US20090196509A1 - System and method for optimizing camera settings - Google Patents

System and method for optimizing camera settings Download PDF

Info

Publication number
US20090196509A1
US20090196509A1 US12012847 US1284708A US2009196509A1 US 20090196509 A1 US20090196509 A1 US 20090196509A1 US 12012847 US12012847 US 12012847 US 1284708 A US1284708 A US 1284708A US 2009196509 A1 US2009196509 A1 US 2009196509A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
image
setting
capturing device
image capturing
live
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12012847
Other versions
US8111942B2 (en )
Inventor
Steven M. Farrer
Neil Morrow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maishi Electronic (Shanghai) Ltd
Original Assignee
O2Micro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, camcorders, webcams, camera modules specially adapted for being embedded in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/232Devices for controlling television cameras, e.g. remote control ; Control of cameras comprising an electronic image sensor
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/222Studio circuitry; Studio devices; Studio equipment ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/225Television cameras ; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, camcorders, webcams, camera modules specially adapted for being embedded in other devices, e.g. mobile phones, computers or vehicles
    • H04N5/232Devices for controlling television cameras, e.g. remote control ; Control of cameras comprising an electronic image sensor
    • H04N5/23218Control of camera operation based on recognized objects
    • H04N5/23219Control of camera operation based on recognized objects where the recognized objects include parts of the human body, e.g. human faces, facial parts or facial expressions

Abstract

There is provided an electronic system including an image capturing device and a comparator coupled to the image capturing device. The image capturing device is operable for capturing a live image. The comparator generates a feedback signal by comparing the live image with a reference image and adjusts at least one setting of the image capturing device by the feedback signal.

Description

    TECHNICAL FIELD
  • The invention relates to the field of cameras.
  • BACKGROUND
  • A facial recognition system is a system that can automatically identify a person by matching a live image of the person to a reference image.
  • FIG. 1 illustrates a conventional facial recognition system 100 including a camera 102, a reference image database 104, and a comparator 106. Some reference images are stored in the reference image database 104. The camera 102 captures a live image of a user and forwards the live image to the comparator 106. The comparator 106 compares the live image with the reference images in the reference image database 104, and generates a recognition result indicating whether the live image can match to a reference image.
  • This conventional facial recognition system may perform well when the current environment (the lighting and direction of lighting, etc.) is similar to the environment in which the reference image is taken. However, when the current environment is different from the environment in which the reference image is taken, the performance of the facial recognition system can drop significantly and the live image of the user may not match to any reference image in the database, which may lead to a high possibility of recognition failure.
  • SUMMARY
  • According to one embodiment of the invention, there is provided an electronic system including an image capturing device and a comparator coupled to the image capturing device. The image capturing device is operable for capturing a live image. The comparator generates a feedback signal by comparing the live image with a reference image and adjusts at least one setting of the image capturing device by the feedback signal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Features and advantages of embodiments of the invention will become apparent as the following detailed description proceeds, and upon reference to the drawings, where like numerals depict like elements, and in which:
  • FIG. 1 illustrates a conventional facial recognition system.
  • FIG. 2 illustrates a facial recognition system, in accordance with one embodiment of the present invention.
  • FIG. 3 illustrates a computer system, in accordance with one embodiment of the present invention.
  • FIG. 4 illustrates a flowchart of optimizing camera settings, in accordance with one embodiment of the present invention.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to the embodiments of the present invention. While the invention will be described in conjunction with these embodiments, it will be understood that they are not intended to limit the invention to these embodiments. Additional advantages and aspects of the present disclosure will become readily apparent to those skilled in the art from the following detailed description. As will be described, the present disclosure is capable of modification in various obvious respects, all without departing from the spirit of the present disclosure. Accordingly, the drawings and description are to be regarded as illustrative in nature, and not as limitative.
  • FIG. 2 illustrates a facial recognition system 200, in accordance with one embodiment of the present invention. The facial recognition system 200 includes an image capturing device, such as a camera 202, a reference image database 204, and a comparator 206. One or more reference images can be stored in the reference image database 204. The camera 202 is capable of capturing a live image. The comparator 206 is coupled to the camera 202 and is capable of generating a feedback signal to the camera 202 by comparing the live image with at least one reference image and is capable of adjusting at least one setting of the camera 202 based on the feedback signal. The comparator 206 is further capable of determining a direction of adjustment of the camera setting(s).
  • In operation, the camera 202 captures a first live image of a person (e.g., a user of the facial recognition system 200) and forwards the first live image to the comparator 206. The comparator 206 compares the first live image with the reference image(s) in the reference image database 104 to determine a first matching percentage which can indicate a similarity between the first live image and the reference image(s), and to determine whether the first live image is matched to a reference image of a person (or matched to a group of reference images of a person), in one embodiment.
  • In one embodiment, the reference image database 204 stores multiple reference images of multiple persons, and each person has a corresponding reference image. The first matching percentage can be a percentage that the first live image matches to a reference image of a person, which has the highest similarity to the first live image. For example, assume that the reference image database 104 stores three reference images representing three persons A, B and C respectively. The similarity between the first live image and the reference image of person B is higher than the similarity between the first live image and the reference image of person A, and is also higher than the similarity between the first live image and the reference image of person C. As such, the first matching percentage is a percentage that the first live image matches to the reference image of person B, which indicates a similarity between the first live image and the reference image of person B, in one embodiment.
  • In another embodiment, the reference image database 204 stores multiple reference images of multiple persons, and each person has a group of corresponding reference images. The first matching percentage can be a percentage that the first live image matches to a group of reference images of a person, which have the highest similarity to the first live image. For example, assume that the reference image database 104 stores three group of reference images representing three persons A, B and C respectively. The similarity between the first live image and the group of reference images of person B is higher than the similarity between the first live image and the group of reference images of person A, and is also higher than the similarity between the first live image and the group of reference images of person C. As such, the first matching percentage is a percentage that the first live image matches to the group of reference images of person B, which indicates a similarity between the first live image and the group of reference images of person B, in one embodiment.
  • Furthermore, the comparator 206 can generate a feedback signal according to a result of the comparison. For example, the comparator 206 can generate a feedback signal to adjust one or more camera settings if no matched reference image is found (e.g., the first matching percentage is less than a predetermined threshold). Advantageously, at least one setting (e.g., an image brightness setting, an image contrast setting, an image color setting, a zoom-in/zoom-out setting, etc.) of the camera 202 can be adjusted by the feedback signal to obtain a better camera setting to capture a second live image. More specifically, the feedback signal can adjust one or more camera settings to reproduce the original lighting and/or color conditions of the reference image(s), in one embodiment. As such, a matching percentage of the second live image based on the adjusted camera setting(s) can be increased, and thus increasing the possibility of a successful recognition.
  • In one embodiment, the comparator 206 generates a feedback signal to adjust a first setting, such as an image brightness setting, e.g., to increase the image brightness. The feedback signal can include some commands that can adjust the camera settings through a driver of the camera, in one embodiment.
  • The camera 202 captures a second live image based on the adjusted setting and forwards the second live image to the comparator 206. The comparator 206 compares the second live image with the reference image(s) to determine a second matching percentage which can indicate a similarity between the second live image and the reference image(s), in one embodiment. The second matching percentage can be determined in a way that is similar to the way in determining the first matching percentage described above and will not be repetitively described herein for purposes of brevity and clarity.
  • In one embodiment, if the second matching percentage is greater than the first matching percentage, the comparator 206 can generate a feedback signal to further adjust the first setting in the same direction, e.g., to further increase the image brightness, so as to capture a third live image which can be brighter than the second live image, and make the comparison again. In one embodiment, if the second matching percentage is less than the first matching percentage, the comparator 206 generates a feedback signal to adjust the first setting in an opposite direction, e.g., to decrease the image brightness, so as to capture a third live image which can be darker than the second live image. Advantageously, by repeating the aforementioned process, e.g., adjusting the first setting repetitively according to the feedback signal, the first setting can be automatically optimized so as to reproduce the original condition (e.g., lighting condition) of the reference image(s).
  • After adjusting the first setting (e.g., the image brightness setting in the above example) repetitively, the system can further adjust other camera settings, e.g., a second setting, such as an image contrast setting, and can perform the above mentioned repetitive process. Finally, the camera settings can be automatically optimized so as to reproduce the original conditions (e.g., lighting condition and color condition) of the reference image(s), and a live image with the highest matching percentage can be obtained after adjusting different types of settings of the camera 202, in one embodiment.
  • The comparator 206 can generate a final recognition result based on the highest matching percentage after adjusting one or more camera settings. In one embodiment, if the highest matching percentage is greater than a predetermined threshold, which can indicate that the live image is successfully matched to a reference image of a person or to a group of reference images of a person, then the facial recognition system 200 declares a successful recognition. If the highest matching percentage is less than the predetermined threshold, which can indicate that no matched reference image is found in the reference image database 204, then the facial recognition system 200 declares a recognition failure. The predetermined threshold can be set/programmed by a user/administrator of the facial recognition system 200.
  • Advantageously, in one embodiment, the camera settings can be automatically optimized by a feedback signal generated by the comparator 206 based on the live image and the reference image(s). With the optimized settings, the facial recognition system 200 can reproduce the original conditions (e.g., lighting and/or color conditions) of the reference image(s), and optimize the recognition probability, which can help improve the recognition process.
  • FIG. 3 illustrates a computer system 300 according to one embodiment of present invention. FIG. 3 shows an implementation of the facial recognition system 200 in FIG. 2 on a computer system 300. Elements labeled the same as in FIG. 2 have similar functions and will not be repetitively described herein for purposes of brevity and clarity.
  • The computer system 300 includes an image capturing device, such as a camera 202, for capturing a live image. A storage system 304 is capable of storing a sequence of machine-readable instructions 308. The storage system 304 can also store a reference image database 204 including one or more reference images. The storage system 304 can be volatile memory such as static random access memory (SRAM), non-volatile memory such as hard disk drive, or any combination thereof. A processor 302 is coupled to the storage system 304 for executing the sequence of machine-readable instructions 308 to perform the functionalities of the comparator 206 showing in FIG. 2, e.g., to generate a feedback signal which can adjust at lease one setting of the camera 202 by comparing the first live image with the reference image(s). The camera 202 is coupled to the processor 302 via a camera driver 306. The camera driver 306 includes a data interface 310 that can be various kinds of interfaces, including but is not limited to, standard Windows USB video device class interface and an alternate device software programming interface. Through the data interface 310 in the camera driver 306, the processor 302 is capable of adjusting at lease one setting of the camera 202 by the feedback signal. The processor 302 can be further capable of acquiring information about current camera settings through the data interface 310.
  • In operation, the camera 202 captures a live image. The processor 302 executes the sequence of machine-readable instructions 308 to compare the live image with the reference image(s) from the reference image database 204. The processor 302 can generate a feedback signal by comparing the live image with the reference image(s). In one embodiment, the feedback signal can include some commands that can adjust the camera settings through the data interface 310 in the camera driver 306. As a result, the camera settings can be adjusted according to the feedback signal through the data interface 310 in the camera driver 306, based on the live image and the reference image(s).
  • FIG. 4 illustrates a flowchart 400 of optimizing camera settings, in accordance with one embodiment of the present invention. FIG. 4 is described in combination with FIG. 2. Although specific steps are disclosed in FIG. 4, such steps are exemplary. That is, the present invention is well suited to performing various other steps or variations of the steps recited in FIG. 4.
  • In block 402, one or more reference images are stored in a reference image database 204. In block 404, the camera 202 captures a live image of a current user. In block 406, the live image is compared with a reference image or with a group of reference images in the reference image database 204, by the comparator 206. In block 407, a current matching percentage is determined by the comparator 206 based on the live image and the reference image(s). In block 411, if a previous matching percentage is available, a direction of adjustment is determined by the comparator 206 based on the current and previous matching percentage. If the current matching percentage is greater than the previous matching percentage, a forward direction of adjustment is determined, in one embodiment. If the current matching percentage is less than the previous matching percentage, a backward direction of adjustment is determined, in one embodiment. In block 412, a feedback signal is generated by the comparator 206 based on the live image and the reference image(s) and based on the direction of adjustment. In block 416, at least one setting of the camera 202 is adjusted by the feedback signal. In one embodiment, an image brightness setting is adjusted. In one embodiment, an image contrast setting is adjusted. Then the flowchart 400 goes back to block 404 to capture a second live image, after at least one setting of the camera 202 is adjusted. Steps followed by block 404 have been described and will not be repetitively described herein for purposes of brevity and clarity.
  • This method of optimizing the settings of the camera in the present disclosure is not limited in facial recognition system. It can also be used in other webcam applications, such as video conference systems and online instant messengers, to optimize settings of the camera based on a feedback according to a comparison between a current live image and the pre-stored reference image(s). Therefore, the performance of such webcam applications can be improved.
  • The terms and expressions which have been employed herein are used as terms of description and not of limitation, and there is no intention, in the use of such terms and expressions, of excluding any equivalents of the features shown and described (or portions thereof), and it is recognized that various modifications are possible within the scope of the claims. Other modifications, variations, and alternatives are also possible. Accordingly, the claims are intended to cover all such equivalents.

Claims (20)

  1. 1. An electronic system comprising:
    an image capturing device for capturing a first live image; and
    a comparator coupled to said image capturing device for generating a feedback signal by comparing said first live image with a reference image and for adjusting at least one setting of said image capturing device by said feedback signal.
  2. 2. The electronic system of claim 1, wherein said at least one setting of said image capturing device comprises an image brightness setting.
  3. 3. The electronic system of claim 1, wherein said at least one setting of said image capturing device comprises an image contrast setting.
  4. 4. The electronic system of claim 1, wherein said comparator determines a first matching percentage by comparing said first live image with said reference image.
  5. 5. The electronic system of claim 4, wherein said image capturing device captures a second live image after said at least one setting of said image capturing device is adjusted, and wherein said comparator determines a second matching percentage by comparing said second live image with said reference image.
  6. 6. The electronic system of claim 5, wherein said comparator determines a direction of adjustment of said at least one setting of said image capturing device based on said first matching percentage and second matching percentage.
  7. 7. The electronic system of claim 1, wherein said electronic system comprises a facial recognition system.
  8. 8. The electronic system of claim 1, wherein said electronic system comprises a video conference system.
  9. 9. A computer system, comprising:
    an image capturing device for capturing a first live image; and
    a storage system coupled to said image capturing device for storing a sequence of machine-readable instructions; and
    a processor coupled to said storage system for executing said sequence of machine-readable instructions and for generating a feedback signal by comparing said first live image with a reference image, and for adjusting at least one setting of said image capturing device by said feedback signal.
  10. 10. The computer system of claim 9, wherein said at least one setting of said image capturing device comprises an image brightness setting.
  11. 11. The computer system of claim 9, wherein said at least one setting of said image capturing device comprises an image contrast setting.
  12. 12. The computer system of claim 9, wherein said processor determines a first matching percentage by comparing said first live image with said reference image.
  13. 13. The computer system of claim 12, wherein said image capturing device captures a second live image after said at least one setting of said image capturing device is adjusted, and wherein said processor determines a second matching percentage by comparing said second live image with said reference image.
  14. 14. The computer system of claim 13, wherein said processor determines a direction of adjustment of said at least one setting of said image capturing device based on said first matching percentage and second matching percentage.
  15. 15. A method for optimizing at least one setting of an image capturing device, comprising:
    capturing a first live image by said image capturing device;
    generating a feedback signal by comparing said first live image with a reference image; and
    adjusting said at least one setting of said image capturing device according to said feedback signal.
  16. 16. The method of claim 15, wherein adjusting said at least one setting of said image capturing device with said feedback signal comprises:
    adjusting an image brightness setting of said image capturing device.
  17. 17. The method of claim 15, wherein adjusting said at least one setting of said image capturing device with said feedback signal comprises:
    adjusting an image contrast setting of said image capturing device.
  18. 18. The method of claim 15, further comprising:
    determining a first matching percentage by comparing said first live image with said reference image.
  19. 19. The method of claim 18, further comprising:
    capturing a second live image after said at least one setting of said image capturing device is adjusted; and
    determining a second matching percentage by comparing said second live image with said reference image.
  20. 20. The method of claim 19, further comprising:
    determining a direction of adjustment of said at least one setting of said image capturing device based on said first matching percentage and second matching percentage.
US12012847 2008-02-06 2008-02-06 System and method for optimizing camera settings Expired - Fee Related US8111942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12012847 US8111942B2 (en) 2008-02-06 2008-02-06 System and method for optimizing camera settings

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US12012847 US8111942B2 (en) 2008-02-06 2008-02-06 System and method for optimizing camera settings
TW98103610A TWI419062B (en) 2008-02-06 2009-02-05 Electronic system and computer system for optimizing image capturing device setting and method thereof
CN 200910005598 CN101505372B (en) 2008-02-06 2009-02-06 System and method for optimizing camera settings
US13345618 US8417054B2 (en) 2008-02-06 2012-01-06 System and method for optimizing camera settings

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13345618 Continuation US8417054B2 (en) 2008-02-06 2012-01-06 System and method for optimizing camera settings

Publications (2)

Publication Number Publication Date
US20090196509A1 true true US20090196509A1 (en) 2009-08-06
US8111942B2 US8111942B2 (en) 2012-02-07

Family

ID=40931748

Family Applications (2)

Application Number Title Priority Date Filing Date
US12012847 Expired - Fee Related US8111942B2 (en) 2008-02-06 2008-02-06 System and method for optimizing camera settings
US13345618 Expired - Fee Related US8417054B2 (en) 2008-02-06 2012-01-06 System and method for optimizing camera settings

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13345618 Expired - Fee Related US8417054B2 (en) 2008-02-06 2012-01-06 System and method for optimizing camera settings

Country Status (2)

Country Link
US (2) US8111942B2 (en)
CN (1) CN101505372B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170161928A1 (en) * 2015-12-04 2017-06-08 Le Holdings (Beijing) Co., Ltd. Method and Electronic Device for Displaying Virtual Device Image
US10091414B2 (en) * 2016-06-24 2018-10-02 International Business Machines Corporation Methods and systems to obtain desired self-pictures with an image capture device

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110029386A1 (en) * 2009-07-30 2011-02-03 Derek Alton Devries Allocation of digital media store credit for presentation of an advertisement with a media player
JP5740210B2 (en) * 2011-06-06 2015-06-24 株式会社東芝 Facial image search system, and the face image retrieval method
EP2709350B1 (en) 2012-09-14 2015-06-03 Axis AB Configuration of image capturing settings
CN103905710A (en) * 2012-12-25 2014-07-02 夏普株式会社 Image capture method, and mobile terminal and device thereof
CN103900704A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Infrared detection updating device and infrared detection updating method
CN103900702A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Thermal image matching updating device and thermal image matching updating method
WO2014101802A1 (en) * 2012-12-27 2014-07-03 Wang Hao Thermal image choosing apparatus and thermal image choosing method
CN103900697A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Infrared recording and controlling device and infrared recording and controlling method
CN103900716A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Device and method for identifying and controlling thermal image
CN103900706A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Infrared selection notification device and infrared selection notification method
WO2014101803A1 (en) * 2012-12-27 2014-07-03 Wang Hao Infrared selecting apparatus and infrared selecting method
CN103900698A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Infrared identification control device and infrared identification control method
CN103900721A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Device and method for recording and controlling thermal image
WO2014101805A1 (en) * 2012-12-27 2014-07-03 Wang Hao Infrared choosing apparatus and infrared choosing method
CN103900709A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Thermal image selection notification device and thermal image selection notification method
CN103900707A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Thermal image detection updating device and thermal image detection updating method
CN103900705A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Thermal image selection notification device and thermal image selection notification method
CN103900720A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Device and method for thermal image detection and configuration
CN103900708A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Infrared selection notification device and infrared selection notification method
CN103900703A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Infrared matching updating device and infrared matching updating method
CN103900712A (en) * 2012-12-27 2014-07-02 杭州美盛红外光电技术有限公司 Device and method for selecting thermal image
CN104639823A (en) * 2013-11-14 2015-05-20 索尼公司 Image formation method, device and electronic device
US9413948B2 (en) 2014-04-11 2016-08-09 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Systems and methods for recommending image capture settings based on a geographic location
CN104021331A (en) * 2014-06-18 2014-09-03 北京金和软件股份有限公司 Information processing method applied to electronic device with human face identification function
US9558553B2 (en) 2014-11-17 2017-01-31 Ricoh Company, Ltd. Image acquisition and management using a reference image
US9451170B2 (en) 2014-11-17 2016-09-20 Ricoh Company, Ltd. Image acquisition and management using a reference image
US10136050B2 (en) * 2015-03-06 2018-11-20 Ricoh Company, Ltd. Image acquisition and management using a reference image
CN105357516B (en) * 2015-11-06 2018-05-22 上汽大众汽车有限公司 Vehicle information systems test bench image alignment methods and systems
US20170195578A1 (en) * 2015-12-30 2017-07-06 Cerner Innovation, Inc. Camera normalization

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699241A (en) * 1971-01-06 1972-10-17 Bell Telephone Labor Inc Color television system with automatic correction of chroma amplitudes
US4736241A (en) * 1985-12-04 1988-04-05 Hitachi, Ltd. White balance adjusting device of color video camera
US4750032A (en) * 1985-05-24 1988-06-07 Fuji Photo Film Co., Ltd. Automatic white balance adjusting system for a color video camera
US5323003A (en) * 1991-09-03 1994-06-21 Canon Kabushiki Kaisha Scanning probe microscope and method of observing sample by using such a microscope
US20030210336A1 (en) * 2001-05-09 2003-11-13 Sal Khan Secure access camera and method for camera control
US20040054473A1 (en) * 2002-09-17 2004-03-18 Nissan Motor Co., Ltd. Vehicle tracking system
US20040181552A1 (en) * 2003-03-14 2004-09-16 Milne Donald A. Method and apparatus for facial identification enhancement
US6795106B1 (en) * 1999-05-18 2004-09-21 Intel Corporation Method and apparatus for controlling a video camera in a video conferencing system
US20060164682A1 (en) * 2005-01-25 2006-07-27 Dspv, Ltd. System and method of improving the legibility and applicability of document pictures using form based image enhancement
US7369685B2 (en) * 2002-04-05 2008-05-06 Identix Corporation Vision-based operating method and system
US7436526B2 (en) * 2006-11-21 2008-10-14 Promos Technologies Inc. Real-time system for monitoring and controlling film uniformity and method of applying the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2253319A (en) * 1991-02-28 1992-09-02 Durst Photographic printing apparatus
JP4848097B2 (en) 2001-06-13 2011-12-28 三菱重工業株式会社 Mobile monitoring method and device
US9814439B2 (en) * 2005-01-19 2017-11-14 Siemens Medical Solutions Usa, Inc. Tissue motion comparison display
JP3962871B2 (en) 2005-10-21 2007-08-22 カシオ計算機株式会社 Electronic camera and an electronic zoom method

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3699241A (en) * 1971-01-06 1972-10-17 Bell Telephone Labor Inc Color television system with automatic correction of chroma amplitudes
US4750032A (en) * 1985-05-24 1988-06-07 Fuji Photo Film Co., Ltd. Automatic white balance adjusting system for a color video camera
US4736241A (en) * 1985-12-04 1988-04-05 Hitachi, Ltd. White balance adjusting device of color video camera
US5323003A (en) * 1991-09-03 1994-06-21 Canon Kabushiki Kaisha Scanning probe microscope and method of observing sample by using such a microscope
US6795106B1 (en) * 1999-05-18 2004-09-21 Intel Corporation Method and apparatus for controlling a video camera in a video conferencing system
US20030210336A1 (en) * 2001-05-09 2003-11-13 Sal Khan Secure access camera and method for camera control
US7369685B2 (en) * 2002-04-05 2008-05-06 Identix Corporation Vision-based operating method and system
US20040054473A1 (en) * 2002-09-17 2004-03-18 Nissan Motor Co., Ltd. Vehicle tracking system
US20040181552A1 (en) * 2003-03-14 2004-09-16 Milne Donald A. Method and apparatus for facial identification enhancement
US20060164682A1 (en) * 2005-01-25 2006-07-27 Dspv, Ltd. System and method of improving the legibility and applicability of document pictures using form based image enhancement
US7436526B2 (en) * 2006-11-21 2008-10-14 Promos Technologies Inc. Real-time system for monitoring and controlling film uniformity and method of applying the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170161928A1 (en) * 2015-12-04 2017-06-08 Le Holdings (Beijing) Co., Ltd. Method and Electronic Device for Displaying Virtual Device Image
US10091414B2 (en) * 2016-06-24 2018-10-02 International Business Machines Corporation Methods and systems to obtain desired self-pictures with an image capture device

Also Published As

Publication number Publication date Type
US8111942B2 (en) 2012-02-07 grant
US20120106795A1 (en) 2012-05-03 application
CN101505372B (en) 2012-07-11 grant
CN101505372A (en) 2009-08-12 application
US8417054B2 (en) 2013-04-09 grant

Similar Documents

Publication Publication Date Title
US7403643B2 (en) Real-time face tracking in a digital image acquisition device
US20060008173A1 (en) Device and method for correcting image including person area
US6975759B2 (en) Method and system for white balancing images using facial color as a reference signal
US7460694B2 (en) Real-time face tracking in a digital image acquisition device
US7269292B2 (en) Digital image adjustable compression and resolution using face detection information
US20070147820A1 (en) Digital image acquisition system with portrait mode
US20100141786A1 (en) Face recognition using face tracker classifier data
US20070160307A1 (en) Modification of Viewing Parameters for Digital Images Using Face Detection Information
US7916897B2 (en) Face tracking for controlling imaging parameters
US20100039525A1 (en) Perfecting of Digital Image Capture Parameters Within Acquisition Devices Using Face Detection
US20060204055A1 (en) Digital image processing using face detection information
US20090003652A1 (en) Real-time face tracking with reference images
US20120133797A1 (en) Imaging apparatus, imaging method and computer program
US20080199056A1 (en) Image-processing device and image-processing method, image-pickup device, and computer program
US20090073285A1 (en) Data processing apparatus and data processing method
US20090219405A1 (en) Information processing apparatus, eye open/closed degree determination method, computer-readable storage medium, and image sensing apparatus
US20110103643A1 (en) Imaging system with integrated image preprocessing capabilities
US20090080797A1 (en) Eye Defect Detection in International Standards Organization Images
US20100296706A1 (en) Image recognition apparatus for identifying facial expression or individual, and method for the same
US20100149372A1 (en) Image data processing with multiple cameras
US20110221920A1 (en) Digital photographing apparatus, method of controlling the same, and computer readable storage medium
US20110007177A1 (en) Photographing apparatus and method
US20110025886A1 (en) Perfecting the Effect of Flash within an Image Acquisition Devices Using Face Detection
US8160309B1 (en) Method, apparatus, and system for object recognition and classification
JP2006085268A (en) Biometrics system and biometrics method

Legal Events

Date Code Title Description
AS Assignment

Owner name: O2MICRO INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FARRER, STEVEN M.;MORROW, NEIL;REEL/FRAME:020539/0173;SIGNING DATES FROM 20080202 TO 20080204

Owner name: O2MICRO INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FARRER, STEVEN M.;MORROW, NEIL;SIGNING DATES FROM 20080202 TO 20080204;REEL/FRAME:020539/0173

AS Assignment

Owner name: O2MICRO INTERNATIONAL LIMITED, CAYMAN ISLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:O2MICRO, INC.;REEL/FRAME:027680/0530

Effective date: 20120208

AS Assignment

Owner name: MAISHI ELECTRONIC (SHANGHAI) LTD, CHINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:O2MICRO INTERNATIONAL LIMITED;REEL/FRAME:029147/0202

Effective date: 20121012

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20160207