US20090145587A1 - Fin pack, heat exchanger, and method of producing same - Google Patents

Fin pack, heat exchanger, and method of producing same Download PDF

Info

Publication number
US20090145587A1
US20090145587A1 US11/951,548 US95154807A US2009145587A1 US 20090145587 A1 US20090145587 A1 US 20090145587A1 US 95154807 A US95154807 A US 95154807A US 2009145587 A1 US2009145587 A1 US 2009145587A1
Authority
US
United States
Prior art keywords
fins
rows
heat exchanger
tabular
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/951,548
Inventor
Darrell V. Young
James D. Snow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli North America Inc
Original Assignee
Calsonic Kansei North America Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Calsonic Kansei North America Inc filed Critical Calsonic Kansei North America Inc
Priority to US11/951,548 priority Critical patent/US20090145587A1/en
Assigned to CALSONICKANSEI NORTH AMERICA, INC. reassignment CALSONICKANSEI NORTH AMERICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SNOW, JAMES D., YOUNG, DARRELL V.
Publication of US20090145587A1 publication Critical patent/US20090145587A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • B21D53/08Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal
    • B21D53/085Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers of both metal tubes and sheet metal with fins places on zig-zag tubes or parallel tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/26Making specific metal objects by operations not covered by a single other subclass or a group in this subclass heat exchangers or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4935Heat exchanger or boiler making

Definitions

  • the present invention relates to the field of heat exchangers. More specifically, the present invention relates to a fin pack having multiple rows of interconnected fins and a method for producing a heat exchanger having such a fin pack.
  • a heat exchanger is a device which transfers the heat of one substance to another, for example, from a warm or hot surface to a cold or cooler one.
  • Heat exchangers are widely used in industrial processing plants, power plants, air conditioning, vehicles, and the like as evaporators, condensers, and radiators.
  • a heat exchanger includes one or more passages through which a fluid flows while exchanging heat with the environment surrounding the passages.
  • FIG. 1 shows a front view of an exemplary prior art tube-and-fin type heat exchanger 20 and FIG. 2 shows a partial perspective view of an exemplary prior art heat exchanger core 22 of heat exchanger 20 .
  • Heat exchanger core 22 includes a number of discrete parallel flat core tubes 24 coupled between first and second headers 26 and 28 , respectively.
  • Inlet and outlet tubes 30 and 32 are connected to first and second headers 26 and 28 , for the passage of a fluid, such as a refrigerant.
  • Discrete fin rows 34 are positioned between adjacent pairs of core tubes 24 . Each of fin rows 34 is manufactured separately and installed individually between core tubes 24 . The separate manufacturing and individual installation increases cycle time and reduces manufacturing efficiency.
  • a fin pack for a heat exchanger that includes multiple rows of interconnected fins.
  • Another advantage of the present invention is that a fin pack and heat exchanger production method are provided that result in improved appearance of a heat exchanger, a reduction in dropped and misaligned fins, and a reduction in defective parts.
  • Yet another advantage of the present invention is that a fin pack and heat exchanger production method are provided that yield efficient manufacture process time.
  • a fin pack for a heat exchanger.
  • the fin pack includes a first row of fins and a second row of fins adjacent to and arranged substantially parallel with the first row of fins.
  • a tabular portion extends between and interconnects the first and second row of fins.
  • the tabular portion defines a channel between the first and second row of fins configured for insertion of a core tube of the heat exchanger.
  • the above and other advantages of the present invention are carried out in yet another form by a heat exchanger.
  • the heat exchanger includes a first header, a second header, and multiple flat core tubes arranged spaced apart from one another and connected between the first and second headers.
  • the heat exchanger further includes a fin pack having multiple rows of fins and multiple tabular portions such that pairs of adjacent ones of said multiple rows are interconnected by the tabular portions.
  • the tabular portions define channels between each of the rows of fins, the core tubes are seated in the channels, and one each of the rows of fins is disposed between pairs of the core tubes.
  • FIG. 2 shows a partial perspective view of an exemplary prior art heat exchanger core of the heat exchanger of FIG. 1 ;
  • FIG. 3 shows a front view of a heat exchanger in accordance with an embodiment of the present invention
  • FIG. 4 shows a perspective view of a fin pack for the heat exchanger in accordance with the present invention
  • FIG. 5 shows a flowchart of a heat exchanger production process in accordance with another embodiment of the present invention.
  • FIG. 6 shows a perspective view of a coil of sheet material utilized in connection with fabrication of a fin pack of the heat exchanger of FIG. 3 ;
  • FIG. 7 shows a top view of a portion of the sheet material pierced to form slots
  • FIG. 8 shows a top view of the sheet material of FIG. 7 with louvers stamped thereon
  • FIG. 9 shows a top view of the sheet material with a first fold pattern superimposed thereon
  • FIG. 10 shows an end view of the folded sheet material
  • FIG. 11 shows a top view of the sheet material with a second fold pattern superimposed thereon
  • FIG. 12 shows a front schematic view of core tubes of the heat exchanger being installed in the fin pack.
  • FIG. 13 shows a partial front schematic view of core tubes of the heat exchanger installed in a fin pack in accordance with another embodiment of the present invention.
  • FIG. 3 shows a front view of a heat exchanger 40 in accordance with an embodiment of the present invention.
  • Heat exchanger 40 includes a heat exchanger core 42 disposed between first and second headers 44 and 46 , respectively.
  • Inlet and outlet tubes 48 and 50 are connected to first and second headers 44 and 46 , for the passage of a fluid, such as a refrigerant.
  • Side plates 52 span between first and second headers 44 and 46 , respectively, to form an upper and lower boundary of heat exchanger core 42 .
  • Heat exchanger core 42 includes a number of discrete parallel flat core tubes 54 coupled between first and second headers 44 and 46 .
  • heat exchanger core 42 further includes a fin pack 56 having multiple substantially parallel rows 58 of fins 60 , with each of rows 58 being corrugated and having a continuous series of fins 60 .
  • Adjacent rows 58 of fins 60 are interconnected with first tabular portions 62 shown overlying core tubes 54 and alternating with adjacent rows 58 of fins 60 that are interconnected with second tabular portions 64 , shown underlying core tubes 54 .
  • Rows 58 are interconnected by first and second tabular portions 62 and 64 , respectively, to form a single fin pack 56 of multiple rows 58 of fins 60 , as opposed to the discrete fin rows 34 ( FIG. 1 ) of the prior art.
  • the inclusion of fin pack 56 that includes multiple rows 58 of fins 60 allows for the concurrent installation of multiple rows 58 of fins 60 with multiple core tubes 54 , thereby significantly reducing cycle time, increasing manufacturing efficiency, and producing a more consistent product with less manufacturing defects.
  • core tubes 54 are not typically provided in an actual heat exchanger with cross-hatched markings. Rather, core tubes 54 are shown in FIG. 3 with cross-hatching to more clearly distinguish tubes 54 from first and second tabular portions 62 and 64 that overlie and underlie tubes 54 .
  • FIG. 4 shows a perspective view of a fin pack 56 for heat exchanger 40 ( FIG. 3 ) in accordance with the present invention.
  • Fin pack 56 is shown with several less rows 58 , fins 60 , first tabular portions 62 , and second tabular portions 64 for simplicity of illustration.
  • fin pack 56 can have as few as two rows 58 of fins 60 , or any number of rows 58 and fins 60 desired for producing heat exchanger core 42 ( FIG. 3 ).
  • heat exchanger core 42 may be formed from a single fin pack 56 , or from several smaller fin packs 56 .
  • Each of fins 60 within rows 58 exhibits an upper edge 66 and a lower edge 68 .
  • First pairs 70 of rows 58 are interconnected by first tabular portion 62 at upper edge 66 of each of fins 60 .
  • Second pairs 72 (of which only one is shown) of rows 58 are interconnected by second tabular portion 64 at lower edge 68 of each of fins 60 .
  • Second pairs 72 of rows 58 alternate with first pairs 70 of rows 58 so that first tabular portions 62 located at upper edge 66 likewise alternate with second tabular portions 64 at lower edge 68 .
  • a length 74 of each of first and second tabular portions 62 and 64 , respectively, and a height 76 of fins 60 defines channels 78 between each of rows 58 of fins 60 .
  • height 76 of fins 60 is substantially equivalent to a height 80 of core tubes 54 (one shown in ghost form).
  • Channels 78 extend along an entire length of rows 58 .
  • each of fins 60 includes a substantially flat contact portion 84 that forms an inner wall of one of channels 78 .
  • one each of core tubes 54 is inserted into and largely fills one each of channels 78 .
  • each of channels 78 defined by length 74 of first and second tabular portions 62 and 64 is approximately equivalent to a width 86 of each of core tubes 54 , so that flat contact portion 84 of fins 60 abuts an external peripheral wall 88 of each of core tubes 54 .
  • This abutment of flat contact portion 84 with wall 88 of each of core tubes 54 can enhance heat transfer efficiency between core tubes 54 and fin pack 56 .
  • Fin pack 56 that includes multiple rows 58 of fins 60 interconnected by first and second tabular portions 62 and 64 yields a rigid and consistent structure, both in appearance and performance. This structure is coupled with core tubes 54 , subsequently attached to headers 44 and 46 , and can then be brazed as a single unit. Accordingly, improvements are achieved in terms of greater efficiency in manufacture process time and in a reduction in the amount of defective parts and their commensurate waste.
  • FIG. 5 shows a flowchart of a heat exchanger production process 90 in accordance with another embodiment of the present invention.
  • Process 90 provides generalized methodology of the operations involved in the manufacture of heat exchanger 40 having fin pack 56 .
  • process 90 includes a fin pack fabrication subprocess 92 detailing the operations involved in the manufacture of fin pack 56 .
  • the operations described in process 90 may take place in a single manufacturing facility in a serial operation.
  • fin pack fabrication subprocess 92 may occur in a separate facility for producing fin packs 56 .
  • Those fin packs 56 may then be assembled into heat exchangers 40 in an assembly facility.
  • Those skilled in the art will recognize that there are other conventional operations pertaining to the manufacture and assembly of heat exchanger 40 . These conventional operations are not described herein for brevity.
  • coil 94 is passed through the appropriate machinery used for unrolling and cutting coil 94 into the appropriate size and shape to produce fin pack 56 .
  • slots are cut into cut sheet material.
  • FIG. 7 shows a top view of a portion 100 of sheet material 96 cut or pierced to form slots 102 .
  • Slots 102 may be formed utilizing conventional sheet metal fabrication equipment such as a punch or a laser. Slots 102 are formed into rows 104 having a first slot pattern 106 alternating with rows 106 having a second slot pattern 108 . Each of slots 102 exhibits a base 110 and a side 112 , and rows 104 and 106 of slots 102 are arranged with each side 112 parallel to a longitudinal dimension 114 of portion 100 of sheet material 96 .
  • FIG. 8 shows a top view of portion 100 of sheet material 96 with louvers 118 stamped thereon.
  • Heat exchangers such as heat exchanger 40 ( FIG. 3 )
  • louvered fins 60 FIG. 3
  • Louvers 118 on fins 60 create interrupted surfaces to generate complex airflow patterns that can increase the performance of the heat exchanger.
  • an operation 120 may be performed.
  • the sheet material is bent longitudinally to form corrugated fins 60 ( FIG. 4 ) of fin pack 56 ( FIG. 4 ).
  • FIG. 9 shows a top view of portion 100 of sheet material 96 with a first fold pattern 122 superimposed thereon
  • FIG. 10 shows an end view of the folded portion 100 of sheet material 96 .
  • Portion 100 of sheet material 96 is shown without louvers 118 ( FIG. 8 ) for clarity of illustration.
  • First fold pattern 122 includes first fold lines 124 having a dash-dot pattern and second fold lines 126 having a dash pattern, as shown in FIG. 9 .
  • Sheet material 96 is bent parallel to longitudinal dimension 114 at each of sides 112 of slots 102 . Accordingly, first and second fold lines 124 and 126 are aligned and co-located with sides 112 of slots 102 .
  • sheet material 96 is not actually provided with first and second fold lines 124 and 126 . Rather, lines 124 and 126 are shown in FIG. 9 to clearly demarcate locations at which sheet material 96 is to be folded and to distinguish a direction of the fold.
  • first fold lines 124 represent those folds of sheet material 96 that are directed “downwardly,” i.e., into the drawing page.
  • Second fold lines 126 represent those folds of sheet material 96 that are directed “upwardly,” i.e., out of the drawing page.
  • each of the fold lines occur in alternating pairs of first fold lines 124 and second fold lines 126 .
  • Bending portion 100 of sheet material 96 in accordance with first fold pattern 122 yields the continuous series of corrugated fins 60 having flat contact portions 84 that form an inner wall of one of channels 78 ( FIG. 4 ) of fin pack 56 ( FIG. 4 ).
  • fin pack fabrication subprocess 92 continues with an operation 128 .
  • sheet material 96 is subsequently bent transversely to form interconnected rows 58 ( FIG. 4 ) of fins 60 ( FIG. 4 ) separated by channels 78 ( FIG. 4 ).
  • FIG. 11 shows a top view of sheet material 96 with a second fold pattern 130 superimposed thereon. It should be noted that FIG. 11 shows portion 100 of sheet material 96 in its flat state, without having first been folded as shown in FIG. 10 , in order to clearly distinguish second fold pattern 130 . However, in actual practice, sheet material 96 will have first been folded longitudinally in accordance with first fold pattern 122 ( FIG. 9 ), followed by being folded transversely in accordance with second fold pattern 130 .
  • Second fold pattern 130 includes third fold lines 132 having a dash pattern and fourth fold lines 134 having a dash-dot pattern.
  • Sheet material 96 is bent transversely, i.e., perpendicular to longitudinal dimension 114 at each of bases 110 of slots 102 . Accordingly, third and fourth fold lines 132 and 134 are aligned and co-located with bases 110 of slots 102 .
  • sheet material 96 need not be provided with third and fourth fold lines 132 and 134 . Rather, lines 132 and 134 are shown in FIG. 12 to clearly demarcate locations at which sheet material 96 is to be folded and to distinguish a direction of the fold.
  • third fold lines 132 can represent those folds of sheet material 96 that are directed “downwardly,” i.e., into the drawing page.
  • Fourth fold lines 134 can represent those folds of sheet material 96 that are directed “upwardly,” i.e., out of the drawing page.
  • first tabular portions 62 are formed between slots 102 of rows 104 and second tabular portions 64 are formed between slots 102 of rows 106 .
  • fin pack 56 has the appearance of that shown in FIG. 4 .
  • Those skilled in the art will recognize that other conventional work processes may be performed such as cleaning and degreasing, applying flux or braze paste, and the like to actually finalize the fabrication of fin pack 56 .
  • heat exchanger production process 90 continues with a number of operations that describe an efficient process for the assembly of heat exchanger 40 utilizing fin pack 56 .
  • Process 90 continues with an operation 136 .
  • a subset of core tubes 54 are arranged on a surface.
  • FIG. 12 shows a front schematic view of core tubes 54 of heat exchanger 40 ( FIG. 3 ) being installed in fin pack 56 .
  • FIG. 12 is not intended to be a realistic portrait of the assembly of core tubes 54 with fin pack 56 . Rather, FIG. 12 enables visualization of the concurrent installation of multiple core tubes 54 with fin pack 56 .
  • a subset 138 of, e.g., approximately half, of core tubes 54 utilized with fin pack 56 are arranged on a surface 140 . More specifically, core tubes 54 are placed on an edge with a lower side, or width 86 , facing surface 140 .
  • Surface 140 need not be a substantially flat surface, but may include holding structures and/or placement structures for temporarily retaining core tubes 54 in position.
  • fin pack 56 is installed onto subset 138 of core tubes 54 by seating core tubes into those of channels 78 in which first tabular portions 62 are positioned along upper edge 66 between pairs 70 of rows 58 of fins 60 .
  • fin pack 56 is lowered onto subset 138 of core tubes 54 , as represented by downwardly directed arrows, labeled “A.”
  • a remaining subset 146 of core tubes 54 is inserted into remaining channels 78 having second tabular portion 64 along lower edge 68 between pairs 72 of rows 58 of fins 60 to form heat exchanger core 42 ( FIG. 3 ).
  • Subset 146 of core tubes 54 may be held on edge by a pick and place system, or manipulator, that can hold multiple core tubes 54 and install those multiple core tubes 54 at the same time.
  • subset 146 of core tubes 54 is lowered onto fin pack 56 , as represented by downwardly directed arrows, labeled “B.”
  • both of operations 142 and 144 need not occur. Rather, all core tubes 54 may be installed at one time, with either one or more two row fin packs 56 being lowered onto all of the required core tubes 58 or all of core tubes 54 being lowered onto the one or more two row fin packs 56 .
  • heat exchanger core 42 is connected to first and second headers 44 and 46 , respectively ( FIG. 3 ).
  • the alternating connecting tab structure of first and second tabular portions 62 and 64 enables fin pack 56 to lock with core tubes 54 during assembly, thereby eliminating the possibility of dropped fins and providing for better control of fin edges.
  • the connection of heat exchanger core 42 with headers 44 and 46 further locks fin pack and core tubes 54 together resulting in a rigid structure that is subsequently brazed at an operation 150 of process 90 . Following operation 150 , process 90 exits.
  • FIG. 13 shows a partial front schematic view of core tubes 54 of heat exchanger 40 ( FIG. 3 ) installed in a fin pack 152 in accordance with another embodiment of the present invention.
  • Fin pack 152 is similar to fin pack 56 and includes multiple rows of a continuous series of corrugated fins 60 . Adjacent rows of fins 60 are interconnected along upper edges 66 by first tabular portions 154 alternating with adjacent rows of fins 60 that are interconnected along lower edges 68 by second tabular portions 156 to form a single fin pack 152 of multiple rows of fins.
  • first and second tabular portions 154 and 156 exhibit an outwardly arcuate, or arched, shape 158 .
  • Arcuate shape 158 of tabular portions 154 and 156 corresponds with a shape of core tubes 54 . That is, each of core tubes 54 has rounded sides 160 extending in a widthwise direction.
  • Methodology to produce arcuate shape 158 of first and second tabular portions 154 and 156 entails, for example, bending, rolling, or stretching sheet material 96 ( FIG. 6 ) in the course of executing fin pack fabrication subprocess 92 ( FIG. 5 ).
  • Arcuate shape 158 of tabular portions 154 and 156 enables tabular portions 154 and 156 to wrap around sides 160 of core tubes 54 so that closer contact is made between core tubes 54 and tabular portions 154 and 156 . This closer contact can result in greater rigidity of the heat exchanger core, in enhanced heat transfer efficiency, and facilitate laminar flow of air around rounded sides 160 of core tubes 52 and tabular portions 154 and 156 .
  • the present invention teaches of a fin pack that includes multiple rows of continuous corrugated fins interconnected by tabular portions.
  • the multiple rows of fins are spaced apart by channels in which core tubes of a heat exchanger can be inserted.
  • a production method yields the fabrication of a fin pack having multiple interconnected rows of fins using one coil of sheet material.
  • the production method further enables the concurrent installation of multiple core tubes into the channels between the multiple rows of fins to form a heat exchanger core.
  • the fin pack of the present invention results in improved appearance of a heat exchanger, a reduction in dropped and misaligned fins, and a reduction in defective parts and waste relative to prior art designs.
  • the production methodology enables concurrent installation of multiple fin rows with core tubes of a heat exchanger resulting in an improved appearance of the heat exchanger and cost savings in terms of a more efficient manufacture process time.

Abstract

A heat exchanger (40) includes first and second headers (44, 46). Multiple flat core tubes (54) are arranged spaced apart from one another and connected between the headers (44, 46). A fin pack (56) has multiple rows (58) of fins (60) and multiple tabular portions (62, 64). Pairs (70, 72) of adjacent multiple rows (58) are interconnected by the tabular portions (62, 64). The tabular portions (62, 64) define channels (78) between each of the rows (58) of fins (60). A method (90) for producing the heat exchanger (40) entails concurrently inserting multiple core tubes (54) into the channels (78), with one row of fins (60) being disposed between each pair of the core tubes (54).

Description

    TECHNICAL FIELD OF THE INVENTION
  • The present invention relates to the field of heat exchangers. More specifically, the present invention relates to a fin pack having multiple rows of interconnected fins and a method for producing a heat exchanger having such a fin pack.
  • BACKGROUND OF THE INVENTION
  • A heat exchanger is a device which transfers the heat of one substance to another, for example, from a warm or hot surface to a cold or cooler one. Heat exchangers are widely used in industrial processing plants, power plants, air conditioning, vehicles, and the like as evaporators, condensers, and radiators. In a simple form, a heat exchanger includes one or more passages through which a fluid flows while exchanging heat with the environment surrounding the passages.
  • One typical heat exchanger entails a tube-and-fin type design that includes a number of fluid filled tubes thermally communicating with fins. The fins enhance the ability of the heat exchanger to transfer heat from the fluid in the tubes to the environment, or vice versa. Design variations include the manner in which the fluid passage is constructed and the type of fin used. For example, the passage may be composed of a number of discrete parallel tubes, joined, typically by brazing, to and between a pair of headers. The fins may be provided in the form of panels having apertures through which the tubes are inserted, or in the form of fin rows that can be positioned between adjacent pairs of tubes.
  • Referring to FIGS. 1-2, FIG. 1 shows a front view of an exemplary prior art tube-and-fin type heat exchanger 20 and FIG. 2 shows a partial perspective view of an exemplary prior art heat exchanger core 22 of heat exchanger 20. Heat exchanger core 22 includes a number of discrete parallel flat core tubes 24 coupled between first and second headers 26 and 28, respectively. Inlet and outlet tubes 30 and 32, respectively, are connected to first and second headers 26 and 28, for the passage of a fluid, such as a refrigerant.
  • Discrete fin rows 34 are positioned between adjacent pairs of core tubes 24. Each of fin rows 34 is manufactured separately and installed individually between core tubes 24. The separate manufacturing and individual installation increases cycle time and reduces manufacturing efficiency.
  • Conventionally, a heat exchanger, such as heat exchanger 20, is manufactured by joining tubes 24, fin rows 34, and headers 26 and 28, and other associated components using a brazing operation. Unfortunately, the discrete fin rows 34 can “drop” away from core tubes 24 during the braze cycle. This “drop” is shown in FIG. 2, in which a first row 36 of fin rows 34 is shown as sagging and partially detached from one of core tubes 24 following brazing. In addition, fin rows 34 can be misaligned during assembly causing a short fin-to-header condition (as shown in FIG. 2), fin pitches can be inconsistent, fin rows can lean, and fins can be gapped or separated from core tubes 24.
  • All of these problems can lead to adverse consequences in terms of both performance and appearance of a heat exchanger. Thus, what is needed is an improved fin row design and improvements in methodology for joining the core tubes and fins of a heat exchanger.
  • SUMMARY OF THE INVENTION
  • Accordingly, it is an advantage of the present invention that a fin pack for a heat exchanger is provided that includes multiple rows of interconnected fins.
  • It is another advantage of the present invention that a fin pack and production method are provided that enable concurrent installation of multiple fin rows with core tubes of a heat exchanger.
  • Another advantage of the present invention is that a fin pack and heat exchanger production method are provided that result in improved appearance of a heat exchanger, a reduction in dropped and misaligned fins, and a reduction in defective parts.
  • Yet another advantage of the present invention is that a fin pack and heat exchanger production method are provided that yield efficient manufacture process time.
  • The above and other advantages of the present invention are carried out in one form by a fin pack for a heat exchanger. The fin pack includes a first row of fins and a second row of fins adjacent to and arranged substantially parallel with the first row of fins. A tabular portion extends between and interconnects the first and second row of fins. The tabular portion defines a channel between the first and second row of fins configured for insertion of a core tube of the heat exchanger.
  • The above and other advantages of the present invention are carried out in another form by a method of assembling a heat exchanger. The method calls for forming a fin pack having multiple rows of fins, wherein adjacent pairs of the multiple rows of fins are interconnected by tabular portions, the tabular portions defining channels between each of the rows of fins. One each of multiple core tubes are inserted in each of the channels to form a heat exchanger core. Opposing ends of the core tubes of the heat exchanger core are connected to first and second headers, and the heat exchanger core with the first and second headers is brazed to form the heat exchanger.
  • The above and other advantages of the present invention are carried out in yet another form by a heat exchanger. The heat exchanger includes a first header, a second header, and multiple flat core tubes arranged spaced apart from one another and connected between the first and second headers. The heat exchanger further includes a fin pack having multiple rows of fins and multiple tabular portions such that pairs of adjacent ones of said multiple rows are interconnected by the tabular portions. The tabular portions define channels between each of the rows of fins, the core tubes are seated in the channels, and one each of the rows of fins is disposed between pairs of the core tubes.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar items throughout the Figures, and:
  • FIG. 1 shows a front view of an exemplary prior art tube-and-fin type heat exchanger;
  • FIG. 2 shows a partial perspective view of an exemplary prior art heat exchanger core of the heat exchanger of FIG. 1;
  • FIG. 3 shows a front view of a heat exchanger in accordance with an embodiment of the present invention;
  • FIG. 4 shows a perspective view of a fin pack for the heat exchanger in accordance with the present invention;
  • FIG. 5 shows a flowchart of a heat exchanger production process in accordance with another embodiment of the present invention;
  • FIG. 6 shows a perspective view of a coil of sheet material utilized in connection with fabrication of a fin pack of the heat exchanger of FIG. 3;
  • FIG. 7 shows a top view of a portion of the sheet material pierced to form slots;
  • FIG. 8 shows a top view of the sheet material of FIG. 7 with louvers stamped thereon;
  • FIG. 9 shows a top view of the sheet material with a first fold pattern superimposed thereon;
  • FIG. 10 shows an end view of the folded sheet material;
  • FIG. 11 shows a top view of the sheet material with a second fold pattern superimposed thereon;
  • FIG. 12 shows a front schematic view of core tubes of the heat exchanger being installed in the fin pack; and
  • FIG. 13 shows a partial front schematic view of core tubes of the heat exchanger installed in a fin pack in accordance with another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIG. 3 shows a front view of a heat exchanger 40 in accordance with an embodiment of the present invention. Heat exchanger 40 includes a heat exchanger core 42 disposed between first and second headers 44 and 46, respectively. Inlet and outlet tubes 48 and 50, respectively, are connected to first and second headers 44 and 46, for the passage of a fluid, such as a refrigerant. Side plates 52 span between first and second headers 44 and 46, respectively, to form an upper and lower boundary of heat exchanger core 42.
  • Heat exchanger core 42 includes a number of discrete parallel flat core tubes 54 coupled between first and second headers 44 and 46. In accordance with the present invention, heat exchanger core 42 further includes a fin pack 56 having multiple substantially parallel rows 58 of fins 60, with each of rows 58 being corrugated and having a continuous series of fins 60. Adjacent rows 58 of fins 60 are interconnected with first tabular portions 62 shown overlying core tubes 54 and alternating with adjacent rows 58 of fins 60 that are interconnected with second tabular portions 64, shown underlying core tubes 54. Rows 58 are interconnected by first and second tabular portions 62 and 64, respectively, to form a single fin pack 56 of multiple rows 58 of fins 60, as opposed to the discrete fin rows 34 (FIG. 1) of the prior art. As will be discussed in greater detail below, the inclusion of fin pack 56 that includes multiple rows 58 of fins 60 allows for the concurrent installation of multiple rows 58 of fins 60 with multiple core tubes 54, thereby significantly reducing cycle time, increasing manufacturing efficiency, and producing a more consistent product with less manufacturing defects.
  • It should be noted that core tubes 54 are not typically provided in an actual heat exchanger with cross-hatched markings. Rather, core tubes 54 are shown in FIG. 3 with cross-hatching to more clearly distinguish tubes 54 from first and second tabular portions 62 and 64 that overlie and underlie tubes 54.
  • FIG. 4 shows a perspective view of a fin pack 56 for heat exchanger 40 (FIG. 3) in accordance with the present invention. Fin pack 56 is shown with several less rows 58, fins 60, first tabular portions 62, and second tabular portions 64 for simplicity of illustration. However, it should be understood that fin pack 56 can have as few as two rows 58 of fins 60, or any number of rows 58 and fins 60 desired for producing heat exchanger core 42 (FIG. 3). In addition, heat exchanger core 42 may be formed from a single fin pack 56, or from several smaller fin packs 56.
  • Each of fins 60 within rows 58 exhibits an upper edge 66 and a lower edge 68. First pairs 70 of rows 58 are interconnected by first tabular portion 62 at upper edge 66 of each of fins 60. Second pairs 72 (of which only one is shown) of rows 58 are interconnected by second tabular portion 64 at lower edge 68 of each of fins 60. Second pairs 72 of rows 58 alternate with first pairs 70 of rows 58 so that first tabular portions 62 located at upper edge 66 likewise alternate with second tabular portions 64 at lower edge 68.
  • A length 74 of each of first and second tabular portions 62 and 64, respectively, and a height 76 of fins 60 defines channels 78 between each of rows 58 of fins 60. In a preferred embodiment, height 76 of fins 60 is substantially equivalent to a height 80 of core tubes 54 (one shown in ghost form). Channels 78 extend along an entire length of rows 58. In addition, each of fins 60 includes a substantially flat contact portion 84 that forms an inner wall of one of channels 78. In accordance with the present invention, one each of core tubes 54 is inserted into and largely fills one each of channels 78. In particular, the width of each of channels 78, defined by length 74 of first and second tabular portions 62 and 64 is approximately equivalent to a width 86 of each of core tubes 54, so that flat contact portion 84 of fins 60 abuts an external peripheral wall 88 of each of core tubes 54. This abutment of flat contact portion 84 with wall 88 of each of core tubes 54 can enhance heat transfer efficiency between core tubes 54 and fin pack 56.
  • Fin pack 56 that includes multiple rows 58 of fins 60 interconnected by first and second tabular portions 62 and 64 yields a rigid and consistent structure, both in appearance and performance. This structure is coupled with core tubes 54, subsequently attached to headers 44 and 46, and can then be brazed as a single unit. Accordingly, improvements are achieved in terms of greater efficiency in manufacture process time and in a reduction in the amount of defective parts and their commensurate waste.
  • FIG. 5 shows a flowchart of a heat exchanger production process 90 in accordance with another embodiment of the present invention. Process 90 provides generalized methodology of the operations involved in the manufacture of heat exchanger 40 having fin pack 56. In addition, process 90 includes a fin pack fabrication subprocess 92 detailing the operations involved in the manufacture of fin pack 56. The operations described in process 90 may take place in a single manufacturing facility in a serial operation. Alternatively, fin pack fabrication subprocess 92 may occur in a separate facility for producing fin packs 56. Those fin packs 56 may then be assembled into heat exchangers 40 in an assembly facility. Those skilled in the art will recognize that there are other conventional operations pertaining to the manufacture and assembly of heat exchanger 40. These conventional operations are not described herein for brevity.
  • Heat exchanger production process 90 begins with fin pack fabrication subprocess 92. Referring to FIG. 6, FIG. 6 shows a perspective view of a coil 94 of sheet material 96 utilized in connection with fabrication of fin pack 56 (FIG. 4) of heat exchanger 40 (FIG. 3). Sheet material 96 may be any of a number of materials that are conventionally used to form sheet metal, such as, aluminum, brass, copper, cold rolled steel, mild steel, tin, nickel, titanium, and the like. More particularly, sheet material 96 is formed from those conventional sheet metals that are typically utilized to form fins for heat exchangers.
  • Referring back to FIG. 5, at an operation 98 of fin pack fabrication method section 92, coil 94 is passed through the appropriate machinery used for unrolling and cutting coil 94 into the appropriate size and shape to produce fin pack 56. In addition, slots are cut into cut sheet material.
  • Referring now to FIG. 7 in connection with operation 98, FIG. 7 shows a top view of a portion 100 of sheet material 96 cut or pierced to form slots 102. Slots 102 may be formed utilizing conventional sheet metal fabrication equipment such as a punch or a laser. Slots 102 are formed into rows 104 having a first slot pattern 106 alternating with rows 106 having a second slot pattern 108. Each of slots 102 exhibits a base 110 and a side 112, and rows 104 and 106 of slots 102 are arranged with each side 112 parallel to a longitudinal dimension 114 of portion 100 of sheet material 96.
  • With reference back to FIG. 5, following operation 98 of fin pack fabrication subprocess 92, an operation 116 may be performed. At operation 100, sheet material 96 may optionally be stamped to form louvers. Referring now to FIG. 8 in connection with operation 116, FIG. 8 shows a top view of portion 100 of sheet material 96 with louvers 118 stamped thereon. Heat exchangers, such as heat exchanger 40 (FIG. 3), with louvered fins 60 (FIG. 3) are used widely in the automotive air-conditioning industry. The dominant thermal resistance in compact heat exchangers occurs on the airside, and fins are used to reduce this thermal resistance and improve overall performance of the heat exchanger. Louvers 118 on fins 60 create interrupted surfaces to generate complex airflow patterns that can increase the performance of the heat exchanger.
  • Referring back to FIG. 5, following operation 116 of fin pack fabrication subprocess 92, an operation 120 may be performed. At operation 120, the sheet material is bent longitudinally to form corrugated fins 60 (FIG. 4) of fin pack 56 (FIG. 4).
  • Referring to FIGS. 9-10 in connection with operation 120, FIG. 9 shows a top view of portion 100 of sheet material 96 with a first fold pattern 122 superimposed thereon, and FIG. 10 shows an end view of the folded portion 100 of sheet material 96. Portion 100 of sheet material 96 is shown without louvers 118 (FIG. 8) for clarity of illustration.
  • First fold pattern 122 includes first fold lines 124 having a dash-dot pattern and second fold lines 126 having a dash pattern, as shown in FIG. 9. Sheet material 96 is bent parallel to longitudinal dimension 114 at each of sides 112 of slots 102. Accordingly, first and second fold lines 124 and 126 are aligned and co-located with sides 112 of slots 102.
  • It should be noted that sheet material 96 is not actually provided with first and second fold lines 124 and 126. Rather, lines 124 and 126 are shown in FIG. 9 to clearly demarcate locations at which sheet material 96 is to be folded and to distinguish a direction of the fold. In this example, first fold lines 124 represent those folds of sheet material 96 that are directed “downwardly,” i.e., into the drawing page. Second fold lines 126 represent those folds of sheet material 96 that are directed “upwardly,” i.e., out of the drawing page.
  • With the exception of the two outermost first fold lines 124, each of the fold lines occur in alternating pairs of first fold lines 124 and second fold lines 126. Bending portion 100 of sheet material 96 in accordance with first fold pattern 122 yields the continuous series of corrugated fins 60 having flat contact portions 84 that form an inner wall of one of channels 78 (FIG. 4) of fin pack 56 (FIG. 4).
  • Returning to FIG. 5, following the bending operation of operation 120, fin pack fabrication subprocess 92 continues with an operation 128. At operation 128, sheet material 96 is subsequently bent transversely to form interconnected rows 58 (FIG. 4) of fins 60 (FIG. 4) separated by channels 78 (FIG. 4).
  • With reference to FIG. 11 in connection with operation 128, FIG. 11 shows a top view of sheet material 96 with a second fold pattern 130 superimposed thereon. It should be noted that FIG. 11 shows portion 100 of sheet material 96 in its flat state, without having first been folded as shown in FIG. 10, in order to clearly distinguish second fold pattern 130. However, in actual practice, sheet material 96 will have first been folded longitudinally in accordance with first fold pattern 122 (FIG. 9), followed by being folded transversely in accordance with second fold pattern 130.
  • Second fold pattern 130 includes third fold lines 132 having a dash pattern and fourth fold lines 134 having a dash-dot pattern. Sheet material 96 is bent transversely, i.e., perpendicular to longitudinal dimension 114 at each of bases 110 of slots 102. Accordingly, third and fourth fold lines 132 and 134 are aligned and co-located with bases 110 of slots 102.
  • Again, sheet material 96 need not be provided with third and fourth fold lines 132 and 134. Rather, lines 132 and 134 are shown in FIG. 12 to clearly demarcate locations at which sheet material 96 is to be folded and to distinguish a direction of the fold. In this example, third fold lines 132 can represent those folds of sheet material 96 that are directed “downwardly,” i.e., into the drawing page. Fourth fold lines 134 can represent those folds of sheet material 96 that are directed “upwardly,” i.e., out of the drawing page.
  • Each of the fold lines occur in alternating pairs of third fold lines 132 and fourth fold lines 134. Bending portion 100 of sheet material 96 in accordance with second fold pattern 130, after sheet material 96 has first been bent in accordance with first fold pattern 122 (FIG. 9) yields the multiple rows 58 (FIG. 4) of fins 60 interconnected by first and second tabular portions 62 and 64, respectively. More specifically, first tabular portions 62 are formed between slots 102 of rows 104 and second tabular portions 64 are formed between slots 102 of rows 106.
  • Returning to FIG. 5, following the bending operation of operation 128, fabrication of fin pack 56 is complete and fin pack 56 has the appearance of that shown in FIG. 4. Those skilled in the art will recognize that other conventional work processes may be performed such as cleaning and degreasing, applying flux or braze paste, and the like to actually finalize the fabrication of fin pack 56.
  • Following manufacture of fin pack 56 through the execution of fin pack fabrication subprocess 92, heat exchanger production process 90 continues with a number of operations that describe an efficient process for the assembly of heat exchanger 40 utilizing fin pack 56. Process 90 continues with an operation 136. At operation 136, a subset of core tubes 54 are arranged on a surface.
  • Referring to FIGS. 5 and 12, FIG. 12 shows a front schematic view of core tubes 54 of heat exchanger 40 (FIG. 3) being installed in fin pack 56. FIG. 12 is not intended to be a realistic portrait of the assembly of core tubes 54 with fin pack 56. Rather, FIG. 12 enables visualization of the concurrent installation of multiple core tubes 54 with fin pack 56. As shown, a subset 138 of, e.g., approximately half, of core tubes 54 utilized with fin pack 56 are arranged on a surface 140. More specifically, core tubes 54 are placed on an edge with a lower side, or width 86, facing surface 140. Surface 140 need not be a substantially flat surface, but may include holding structures and/or placement structures for temporarily retaining core tubes 54 in position.
  • With continued reference to FIGS. 5 and 12, following operation 136, an operation 142 is performed. At operation 142, fin pack 56 is installed onto subset 138 of core tubes 54 by seating core tubes into those of channels 78 in which first tabular portions 62 are positioned along upper edge 66 between pairs 70 of rows 58 of fins 60. In other words, fin pack 56 is lowered onto subset 138 of core tubes 54, as represented by downwardly directed arrows, labeled “A.”
  • Next, an operation 144 is performed. At operation 144, a remaining subset 146 of core tubes 54 is inserted into remaining channels 78 having second tabular portion 64 along lower edge 68 between pairs 72 of rows 58 of fins 60 to form heat exchanger core 42 (FIG. 3). Subset 146 of core tubes 54 may be held on edge by a pick and place system, or manipulator, that can hold multiple core tubes 54 and install those multiple core tubes 54 at the same time. In effect, subset 146 of core tubes 54 is lowered onto fin pack 56, as represented by downwardly directed arrows, labeled “B.”
  • In the instance in which fin pack 56 includes only two rows 58 of fins 60, both of operations 142 and 144 need not occur. Rather, all core tubes 54 may be installed at one time, with either one or more two row fin packs 56 being lowered onto all of the required core tubes 58 or all of core tubes 54 being lowered onto the one or more two row fin packs 56.
  • Referring back to FIG. 5, following operation 144, an operation 148 is performed. At operation 148, heat exchanger core 42 is connected to first and second headers 44 and 46, respectively (FIG. 3). The alternating connecting tab structure of first and second tabular portions 62 and 64 enables fin pack 56 to lock with core tubes 54 during assembly, thereby eliminating the possibility of dropped fins and providing for better control of fin edges. The connection of heat exchanger core 42 with headers 44 and 46 further locks fin pack and core tubes 54 together resulting in a rigid structure that is subsequently brazed at an operation 150 of process 90. Following operation 150, process 90 exits.
  • FIG. 13 shows a partial front schematic view of core tubes 54 of heat exchanger 40 (FIG. 3) installed in a fin pack 152 in accordance with another embodiment of the present invention. Fin pack 152 is similar to fin pack 56 and includes multiple rows of a continuous series of corrugated fins 60. Adjacent rows of fins 60 are interconnected along upper edges 66 by first tabular portions 154 alternating with adjacent rows of fins 60 that are interconnected along lower edges 68 by second tabular portions 156 to form a single fin pack 152 of multiple rows of fins.
  • In accordance with the embodiment shown in FIG. 13, first and second tabular portions 154 and 156 exhibit an outwardly arcuate, or arched, shape 158. Arcuate shape 158 of tabular portions 154 and 156 corresponds with a shape of core tubes 54. That is, each of core tubes 54 has rounded sides 160 extending in a widthwise direction. Methodology to produce arcuate shape 158 of first and second tabular portions 154 and 156 entails, for example, bending, rolling, or stretching sheet material 96 (FIG. 6) in the course of executing fin pack fabrication subprocess 92 (FIG. 5).
  • Arcuate shape 158 of tabular portions 154 and 156 enables tabular portions 154 and 156 to wrap around sides 160 of core tubes 54 so that closer contact is made between core tubes 54 and tabular portions 154 and 156. This closer contact can result in greater rigidity of the heat exchanger core, in enhanced heat transfer efficiency, and facilitate laminar flow of air around rounded sides 160 of core tubes 52 and tabular portions 154 and 156.
  • In summary, the present invention teaches of a fin pack that includes multiple rows of continuous corrugated fins interconnected by tabular portions. The multiple rows of fins are spaced apart by channels in which core tubes of a heat exchanger can be inserted. A production method yields the fabrication of a fin pack having multiple interconnected rows of fins using one coil of sheet material. The production method further enables the concurrent installation of multiple core tubes into the channels between the multiple rows of fins to form a heat exchanger core. The fin pack of the present invention results in improved appearance of a heat exchanger, a reduction in dropped and misaligned fins, and a reduction in defective parts and waste relative to prior art designs. In addition, the production methodology enables concurrent installation of multiple fin rows with core tubes of a heat exchanger resulting in an improved appearance of the heat exchanger and cost savings in terms of a more efficient manufacture process time.
  • Although the preferred embodiments of the invention have been illustrated and described in detail, it will be readily apparent to those skilled in the art that various modifications may be made therein without departing from the spirit of the invention or from the scope of the appended claims.

Claims (19)

1. A fin pack for a heat exchanger comprising:
a first row of fins;
a second row of said fins adjacent to and arranged substantially parallel with said first row of said fins; and
a tabular portion extending between and interconnecting said first and second row of fins, said tabular portion defining a channel between said first and second row of fins configured for insertion of a core tube of said heat exchanger.
2. A fin pack as claimed in claim 1 wherein each of said first and second rows of said fins is corrugated having a continuous series of said fins.
3. A fin pack as claimed in claim 2 wherein said core tube is a flat tube, and each of said fins of said first and second rows exhibits a substantially flat contact portion configured to abut an external peripheral wall of said flat tube along a height of said external peripheral wall.
4. A fin pack as claimed in claim 1 wherein said core tube is a flat tube exhibiting a width, and said tabular portion exhibits a length that is approximately equivalent to said width.
5. A fin pack as claimed in claim 1 wherein said core tube is a flat tube exhibiting rounded sides extending in a widthwise direction, and said tabular portion exhibits an outwardly arcuate shape configured to correspond with said rounded sides of said flat tube.
6. A fin pack as claimed in claim 1 wherein said tabular portion is a first tabular portion, and said fin pack further comprise:
a third row of fins adjacent to and arranged substantially parallel with said second row of fins; and
a second tabular portion extending between and interconnecting said second and third row of fins, said second tabular portion defining a second channel between said second and third row of fins configured for insertion of a second core tube of said heat exchanger.
7. A fin pack as claimed in claim 6 wherein:
said first tabular portion interconnects said first and second rows of fins along an upper edge of each of said first and second rows of said fins; and
said second tabular portion interconnects said second and third rows of fins along a lowed edge of each of said second and third rows of said fins.
8. A fin pack as claimed in claim 1 further comprising:
multiple rows of said fins, said first and second rows being a pair of said multiple rows;
first tabular portions interconnecting an upper edge of first pairs of said rows of said fins, said tabular portion being one of said first tabular portions; and
second tabular portions interconnecting a lower edge of second pairs of said rows of said fins, said second pairs of said rows alternating with said first pairs of said rows.
9. A method of producing a heat exchanger comprising:
forming a fin pack having multiple rows of fins, wherein adjacent pairs of said multiple rows of said fins are interconnected by tabular portions along an edge of said fins, said tabular portions defining channels between each of said rows of said fins;
inserting one each of multiple core tubes in each of said channels to form a heat exchanger core;
connecting opposing ends of said core tubes of said heat exchanger core to first and second headers; and
brazing said heat exchanger core with said first and second headers to form said heat exchanger.
10. A method as claimed in claim 9 wherein said forming operation comprises:
forming first ones of said tabular portions interconnecting an upper edge of first pairs of said rows of said fins; and
forming second ones of said tabular portions interconnecting a lower edge of second pairs of said rows of said fins, said second pairs of said rows alternating with said first pairs of said rows.
11. A method as claimed in claim 10 wherein said forming said first and second ones of said tabular portions comprises shaping each of said tabular portions to have an outwardly arcuate shape.
12. A method as claimed in claim 9 wherein said forming operation comprises:
forming rows of slots in sheet material, each of said slots exhibiting a base and a side, said rows of said slots being arranged with said side parallel to a longitudinal dimension of said sheet material;
bending said sheet material parallel to said longitudinal dimension at said side of each of said slots to form corrugations for said rows of fins; and
bending said sheet material perpendicular to said longitudinal dimension at said base of each of said slots to form said rows of fins, such that said sheet material located between said sides of adjacent slots forms one of said tabular portions.
13. A method as claimed in claim 12 further comprising:
stamping louvers in said sheet material prior to said bending operations.
14. A method as claimed in claim 9 wherein said core tubes are flat tubes having external walls exhibiting a height and a width, and said inserting operation comprises:
arranging a subset of said core tubes with said a side of each of said subset of said core tubes seated on a surface;
installing said fin pack onto said portion of said core tubes by seating said core tubes in those of said channels in which said tabular portions are positioned along said upper edge of said rows of said fins; and
inserting a remaining subset of said core tubes into remaining ones of said channels, said remaining channels having said tabular portion positioned along said lower edge of said rows of said fins.
15. A heat exchanger comprising:
a first header;
a second header;
multiple flat core tubes arranged spaced apart from one another and connected between said first and second headers; and
a fin pack having multiple rows of fins and multiple tabular portions such that pairs of adjacent ones of said multiple rows are interconnected by said tabular portions, said tabular portions defining channels between each of said rows of fins, said core tubes being seated in said channels and one each of said rows of fins being disposed between pairs of said core tubes.
16. A heat exchanger as claimed in claim 15 wherein each of said rows of said fins is corrugated having a continuous series of said fins.
17. A heat exchanger as claimed in claim 15 wherein each of said fins exhibits a substantially flat contact portion abutting a corresponding one of said core tubes along said height of said external wall.
18. A heat exchanger as claimed in claim 15 wherein:
said core tubes are flat tubes, each of said flat tubes having rounded sides extending in a widthwise direction; and
each of said tabular portions exhibits an outwardly arcuate shape corresponding with said rounded sides of said each flat tube.
19. A heat exchanger as claimed in claim 15 wherein tabular portions of said fin pack comprise:
first tabular portions interconnecting an upper edge of first pairs of said rows of said fins; and
second tabular portions interconnecting a lower edge of second pairs of said rows of said fins, said second pairs of said rows alternating with said first pairs of said rows.
US11/951,548 2007-12-06 2007-12-06 Fin pack, heat exchanger, and method of producing same Abandoned US20090145587A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/951,548 US20090145587A1 (en) 2007-12-06 2007-12-06 Fin pack, heat exchanger, and method of producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/951,548 US20090145587A1 (en) 2007-12-06 2007-12-06 Fin pack, heat exchanger, and method of producing same

Publications (1)

Publication Number Publication Date
US20090145587A1 true US20090145587A1 (en) 2009-06-11

Family

ID=40720416

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/951,548 Abandoned US20090145587A1 (en) 2007-12-06 2007-12-06 Fin pack, heat exchanger, and method of producing same

Country Status (1)

Country Link
US (1) US20090145587A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140374077A1 (en) * 2013-06-19 2014-12-25 Samsung Electronics Co., Ltd. Heat exchanger and manufacturing method thereof
WO2015041216A1 (en) * 2013-09-20 2015-03-26 三菱電機株式会社 Heat exchanger, air conditioner using said heat exchanger, and manufacturing method of said heat exchanger
US20150136374A1 (en) * 2012-01-31 2015-05-21 Michael Alan Burns Steam generation
WO2022228283A1 (en) * 2021-04-27 2022-11-03 杭州三花微通道换热器有限公司 Heat exchanger processing method and apparatus

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2983483A (en) * 1955-12-19 1961-05-09 Modine Mfg Co Method of radiator core fin assembly and fin element therefor
US4197625A (en) * 1978-02-15 1980-04-15 Carrier Corporation Plate fin coil assembly
US4228573A (en) * 1979-06-29 1980-10-21 General Motors Corporation Method for assembling heat exchangers
US4327800A (en) * 1979-09-24 1982-05-04 Caterpillar Tractor Co. Method of manufacturing heat exchanger core and assembly therefor
US4411309A (en) * 1981-03-16 1983-10-25 Ex-Cell-O Corporation Heat exchanger assembly
US5535820A (en) * 1995-07-18 1996-07-16 Blissfield Manufacturing Company Method for assembling a heat exchanger
US5540276A (en) * 1995-01-12 1996-07-30 Brazeway, Inc. Finned tube heat exchanger and method of manufacture
US6167619B1 (en) * 1997-11-15 2001-01-02 Blissfield Manufacturing Company Method for assembling a heat exchanger
US20020029876A1 (en) * 2000-07-10 2002-03-14 Thermal Form & Function Llc Corrugated matrix heat sink for cooling electronic components
US6513587B2 (en) * 1999-05-20 2003-02-04 Carrier Corporation Fin collar and method of manufacturing
US6688380B2 (en) * 2002-06-28 2004-02-10 Aavid Thermally, Llc Corrugated fin heat exchanger and method of manufacture
US7059399B2 (en) * 2003-09-04 2006-06-13 Lg Electronics Inc. Heat exchanger with flat tubes
US7111670B2 (en) * 2002-12-25 2006-09-26 T. Rad Co., Ltd. Plate fin for heat exchanger and heat exchanger core
US7165606B2 (en) * 2002-10-02 2007-01-23 Showa Denko K.K. Heat exchanging tube and heat exchanger
US20070084589A1 (en) * 2005-10-18 2007-04-19 Denso Corporation Evaporator
US20080283234A1 (en) * 2007-05-17 2008-11-20 Hitachi Cable Mec-Tech, Ltd. Heat sink and method of making same
US20090256027A1 (en) * 2005-08-04 2009-10-15 Victor Feliksovitch Kopiev Aerodynamic Noise Reducing Method (Variants) and Low-Noise Structural Element for Operating in a Fluid Medium Stream

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2983483A (en) * 1955-12-19 1961-05-09 Modine Mfg Co Method of radiator core fin assembly and fin element therefor
US4197625A (en) * 1978-02-15 1980-04-15 Carrier Corporation Plate fin coil assembly
US4228573A (en) * 1979-06-29 1980-10-21 General Motors Corporation Method for assembling heat exchangers
US4327800A (en) * 1979-09-24 1982-05-04 Caterpillar Tractor Co. Method of manufacturing heat exchanger core and assembly therefor
US4411309A (en) * 1981-03-16 1983-10-25 Ex-Cell-O Corporation Heat exchanger assembly
US5540276A (en) * 1995-01-12 1996-07-30 Brazeway, Inc. Finned tube heat exchanger and method of manufacture
US5535820A (en) * 1995-07-18 1996-07-16 Blissfield Manufacturing Company Method for assembling a heat exchanger
US6167619B1 (en) * 1997-11-15 2001-01-02 Blissfield Manufacturing Company Method for assembling a heat exchanger
US6513587B2 (en) * 1999-05-20 2003-02-04 Carrier Corporation Fin collar and method of manufacturing
US20020029876A1 (en) * 2000-07-10 2002-03-14 Thermal Form & Function Llc Corrugated matrix heat sink for cooling electronic components
US6688380B2 (en) * 2002-06-28 2004-02-10 Aavid Thermally, Llc Corrugated fin heat exchanger and method of manufacture
US7165606B2 (en) * 2002-10-02 2007-01-23 Showa Denko K.K. Heat exchanging tube and heat exchanger
US7111670B2 (en) * 2002-12-25 2006-09-26 T. Rad Co., Ltd. Plate fin for heat exchanger and heat exchanger core
US7059399B2 (en) * 2003-09-04 2006-06-13 Lg Electronics Inc. Heat exchanger with flat tubes
US20090256027A1 (en) * 2005-08-04 2009-10-15 Victor Feliksovitch Kopiev Aerodynamic Noise Reducing Method (Variants) and Low-Noise Structural Element for Operating in a Fluid Medium Stream
US20070084589A1 (en) * 2005-10-18 2007-04-19 Denso Corporation Evaporator
US20080283234A1 (en) * 2007-05-17 2008-11-20 Hitachi Cable Mec-Tech, Ltd. Heat sink and method of making same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150136374A1 (en) * 2012-01-31 2015-05-21 Michael Alan Burns Steam generation
US9952003B2 (en) * 2012-01-31 2018-04-24 Clean Thermodynamic Energy Conversion Ltd Steam generation
US10845131B2 (en) 2012-01-31 2020-11-24 Clean Thermodynamic Energy Conversion Ltd Steam generation
US20140374077A1 (en) * 2013-06-19 2014-12-25 Samsung Electronics Co., Ltd. Heat exchanger and manufacturing method thereof
US9551539B2 (en) * 2013-06-19 2017-01-24 Samsung Electronics Co., Ltd. Heat exchanger and manufacturing method thereof
WO2015041216A1 (en) * 2013-09-20 2015-03-26 三菱電機株式会社 Heat exchanger, air conditioner using said heat exchanger, and manufacturing method of said heat exchanger
WO2015040746A1 (en) * 2013-09-20 2015-03-26 三菱電機株式会社 Heat exchanger, air conditioner device using said heat exchanger, and method for producing said heat exchanger
JPWO2015041216A1 (en) * 2013-09-20 2017-03-02 三菱電機株式会社 Heat exchanger, air conditioner using the heat exchanger, and method for manufacturing the heat exchanger
US10215503B2 (en) 2013-09-20 2019-02-26 Mistubishi Electric Corporation Heat exchanger, air-conditioning apparatus using the same and method of manufacturing the same
WO2022228283A1 (en) * 2021-04-27 2022-11-03 杭州三花微通道换热器有限公司 Heat exchanger processing method and apparatus

Similar Documents

Publication Publication Date Title
JP4300508B2 (en) Plate fin and heat exchanger core for heat exchanger
US20020020519A1 (en) Method of manufacturing a heat-exchanger fin, fins according to the method and exchange module including these fins
EP2810010B1 (en) Multiple tube bank heat exchanger assembly and fabrication method
JP5087538B2 (en) Brazed pipe and manufacturing method thereof
JP4041654B2 (en) Louver fin of heat exchanger, heat exchanger thereof, and method of assembling the louver fin
JP6122860B2 (en) Fin-and-tube heat exchanger for air conditioner
WO2005047800A1 (en) Evaporator and process for fabricating same
US20160054075A1 (en) Folded tube multiple bank heat exchange unit
JP6002421B2 (en) Heat exchanger
US20070051499A1 (en) Semifinished flat tube, process for producing same, flat tube, heat exchanger comprising the flat tube and process for fabricating the heat exchanger
US20090145587A1 (en) Fin pack, heat exchanger, and method of producing same
EP2956728B1 (en) Multiple bank flattened tube heat exchanger
JP5393388B2 (en) Heat exchanger and manufacturing method thereof
JP3934631B2 (en) End plate for heat exchanger, heat exchanger provided with the same, and manufacturing method thereof
JP4459062B2 (en) HEAT EXCHANGE MODULE AND METHOD FOR PRODUCING HEAT EXCHANGE MODULE
JP2013127341A (en) Heat exchanger
KR20050061454A (en) Flat tube and process for producing heat exchanger with use of the flat tube
JP5140803B2 (en) Heat exchanger and manufacturing method thereof
US10801781B2 (en) Compliant b-tube for radiator applications
JP4423096B2 (en) Manufacturing method of heat exchanger
JP2011163700A5 (en)
JP4493221B2 (en) Manufacturing method of stacked heat exchanger
JP4675224B2 (en) Air conditioner
JP2004069258A (en) Flat tube, and method of manufacturing heat exchanger using flat tube
JP2008180479A (en) Heat exchanger

Legal Events

Date Code Title Description
AS Assignment

Owner name: CALSONICKANSEI NORTH AMERICA, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YOUNG, DARRELL V.;SNOW, JAMES D.;REEL/FRAME:020205/0462;SIGNING DATES FROM 20071009 TO 20071022

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION