US20090210844A1 - Systems and methods involving designing integrated circuits - Google Patents

Systems and methods involving designing integrated circuits Download PDF

Info

Publication number
US20090210844A1
US20090210844A1 US12/164,642 US16464208A US2009210844A1 US 20090210844 A1 US20090210844 A1 US 20090210844A1 US 16464208 A US16464208 A US 16464208A US 2009210844 A1 US2009210844 A1 US 2009210844A1
Authority
US
United States
Prior art keywords
profile
shielding
net segment
level
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/164,642
Inventor
Karl L. Ladin
Erik S. Unterborn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mentor Graphics Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Priority to US12/164,642 priority Critical patent/US20090210844A1/en
Publication of US20090210844A1 publication Critical patent/US20090210844A1/en
Assigned to MENTOR GRAPHICS CORPORATION reassignment MENTOR GRAPHICS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INTERNATIONAL BUSINESS MACHINES CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level

Definitions

  • This invention relates generally to systems and methods for designing integrated circuits and, more particularly, to a system and method for providing interactive shield wire generation in a chip layout design tool.
  • IC integrated circuits
  • shielding lines may be added around certain net segments to reduce noise in the net segments. Adding shielding to specific lines may be time consuming in large circuits. Therefore, it is desirable that a system for designing IC's allows a user to designate specific line segments that should be shielded. The system then adds the shielding lines to the circuit design responsive to the designation of the user.
  • the method comprising, receiving a first input designating a first net segment profile on a first level in an integrated circuit for shielding, determining whether the designated first net segment profile is in electrical communication with other net segment profiles, determining whether the designated net segment profiles determined to be in electrical communication with the first net segment profile for shielding are located in a different level than the first net segment profile, designating net segment profiles determined to be in electrical communication with the first net segment profile for shielding, defining a first shielding profile corresponding to the designated net segment profiles on the first level, defining a second shielding profile corresponding to the designated net segment profiles on the second level, determining which segments of the first shielding profile and the second shielding profile contact features of the integrated circuit, removing segments of the first shielding profile and the second shielding profile determined to contact features in the integrated circuit, determining which segments of the first shielding profile and the second shielding profile are non-continuous, removing segments of the first shielding profile
  • FIGS. 1 a - 1 b illustrate an exemplary method for designing shielding in IC circuits.
  • FIGS. 2-9 illustrate an example of the steps of the method illustrated in FIGS. 1 a - 1 b applied to an IC design.
  • FIG. 10 illustrates an exemplary embodiment of a system for designing shielding in IC circuits.
  • IC integrated circuits
  • IC integrated circuits
  • a computer system including a processor and software.
  • shielding is needed in certain portions of the IC to reduce noise.
  • a designer returns to a plan for the IC developed on a computer and inserts the shielding lines around the components that will use shielding.
  • the design process of shielding uses a number of steps that take time and effort from the designer. It is desirable for a method and system to substantially automate the steps for adding shielding in an IC design.
  • FIG. 10 illustrates an exemplary embodiment of a system for designing shielding in IC's.
  • the system of FIG. 10 includes a processor 901 communicatively linked to a display 903 and an input device 905 .
  • the processor 901 is operative to execute an exemplary method illustrated in FIGS. 1 a and 1 b.
  • FIG. 2 illustrates a top view of an example of a portion of an IC 200 .
  • IC 200 includes a first segment profile 201 , a second segment profile 203 , a third segment profile 205 , and IC features 207 .
  • the IC features 207 may include, for example, components in the IC and other features such as, lines and contact points.
  • the segment profiles are located on different vertical levels in the IC and are connected with vias (not shown).
  • the method begins in block 101 , where the processor 901 (of FIG. 10 ) receives an input from a user designating a net segment for shielding.
  • a user may make the designation by, for example, selecting a particular segment such as the first segment profile 201 (from FIG. 2 ) with the input device 905 .
  • the processor 901 determines what other net segments are in electrical communication with the designated net segment.
  • the processor 901 designates the second and third segment profiles 203 and 205 for shielding.
  • the processor 901 receives values that to define the shielding profile for the segment profiles on the same vertical layer level in the IC as the first segment profile 201 in block 105 .
  • the values that define the shielding profile are: Net segment profile, Offset space, and Shield width.
  • the dimensions of the shielding profile are defined by the equations:
  • the processor 901 receives the values to the shielding profile and determines the shield outer edge and the shield inner edge, the processor 901 defines the shielding profile.
  • FIG. 3 illustrates the shield outer edge 202 and the shield inner edge 204 of the first segment profile 201 .
  • the net segment profile is the first segment profile 201 while the offset space (a) is the distance between the shield inner edge 204 and the first segment profile 201 .
  • the shield width (b) is the distance between the shield outer edge 202 and the shield inner edge 204 .
  • FIG. 4 illustrates a first shield 206 defined by the shield outer edge 202 and the shield inner edge 204 .
  • the processor 901 removes segments of the shielding profiles causing a short to other components and features of IC (i.e. in contact with other components or features). Since the first shield 206 does not contact other features in the IC, the first shield 206 remains unchanged following block 107 .
  • the processor 901 removes any non-continuous sections of the first shield 206 . Since the first shield 206 has no non-continuous sections, the first shield 206 remains unchanged following block 109 .
  • the processor 901 determines whether the designated segment profiles determined to be in electrical communication with the first segment profile 201 for shielding are located in a different level than the first segment profile 201 . In block 103 , the processor 901 determined that the second segment profile 203 and the third segment profile 205 are in electrical communication with the first segment profile 201 . In the illustrated example each of the segment profiles are in different vertical levels. Therefore, the processor 901 determines that the segment profiles 203 and 205 are in different vertical levels in the IC circuit.
  • the processor 901 receives the values that define the shielding profile for the segment profiles on the same level as the second segment profile 203 in block 113 .
  • the processor 901 receives a second net segment profile, a second offset space, and a second shield width values for a second shield.
  • FIG. 5 illustrates a shield outer edge 208 and a second shield inner edge 210 of the second segment profile 203 .
  • FIG. 6 illustrates a second shield 212 drawn around the second segment profile 203 .
  • the processor 901 removes segments of second shield 212 causing a short to other components and features of integrated circuit (i.e. in contact with other components or features).
  • the second shield 212 contacts the IC features 207 .
  • the removed sections 214 of the second shield 212 are shown in FIG. 7 .
  • the processor 901 inserts vias 216 illustrated in FIG. 8 .
  • the vias 216 electrically connect the first shield 206 in one level to the second shield 212 located in another level.
  • the processor 901 determines what segments of the second shield 212 are non-continuous and removes the non-continuous segments in block 119 .
  • a non-continuous section 218 is shown.
  • FIG. 9 illustrates the resultant structure of the IC 200 after the non-continuous section 218 is removed.
  • the first shielding profile 206 , the second shield 212 , and the vias 216 are output to the display 903 .
  • FIGS. 1 a and 1 b The illustrated method of FIGS. 1 a and 1 b is not limited to two net segments in two different levels, but may be applied to a plurality of net segments in a plurality of levels. Thus, the method may include similar steps regarding a plurality of segments.
  • FIG. 9 illustrates a resultant structure after similar methods illustrated in FIGS. 1 a - 1 b are applied to the third segment profile 205 .

Abstract

A system comprising, a processor operative to, receive a first input designating a first net segment profile on a first level in an integrated circuit for shielding, determine whether the designated first net segment profile is in electrical communication with other net segment profiles, determine whether the net segment profiles are located in a different level than the first net segment profile, define a first shielding profile corresponding to the net segment profiles on the first level, define a second shielding profile corresponding to the net segment profiles on the second level, determine and removing segments of the first shielding profile and the second shielding profile contact features of the integrated circuit, determine and removing segments of the first shielding profile and the second shielding profile are non-continuous, define vias at the intersections of first shielding profile and the second shielding profile, and a processor operative to display the output.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of prior application Ser. No. 12/033,668, filed Feb. 19, 2008.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates generally to systems and methods for designing integrated circuits and, more particularly, to a system and method for providing interactive shield wire generation in a chip layout design tool.
  • 2. Description of Background
  • When designing integrated circuits (IC's), it may be desirable to add shielding lines around certain net segments to reduce noise in the net segments. Adding shielding to specific lines may be time consuming in large circuits. Therefore, it is desirable that a system for designing IC's allows a user to designate specific line segments that should be shielded. The system then adds the shielding lines to the circuit design responsive to the designation of the user.
  • SUMMARY OF THE INVENTION
  • The shortcomings of the prior art are overcome and additional advantages are achieved through an exemplary method for designing shielding in integrated circuits, the method comprising, receiving a first input designating a first net segment profile on a first level in an integrated circuit for shielding, determining whether the designated first net segment profile is in electrical communication with other net segment profiles, determining whether the designated net segment profiles determined to be in electrical communication with the first net segment profile for shielding are located in a different level than the first net segment profile, designating net segment profiles determined to be in electrical communication with the first net segment profile for shielding, defining a first shielding profile corresponding to the designated net segment profiles on the first level, defining a second shielding profile corresponding to the designated net segment profiles on the second level, determining which segments of the first shielding profile and the second shielding profile contact features of the integrated circuit, removing segments of the first shielding profile and the second shielding profile determined to contact features in the integrated circuit, determining which segments of the first shielding profile and the second shielding profile are non-continuous, removing segments of the first shielding profile and the second shielding profile determined to be non-continuous, defining vias at the intersections of first shielding profile and the second shielding profile, wherein the vias are operative to connect the first shielding profile on the first level to the second shielding profile on the second level, and outputting the first shielding profile, the second shielding profile, and the vias to a display.
  • Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention. For a better understanding of the invention with advantages and features, refer to the description and to the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject matter that is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other aspects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
  • FIGS. 1 a-1 b illustrate an exemplary method for designing shielding in IC circuits.
  • FIGS. 2-9 illustrate an example of the steps of the method illustrated in FIGS. 1 a-1 b applied to an IC design.
  • FIG. 10 illustrates an exemplary embodiment of a system for designing shielding in IC circuits.
  • The detailed description explains the preferred embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Systems and methods involving designing integrated circuits are provided.
  • In this regard, integrated circuits (IC's) are often designed using a computer system including a processor and software. Often during the design process, it is determined that shielding is needed in certain portions of the IC to reduce noise. Typically, a designer returns to a plan for the IC developed on a computer and inserts the shielding lines around the components that will use shielding. The design process of shielding uses a number of steps that take time and effort from the designer. It is desirable for a method and system to substantially automate the steps for adding shielding in an IC design.
  • FIG. 10 illustrates an exemplary embodiment of a system for designing shielding in IC's. The system of FIG. 10 includes a processor 901 communicatively linked to a display 903 and an input device 905. In operation, the processor 901 is operative to execute an exemplary method illustrated in FIGS. 1 a and 1 b.
  • The method illustrated in FIGS. 1 a and 1 b is further illustrated in FIGS. 2-8. FIG. 2 illustrates a top view of an example of a portion of an IC 200. IC 200 includes a first segment profile 201, a second segment profile 203, a third segment profile 205, and IC features 207. The IC features 207 may include, for example, components in the IC and other features such as, lines and contact points. In the illustrated example, the segment profiles are located on different vertical levels in the IC and are connected with vias (not shown).
  • Referring to FIG. 1 a, the method begins in block 101, where the processor 901 (of FIG. 10) receives an input from a user designating a net segment for shielding. A user may make the designation by, for example, selecting a particular segment such as the first segment profile 201 (from FIG. 2) with the input device 905. In block 103, once the processor 901 has received the designated net segment for shielding, the processor 901 determines what other net segments are in electrical communication with the designated net segment. In IC 200, since the first segment profile 201 is connected to the second and third segment profiles 203 and 205, the processor 901 designates the second and third segment profiles 203 and 205 for shielding.
  • The processor 901 receives values that to define the shielding profile for the segment profiles on the same vertical layer level in the IC as the first segment profile 201 in block 105. The values that define the shielding profile are: Net segment profile, Offset space, and Shield width. The dimensions of the shielding profile are defined by the equations:

  • Shield outer edge=Net segment profile+Offset space+Shield width

  • Shield inner edge=Net segment profile+Offset space
  • Once the processor 901 receives the values to the shielding profile and determines the shield outer edge and the shield inner edge, the processor 901 defines the shielding profile.
  • FIG. 3 illustrates the shield outer edge 202 and the shield inner edge 204 of the first segment profile 201. The net segment profile is the first segment profile 201 while the offset space (a) is the distance between the shield inner edge 204 and the first segment profile 201. The shield width (b) is the distance between the shield outer edge 202 and the shield inner edge 204.
  • FIG. 4 illustrates a first shield 206 defined by the shield outer edge 202 and the shield inner edge 204. In block 107, the processor 901 removes segments of the shielding profiles causing a short to other components and features of IC (i.e. in contact with other components or features). Since the first shield 206 does not contact other features in the IC, the first shield 206 remains unchanged following block 107. In block 109, the processor 901 removes any non-continuous sections of the first shield 206. Since the first shield 206 has no non-continuous sections, the first shield 206 remains unchanged following block 109.
  • In block 111, the processor 901 determines whether the designated segment profiles determined to be in electrical communication with the first segment profile 201 for shielding are located in a different level than the first segment profile 201. In block 103, the processor 901 determined that the second segment profile 203 and the third segment profile 205 are in electrical communication with the first segment profile 201. In the illustrated example each of the segment profiles are in different vertical levels. Therefore, the processor 901 determines that the segment profiles 203 and 205 are in different vertical levels in the IC circuit.
  • Referring now to FIG. 1 b, the processor 901 receives the values that define the shielding profile for the segment profiles on the same level as the second segment profile 203 in block 113. The processor 901 receives a second net segment profile, a second offset space, and a second shield width values for a second shield. FIG. 5 illustrates a shield outer edge 208 and a second shield inner edge 210 of the second segment profile 203. FIG. 6 illustrates a second shield 212 drawn around the second segment profile 203.
  • In block 115, the processor 901 removes segments of second shield 212 causing a short to other components and features of integrated circuit (i.e. in contact with other components or features). In the illustrated example of FIG. 6, the second shield 212 contacts the IC features 207. The removed sections 214 of the second shield 212 are shown in FIG. 7.
  • In block 117, the processor 901 inserts vias 216 illustrated in FIG. 8. The vias 216 electrically connect the first shield 206 in one level to the second shield 212 located in another level. The processor 901 determines what segments of the second shield 212 are non-continuous and removes the non-continuous segments in block 119. In FIG. 8, a non-continuous section 218 is shown. FIG. 9 illustrates the resultant structure of the IC 200 after the non-continuous section 218 is removed.
  • Finally, in block 121, the first shielding profile 206, the second shield 212, and the vias 216 are output to the display 903.
  • The illustrated method of FIGS. 1 a and 1 b is not limited to two net segments in two different levels, but may be applied to a plurality of net segments in a plurality of levels. Thus, the method may include similar steps regarding a plurality of segments. FIG. 9 illustrates a resultant structure after similar methods illustrated in FIGS. 1 a-1 b are applied to the third segment profile 205.
  • While the preferred embodiment to the invention has been described, it will be understood that those skilled in the art, both now and in the future, may make various improvements and enhancements which fall within the scope of the claims which follow. These claims should be construed to maintain the proper protection for the invention first described.

Claims (1)

1. A system comprising:
a processor operative to:
receive a first input designating a first net segment profile on a first level in an integrated circuit for shielding;
determine whether the designated first net segment profile is in electrical communication with other net segment profiles;
determine whether the designated net segment profiles determined to be in electrical communication with the first net segment profile for shielding are located in a different level than the first net segment profile;
designate net segment profiles determined to be in electrical communication with the first net segment profile for shielding;
define a first shielding profile corresponding to the designated net segment profiles on the first level;
define a second shielding profile corresponding to the designated net segment profiles on the second level;
determine which segments of the first shielding profile and the second shielding profile contact features of the integrated circuit;
remove segments of the first shielding profile and the second shielding profile determined to contact features in the integrated circuit;
determine which segments of the first shielding profile and the second shielding profile are non-continuous;
remove segments ofthe first shielding profile and the second shielding profile determined to be non-continuous;
define vias at the intersections of first shielding profile and the second shielding profile, wherein the vias are operative to connect the first shielding profile on the first level to the second shielding profile on the second level; and
output the first shielding profile, the second shielding profile, and the vias;
a display operative to receive and display the first shielding profile, the second shielding profile, and the vias to a user.
US12/164,642 2008-02-19 2008-06-30 Systems and methods involving designing integrated circuits Abandoned US20090210844A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/164,642 US20090210844A1 (en) 2008-02-19 2008-06-30 Systems and methods involving designing integrated circuits

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/033,668 US7409662B1 (en) 2008-02-19 2008-02-19 Systems and methods involving designing shielding profiles for integrated circuits
US12/164,642 US20090210844A1 (en) 2008-02-19 2008-06-30 Systems and methods involving designing integrated circuits

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/033,668 Continuation US7409662B1 (en) 2008-02-19 2008-02-19 Systems and methods involving designing shielding profiles for integrated circuits

Publications (1)

Publication Number Publication Date
US20090210844A1 true US20090210844A1 (en) 2009-08-20

Family

ID=39670893

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/033,668 Active US7409662B1 (en) 2008-02-19 2008-02-19 Systems and methods involving designing shielding profiles for integrated circuits
US12/164,642 Abandoned US20090210844A1 (en) 2008-02-19 2008-06-30 Systems and methods involving designing integrated circuits

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/033,668 Active US7409662B1 (en) 2008-02-19 2008-02-19 Systems and methods involving designing shielding profiles for integrated circuits

Country Status (1)

Country Link
US (2) US7409662B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8881086B2 (en) 2002-07-29 2014-11-04 Synopsys, Inc. Integrated circuit devices and methods and apparatuses for designing integrated circuit devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7003750B2 (en) * 2002-08-01 2006-02-21 Sun Microsystems, Inc. Topology based wire shielding generation

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7003750B2 (en) * 2002-08-01 2006-02-21 Sun Microsystems, Inc. Topology based wire shielding generation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8881086B2 (en) 2002-07-29 2014-11-04 Synopsys, Inc. Integrated circuit devices and methods and apparatuses for designing integrated circuit devices

Also Published As

Publication number Publication date
US7409662B1 (en) 2008-08-05

Similar Documents

Publication Publication Date Title
US6543041B1 (en) Method and apparatus for reducing signal integrity and reliability problems in ICS through netlist changes during placement
US8957325B2 (en) Optimized via cutouts with ground references
US7872355B2 (en) Semiconductor integrated circuit and method of designing semiconductor integrated circuit
US7458053B2 (en) Method for generating fill and cheese structures
CN104750886A (en) Method for confirming pin access area in integrated circuit layout wiring
US7409662B1 (en) Systems and methods involving designing shielding profiles for integrated circuits
JP3654190B2 (en) Wiring design method and wiring design apparatus
US20080059934A1 (en) Apparatus and method for designing semiconductor devices
US8769473B1 (en) Wiring design support apparatus, method and computer-readable recording medium
JP4273140B2 (en) Board layout check system and board layout check method
US7203921B2 (en) Method and system for designing an integrated circuit with reduced noise
CN113939091B (en) Impedance matching design method and device of link electrostatic impedance device and printed circuit board
JP2009151363A (en) Board design device
US20080209367A1 (en) Reliability design method
US10436841B2 (en) Use of wrapper cells to improve signal routing in integrated circuits
JP2010140279A (en) Method for designing electronic system
US20040205685A1 (en) Routing method using a CAD tool
JP4082906B2 (en) Clearance check method and computer program for printed circuit board CAD
JP2008210858A (en) Method of designing semiconductor integrated circuit, designing device and cad program
JP3019032B2 (en) Method for checking design rules in layout data of semiconductor integrated circuit and apparatus for implementing the method
US20040153987A1 (en) Method and system for connecting computer-generated rectangles
JP2006039909A (en) Electric wiring board design support device and design rule checking device
EP2741221A2 (en) Apparatus, method, and program for crosstalk computation
JP4971123B2 (en) Board design equipment
JP2005129869A (en) Method of designing semiconductor integrated circuit

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE

AS Assignment

Owner name: MENTOR GRAPHICS CORPORATION, OREGON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:029733/0156

Effective date: 20121231