US20090181394A1 - Diagnostic methods and kits for hepatocellular carcinoma using comparative genomic hybridization - Google Patents

Diagnostic methods and kits for hepatocellular carcinoma using comparative genomic hybridization Download PDF

Info

Publication number
US20090181394A1
US20090181394A1 US12/319,929 US31992909A US2009181394A1 US 20090181394 A1 US20090181394 A1 US 20090181394A1 US 31992909 A US31992909 A US 31992909A US 2009181394 A1 US2009181394 A1 US 2009181394A1
Authority
US
United States
Prior art keywords
rar
hepatocellular carcinoma
hla
prognosis
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/319,929
Inventor
Yeun-Jun Chung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Academic Cooperation Foundation of Catholic University of Korea
Original Assignee
Industry Academic Cooperation Foundation of Catholic University of Korea
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Academic Cooperation Foundation of Catholic University of Korea filed Critical Industry Academic Cooperation Foundation of Catholic University of Korea
Assigned to CATHOLIC UNIVERSITY INDUSTRY ACADEMY COOPERATION FOUNDATION reassignment CATHOLIC UNIVERSITY INDUSTRY ACADEMY COOPERATION FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHUNG, YEUN-JUN
Publication of US20090181394A1 publication Critical patent/US20090181394A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57407Specifically defined cancers
    • G01N33/57438Specifically defined cancers of liver, pancreas or kidney
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/118Prognosis of disease development

Definitions

  • the invention provides a diagnostic method for determining the prognosis of hepatocellular carcinoma (HCC) comprising the steps of (a) observing recurrently altered genomic region on a chromosome; (b) measuring variation of one or more of RAR expression variations selected from the RAR variation group consists of gains of RAR-G1 to RAR-G14 and losses of RAR-L1 to RAR-L18 as defined in table 1, a diagnostic kit, and genes for useful in diagnosis or prognosis of liver cancer.
  • HCC hepatocellular carcinoma
  • the present invention is related to diagnostic methods and kits for hepatocellular carcinoma measuring expression of genes in recurrently altered genomic region (RAR) using comparative genomic hybridization.
  • Comparative genomic hybridization is a technique that is used to evaluate variation s in genomic copy number in cells.
  • genomic DNA is isolated from normal reference cells, as well as from test cells (e.g., tumor cells).
  • test cells e.g., tumor cells.
  • the two nucleic acids are differentially labeled and then simultaneously hybridized to an array of oligonucleotide probes.
  • Array CGH assays measure the difference in copy number between a test sample and a reference sample. For example, two genomic samples (a test sample and a reference sample) can be labeled with two different dyes and hybridized together to a single microarray to perform these measurements. Alternatively, the two different samples can be hybridized to separate arrays and then measurement can be compared between arrays.
  • Hepatocellular carcinoma is one of the most common human malignancies and responsible for approximately 5% of all cancer-related deaths in the world. 1 Given that the overall HCC incidence is still rising and complete resection of the lesion in early stage remains the only hope for cure, it is important to develop effective diagnostic and therapeutic modalities based on sound biological insights into hepatocarcinogenesis. 2,3
  • RAR recurrently altered regions
  • Korean patent registration No. 10-0534563 (registration date: Dec. 1, 2005) is related to a diagnostic method, composition, and primer for human hepatocellular carcinoma.
  • Microarray and Representational Difference Analysis were performed to identify genes overexpressed in human hepatocellular carcinoma.
  • the invention disclosed a diagnostic composition for human hepatocellular carcinoma comprising long chain fatty acid-coenzyme A ligase 4, farnesyl diphosphate synthase, syndecan-2, and a diagnostic method and primer using the composition.
  • Korean patent registration number 10-0552494 (registration date Feb. 8, 2006) disclosed genetic markers and diagnostic kits for liver cancer. More specifically, it disclosed useful diagnostic methods and diagnostic kits for diagnosis of liver cancer by comparing expression level of high expression gene and low expression gene.
  • Korean patent registration number 10-0527242 (registration date Nov. 2, 2006) is related to a microarray for measuring expression level of genes related to liver cancer. More specifically it is related to measurement and interpretation methods of molecular expression profile of protein and enzyme of liver cancer, which is characterized in that for measuring the profile of cDNA of protein and enzyme specifically expressed due to modified genes in hepatocellular carcinoma (HCC), a number of cDNAs obtained by reverse transcription of mRNAs from normal cell and liver cancer cell are mixed and bound with Cy5-dUTP probe, hybridized with 44 species of DNA microarray immobilized on DNA chip and then the result is analyzed by computer software.
  • HCC hepatocellular carcinoma
  • FIG. 1 Whole-genome profiles and frequency plot of chromosomal alterations in hepatocellular carcinoma.
  • A The genomic alterations in 76 primary human hepatocellular carcinomas are illustrated in individual lanes. A total of 2,958 large insert clones are mapped according to the UCSC genome browser (May, 2004 Freeze) and ordered by chromosomal position from 1pter to Yqter (X axis). Tumor versus reference intensity ratios (in log 2 scale) for individual clones are plotted in different color scales reflecting the extent of copy number gains (red) and losses (green) as indicated in the reference color bar. The boundaries of individual chromosome are indicated by long vertical bars and the locations of centromeres by short vertical bars below the plot.
  • B The frequency of chromosomal gains (>3 SD) and losses ( ⁇ 3 SD) for each clone is shown for 76 HCC samples.
  • FIG. 3 Survival analysis of RARs in HCC. Kaplan-Meier survival curves. The survival curves for the cases with (blue line) or without (green line) specific genomic changes are plotted using the Kaplan-Meier method. The chromosomal changes associated with relatively poor survival are presented with the significance level.
  • RAR-G recurrently altered region of copy number gain
  • RAR-L copy number loss
  • a confounding problem in genetic disease (especially cancer) diagnosis/prognosis has been the large amount of cellular heterogeneity in disease tissues. This is especially a problem for cancer tissues, partly due to their known tendency of chromosomal instability, and in some cases, different clonal origin and/or diverged progression from single clonal mutational events. Due to the nature of such disease tissues, there are no reliable methods to select only for tumor cell outgrowth for cytogenetic studies. This in turn has led to a high frequency of normal karyotypic findings for diseased tissues (false negative).
  • Genetic heterogeneity which can be detected by conventional G-banding chromosome analysis, depends on the frequency of an aberrant clone and the number of cells analyzed, where the chromosomes of individual cells are analyzed.
  • it is not the chromosomes of individual cells from a sample that are analyzed in microarray genome profiling, but rather the DNA sequence copy number of the total genomic DNA extracted from the cells of the sample. Consequently, from a DNA copy number perspective, the genome profile of a tumor maybe no different from that of total genomic DNA extracted from a reference population of 46, XX cells.
  • the prior art has predicted that the genetic heterogeneity of this tumor sample would not be detected by microarray genome profiling.
  • the present invention is based at least in part that the detection of genetic heterogeneity in clinical samples, such that detection can be carried out under conditions and analysis to detect cell populations whose combined genetic profiles would have been predicted, e.g., by the prior art, to mask the presence of a heterogeneous population.
  • the profiling methods of the present invention demonstrate the sensitivity with which it can detect clonally distinct cell populations within a more dominant background cell population.
  • specimens where a large abnormal clone was detected cytogenetically can be preferentially used over those with less prevalent clones.
  • An alternative approach is to isolate tumor cells from normal cells by dissection, before DNA extraction and CGH analysis. For example, laser capture microdissection, a technique whereby a selected subset of cells are microscopically dissected, can be used to isolate tumor cells. Although somewhat labor intensive, this is the technology that is most likely to eliminate the concern regarding detection of genetic heterogeneity.
  • Comparative genomic hybridization is a well-established technique for surveying the entire genome for abnormalities.
  • standard CGH has relatively low resolution and has been used primarily on cell lines and in homogeneous populations (sources). Since a nucleic acid array can be constructed from a large number of DNA fragments for example Bacterial Artificial Chromosome (BAC) clones a Genomic Microarray (GM) can be produced as an article of manufacture that provides a much higher-resolution analysis of chromosomal DNA gains/losses, and has recently shown promise in the analysis of liver cancer following tissue dissection.
  • BAC Bacterial Artificial Chromosome
  • genomic aberrations as diagnosis/prognosis markers for certain diseases of interest. Briefly, genomic regions consistently mutated in various disease samples are identified using DNA hybridization with a genomic microarray-comparative genomic hybridization (GM-CGH). Statistical correlation between a subset of the identified genomic aberrations with certain clinically useful data, such as disease onset, progression, and likely clinical outcome are then established. Once identified, the specific subset of genomic aberrations serve as useful markers for reliable and cost-effective diagnosis and/or prognosis means for the disease of interest. These identified disease markers may be provided as specifically designed genomic microarrays in a diagnostic/prognostic test kit, optionally with instructions for using such genomic microarrays (including assay protocols and conditions), and/or control samples and result interpretation.
  • GM-CGH genomic microarray-comparative genomic hybridization
  • a chemical “array,” unless a contrary intention appears, includes any one, two or three-dimensional arrangement of addressable regions bearing a particular chemical moiety or moieties (for example, biopolymers such as polynucleotide sequences) associated with that region, where the chemical moiety or moieties are immobilized on the surface in that region.
  • immobilized is meant that the moiety or moieties are stably associated with the substrate surface in the region, such that they do not separate from the region under conditions of using the array, e.g., hybridization and washing and stripping conditions.
  • the moiety or moieties may be covalently or non-covalently bound to the surface in the region.
  • each region may extend into a third dimension in the case where the substrate is porous while not having any substantial third dimension measurement (thickness) in the case where the substrate is non-porous.
  • An array may contain more than ten, more than one hundred, more than one thousand more than ten thousand features, or even more than one hundred thousand features, in an area of less than 20 cm 2 or even less than 10 cm 2 .
  • features may have widths (that is, diameter, for a round spot) in the range of from about 10 to about 1.0 cm.
  • each feature may have a width in the range of about 1.0 ⁇ m to about 1.0 mm, such as from about 5.0 ⁇ m to about 500 ⁇ m, and including from about 10 ⁇ m to about 200 ⁇ m.
  • Non-round features may have area ranges equivalent to that of circular features with the foregoing width (diameter) ranges.
  • a given feature is made up of chemical moieties, e.g., nucleic acids, that bind to (e.g., hybridize to) the same target (e.g., target nucleic acid), such that a given feature corresponds to a particular target.
  • At least some, or all, of the features are of different compositions (for example, when any repeats of each feature composition are excluded the remaining features may account for at least 5%, 10%, or 20% of the total number of features). Interfeature areas will typically (but not essentially) be present which do not carry any polynucleotide.
  • interfeature areas typically will be present where the arrays are formed by processes involving drop deposition of reagents but may not be present when, for example, light directed synthesis fabrication processes are used. It will be appreciated though, that the interfeature areas, when present, could be of various sizes and configurations.
  • An array is “addressable” in that it has multiple regions (sometimes referenced as “features” or “spots” of the array) of different moieties (for example, different polynucleotide sequences) such that a region at a particular predetermined location (an “address”) on the array will detect a particular target or class of targets (although a feature may incidentally detect non-targets of that feature).
  • the target for which each feature is specific is, in representative embodiments, known.
  • An array feature is generally homogeneous in composition and concentration and the features may be separated by intervening spaces (although arrays without such separation can be fabricated)
  • the “target” will be referenced as a moiety in a mobile phase (typically fluid), to be detected by probes (“target probes”) which are bound to the substrate at the various regions.
  • probes typically fluid
  • either of the “target” or “target probes” may be the one which is to be detected by the other (thus, either one could be an unknown mixture of polynucleotides to be detected by binding with the other).
  • Additional sets of probes and analogous terms refer to the multiple regions of different moieties supported by or intended to be supported by the array surface.
  • sample as used herein relates to a material or mixture of materials, containing one or more components of interest.
  • Samples include, but are not limited to, samples obtained from an organism or from the environment (e.g., a soil sample, water sample, etc.) and may be directly obtained from a source (e.g., such as a biopsy or from a tumor) or indirectly obtained e.g., after culturing and/or one or more processing steps.
  • samples are a complex mixture of molecules, e.g., comprising at least about 50 different molecules, at least about 100 different molecules, at least about 200 different molecules, at least about 500 different molecules, at least about 1000 different molecules, at least about 5000 different molecules, at least about 10,000 molecules, etc.
  • test sample refers to a sample that is being analyzed to evaluate DNA copy number, for example, to look for the presence of genetic anomalies, or species differences, for example.
  • a “reference sample” as applied to CGH analysis is a sample (e.g., a cell or tissue sample) of the same type as the test sample, but whose quantity or degree of representation is known or sequence identity is known.
  • a “reference nucleic acid sample” or “reference nucleic acids” refers to nucleic acids comprising sequences whose quantity or degree of representation (e.g., copy number) or sequence identity is known.
  • reference genomic acids or a “reference genomic sample” refers to genomic nucleic acids comprising sequences whose quantity or degree of representation (e.g., copy number) or sequence identity is known.
  • a “reference nucleic acid sample” may be derived independently from a “test nucleic acid sample,” i.e., the samples can be obtained from different organisms or different cell populations of the sample organism.
  • a reference nucleic acid is present in a “test nucleic acid sample” which comprises one or more sequences whose quantity or identity or degree of representation in the sample is unknown while containing one or more sequences (the reference sequences) whose quantity or identity or degree of representation in the sample is known.
  • the reference nucleic acid may be naturally present in a sample (e.g., present in the cell from which the sample was obtained) or may be added to or spiked into the sample.
  • test sample and reference sample may both be contacted to a single array for co-hybridization therewith, wherein log ratios of signals from the two samples can be generated by reading the signals for the test sample on a first channel and reading signals for the reference sample on a two-channel analyzer.
  • the test sample may be hybridized to a first array and the reference sample may be hybridized to a second array that is the same as the first array, and signals from each array may be read, and then compared as log ratios
  • CGH or “Comparative Genomic Hybridization” refers generally to techniques for identification of chromosomal alterations (such as in cancer cells, for example). Using CGH, ratios between tumor or test sample and normal or control sample enable the detection of chromosomal amplifications and deletions of regions that may include oncogenes and tumor suppressive genes, for example.
  • array CGH refers to an array that can be used to compare DNA samples for relative differences in copy number.
  • an array CGH can be used in any assay in which it is desirable to scan a genome with a sample of nucleic acids.
  • an array CGH can be used in location analysis as described in U.S. Pat. No. 6,410,243, the entirety of which is incorporated herein.
  • array CGH provides probes for screening or scanning a genome of an organism and comprises probes from a plurality of regions of the genome.
  • the array comprises probe sequences for scanning an entire chromosome arm, wherein probes targets are separated by at least about 500 bp, at least about 1 kbp, at least about 5 kbp, at least about 10 kbp, at least about 25 kbp, at least about 50 kbp, at least about 100 kbp, at least about 250 kbp, at least about 500 kbp and at least about 1 Mbp.
  • the array comprises probes sequences for scanning an entire chromosome, a set of chromosomes, or the complete complement of chromosomes forming the organism's genome.
  • resolution is meant the spacing on the genome between sequences found in the probes on the array.
  • all sequences in the genome can be present in the array.
  • the spacing between different locations of the genome that are represented in the probes may also vary, and may be uniform, such that the spacing is substantially the same between sampled regions, or non-uniform, as desired.
  • An assay performed at low resolution on one array, e.g., comprising probe targets separated by larger distances, may be repeated at higher resolution on another array, e.g., comprising probe targets separated by smaller distances.
  • An “image analysis system” is a system to enhance and/or accurately quantitate the intensity differences between and/or among the signals from a hybridization and the background staining differences for more accurate and easier interpretation of results.
  • Image analysis and methods to measure intensity are described, for example, in Hiraoka et al., Science, 238: 36-41 (1987) and Aikens et al., Meth. Cell Biol., 29: 291-313 (1989).
  • it is preferred to use a high quality CCD camera whose intensity response is known to be linear over a wide range of intensities.
  • a “recurrently altered genomic region” or “RAR” refers to a recurrently altered genomic region on chromosome that is defined in table 1 below as regional copy number changes observed in 15 (20%) or more samples out of 76 HCC samples.
  • the array-CGH data described in this invention are available at website (http://systemsbiology.co.kr/micro/CGH/hepato.htm).
  • the term “RAR-G” and “RAR-L” is defined according to Table 1 below.
  • the term “RAR-G” refers to a genomic gain of RAR (RAR-Gain) and the term “RAR-L” refers to a genomic loss of RAR.
  • the purpose of present invention is to provide new diagnostic method and diagnostic kit for determining the prognosis of liver cancer; and cancer related genes using thereof.
  • the present invention provides a diagnostic methods for determining the prognosis of hepatocellular carcinoma (HCC) comprising the steps of; (a) observing recurrently altered genomic region on a chromosome; (b) measuring variation of one or more of RAR expression variations selected from the RAR variation group consists of gains of RAR-G1 to RAR-G14 and losses of RAR-L1 to RAR-L18 as defined table 1 above. More specifically, the present invention provides diagnostic methods for determining the prognosis of hepatocellular carcinoma (HCC), wherein the RAR expression variation is RAR-G1, RAR-G2, RAR-L17, RAR-G9, RAR-L5, and RAR-L8 as defined according to the table 1.
  • the present invention provides a diagnostic method for determining the tumor stage of hepatocellular carcinoma by using RAR-L2 and RAR-L4, a diagnostic method for prognosis of microvascular invasion of hepatocellular carcinoma by using RAR-G9, RAR-G12, RAR-G13, and RAR-L3, and a diagnostic method for determining the portal vein invasion of the hepatocellular carcinoma by using RAR-G13, RAR-L7 and RAR-L12.
  • One aspect of the present invention provides a diagnostic kit for determining the prognosis of hepatocellular carcinoma (HCC) comprising: (a) a microarray comprising a probe for measuring variation of one or more of RAR expression variations selected from the RAR variation group consists of gains of RAR-G1 to RAR-G14 and losses of RAR-L1 to RAR-L18 as defined table 1 above for observing recurrently altered genomic region (RAR) on a chromosome; and (b) an image analysis device for measuring variation of specific genes expression on the RAR.
  • HCC hepatocellular carcinoma
  • the present invention is a diagnostic kit for determining the prognosis of hepatocellular carcinoma (HCC), wherein the probe for measuring is RAR-G1, RAR-G2, RAR-L17, RAR-G9, RAR-L5 and RAR-L8.
  • HCC hepatocellular carcinoma
  • One aspect of the present invention provides one or more of genes for diagnosis of hepatocellular carcinoma, selected from the group consists of tropomyosin 3 (TPM3), ribosomal protein S27 (RPS27), hematopoietic cell-specific Lyn substrate 1-associated protein X-1 (HAX1), pygopus homolog 2 (PYGO2), CDC28 protein kinase regulatory subunit 1 (BCKS1B), a disintegrin and metalloprotease 15 (ADAM15), chaperonin subunit 3 (CCT3), papillary renal cell carcinoma (PRCC), kinesin family member 14 (KIF14), Eukaryotic initiation factor 3 (ELF3), transforming Growth Factor beta 2 (TGFB2) and protein kinase B gamma (AKT3).
  • TPM3 tropomyosin 3
  • RPS27 ribosomal protein S27
  • HAX1 hematopoietic cell-specific Lyn substrate 1-associated protein X-1
  • HCC hepatocellular carcinoma
  • TPM3 tropomyosin 3
  • RPS27 ribosomal protein S27
  • HAX1 hematopoietic cell-specific Lyn substrate 1-associated protein X-1(HAX1), pygopus homolog 2 (PYGO2)
  • BCKS1B CDC28 protein kinase regulatory subunit 1
  • ADAM15 a disintegrin and metalloprotease 15
  • ADAM15 chaperonin subunit 3
  • PRCC papillary renal cell carcinoma
  • KIF14 kinesin family member 14
  • EGF3 Eukaryotic initiation factor 3
  • TGFB2 transforming Growth Factor beta 2
  • AKT3 protein kinase B gamma
  • Frozen tissues were obtained from 76 primary HCC patients (65 males and 11 females) who underwent surgical resection. This study was performed under the approval of the Institutional Review Board of the Catholic University Medical College of Korea. Tumor stage was determined according to the standard tumor-node-metastasis classification of AJCC guidelines (6th edition). Clinicopathologic information about the 76 cases is available in Table 2. Ten ⁇ m-thick frozen sections were prepared and tumor cell-rich areas (tumor cells in more than 60% of the selected area) were microdissected, from which genomic DNA was extracted as described previously. 11,12
  • a large insert clone array covering the entire human genome at 1 Mb resolution was used for profiling genomic alterations.
  • FIG. 1A The overall profile of chromosomal alterations identified in the 76 primary HCCs is illustrated in FIG. 1A .
  • Chromosomal alterations are not randomly distributed along the genome but clustered in certain chromosomal segments ( FIG. 1B ).
  • Mean number of altered clones per case is 677.1 (338.7 clones gained and 338.4 clones lost) out of total 2,958 clones. In other words, 22.9% (11.5% gained and 11.4% lost) of the whole genome is altered per each case on average.
  • RAR-G1 64.5%: 1q21.1-1q32.1
  • RAR-G2 60.2%: 1q32.1-1q44
  • RAR-L17 51.3%: 17p13.3-17p12
  • RAR-G9 48.7%: 8q11.21-8q24.3
  • RAR-L5/L8 both 44.7%: 4q33-4q35.2/8p23.2-8p12
  • Average size of RAR-Gs (26.6 Mb; ranged 1-94 Mb) is larger than that of RAR-Ls (16.5 Mb; ranged 0.9-43 Mb).
  • RARs Well-known oncogenes such as MYC, FGF, EGFR, and CCND3 along with tumor suppressor genes such as TP53, RB1, CDKN2A, and CDKN2B are located in identified RARs.
  • the other genes in the RARs are also thought to be potential cancer-related genes contributing to hepatocarcinogenesis directly or indirectly (Table 1).
  • RARs and associated characteristics are as follows; RAR-L11 and -L16 with early onset of age, RAR-G5, -G7, -G8 and RAR-L13 with male sex, RAR-L5, -L9, -L10, -L11 and -L13 with high tumor grade, especially RAR-L10 showing highly significant association, RAR-L2 and -L4 with advanced tumor stage, RAR-G9, -G12, -G13 and RAR-L3 with microvascular invasion, RAR-G13, RAR-L7 and -L12 with portal vein invasion in negative direction, RAR-G4 with larger tumor size, and RAR-G6 and -G7 with encapsulation.
  • RAR was defined as regional copy number changes observed in 15 (20%) or more samples out of 76 HCC samples.
  • the array-CGH data described in this study are available at website (http://systemsbiology.co.kr/micro/CGH/hepato.htm).
  • the first-strand cDNA was synthesized from total RNA of 20 HCC and normal tissue pairs using M-MLV reverse transcriptase (Invitrogen, Carlsbad, Calif.).
  • Real-time quantitative PCR was performed using Mx3000P qPCR system and MxPro Version 3.00 software (Stratagene, Calif., USA). Twenty ⁇ l of real-time qPCR mixture contains 10 ng of cDNA, 1 ⁇ SYBR® Green Tbr polymerase mixture (FINNZYMES, Finland), 1 ⁇ ROX, and 20 pmole of primers. GAPDH was used as an internal control in each procedure. Thermal cycling was done as follows: 10 min at 95° C. followed by 40 cycles of 10 sec at 94° C., 30 sec at 53-58° C.
  • Table 6 lists the enriched functional pathways in tumor grade-associated RARs. Top 5 pathways have interferon-related gene families in common as member genes, since interferon-loci are included in tumor grade-related RARs. Since all of these RARs are copy number losses, it can be assumed that the 5 interferon-related pathways are repressed. Cell cycle regulation and angiogenesis pathways are also found to be significantly associated with tumor grade-related RARs. Functional enrichment analysis results of other clinical feature-related RARs are available in the Table 7.
  • d includes 14 genes in hematopoietin/interferon-class cytokine receptor binding category. It is used to avoid repeating the gene symbols. e significance level of enrichment was calculated using hypergeometric distribution and P ⁇ 0.01 was considered significant.
  • RNA expression levels of most candidate genes in the HCCs are higher than control RNA levels measured using normal liver tissue from each patient.
  • KIF14 and TPM3 are highly expressed in HCC and their expression is significantly correlated with copy number status ( FIGS. 2A and 2B ).
  • Mean intensity ratio (tumor/normal) of KIF14 in RAR-G2 positive cases was 16.8 (95% CI: 10.14-23.38), while 5.3 in RAR-G2 negative cases (95% CI: 2.14-8.54).
  • the present invention is a diagnosis method for determining prognosis of liver cancer by using comparative genomic hybridization. With the present invention, it is possible to get early diagnosis and prognosis of liver cancer.
  • the present invention is simple to use for diagnosis or prognosis of liver cancer because it is specially designed for liver cancer with low density, thus useful for general hospital to test liver cancer. With the method of PCR using one species of DNA test marker, it is limited to get correct diagnosis or prognosis. Therefore it is ideal due to simplicity and efficiency when DNA analysis is simultaneously carried out through whole genome by using core makers which are capable of diagnosis or prognosis of liver cancer significantly.
  • the technique of microarray is proper to simultaneously analyze DNA markers of prognosis or diagnosis of liver cancer.
  • Array CGH is suitable for this purpose.
  • the present invention provides markers which are most significantly correlated to prognosis or diagnosis of the liver cancer and provides test kits for liver cancer by using the markers. If this present invention is selected as an index of liver cancer test, it is expected that more than 10,000 tests would be done in a year.

Abstract

The invention provides diagnostic methods for determining the prognosis of hepatocellular carcinoma (HCC) comprising the steps of (a) observing recurrently altered genomic region on a chromosome; (b) measuring variation of one or more of RAR expression variations selected from the RAR variation group consists of gains of RAR-G1 to RAR-G14 and losses of RAR-L1 to RAR-L18 as defined in table 1, a diagnostic kit, and genes for useful in diagnosis or prognosis of liver cancer.

Description

    SUMMARY OF THE INVENTION
  • The invention provides a diagnostic method for determining the prognosis of hepatocellular carcinoma (HCC) comprising the steps of (a) observing recurrently altered genomic region on a chromosome; (b) measuring variation of one or more of RAR expression variations selected from the RAR variation group consists of gains of RAR-G1 to RAR-G14 and losses of RAR-L1 to RAR-L18 as defined in table 1, a diagnostic kit, and genes for useful in diagnosis or prognosis of liver cancer.
  • RELATED APPLICATIONS/PATENTS & INCORPORATION BY REFERENCE
  • The present application claims the benefit of Korean Patent Application No. 10-2008-0004627 filed Jan. 15, 2008, the entire contents of which are hereby incorporated by reference.
  • Also, documents or references are cited in this text, either in a Reference List before the claims, or in the text itself; and, each of these documents or references (“herein cited references”), as well as each document or reference cited in each of the herein cited references (including any manufacturer's specifications, instructions, etc.), is hereby expressly incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention is related to diagnostic methods and kits for hepatocellular carcinoma measuring expression of genes in recurrently altered genomic region (RAR) using comparative genomic hybridization.
  • BACKGROUND OF THE INVENTION
  • Many genomic and genetic studies are directed to the identification of difference in gene dosage or expression among cell populations for the study and detection of disease. Many malignancies involve the gain or loss of DNA sequences that may result in activation of oncogene or inactivation of tumor suppressor genes.
  • Comparative genomic hybridization (CGH) is a technique that is used to evaluate variation s in genomic copy number in cells. In one implementation of CGH, genomic DNA is isolated from normal reference cells, as well as from test cells (e.g., tumor cells). The two nucleic acids are differentially labeled and then simultaneously hybridized to an array of oligonucleotide probes.
  • Array CGH assays measure the difference in copy number between a test sample and a reference sample. For example, two genomic samples (a test sample and a reference sample) can be labeled with two different dyes and hybridized together to a single microarray to perform these measurements. Alternatively, the two different samples can be hybridized to separate arrays and then measurement can be compared between arrays.
  • Hepatocellular carcinoma (HCC) is one of the most common human malignancies and responsible for approximately 5% of all cancer-related deaths in the world.1 Given that the overall HCC incidence is still rising and complete resection of the lesion in early stage remains the only hope for cure, it is important to develop effective diagnostic and therapeutic modalities based on sound biological insights into hepatocarcinogenesis.2,3
  • The copy number alterations observed in human solid tumors are known to contribute to the tumorigenesis by affecting the activities of cancer-related genes in the altered chromosomal regions.4,5 Thus, genome-wide mapping of copy number alterations in cancer can facilitate the identification of cancer-related genes, which will improve the understanding of tumorigenesis. Using conventional cytogenetic tools such as comparative genomic hybridization (CGH), copy number gains on 1q, 8q, and 20q, along with the losses on 1p, 4q, 8p, 13q, 16q, and 17p have been previously identified in HCC.6-8 However, the resolution of conventional cytogenetic analysis is insufficient to precisely identify sub-microscopic changes. Recently introduced array-CGH, combination of conventional CGH and microarray technology, enabled high-resolution screening of genome-wide copy number alterations containing potential cancer-related genes.5,9 Through array-CGH analysis, novel oncogenes such as JAB1 or differentiation-specific regions have been identified in HCC.6,10 But, considering the extensive and complex nature of chromosomal alterations, it is still difficult to identify biologically relevant changes and their functional significance in a systematic manner.
  • We hypothesized that recurrent copy number changes common to many HCC cases may contain essential genes for hepatocarcinogenesis. Using this strategy, recurrently altered regions (RAR) were defined in 76 primary HCCs using whole-genome array CGH analysis and the associations between RARs and clinicopathologic features were examined. Also, we functionally categorized the genes located in the RARs.
  • Korean patent registration No. 10-0534563 (registration date: Dec. 1, 2005) is related to a diagnostic method, composition, and primer for human hepatocellular carcinoma. Microarray and Representational Difference Analysis were performed to identify genes overexpressed in human hepatocellular carcinoma. The invention disclosed a diagnostic composition for human hepatocellular carcinoma comprising long chain fatty acid-coenzyme A ligase 4, farnesyl diphosphate synthase, syndecan-2, and a diagnostic method and primer using the composition.
  • Korean patent registration number 10-0552494 (registration date Feb. 8, 2006) disclosed genetic markers and diagnostic kits for liver cancer. More specifically, it disclosed useful diagnostic methods and diagnostic kits for diagnosis of liver cancer by comparing expression level of high expression gene and low expression gene.
  • Korean patent registration number 10-0527242 (registration date Nov. 2, 2006) is related to a microarray for measuring expression level of genes related to liver cancer. More specifically it is related to measurement and interpretation methods of molecular expression profile of protein and enzyme of liver cancer, which is characterized in that for measuring the profile of cDNA of protein and enzyme specifically expressed due to modified genes in hepatocellular carcinoma (HCC), a number of cDNAs obtained by reverse transcription of mRNAs from normal cell and liver cancer cell are mixed and bound with Cy5-dUTP probe, hybridized with 44 species of DNA microarray immobilized on DNA chip and then the result is analyzed by computer software.
  • As described above, there were a variety of diagnostic methods for liver cancer, however, there was no such a diagnostic method like present invention which determine the prognosis of a liver cancer by measuring recurrently altered genomic region (RAR) by using the method of comparative genomic hybridization,
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1. Whole-genome profiles and frequency plot of chromosomal alterations in hepatocellular carcinoma. (A) The genomic alterations in 76 primary human hepatocellular carcinomas are illustrated in individual lanes. A total of 2,958 large insert clones are mapped according to the UCSC genome browser (May, 2004 Freeze) and ordered by chromosomal position from 1pter to Yqter (X axis). Tumor versus reference intensity ratios (in log2 scale) for individual clones are plotted in different color scales reflecting the extent of copy number gains (red) and losses (green) as indicated in the reference color bar. The boundaries of individual chromosome are indicated by long vertical bars and the locations of centromeres by short vertical bars below the plot. (B) The frequency of chromosomal gains (>3 SD) and losses (<−3 SD) for each clone is shown for 76 HCC samples.
  • FIG. 2. Expression levels of KIF14 and TPM3 by copy number status. Mean expression ratios (tumor/normal) of KIF14 (A) and TPM3 (B) were calculated by real-time qRT-PCR by presence of RAR. Human GAPDH gene was used as an internal control. Expression of KIF14 was significantly higher in samples with RAR-G2 (n=12) than without (n=8), and expression of TPM3 was significantly higher in samples with RAR-G1 (n=13) than without (n=7). X axis represents RAR status and Y axis represents mean expression ratio. Error bars represent 95% confidence intervals.
  • FIG. 3. Survival analysis of RARs in HCC. Kaplan-Meier survival curves. The survival curves for the cases with (blue line) or without (green line) specific genomic changes are plotted using the Kaplan-Meier method. The chromosomal changes associated with relatively poor survival are presented with the significance level. RAR-G, recurrently altered region of copy number gain; RAR-L, copy number loss
  • DETAILED DESCRIPTION OF THE INVENTION
  • A confounding problem in genetic disease (especially cancer) diagnosis/prognosis has been the large amount of cellular heterogeneity in disease tissues. This is especially a problem for cancer tissues, partly due to their known tendency of chromosomal instability, and in some cases, different clonal origin and/or diverged progression from single clonal mutational events. Due to the nature of such disease tissues, there are no reliable methods to select only for tumor cell outgrowth for cytogenetic studies. This in turn has led to a high frequency of normal karyotypic findings for diseased tissues (false negative).
  • Genetic heterogeneity, which can be detected by conventional G-banding chromosome analysis, depends on the frequency of an aberrant clone and the number of cells analyzed, where the chromosomes of individual cells are analyzed. However, unlike the conventional cytogenetic approach of karyotype analysis, it is not the chromosomes of individual cells from a sample that are analyzed in microarray genome profiling, but rather the DNA sequence copy number of the total genomic DNA extracted from the cells of the sample. Consequently, from a DNA copy number perspective, the genome profile of a tumor maybe no different from that of total genomic DNA extracted from a reference population of 46, XX cells. Hence, the prior art has predicted that the genetic heterogeneity of this tumor sample would not be detected by microarray genome profiling.
  • The present invention is based at least in part that the detection of genetic heterogeneity in clinical samples, such that detection can be carried out under conditions and analysis to detect cell populations whose combined genetic profiles would have been predicted, e.g., by the prior art, to mask the presence of a heterogeneous population. In particular, the profiling methods of the present invention demonstrate the sensitivity with which it can detect clonally distinct cell populations within a more dominant background cell population.
  • As one way of overcoming this problem, specimens where a large abnormal clone was detected cytogenetically can be preferentially used over those with less prevalent clones. An alternative approach is to isolate tumor cells from normal cells by dissection, before DNA extraction and CGH analysis. For example, laser capture microdissection, a technique whereby a selected subset of cells are microscopically dissected, can be used to isolate tumor cells. Although somewhat labor intensive, this is the technology that is most likely to eliminate the concern regarding detection of genetic heterogeneity.
  • Comparative genomic hybridization (CGH) is a well-established technique for surveying the entire genome for abnormalities. However, standard CGH has relatively low resolution and has been used primarily on cell lines and in homogeneous populations (sources). Since a nucleic acid array can be constructed from a large number of DNA fragments for example Bacterial Artificial Chromosome (BAC) clones a Genomic Microarray (GM) can be produced as an article of manufacture that provides a much higher-resolution analysis of chromosomal DNA gains/losses, and has recently shown promise in the analysis of liver cancer following tissue dissection.
  • One aspect of the invention provides a method to identify genomic aberrations as diagnosis/prognosis markers for certain diseases of interest. Briefly, genomic regions consistently mutated in various disease samples are identified using DNA hybridization with a genomic microarray-comparative genomic hybridization (GM-CGH). Statistical correlation between a subset of the identified genomic aberrations with certain clinically useful data, such as disease onset, progression, and likely clinical outcome are then established. Once identified, the specific subset of genomic aberrations serve as useful markers for reliable and cost-effective diagnosis and/or prognosis means for the disease of interest. These identified disease markers may be provided as specifically designed genomic microarrays in a diagnostic/prognostic test kit, optionally with instructions for using such genomic microarrays (including assay protocols and conditions), and/or control samples and result interpretation.
  • Definitions
  • A chemical “array,” unless a contrary intention appears, includes any one, two or three-dimensional arrangement of addressable regions bearing a particular chemical moiety or moieties (for example, biopolymers such as polynucleotide sequences) associated with that region, where the chemical moiety or moieties are immobilized on the surface in that region. By “immobilized” is meant that the moiety or moieties are stably associated with the substrate surface in the region, such that they do not separate from the region under conditions of using the array, e.g., hybridization and washing and stripping conditions. As is known in the art, the moiety or moieties may be covalently or non-covalently bound to the surface in the region. For example, each region may extend into a third dimension in the case where the substrate is porous while not having any substantial third dimension measurement (thickness) in the case where the substrate is non-porous. An array may contain more than ten, more than one hundred, more than one thousand more than ten thousand features, or even more than one hundred thousand features, in an area of less than 20 cm2 or even less than 10 cm2. For example, features may have widths (that is, diameter, for a round spot) in the range of from about 10 to about 1.0 cm. In other embodiments each feature may have a width in the range of about 1.0 μm to about 1.0 mm, such as from about 5.0 μm to about 500 μm, and including from about 10 μm to about 200 μm. Non-round features may have area ranges equivalent to that of circular features with the foregoing width (diameter) ranges. A given feature is made up of chemical moieties, e.g., nucleic acids, that bind to (e.g., hybridize to) the same target (e.g., target nucleic acid), such that a given feature corresponds to a particular target. At least some, or all, of the features are of different compositions (for example, when any repeats of each feature composition are excluded the remaining features may account for at least 5%, 10%, or 20% of the total number of features). Interfeature areas will typically (but not essentially) be present which do not carry any polynucleotide. Such interfeature areas typically will be present where the arrays are formed by processes involving drop deposition of reagents but may not be present when, for example, light directed synthesis fabrication processes are used. It will be appreciated though, that the interfeature areas, when present, could be of various sizes and configurations. An array is “addressable” in that it has multiple regions (sometimes referenced as “features” or “spots” of the array) of different moieties (for example, different polynucleotide sequences) such that a region at a particular predetermined location (an “address”) on the array will detect a particular target or class of targets (although a feature may incidentally detect non-targets of that feature). The target for which each feature is specific is, in representative embodiments, known. An array feature is generally homogeneous in composition and concentration and the features may be separated by intervening spaces (although arrays without such separation can be fabricated)
  • In the case of an array, the “target” will be referenced as a moiety in a mobile phase (typically fluid), to be detected by probes (“target probes”) which are bound to the substrate at the various regions. However, either of the “target” or “target probes” may be the one which is to be detected by the other (thus, either one could be an unknown mixture of polynucleotides to be detected by binding with the other). “Addressable sets of probes” and analogous terms refer to the multiple regions of different moieties supported by or intended to be supported by the array surface.
  • The term “sample” as used herein relates to a material or mixture of materials, containing one or more components of interest. Samples include, but are not limited to, samples obtained from an organism or from the environment (e.g., a soil sample, water sample, etc.) and may be directly obtained from a source (e.g., such as a biopsy or from a tumor) or indirectly obtained e.g., after culturing and/or one or more processing steps. In one embodiment, samples are a complex mixture of molecules, e.g., comprising at least about 50 different molecules, at least about 100 different molecules, at least about 200 different molecules, at least about 500 different molecules, at least about 1000 different molecules, at least about 5000 different molecules, at least about 10,000 molecules, etc.
  • A “test sample” as applied to CGH analysis, refers to a sample that is being analyzed to evaluate DNA copy number, for example, to look for the presence of genetic anomalies, or species differences, for example. A “reference sample” as applied to CGH analysis, is a sample (e.g., a cell or tissue sample) of the same type as the test sample, but whose quantity or degree of representation is known or sequence identity is known. As used herein, a “reference nucleic acid sample” or “reference nucleic acids” refers to nucleic acids comprising sequences whose quantity or degree of representation (e.g., copy number) or sequence identity is known. Similarly, “reference genomic acids” or a “reference genomic sample” refers to genomic nucleic acids comprising sequences whose quantity or degree of representation (e.g., copy number) or sequence identity is known. A “reference nucleic acid sample” may be derived independently from a “test nucleic acid sample,” i.e., the samples can be obtained from different organisms or different cell populations of the sample organism. However, in certain embodiments, a reference nucleic acid is present in a “test nucleic acid sample” which comprises one or more sequences whose quantity or identity or degree of representation in the sample is unknown while containing one or more sequences (the reference sequences) whose quantity or identity or degree of representation in the sample is known. The reference nucleic acid may be naturally present in a sample (e.g., present in the cell from which the sample was obtained) or may be added to or spiked into the sample.
  • A test sample and reference sample may both be contacted to a single array for co-hybridization therewith, wherein log ratios of signals from the two samples can be generated by reading the signals for the test sample on a first channel and reading signals for the reference sample on a two-channel analyzer. Alternatively, the test sample may be hybridized to a first array and the reference sample may be hybridized to a second array that is the same as the first array, and signals from each array may be read, and then compared as log ratios
  • “CGH” or “Comparative Genomic Hybridization” refers generally to techniques for identification of chromosomal alterations (such as in cancer cells, for example). Using CGH, ratios between tumor or test sample and normal or control sample enable the detection of chromosomal amplifications and deletions of regions that may include oncogenes and tumor suppressive genes, for example.
  • An “array CGH” refers to an array that can be used to compare DNA samples for relative differences in copy number. In general, an array CGH can be used in any assay in which it is desirable to scan a genome with a sample of nucleic acids. For example, an array CGH can be used in location analysis as described in U.S. Pat. No. 6,410,243, the entirety of which is incorporated herein. In certain aspects, array CGH provides probes for screening or scanning a genome of an organism and comprises probes from a plurality of regions of the genome. In one aspect, the array comprises probe sequences for scanning an entire chromosome arm, wherein probes targets are separated by at least about 500 bp, at least about 1 kbp, at least about 5 kbp, at least about 10 kbp, at least about 25 kbp, at least about 50 kbp, at least about 100 kbp, at least about 250 kbp, at least about 500 kbp and at least about 1 Mbp. In another aspect, the array comprises probes sequences for scanning an entire chromosome, a set of chromosomes, or the complete complement of chromosomes forming the organism's genome. By “resolution” is meant the spacing on the genome between sequences found in the probes on the array. In some embodiments (e.g., using a large number of probes of high complexity) all sequences in the genome can be present in the array. The spacing between different locations of the genome that are represented in the probes may also vary, and may be uniform, such that the spacing is substantially the same between sampled regions, or non-uniform, as desired. An assay performed at low resolution on one array, e.g., comprising probe targets separated by larger distances, may be repeated at higher resolution on another array, e.g., comprising probe targets separated by smaller distances.
  • An “image analysis system” is a system to enhance and/or accurately quantitate the intensity differences between and/or among the signals from a hybridization and the background staining differences for more accurate and easier interpretation of results. Image analysis and methods to measure intensity are described, for example, in Hiraoka et al., Science, 238: 36-41 (1987) and Aikens et al., Meth. Cell Biol., 29: 291-313 (1989). In such an image analysis system, it is preferred to use a high quality CCD camera whose intensity response is known to be linear over a wide range of intensities.
  • A “recurrently altered genomic region” or “RAR” refers to a recurrently altered genomic region on chromosome that is defined in table 1 below as regional copy number changes observed in 15 (20%) or more samples out of 76 HCC samples. The array-CGH data described in this invention are available at website (http://systemsbiology.co.kr/micro/CGH/hepato.htm). The term “RAR-G” and “RAR-L” is defined according to Table 1 below. The term “RAR-G” refers to a genomic gain of RAR (RAR-Gain) and the term “RAR-L” refers to a genomic loss of RAR.
  • TABLE 1
    General characteristics of recurrently altered regions
    Number
    RAR Clone Chromosome Map positiona Size (Mb) Cytoband of cases Cancer-related genes
    G1 RP11-326G21- 1 142391262-183515789 41 1q21.1-1q32.1 49 PDZK1, MCL1, ARNT, AF1Q, TPM3,
    RP5-936P19 ADAR, RPS27, HAX1, PYGO2, CKS1B,
    ADAM15, MUC1, HDGF, CCT3, PRCC,
    IFI16, AIM2, USF1, SELP, SELE, LAMC2,
    TPR, PTGS2,
    G2 RP11-572A16- 1 198883756-244440465 46 1q32.1-1q44 45 KIF14, ELF3, ATF3, TGFB2, WNT3A,
    RP11-438H8 AKT3
    G3 RP11-46C20- 5 27487154-35513594 8 5p14.1-5p13.2 19 AMACR
    CTD-2291F22
    G4 CTB-55A14- 5 167592449-174643724 7 5q34-5q35.2 16 FGF18
    CTB-73D21
    G5 RP1-136B1- 6  2316508-54856430 52 6p25.2-6p12.1 23 DEK, ID4, E2F3, PRL, MICA, MICB,
    RP11-524H19 HMGA1, NOTCH4, MAPK14, PIM1,
    TFEB, CCND3, VEGF
    G6 RP5-1091E12- 7 54851795-55154846 1 7p11.2 16 EGFR
    RP11-339F13
    G7 RP5-1057M1- 7 79345845-86861115 7 7q21.11 20 HGF, DMTF1, ABCB1
    RP11-212B1
    G8 RP5-1059M17- 7 100783053-124638919 24 7q22.1-7q31.33 22 EPO, EPHB4, PIK3CG, CAV1&2, MET,
    RP11-420H19 WNT2
    G9 RP11-167E7- 8  48736257-141551817 94 8q11.21-8q24.3 37 PRKDC, MCM4, SNAI2, LYN, MOS,
    RP11-65A5 PLAG1, COPS5, TPD52, E2F5, MMP16,
    NBS1, EIF3S3, MYC, KCNK9, PTK2,
    EIF2C2, CCNE2
    G10 RP11-472N13- 10 31849328-33818450 2 10p11.22 15 MAP3K8, NRP1,
    RP11-505N10
    G11 RP11-95C14- 13  91284427-112901415 21 13q31.3-13q34 16 FGF14, ERCC5,
    RP11-265C7
    G12 RP11-515O17- 17 50654233-56847074 6 17q22-17q23.2 16 HLF, MPO, PPM1D, BCAS3, TBX2
    RP11-332H18
    G13 CTD-2043I16- 19 33293135-36979856 3 19q12 19 CCNE1
    CTC-416D1
    G14 RP5-852M4- 20  327036-61041280 61 20p13-20q13.33 26 CDC25B, JAG1, SSTR4, BCL2L1,
    RP4-563E14 PLAGL2, DNMT3B, E2F1, MMP24, SRC,
    TOP1, MYBL2, MMP9, NCOA3, PTPN1,
    ZNF217, STK6, BMP7
    L1 RP1-37J18- 1 4487199-7719107 3.3 1p36.32-1p36.23 18 CHD5, ICMT, CAMTA1
    RP11-338N10
    L2 RP11-285P3- 1 14486429-15354152 0.9 1p36.21 24 PRDM2, RIZ, CASP9
    RP4-560M15
    L3 RP11-8J9- 1 46823997-69303906 23 1p33-1p31.2 17 RAD54L, FAF1, S(T)IL, CDKN2C, TTC4,
    RP11-412F21 JUN, ARHI
    L4 RP11-118B23- 1  84667459-103923047 19 1p22.3-1p21.1 16 BCL10, CLCA2, LMO4, GTF2B, TGFBR3,
    RP5-1108M17 GFI1, EVI5
    L5 RP11-213L8- 4 172094998-190118103 18 4q33-4q35.2 34 CASP3, FAT
    RP11-553E4
    L6 RP1-273N12- 6  99385861-102294657 3 6q16.2-6q16.3 17 CCNC, GRIK2
    RP11-347H8
    L7 RP1-84N20- 6 125389372-168197568 43 6q22.31-6q27 16 CRSP3, PLAGL1, SASH1, LATS1, IGF2R,
    RP3-470B24 UNC93A, MLLT4
    L8 RP11-336N16- 8  2898583-34455078 31 8p23.2-8p12 34 CSMD1, DEFB1, NAT1, NAT2, PSD3,
    RP11-75P13 TNFRSF10A, TNFRSF10B, TNFRSF10C,
    RHOBTB2
    L9 RP11-48M17- 9  2136329-29639069 27 9p24.2-9p21.1 26 SMARCA2, MTAP, CDKN2B, CDKN2A,
    RP11-48L13 RECK, PAX5
    L10 RP11-276H19- 9 86827119-87654534 1 9q21.33 15 GAS1, DAPK1
    RP11-65B23
    L11 RP11-92C4- 9  98644250-104754734 6 9q22.33-9q31.1 16 TGFBR1
    RP11-31J20
    L12 RP11-381K7- 10 112963138-116971219 4 10q25.2-10q25.3 15 CASP7
    RP11-338L11
    L13 RP11-153M24- 13 27414161-59888914 32 13q12.2-13q21.2 19 BRCA2, CCNA1, RB1, RFP2, DLEU1,
    RP11-359P14 DLEU2, DDX26
    L14 RP11-353N19- 14 91389738-99247779 8 14q32.12-14q32.2 15 BCL11B
    RP11-68I8
    L15 RP11-114I12- 16  6846342-26727359 20 16p13.2-16p12.1 18 SOCS1, ERCC4
    RP11-142A12
    L16 RP11-325K4- 16 55369591-84922042 29 16q13-16q24.1 28 CDH1, CDH3, BCAR1, WWOX, CDH13,
    RP11-514D23 WFDC1
    L17 RP11-135N5- 17  2312021-16718826 14 17p13.3-17p12 39 TP53
    RP11-219A15
    L18 RP1-270M7- 21 15134621-39788380 14 21q11.2-21q22.2 15 ADAMTS1
    RP5-1031P17
    aThe mapping position refers to the UCSC genome browser (http://genome.ucsc.edu/; May 2004 freeze)
  • The purpose of present invention is to provide new diagnostic method and diagnostic kit for determining the prognosis of liver cancer; and cancer related genes using thereof.
  • To achieve above purpose, the present invention provides a diagnostic methods for determining the prognosis of hepatocellular carcinoma (HCC) comprising the steps of; (a) observing recurrently altered genomic region on a chromosome; (b) measuring variation of one or more of RAR expression variations selected from the RAR variation group consists of gains of RAR-G1 to RAR-G14 and losses of RAR-L1 to RAR-L18 as defined table 1 above. More specifically, the present invention provides diagnostic methods for determining the prognosis of hepatocellular carcinoma (HCC), wherein the RAR expression variation is RAR-G1, RAR-G2, RAR-L17, RAR-G9, RAR-L5, and RAR-L8 as defined according to the table 1. Further specifically, the present invention provides a diagnostic method for determining the tumor stage of hepatocellular carcinoma by using RAR-L2 and RAR-L4, a diagnostic method for prognosis of microvascular invasion of hepatocellular carcinoma by using RAR-G9, RAR-G12, RAR-G13, and RAR-L3, and a diagnostic method for determining the portal vein invasion of the hepatocellular carcinoma by using RAR-G13, RAR-L7 and RAR-L12.
  • One aspect of the present invention, it provides a diagnostic kit for determining the prognosis of hepatocellular carcinoma (HCC) comprising: (a) a microarray comprising a probe for measuring variation of one or more of RAR expression variations selected from the RAR variation group consists of gains of RAR-G1 to RAR-G14 and losses of RAR-L1 to RAR-L18 as defined table 1 above for observing recurrently altered genomic region (RAR) on a chromosome; and (b) an image analysis device for measuring variation of specific genes expression on the RAR. Specifically, the present invention is a diagnostic kit for determining the prognosis of hepatocellular carcinoma (HCC), wherein the probe for measuring is RAR-G1, RAR-G2, RAR-L17, RAR-G9, RAR-L5 and RAR-L8.
  • One aspect of the present invention, it provides one or more of genes for diagnosis of hepatocellular carcinoma, selected from the group consists of tropomyosin 3 (TPM3), ribosomal protein S27 (RPS27), hematopoietic cell-specific Lyn substrate 1-associated protein X-1 (HAX1), pygopus homolog 2 (PYGO2), CDC28 protein kinase regulatory subunit 1 (BCKS1B), a disintegrin and metalloprotease 15 (ADAM15), chaperonin subunit 3 (CCT3), papillary renal cell carcinoma (PRCC), kinesin family member 14 (KIF14), Eukaryotic initiation factor 3 (ELF3), transforming Growth Factor beta 2 (TGFB2) and protein kinase B gamma (AKT3).
  • One aspect of the present invention, it provides a diagnostic method for determining the prognosis of hepatocellular carcinoma (HCC) comprising the step of measuring variation of one or more of gene expression variations selected from the group consists of tropomyosin 3 (TPM3), ribosomal protein S27 (RPS27), hematopoietic cell-specific Lyn substrate 1-associated protein X-1(HAX1), pygopus homolog 2 (PYGO2), CDC28 protein kinase regulatory subunit 1 (BCKS1B), a disintegrin and metalloprotease 15 (ADAM15), chaperonin subunit 3 (CCT3), papillary renal cell carcinoma (PRCC), kinesin family member 14 (KIF14), Eukaryotic initiation factor 3 (ELF3), transforming Growth Factor beta 2 (TGFB2) and protein kinase B gamma (AKT3).
  • EXAMPLES
  • This invention is further illustrated by the following examples which should not be construed as limiting. Reasonable variations and/or modifications of the protocols by a skilled artisan may be used for different experiments, which variations and modifications are within the scope of the instant invention. The contents of all references, patents and published patent applications cited throughout this application, as well as the Figures are hereby incorporated by reference.
  • Example 1 Investigation of Characters of Chromosomal Change in Liver Cancer
  • (1) Study Materials
  • Frozen tissues (tumor and adjacent normal tissue pairs) were obtained from 76 primary HCC patients (65 males and 11 females) who underwent surgical resection. This study was performed under the approval of the Institutional Review Board of the Catholic University Medical College of Korea. Tumor stage was determined according to the standard tumor-node-metastasis classification of AJCC guidelines (6th edition). Clinicopathologic information about the 76 cases is available in Table 2. Ten μm-thick frozen sections were prepared and tumor cell-rich areas (tumor cells in more than 60% of the selected area) were microdissected, from which genomic DNA was extracted as described previously.11,12
  • TABLE 2
    Clinicopathologic information of 76 HCC patients
    Case ID Age (yrs) Sex Grade Stage Size (mm)a MVI PVI Cap Virus
    HCC1 37 M 2 2 57 0 0 1 B
    HCC2 49 M 2 2 25 0 0 0 B
    HCC3 42 F 3 2 60 0 0 1 B
    HCC4 35 M 3 3 80 1 0 0 B
    HCC5 38 M 1 1 15 0 0 B
    HCC6 42 M 4 4 55 1 1 0 B
    HCC7 51 M 3 3 40 1 0 0 B
    HCC8 58 M 3 3 35 1 0 0
    HCC9 36 F 1 2 30 0 0
    HCC10 54 F 3 3 35 1 0 0 B
    HCC11 52 M 4 3 70 0 0 1 B
    HCC12 61 M 3 3 140 1 0 0 B
    HCC13 52 M 2 3 55 1 0 0 B
    HCC14 59 F 2 1 15 0 0 1 B
    HCC15 89 M 2 2 70 0 0 1 C
    HCC16 56 M 3 3 90 1 0 1 B
    HCC17 38 M 3 1 15 0 0 0 B
    HCC18 50 M 2 2 35 0 0 1 B
    HCC19 56 F 2 4 30 1 1 0 B
    HCC20 39 M 2 3 25 1 0 0 B
    HCC21 40 M 3 4 130 1 1 0 B
    HCC22 53 M 3 2 50 0 0 1 B
    HCC23 45 M 3 2 15 1 0 1 B
    HCC24 59 M 2 2 32 0 0 1 B
    HCC25 55 M 2 2 105 0 0 1 B
    HCC26 58 M 2 3 44 1 0 1 B
    HCC27 56 M 2 2 55 0 0 0
    HCC28 43 M 2 2 20 1 0 1 B
    HCC29 47 M 2 2 35 0 0 1 C
    HCC30 49 M 2 2 27 0 0 1 B
    HCC31 53 M 2 2 40 0 0 1 B
    HCC32 51 M 2 2 55 0 0 1 B
    HCC33 44 M 3 2 15 1 0 1 B
    HCC34 66 M 2 1 20 0 0 1 B
    HCC35 57 M 3 3 26 1 0 1 B
    HCC36 38 M 2 2 45 0 0 1 B
    HCC37 55 M 2 2 70 0 0 1 B
    HCC38 42 M 2 3 35 1 0 1 B
    HCC39 51 F 2 2 30 0 0 1 B
    HCC40 55 M 1 2 25 0 0 1 B
    HCC41 43 M 4 3 50 1 0 1 B
    HCC42 57 M 3 3 55 1 0 0 B
    HCC43 37 M 3 2 20 1 0 0 B
    HCC44 65 M 3 3 28 1 0 1 B
    HCC45 55 M 2 3 60 1 0 0 B
    HCC46 60 M 2 2 70 0 0 1 B
    HCC47 43 M 4 3 230 1 0 0 B
    HCC48 31 M 2 1 20 0 0 0 B
    HCC49 66 M 1 2 28 0 0 0 B
    HCC50 62 F 1 2 31 0 0 1 B
    HCC51 46 M 2 3 17 1 0 1 B
    HCC52 52 F 2 1 20 0 0 0 B
    HCC53 49 M 2 3 110 0 0 1 B
    HCC54 45 M 1 3 30 1 0 0 B
    HCC55 52 M 3 2 35 1 1 1 B
    HCC56 75 M 3 3 120 0 0 1
    HCC57 42 M 1 2 30 0 0 1 B
    HCC58 49 M 3 3 90 1 0 1 B
    HCC59 61 M 4 4 60 1 1 1 B
    HCC60 52 M 4 2 35 1 0 1 B
    HCC61 41 M 2 3 50 1 1 1 B
    HCC62 71 M 2 3 45 1 1 1 B
    HCC63 43 M 3 2 35 1 0 1 B
    HCC64 51 M 4 3 30 1 1 1 B
    HCC65 58 F 2 3 67 0 1 1
    HCC66 42 M 4 4 80 1 1 1 B
    HCC67 48 M 2 2 25 0 1 1 B
    HCC68 48 M 1 2 20 0 0 0 B
    HCC69 29 F 2 3 60 0 0 1 B
    HCC70 52 M 2 3 15 0 0 0 B
    HCC71 51 M 4 3 55 1 1 1 B
    HCC72 64 F 4 3 60 0 0 1 B
    HCC73 68 M 1 3 35 0 0 1
    HCC74 49 M 2 3 0 0 0 B
    HCC75 68 M 3 3 110 1 1 1
    HCC76 48 M 2 2 20 0 1 1 B
    aIf multiple masses are observed, the size of the largest one is used to as tumor size of the corresponding case.
    MVI, microvascular invasion;
    PVI, portal vein invasion;
    Cap, encapsulation
  • (2) Array Comparative Genomic Hybridization
  • A large insert clone array covering the entire human genome at 1 Mb resolution was used for profiling genomic alterations.13 Array-CGH was performed as described elsewhere using MAUI hybridization station (BioMicro Systems, Salt Lake city, Utah).11,12 Data processing, normalization, and re-aligning of raw array-CGH data were performed using web-based array-CGH analysis software ArrayCyGHt (http://genomics.catholic.ac.kr/arrayCGH/).14 We used print-tip loess normalization method for analysis. Large insert clones (n=2,958) and genomic coordinates such as cytogenetic bands or gene positions were mapped according to the UCSC genome browser (http://genome.ucsc.edu/; May 2004 freeze).
  • (3) Statistical Analysis
  • To see the association between chromosomal changes such as RARs and total number of altered clones, and clinicopathologic phenotypes, eight clinical parameters were treated as categorical variables; age (<35 years versus ≧35 years), sex, grade (grade 1 and 2 as low versus 3 and 4 as high), stage (stage I and II as early versus stage III and IV as advanced), tumor size (<3.5 cm versus ≧3.5 cm) along with the presence or absence of microvascular invasion, portal vein invasion, and encapsulation. Significance of the different distribution of RARs in each category was tested by Chi squared or two-sided Fisher's exact test. The mean number of altered clones in 8 categories and expression levels of genes in different RAR groups were compared by independent t-test. Stata version 9,1 (Stata Corporation, Texas) was used and P value less than 0.05 was considered significant in all statistical analyses.
  • (4) Results
  • Profiles of Chromosomal Alterations
  • The overall profile of chromosomal alterations identified in the 76 primary HCCs is illustrated in FIG. 1A. Chromosomal alterations are not randomly distributed along the genome but clustered in certain chromosomal segments (FIG. 1B). Mean number of altered clones per case is 677.1 (338.7 clones gained and 338.4 clones lost) out of total 2,958 clones. In other words, 22.9% (11.5% gained and 11.4% lost) of the whole genome is altered per each case on average. Mean numbers of altered clones are significantly higher in high-grade tumors than low-grade ones (769.9 versus 594.6 clones; P=0.002), in microinvasion positive cases than negative ones (764.1 versus 598.9 clones; P=0.016) and in bigger tumors than smaller ones (756.1 versus 602.3 clones; P=0.026). In case of entire chromosomal arm changes, five chromosomal gains in 1q, 6p, 8q, 20p, and 20q and 5 losses in 4q, 8p, 9p, 16q, and 17p are repetitively observed in over 30% of the samples. The alteration frequency of chromosomal arms is summarized in Table 3.
  • TABLE 3
    Frequencies of entire chromosomal arm changes in HCC
    Figure US20090181394A1-20090716-C00001
    Figure US20090181394A1-20090716-C00002
    The recurrent changes observed more than 20% of samples are shown as shaded.
  • Recurrently Altered Regions in HCC
  • Although entire chromosomal arm changes appeared occasionally, vast majority of copy number alterations in HCCs are localized regional changes. To delineate the frequently observed consensus-regions, we defined the RARs which are regional chromosomal alterations observed in at least 15 cases (20% of HCC cases) among the 76 HCCs. In total, 14 RAR gains (RAR-G) and 18 RAR losses (RAR-L) were detected (Table 1). Five most frequent RARs are RAR-G1 (64.5%: 1q21.1-1q32.1), RAR-G2 (59.2%: 1q32.1-1q44), RAR-L17 (51.3%: 17p13.3-17p12), RAR-G9 (48.7%: 8q11.21-8q24.3) and RAR-L5/L8 (both 44.7%: 4q33-4q35.2/8p23.2-8p12). Average size of RAR-Gs (26.6 Mb; ranged 1-94 Mb) is larger than that of RAR-Ls (16.5 Mb; ranged 0.9-43 Mb). Well-known oncogenes such as MYC, FGF, EGFR, and CCND3 along with tumor suppressor genes such as TP53, RB1, CDKN2A, and CDKN2B are located in identified RARs. The other genes in the RARs are also thought to be potential cancer-related genes contributing to hepatocarcinogenesis directly or indirectly (Table 1).
  • TABLE 1
    General characteristics of recurrently altered regions
    Number
    RAR  Clone Chromosome Map positiona Size (Mb) Cytoband of cases Cancer-related genes
    G1 RP11-326G21- 1 142391262-183515789 41 1q21.1-1q32.1 49 PDZK1, MCL1, ARNT, AF1Q, TPM3,
    RP5-936P19 ADAR, RPS27, HAX1, PYGO2, CKS1B,
    ADAM15, MUC1, HDGF, CCT3, PRCC,
    IFI16, AIM2, USF1, SELP, SELE, LAMC2,
    TPR, PTGS2,
    G2 RP11-572A16- 1 198883756-244440465 46 1q32.1-1q44 45 KIF14, ELF3, ATF3, TGFB2, WNT3A,
    RP11-438H8 AKT3
    G3 RP11-46C20- 5 27487154-35513594 8 5p14.1-5p13.2 19 AMACR
    CTD-2291F22
    G4 CTB-55A14- 5 167592449-174643724 7 5q34-5q35.2 16 FGF18
    CTB-73D21
    G5 RP1-136B1- 6  2316508-54856430 52 6p25.2-6p12.1 23 DEK, ID4, E2F3, PRL, MICA, MICB,
    RP11-524H19 HMGA1, NOTCH4, MAPK14, PIM1,
    TFEB, CCND3, VEGF
    G6 RP5-1091E12- 7 54851795-55154846 1 7p11.2 16 EGFR
    RP11-339F13
    G7 RP5-1057M1- 7 79345845-86861115 7 7q21.11 20 HGF, DMTF1, ABCB1
    RP11-212B1
    G8 RP5-1059M17- 7 100783053-124638919 24 7q22.1-7q31.33 22 EPO, EPHB4, PIK3CG, CAV1&2, MET,
    RP11-420H19 WNT2
    G9 RP11-167E7- 8 48736257-141551817 94 8q11.21-8q24.3 37 PRKDC, MCM4, SNAI2, LYN, MOS,
    RP11-65A5 PLAG1, COPS5, TPD52, E2F5, MMP16,
    NBS1, EIF3S3, MYC, KCNK9, PTK2,
    EIF2C2, CCNE2
    G10 RP11-472N13- 10 31849328-33818450 2 10p11.22 15 MAP3K8, NRP1,
    RP11-505N10
    G11 RP11-95C14- 13  91284427-112901415 21 13q31.3-13q34 16 FGF14, ERCC5,
    RP11-265C7
    G12 RP11-515O17- 17 50654233-56847074 6 17q22-17q23.2 16 HLF, MPO, PPM1D, BCAS3, TBX2
    RP11-332H18
    G13 CTD-2043I16- 19 33293135-36979856 3 19q12 19 CCNE1
    CTC-416D1
    G14 RP5-852M4- 20  327036-61041280 61 20p13-20q13.33 26 CDC25B, JAG1, SSTR4, BCL2L1,
    RP4-563E14 PLAGL2, DNMT3B, E2F1, MMP24, SRC,
    TOP1, MYBL2, MMP9, NCOA3, PTPN1,
    ZNF217, STK6, BMP7
    L1 RP1-37J18- 1 4487199-7719107 3.3 1p36.32-1p36.23 18 CHD5, ICMT, CAMTA1
    RP11-338N10
    L2 RP11-285P3- 1 14486429-15354152 0.9 1p36.21 24 PRDM2, RIZ, CASP9
    RP4-560M15
    L3 RP11-8J9- 1 46823997-69303906 23 1p33-1p31.2 17 RAD54L, FAF1, S(T)IL, CDKN2C, TTC4,
    RP11-412F21 JUN, ARHI
    L4 RP11-118B23- 1  84667459-103923047 19 1p22.3-1p21.1 16 BCL10, CLCA2, LMO4, GTF2B, TGFBR3,
    RP5-1108M17 GFI1, EVI5
    L5 RP11-213L8- 4 172094998-190118103 18 4q33-4q35.2 34 CASP3, FAT
    RP11-553E4
    L6 RP1-273N12- 6  99385861-102294657 3 6q16.2-6q16.3 17 CCNC, GRIK2
    RP11-347H8
    L7 RP1-84N20- 6 125389372-168197568 43 6q22.31-6q27 16 CRSP3, PLAGL1, SASH1, LATS1, IGF2R,
    RP3-470B24 UNC93A, MLLT4
    L8 RP11-336N16- 8  2898583-34455078 31 8p23.2-8p12 34 CSMD1, DEFB1, NAT1, NAT2, PSD3,
    RP11-75P13 TNFRSF10A, TNFRSF10B, TNFRSF10C,
    RHOBTB2
    L9 RP11-48M17- 9 2136329-29639069 27 9p24.2-9p21.1 26 SMARCA2, MTAP, CDKN2B, CDKN2A,
    RP11-48L13 RECK, PAX5
    L10 RP11-276H19- 9 86827119-87654534 1 9q21.33 15 GAS1, DAPK1
    RP11-65B23
    L11 RP11-92C4- 9  98644250-104754734 6 9q22.33-9q31.1 16 TGFBR1
    RP11-31J20
    L12 RP11-381K7- 10 112963138-116971219 4 10q25.2-10q25.3 15 CASP7
    RP11-338L11
    L13 RP11-153M24- 13 27414161-59888914 32 13q12.2-13q21.2 19 BRCA2, CCNA1, RB1, RFP2, DLEU1,
    RP11-359P14 DLEU2, DDX26
    L14 RP11-353N19- 14 91389738-99247779 8 14q32.12-14q32.2 15 BCL11B
    RP11-68I8
    L15 RP11-114I12- 16  6846342-26727359 20 16q13.2-16p12.1 18 SOCS1, ERCC4
    RP11-142A12
    L16 RP11-325K4- 16 55369591-84922042 29 16q13-16q24.1 28 CDH1, CDH3, BCAR1, WWOX, CDH13,
    RP11-514D23 WFDC1
    L17 RP11-135N5- 17  2312021-16718826 14 17p13.3-17p12 39 TP53
    RP11-219A15
    L18 RP1-270M7- 21 15134621-39788380 14 21q11.2-21q22.2 15 ADAMTS1
    RP5-1031P17
    aThe mapping position refers to the UCSC genome browser (http://genome.ucsc.edu/; May 2004 freeze)
  • RARs and Clinical Characteristics
  • Eight types of clinical variables (age of onset, sex, grade, stage, size, portal vein invasion, microvascular invasion and encapsulation) were analyzed for their associations with the RARs (Table 4). RARs and associated characteristics are as follows; RAR-L11 and -L16 with early onset of age, RAR-G5, -G7, -G8 and RAR-L13 with male sex, RAR-L5, -L9, -L10, -L11 and -L13 with high tumor grade, especially RAR-L10 showing highly significant association, RAR-L2 and -L4 with advanced tumor stage, RAR-G9, -G12, -G13 and RAR-L3 with microvascular invasion, RAR-G13, RAR-L7 and -L12 with portal vein invasion in negative direction, RAR-G4 with larger tumor size, and RAR-G6 and -G7 with encapsulation.
  • TABLE 4
    Association between RARs and clinical features
    Early onset (<50) Late onset (≧50) Total P value
    RAR-L11 23 37 60 0.030
    + 11 5 16
    RAR-L16 23 37 60 0.030
    + 11 5 16
    Female Male Total P value
    RAR-G5 11 42 53 0.018
    + 0 23 23
    RAR-G7 11 45 56 0.032
    + 0 20 20
    RAR-G8 11 43 54 0.022
    + 0 22 22
    RAR-L13 11 46 57 0.038
    + 0 19 19
    Low grade (1, 2) High grade (3, 4) Total P value
    RAR-L5 30 12 42 0.016
    + 15 19 34
    RAR-L9 36 14 42 0.002
    + 9 17 26
    RAR-L10 42 19 51 0.001
    + 3 12 15
    RAR-L11 40 20 60 0.01 
    + 5 11 16
    RAR-L13 38 19 57 0.022
    + 7 12 19
    Stage (I, II) Stage (III, IV) Total P value
    RAR-L2 30 22 52 0.048
    + 8 16 24
    RAR-L4 34 26 60 0.024
    + 4 12 16
    Size (<3.5 cm) Size (≧3.5 cm) Total P value
    RAR-G4 35 25 60 0.018
    + 4 12 16
    MVI (−) MVI (+) Total P value
    RAR-G9 27 12 39 0.003
    + 13 24 37
    RAR-G12 36 24 60 0.013
    + 4 12 16
    RAR-G13 25 32 57 0.008
    + 15 4 19
    PVI (−) PVI (+) Total P value
    RAR-G13 43 14 57 0.017
    + 19 0 19
    RAR-L7 46 14 60 0.032
    + 16 0 16
    RAR-L12 48 14 62 0.049
    + 14 0 14
    Cap (−) Cap (+) Total P value
    RAR-G6 22 36 60 0.054
    + 2 14 16
    RAR-G7 21 33 54 0.051
    + 3 17 20
    Note:
    MVI, microvascular invasion;
    PVI, portal vein invasion;
    Cap, encapsulation
  • Example 2 Analysis of Recurrently Altered Genomic Region Having Clinically Importance (1) Functional Enrichment Analysis
  • Functional enrichment analysis based on gene ontology was performed for the RARs significantly associated with clinicopatholigical characteristics. In brief, gene sets for enrichment analysis were prepared using 17,661 known genes with genomic coordinates downloaded from the UCSC genome browser (2004, May Freeze). Genes were grouped into specific sets using NetAffx Gene Ontology Mining Tools according to functions annotated in public gene databases such as GO (Gene Ontology), KEGG (Kyoto Encyclopedia of Genes and Genomes) and GenMAPP (Gene Map Annotator and Pathway Profiler).16-19 A total of 1,632 gene sets were prepared for enrichment analysis. The functional enrichment analysis was performed using GEAR software (http://systemsbiology.co.kr/GEAR/).20 The significance of enrichment was calculated by hypergeometric distribution and P value less than 0.01 was considered significant.
  • (2) Identification of Copy Number Alteration
  • To set the cutoff value for chromosomal alterations of individual clones based on standard deviation (SD), we performed six independent hybridizations using DNA from normal individuals (four sex-matched and two male-to-female), from which control SD values of individual clones were obtained. Chromosomal gain or loss was assigned when the normalized log2 intensity ratio of each data point exceeded or fell below ±3 SD derived from normal control hybridizations. Regional copy number change was defined as DNA copy number alteration stretching over 2 or more consecutive large insert clones, but not across an entire chromosomal arm. High-level amplification of clones was defined when their intensity ratios were higher than 1.0 in log2 scale, and vice versa for homozygous deletion. RAR was defined as regional copy number changes observed in 15 (20%) or more samples out of 76 HCC samples. The array-CGH data described in this study are available at website (http://systemsbiology.co.kr/micro/CGH/hepato.htm).
  • (3) Real-Time Quantitative PCR Assay
  • The first-strand cDNA was synthesized from total RNA of 20 HCC and normal tissue pairs using M-MLV reverse transcriptase (Invitrogen, Carlsbad, Calif.). Real-time quantitative PCR was performed using Mx3000P qPCR system and MxPro Version 3.00 software (Stratagene, Calif., USA). Twenty μl of real-time qPCR mixture contains 10 ng of cDNA, 1×SYBR® Green Tbr polymerase mixture (FINNZYMES, Finland), 1×ROX, and 20 pmole of primers. GAPDH was used as an internal control in each procedure. Thermal cycling was done as follows: 10 min at 95° C. followed by 40 cycles of 10 sec at 94° C., 30 sec at 53-58° C. and 30 sec at 72° C. To verify specific amplification, melting curve analysis was performed (55-95° C., 0.5° C./sec). Relative quantification was performed by the ΔΔCT method.15 All the experiments were repeated twice and mean value of intensity ratios with SD was plotted for each case. Primer sequences for TPM3, RPS27, HAX1, PYGO2, CKS1B, ADAM15, CCT3, PRCC, KIF14, ELF3, TGFB2, and AKT3 are available in Table 5.
  • TABLE 5
    Primers used for candidate gene-specific RT-PCR located in chromosone 1q
    Gene Size
    Symbol (bp) Sequence (Forward) Sequence (Reverse)
    TPM3 141 5-GAG AGG TAT GAA GGT TAT TGA-3 5-ATCACCAACTTACGAGCCACC-3′
    (Seq. ID NO. 1) (Seq. ID NO. 2)
    RPS27 161 5-CTT TCC GGC GGT GAC GAC-3 5-TTT TAT AGC ATC CTG GGC ATT TC-3
    (Seq. ID NO. 3) (Seq. ID NO. 4)
    HAX1 200 5-GTA GGG CCG GAC AGA GAC TAC AG-3 5-GTG GGC AAT GGG TGA GAG GTG-3
    (Seq. ID NO. 5) (Seq. ID NO. 6)
    PYGO2 193 5-AGG GCC CTG CAT ACT CAC ATC TG-3 5-CCC CCT GCA CAC GGA AGC-3
    (Seq. ID NO. 7) (Seq. ID NO. 8)
    CKS1B  79 5-CTT GGC GTT CAG CAG AGT CAG G-3 5-GGC GCC GGA ACA GCA AGA T-3
    (Seq. ID NO. 9) (Seq. ID NO. 10)
    ADAM15 194 5-TCC AGC CCC AGC CAA GAC CT-3 5-GCT CGC CCG GCT CCA CAA ACA TA-3
    (Seq. ID NO. 11) (Seq. ID NO. 12)
    CCT3 119 5-GGG TGC GGT GAT TGG CGA CTA C-3 5-TGG GGG AAC CGG CAG AAC CT-3
    (Seq. ID NO. 13) (Seq. ID NO. 14)
    PRCC 166 5-TGC CTC CGC CCC CTC AGA TGC T-3 5-CTC CCC AAC TCC CGC CGC TTC A-3
    (Seq. ID NO. 15) (Seq. ID NO. 16)
    KIF14 221 5-CTG CTC TAC GGC TCA CAC TAA TGG-3 5-CTG GCA GCG GGA CTA ATC GTA-3
    (Seq. ID NO. 17) (Seq. ID NO. 18)
    ELF3 214 5-CTC GCC TCC CCA CCC TCC TCT T-3 5-GCC CCT GCT CTG TCC TCT CCA TCA-3
    (Seq. ID NO. 19) (Seq. ID NO. 20)
    TGFB2 250 5-AAT GCC ATC CCG CCC ACT TTC TAC-3 5-GCC ATT CGC CTT CTG CTC TTG TTT-3
    (Seq. ID NO. 21) (Seq. ID NO. 22)
    AKT3 190 5-GAG CCC ACC ATT GTT CAT TTG-3 5-GCA CGC CAC CAC CCT TCC-3
    (Seq. ID NO. 23) (Seq. ID NO. 24)
    GAPDH 301 5-GCG GGG CTC TCC AGA ACA TCA-3 5-CCA GCC CCA GCG TCA AAG GTG-3
    (Seq. ID NO. 25) (Seq. ID NO. 26)
  • (4) Results Functional Annotation of the Clinically Significant RARs
  • We investigated functional categories of the genes enriched in the RARs which showed significant association with clinical features. Table 6 lists the enriched functional pathways in tumor grade-associated RARs. Top 5 pathways have interferon-related gene families in common as member genes, since interferon-loci are included in tumor grade-related RARs. Since all of these RARs are copy number losses, it can be assumed that the 5 interferon-related pathways are repressed. Cell cycle regulation and angiogenesis pathways are also found to be significantly associated with tumor grade-related RARs. Functional enrichment analysis results of other clinical feature-related RARs are available in the Table 7.
  • TABLE 6
    Functional pathways enriched in tumor grade-associated RARs
    Gene Observed
    Functional annotations sizea genesb P-valuee Genesc
    hematopoietin/interferon-class 20 14 5.25E−21 IFNA1, IFNA2, IFNA4, IFNA5, IFNA6,
    cytokine receptor binding IFNA8, IFNA10, IFNA13, IFNA14, IFNA16,
    IFNA17, IFNA21, IFNB1, IFNW1
    interferon-alpha/beta receptor 9 9 1.18E−16 IFNA1, IFNA2, IFNA4, IFNA10, IFNA13,
    binding IFNA16, IFNA17, IFNB1, IFNW1
    response to virus 66 14 5.15E−12 IFN familyd
    defense response 126 15 4.52E−09 IFN family, IFNE1
    cytokine activity 177 17 1.15E−08 IFN family, TNFSF11, CER1, IFNE1
    physiological process 18 4 0.0002 INSL4, RLN1, RLN2, INSL6
    regulation of cyclin dependent 34 4 0.0027 CDKN2A, CDKN2B, CCNA1, RGC32
    protein kinase activity
    condensed chromosome 6 2 0.0042 HMGB1, HMGB2
    Angiogenesis 41 4 0.0053 COL15A1, FLT1, VEGFC, HAND2
    Pregnancy 47 4 0.0086 FLT1, INSL4, RLN1, RLN2
    anumber of genes in the functionally annotated gene sets
    bnumber of observed genes in tumor grade-related RARs
    cgene symbols for the observed genes.
    dincludes 14 genes in hematopoietin/interferon-class cytokine receptor binding category. It is used to avoid repeating the gene symbols.
    esignificance level of enrichment was calculated using hypergeometric distribution and P < 0.01 was considered significant.
  • TABLE 7
    Functional categories enriched in clinicopathologic phenotype-related RARs
    Clinical Observed
    phenotypes Functional annotations Gene size genes P-value Genes
    Age N-acetylglucosamine 6-O- 5 3 2.95E−05 CHST6, CHST4, CHST5
    sulfotransferase activity
    intrinsic to Golgi membrane 8 3 0.0002 CHST6, CHST4, CHST5
    homophilic cell adhesion 92 7 0.0004 CDH1, CDH3, CDH5, CDH8, CDH11, CDH13,
    CDH16
    N-acetylglucosamine metabolism 11 3 0.0005 CHST6, CHST4, CHST5
    sulfur metabolism 12 3 0.0006 CHST6, CHST4, CHST5
    chemotaxis 104 7 0.0008 CCL17, CCL22, CKLF, CMTM1, CMTM3, CMTM4,
    CMTM2
    amino acid-polyamine transporter 35 4 0.0016 SLC12A3, SLC12A4, SLC7A6, FLJ10815
    activity
    aminomethyltransferase activity 5 2 0.0020 GCSH, PDPR
    cytoplasmic dynein complex 5 2 0.0020 DYNC1LI2, DYNLRB2
    glycine catabolism 6 2 0.00304 GCSH, PDPR
    cation:chloride symporter activity 6 2 0.0030 SLC12A3, SLC12A4
    amino acid transport 43 4 0.0034 SLC12A3, SLC12A4, SLC7A6, FLJ10815
    neuropeptide signaling pathway 71 5 0.0037 AGRP, GPR56, PKD1L2, GPR114, GPR97
    cytokine activity 177 8 0.0043 CCL17, CCL22, CX3CL1, CKLF, CMTM1, CMTM3,
    CMTM4, CMTM2
    chemokine activity 46 4 0.0043 CCL17, CCL22, CX3CL1, CKLF
    telomerase-dependent telomere 9 2 0.0070 TERF2, TERF2IP
    maintenance
    Sex nucleosome 73 44 1.59E−41 Histone family
    nucleosome assembly 83 44 4.06E−38 Histone familiy
    chromosome organization and 87 43 1.46E−35 Histone familiy
    biogenesis
    chromosome 102 44 3.95E−33 Histone familiy
    MHC class II receptor activity 14 13 2.23E−17 HLA-C, HLA-DMA, HLA-DMB, HLA-DOA, HLA-
    DOB, HLA-DPA1, HLA-DPB1, HLA-DQA1, HLA-
    DQA2, HLA-DQB1, HLA-DRA, HLA-DRB1, HLA-
    DRB5
    antigen presentation, exogenous 13 12 4.86E−16 HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-
    antigen DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-
    DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5
    antigen processing, exogenous 14 12 3.27E−15 HLA-DMA, HLA-DMB, HLA-DOA, HLA-DOB, HLA-
    antigen via MHC class II DPA1, HLA-DPB1, HLA-DQA1, HLA-DQA2, HLA-
    DQB1, HLA-DRA, HLA-DRB1, HLA-DRB5
    antigen processing, endogenous 10 9 4.82E−12 HFE, HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-
    antigen via MHC class I G, TAP2, TAPBP
    DNA packaging 17 9 8.91E−09 Histone familiy
    antigen presentation, endogenous 9 7 9.13E−09 HFE, HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G
    antigen
    detection of pest, pathogen or 7 6 4.30E−08 HLA-DMA, HLA-DMB, HLA-DPB1, HLA-DRB1,
    parasite HLA-DRB5, HLA-G
    establishment and/or maintenance of 33 11 7.37E−08 Histone familiy
    chromatin architecture
    MHC class I protein complex 16 8 1.11E−07 HFE, HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-
    G, MICB
    phosphoinositide-mediated signaling 23 9 2.37E−07 Histone familiy
    antigen presentation 19 8 5.79E−07 HFE, HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-
    G, MICB
    MHC class I receptor activity 21 8 1.44E−06 HFE, HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-
    G, MICB
    olfactory receptor activity 82 13 4.67E−05 OR2H2, OR2B6, OR12D2, OR11A1, OR2W1, OR2J2,
    OR2H1, OR5V1, OR2B2, OR12D3, OR2B3, OR5U1,
    OR10C1
    sensory perception of smell 88 13 9.91E−05 OR2H2, OR2B6, OR12D2, OR11A1, OR2W1, OR2J2,
    OR2H1, OR5V1, OR2B2, OR12D3, OR2B3, OR5U1,
    OR10C1
    Proteasome_Degradation 57 9 0.0007 HLA-A, HLA-B, HLA-C, HLA-E, HLA-F, HLA-G,
    (GenMAPP) PSMB8, PSMB9, PSMC2
    fusion of sperm to egg plasma 5 3 0.0008 CRISP1, SPAM1, HYAL4
    membrane
    Glutathione metabolism (KEGG) 30 6 0.0016 GCLC, GPX5, GSTA1, GSTA2, GSTA3, GSTA4
    protein phosphatase inhibitor activity 26 5 0.0046 PPP1R10, PSMB9, PPP1R11, C13orf18, PHACTR1
    ATPase activity, coupled to 37 6 0.0047 ABCF1, CFTR, ABCB4, TAP1, TAP2, ABCC10
    transmembrane movement of
    substances
    nucleoside-triphosphatase activity 119 12 0.0054 ABCF1, CFTR, MCM3, PEX6, ABCB4, PSMC2,
    RFC3, TAP1, TAP2, WRNIP1, KATNAL1, ABCC10
    tumor necrosis factor receptor 18 4 0.0065 LTA, LTB, TNF, TNFSF11
    binding
    G1_to_S_cell_cycle_Reactome 65 8 0.0067 CCND3, CDKN1A, CREBL1, E2F3, MCM3, ORC5L,
    (GenMAPP) RB1, CCNA1
    sulfate transport 10 3 0.0077 SLC26A3, SLC26A4, SLC13A1
    large ribosomal subunit 10 3 0.0077 WASL, RPL7L1, LOC441150
    glutathione transferase activity 19 4 0.0080 GSTA1, GSTA2, GSTA3, GSTA4
    Stage Starch and sucrose metabolism 33 5 9.96E−07 AGL, AMY1A, AMY1B, AMY2A, RNPC3
    (KEGG)
    alpha-amylase activity 6 3 3.27E−06 AMY1A, AMY1B, AMY2A
    hydrolase activity, acting on glycosyl 61 5 2.21E−05 AGL, AMY1A, AMY1B, AMY2A, RNPC3
    bonds
    chloride channel activity 17 3 0.0001 CLCA1, CLCA2, CLCA4
    voltage-gated chloride channel 18 3 0.0001 CLCA1, CLCA2, CLCA4
    activity
    GTPase activity 145 6 0.0002 GBP1, GBP2, GBP3, GBP4, GBP5, GBP6
    Digestion 53 4 0.0002 AMY1A, AMY1B, AMY2A, RNPC3
    lysosphingolipid and 7 2 0.0006 EDG1, EDG7
    lysophosphatidic acid receptor
    activity
    chloride transport 42 3 0.0016 CLCA1, CLCA2, CLCA4
    Size centrosome cycle 5 1 0.0090 NPM1
    cell aging 5 1 0.0090 NPM1
    coenzyme A biosynthesis 5 1 0.0090 PANK3
    Microvascular carbonate dehydratase activity 16 5 1.13E−05 CA1, CA2, CA3, CA4, CA8
    invasion Nitrogen metabolism (KEGG) 18 5 2.14E−05 CA1, CA2, CA3, CA4, CA8
    Phenylalanine metabolism (KEGG) 5 3 7.69E−05 LPO, MPO, EPX
    Stilbene, coumarine and lignin 7 3 0.0003 LPO, MPO, EPX
    biosynthesis (KEGG)
    one-carbon compound metabolism 30 5 0.0003 CA1, CA2, CA3, CA4, CA8
    Methane metabolism (KEGG) 8 3 0.0004 LPO, MPO, EPX
    protein serine/threonine phosphatase 10 3 0.0009 PPM1D, PPM1E, PPM2C
    complex
    double-strand break repair 11 3 0.0012 NBN, PRKDC, RAD21
    peroxidase activity 25 4 0.0014 LPO, MPO, EPX, PXDNL
    ribonuclease P activity 6 2 0.0057 POP4, POP1
    response to oxidative stress 37 4 0.0062 LPO, MPO, EPX, OXR1
    Oxidative phosphorylation (KEGG) 60 5 0.0069 ATP6V1C1, COX6C, UQCRB, UQCRFS1, ATP6V1H
    opioid receptor activity 7 2 0.0078 NPBWR1, OPRK1
    potassium channel activity 90 6 0.0093 KCNQ3, KCNS2, KCNB2, KCNV1, KCNK9, CNGB3
    Portal vein hydrolase activity, acting on carbon- 5 3 1.52E−05 VNN2, VNN1, VNN3
    invasion nitrogen
    MHC class I protein complex 16 4 2.88E−05 ULBP3, ULBP2, ULBP1, RAET1E
    hydrolase activity, acting on carbon- 7 3 5.21E−05 VNN2, VNN1, VNN3
    nitrogen (but not peptide) bonds
    antigen presentation 19 4 5.96E−05 ULBP3, ULBP2, ULBP1, RAET1E
    MHC class I receptor activity 21 4 9.04E−05 ULBP3, ULBP2, ULBP1, RAET1E
    nitrogen compound metabolism 12 3 0.0003 VNN2, VNN1, VNN3
    ion transporter activity 15 3 0.0006 SLC22A1, SLC22A3, SLC22A2
    fibrinolysis 7 2 0.0027 LPA, PLG
    MAP kinase kinase kinase activity 8 2 0.0036 MAP3K4, MAP3K5
    protein kinase A binding 8 2 0.0036 AKAP7, AKAP12
    Riboflavin metabolism (KEGG) 9 2 0.0046 ENPP1, ENPP3
    protein localization 10 2 0.0057 AKAP7, SNX9
    Pantothenate and CoA biosynthesis 10 2 0.0057 ENPP1, ENPP3
    (KEGG)
    Nicotinate and nicotinamide 11 2 0.0069 ENPP1, ENPP3
    metabolism (KEGG)
    natural killer cell activation 11 2 0.0069 ULBP3, ULBP2
    spindle pole 12 2 0.0082 LATS1, KATNA1
    Encapsulation response to drug 15 2 8.02E−05 ABCB4, SEMA3C
    blood coagulation 70 2 0.0018 CD36, HGF
    fatty acid metabolism 70 2 0.0018 CD36, CROT
    transmembrane receptor protein 72 2 0.0019 EGFR, SEMA3C
    tyrosine kinase signaling pathway
    epidermal growth factor receptor 6 1 0.0054 EGFR
    activity
  • High-Level Copy Number Changes
  • In total, 33 amplifications and 10 homozygous deletions (HD) were identified (see Table 8). Most high-level copy number changes were observed in a single case, but some of them appeared recurrently. For example, amplification on 8q11.1-8q24.3 containing MYC and EIF3S3 was observed in 10 cases and amplification on 11q13.2-11q13.3 containing CCND1, FGF4, FGF3 and ORAOV1 in 5 cases. In addition, amplifications on 1q31.1-1q43, 1q43-1q44, 13q31.1-13q34, and 17q12-17q25.3 were detected in 4 cases. All HDs were observed in a single case except for 9p21.3 containing CDKN2A and CDKN2B tumor suppressor.
  • TABLE 8
    High-level copy number changes in 76 HCCs.
    Number of
    Probe Chromosome Map positiona RARb Cytoband cases Cancer-related genes
    Amp1 RP4-706A17- 1 143352667-144380209 G1 1q21.1 1 PDZK1
    RP11-533N14
    Amp2 RP11-422P24- 1 150704923-151839277 G1 1q22 1 TPM3, ADAR, RPS27, HAX1, PYGO2,
    RP11-307C12 CKS1B, ADAM15
    Amp3 RP11-98F1- 1 152090103-152897176 G1 1q22 1 HDGF, CCT3, PRCC, RIT1, ETV3
    RP11-172I6
    Amp 4 RP11-190A12 1 156557891-156696755 G1 1q23.2 1 CRP
    Amp 5 RP11-430G6- 1 159688698-179511167 G1 1q23.3-1q25.3 2 SELE, SELL, SELP, LAMC2
    RP11-71D4
    Amp 6 RP11- 1 183908427-185875252 G1 1q31.1 1 TPR, PTGS2
    108M21-
    RP11-336D15
    Amp 7 RP11-445K1- 1 186717333-236040328 G2 1q31.1-1q43 4 KIF14, ELF3, TGFB2
    RP11-359A17
    Amp 8 RP11-80B9- 1 237216929-244440465 G2 1q43-1q44 4 AKT3
    RP11-438H8
    Amp 9 RP11- 3 8869819-9236203 3p25.3 1 CAV3, OXTR
    105K13-
    RP11-334L22
    Amp 10 RP11-89F18- 3 23404803-24311473 3p24.3 1
    RP11-18L17
    Amp 11 RP11- 3 35590143-36744654 3p22.3 1
    380G10-
    RP11-134C18
    Amp 12 RP11- 3 52556261-52839811 3p21.1 1
    447A21-
    RP5-966M1
    Amp 13 RP11-154D3- 3 62016735-62347194 3p14.2 1
    RP11-204J18
    Amp 14 RP11- 3 173181079-173855790 3q26.2-3q26.31 2 SKIL, PLD1, ECT2
    362K14-
    RP11-44A1
    Amp 15 RP11-494P23- 5 67322896-67677101 5q13.1 1 PIK3R1, CCNB
    RP11-421A17
    Amp 16 RP11-175A4- 6 33467577-34013145 G5 6p21.32 1 HMGA1
    RP3-468B3
    Amp 17 RP3-431A14- 6 36751256-56905292 G5 6p21.31-6p12.1 2 PIM1, TFEB, CCND3, VEGF
    RP11-472M19
    Amp 18 RP11- 6 134784496-135663804 6q23.2 1 MYB
    557H15-
    RP1-32B1
    Amp 19 RP11-44M6 7 99680294-99845417 7q22.1 1 EPO
    Amp 20 RP5-905M6 7 110673548-110781794 G8 7q31.1 1
    Amp 21 RP11-350F16- 8  47816604-145778719 G9 8q11.1-8q24.3 10 PRKDC, MCM4, SNAI2, LYN, MOS,
    RP11-349C2 PLAG1, COPS5, TPD52, E2F5, MMP16,
    NBS1, EIF3S3, MYC, KCNK9,
    PTK2, EIF2C2
    Amp 22 RP11-563H8- 9 71314535-76253531 9q21.13 1 ANXA1
    RP11-422N19
    Amp 23 RP11- 10 74746892-76882563 10q22.2 1 ANXA7, PLAU, VDAC2
    345K20-
    RP11-399K21
    Amp 24 RP1-85M6- 11 32978034-33595628 11p13 1
    RP1-316D7
    Amp 25 RP11-569N5- 11 68186960-69323966 11q13.2-11q13.3 5 ORAOV1, FGF4, FGF3, CCND1
    RP11-300I6
    Amp 26 RP11- 11 91893710-93189097 11q21 1
    533H15-
    RP11-236L3
    Amp 27 RP11-437F6- 12 23609734-25447853 12p12.1 1 KRAS2
    RP11-707G18
    Amp 28 RP11- 13  84781263-112901415 G11 13q31.1-13q34 4 FGF14, TFDP1, CUL4A, GAS6, CDC16
    376H15-
    RP11-265C7
    Amp 29 RP11-390P24- 17 34803850-78374826 G12 17q12-17q25.3 4 ERBB2, GRB7, CSF3, TOP2A,
    RP11-567O16 CCR7, BRCA1, ETV4, GRN,
    COL1A1, CACNA1G, HLF, MPO,
    TBX2, RAC3, AXIN2, PRKCA, SOX9,
    GRB2, TIMP2, RAC3
    Amp 30 CTD-3149D2- 19 17561412-22729110 19p13.11-19p12 2 JUND, JAK3, EDG4
    CTC-451A6
    Amp 31 CTD-2057D4- 19 34956729-36979856 G13 19q12 2 CCNE1
    CTC-416D1
    Amp 32 RP4-633O20- 20 34762707-61041280 G14 20q11.23-20q13.33 1 SRC, TOP1, MYBL2, MMP9, NCOA3,
    RP4-563E14 PTPN1, ZNF217, STK6, BMP7
    Amp 33 CTA-390B3- 22 36114798-42644660 22q13.1-22q13.2 1 PDGFB, EP300, BIK
    RP3-388M5
    HD1 RP5-1043L3- 1 87387994-88674564 L4 1p22.2 1 GTF2B
    RP11-427B20
    HD2 RP11-351J23- 6 167866346-168197568 L7 6q27 1 UNC93A, MLLT4
    RP3-470B24
    HD3 RP11- 8 2898583-4066807 L8 8p23.2 1 CSMD1
    336N16-
    RP11-45M12
    HD4 RP5-991O23- 8 5326019-8677720 L8 8p23.2 1 DEFB1
    RP11-211C9
    HD5 RP11-809L8- 8 18249257-18644382 L8 8p22 1 NAT1, NAT2, PSD3
    RP11-161I2
    HD6 RP11- 9 20996400-25069411 L9 9p21.3 2 CDKN2B, CDKN2A
    113D19-
    RP11-468C2
    HD7 RP11-59H1- 12 12770043-13592296 12p13.1 1 CDKN1B
    RP11-4N23
    HD8 RP11-174I10 13 47897821-47960646 L13 13q14.2 1 RB1
    HD9 RP11-327P2 13 51243101-51412205 L13 13q14.3 1 DDX26
    HD10 RP11-424E21- 13 65400726-66421705 13q21.32 1
    RP11-10M21
    aThe mapping position refers to the UCSC genome browser (http://genome.ucsc.edu/; May 2004 freeze)
    bRARs overlapping with high copy number changes
    Amp, amplification;
    HD, homozygous deletion
  • Putative Hepatocarcinogenesis Related Oncogenes in RARs on 1q
  • Many of the high-level copy number changes were found within RARs. Sixteen out of 33 amplifications and 8 out of 10 HDs overlapped with RAR-Gs and -Ls, respectively (see Table 8). We assumed overlapped alterations within RARs might be more closely related to carcinogenesis. Thus, we examined the RNA profile of the putative cancer related genes as follows in RAR-G1 and -G2, which most extensively overlapped with amplifications; TPM3, RPS27, HAX1, PYGO2, CKS1B, ADAM15, CCT3, PRCC, KIF14, ELF3, TGFB2, and AKT3. Total RNA was available for 20 cases out of 76 HCCs, of which 13 cases are RAR-G1 positive, and 12 cases are RAR-G2 positive. RNA expression levels of most candidate genes in the HCCs are higher than control RNA levels measured using normal liver tissue from each patient. Especially, KIF14 and TPM3 are highly expressed in HCC and their expression is significantly correlated with copy number status (FIGS. 2A and 2B). Mean intensity ratio (tumor/normal) of KIF14 in RAR-G2 positive cases was 16.8 (95% CI: 10.14-23.38), while 5.3 in RAR-G2 negative cases (95% CI: 2.14-8.54). Mean intensity ratio of TPM3 was significantly higher in RAR-G1 positive cases (2.84, 95% CI: 2.39-3.28) than RAR-G1 negative group (1.83, 95% CI: 1.02-2.64). CKS1B also showed higher expression in RAR-G1 positive group than negatives (1.42 versus 2.21), but the difference is not statistically significant.
  • Association with Survival
  • Survival analysis was performed to assess the prognostic values of the MARs. In univariate analysis, MAR-G1 (p=0.0347), MAR-G7 (p=0.0108), MAR-G8 (p=0.0081), MAR-G9 (p=0.0333), MAR-L1 (p=0.0419), MAR-L2 (p=0.0148), MAR-L3 (p=0.0196) were significantly associated with poor survival (FIG. 3). When we compared the high MAR-G group (more than 5 MAR-Gs per case, n=27) and low MAR-G group (less than 3 MAR-Gs per single case, n=33), high MAR-G group showed significantly lower survival than low MAR-G group (p=0.0092). There was no difference between high and low MAR-L groups.
  • The present invention is a diagnosis method for determining prognosis of liver cancer by using comparative genomic hybridization. With the present invention, it is possible to get early diagnosis and prognosis of liver cancer. The present invention is simple to use for diagnosis or prognosis of liver cancer because it is specially designed for liver cancer with low density, thus useful for general hospital to test liver cancer. With the method of PCR using one species of DNA test marker, it is limited to get correct diagnosis or prognosis. Therefore it is ideal due to simplicity and efficiency when DNA analysis is simultaneously carried out through whole genome by using core makers which are capable of diagnosis or prognosis of liver cancer significantly. The technique of microarray is proper to simultaneously analyze DNA markers of prognosis or diagnosis of liver cancer. Array CGH is suitable for this purpose. The present invention provides markers which are most significantly correlated to prognosis or diagnosis of the liver cancer and provides test kits for liver cancer by using the markers. If this present invention is selected as an index of liver cancer test, it is expected that more than 10,000 tests would be done in a year.
  • REFERENCES
      • 1. Blum H E. Hepatocellular carcinoma: therapy and prevention. World J Gastroenterol 2005;11:7391-400.
      • 2. El-Serag H B. Hepatocellular carcinoma: recent trends in the United States. Gastroenterology 2004;127:S27-S34.
      • 3. Llovet J M, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet 2003;362:1907-17.
      • 4. Vissers L E, Veltman J A, van Kessel A G, Brunner H G. Identification of disease genes by whole genome CGH arrays. Hum Mol Genet 2005;14:R215-R223.
      • 5. Pinkel D, Albertson D G. Array comparative genomic hybridization and its applications in cancer. Nat Genet 2005;37:S11-S17.
      • 6. Hashimoto K, Mori N, Tamesa T, Okada T, Kawauchi S, Oga A, Furuya T, Tangoku A, Oka M, Sasaki K. Analysis of DNA copy number aberrations in hepatitis C virus-associated hepatocellular carcinomas by conventional CGH and array CGH. Mod Pathol 2004;17:617-22.
      • 7. Moinzadeh P, Breuhahn K, Stützer H, Schirmacher P. Chromosome alterations in human hepatocellular carcinomas correlate with aetiology and histological grade—results of an explorative CGH meta-analysis. Br J Cancer 2005;92:935-41.
      • 8. Zimonjic D B, Keck C L, Thorgeirsson S S, Popescu N C. Novel recurrent genetic imbalances in human hepatocellular carcinoma cell lines identified by comparative genomic hybridization. Hepatology 1999;29:1208-14.
      • 9. Pinkel D, Segraves R, Sudar D, Clark S, Poole I, Kowbel D, Collins C, Kuo W L, Chen C, Zhai Y, Dairkee S H, Ljung B M, et al. High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 1998;20:207-11.
      • 10. Patil M A, Gütgemann I, Zhang J, Ho C, Cheung S T, Ginzinger D, Li R, Dykema K J, So S, Fan S T, Kakar S, Furge K A, et al. Array-based comparative genomic hybridization reveals recurrent chromosomal aberrations and Jab1 as a potential target for 8q gain in hepatocellular carcinoma. Carcinogenesis 2005;26:2050-7.
      • 11. Kim T M, Yim S H, Lee J S. Kwon M S, Ryu J W, Kang H M, Fiegler H, Carter N P, Chung Y J. Genome-wide screening of genomic alterations and their clinicopathologic implications in non-small cell lung cancers. Clin Cancer Res 2005;11:8235-42.
      • 12. Kim M Y, Yim S H, Kwon M S, Kim T M, Shin S H, Kang H M, Lee C, Chung Y J. Recurrent genomic alterations with impact on survival in colorectal cancer identified by genome-wide array comparative genomic hybridization. Gastroenterology 2006; 131:1913-24.
      • 13. Fiegler H, Carr P, Douglas E J, Burford D C, Hunt S, Scott C E, Smith J, Vetrie D, Gorman P, Tomlinson I P, Carter N P. DNA microarrays for comparative genomic hybridization based on DOP-PCR amplification of BAC and PAC clones. Genes Chromosomes Cancer 2003;36:361-74.
      • 14. Kim S Y, Nam S W, Lee S H, Park W S, Yoo N J, Lee J Y, Chung Y J. ArrayCyGHt: a web application for analysis and visualization of array-CGH data. Bioinformatics 2005;21:2554-5.
      • 15. Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001;25:402-8.
      • 16. Cheng J, Sun S, Tracy A, Hubbell E, Morris J, Valmeekam V, Kimbrough A, Cline M S, Liu G, Shigeta R, Kulp D, Siani-Rose M A. NetAffx Gene Ontology Mining Tool: a visual approach for microarray data analysis. Bioinformatics 2004;20:1462-3.
      • 17. Dahlquist K D, Salomonis N, Vranizan K, Lawlor S C, Conklin B R. GenMAPP, a new tool for viewing and analyzing microarray data on biological pathways. Nat Genet 2002;31:19-20.
      • 18. Lomax J, Ashburner M, Foulger R, Eilbeck K, Lewis S, Marshall B, Mungall C, Richter J, Rubin G M, Blake J A, Bult C, Dolan M, et al. The Gene Ontology (GO) database and informatics resource. Nucleic Acids Res 2004;32:D258-D261.
      • 19. Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. Nucleic Acids Res 2002;30:42-6.
      • 20. Kim T M, Jung Y C, Rhyu M G, Jung M H, Chung Y J. GEAR: genomic enrichment analysis of regional DNA copy number changes. Bioinformatics, 2007; doi: 10.1093/bioinformatics/btm582.
      • 21. Yasui K, Arii S, Zhao C, Imoto I, Ueda M, Nagai H, Emi M, Inazawa J. TFDP1, CUL4A, and CDC16 identified as targets for amplification at 13q34 in hepatocellular carcinomas. Hepatology 2002;35:1476-84.
      • 22. Fang W, Piao Z, Simon D, Sheu J C, Huang S. Mapping of a minimal deleted region in human hepatocellular carcinoma to 1p36.13-p36.23 and mutational analysis of the RIZ (PRDM2) gene localized to the region. Genes Chromosomes Cancer 2000;28:269-75.
      • 23. Guan X Y, Sham J S, Tai L S, Fang Y, Li H, Liang Q. Evidence for another tumor suppressor gene at 17p13.3 distal to TP53 in hepatocellular carcinoma. Cancer Genet. Cytogenet 2003;140:45-8.
      • 24. Spangenberg H C, Thimme R, Blum H E. Serum markers of hepatocellular carcinoma. Semin Liver Dis 2006;26:385-90.
      • 25. Ribatti D, Marzullo A, Gentile A, Longo V, Nico B, Vacca A, Dammacco F. Erythropoietin/erythropoietin-receptor system is involved in angiogenesis in human hepatocellular carcinoma. Histopathology 2007;50:591-6.
      • 26. Okamoto H, Yasui K, Zhao C, Arii S, Inazawa J. PTK2 and EIF3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepatocellular carcinomas. Hepatology 2003;38:1242-9.
      • 27. Reeves M E, DeMatteo R P. Genes and viruses in hepatobiliary neoplasia. Semin Surg Oncol 2000;19:84-93.
      • 28. Corson T W, Huang A, Tsao M S, Gallie B L. KIF14 is a candidate oncogene in the 1q minimal region of genomic gain in multiple cancers. Oncogene 2005;24:4741-53.
      • 29. Lamant L, Dastugue N, Pulford K, Delsol G, Mariame B. A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1 ;2)(q25;p23) translocation. Blood 1999;93:3088-95.
      • 30. Jou Y S, Lee C S, Chang Y H, Hsiao C F, Chen C F, Chao C C, Wu L S, Yeh S H, Chen D S, Chen P J. Clustering of minimal deleted regions reveals distinct genetic pathways of human hepatocellular carcinoma. Cancer Res 2004;64:3030-6.
      • 31. Wang Y, Wu M C, Sham J S, Zhang W, Wu W Q, Guan X Y. Prognostic significance of c-myc and AIB1 amplification in hepatocellular carcinoma. A broad survey using high-throughput tissue microarray. Cancer 2002;95:2346-52.
      • 32. Herzer K, Sprinzl M F, Galle P R. Hepatitis viruses: live and let die. Liver Int 2007;27: 293-301.
      • 33. Radaeva S, Jaruga B, Hong F; Kim W H, Fan S, Cai H, Strom S, Liu Y, El-Assal O, Gao B. Interferon-alpha activates multiple STAT signals and down-regulates c-Met in primary human hepatocytes. Gastroenterology 2002;122:1020-34.
      • 34. Greenbaum L E. Cell cycle regulation and hepatocarcinogenesis. Cancer Biol Ther 2004;3:1200-7.
      • 35. Herman J G, Meadows G G. Increased class 3 semaphorin expression modulates the invasive and adhesive properties of prostate cancer cells. Int J Oncol 2007;30:1231-8.

Claims (8)

1. A diagnostic method for determining the prognosis of hepatocellular carcinoma (HCC) comprising the steps of; (a) observing recurrently altered genomic region on a chromosome; (b) measuring variation of one or more of RAR expression variations selected from the RAR variation group consists of gains of RAR-G1 to RAR-G14 and losses of RAR-L1 to RAR-L18 as defined table 1.
2. The method of claim 1, wherein said RAR variation group consists of RAR-G1, RAR-G2, RAR-L17, RAR-G9, RAR-L5 and RAR-L8.
3. The method of claim 1, wherein the method is a method for determining the tumor stage of hepatocellular carcinoma by using RAR-L2 and RAR-L4.
4. The method of claim 1, wherein the method is a method for determining prognosis of microvascular invasion of hepatocellular carcinoma by using RAR-G9, RAR-G12, RAR-G13 and RAR-L3.
5. The method of claim 1, wherein the method is a diagnostic method for determining the portal vein invasion of the hepatocellular carcinoma by using RAR-G13, RAR-L7 and RAR-L12.
6. A diagnostic kit for determining the prognosis of hepatocellular carcinoma (HCC) comprising; (a) a microarray comprising a probe for measuring variation of one or more of RAR expression variations selected from the RAR variation group consists of gains of RAR-G1 to RAR-G14 and losses of RAR-L1 to RAR-L18 as defined table 1 for observing recurrently altered genomic region (RAR) on a chromosome; and (b) an image analysis device for measuring variation of specific genes expression on the RAR.
7. The kit of claim 6, wherein the the probe for measuring is RAR-G1, RAR-G2, RAR-L17, RAR-G9, RAR-L5 and RAR-L8.
8. A diagnostic method for determining the prognosis of hepatocellular carcinoma (HCC) comprising the step of measuring variation of one or more of gene expression variations selected from the group consists of tropomyosin 3 (TPM3), ribosomal protein S27 (RPS27), hematopoietic cell-specific Lyn substrate 1-associated protein X-1(HAX1), pygopus homolog 2 (PYGO2), CDC28 protein kinase regulatory subunit 1 (BCKS1B), a disintegrin and metalloprotease 15 (ADAM15), chaperonin subunit 3 (CCT3), papillary renal cell carcinoma (PRCC), kinesin family member 14 (KIF14), Eukaryotic initiation factor 3 (ELF3), transforming Growth Factor beta 2 (TGFB2) and protein kinase B gamma (AKT3).
US12/319,929 2008-01-15 2009-01-14 Diagnostic methods and kits for hepatocellular carcinoma using comparative genomic hybridization Abandoned US20090181394A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0004627 2008-01-15
KR1020080004627A KR101169127B1 (en) 2008-01-15 2008-01-15 Diagnostic methods and kits for hepatacellular carcinoma using comparative genomic hybridization

Publications (1)

Publication Number Publication Date
US20090181394A1 true US20090181394A1 (en) 2009-07-16

Family

ID=40850966

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/319,929 Abandoned US20090181394A1 (en) 2008-01-15 2009-01-14 Diagnostic methods and kits for hepatocellular carcinoma using comparative genomic hybridization

Country Status (2)

Country Link
US (1) US20090181394A1 (en)
KR (1) KR101169127B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2491396A2 (en) * 2009-10-22 2012-08-29 The Regents of the University of California Assessment of solid tumor burden
US20150051484A1 (en) * 2013-08-14 2015-02-19 Siemens Aktiengesellschaft Histological Differentiation Grade Prediction of Hepatocellular Carcinoma in Computed Tomography Images
WO2016056995A1 (en) * 2014-10-09 2016-04-14 Singapore Health Services Pte Ltd Profiling and/or therapy of hepatocellular carcinoma
CN105699649A (en) * 2016-01-06 2016-06-22 李江涛 Serum markers for preoperatively detecting liver cancer microvascular invasion
US9912847B1 (en) 2012-09-25 2018-03-06 Amazon Technologies, Inc. Image capture guidance to reduce specular reflection effects
CN108061803A (en) * 2018-02-09 2018-05-22 上海市第十人民医院 liver cancer serum marker CCT3
CN110273003A (en) * 2019-07-26 2019-09-24 安徽医科大学第一附属医院 A kind of Papillary Renal Cell Carcinoma patient prognosis recurrence detects the foundation of mark tool and its risk evaluation model
CN110452985A (en) * 2019-08-02 2019-11-15 苏州宏元生物科技有限公司 Application of the unstable variation of one group chromosome in the reagent or kit for preparing diagnosing liver cancer, assessment prognosis
CN112359111A (en) * 2020-11-09 2021-02-12 中国人民解放军海军军医大学第三附属医院 Application of PRCC or its up-regulator in liver cancer treatment and application of PRCC in liver cancer diagnosis or prognosis

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101384327B1 (en) 2013-09-06 2014-04-10 이화여자대학교 산학협력단 Composition for diagnosing metastatic characteristics of ovarian cancer using cpg methylation status of ptgs2 gene and uses thereof
CN107460250B (en) * 2017-09-28 2020-07-28 郑州大学第一附属医院 Kit for diagnosing clear cell renal carcinoma based on KIF14, KIF15 and KIF20A genes and using method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546387A (en) * 2005-06-13 2008-12-25 ザ リージェンツ オブ ザ ユニバーシティ オブ ミシガン Compositions and methods for treating and diagnosing cancer

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2491396A2 (en) * 2009-10-22 2012-08-29 The Regents of the University of California Assessment of solid tumor burden
EP2491396A4 (en) * 2009-10-22 2013-04-17 Univ California Assessment of solid tumor burden
US9683996B2 (en) 2009-10-22 2017-06-20 The Regents Of The University Of California Assessment of solid tumor burden
US9912847B1 (en) 2012-09-25 2018-03-06 Amazon Technologies, Inc. Image capture guidance to reduce specular reflection effects
US20150051484A1 (en) * 2013-08-14 2015-02-19 Siemens Aktiengesellschaft Histological Differentiation Grade Prediction of Hepatocellular Carcinoma in Computed Tomography Images
US9585627B2 (en) * 2013-08-14 2017-03-07 Siemens Healthcare Gmbh Histological differentiation grade prediction of hepatocellular carcinoma in computed tomography images
WO2016056995A1 (en) * 2014-10-09 2016-04-14 Singapore Health Services Pte Ltd Profiling and/or therapy of hepatocellular carcinoma
CN105699649A (en) * 2016-01-06 2016-06-22 李江涛 Serum markers for preoperatively detecting liver cancer microvascular invasion
CN108061803A (en) * 2018-02-09 2018-05-22 上海市第十人民医院 liver cancer serum marker CCT3
CN110273003A (en) * 2019-07-26 2019-09-24 安徽医科大学第一附属医院 A kind of Papillary Renal Cell Carcinoma patient prognosis recurrence detects the foundation of mark tool and its risk evaluation model
CN110452985A (en) * 2019-08-02 2019-11-15 苏州宏元生物科技有限公司 Application of the unstable variation of one group chromosome in the reagent or kit for preparing diagnosing liver cancer, assessment prognosis
CN112359111A (en) * 2020-11-09 2021-02-12 中国人民解放军海军军医大学第三附属医院 Application of PRCC or its up-regulator in liver cancer treatment and application of PRCC in liver cancer diagnosis or prognosis

Also Published As

Publication number Publication date
KR20090078690A (en) 2009-07-20
KR101169127B1 (en) 2012-08-03

Similar Documents

Publication Publication Date Title
US20090181394A1 (en) Diagnostic methods and kits for hepatocellular carcinoma using comparative genomic hybridization
US8299233B2 (en) Molecular in vitro diagnosis of breast cancer
US20190376148A1 (en) Diagnostic for lung disorders using class prediction
AU2012380717B2 (en) Method for the identification of the origin of a cancer of unknown primary origin by methylation analysis
Takada et al. Screening of DNA copy‐number aberrations in gastric cancer cell lines by array‐based comparative genomic hybridization
US20080193943A1 (en) Companion diagnostic assays for cancer therapy
US20080305473A1 (en) Propagation of primary cells
US20070207481A1 (en) Use of roma for characterizing genomic rearrangements
Akagi et al. Chromosomal abnormalities and novel disease‐related regions in progression from Barrett's esophagus to esophageal adenocarcinoma
US20120141603A1 (en) Methods and compositions for lung cancer prognosis
JP2024020392A (en) Composition for diagnosing liver cancer using CPG methylation changes in specific genes and its use
WO2014173905A2 (en) Methods and kits for prognosis of stage i nsclc by determining the methylation pattern of cpg dinucleotides
TW201120449A (en) Diagnostic methods for determining prognosis of non-small-cell lung cancer
US7939255B2 (en) Diagnostic methods for colorectal cancer
KR101803108B1 (en) Method for the urinary detection of bladder cancer
EP3888093A1 (en) Differential methylation
Gašperšič et al. Potential of modern circulating cell-free DNA diagnostic tools for detection of specific tumour cells in clinical practice
KR101941054B1 (en) Composition for predicting prognosis of cancer and kit comprising the same
WO2015048852A1 (en) Kits and methods for diagnosis, screening, treatment and disease monitoring
WO2009123990A1 (en) Cancer risk biomarker
WO2009039190A1 (en) Cancer risk biomarker
Hojjatipour et al. Aberrant DNA Methylation Status and mRNA Expression Level of SMG1 Gene in Chronic Myeloid Leukemia: A Case-Control Study
Montironi et al. Molecular techniques and prostate cancer diagnostic
US20210277454A1 (en) Atac-array for prediction of disease-free survival in pancreatic cancer
US20220017967A1 (en) Molecular signature

Legal Events

Date Code Title Description
AS Assignment

Owner name: CATHOLIC UNIVERSITY INDUSTRY ACADEMY COOPERATION F

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHUNG, YEUN-JUN;REEL/FRAME:022168/0282

Effective date: 20090114

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION