFFAOYSA-N CC1=CC=N2C(=C1)C1=C(C=CS1)[Pt]21C2=C(SC=C2)C2=CC(C)=CC=N21 Chemical compound CC1=CC=N2C(=C1)C1=C(C=CS1)[Pt]21C2=C(SC=C2)C2=CC(C)=CC=N21 VRHYVXKDEWCMEP-UHFFFAOYSA-N 0.000 description 2
- ZVJBYRJKOIMZDB-UHFFFAOYSA-N CC1=N2C(=CC=C1)C1=C(C=CS1)[Pt]21C2=C(SC=C2)C2=CC=CC(C)=N21 Chemical compound CC1=N2C(=CC=C1)C1=C(C=CS1)[Pt]21C2=C(SC=C2)C2=CC=CC(C)=N21 ZVJBYRJKOIMZDB-UHFFFAOYSA-N 0.000 description 2
- JWSFWWNTLSSLRU-UHFFFAOYSA-N COC1=CC2=C(S1)C1=CC=CC=N1[Pt]21C2=C(SC(C)=C2)C2=CC=CC=N21 Chemical compound COC1=CC2=C(S1)C1=CC=CC=N1[Pt]21C2=C(SC(C)=C2)C2=CC=CC=N21 JWSFWWNTLSSLRU-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- 238000006069 Suzuki reaction reaction Methods 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000001994 activation Methods 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- YNCYPMUJDDXIRH-UHFFFAOYSA-N benzo[b]thiophene-2-boronic acid Chemical compound C1=CC=C2SC(B(O)O)=CC2=C1 YNCYPMUJDDXIRH-UHFFFAOYSA-N 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- QARVLSVVCXYDNA-UHFFFAOYSA-N bromobenzene Chemical compound BrC1=CC=CC=C1 QARVLSVVCXYDNA-UHFFFAOYSA-N 0.000 description 2
- 125000002837 carbocyclic group Chemical group 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 150000001793 charged compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- LJSQFQKUNVCTIA-UHFFFAOYSA-N diethyl sulfide Chemical compound CCSCC LJSQFQKUNVCTIA-UHFFFAOYSA-N 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- LELOWRISYMNNSU-UHFFFAOYSA-N hydrogen cyanide Chemical compound N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- BRMYZIKAHFEUFJ-UHFFFAOYSA-L mercury diacetate Chemical compound CC(=O)O[Hg]OC(C)=O BRMYZIKAHFEUFJ-UHFFFAOYSA-L 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000001296 phosphorescence spectrum Methods 0.000 description 2
- 150000003057 platinum Chemical class 0.000 description 2
- HRGDZIGMBDGFTC-UHFFFAOYSA-N platinum(2+) Chemical class [Pt+2] HRGDZIGMBDGFTC-UHFFFAOYSA-N 0.000 description 2
- NDBYXKQCPYUOMI-UHFFFAOYSA-N platinum(4+) Chemical class [Pt+4] NDBYXKQCPYUOMI-UHFFFAOYSA-N 0.000 description 2
- 239000002798 polar solvent Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000019491 signal transduction Effects 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- 238000001429 visible spectrum Methods 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- LSZMVESSGLHDJE-UHFFFAOYSA-N 2-bromo-4-methylpyridine Chemical compound CC1=CC=NC(Br)=C1 LSZMVESSGLHDJE-UHFFFAOYSA-N 0.000 description 1
- YWNJQQNBJQUKME-UHFFFAOYSA-N 2-bromo-5-methylpyridine Chemical compound CC1=CC=C(Br)N=C1 YWNJQQNBJQUKME-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- BOUBUFOFBHNEAP-UHFFFAOYSA-N BCC Chemical compound BCC BOUBUFOFBHNEAP-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N CC Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- 229910020427 K2PtCl4 Inorganic materials 0.000 description 1
- 239000007832 Na2SO4 Substances 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- CZPWVGJYEJSRLH-UHFFFAOYSA-N Pyrimidine Chemical compound C1=CN=CN=C1 CZPWVGJYEJSRLH-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 238000004639 Schlenk technique Methods 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 238000006619 Stille reaction Methods 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 125000002015 acyclic group Chemical group 0.000 description 1
- 125000005354 acylalkyl group Chemical group 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000004171 alkoxy aryl group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000000278 alkyl amino alkyl group Chemical group 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 1
- 125000004414 alkyl thio group Chemical group 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 125000001691 aryl alkyl amino group Chemical group 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000001769 aryl amino group Chemical group 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- DLGYNVMUCSTYDQ-UHFFFAOYSA-N azane;pyridine Chemical compound N.C1=CC=NC=C1 DLGYNVMUCSTYDQ-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 230000008033 biological extinction Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- ZADPBFCGQRWHPN-UHFFFAOYSA-N boronic acid Chemical compound OBO ZADPBFCGQRWHPN-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000009920 chelation Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 238000010668 complexation reaction Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229920006037 cross link polymer Polymers 0.000 description 1
- WPBXOELOQKLBDF-UHFFFAOYSA-N cyanogen iodide Chemical compound IC#N WPBXOELOQKLBDF-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000392 cycloalkenyl group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000009849 deactivation Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002050 diffraction method Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000012039 electrophile Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000002189 fluorescence spectrum Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- JVZRCNQLWOELDU-UHFFFAOYSA-N gamma-Phenylpyridine Natural products C1=CC=CC=C1C1=CC=NC=C1 JVZRCNQLWOELDU-UHFFFAOYSA-N 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 125000005843 halogen group Chemical group 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 125000004446 heteroarylalkyl group Chemical group 0.000 description 1
- 125000005553 heteroaryloxy group Chemical group 0.000 description 1
- 125000000592 heterocycloalkyl group Chemical group 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229940030980 inova Drugs 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- DLEDOFVPSDKWEF-UHFFFAOYSA-N lithium butane Chemical compound [Li+].CCC[CH2-] DLEDOFVPSDKWEF-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000001819 mass spectrum Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 238000006263 metalation reaction Methods 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000324 molecular mechanic Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- MZRVEZGGRBJDDB-UHFFFAOYSA-N n-Butyllithium Substances [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000010651 palladium-catalyzed cross coupling reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 238000004735 phosphorescence spectroscopy Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000036278 prepulse Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 230000008521 reorganization Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 238000007725 thermal activation Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- ARYHTUPFQTUBBG-UHFFFAOYSA-N thiophen-2-ylboronic acid Chemical compound OB(O)C1=CC=CS1 ARYHTUPFQTUBBG-UHFFFAOYSA-N 0.000 description 1
- 150000003577 thiophenes Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- AOYUPZDCHAYHRL-UHFFFAOYSA-N tributyl-(5-methoxythiophen-2-yl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CC=C(OC)S1 AOYUPZDCHAYHRL-UHFFFAOYSA-N 0.000 description 1
- GOFOMJMAFIFSDO-UHFFFAOYSA-N tributyl-(5-methylthiophen-2-yl)stannane Chemical compound CCCC[Sn](CCCC)(CCCC)C1=CC=C(C)S1 GOFOMJMAFIFSDO-UHFFFAOYSA-N 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/76—Chemiluminescence; Bioluminescence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0086—Platinum compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0036—General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
- G01N33/0057—Warfare agents or explosives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1007—Non-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1003—Carbocyclic compounds
- C09K2211/1011—Condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1029—Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
- C09K2211/1092—Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/18—Metal complexes
- C09K2211/185—Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/061—Sources
- G01N2201/06113—Coherent sources; lasers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/17—Nitrogen containing
- Y10T436/172307—Cyanide or isocyanide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/19—Halogen containing
- Y10T436/196666—Carbon containing compound [e.g., vinylchloride, etc.]
Definitions
- the present invention relates to luminescent materials, including metal complexes, and related methods.
- Phosphorescent, heavy metal complexes have been shown to form triplet state excitons upon electron-hole recombination.
- the phosphors may harness the energy of such triplet excitons and convert them into useful light output, which can often be more efficient then fluorescence-based output.
- many heavy metal complexes have been used in phosphorescence-based organic light emitting devices (OLEDs).
- OLEDs organic light emitting devices
- phosphorescence-based organic light emitting devices Among the most popular classes of heavy metal complexes used in phosphorescent OLEDs are those that are cyclometallated with bidentate ligands, such as 2-phenylpyridine.
- these complexes are often highly emissive in solution due to the large ligand field induced by the metal-carbon bond, which raises the energy of the non-emissive d-d metal centered transitions above the triplet energy of the cyclometalated ligand.
- the presence of the heavy metal can serve to increase the intersystem crossing rate through spin-orbit coupling and reduce the forbidden character of emission from the triplet state of the ligand.
- these complexes display ligand-centered based phosphorescence ( 3 LC).
- the structures of the ligands can be varied to enhance emission intensity and color purity.
- the present invention provides methods for determination of an analyte comprising exposing a metal complex having a luminescence emission to a sample suspected of containing an analyte, wherein the analyte, if present, interacts with the metal complex via an oxidative addition reaction to produce a change in the luminescence emission of the metal complex; and determining the change in luminescence emission of the metal complex, thereby determining the analyte.
- the present invention also provides methods for determination of an analyte comprising exposing a metal complex having a luminescence emission to a sample suspected of containing an analyte, wherein the analyte, if present, interacts with the metal complex to produce a change in the luminescence emission of the metal complex, wherein the metal complex has the structure,
- M is a metal
- L 1 and L 2 can be the same or different and, when bound to the metal, L 1 and L 2 are bidentate cyclometallated ligands; and determining the change in luminescence emission of the complex, thereby determining the analyte.
- the present invention also relates to sensors comprising a metal complex having the structure
- M is a metal
- L 1 and L 2 can be the same or different and, when bound to the metal, L 1 and L 2 are bidentate cyclometallated ligands, a source of energy applicable to the metal complex to cause an emission of radiation, and an emission detector positioned to detect the emission.
- the present invention also relates to compositions of matter comprising a compound having the following structure,
- L 1 and L 2 can be the same or different and each is a bidentate ligand having the structure
- Ar 1 and Ar 2 can be the same or different and are aryl or heteroaryl, optionally substituted, or Ar 1 and Ar 2 together form a fused polycyclic aromatic group, optionally substituted, provided that when L 1 and L 2 are the same, L 1 and L 2 are not phenylthiophene, thienylpyridine, benzoquinoline, 1-phenylpyrazole, or 2-thienylpyrazole.
- the present invention also provides methods of synthesizing a bis-cyclometallated metal complex comprising halogenating at least one bidentate ligand having the follow structure,
- halogenated bidentate ligand wherein Ar 1 and Ar 2 can be the same or different and are aryl or heteroaryl, optionally substituted, or Ar 1 and Ar 2 together form a fused polycyclic aromatic group, optionally substituted; and forming a metal complex between the halogenated bidentate ligand and a metal.
- the present invention also provides methods for determination of an analyte comprising providing a luminescent material having a first emission at a wavelength; exposing the luminescent material to a sample suspected of containing an analyte, wherein the analyte, if present, interacts with the luminescent material to produce a second emission at said wavelength, wherein the luminescence intensity of the second emission is at least 10 times greater than the luminescence intensity of the first emission; and determining the second emission, thereby determining the analyte.
- FIG. 1 shows a schematic illustration of a blue-shifting transduction event giving a significant dark-field turn-on signal.
- FIG. 2 shows examples of oxidative addition of bis-cyclometallated metal complexes to phenyl bromide and ethyl bromide.
- FIGS. 3A-B shows the syntheses of thienylpyridine ligands, according to some embodiments of the invention.
- FIGS. 4A-C show the syntheses of bis-cyclometalated Pt(II) complexes, according to some embodiments of the invention.
- FIG. 5 shows the normalized UV/vis spectra of (a) complex 3a, (b) complex 3b, (c) complex 3c, and (d) complex 3d, in THF.
- FIG. 6 shows the normalized UV/vis spectra of (a) complex 3e, (b) complex 3f, (c) complex 4a, and (d) complex 5, in THF.
- FIG. 7 shows the emission spectra of (a) complex 3a, (b) complex 3b, (c) complex 3c, at room temperature in THF.
- FIG. 8 shows the emission spectra of (a) complex 3a, (b) complex 3b, (c) complex 3c, at room temperature in THF.
- FIG. 9A shows the X-ray crystal determination for complex 3b.
- FIG. 9A shows the X-ray crystal determination for complex 3f.
- FIG. 10 shows the UV/vis spectra of complex 3b during its reaction with 1.0 M MeI in benzene.
- FIG. 11 shows a pseudo-first order rate plot for complex 3b in 1.0 MeI/benzene.
- FIG. 12 shows the plot of conversion versus time as determined by UV/vis, for the reaction between complex 3a and (a) MeI or (b) BrCN, in benzene.
- FIG. 13 shows the UV/vis spectra of complex 3b during its reaction with 0.00013 M BrCN in benzene.
- FIG. 14 shows the first-order kinetic plot for the reaction of complex 3b with BrCN (2.4E-4 M) in benzene.
- FIG. 15 shows the percentage conversion of complex 3a in (a) toluene or (b) benzene, in the presence of 0.00024 M BrCN.
- FIG. 16 shows the conversion percentages of (a) complex 3a, (b) complex 3b, (c) complex 3e, (d) complex 3f, (e) complex 4a, and (f) complex 5, as a function of time in 0.00013 M BrCN/benzene.
- FIG. 17 shows the normalized emission spectra of complex 3a in (a) degassed THF solution and (b) doped into PMMA films (10% w/w).
- FIG. 18A shows a photograph of a PMMA film containing complex 3a.
- FIG. 18B shows a photograph of a PMMA film containing complex 3a that has been exposed to saturated BrCN vapor for 15 seconds.
- FIG. 18C shows a photograph of a PMMA film containing complex 4a.
- FIG. 18D shows a photograph of a PMMA film containing complex 4a that has been exposed to saturated BrCN vapor for 15 seconds.
- FIG. 19 shows the PMMA film emission spectra of complex 3a (a) before and (b) after exposure to BrCN vapor for 15 seconds.
- FIG. 20 shows the PMMA film emission spectra of complex 4a (a) before and (b) after exposure to BrCN vapor for 15 seconds.
- the present invention generally relates to emissive materials, devices, and related methods, such as synthetic methods and methods for determination of analytes.
- the present invention provides sensors and methods for the determination of analytes, wherein the analytes may be determined by monitoring, for example, a change in an optical signal of an emissive material upon-exposure to an analyte.
- the analyte and the emissive material may interact via a chemical reaction, or other chemical, biochemical or biological interaction (e.g., recognition), to form a new emissive species.
- the present invention may be useful in the detection of a wide variety of analytes, such as toxins, chemical warfare agents, and explosives.
- the present invention also provides emissive compounds including metal complexes that are capable of interacting with an analyte to produce a change in the emission of the compound.
- Materials, devices, and methods of the invention may be particularly advantageous in that, in the presence of an analyte, a new signal (e.g., emission) may be generated and/or identified with little or substantially no background noise.
- a new signal e.g., emission
- an emissive material may generate a new luminescence emission signal at a wavelength having substantially no signal in the absence of the analyte.
- a material may have an emission signal A in the absence of analyte.
- emission signal B may be generated by the material, wherein at least a portion of emission signal B does not overlap with emission signal A (e.g., area C).
- emission signal A may be more readily distinguished from emission signal B via determination of the signal at area C.
- the ability to determine a signal with essentially no background noise may allow for more reliable determination of the analyte and may be advantageous in the determination of small quantities of analyte (e.g., parts-per-million or “trace” amounts).
- the present invention may advantageously comprise a blue-shifted change in the wavelength of a luminescence emission.
- a blue-shifted change” or “blue-shift” occurs when the wavelength of an emission shifts to a relatively shorter wavelength of emission
- a “red-shifted change” or “red-shift” occurs when the wavelength of an emission shifts to a relatively longer wavelength of emission.
- a luminescence emission may undergo a blue-shift, e.g., may shift to a shorter wavelength.
- a blue-shifted signal transduction event illustrated schematically in FIG. 1 ; wherein emission signal A shifts to emission signal B, can allow for monitoring of a large portion (e.g., area C) of the desired signal with substantially no background emission.
- methods of the invention may comprise exposure of a metal complex having a luminescence emission (e.g., a phosphorescence emission) to a sample suspected of containing an analyte, and, if present, the analyte interacts with the metal complex to cause a change in the emission of the metal complex. Determination of the change in the emission may then determine the analyte.
- the change comprises a decrease or increase in luminescence intensity, and/or a change in the wavelength of the luminescence emission. such as a blue-shifted change.
- the term “determining” generally refers to the analysis of a species or signal, for example, quantitatively or qualitatively, and/or the detection of the presence or absence of the species or signals. “Determining” may also refer to the analysis of an interaction between two or more species or signals, for example, quantitatively or qualitatively, and/or by detecting the presence or absence of the interaction.
- the interaction between the metal complex and the analyte may comprise a chemical reaction, which may produce a species having an emission (e.g., luminescence emission) that is different from the metal complex.
- the metal complex in the absence of analyte, may have a first emission, and, upon exposure to the analyte, the analyte interacts with the metal complex to produce a second emission.
- the wavelength of the first emission is separated from the wavelength of the second emission by at least 30 nm, or, in some embodiments, at least 50 nm, at least 100 nm, at least 150 nm, or greater.
- the term “metal complex” refers to a species formed by the association between a metal atom and at least one chemical moiety coordinated to the metal atom.
- the association may comprise formation of a covalent bond, and can also comprise the formation of other types of bonds, including ionic bonds, hydrogen bonds (e.g., between hydroxyl, amine, carboxyl, thiol and/or similar functional groups, for example), dative bonds (e.g. complexation or chelation between metal ions and monodentate or multidentate ligands), or the like, and/or other types of interactions between chemical moieties wherein electrons are shared.
- the metal complex comprises a metal atom coordinated by at least two bidentate ligands.
- the interaction between the metal complex and the analyte comprises an oxidative addition reaction.
- oxidative addition is given its ordinary meaning in the art and refers to the addition of a species to a metal complex, wherein the metal center is oxidized by two electrons (e.g., the metal goes from an “x” oxidation state to an “x+2” oxidation state).
- Scheme 1 shows the oxidative addition of a species A-B to metal complex M (x) L n to form a product, A-M (x+2) L n -B.
- the metal complex and the analyte may interact via an oxidative addition reaction such that at least one bond is formed therebetween.
- the metal complexes may undergo oxidative addition with electrophilic species, such as alkyl halides or cyanogen halides, via thermal activation, photochemical activation, or the like.
- electrophilic species such as alkyl halides or cyanogen halides
- an “electrophilic species” refers to a chemical moiety which can accept a pair of electrons from a nucleophile or other species capable of donating a pair of electrons.
- the metal complexes may undergo oxidative addition with a species under ambient conditions.
- the oxidative addition reaction may proceed via a radical mechanism.
- the oxidative addition reaction may proceed via an S N 2-type mechanism.
- a Pt(II) complex comprising two bis-cyclometallated thienylpyridine ligands undergoes oxidative addition with a species, such as benzyl bromide or ethyl bromide.
- a species such as benzyl bromide or ethyl bromide.
- the oxidative addition of A-B to a metal, M may depend on the relative strengths of the A-B, M-A and M-B bonds. For example, oxidative addition of an alkyl halide may occur more readily than oxidative addition of an alkyl halide.
- the oxidative addition reaction may produce a change in certain properties of the metal complex, such as geometric configuration, optical properties, and the like.
- the oxidative addition of an analyte to a metal complex may produce a change in the optical properties (e.g., phosphorescence) of the metal complex.
- the optical properties of the material exposed to the analyte may be distinct from those of the material in the absence of the analyte.
- metal(II) complexes having two bis-cyclometallated ligands can be highly reactive via oxidative addition to give the corresponding metal(IV) complexes.
- the metal(II) complex may have a luminescence emission, wherein, upon oxidative addition of an analyte to produce a metal(IV) complex, the metal(IV) metal complex may have a luminescence emission that is blue-shifted relative to the metal(II) complex.
- a Pt(II) complex may undergo oxidative addition with an electrophilic species to form a Pt(IV) complexes, wherein the Pt(IV) complex has an emission that is blue-shifted relative to the emission of the Pt(II) complex.
- the shift in emission may be attributed to the fact the contribution from a metal-to-ligand charge transfer (MLCT) state in the Pt(II) complexes may be larger than with the Pt(IV) complexes, which may have largely ligand-centered emission.
- MLCT metal-to-ligand charge transfer
- the oxidative addition reaction may also produce a change in the geometric configuration of the metal complex.
- the metal complex in the absence of analyte, may have a substantially square planar geometry.
- the analyte may interact with the metal complex to produce a change in the substantially square planar geometry of the metal complex.
- a metal complex having an octahedral geometry may be formed. The conversion of a square planar complex to an octahedral complex is described herein by way of example only, and it should be understood that, in some cases, other geometrical changes occurring upon oxidative addition of a species to a metal complex may be encompassed within the scope of the invention.
- the present invention also provides methods for determination of an analyte, wherein, in the presence of analyte, a new emission signal is generated at a wavelength having substantially no emission signal in the absence of the analyte.
- the method may comprise providing a luminescent material having a first emission at a wavelength, wherein the first emission may have little or substantially no luminescence intensity at said wavelength.
- the analyte Upon exposure of the luminescent material to a sample suspected of containing an analyte, the analyte, if present, may interact with the luminescent material to produce a second emission at said wavelength, wherein the luminescence intensity of the second emission is larger than the luminescence intensity of the first emission. Determination of the second emission may thereby determine the analyte.
- the first emission may have substantially no luminescence intensity at said wavelength.
- the luminescence intensity of the second emission is at least 10 times greater than the luminescence intensity of the first emission. In some embodiments, the luminescence intensity of the second emission is at least 10 2 , 10 3 , 10 4 , 10 5 , 10 6 , 10 7 , 10 8 , 10 9 , or 10 10 times greater than the luminescence intensity of the first emission.
- methods of the invention comprise determining a change in the wavelength of an emission signal.
- the interaction between the analyte and the metal complex may cause a shift in the wavelength of the luminescence intensity of the metal complex, as described herein.
- the change comprises a blue-shifted change in the wavelength of the luminescence emission.
- the wavelength of the emission of the luminescent material in the presence of analyte may be separated from the wavelength of the emission of the luminescent material in the absence of analyte by at least 30 nm, at least 50 nm, at least 100 nm, at least 150 nm, or greater.
- the wavelength of an emission signal refers to the wavelength at which the peak maximum of the emission signal occurs in an emission spectrum.
- the emission signal may be a particular peak having the largest intensity in an emission spectrum (e.g. a fluorescence spectrum), or, alternatively, the emission signal may be a peak in an emission spectrum that has at least a defined maximum, but has a smaller intensity relative to other peaks in the emission spectrum.
- the second emission signal upon exposure to the analyte, may be generated at a wavelength having substantially no emission signal in the absence of analyte (e.g., “dark-field”).
- the second emission signal may be red-shifted, i.e., may occur at a longer wavelength, relative to the first emission.
- the second emission signal may be blue-shifted, i.e., may occur at a shorter wavelength, relative to the first emission.
- methods of the invention may also comprise determining a change in the luminescence intensity of an emission signal.
- the change in luminescence intensity may occur for an emission signal with substantially no shift in the wavelength of the luminescence (e.g., emission), wherein the intensity of the emission signal changes but the wavelength remains essentially unchanged.
- the change in luminescence intensity may occur for an emission signal in combination with a shift in the wavelength of the luminescence (e.g., emission).
- an emission signal may simultaneously undergo a shift in wavelength in addition to an increase or decrease in luminescence intensity.
- the change may comprise two emission signals occurring at two different wavelengths, wherein each of the two emission signals undergoes a change in luminescence intensity.
- the two emission signals may undergo changes in luminescence intensity independent of one another. In some cases, the two emission signals may undergo changes in luminescence intensity, wherein the two emission signals are associated with one another, for example, via an energy transfer mechanism, as described more fully below.
- Methods of the present invention may also comprise determining a change in luminescence intensity in combination with a change in the luminescence wavelength, upon exposure of the metal complex to an analyte.
- the relative luminescence intensities of a first emission signal and a second emission signal associated with the first emission signal may be modulated using the methods described herein.
- the first emission signal and the second emission signal may be associated with (e.g., interact with) one another via an energy transfer mechanism, such as fluorescence resonance energy transfer, for example.
- FRET fluorescence resonance energy transfer
- a first luminescent species may act as FRET donor and a second luminescent species may act as a FRET acceptor, wherein the first portion and the second portion each have different emission wavelengths.
- the first luminescent species may be associated with a quenching molecule and exist in a “quenched” state, wherein, upon exposure of the first portion to electromagnetic radiation, the quenching molecule absorbs the excitation energy and substantially no emission is observed.
- the analyte may interact with the first luminescent species and/or quenching molecule to “unquench” the first luminescent species.
- exposure of the first luminescent species to electromagnetic radiation produces an excited-state, wherein the first luminescent species may transfer excitation energy to the second luminescent species, and emission signal from the second luminescent species is observed.
- the emission may also be visible by sight, e.g., the metal complex may emit visible light.
- the metal complex in the absence of analyte, may have a first color, and, upon exposure to an analyte and irradiation by a source of energy, the metal complex may have a second color, wherein the change in color may determine the analyte.
- compositions of matter comprising a metal complex having the following structure,
- L 1 and L 2 can be the same or different and each is a bidentate ligand (e.g., bidentate cyclometallated ligand) having the structure,
- Ar 1 and Ar 2 can be the same or different and are aryl or heteroaryl, optionally substituted, or Ar 1 and Ar 2 together form a fused polycyclic aromatic group, optionally substituted, provided that when L 1 and L 2 are the same, L 1 and L 2 are not phenylthiophene, thienylpyridine, benzoquinoline, 1-phenylpyrazole, or 2-thienylpyrazole.
- L 1 and L 2 are independently phenylthiophene, thienylpyridine, thianapthylpyridine, or substituted derivatives thereof.
- M is platinum, iridium, or palladium. In some embodiments, M is platinum.
- M is a metal
- L 1 and L 2 can be the same or different and, when bound to the metal, L 1 and L 2 are bidentate cyclometallated ligands.
- Such metal complexes may be used in sensors and methods as described herein.
- the compound has the structure,
- the compound has the structure,
- the compound has the structure,
- the compound has the structure,
- the compound has the structure,
- the compound has the structure,
- the compound has the structure,
- the present invention also provides methods for synthesizing a bis-cyclometallated metal complexes, comprising halogenating at least one bidentate ligand having the follow structure,
- the method further comprises lithiating the halogenated bidentate ligand, prior to forming the metal complex.
- the introduction of a halide to the bidentate ligand, optionally followed by lithiation of the halogenated bidentate ligand, may facilitate and/or direct coordination of the ligand to the metal center to product the desired product.
- a lithium reagent may be more reactive towards a carbon-halogen bond relative to a carbon-hydrogen bond, and, thus, halogenation of a bidentate ligand at a particular desired position, followed by selective lithiation of the carbon-halogen bond, may allow for the metal to coordinate at the particular position.
- halogenating is given its ordinary meaning in the art and refers to substituting an atom, such as hydrogen, of a molecule with a halogen atom.
- a hydrogen of an aromatic group may be substituted with a halogen.
- the halogenating step comprises exposure to bromine (Br 2 ), N-bromosuccinimide (NBS), or the like, either alone or in combination with other reagents including Pd(OAc) 2 and Hg(OAc) 2 .
- the halogenating step may comprise exposure to NBS and Pd(OAc) 2 , or, Br 2 and Hg(OAc) 2 .
- Those of ordinary skill in the art would be able to select the appropriate reagents to achieve a particular halogenated product.
- the halogenated bidentate ligand may be combined with a metal or metal-containing compound to form the metal complex.
- the metal may be, for example, platinum, iridium, or palladium. In one embodiment, the metal is platinum.
- each bidentate ligand can be the same or different and can be phenylthiophene, thienylpyridine, thianapthylpyridine, benzoquinoline, or a substituted derivative thereof.
- FIGS. 3A-B show the syntheses of thienylpyridine ligands, according to some embodiments of the invention.
- Bi- or tri-cyclic ligands may be readily synthesized by, for example, palladium-catalyzed cross-coupling methods.
- a Suzuki coupling between thiophene 2-boronic acid and 2-bromopyridine may produce thienylpyridine (ligand 1a), while Stille couplings with the appropriately substituted reactants, either commercially available or readily prepared, may produce ligands 1b-1f ( FIG. 3A ).
- Benzothiophene-based ligands 2a and 2b may be prepared from commercially available thianapthene boronic acid and 2-bromopyridine by Suzuki coupling ( FIG. 3B ).
- FIGS. 4A-C show the syntheses of bis-cyclometalated Pt(II) complexes.
- homoleptic complexes may be synthesized by lithiation of the ligand with t-butyllithium in a THF/Et 2 O mixture, followed by metallation ( FIGS. 4A-B ).
- the lithiated ligand may be metallated with Cl 2 Pt(SEt 2 ) 2 .
- heteroleptic complexes may be prepared by cracking a halide-bridged ligand dimer. As shown in FIG.
- a chloro-bridged ppy-ligated dimer intermediate was cracked with diethyl sulfide, followed by reaction with the lithiated thpy ligand.
- the metal complexes may be purified via chromatography under ambient conditions on silica gel and isolated as single stereoisomers.
- the present invention also relates to sensors for the determination of analytes, wherein the sensors comprise metal complexes, as described herein, which may be capable of undergoing an oxidative addition reaction with an analyte.
- the metal complex may be in solution (e.g., benzene solution, toluene solution, tetrahydrofuran solution, or the like) or in solid form.
- the sensor may further comprise a solid support material, wherein the metal complex is dispersed within the support material.
- the support material may be a polymer, such as poly(methyl methacrylate).
- the metal complex may be bonded to the support material via covalent bonds or non-covalent bonds.
- the metal complex may be covalently bonded to the support material, such as a polymer. In some cases, the metal complex may be covalently bonded to a polymer backbone via a pendant side group. In some cases, the metal complex may be positioned within a polymer backbone. In some embodiments, the metal complex may be dispersed within the support material (e.g., non-covalently dispersed). In some cases, the solution or support material may comprise at least 1 wt % of metal complex, or, in some embodiments, at least 5 wt % of metal complex, at least 10 wt % of metal complex, at least 25 wt % of metal complex. In one embodiments, the solution or support material comprises 10 wt % of metal complex.
- the sensor may further comprise at least one source of energy applicable to the metal complex.
- the source of energy when applied to the metal complex, may cause an emission of radiation from the metal complex.
- the source of energy may be an electric, magnetic, optical, acoustic, electromagnetic, or mechanical field.
- the source of energy is electromagnetic radiation.
- the sensor may further comprise an emission detector positioned to detect the emission.
- the source of energy can be provided in combination with the metal complex and/or sensor in a variety of ways, such as being integrally and/or functionally connected to the metal complex/sensor (for example, by providing a compartment or other assembly supporting both the metal complex/sensor and the energy source), or in combination such that the metal complex/sensor and energy source can be used together (e.g., packaged together, or otherwise provided together and with the ability to arrange each, with respect to the other, for use as described herein).
- the emission detector can be provided in combination with the metal complex and/or sensor, in a manner as described above with respect to the energy source.
- the energy source and emission detector are both provided in combination with the metal complex/sensor, they can be provided in essentially identical or similar structural relation to the metal complex/sensor (e.g., both attached to a common housing or framework, to which the metal complex/sensor is also attached), or their relationship to the metal complex/sensor can differ.
- sensors of the invention may comprise an inlet for intake of a sample (e.g., vapor sample, solution sample), a sample cell comprising the metal complex, the sample cell constructed and arranged to receive the sample, and a detection mechanism in optical communication with the sample cell.
- a sample e.g., vapor sample, solution sample
- a sample cell comprising the metal complex
- the sample cell constructed and arranged to receive the sample
- a detection mechanism in optical communication with the sample cell.
- Systems such as this may be useful in the determination of, for example, electrophilic analytes such as a cyanogen halide.
- a sample cell “constructed and arranged” refers to a sample cell provided in a manner to direct the passage of a sample, such as a sample comprising a cyanogen halide, from the inlet into the sample cell, such that the vapor sample contacts the metal complex.
- Optical communication may refer to the ability of the detection mechanism to receive and detect an optical signal (e.g., light emission) from
- Methods for synthesizing sensors as described herein may comprise forming a fluid mixture comprising the metal complex and a support material or support material precursor, and solidifying the fluid mixture to produce a solid composition that is emissive upon exposure to a source of energy, such as electromagnetic radiation.
- forming the fluid mixture may comprise providing the support material or support material precursor as a fluid, and dissolving or suspending the metal complex in the fluid support material precursor.
- forming the fluid mixture may comprise providing the support material as a solid, and suspending (i.e., immersing) the support material in the fluid mixture.
- forming the fluid mixture may comprise dissolving or suspending the metal complex and support material or support material precursor in an auxiliary fluid.
- the auxiliary fluid is a solvent, such that forming the fluid mixture comprises dissolving the metal complex and support material or support material precursor in the solvent.
- a catalyst, acid, base, buffer, and/or other additives e.g., plasticizers, etc.
- Solidification of the fluid mixture may comprise, in cases where a solvent is employed as an auxiliary fluid, removal of a solvent by, for example, evaporation or filtration.
- Solidification of the fluid mixture may also comprise, in cases where the support material precursor is provided as a fluid, conversion of the support material precursor to a support material (e.g., a solid support material).
- an emitted radiation or “emission” may be luminescence emission, in which “luminescence” is defined as an emission of ultraviolet or visible radiation. Specific types of luminescence include fluorescence, phosphorescence, chemiluminescence, electrochemiluminescence, other types of luminescence, and the like. In some cases, the emission may be phosphorescence emission.
- metal complexes of the invention comprise a metal center.
- Metals e.g., metal centers
- Metals which are suitable for use in the invention include metals which are capable of coordinating ligands as described herein, as well as those which are capable of undergoing an oxidative addition reaction.
- metal centers that are not in their highest oxidation state may undergo oxidative addition reactions.
- the oxidative addition reaction may proceed more readily if the starting and final oxidation states of the metal center are relatively stable.
- the metal center may also be selected such that it forms a metal complex capable of generating an emission, such as a phosphorescence emission, upon exposure to a source of energy.
- the metal center is a transition metal, such as a heavy metal.
- Transition metals may include transition metals (e.g., Groups 3-12), lathanides, and actinides.
- the metal is a transition metal from Groups 8-12.
- the metal is a transition metal from Groups 8-10.
- the metal may be iron, ruthenium, osmium, cobalt, rhodium, iridium, nickel, palladium, or platinum.
- the metal is palladium, platinum, or iridium.
- the metal is platinum.
- metal complexes of the invention may comprise a bidentate ligand which, when bound to a metal center, forms a metallacycle structure with the metal center.
- bidentate ligands when bound to a metal center, may also be referred to as “bidentate cyclometallated ligands.”
- Bidentate ligands suitable for use in the present invention include species which have at least two sites capable of binding to a metal center.
- the bidentate ligand may comprise at least two heteroatoms that coordinate the metal center, or a heteroatom and an anionic carbon atom that coordinate the metal center.
- the bidentate ligand may be chiral and may be provided as a racemic mixture or a purified stereoisomer.
- bidentate ligands suitable for use in the invention include, but are not limited to, aryl and heteroaryl groups (e.g., bis-aryl, heteroaryl-substituted aryl), substituted derivatives there of, and the like.
- the metal complex has two bidentate ligands coordinating the metal center to form a substantially square planar metal complex.
- the support material may be any material capable of supporting (e.g., containing) the components (e.g., the metal complex) of the systems described herein.
- the support material may be selected to have a particular surface area wherein the support material may absorb or otherwise contact a sufficient amount of analyte to allow interaction between the analyte and, for example, the metal complex.
- the support material has a high surface area.
- the support material has a surface area of at least 50 mm 2 , at least 100 mm 2 , at least 200 mm 2 , at least 300 mm 2 , at least 400 mm 2 , or, more preferably, at least 500 mm 2 .
- the support material may preferably have a low background signal, substantially no background signal, or a background signal which does not substantially interfere with the signal generated by the metal complex, either in the presence or in the absence of analyte.
- the support material may have a preferred pH to prevent undesirable reactions with, for example, an acid.
- the support material may be soluble, swellable, or otherwise have sufficient permeability in systems of the invention to permit, for example, intercalation of the metal complex and other components of the system within the support material.
- the support material may be hydrophobic, such that a hydrophobic solution containing the metal complex may diffuse or permeate the support material.
- the support material may preferably permit efficient contact between the sample (e.g., analyte) to be determined and the metal complex.
- a vapor comprising an analyte may permeate the support material to interact with the metal complex via an oxidative addition reaction.
- the permeability of certain support materials described herein are known in the art, allowing for the selection of a particular support material having a desired diffusion. The choice of support material may also affect the intensity and duration of light emission from the system.
- support materials include polymers, copolymers, gels, and other solid adsorbent materials.
- the support material may be a finely divided powder, particles, molded shapes such as films, bottles, spheres, tubes, strips, tapes, and the like.
- the system may have a shape or be formed into a shape (for example, by casting, molding, extruding, and the like).
- the support material may be a polymer.
- polymers suitable for use as a support material include, but are not limited to, poly(methyl methacrylate), polyethylene, polypropylene, poly(vinyl chloride), poly(vinyl benzoate), poly(vinyl acetate), cellulose, corn starch, poly(vinyl pyrrolidinone)s, polyacrylamides, epoxys, silicones, poly(vinyl butyral)s, polyurethanes, nylons, polacetals, polycarbonates, polyesters and polyethers, polybutadiene copolymers, crosslinked polymers, combinations thereof, and the like.
- the polymer is poly(methylmethacrylate), poly(vinylpyrrolidinone), or poly(4-vinylpyridine).
- the polymer is poly(methyl methacrylate).
- the combination of support material and solvent may have a desired diffusion rate, controlling the intensity and duration of light emission.
- the permeability of a particular polymer is known in the art.
- Analytes that may be determined by devices and methods of the invention include those which are capable of undergoing oxidative addition reactions with metal complexes as described herein.
- the analyte may be an electrophilic species, such as alkyl halides or cyanogen halides.
- Some examples of analytes include reactive species such as methyl iodine or benzyl bromide, relatively less reactive molecules, such as chloroform, dichloromethane, or ethyl bromide, or the like.
- the analyte is a cyanogen halide, such as cyanogen chloride, cyanogen bromide, cyanogen iodide, and the like.
- cyanogen halides e.g., X—CN, wherein X is a halide
- X is a halide
- Cyanogen chloride a gas under ambient conditions, is a military chemical weapon.
- aryl refers to an aromatic carbocyclic group having a single ring (e.g., phenyl), multiple rings (e.g., biphenyl), or multiple condensed rings in which at least one is aromatic (e.g., naphthalene, anthracene, or phenanthrene, 1,2,3,4-tetrahydronaphthene, etc.).
- Aryls groups may ring atoms which are carbon atoms.
- heteroaryl refers to aryl groups which comprise at least one heteroatom as a ring atom, with the remainder of the ring atoms being carbon atoms. Suitable heteroatoms include oxygen, sulfur, nitrogen, phosphorus, and the like. Examples of heteroaryl groups include, but are not limited to, furan, thiophene, pyridine, pyrrole, pyrimidine, pyrazine, imidazole, indole, and the like, all optionally substituted.
- fused polycyclic aromatic group refers to structures with two or more rings (e.g., cycloalkyls, cycloalkenyls, cycloalkynyls, aryls and/or heterocyclyls) in which two or more atoms are common to two adjoining rings, e.g., the rings are “fused rings.” In some cases, two rings share two common atoms which are adjacent to one another. Rings that are joined through non-adjacent atoms, e.g., three or more atoms are common to both rings, are “bridged” rings. Examples of fused polycyclic aromatic groups include naphthalene, phenanthrene, and the like.
- substituted is contemplated to include all permissible substituents of organic compounds, “permissible” being in the context of the chemical rules of valence known to those of ordinary skill in the art.
- substituted may generally refer to replacement of a hydrogen with a substituent as described herein.
- substituted does not encompass replacement and/or alteration of a key functional group by which a molecule is identified, e.g., such that the “substituted” functional group becomes, through substitution, a different functional group.
- a “substituted thiophene” must still comprise the thiophene moiety and can not be modified or replaced to become, e.g., a furan moiety.
- the permissible substituents include acyclic and cyclic, branched and unbranched, carbocyclic and heterocyclic, aromatic and nonaromatic substituents of organic compounds.
- Illustrative substituents include, for example, those described herein.
- the permissible substituents can be one or more and the same or different for appropriate organic compounds.
- the heteroatoms such as nitrogen may have hydrogen substituents and/or any permissible substituents of organic compounds described herein which satisfy the valencies of the heteroatoms. This invention is not intended to be limited in any manner by the permissible substituents of organic compounds.
- substituents include, but are not limited to, lower alkyl, lower aryl, lower aralkyl, lower cyclic alkyl, lower heterocycloalkyl, hydroxy, lower alkoxy, lower aryloxy, perhaloalkoxy, aralkoxy, lower heteroaryl, lower heteroaryloxy, lower heteroarylalkyl, lower heteroaralkoxy, azido, amino, halogen, lower alkylthio, oxo, lower acylalkyl, lower carboxy esters, carboxyl, -carboxamido, nitro, lower acyloxy, lower aminoalkyl, lower alkylaminoaryl, lower alkylaryl, lower alkylaminoalkyl, lower alkoxyaryl, lower arylamino, lower aralkylamino, lower alkylsulfonyl, lower-carboxamidoalkylaryl, lower carboxamidoaryl, lower hydroxyalkyl, lower haloalky
- UV/vis spectra were recorded on an Agilent 8453 diode-array spectrophotometer and corrected for background signal with either a solvent-filled cuvette (for solution measurements) or a clean glass cover slip (for thin film measurements).
- Emission spectra were acquired on a SPEX Fluorolog- ⁇ 3 fluorimeter (model FL-321, 450 W Xenon lamp) using either right angle detection (solution measurements) or front face detection (thin film measurements). All room temperature solution samples for emission spectra were degassed by at least three freeze-pump-thaw cycles in an anaerobic cuvette and were repressurized with Ar following each cycle. 77K emission spectra were acquired in frozen 2-methyltetrahydrofuran glass. Quantum yields of phosphorescence were determined by comparison to Ru(bpy) 3 in deoxygenated water and are corrected for solvent refractive index and absorption differences at the excitation wavelength.
- Phosphorescence lifetimes were determined by time-resolved phosphorescence spectroscopy.
- the irradiation source was an Oriel nitrogen laser (Model 79111) with a 5 ns pulsewidth operating at approximately 25 Hz.
- the emitted light was dispersed in an Oriel MS-260i spectrograph with a 300 lines/mm grating.
- the detector was an Andor Technologies Intensified CCD camera (1024 ⁇ 128 pixels) with an onboard delay generator and a minimum gate width of 5 ns operating in full vertical binning mode and triggered by a TTL prepulse from the nitrogen laser.
- Data taken of 77K glasses were subjected to no horizontal binning, while solution data was acquired with a horizontal binning of 2 or 3. 10-15 spectra at different delay times after the laser pulse were taken per lifetime measurement, the integrated intensities of which were fit to a single-exponential function.
- the detector was calibrated with a Hg(Ar)pencil-style
- Ligand 1b was synthesized according to the following procedure. 2-Bromopyridine (1.48 g, 0.89 mL, 9.4 mmol), 2-methyl-5-(tributylstannyl)thiophene (4.0 g, 10.3 mmol), Pd(PPh 3 ) 4 (0.54 g, 0.47 mmol) and CsF (3.12 g, 20.6 mmol) were weighed into a Schlenk tube and 60 mL of dioxane was added. The reaction mixture was sparged for 15 minutes with argon. The reaction mixture was heated at 100° C. for 36 hours. The reaction mixture was cooled down and was passed through a silica gel plug to remove the solids.
- Ligand 1c was synthesized according to the procedure described in Example 2. 2-Bromopyridine (1.63 g, 0.98 mL, 10. mmol), 2-methoxy-5-(tributylstannyl)thiophene (6.0 g, 15 mmol), Pd(PPh 3 ) 4 (0.60 g, 0.51 mmol), CsF (3.4 g, 23 mmol). Yield was 1.82 g (93%) using dichloromethane/hexane (2:1 v/v) as the eluant.
- Ligand 1d was synthesized according to the procedure described in Example 2. 2-Bromo-4-methylpyridine (1.5 g, 0.97 mL, 8.7 mmol), 2-(tributylstannyl)thiophene (3.9 g, 3.3 mL, 10. mmol), Pd(PPh 3 ) 4 (0.50 g, 0.43 mmol), CsF (1.52 g, 10 mmol). Yield was 1.04 g (68%) using dichloromethane/hexane (3:1 v/v) as the eluant.
- Ligand 1e was synthesized according to the procedure described in Example 2. 2-Bromo-5-methylpyridine (1.7 g, 10. mmol), 2-(tributylstannyl)thiophene (3.7 g, 10. mmol), Pd(PPh 3 ) 4 (0.1 g, 0.2 mmol), CsF (2.9 g, 19 mmol). Yield was 500 mg (29%) using dichloromethane/hexane (2:1 v/v) and after 2 recrystallizations from hexanes at ⁇ 78° C.
- Ligand 1f was synthesized according to the procedure described in Example 2. 2-Bromo-6-methylpyridine (1.15 g, 1.0 mL, 6.69 mmol), 2-(tributylstannyl)thiophene (2.5 g, 2.12 mL, 6.69 mmol), Pd(PPh 3 ) 4 (0.386 g, 0.33 mmol), CsF (1.52 g, 10 mmol). Yield was 1.04 g (96%) using dichloromethane/hexane (2:1 v/v) as the eluant.
- Ligand 2a was synthesized according to the following procedure. A 50 mL Schlenk tube was charged with 2.14 g (12 mmol) of thianapthene-2-boronic acid, 0.10 g Pd(PPh 3 ) 4 (0.1 mmol). Dimethoxyethane (20 mL) and 5 mL 2M aqueous sodium carbonate were added, and the tube was purged with argon gas with 5 evacuate/refill cycles. 2-Bromo-pyridine (1.58 g, 10.0 mmol) of was added as a neat liquid. The tube was sealed and heated at 90° C. with very vigorous stirring for 2 days.
- Ligand 2b was synthesized according to the following procedure. A 50 mL Schlenk tube was charged with 2.14 g (12 mmol) of thianapthene-2-boronic acid, 0.10 g Pd(PPh 3 ) 4 (0.1 mmol). 20 mL dimethoxyethane and 5 mL 2M aqueous sodium carbonate were added, and the tube was purged with argon gas with 5 evacuate/refill cycles. 2-Bromo-6-methylpyridine (1.72 g, 10.0 mmol) was added as a neat liquid. The tube was sealed and heated at 90° C. with very vigorous stirring for 2 days.
- the reaction mixture was hydrolyzed (H 2 O) at 0° C.
- the organic phase was washed with NaCl solution and the aqueous phase extracted with dichloromethane.
- the combined extracts were dried (MgSO 4 ).
- the organic layer was evaporated to yield a red oily residue.
- the residue was chromatographed on silica gel with dichloromethane:hexane (3:2) as the eluant to give 0.30 g (52%) of 3a as a red solid.
- FIG. 5 shows the normalized UV/vis spectra of (a) complex 3a, (b) complex 3b, (c) complex 3c, and (d) complex 3d, in THF
- FIG. 6 shows the normalized U/vis spectra of (a) complex 3e, (b) complex 3f, (c) complex 4a, and (d) complex 5, in THF.
- FIG. 7 shows the emission spectra of (a) complex 3a, (b) complex 3b, (c) complex 3c, at room temperature in THF
- FIG. 8 shows the emission spectra of (a) complex 3a, (b) complex 3b, (c) complex 3c, at room temperature in THF.
- Most of the Pt(II) complexes displayed moderate to strong phosphorescence intensity (with quantum yields of emission between 0.05 and 0.30) in room temperature, deoxygenated fluid solution.
- the emissive complexes were observed to phosphoresce in the orange or red region of the visible spectrum with lifetimes on the timescale of 5-15 microseconds at ambient temperature.
- the lower quantum yield and biexponential character of complex 5 may be due to the presence of a competing, non-emissive state involving the phenylpyridine ligand
- the Pt(II) complexes showed only weak solvatochromism in their phosphorescence energy.
- the rigidochromic effect on the emission of these complexes is a small value of 9 ⁇ 3 nm upon freezing the sample in a 2-methyltetrahydrofuran glass.
- the rigid glass did not allow reorganization of solvent dipoles upon generation of an excited state, and gave a strongly blue-shifted spectrum of complexes that emit from a charge-transfer state.
- such trends coupled with the vibronic structure observed in the room temperature phosphorescence spectra, suggest that the emissive state of the complexes may be an admixture of an MLCT state and an intraligand pi-pi* state. This behavior was similar to other Pt(II) cyclometalated complexes.
- Complexes 3f and 4a exhibited phosphorescence quantum yields of less than 1 percent. As demonstrated with complex 3f, the addition of a methyl group on the pyridine ring almost completely eliminated phosphorescence.
- the relatively small effect of including a more powerful donor (e.g., methoxy group) in complex 3c suggested that phosphorescence attenuation may be due to steric congestion of the square plane around the metal center.
- the strong room temperature emission of complexes 3d and 3e also support the hypothesis that steric congestion may be the reason for the very weak emission of complexes 3f and 4a.
- Complex 3f displayed similar behavior to complexes 3d and 3e, the only difference being that the methyl groups meta or para to the pyridine nitrogen were not expected to have repulsive interactions in the square plane. Complexes 3f and 4a also gave broadened MLCT absorbance bands, suggesting that there may be more conformational variation in these non-emissive complexes.
- FIG. 9A shows the ORTEP diagram of the crystal structures of complex 3b
- FIG. 9B shows the ORTEP diagram of the crystal structures of complex 3f.
- Thermal ellipsoids are at 50% probability, and hydrogen atoms were omitted for clarity.
- complex 3b is only slightly distorted out of a square planar geometry, while 3f, on the other hand, is severely distorted away from ideal square plane geometry because of the steric repulsion between the methyl groups ortho to the nitrogen on the pyridine ring ( FIG. 9B ).
- FIG. 10 shows the shows the progress of a reaction with 3b with 1.0 M methyl iodide under pseudo-first order conditions in benzene as followed by absorbance spectroscopy. Times elapsed, in seconds, are 15, 30, 45, 60, 90, 120, 180, 240, and 300.
- FIG. 11 shows a pseudo-first order rate plot for 3b in 1.0 MeI/benzene, wherein the calculated bimolecular rate constant was 0.0081 M ⁇ 1 s ⁇ 1 .
- the isosbestic points shown in FIG. 10 and the pseudo-first order kinetics shown in FIG. 11 illustrate the clean oxidative addition of complex 3b to methyl iodide.
- the reaction rate displays strong solvent dependence, which may be indicative of a highly polar transition state and an S N 2-type mechanism.
- FIG. 12 shows percent conversion as a function of reaction time for (a) methyl iodide (1.0 M) and (b) cyanogen bromide (0.00013 M) with complex 3a.
- FIG. 13 shows the UV/vis spectra of 3b during the reaction with 0.00013 M BrCN in benzene, where the times elapsed are in 20 second intervals. The cyanogen bromide reaction proceeded to completion much faster than the reaction with MeI, even though the relative concentration of BrCN was almost 10 4 times smaller.
- the non-polar solvent benzene was used to more effectively mimic a solid-state environment, which would be used for sensing purposes, than a more polar solvent.
- the UV/vis profiles of these reactions also showed clean (e.g., “well-behaved”) isosbestic points, disappearance of the Pt(II) MLCT band, and growth of an absorbance at approximately 350 nm, characteristic of bis-cyclometalated Pt(IV) complexes.
- the kinetic profiles of these reactions with CNBr were not seen to follow a simple kinetic model.
- FIG. 14 shows the pseudo-first order rate plot for the reaction of complex 3b with 0.00024 M CNBr in benzene.
- reaction was observed to accelerate very quickly following an initial induction period, indicating that a different mechanism may be taking place, rather than the S N 2 type invoked for the oxidative addition with methyl iodide.
- a third difference observed between the reactions with CNBr and MeI was the lack of strong solvent polarity dependence on rate of reaction of the Pt(II) complexes and CNBr. Upon switching from toluene to acetone, the initial reaction rate only increased by approximately 50%.
- the key differences in the CNBr reactions may be indicative of a radical, potentially chain, mechanism operating in this reaction. This may be further supported by the observation that the reaction proceeds to completion much faster in benzene than in toluene, as shown by the percentage conversion of complex 3a in (a) toluene or (b) benzene, in the presence of 0.00024 M BrCN. ( FIG. 15 ) This suggests that an intermediate, radicals may abstract a benzylic hydrogen atoms from toluene, thereby inhibiting the reaction.
- FIG. 16 shows the conversion percentages of (a) complex 3a, (b) complex 3b, (c) complex 3e, (d) complex 3f, (e) complex 4a, and (f) complex 5, as a function of time in 0.00013 M BrCN/benzene.
- the transition state for S N 2 type oxidative addition to these complexes exacerbated the preexisting steric congestion, possibly by forcing the complex into a square-pyramidal geometry, whereas the transition state for the reaction with BrCN relieved the unfavorable interactions.
- This difference may be particularly useful for sensing, as it could impart additional selectivity for cyanogen halides over interferents that react by the S N 2-type mechanism.
- the platinum complexes were doped into a polymer matrix in order to create a substance with desirable material properties that could be readily cast into films.
- Each film was prepared by spin-casting a dichloromethane solution containing a mixture of poly(methyl methacrylate) (PMMA) and the desired Pt(II) complex (10% w/w relative to PMMA).
- PMMA poly(methyl methacrylate)
- Pt(II) complex 10% w/w relative to PMMA.
- Transparent, glassy, highly phosphorescent thin films were obtained, many of which were highly emissive even under ambient conditions.
- the glassy PMMA excluded enough oxygen to allow radiative decay of the triplet excited states to be kinetically competitive with oxygen-induced quenching.
- FIG. 17 shows the normalized emission spectra of complex 3a in (a) degassed THF solution and (b) doped into PMMA films (10% w/w).
- the films exhibited emission spectra having similar shapes to the emission spectra of the complexes obtained in solution. This indicates that, at 10% loading, the amount of intermolecular communication between the metal complexes was negligible.
- complexes 3f and 4a which were not emissive in room temperature solution but were emissive at 77 K, showed phosphorescence spectra in the PMMA films that were in the same spectral region as the emission spectra of the complexes at 77K in solution. This may be attributed to the rigid PMMA matrix, which may inhibit intramolecular conformational changes that lead to non-radiative deactivation of the excited states of these strained molecules.
- FIG. 18A shows a picture of a PMMA film containing 3a
- FIG. 18B shows a picture of a PMMA film containing 3a that has been exposed to saturated BrCN vapor for 15 seconds.
- FIG. 18C shows a picture of a PMMA film containing 4a
- FIG. 18D shows a picture of a PMMA film containing 4a that has been exposed to saturated BrCN vapor for 15 seconds.
- FIG. 19 shows the PMMA film emission spectra of 3a (a) before and (b) after exposure to BrCN vapor for 15 seconds.
- FIG. 20 shows the PMMA film emission spectra of 4a (a) before and (b) after exposure to BrCN vapor for 15 seconds.
- the spectra in FIG. 19-20 illustrate how using a strong spectral blue-shift as the sensing signal gives a turn-on signal with virtually no background (“dark-field”).
- This feature may be desirable in any sensing system for maximum sensitivity to trace quantities of analyte.
- Preliminary experiments demonstrating trace (part-per-million) sensitivity to the cyanogen halides have shown modest sensitivity to 10 ppm BrCN vapor.
- a reference to “A and/or B”, when used in conjunction with open-ended language such as “comprising” can refer, in one embodiment, to A without B (optionally including elements other than B); in another embodiment, to B without A (optionally including elements other than A); in yet another embodiment, to both A and B (optionally including other elements); etc.
- the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements.
- This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.
- “at least one of A and B” can refer, in one embodiment, to at least one, optionally including more than one, A, with no B present (and optionally including elements other than B); in another embodiment, to at least one, optionally including more than one, B, with no A present (and optionally including elements other than A); in yet another embodiment, to at least one, optionally including more than one, A, and at least one, optionally including more than one, B (and optionally including other elements); etc.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Immunology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Pathology (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Materials Engineering (AREA)
- Combustion & Propulsion (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/588,881 US20090215189A1 (en) | 2006-10-27 | 2006-10-27 | Sensor of species including toxins and chemical warfare agents |
PCT/US2007/022670 WO2008136805A2 (fr) | 2006-10-27 | 2007-10-26 | Détecteur d'espèces comprenant des toxines et des agents chimiques de conduite de guerre |
US14/332,231 US9429522B2 (en) | 2006-10-27 | 2014-07-15 | Sensor of species including toxins and chemical warfare agents |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/588,881 US20090215189A1 (en) | 2006-10-27 | 2006-10-27 | Sensor of species including toxins and chemical warfare agents |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/332,231 Continuation US9429522B2 (en) | 2006-10-27 | 2014-07-15 | Sensor of species including toxins and chemical warfare agents |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090215189A1 true US20090215189A1 (en) | 2009-08-27 |
Family
ID=39828995
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/588,881 Abandoned US20090215189A1 (en) | 2006-10-27 | 2006-10-27 | Sensor of species including toxins and chemical warfare agents |
US14/332,231 Active US9429522B2 (en) | 2006-10-27 | 2014-07-15 | Sensor of species including toxins and chemical warfare agents |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/332,231 Active US9429522B2 (en) | 2006-10-27 | 2014-07-15 | Sensor of species including toxins and chemical warfare agents |
Country Status (2)
Country | Link |
---|---|
US (2) | US20090215189A1 (fr) |
WO (1) | WO2008136805A2 (fr) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8283423B2 (en) | 2006-09-29 | 2012-10-09 | Massachusetts Institute Of Technology | Polymer synthetic technique |
US8367001B2 (en) | 1998-05-05 | 2013-02-05 | Massachusetts Institute Of Technology | Emissive sensors and devices incorporating these sensors |
US8435797B2 (en) | 2010-12-07 | 2013-05-07 | The United States Of America As Represented By The Secretary Of The Army | Electroluminescent diode sensor |
US8465678B2 (en) | 1998-05-05 | 2013-06-18 | Massachusetts Institute Of Technology | Emissive polymers and devices incorporating these polymers |
US8617819B2 (en) | 2004-09-17 | 2013-12-31 | Massachusetts Institute Of Technology | Polymers for analyte detection |
US8802447B2 (en) | 2006-10-05 | 2014-08-12 | Massachusetts Institute Of Technology | Emissive compositions with internal standard and related techniques |
US9429522B2 (en) | 2006-10-27 | 2016-08-30 | Massachusetts Institute Of Technology | Sensor of species including toxins and chemical warfare agents |
EP2646806A4 (fr) * | 2010-12-01 | 2017-06-07 | Nalco Company | Procédé et appareil permettant de déterminer les paramètres d'un système en vue de réduire la corrosion affectant une unité de traitement du pétrole brut |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10571445B2 (en) * | 2017-05-15 | 2020-02-25 | Hamilton Sundstrand Corporation | Fielded chemical threat detectors |
AU2018312421A1 (en) * | 2017-08-03 | 2020-03-19 | The University Of Queensland | Detection method |
US10775258B2 (en) * | 2018-03-13 | 2020-09-15 | International Business Machines Corporation | Heuristic based analytics for gas leak source identification |
CN109580516A (zh) * | 2019-01-14 | 2019-04-05 | 广州城市职业学院 | 一种聚丙烯酰胺的检测方法 |
Citations (71)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4356429A (en) * | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
US4687732A (en) * | 1983-06-10 | 1987-08-18 | Yale University | Visualization polymers and their application to diagnostic medicine |
US4752588A (en) * | 1987-03-30 | 1988-06-21 | Minnesota Mining And Manufacturing Company | Luminescent chemical sensor for gases |
US4927768A (en) * | 1988-06-29 | 1990-05-22 | Uop | Grown crystalline sensor and method for sensing |
US4946890A (en) * | 1988-08-11 | 1990-08-07 | The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration | Novel ladder polymers for use as high temperature stable resins or coatings |
US4992302A (en) * | 1985-10-10 | 1991-02-12 | Quantex Corporation | Process for making photoluminescent materials |
US5155149A (en) * | 1991-10-10 | 1992-10-13 | Boc Health Care, Inc. | Silicone polyurethane copolymers containing oxygen sensitive phosphorescent dye compounds |
US5157261A (en) * | 1990-08-08 | 1992-10-20 | Eg&G Idaho, Inc. | Detection device for high explosives |
US5194393A (en) * | 1989-11-21 | 1993-03-16 | Bayar Aktiengesellschaft | Optical biosensor and method of use |
US5236808A (en) * | 1992-04-13 | 1993-08-17 | E. I. Du Pont De Nemours And Company | Visible photosensitizers for photopolymerizable compositions |
US5244813A (en) * | 1991-01-25 | 1993-09-14 | Trustees Of Tufts College | Fiber optic sensor, apparatus, and methods for detecting an organic analyte in a fluid or vapor sample |
US5254633A (en) * | 1991-07-10 | 1993-10-19 | Allied Signal Inc. | Process for the preparation of conductive polymer blends |
US5364797A (en) * | 1993-05-20 | 1994-11-15 | Mobil Oil Corp. | Sensor device containing mesoporous crystalline material |
US5414069A (en) * | 1993-02-01 | 1995-05-09 | Polaroid Corporation | Electroluminescent polymers, processes for their use, and electroluminescent devices containing these polymers |
US5451683A (en) * | 1989-11-13 | 1995-09-19 | Affymax Technologies N.V. | Spatially-addressable immobilization of anti-ligands on surfaces |
US5512490A (en) * | 1994-08-11 | 1996-04-30 | Trustees Of Tufts College | Optical sensor, optical sensing apparatus, and methods for detecting an analyte of interest using spectral recognition patterns |
US5511547A (en) * | 1994-02-16 | 1996-04-30 | Biomedical Sensors, Ltd. | Solid state sensors |
US5532129A (en) * | 1991-11-07 | 1996-07-02 | Enterprise Partners Ii, L.P. | Self-organizing molecular photonic structures based on chromophore- and fluorophore-containing polynucleotides and methods of their use |
US5540999A (en) * | 1993-09-09 | 1996-07-30 | Takakazu Yamamoto | EL element using polythiophene |
US5546889A (en) * | 1993-10-06 | 1996-08-20 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing organic oriented film and method of manufacturing electronic device |
US5554747A (en) * | 1993-04-28 | 1996-09-10 | U.S. Philips Corporation | Optical amplifier |
US5556524A (en) * | 1994-02-16 | 1996-09-17 | Valtion Teknillinen Tutkimuskeskus | Electron-conducting molecular preparations |
US5563056A (en) * | 1992-02-13 | 1996-10-08 | Bsi Corporation | Preparation of crosslinked matrices containing covalently immobilized chemical species and unbound releasable chemical species |
US5580527A (en) * | 1992-05-18 | 1996-12-03 | Moltech Corporation | Polymeric luminophores for sensing of oxygen |
US5585646A (en) * | 1994-09-14 | 1996-12-17 | The Regents Of The University Of California | Bio-electronic devices |
US5591787A (en) * | 1992-11-11 | 1997-01-07 | A.W.-Faber Castell Unternehmensverwaltung Gmbh & Co. | Hard lead for a pencil |
US5597890A (en) * | 1993-11-01 | 1997-01-28 | Research Corporation Technologies, Inc. | Conjugated polymer exciplexes and applications thereof |
US5607864A (en) * | 1992-04-07 | 1997-03-04 | Societe Prolabo | Fluorescent latices having very low detection thresholds for fluorescent emission |
US5629353A (en) * | 1995-05-22 | 1997-05-13 | The Regents Of The University Of California | Highly cross-linked nanoporous polymers |
US5679773A (en) * | 1995-01-17 | 1997-10-21 | Affymax Technologies N.V | Reagants and methods for immobilized polymer synthesis and display |
US5700696A (en) * | 1993-11-08 | 1997-12-23 | Lucent Technologies Inc. | Method for preparation of conjugated arylene or heteroarylene vinylene polymer and device including same |
US5705348A (en) * | 1993-12-10 | 1998-01-06 | California Institute Of Technology | Nucleic acid mediated electron transfer |
US5710197A (en) * | 1994-07-14 | 1998-01-20 | Basf Aktiengesellschaft | Crosslinked polymer particles containing a fluorescent dye |
US5709994A (en) * | 1992-07-31 | 1998-01-20 | Syntex (U.S.A.) Inc. | Photoactivatable chemiluminescent matrices |
US5723218A (en) * | 1990-04-16 | 1998-03-03 | Molecular Probes, Inc. | Dipyrrometheneboron difluoride labeled flourescent microparticles |
US5869592A (en) * | 1991-08-19 | 1999-02-09 | Maxdem Incorporated | Macromonomers having reactive side groups |
US5925517A (en) * | 1993-11-12 | 1999-07-20 | The Public Health Research Institute Of The City Of New York, Inc. | Detectably labeled dual conformation oligonucleotide probes, assays and kits |
US6020426A (en) * | 1996-11-01 | 2000-02-01 | Fuji Xerox Co., Ltd. | Charge-transporting copolymer, method of forming charge-transporting copolymer, electrophotographic photosensitive body, and electrophotographic device |
US6259277B1 (en) * | 1998-07-27 | 2001-07-10 | University Of South Carolina | Use of molecular electrostatic potential to process electronic signals |
US20020177136A1 (en) * | 2000-08-23 | 2002-11-28 | Mcbranch Duncan W. | Peptide nucleic acid based molecular sensors for nucleic acids |
US6509110B1 (en) * | 1997-10-10 | 2003-01-21 | Axiva Gmbh | Triptycene derivatives and their use for opto-electronics applications, in particular as electroluminescent materials |
US20030054413A1 (en) * | 2001-08-23 | 2003-03-20 | Sriram Kumaraswamy | Bio-sensing platforms for detection and quantitation of biological molecules |
US6556335B2 (en) * | 2000-08-31 | 2003-04-29 | Alcatel | Optical signal processor |
US20030096138A1 (en) * | 2001-11-07 | 2003-05-22 | Lecloux Daniel David | Electroluminescent iridium compounds having red-orange or red emission and devices made with such compounds |
US6589731B1 (en) * | 1999-05-05 | 2003-07-08 | The Regents Of The University Of California | Method for detecting biological agents |
US20030134959A1 (en) * | 2001-11-30 | 2003-07-17 | Hancock Lawrence F. | Luminescent polymer particles |
US6605693B1 (en) * | 1998-02-13 | 2003-08-12 | Covion Organic Semiconductors Gmbh | Triptycene polymers and copolymers |
US6664111B2 (en) * | 2001-08-22 | 2003-12-16 | 3M Innovative Properties Company | Fluorescence based oxygen sensor systems |
US6670645B2 (en) * | 2000-06-30 | 2003-12-30 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
US6713298B2 (en) * | 2000-01-31 | 2004-03-30 | Board Of Regents, The University Of Texas System | Method and apparatus for the delivery of samples to a chemical sensor array |
US20040089867A1 (en) * | 2000-06-30 | 2004-05-13 | Vladimir Grushin | Electroluminescent iridium compounds with fluorinated phenylpryidines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
US6743640B2 (en) * | 2000-05-08 | 2004-06-01 | Qtl Biosystems Llc | Fluorescent polymer-QTL approach to biosensing |
US20040121337A1 (en) * | 2002-12-19 | 2004-06-24 | Nomadics, Inc. | Luminescent polymers and methods of use thereof |
US6783814B2 (en) * | 2000-08-21 | 2004-08-31 | Massachusetts Institute Of Technology | Polymers with high internal free volume |
US20040175768A1 (en) * | 2002-11-14 | 2004-09-09 | Kushon Stuart A. | Methods of biosensing using fluorescent polymers and quencher-tether-ligand bioconjugates |
US20040197602A1 (en) * | 2001-11-07 | 2004-10-07 | Dobbs Kerwin D. | Electroluminescent platinum compounds and devices made with such compounds |
US20040235184A1 (en) * | 2003-05-21 | 2004-11-25 | Swager Timothy M. | Reversible resistivity-based sensors |
US6830828B2 (en) * | 1998-09-14 | 2004-12-14 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
US6835835B1 (en) * | 2003-12-05 | 2004-12-28 | Eastman Kodak Company | Synthesis for organometallic cyclometallated transition metal complexes |
US20050014160A1 (en) * | 2003-07-18 | 2005-01-20 | Sriram Kumaraswamy | Assays for protease enzyme activity |
US20050037232A1 (en) * | 2003-08-14 | 2005-02-17 | Eastman Kodak Company | Microcavity oled device |
US6919139B2 (en) * | 2002-02-14 | 2005-07-19 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds |
US20050176624A1 (en) * | 2003-08-07 | 2005-08-11 | Thompson Mark E. | Organometallic complexes as singlet oxygen sensitizers |
US20050226775A1 (en) * | 2000-10-17 | 2005-10-13 | Aker Craig A | Vapor sensing instrument for ultra trace chemical detection |
US6962757B2 (en) * | 1996-08-02 | 2005-11-08 | The Ohio State Universtiy Research Foundation | Electroluminescence in light emitting polymers featuring deaggregated polymers |
US20050285517A1 (en) * | 2002-09-06 | 2005-12-29 | Gang Yu | Methods for producing full-color organic electroluminescent devices |
US20060029829A1 (en) * | 1999-03-23 | 2006-02-09 | Thompson Mark E | Organometallic complexes as phosphorescent emitters in organic LEDS |
US7029765B2 (en) * | 2003-04-22 | 2006-04-18 | Universal Display Corporation | Organic light emitting devices having reduced pixel shrinkage |
US20060120917A1 (en) * | 1998-05-05 | 2006-06-08 | Swager Timothy M | Emissive polymers and devices incorporating these polymers |
US7186355B2 (en) * | 2000-02-04 | 2007-03-06 | Massachusetts Institute Of Technology | Insulated nanoscopic pathways, compositions and devices of the same |
US7417146B2 (en) * | 2004-12-17 | 2008-08-26 | Eastman Kodak Company | Facial tris-cyclometallated group 9 complex synthesis |
Family Cites Families (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3242186A (en) | 1960-07-13 | 1966-03-22 | Polaroid Corp | 2, 5-dihydroxytriptycyl compounds and processes for their syntheses |
US3785813A (en) | 1972-01-03 | 1974-01-15 | Polaroid Corp | Polycyclic hydropyrimidine development restrainers |
US4049616A (en) | 1974-11-18 | 1977-09-20 | The Goodyear Tire & Rubber Company | Preparation of graft, block and crosslinked unsaturated polymers and copolymers by olefin metathesis |
US4839112A (en) | 1982-12-20 | 1989-06-13 | Northwestern University | Methods for fabricating a low dimensionally electroconductive article |
US4539507A (en) | 1983-03-25 | 1985-09-03 | Eastman Kodak Company | Organic electroluminescent devices having improved power conversion efficiencies |
US4513078A (en) | 1983-10-13 | 1985-04-23 | General Electric Company | Film-based dual energy radiography |
US4894443A (en) | 1984-02-08 | 1990-01-16 | Cetus Corporation | Toxin conjugates |
JPS62180263A (ja) | 1986-02-04 | 1987-08-07 | Terumo Corp | 酸素センサ− |
US4868103A (en) | 1986-02-19 | 1989-09-19 | Enzo Biochem, Inc. | Analyte detection by means of energy transfer |
US4861727A (en) * | 1986-09-08 | 1989-08-29 | C. R. Bard, Inc. | Luminescent oxygen sensor based on a lanthanide complex |
WO1989000593A1 (fr) | 1987-07-16 | 1989-01-26 | Memtec Limited | Membranes poreuses de reseaux polymeres a interpenetrations |
US4883608A (en) | 1987-11-18 | 1989-11-28 | Southwest Research Institute | Polymeric decontamination composition |
US4841099A (en) | 1988-05-02 | 1989-06-20 | Xerox Corporation | Electrically insulating polymer matrix with conductive path formed in situ |
US5217715A (en) | 1988-08-01 | 1993-06-08 | The United States Of America As Represented By The Department Of Health And Human Services | Carbohydrate receptor for bacteria and method for use thereof |
US5091502A (en) | 1988-09-23 | 1992-02-25 | General Petrochemical Industries Ltd | Tetraketone porphyrin monomers and the porphyrin-based polymers thereof |
US4992244A (en) | 1988-09-27 | 1991-02-12 | The United States Of America As Represented By The Secretary Of The Navy | Films of dithiolene complexes in gas-detecting microsensors |
FI91573C (sv) | 1990-01-04 | 1994-07-11 | Neste Oy | Sätt att framställa elektroniska och elektro-optiska komponenter och kretsar |
US5274113A (en) | 1991-11-01 | 1993-12-28 | Molecular Probes, Inc. | Long wavelength chemically reactive dipyrrometheneboron difluoride dyes and conjugates |
US5250439A (en) | 1990-07-19 | 1993-10-05 | Miles Inc. | Use of conductive sensors in diagnostic assays |
US5238729A (en) | 1991-04-05 | 1993-08-24 | Minnesota Mining And Manufacturing Company | Sensors based on nanosstructured composite films |
DE4121138A1 (de) | 1991-06-26 | 1993-01-07 | Hoechst Ag | Polyarylenether und ihre verwendung |
US5323309A (en) | 1992-01-30 | 1994-06-21 | Siemens Industrial Automation, Inc. | Algorithm for optimizing data sampling in a discrete periodic system with a bounded rate of change for the discrete system periods |
US5237582A (en) | 1992-06-26 | 1993-08-17 | The Regents Of The University Of California | Conductive polymer dye laser and diode and method of use |
EP0581058A1 (fr) | 1992-07-08 | 1994-02-02 | Hoechst Aktiengesellschaft | Film de polyaryl éther |
US5493017A (en) | 1992-08-14 | 1996-02-20 | The Trustees Of The University Of Pennsylvania | Ring-metalated porphyrins |
US5674698A (en) | 1992-09-14 | 1997-10-07 | Sri International | Up-converting reporters for biological and other assays using laser excitation techniques |
US5312896A (en) | 1992-10-09 | 1994-05-17 | Sri International | Metal ion porphyrin-containing poly(imide) |
JP3198365B2 (ja) | 1993-05-14 | 2001-08-13 | 隆一 山本 | 線状ポリ(フェニレン−エチニレン−ビフェニレン−エチニレン)重合体 |
US5512635A (en) | 1993-05-27 | 1996-04-30 | Amoco Corporation | Process for preparing linear monofunctional and telechelic difunctional polymers and compositions obtained thereby |
WO1995016681A1 (fr) | 1993-12-14 | 1995-06-22 | The Trustees Of The University Of Pennsylvania | Polythiophenes derives et dispositifs mettant ceux-ci en oeuvre |
US5549851A (en) | 1994-01-25 | 1996-08-27 | Shin-Etsu Chemical Co., Ltd. | Conductive polymer composition |
US5675001A (en) | 1995-03-14 | 1997-10-07 | Hoffman/Barrett, L.L.C. | Heteroatom-functionalized porphyrazines and multimetallic complexes and polymers derived therefrom |
US5602228A (en) | 1995-06-06 | 1997-02-11 | Maxdem Incorporated | Nickel phosphate catalysts |
IL118469A (en) | 1995-06-15 | 2000-08-13 | Tanabe Seiyaku Co | Naphthalene derivatives their preparation and intermediates thereof |
US5567622A (en) | 1995-07-05 | 1996-10-22 | The Aerospace Corporation | Sensor for detection of nitrogen dioxide and nitrogen tetroxide |
US5998204A (en) | 1997-03-14 | 1999-12-07 | The Regents Of The University Of California | Fluorescent protein sensors for detection of analytes |
US6328932B1 (en) | 1997-05-08 | 2001-12-11 | Eltron Research, Inc. | Devices and methods for the detection of basic gases |
AT409306B (de) * | 1997-10-03 | 2002-07-25 | Hoffmann La Roche | Optisch chemischer sensor |
US6323309B1 (en) | 1997-12-01 | 2001-11-27 | Massachusetts Institute Of Technology | Conducting polymer transition metal hybrid materials and sensors |
US6124421A (en) | 1997-12-12 | 2000-09-26 | Alliedsignal Inc. | Poly(arylene ether) compositions and methods of manufacture thereof |
US6303733B1 (en) | 1997-12-12 | 2001-10-16 | Alliedsignal Inc. | Poly(arylene ether) homopolymer compositions and methods of manufacture thereof |
US5942638A (en) | 1998-01-05 | 1999-08-24 | The United States Of America As Represented By The Secretary Of The Air Force | Method of functionalizing polycyclic silicones and the resulting compounds |
US7088757B1 (en) | 1998-02-04 | 2006-08-08 | Semiconductors Gmbh | Use of spiro compounds as laser dyes |
US20050147534A1 (en) | 1998-05-05 | 2005-07-07 | Massachusetts Institute Of Technology | Emissive sensors and devices incorporating these sensors |
US8198096B2 (en) | 1998-05-05 | 2012-06-12 | Massachusetts Institute Of Technology | Emissive polymers and devices incorporating these polymers |
GB9811483D0 (en) | 1998-05-29 | 1998-07-29 | Photonic Research Systems Limi | Luminescence assay using cyclical excitation wavelength sequence |
AU5320199A (en) | 1998-07-23 | 2000-02-14 | Massachusetts Institute Of Technology | Block copolymer electrolyte |
US6610848B1 (en) * | 1998-07-27 | 2003-08-26 | Lumet Llc | Platinum complex dioxygen sensors |
EP1011154B1 (fr) | 1998-12-15 | 2010-04-21 | Sony Deutschland GmbH | Couche de polyimide comprenant un matériau fonctionnel, dispositif l'utilisant et procédé de fabrication ce dispositif |
DE19933104A1 (de) | 1999-07-15 | 2001-01-18 | Ingo Klimant | Phosphoreszierende Mikro- und Nanopartikel als Referenzstandard und Phosphoreszenzmarker |
EP1301458B1 (fr) | 2000-06-23 | 2015-09-09 | California Institute Of Technology | Synthese d'olefines fonctionnalisees et non fonctionnalisees par metathese croisee et metathese a fermeture de cycle |
US6469123B1 (en) | 2000-07-19 | 2002-10-22 | Honeywell International Inc. | Compositions and methods for thermosetting molecules in organic compositions |
DE10037390A1 (de) | 2000-08-01 | 2002-02-14 | Covion Organic Semiconductors | Verfahren zur Herstellung von olefinsubstituierten Aromaten oder Heteroaromaten |
AU2001296775A1 (en) | 2000-10-06 | 2002-04-15 | Kansas State University Research Foundation | Triptycene analogs |
US6939721B2 (en) | 2000-12-18 | 2005-09-06 | Agilent Technologies, Inc. | Fluorescence immunoassays using organo-metallic complexes for energy transfer |
CA2441279A1 (fr) | 2001-03-16 | 2002-09-26 | Qtl Biosystems, Llc | Dosages biologiques a base de super-extinction de luminescence de polymere fluorescent |
US6737279B1 (en) | 2001-03-28 | 2004-05-18 | The Regents Of The University Of California | Tuning the properties of conjugated polyelectrolytes and application in a biosensor platform |
US6444479B1 (en) | 2001-04-18 | 2002-09-03 | Hynix Semiconductor Inc. | Method for forming capacitor of semiconductor device |
DE10153450A1 (de) | 2001-10-30 | 2003-05-22 | Covion Organic Semiconductors | Verfahren zur Herstellung von Arylaminen |
DE10159946A1 (de) | 2001-12-06 | 2003-06-18 | Covion Organic Semiconductors | Prozess zur Herstellung von Aryl-Aryl gekoppelten Verbindungen |
US20040034223A1 (en) | 2002-02-07 | 2004-02-19 | Covalent Partners, Llc. | Amphiphilic molecular modules and constructs based thereon |
US7144950B2 (en) | 2003-09-17 | 2006-12-05 | The Regents Of The University Of California | Conformationally flexible cationic conjugated polymers |
AU2003269913A1 (en) | 2002-07-15 | 2004-02-02 | Massachusetts Institute Of Technology | Emissive, high charge transport polymers |
US6660820B1 (en) | 2002-07-24 | 2003-12-09 | International Business Machines Corporation | Low dielectric constant polymer and monomers used in their formation |
DE10241814A1 (de) | 2002-09-06 | 2004-03-25 | Covion Organic Semiconductors Gmbh | Prozeß zur Herstellung von Aryl-Aryl gekoppelten Verbindungen |
US20040106741A1 (en) | 2002-09-17 | 2004-06-03 | Kriesel Joshua W. | Nanofilm compositions with polymeric components |
DE10344690A1 (de) | 2003-09-25 | 2005-04-14 | Basf Ag | Verfahren zur Herstellung von 1,7-Octadien und dessen Verwendung |
WO2005073338A2 (fr) | 2003-12-04 | 2005-08-11 | Massachusetts Institute Of Technology | Polymeres semi-conducteurs fluorescents et dispositifs les comprenant |
US7759127B2 (en) | 2003-12-05 | 2010-07-20 | Massachusetts Institute Of Technology | Organic materials able to detect analytes |
JP4492847B2 (ja) | 2003-12-25 | 2010-06-30 | 株式会社ニデック | 眼屈折力測定装置 |
US20050220714A1 (en) | 2004-04-01 | 2005-10-06 | Susan Kauzlarich | Agents for use in magnetic resonance and optical imaging |
WO2006034081A2 (fr) | 2004-09-17 | 2006-03-30 | Massachusetts Institute Of Technology | Polymeres destines a la detection d'analytes |
US7700040B2 (en) | 2005-01-25 | 2010-04-20 | Ndsu-Research Foundation | Neurotoxin sensor based on chromophoric polymers |
US8101697B2 (en) | 2005-02-01 | 2012-01-24 | Bridgestone Corporation | Multi-functionalized high-trans elastomeric polymers |
WO2006085319A2 (fr) | 2005-02-10 | 2006-08-17 | Yeda Research And Development Company Ltd. | Structures redox actives et dispositifs utilisant celles-ci |
US7671166B2 (en) | 2005-11-22 | 2010-03-02 | Massachusetts Institute Of Technology | High internal free volume compositions for low-k dielectric and other applications |
US7521232B2 (en) | 2006-05-31 | 2009-04-21 | Icx Nomadics, Inc. | Emissive species for clinical imaging |
US8158437B2 (en) | 2006-08-04 | 2012-04-17 | Massachusetts Institute Of Technology | Luminescent detection of hydrazine and hydrazine derivatives |
EP2057196B1 (fr) | 2006-08-25 | 2010-02-24 | Dow Global Technologies Inc. | Production de composés téléchéliques par dépolymérisation par métathèse |
US8283423B2 (en) | 2006-09-29 | 2012-10-09 | Massachusetts Institute Of Technology | Polymer synthetic technique |
US8802447B2 (en) | 2006-10-05 | 2014-08-12 | Massachusetts Institute Of Technology | Emissive compositions with internal standard and related techniques |
US20090215189A1 (en) | 2006-10-27 | 2009-08-27 | Massachusetts Institute Of Technology | Sensor of species including toxins and chemical warfare agents |
-
2006
- 2006-10-27 US US11/588,881 patent/US20090215189A1/en not_active Abandoned
-
2007
- 2007-10-26 WO PCT/US2007/022670 patent/WO2008136805A2/fr active Application Filing
-
2014
- 2014-07-15 US US14/332,231 patent/US9429522B2/en active Active
Patent Citations (88)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4356429A (en) * | 1980-07-17 | 1982-10-26 | Eastman Kodak Company | Organic electroluminescent cell |
US4687732A (en) * | 1983-06-10 | 1987-08-18 | Yale University | Visualization polymers and their application to diagnostic medicine |
US4992302A (en) * | 1985-10-10 | 1991-02-12 | Quantex Corporation | Process for making photoluminescent materials |
US4752588A (en) * | 1987-03-30 | 1988-06-21 | Minnesota Mining And Manufacturing Company | Luminescent chemical sensor for gases |
US4927768A (en) * | 1988-06-29 | 1990-05-22 | Uop | Grown crystalline sensor and method for sensing |
US4946890A (en) * | 1988-08-11 | 1990-08-07 | The United States Of America As Represented By The Administrator, National Aeronautics And Space Administration | Novel ladder polymers for use as high temperature stable resins or coatings |
US5451683A (en) * | 1989-11-13 | 1995-09-19 | Affymax Technologies N.V. | Spatially-addressable immobilization of anti-ligands on surfaces |
US5194393A (en) * | 1989-11-21 | 1993-03-16 | Bayar Aktiengesellschaft | Optical biosensor and method of use |
US5723218A (en) * | 1990-04-16 | 1998-03-03 | Molecular Probes, Inc. | Dipyrrometheneboron difluoride labeled flourescent microparticles |
US5157261A (en) * | 1990-08-08 | 1992-10-20 | Eg&G Idaho, Inc. | Detection device for high explosives |
US5244813A (en) * | 1991-01-25 | 1993-09-14 | Trustees Of Tufts College | Fiber optic sensor, apparatus, and methods for detecting an organic analyte in a fluid or vapor sample |
US5254633A (en) * | 1991-07-10 | 1993-10-19 | Allied Signal Inc. | Process for the preparation of conductive polymer blends |
US5869592A (en) * | 1991-08-19 | 1999-02-09 | Maxdem Incorporated | Macromonomers having reactive side groups |
US5155149A (en) * | 1991-10-10 | 1992-10-13 | Boc Health Care, Inc. | Silicone polyurethane copolymers containing oxygen sensitive phosphorescent dye compounds |
US5532129A (en) * | 1991-11-07 | 1996-07-02 | Enterprise Partners Ii, L.P. | Self-organizing molecular photonic structures based on chromophore- and fluorophore-containing polynucleotides and methods of their use |
US5565322A (en) * | 1991-11-07 | 1996-10-15 | Nanogen, Inc. | Hybridization of polynucleotides conjugated with chromophores and fluorophores to generate donor-to donor energy transfer system |
US5563056A (en) * | 1992-02-13 | 1996-10-08 | Bsi Corporation | Preparation of crosslinked matrices containing covalently immobilized chemical species and unbound releasable chemical species |
US5607864A (en) * | 1992-04-07 | 1997-03-04 | Societe Prolabo | Fluorescent latices having very low detection thresholds for fluorescent emission |
US5236808A (en) * | 1992-04-13 | 1993-08-17 | E. I. Du Pont De Nemours And Company | Visible photosensitizers for photopolymerizable compositions |
US5580527A (en) * | 1992-05-18 | 1996-12-03 | Moltech Corporation | Polymeric luminophores for sensing of oxygen |
US5709994A (en) * | 1992-07-31 | 1998-01-20 | Syntex (U.S.A.) Inc. | Photoactivatable chemiluminescent matrices |
US5591787A (en) * | 1992-11-11 | 1997-01-07 | A.W.-Faber Castell Unternehmensverwaltung Gmbh & Co. | Hard lead for a pencil |
US5414069A (en) * | 1993-02-01 | 1995-05-09 | Polaroid Corporation | Electroluminescent polymers, processes for their use, and electroluminescent devices containing these polymers |
US5554747A (en) * | 1993-04-28 | 1996-09-10 | U.S. Philips Corporation | Optical amplifier |
US5364797A (en) * | 1993-05-20 | 1994-11-15 | Mobil Oil Corp. | Sensor device containing mesoporous crystalline material |
US5540999A (en) * | 1993-09-09 | 1996-07-30 | Takakazu Yamamoto | EL element using polythiophene |
US5546889A (en) * | 1993-10-06 | 1996-08-20 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing organic oriented film and method of manufacturing electronic device |
US5597890A (en) * | 1993-11-01 | 1997-01-28 | Research Corporation Technologies, Inc. | Conjugated polymer exciplexes and applications thereof |
US5700696A (en) * | 1993-11-08 | 1997-12-23 | Lucent Technologies Inc. | Method for preparation of conjugated arylene or heteroarylene vinylene polymer and device including same |
US5925517A (en) * | 1993-11-12 | 1999-07-20 | The Public Health Research Institute Of The City Of New York, Inc. | Detectably labeled dual conformation oligonucleotide probes, assays and kits |
US5705348A (en) * | 1993-12-10 | 1998-01-06 | California Institute Of Technology | Nucleic acid mediated electron transfer |
US5556524A (en) * | 1994-02-16 | 1996-09-17 | Valtion Teknillinen Tutkimuskeskus | Electron-conducting molecular preparations |
US5511547A (en) * | 1994-02-16 | 1996-04-30 | Biomedical Sensors, Ltd. | Solid state sensors |
US5710197A (en) * | 1994-07-14 | 1998-01-20 | Basf Aktiengesellschaft | Crosslinked polymer particles containing a fluorescent dye |
US5512490A (en) * | 1994-08-11 | 1996-04-30 | Trustees Of Tufts College | Optical sensor, optical sensing apparatus, and methods for detecting an analyte of interest using spectral recognition patterns |
US5585646A (en) * | 1994-09-14 | 1996-12-17 | The Regents Of The University Of California | Bio-electronic devices |
US5679773A (en) * | 1995-01-17 | 1997-10-21 | Affymax Technologies N.V | Reagants and methods for immobilized polymer synthesis and display |
US5629353A (en) * | 1995-05-22 | 1997-05-13 | The Regents Of The University Of California | Highly cross-linked nanoporous polymers |
US5710187A (en) * | 1995-05-22 | 1998-01-20 | The Regents Of The University Of California | Highly cross-linked nanoporous polymers |
US6962757B2 (en) * | 1996-08-02 | 2005-11-08 | The Ohio State Universtiy Research Foundation | Electroluminescence in light emitting polymers featuring deaggregated polymers |
US6020426A (en) * | 1996-11-01 | 2000-02-01 | Fuji Xerox Co., Ltd. | Charge-transporting copolymer, method of forming charge-transporting copolymer, electrophotographic photosensitive body, and electrophotographic device |
US6509110B1 (en) * | 1997-10-10 | 2003-01-21 | Axiva Gmbh | Triptycene derivatives and their use for opto-electronics applications, in particular as electroluminescent materials |
US6605693B1 (en) * | 1998-02-13 | 2003-08-12 | Covion Organic Semiconductors Gmbh | Triptycene polymers and copolymers |
US7208122B2 (en) * | 1998-05-05 | 2007-04-24 | Massachusetts Institute Of Technology | Emissive polymers and devices incorporating these polymers |
US20060120917A1 (en) * | 1998-05-05 | 2006-06-08 | Swager Timothy M | Emissive polymers and devices incorporating these polymers |
US7393503B2 (en) * | 1998-05-05 | 2008-07-01 | Massachusetts Institute Of Technology | Emissive polymers and devices incorporating these polymers |
US6259277B1 (en) * | 1998-07-27 | 2001-07-10 | University Of South Carolina | Use of molecular electrostatic potential to process electronic signals |
US6902830B2 (en) * | 1998-09-14 | 2005-06-07 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
US6830828B2 (en) * | 1998-09-14 | 2004-12-14 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
US20060029829A1 (en) * | 1999-03-23 | 2006-02-09 | Thompson Mark E | Organometallic complexes as phosphorescent emitters in organic LEDS |
US7001536B2 (en) * | 1999-03-23 | 2006-02-21 | The Trustees Of Princeton University | Organometallic complexes as phosphorescent emitters in organic LEDs |
US6589731B1 (en) * | 1999-05-05 | 2003-07-08 | The Regents Of The University Of California | Method for detecting biological agents |
US6713298B2 (en) * | 2000-01-31 | 2004-03-30 | Board Of Regents, The University Of Texas System | Method and apparatus for the delivery of samples to a chemical sensor array |
US7186355B2 (en) * | 2000-02-04 | 2007-03-06 | Massachusetts Institute Of Technology | Insulated nanoscopic pathways, compositions and devices of the same |
US20040241768A1 (en) * | 2000-05-08 | 2004-12-02 | Whitten David G. | Fluorescent polymer-QTL approach to biosensing |
US6743640B2 (en) * | 2000-05-08 | 2004-06-01 | Qtl Biosystems Llc | Fluorescent polymer-QTL approach to biosensing |
US6670645B2 (en) * | 2000-06-30 | 2003-12-30 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
US7129518B2 (en) * | 2000-06-30 | 2006-10-31 | E.I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpryidines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
US7078725B2 (en) * | 2000-06-30 | 2006-07-18 | E.I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
US7075102B2 (en) * | 2000-06-30 | 2006-07-11 | E.I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
US20040094769A1 (en) * | 2000-06-30 | 2004-05-20 | Vladimir Grushin | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylprimidines, and phenylquinolines and devices made with such compounds |
US20040089867A1 (en) * | 2000-06-30 | 2004-05-13 | Vladimir Grushin | Electroluminescent iridium compounds with fluorinated phenylpryidines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
US6946688B2 (en) * | 2000-06-30 | 2005-09-20 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds |
US6783814B2 (en) * | 2000-08-21 | 2004-08-31 | Massachusetts Institute Of Technology | Polymers with high internal free volume |
US20020177136A1 (en) * | 2000-08-23 | 2002-11-28 | Mcbranch Duncan W. | Peptide nucleic acid based molecular sensors for nucleic acids |
US6556335B2 (en) * | 2000-08-31 | 2003-04-29 | Alcatel | Optical signal processor |
US20050226775A1 (en) * | 2000-10-17 | 2005-10-13 | Aker Craig A | Vapor sensing instrument for ultra trace chemical detection |
US6664111B2 (en) * | 2001-08-22 | 2003-12-16 | 3M Innovative Properties Company | Fluorescence based oxygen sensor systems |
US20030054413A1 (en) * | 2001-08-23 | 2003-03-20 | Sriram Kumaraswamy | Bio-sensing platforms for detection and quantitation of biological molecules |
US20040197602A1 (en) * | 2001-11-07 | 2004-10-07 | Dobbs Kerwin D. | Electroluminescent platinum compounds and devices made with such compounds |
US20030096138A1 (en) * | 2001-11-07 | 2003-05-22 | Lecloux Daniel David | Electroluminescent iridium compounds having red-orange or red emission and devices made with such compounds |
US20030134959A1 (en) * | 2001-11-30 | 2003-07-17 | Hancock Lawrence F. | Luminescent polymer particles |
US6919139B2 (en) * | 2002-02-14 | 2005-07-19 | E. I. Du Pont De Nemours And Company | Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds |
US20060057425A1 (en) * | 2002-02-14 | 2006-03-16 | Vladimir Grushin | Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds |
US20050186447A1 (en) * | 2002-02-14 | 2005-08-25 | Vladimir Grushin | Electroluminescent iridium compounds with phosphinoalkoxides and phenylpyridines or phenylpyrimidines and devices made with such compounds |
US20050285517A1 (en) * | 2002-09-06 | 2005-12-29 | Gang Yu | Methods for producing full-color organic electroluminescent devices |
US7098060B2 (en) * | 2002-09-06 | 2006-08-29 | E.I. Du Pont De Nemours And Company | Methods for producing full-color organic electroluminescent devices |
US20040175768A1 (en) * | 2002-11-14 | 2004-09-09 | Kushon Stuart A. | Methods of biosensing using fluorescent polymers and quencher-tether-ligand bioconjugates |
US20060024707A1 (en) * | 2002-12-19 | 2006-02-02 | Robert Deans | Luminescent polymers and methods of use thereof |
US20040121337A1 (en) * | 2002-12-19 | 2004-06-24 | Nomadics, Inc. | Luminescent polymers and methods of use thereof |
US7029765B2 (en) * | 2003-04-22 | 2006-04-18 | Universal Display Corporation | Organic light emitting devices having reduced pixel shrinkage |
US7087321B2 (en) * | 2003-04-22 | 2006-08-08 | Universal Display Corporation | Organic light emitting devices having reduced pixel shrinkage |
US20040235184A1 (en) * | 2003-05-21 | 2004-11-25 | Swager Timothy M. | Reversible resistivity-based sensors |
US20050014160A1 (en) * | 2003-07-18 | 2005-01-20 | Sriram Kumaraswamy | Assays for protease enzyme activity |
US20050176624A1 (en) * | 2003-08-07 | 2005-08-11 | Thompson Mark E. | Organometallic complexes as singlet oxygen sensitizers |
US20050037232A1 (en) * | 2003-08-14 | 2005-02-17 | Eastman Kodak Company | Microcavity oled device |
US6835835B1 (en) * | 2003-12-05 | 2004-12-28 | Eastman Kodak Company | Synthesis for organometallic cyclometallated transition metal complexes |
US7417146B2 (en) * | 2004-12-17 | 2008-08-26 | Eastman Kodak Company | Facial tris-cyclometallated group 9 complex synthesis |
Non-Patent Citations (2)
Title |
---|
Samuel William Thomas III. "Molecules and Materials for the Optical Detection of Explosives and Toxic Chemicals," Dissertation, Massachusetts Institute of Technology, June 2006. * |
Thomas III, S. W. et al. "Towards chemosensing phosphorescent conjugated polymers: cyclometalated platinum(II) poly(phenylene)s," J. Mater. Chem. 2005, 2829-2835. * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8367001B2 (en) | 1998-05-05 | 2013-02-05 | Massachusetts Institute Of Technology | Emissive sensors and devices incorporating these sensors |
US8465678B2 (en) | 1998-05-05 | 2013-06-18 | Massachusetts Institute Of Technology | Emissive polymers and devices incorporating these polymers |
US8617819B2 (en) | 2004-09-17 | 2013-12-31 | Massachusetts Institute Of Technology | Polymers for analyte detection |
US8283423B2 (en) | 2006-09-29 | 2012-10-09 | Massachusetts Institute Of Technology | Polymer synthetic technique |
US8802447B2 (en) | 2006-10-05 | 2014-08-12 | Massachusetts Institute Of Technology | Emissive compositions with internal standard and related techniques |
US9429522B2 (en) | 2006-10-27 | 2016-08-30 | Massachusetts Institute Of Technology | Sensor of species including toxins and chemical warfare agents |
EP2646806A4 (fr) * | 2010-12-01 | 2017-06-07 | Nalco Company | Procédé et appareil permettant de déterminer les paramètres d'un système en vue de réduire la corrosion affectant une unité de traitement du pétrole brut |
US8435797B2 (en) | 2010-12-07 | 2013-05-07 | The United States Of America As Represented By The Secretary Of The Army | Electroluminescent diode sensor |
Also Published As
Publication number | Publication date |
---|---|
US9429522B2 (en) | 2016-08-30 |
WO2008136805A3 (fr) | 2008-12-24 |
WO2008136805A2 (fr) | 2008-11-13 |
US20150247805A1 (en) | 2015-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9429522B2 (en) | Sensor of species including toxins and chemical warfare agents | |
Thomas et al. | Dark-field oxidative addition-based chemosensing: New bis-cyclometalated Pt (II) complexes and phosphorescent detection of cyanogen halides | |
Craig et al. | Photophysical investigation of palladium (II) ortho-metalated complexes | |
Zhao et al. | Highly selective phosphorescent chemosensor for fluoride based on an iridium (III) complex containing arylborane units | |
Song et al. | Ratiometric fluorescence sensing of fluoride ions by triarylborane–phenanthroimidazole conjugates | |
Li et al. | Syntheses, structures, and sensitized lanthanide luminescence by Pt→ Ln (Ln= Eu, Nd, Yb) energy transfer for heteronuclear PtLn2 and Pt2Ln4 complexes with a terpyridyl-functionalized alkynyl ligand | |
Cárdenas et al. | Synthesis, X-ray structure, and electrochemical and excited-state properties of multicomponent complexes made of a [Ru (tpy) 2] 2+ unit covalently linked to a [2]-catenate moiety. Controlling the energy-transfer direction by changing the catenate metal ion | |
De Silva et al. | Adducts of europium β-diketonates with nitrogen p, p′-disubstituted bipyridine and phenanthroline ligands: Synthesis, structural characterization, and luminescence studies | |
Kadarkaraisamy et al. | Selective luminescence detection of cadmium (II) and mercury (II) utilizing sulfur-containing anthraquinone macrocycles (part 2) and formation of an unusual Hg22+-crown ether dimer via reduction of Hg (II) by DMF | |
Ohno et al. | Chromism of tartrate-bridged clamshell-like platinum (II) complex: intramolecular Pt–Pt interaction-induced luminescence vapochromism and intermolecular interactions-triggered thermochromism | |
Liu et al. | Multiresponsive tetradentate phosphorescent metal complexes as highly sensitive and robust luminescent oxygen sensors: Pd (II) versus Pt (II) and 1, 2, 3-triazolyl versus 1, 2, 4-triazolyl | |
Goldstein et al. | Photophysical properties of a new series of water soluble iridium bisterpyridine complexes functionalised at the 4′ position | |
CA2816432A1 (fr) | Composes et procedes pour ameliorer la luminescence metallique qui peut etre coupee de maniere selective | |
Ziessel et al. | Highly efficient blue photoexcitation of europium in a bimetallic Pt–Eu complex | |
Pan et al. | An anionic Cd-based coordination polymer exhibiting ion-exchange behavior for photoluminescence and selective dye adsorption | |
Wang et al. | Europium (III) complex fluorescent sensor for dual channel recognition of Sn2+ and Cu2+ ions in water | |
US20080064893A1 (en) | Emissive monomeric metal complexes | |
Li et al. | Sensitized Eu III luminescence through energy transfer from PtM 2 (M= Ag or Au) alkynyl chromophores in PtM 2 Eu 2 heteropentanuclear complexes | |
Volostnykh et al. | Platinum (II) and palladium (II) complexes with electron-deficient meso-diethoxyphosphorylporphyrins: Synthesis, structure and tuning of photophysical properties by varying peripheral substituents | |
Fiorini et al. | Colourless luminescent solar concentrators based on Iridium (III)-Phosphors | |
Palabıyık et al. | New design of cyclotriphosphazene derivatives bearing carbazole units: The syntheses, characterization, and photophysical properties | |
Ding et al. | Detection of picric acid by terpy‐based metallo‐supramolecular fluorescent coordination polymers in aqueous media | |
Toscani et al. | Multimetallic alkenyl complexes bearing macrocyclic dithiocarbamate ligands | |
Mastropietro et al. | 3, 5-Disubstituted-2-(2′-pyridylpyrroles) Ir (III) complexes: Structural and photophysical characterization | |
Song et al. | Design, synthesis, crystal structure and photophysical studies of an emissive, terbium based sensor for zinc |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MASSACHUSETTS INSTITUTE OF TECHNOLOGY, MASSACHUSET Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SWAGER, TIMOTHY M.;THOMAS, SAMUEL W., III;VENKATESAN, KOUSHIK;REEL/FRAME:019252/0492 Effective date: 20070215 |
|
AS | Assignment |
Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA Free format text: CONFIRMATORY LICENSE;ASSIGNOR:MASSACHUSETTS INSTITUTE OF TECHNOLOGY;REEL/FRAME:028260/0385 Effective date: 20120216 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |