US20090144638A1 - Automatic increasing of capacity of a virtual space in a virtual world - Google Patents
Automatic increasing of capacity of a virtual space in a virtual world Download PDFInfo
- Publication number
- US20090144638A1 US20090144638A1 US11/947,829 US94782907A US2009144638A1 US 20090144638 A1 US20090144638 A1 US 20090144638A1 US 94782907 A US94782907 A US 94782907A US 2009144638 A1 US2009144638 A1 US 2009144638A1
- Authority
- US
- United States
- Prior art keywords
- virtual space
- capacity
- avatars
- virtual
- avatar
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A63F13/12—
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/04815—Interaction with a metaphor-based environment or interaction object displayed as three-dimensional, e.g. changing the user viewpoint with respect to the environment or object
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/30—Interconnection arrangements between game servers and game devices; Interconnection arrangements between game devices; Interconnection arrangements between game servers
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F13/00—Video games, i.e. games using an electronically generated display having two or more dimensions
- A63F13/30—Interconnection arrangements between game servers and game devices; Interconnection arrangements between game devices; Interconnection arrangements between game servers
- A63F13/35—Details of game servers
- A63F13/358—Adapting the game course according to the network or server load, e.g. for reducing latency due to different connection speeds between clients
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/004—Artificial life, i.e. computing arrangements simulating life
- G06N3/006—Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L47/00—Traffic control in data switching networks
- H04L47/70—Admission control; Resource allocation
- H04L47/82—Miscellaneous aspects
- H04L47/822—Collecting or measuring resource availability data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/01—Protocols
- H04L67/131—Protocols for games, networked simulations or virtual reality
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F2300/00—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
- A63F2300/50—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by details of game servers
- A63F2300/53—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by details of game servers details of basic data processing
- A63F2300/534—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by details of game servers details of basic data processing for network load management, e.g. bandwidth optimization, latency reduction
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F2300/00—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
- A63F2300/50—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by details of game servers
- A63F2300/55—Details of game data or player data management
- A63F2300/5526—Game data structure
- A63F2300/5533—Game data structure using program state or machine event data, e.g. server keeps track of the state of multiple players on in a multiple player game
-
- A—HUMAN NECESSITIES
- A63—SPORTS; GAMES; AMUSEMENTS
- A63F—CARD, BOARD, OR ROULETTE GAMES; INDOOR GAMES USING SMALL MOVING PLAYING BODIES; VIDEO GAMES; GAMES NOT OTHERWISE PROVIDED FOR
- A63F2300/00—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game
- A63F2300/50—Features of games using an electronically generated display having two or more dimensions, e.g. on a television screen, showing representations related to the game characterized by details of game servers
- A63F2300/55—Details of game data or player data management
- A63F2300/5546—Details of game data or player data management using player registration data, e.g. identification, account, preferences, game history
- A63F2300/5553—Details of game data or player data management using player registration data, e.g. identification, account, preferences, game history user representation in the game field, e.g. avatar
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/048—Interaction techniques based on graphical user interfaces [GUI]
- G06F3/0481—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
- G06F3/04817—Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance using icons
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0629—Configuration or reconfiguration of storage systems
- G06F3/0631—Configuration or reconfiguration of storage systems by allocating resources to storage systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/06—Digital input from, or digital output to, record carriers, e.g. RAID, emulated record carriers or networked record carriers
- G06F3/0601—Interfaces specially adapted for storage systems
- G06F3/0628—Interfaces specially adapted for storage systems making use of a particular technique
- G06F3/0646—Horizontal data movement in storage systems, i.e. moving data in between storage devices or systems
- G06F3/065—Replication mechanisms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for program control, e.g. control units
- G06F9/06—Arrangements for program control, e.g. control units using stored programs, i.e. using an internal store of processing equipment to receive or retain programs
- G06F9/46—Multiprogramming arrangements
- G06F9/50—Allocation of resources, e.g. of the central processing unit [CPU]
- G06F9/5005—Allocation of resources, e.g. of the central processing unit [CPU] to service a request
- G06F9/5011—Allocation of resources, e.g. of the central processing unit [CPU] to service a request the resources being hardware resources other than CPUs, Servers and Terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L43/00—Arrangements for monitoring or testing data switching networks
- H04L43/16—Threshold monitoring
Definitions
- the present invention is related to virtual space in a virtual world, and more specifically to automatic increasing of capacity of a virtual space in a virtual world.
- Virtual reality (VR) worlds bring the best of online and real-world brick and mortar to many scenarios, for example shopping.
- shopping has both a social and a visually immersive experience.
- Two dimensional (2D) shopping web sites are convenient (e.g., they do not require traveling to a physical location) and scalable to 1,000s of users by a hosting server.
- They lack that social and visual experience of brick and mortar.
- Today three dimensional (3D) web sites combine the convenience of online shopping with the social and the visual benefits of brick and mortar. However, they suffer from the scalability issue of brick and mortar.
- a method for automatically increasing a capacity of a virtual space in a virtual world that includes detecting an attempt by an avatar to enter a virtual space in a virtual world, determining if an allowable number of avatars are currently in the virtual space, and increasing a capacity of the virtual space when the allowable number of avatars are currently in the virtual space.
- a method for automatically increasing a capacity of a virtual space in a virtual world that includes determining if an allowable number of avatars are currently in the virtual space, and increasing a capacity of the virtual space when the allowable number of avatars are currently in the virtual space.
- a system for automatically increasing a capacity of a virtual space in a virtual world includes a server, one or more workstations, and a network interconnecting the server and one or more workstations, wherein the server hosts a virtual world allowing a user at the one or more workstations to control an avatar in the virtual world to access a virtual space, the server detecting an attempt by an avatar to enter the virtual space in the virtual world, determining if an allowable number of avatars are currently in the virtual space, and increasing a capacity of the virtual space when the allowable number of avatars are currently in the virtual space.
- a computer program product comprising a computer useable medium having computer useable program code embodied therewith, the computer useable program code comprising computer useable program code configured to detect an attempt by an avatar to enter a virtual space in a virtual world, computer useable program code configured to determine if an allowable number of avatars are currently in the virtual space, and computer useable program code configured to increase a capacity of the virtual space when the allowable number of avatars are currently in the virtual space.
- FIG. 1 is a diagram of system for automatically increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention
- FIG. 2 is a diagram of virtual environment for automatically increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention
- FIG. 3 is a diagram of increasing a capacity of a virtual space by spawning a replicate new virtual space according to an example embodiment of the present invention
- FIG. 4 is a diagram of increasing a capacity of a virtual space by expanding a size of the virtual space according to an example embodiment of the present invention
- FIG. 5 is a flowchart of a process for increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention
- FIG. 6 is a flowchart of increasing a capacity of a virtual space by spawning a replicate new virtual space according to an example embodiment of the present invention
- FIG. 7 is a flowchart of a process for increasing a capacity of a virtual space by expanding a physical size of the virtual space according to an example embodiment of the present invention
- FIG. 8 is a flowchart of a process for defining virtual space settings according to an example embodiment of the present invention.
- FIG. 9 is a flowchart of a process for setting an avatar capacity limit for automatic increase in capacity according to an example embodiment of the present invention.
- the present invention may be embodied as a method, system, computer program product, or a combination of the foregoing. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may generally be referred to herein as a “system.” Furthermore, the present invention may take the form of a computer program product on a computer-usable storage medium having computer-usable program code embodied in the medium.
- the computer usable or computer readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific examples (a non-exhaustive list) of the computer readable medium would include the following: an electrical connection having one or more wires; a tangible medium such as a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a compact disc read-only memory (CD-ROM), or other tangible optical or magnetic storage device; or transmission media such as those supporting the Internet or an intranet.
- a tangible medium such as a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a compact disc read-only memory (CD-ROM), or other tangible optical or magnetic storage device
- transmission media such as those supporting
- the computer usable or computer readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner, if necessary, and then stored in a computer memory.
- a computer usable or computer readable medium may be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, platform, apparatus, or device.
- the computer usable medium may include a propagated data signal with the computer-usable program code embodied therewith, either in baseband or as part of a carrier wave.
- the computer usable program code may be transmitted using any appropriate medium, including but not limited to the Internet, wireline, optical fiber cable, radio frequency (RF) or other means.
- Computer program code for carrying out operations of the present invention may be written in an object oriented, scripted or unscripted programming language such as Java, Perl, Smalltalk, C++ or the like.
- the computer program code for carrying out operations of the present invention may also be written in conventional procedural programming languages, such as the “C” programming language or similar programming languages.
- These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture including instruction means which implement the function/act specified in the flowchart and/or block diagram block or blocks.
- the computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operations to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
- computer program implemented steps or acts may be combined with operator or human implemented steps or acts in order to carry out an embodiment of the invention.
- Embodiments according to the present invention relate to automatically increasing a capacity of a virtual space in a virtual world allowing avatars to enter that would otherwise be put on hold until space is available or denied entry and turned away.
- a virtual space may be any type or form of virtual space in a virtual world, such as, for example, a store, a business, an arena, a building, a land area, an open space, a room, etc.
- a capacity of the virtual space may be automatically increased. Thus the avatar desiring entry is not turned away or denied.
- Owners or managers of a virtual space in a virtual world may set a threshold for the number of avatars that are allowed in the virtual space at any given time to limit overcrowding.
- a threshold number of allowed avatars may be related to a number for an ideal avatar capacity for the virtual space or may be related to a number for a maximum avatar capacity for the virtual space.
- the threshold number of avatars may be set based on any one of a variety of factors such as, for example, how large the area is (e.g., the larger the area the more avatars it can hold at one time and still have a positive user experience), how large the server capacity is that is hosting the virtual space in the virtual world, etc.
- a threshold limit of allowable avatars is set to twenty, when a twenty-first avatar attempts to enter the virtual space, embodiments according to the present invention dynamically increase a capacity of the virtual space in the virtual world.
- the virtual space may be automatically increased by dynamically spawning a replicate virtual space or by expanding the physical size of the area of the virtual space. If a replicate virtual space is spawned, this may occur on another partition on the same server hosting the original virtual space or on a different server. Once the new avatar enters a spawned replicate virtual space, initially, the avatar may be alone in the new virtual space while the original virtual space may still be at capacity or at the desired threshold of allowable avatars.
- embodiments according to the present invention allow an owner or manager of a virtual space to provide access to avatars without having to turn an avatar away or allow an unlimited number of avatars into the virtual space and have the avatars, or users controlling the avatars, frustrated by a less than desirable experience due to overcrowding in the virtual space.
- a manager or owner of a virtual space may define various settings for the virtual space related to avatar access and/or increasing a capacity of the virtual space.
- a virtual space may have associated settings such as, for example, a maximum avatar capacity for the virtual space, an ideal avatar capacity for the virtual space, a limit on a number of replicate new virtual spaces that may be spawned from the virtual space, a limit on an expansion of a physical size of the virtual space, etc.
- the capacity for the virtual space may be automatically increased based on an ideal avatar capacity for the virtual space being reached or a maximum avatar capacity for the virtual space being reached, or any other type criteria or setting.
- FIG. 1 shows a diagram of system for automatically increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention.
- the system 100 may include a server 101 and one or more workstations 102 where the server 101 and the one or more workstations 102 may be interconnected to a network 103 .
- a server 101 may host the virtual environment 105 and also contain a controller 104 and storage 106 . Therefore, a user at a workstation 102 may access the virtual environment 105 hosted on the server 101 and control an avatar in the virtual environment 105 to access a virtual space.
- An owner or supplier of the service, the item, the event or the virtual space may also access the virtual world or environment 105 , hosted on the server 101 , via one or more workstations 102 and control an avatar to provide or restrict access to the virtual space.
- the server 101 may detect an attempt by an avatar to enter a virtual space in the virtual world, determine if an allowable number of avatars are currently in the virtual space, and increase a capacity of the virtual space when the number of allowable avatars is currently in the virtual space.
- FIG. 2 shows a diagram of virtual environment for automatically increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention.
- the virtual environment/world 200 there may exist an environment containing buildings, stores, trees, cars, people (represented by avatars) and any other items that currently exist in the real world.
- a virtual world may contain virtual businesses, stores, venues, or other virtual spaces 201 , 202 , 203 that allow an avatar 204 access to a virtual space.
- a user may desire to control an avatar 204 to access a virtual space in a virtual world such as, for example, “Electronix Town” 201 to shop for electronics, “Haggar Menswear” 202 to shop for clothing, “Ferdes Amphitheatre” 203 to attend a music or cultural event, etc.
- the avatar may also desire access to any other types of virtual spaces such as, for example, any type of store, business, arena, building, land area, room, etc.
- it may be determined if an allowable number of avatars are currently in the virtual space, and a capacity of the virtual space may be increased when the allowable number of avatars are currently already in the virtual space.
- an avatar 204 desires to enter the virtual space “Electronix Town” 201 to shop for electronics, if it is determined that the “Electronix Town” store 201 already has an allowable number of avatars in the store, a capacity of the “Electronix Town” 201 store may be increased, this allowing the avatar 204 to access the store.
- the capacity of the virtual space may be increased by spawning a replicate new “Electronix Town” virtual space, or by expanding a size of the “Electronix Town” 201 virtual space.
- FIG. 3 shows a diagram of increasing a capacity of a virtual space by spawning a replicate new virtual space according to an example embodiment of the present invention.
- the diagram shows a virtual space 301 that has a number of avatars 302 in the virtual space 301 .
- twenty avatars are shown in the virtual space 301 , however, embodiments according to the present invention are not limited to any specific number of avatars being in a virtual space.
- the number of avatars in the virtual space is at an allowable number of avatars where it may be desired that no more avatars be allowed into the virtual space 301 .
- a new avatar 303 i.e., twenty-first avatar
- the capacity of the virtual space 301 may be automatically increased by spawning a replicate new virtual space 304 . Therefore, the new avatar 303 (i.e, twenty-first avatar) may then access and enter the newly spawned replicate virtual space 304 .
- the replicate virtual space 304 may be identical and provide the same resources, services, etc. as the original virtual space 301 . Should some avatars 302 leave the original virtual space 301 and other new avatars desire entry to the virtual space 301 , they may be given access to the original virtual space 301 or to the newly spawned replicate virtual space 304 .
- the newly spawned replicate virtual space 304 may reside on a same server as that hosting the original virtual space 301 or on a different server.
- FIG. 4 shows a diagram of increasing a capacity of a virtual space by expanding a size of the virtual space according to an example embodiment of the present invention.
- the diagram shows a virtual space 401 that has a number of avatars 402 in the virtual space 401 .
- twenty avatars are shown in the virtual space 401 , however, embodiments according to the present invention are not limited to any specific number of avatars being in a virtual space.
- the number of avatars in the virtual space is at an allowable number of avatars where it may be desired that no more avatars be allowed into the virtual space 401 .
- a capacity of the virtual space 401 may be increased by a expanding a physical size of the virtual space 401 as shown in the expanded virtual space 404 with increased physical space.
- the new avatar 403 may then be allowed to enter the expanded virtual space 404 with increased physical space along with the avatars 402 in the original virtual space 401 .
- FIG. 5 shows a flowchart of a process for increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention.
- a new avatar attempts to enter a virtual space.
- it may be determined if an allowable number of avatars currently exist in the virtual space and if not, in block 503 a new avatar desiring entry into the virtual space may be allowed entry into the virtual space. If it is determined that the allowable number of avatars currently exist in the virtual space, then in block 504 , a capacity of the virtual space may be increased.
- the new avatar desiring entry into the virtual space may be allowed to enter the increased capacity virtual space.
- FIG. 6 shows a flowchart of increasing a capacity of a virtual space by spawning a replicate new virtual space according to an example embodiment of the present invention.
- a new avatar may attempt to enter a virtual space.
- it may be determined if an allowable number of avatars already currently exist in the virtual space and if not, in block 603 the new avatar may be allowed to enter the virtual space. If it is determined that an allowable number of avatars currently exist in the virtual space, in block 604 , a replicate new virtual space may be automatically spawned from the original virtual space. Then in block 605 , the new avatar may be allowed entry into the replicate new virtual space.
- FIG. 7 shows a flowchart of a process for increasing a capacity of a virtual space by expanding a physical size of the virtual space according to an example embodiment of the present invention.
- a new avatar may desire entry into a virtual space.
- it may be determined if an allowable number of avatars already currently exist in the virtual space and if not, in block 703 , the new avatar may be allowed to enter the virtual space. If it is determined that an allowable number of avatars already currently exist in the virtual space, in block 704 , a physical size of the virtual space may be automatically expanded. Then in block 705 , the new avatar may be allowed to enter the expanded virtual space.
- FIG. 8 shows a flowchart of a process for defining virtual space settings according to an example embodiment of the present invention.
- the process 800 in block 801 , it may be desired to define settings for a virtual space.
- it may be determined if it is desired to set a maximum allowable avatar capacity value for the virtual space and if not, the process ends. If it is desired to set a maximum allowable avatar capacity for the virtual space, in block 803 , a value for a maximum number of avatars allowed to enter the virtual space may be set.
- block 804 it may be determined if it is desired to set a limit on a number of spawned replicate new virtual spaces and if not, the process ends. If it is desired to set a limit on a number of spawned replicate new virtual spaces, in block 805 , a maximum number of allowable replicates of the virtual space may be set. In block 806 it may be determined if an ideal allowable capacity of avatars in a virtual space is desired to be set and if not, the process ends. If an ideal allowable capacity of avatars in a virtual space is desired to be set, in block 807 , a value for a number of avatars ideal for the virtual space may be set.
- a maximum expansion size for the virtual space may be set.
- FIG. 9 shows a flowchart of a process for setting an avatar capacity limit for automatic increase in capacity according to an example embodiment of the present invention.
- it may be desired to set an avatar capacity limit that initiates an automatic increase in capacity for the virtual space.
- it may be determined if an ideal avatar capacity limit is desired to be set and if so, in block 903 , an automatic increase in the capacity of the virtual space may occur when the number of avatars desiring access to the virtual space exceeds an ideal capacity.
- block 904 it may be determined if it is desired to set a maximum avatar capacity limit and if not the process ends. If it is desired to set a maximum avatar capacity, then in block 905 , a capacity of the virtual space may be automatically increased when a number of avatars desiring access to the virtual space exceed a maximum capacity of the virtual space.
- each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s).
- the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Human Computer Interaction (AREA)
- Information Transfer Between Computers (AREA)
- Processing Or Creating Images (AREA)
Abstract
Description
- The present invention is related to virtual space in a virtual world, and more specifically to automatic increasing of capacity of a virtual space in a virtual world.
- Virtual reality (VR) worlds bring the best of online and real-world brick and mortar to many scenarios, for example shopping. In the brick and mortar worlds, shopping has both a social and a visually immersive experience. Two dimensional (2D) shopping web sites are convenient (e.g., they do not require traveling to a physical location) and scalable to 1,000s of users by a hosting server. However, they lack that social and visual experience of brick and mortar. Today three dimensional (3D) web sites combine the convenience of online shopping with the social and the visual benefits of brick and mortar. However, they suffer from the scalability issue of brick and mortar.
- Current virtual worlds, (e.g., Second Life), differ from traditional 2D web sites in many ways. One way is that if you are looking at a page on the Circuit City® web site, you don't know if you are the only one looking at that page or if there are thousands or perhaps tens of thousands of other users looking at that page at the same time. In virtual worlds, to see something you must be in a particular location to view it. When there are too many avatars in a particular location at the same time, it creates congestion not just for the user who has to attempt to move around all the other avatars, but also for the server that is running that particular virtual space in the virtual world. Therefore, if someone is running a store in a virtual world, they may only want to allow a certain number of avatars in at a time to facilitate a good shopping and user experience as well as control the load on the server running that store. However, a problem exists in that if the store is full, the next avatar desiring access to the store has to be turned away. Currently, one solution to this problem is that when a virtual world store effectively closes, the avatar is put on a waiting list to enter. This is unacceptable to users who will not want to be denied.
- According to one aspect of the present invention, a method for automatically increasing a capacity of a virtual space in a virtual world that includes detecting an attempt by an avatar to enter a virtual space in a virtual world, determining if an allowable number of avatars are currently in the virtual space, and increasing a capacity of the virtual space when the allowable number of avatars are currently in the virtual space.
- According to another aspect of the present invention, a method for automatically increasing a capacity of a virtual space in a virtual world that includes determining if an allowable number of avatars are currently in the virtual space, and increasing a capacity of the virtual space when the allowable number of avatars are currently in the virtual space.
- According to a further aspect of the present invention, a system for automatically increasing a capacity of a virtual space in a virtual world includes a server, one or more workstations, and a network interconnecting the server and one or more workstations, wherein the server hosts a virtual world allowing a user at the one or more workstations to control an avatar in the virtual world to access a virtual space, the server detecting an attempt by an avatar to enter the virtual space in the virtual world, determining if an allowable number of avatars are currently in the virtual space, and increasing a capacity of the virtual space when the allowable number of avatars are currently in the virtual space.
- According to a still further aspect of the present invention, a computer program product comprising a computer useable medium having computer useable program code embodied therewith, the computer useable program code comprising computer useable program code configured to detect an attempt by an avatar to enter a virtual space in a virtual world, computer useable program code configured to determine if an allowable number of avatars are currently in the virtual space, and computer useable program code configured to increase a capacity of the virtual space when the allowable number of avatars are currently in the virtual space.
- The present invention is further described in the detailed description which follows in reference to the noted plurality of drawings by way of non-limiting examples of embodiments of the present invention in which like reference numerals represent similar parts throughout the several views of the drawings and wherein:
-
FIG. 1 is a diagram of system for automatically increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention; -
FIG. 2 is a diagram of virtual environment for automatically increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention; -
FIG. 3 is a diagram of increasing a capacity of a virtual space by spawning a replicate new virtual space according to an example embodiment of the present invention; -
FIG. 4 is a diagram of increasing a capacity of a virtual space by expanding a size of the virtual space according to an example embodiment of the present invention; -
FIG. 5 is a flowchart of a process for increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention; -
FIG. 6 is a flowchart of increasing a capacity of a virtual space by spawning a replicate new virtual space according to an example embodiment of the present invention; -
FIG. 7 is a flowchart of a process for increasing a capacity of a virtual space by expanding a physical size of the virtual space according to an example embodiment of the present invention; -
FIG. 8 is a flowchart of a process for defining virtual space settings according to an example embodiment of the present invention; and -
FIG. 9 is a flowchart of a process for setting an avatar capacity limit for automatic increase in capacity according to an example embodiment of the present invention. - As will be appreciated by one of skill in the art, the present invention may be embodied as a method, system, computer program product, or a combination of the foregoing. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may generally be referred to herein as a “system.” Furthermore, the present invention may take the form of a computer program product on a computer-usable storage medium having computer-usable program code embodied in the medium.
- Any suitable computer usable or computer readable medium may be utilized. The computer usable or computer readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific examples (a non-exhaustive list) of the computer readable medium would include the following: an electrical connection having one or more wires; a tangible medium such as a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a compact disc read-only memory (CD-ROM), or other tangible optical or magnetic storage device; or transmission media such as those supporting the Internet or an intranet. Note that the computer usable or computer readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner, if necessary, and then stored in a computer memory.
- In the context of this document, a computer usable or computer readable medium may be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, platform, apparatus, or device. The computer usable medium may include a propagated data signal with the computer-usable program code embodied therewith, either in baseband or as part of a carrier wave. The computer usable program code may be transmitted using any appropriate medium, including but not limited to the Internet, wireline, optical fiber cable, radio frequency (RF) or other means.
- Computer program code for carrying out operations of the present invention may be written in an object oriented, scripted or unscripted programming language such as Java, Perl, Smalltalk, C++ or the like. However, the computer program code for carrying out operations of the present invention may also be written in conventional procedural programming languages, such as the “C” programming language or similar programming languages.
- The present invention is described below with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
- These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture including instruction means which implement the function/act specified in the flowchart and/or block diagram block or blocks.
- The computer program instructions may also be loaded onto a computer or other programmable data processing apparatus to cause a series of operations to be performed on the computer or other programmable apparatus to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide steps for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks. Alternatively, computer program implemented steps or acts may be combined with operator or human implemented steps or acts in order to carry out an embodiment of the invention.
- Embodiments according to the present invention relate to automatically increasing a capacity of a virtual space in a virtual world allowing avatars to enter that would otherwise be put on hold until space is available or denied entry and turned away. A virtual space may be any type or form of virtual space in a virtual world, such as, for example, a store, a business, an arena, a building, a land area, an open space, a room, etc. When an avatar attempts to enter a virtual space in a virtual world, it is determined if an allowable number of avatars are currently in the virtual space and if so, a capacity of the virtual space may be automatically increased. Thus the avatar desiring entry is not turned away or denied.
- Owners or managers of a virtual space in a virtual world may set a threshold for the number of avatars that are allowed in the virtual space at any given time to limit overcrowding. A threshold number of allowed avatars may be related to a number for an ideal avatar capacity for the virtual space or may be related to a number for a maximum avatar capacity for the virtual space. The threshold number of avatars may be set based on any one of a variety of factors such as, for example, how large the area is (e.g., the larger the area the more avatars it can hold at one time and still have a positive user experience), how large the server capacity is that is hosting the virtual space in the virtual world, etc. Even if more avatars can fit into the “physical” size of a virtual space area, it may be desired to limit the number of avatars in a virtual space on a given server. For example, if a threshold limit of allowable avatars is set to twenty, when a twenty-first avatar attempts to enter the virtual space, embodiments according to the present invention dynamically increase a capacity of the virtual space in the virtual world.
- The virtual space may be automatically increased by dynamically spawning a replicate virtual space or by expanding the physical size of the area of the virtual space. If a replicate virtual space is spawned, this may occur on another partition on the same server hosting the original virtual space or on a different server. Once the new avatar enters a spawned replicate virtual space, initially, the avatar may be alone in the new virtual space while the original virtual space may still be at capacity or at the desired threshold of allowable avatars. Thus, embodiments according to the present invention allow an owner or manager of a virtual space to provide access to avatars without having to turn an avatar away or allow an unlimited number of avatars into the virtual space and have the avatars, or users controlling the avatars, frustrated by a less than desirable experience due to overcrowding in the virtual space.
- According to embodiments of the present invention, a manager or owner of a virtual space may define various settings for the virtual space related to avatar access and/or increasing a capacity of the virtual space. A virtual space may have associated settings such as, for example, a maximum avatar capacity for the virtual space, an ideal avatar capacity for the virtual space, a limit on a number of replicate new virtual spaces that may be spawned from the virtual space, a limit on an expansion of a physical size of the virtual space, etc. The capacity for the virtual space may be automatically increased based on an ideal avatar capacity for the virtual space being reached or a maximum avatar capacity for the virtual space being reached, or any other type criteria or setting.
-
FIG. 1 shows a diagram of system for automatically increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention. Thesystem 100 may include aserver 101 and one ormore workstations 102 where theserver 101 and the one ormore workstations 102 may be interconnected to anetwork 103. Although oneserver 101 is shown, there may be multiple servers connected to thenetwork 103 and accessible by the one ormore workstations 102. Theserver 101 may host thevirtual environment 105 and also contain acontroller 104 andstorage 106. Therefore, a user at aworkstation 102 may access thevirtual environment 105 hosted on theserver 101 and control an avatar in thevirtual environment 105 to access a virtual space. An owner or supplier of the service, the item, the event or the virtual space may also access the virtual world orenvironment 105, hosted on theserver 101, via one ormore workstations 102 and control an avatar to provide or restrict access to the virtual space. Theserver 101 may detect an attempt by an avatar to enter a virtual space in the virtual world, determine if an allowable number of avatars are currently in the virtual space, and increase a capacity of the virtual space when the number of allowable avatars is currently in the virtual space. -
FIG. 2 shows a diagram of virtual environment for automatically increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention. In the virtual environment/world 200 there may exist an environment containing buildings, stores, trees, cars, people (represented by avatars) and any other items that currently exist in the real world. For example, a virtual world may contain virtual businesses, stores, venues, or othervirtual spaces avatar 204 access to a virtual space. - In this example embodiment, a user may desire to control an
avatar 204 to access a virtual space in a virtual world such as, for example, “Electronix Town” 201 to shop for electronics, “Haggar Menswear” 202 to shop for clothing, “Ferdes Amphitheatre” 203 to attend a music or cultural event, etc. The avatar may also desire access to any other types of virtual spaces such as, for example, any type of store, business, arena, building, land area, room, etc. As noted previously, once an attempt by an avatar to enter a virtual space in the virtual world is detected, it may be determined if an allowable number of avatars are currently in the virtual space, and a capacity of the virtual space may be increased when the allowable number of avatars are currently already in the virtual space. For example, if anavatar 204 desires to enter the virtual space “Electronix Town” 201 to shop for electronics, if it is determined that the “Electronix Town”store 201 already has an allowable number of avatars in the store, a capacity of the “Electronix Town” 201 store may be increased, this allowing theavatar 204 to access the store. The capacity of the virtual space may be increased by spawning a replicate new “Electronix Town” virtual space, or by expanding a size of the “Electronix Town” 201 virtual space. -
FIG. 3 shows a diagram of increasing a capacity of a virtual space by spawning a replicate new virtual space according to an example embodiment of the present invention. The diagram shows avirtual space 301 that has a number ofavatars 302 in thevirtual space 301. In this example embodiment, twenty avatars are shown in thevirtual space 301, however, embodiments according to the present invention are not limited to any specific number of avatars being in a virtual space. In this example embodiment, the number of avatars in the virtual space is at an allowable number of avatars where it may be desired that no more avatars be allowed into thevirtual space 301. When a new avatar 303 (i.e., twenty-first avatar) desires access to thevirtual space 301, the capacity of thevirtual space 301 may be automatically increased by spawning a replicate newvirtual space 304. Therefore, the new avatar 303 (i.e, twenty-first avatar) may then access and enter the newly spawned replicatevirtual space 304. The replicatevirtual space 304 may be identical and provide the same resources, services, etc. as the originalvirtual space 301. Should someavatars 302 leave the originalvirtual space 301 and other new avatars desire entry to thevirtual space 301, they may be given access to the originalvirtual space 301 or to the newly spawned replicatevirtual space 304. The newly spawned replicatevirtual space 304 may reside on a same server as that hosting the originalvirtual space 301 or on a different server. -
FIG. 4 shows a diagram of increasing a capacity of a virtual space by expanding a size of the virtual space according to an example embodiment of the present invention. The diagram shows avirtual space 401 that has a number ofavatars 402 in thevirtual space 401. In this example embodiment, twenty avatars are shown in thevirtual space 401, however, embodiments according to the present invention are not limited to any specific number of avatars being in a virtual space. In this example embodiment, the number of avatars in the virtual space is at an allowable number of avatars where it may be desired that no more avatars be allowed into thevirtual space 401. When a new avatar 403 desires access to thevirtual space 401, since thevirtual space 401 currently has an allowable number of avatars in thevirtual space 401, a capacity of thevirtual space 401 may be increased by a expanding a physical size of thevirtual space 401 as shown in the expandedvirtual space 404 with increased physical space. The new avatar 403 may then be allowed to enter the expandedvirtual space 404 with increased physical space along with theavatars 402 in the originalvirtual space 401. -
FIG. 5 shows a flowchart of a process for increasing a capacity of a virtual space in a virtual world according to an example embodiment of the present invention. In theprocess 500, in block 501 a new avatar attempts to enter a virtual space. Inblock 502, it may be determined if an allowable number of avatars currently exist in the virtual space and if not, in block 503 a new avatar desiring entry into the virtual space may be allowed entry into the virtual space. If it is determined that the allowable number of avatars currently exist in the virtual space, then inblock 504, a capacity of the virtual space may be increased. Inblock 505, the new avatar desiring entry into the virtual space may be allowed to enter the increased capacity virtual space. -
FIG. 6 shows a flowchart of increasing a capacity of a virtual space by spawning a replicate new virtual space according to an example embodiment of the present invention. In theprocess 600, inblock 601, a new avatar may attempt to enter a virtual space. Inblock 602 it may be determined if an allowable number of avatars already currently exist in the virtual space and if not, inblock 603 the new avatar may be allowed to enter the virtual space. If it is determined that an allowable number of avatars currently exist in the virtual space, inblock 604, a replicate new virtual space may be automatically spawned from the original virtual space. Then inblock 605, the new avatar may be allowed entry into the replicate new virtual space. -
FIG. 7 shows a flowchart of a process for increasing a capacity of a virtual space by expanding a physical size of the virtual space according to an example embodiment of the present invention. In theprocess 700, inblock 701, a new avatar may desire entry into a virtual space. Inblock 702, it may be determined if an allowable number of avatars already currently exist in the virtual space and if not, inblock 703, the new avatar may be allowed to enter the virtual space. If it is determined that an allowable number of avatars already currently exist in the virtual space, in block 704, a physical size of the virtual space may be automatically expanded. Then inblock 705, the new avatar may be allowed to enter the expanded virtual space. -
FIG. 8 shows a flowchart of a process for defining virtual space settings according to an example embodiment of the present invention. In theprocess 800, inblock 801, it may be desired to define settings for a virtual space. Inblock 802 it may be determined if it is desired to set a maximum allowable avatar capacity value for the virtual space and if not, the process ends. If it is desired to set a maximum allowable avatar capacity for the virtual space, inblock 803, a value for a maximum number of avatars allowed to enter the virtual space may be set. - In
block 804 it may be determined if it is desired to set a limit on a number of spawned replicate new virtual spaces and if not, the process ends. If it is desired to set a limit on a number of spawned replicate new virtual spaces, inblock 805, a maximum number of allowable replicates of the virtual space may be set. Inblock 806 it may be determined if an ideal allowable capacity of avatars in a virtual space is desired to be set and if not, the process ends. If an ideal allowable capacity of avatars in a virtual space is desired to be set, inblock 807, a value for a number of avatars ideal for the virtual space may be set. Inblock 808, it may be determined if it is desired to set a limit on a physical size expansion of the virtual space and if not, the process ends. If it is desired to set a limit on an expansion of the physical size of the virtual space, then in block 809 a maximum expansion size for the virtual space may be set. -
FIG. 9 shows a flowchart of a process for setting an avatar capacity limit for automatic increase in capacity according to an example embodiment of the present invention. In theprocess 900, inblock 901, it may be desired to set an avatar capacity limit that initiates an automatic increase in capacity for the virtual space. Inblock 902, it may be determined if an ideal avatar capacity limit is desired to be set and if so, in block 903, an automatic increase in the capacity of the virtual space may occur when the number of avatars desiring access to the virtual space exceeds an ideal capacity. If it is not desired to set an ideal avatar capacity, inblock 904 it may be determined if it is desired to set a maximum avatar capacity limit and if not the process ends. If it is desired to set a maximum avatar capacity, then inblock 905, a capacity of the virtual space may be automatically increased when a number of avatars desiring access to the virtual space exceed a maximum capacity of the virtual space. - The flowcharts and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems which perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
- The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
- Although specific embodiments have been illustrated and described herein, those of ordinary skill in the art appreciate that any arrangement which is calculated to achieve the same purpose may be substituted for the specific embodiments shown and that the invention has other applications in other environments. This application is intended to cover any adaptations or variations of the present invention. The following claims are in no way intended to limit the scope of the invention to the specific embodiments described herein.
Claims (20)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/947,829 US8127235B2 (en) | 2007-11-30 | 2007-11-30 | Automatic increasing of capacity of a virtual space in a virtual world |
US13/341,255 US9152914B2 (en) | 2007-11-30 | 2011-12-30 | Automatic increasing of capacity of a virtual space in a virtual world |
US14/875,270 US10284454B2 (en) | 2007-11-30 | 2015-10-05 | Automatic increasing of capacity of a virtual space in a virtual world |
US16/356,709 US11972086B2 (en) | 2007-11-30 | 2019-03-18 | Automatic increasing of capacity of a virtual space in a virtual world |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/947,829 US8127235B2 (en) | 2007-11-30 | 2007-11-30 | Automatic increasing of capacity of a virtual space in a virtual world |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/341,255 Continuation US9152914B2 (en) | 2007-11-30 | 2011-12-30 | Automatic increasing of capacity of a virtual space in a virtual world |
Publications (2)
Publication Number | Publication Date |
---|---|
US20090144638A1 true US20090144638A1 (en) | 2009-06-04 |
US8127235B2 US8127235B2 (en) | 2012-02-28 |
Family
ID=40677037
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/947,829 Active 2029-11-03 US8127235B2 (en) | 2007-11-30 | 2007-11-30 | Automatic increasing of capacity of a virtual space in a virtual world |
US13/341,255 Active 2029-07-31 US9152914B2 (en) | 2007-11-30 | 2011-12-30 | Automatic increasing of capacity of a virtual space in a virtual world |
US14/875,270 Active 2029-09-19 US10284454B2 (en) | 2007-11-30 | 2015-10-05 | Automatic increasing of capacity of a virtual space in a virtual world |
US16/356,709 Active 2028-11-04 US11972086B2 (en) | 2007-11-30 | 2019-03-18 | Automatic increasing of capacity of a virtual space in a virtual world |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/341,255 Active 2029-07-31 US9152914B2 (en) | 2007-11-30 | 2011-12-30 | Automatic increasing of capacity of a virtual space in a virtual world |
US14/875,270 Active 2029-09-19 US10284454B2 (en) | 2007-11-30 | 2015-10-05 | Automatic increasing of capacity of a virtual space in a virtual world |
US16/356,709 Active 2028-11-04 US11972086B2 (en) | 2007-11-30 | 2019-03-18 | Automatic increasing of capacity of a virtual space in a virtual world |
Country Status (1)
Country | Link |
---|---|
US (4) | US8127235B2 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090267938A1 (en) * | 2008-04-25 | 2009-10-29 | Nicol Ii Wiliam B | Three-dimensional (3d) virtual world wormholes |
US20100169799A1 (en) * | 2008-12-30 | 2010-07-01 | Nortel Networks Limited | Method and Apparatus for Enabling Presentations to Large Numbers of Users in a Virtual Environment |
US20100180214A1 (en) * | 2009-01-14 | 2010-07-15 | International Business Machines Corporation | Predatory Behavior Detection and Alert in Virtual Worlds Based on Spatial and Temporal Criteria |
US20100227682A1 (en) * | 2009-03-04 | 2010-09-09 | Microsoft Corporation | Awarding of avatar items in video game environment |
US20110055734A1 (en) * | 2009-08-31 | 2011-03-03 | Ganz | System and method for limiting the number of characters displayed in a common area |
US20110165939A1 (en) * | 2010-01-05 | 2011-07-07 | Ganz | Method and system for providing a 3d activity in a virtual presentation |
US20120026177A1 (en) * | 2010-08-02 | 2012-02-02 | International Business Machines Corporation | Resizing objects in regions of virtual universes |
US8458209B2 (en) | 2010-08-24 | 2013-06-04 | International Business Machines Corporation | Virtual world query response system |
US8719730B2 (en) | 2010-04-23 | 2014-05-06 | Ganz | Radial user interface and system for a virtual world game |
US20140129342A1 (en) * | 2012-11-06 | 2014-05-08 | Apple Inc. | Dynamically adjusting invitational content placement opportunities in interactive environments |
EP2745892A1 (en) * | 2012-12-21 | 2014-06-25 | Dassault Systèmes | Partition of a 3D scene into a plurality of zones processed by a computing resource |
US8790183B2 (en) | 2011-02-15 | 2014-07-29 | Ganz | Arcade in a virtual world with reward |
US9022868B2 (en) | 2011-02-10 | 2015-05-05 | Ganz | Method and system for creating a virtual world where user-controlled characters interact with non-player characters |
CN104769539A (en) * | 2012-08-28 | 2015-07-08 | Glowbl公司 | Graphical user interface, method, computer program and corresponding storage medium |
US20150220452A1 (en) * | 2014-01-31 | 2015-08-06 | Lsi Corporation | System, Method and Computer-Readable Medium for Dynamically Mapping a Non-Volatile Memory Store |
US9378296B2 (en) | 2010-08-24 | 2016-06-28 | International Business Machines Corporation | Virtual world construction |
US11536796B2 (en) * | 2018-05-29 | 2022-12-27 | Tencent Technology (Shenzhen) Company Limited | Sound source determining method and apparatus, and storage medium |
Families Citing this family (72)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9329743B2 (en) | 2006-10-04 | 2016-05-03 | Brian Mark Shuster | Computer simulation method with user-defined transportation and layout |
US8127235B2 (en) | 2007-11-30 | 2012-02-28 | International Business Machines Corporation | Automatic increasing of capacity of a virtual space in a virtual world |
US20090164919A1 (en) | 2007-12-24 | 2009-06-25 | Cary Lee Bates | Generating data for managing encounters in a virtual world environment |
JP5159375B2 (en) | 2008-03-07 | 2013-03-06 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Object authenticity determination system and method in metaverse, and computer program thereof |
US9015322B2 (en) * | 2008-12-30 | 2015-04-21 | Avaya Inc. | Access to resources in a virtual environment |
US9205328B2 (en) | 2010-02-18 | 2015-12-08 | Activision Publishing, Inc. | Videogame system and method that enables characters to earn virtual fans by completing secondary objectives |
US9682324B2 (en) | 2010-05-12 | 2017-06-20 | Activision Publishing, Inc. | System and method for enabling players to participate in asynchronous, competitive challenges |
US9310955B2 (en) | 2012-04-11 | 2016-04-12 | Myriata, Inc. | System and method for generating a virtual tour within a virtual environment |
US9563902B2 (en) | 2012-04-11 | 2017-02-07 | Myriata, Inc. | System and method for transporting a virtual avatar within multiple virtual environments |
US20130271457A1 (en) * | 2012-04-11 | 2013-10-17 | Myriata, Inc. | System and method for displaying an object within a virtual environment |
US9047690B2 (en) | 2012-04-11 | 2015-06-02 | Myriata, Inc. | System and method for facilitating creation of a rich virtual environment |
US9229759B2 (en) * | 2012-10-17 | 2016-01-05 | Microsoft Technology Licensing, Llc | Virtual machine provisioning using replicated containers |
US20140125698A1 (en) * | 2012-11-05 | 2014-05-08 | Stephen Latta | Mixed-reality arena |
US10137376B2 (en) | 2012-12-31 | 2018-11-27 | Activision Publishing, Inc. | System and method for creating and streaming augmented game sessions |
US10376792B2 (en) | 2014-07-03 | 2019-08-13 | Activision Publishing, Inc. | Group composition matchmaking system and method for multiplayer video games |
US11351466B2 (en) | 2014-12-05 | 2022-06-07 | Activision Publishing, Ing. | System and method for customizing a replay of one or more game events in a video game |
US10118099B2 (en) | 2014-12-16 | 2018-11-06 | Activision Publishing, Inc. | System and method for transparently styling non-player characters in a multiplayer video game |
US10286314B2 (en) | 2015-05-14 | 2019-05-14 | Activision Publishing, Inc. | System and method for providing continuous gameplay in a multiplayer video game through an unbounded gameplay session |
US10486068B2 (en) | 2015-05-14 | 2019-11-26 | Activision Publishing, Inc. | System and method for providing dynamically variable maps in a video game |
US10315113B2 (en) | 2015-05-14 | 2019-06-11 | Activision Publishing, Inc. | System and method for simulating gameplay of nonplayer characters distributed across networked end user devices |
US10410413B2 (en) * | 2015-05-29 | 2019-09-10 | Hover Inc. | Image capture for a multi-dimensional building model |
US10213682B2 (en) | 2015-06-15 | 2019-02-26 | Activision Publishing, Inc. | System and method for uniquely identifying physical trading cards and incorporating trading card game items in a video game |
US10471348B2 (en) | 2015-07-24 | 2019-11-12 | Activision Publishing, Inc. | System and method for creating and sharing customized video game weapon configurations in multiplayer video games via one or more social networks |
US11185784B2 (en) | 2015-10-08 | 2021-11-30 | Activision Publishing, Inc. | System and method for generating personalized messaging campaigns for video game players |
US10099140B2 (en) | 2015-10-08 | 2018-10-16 | Activision Publishing, Inc. | System and method for generating personalized messaging campaigns for video game players |
US10232272B2 (en) | 2015-10-21 | 2019-03-19 | Activision Publishing, Inc. | System and method for replaying video game streams |
US10245509B2 (en) | 2015-10-21 | 2019-04-02 | Activision Publishing, Inc. | System and method of inferring user interest in different aspects of video game streams |
US10376781B2 (en) | 2015-10-21 | 2019-08-13 | Activision Publishing, Inc. | System and method of generating and distributing video game streams |
US10694352B2 (en) | 2015-10-28 | 2020-06-23 | Activision Publishing, Inc. | System and method of using physical objects to control software access |
US10226703B2 (en) | 2016-04-01 | 2019-03-12 | Activision Publishing, Inc. | System and method of generating and providing interactive annotation items based on triggering events in a video game |
US10226701B2 (en) | 2016-04-29 | 2019-03-12 | Activision Publishing, Inc. | System and method for identifying spawn locations in a video game |
US10179289B2 (en) | 2016-06-21 | 2019-01-15 | Activision Publishing, Inc. | System and method for reading graphically-encoded identifiers from physical trading cards through image-based template matching |
US10573065B2 (en) | 2016-07-29 | 2020-02-25 | Activision Publishing, Inc. | Systems and methods for automating the personalization of blendshape rigs based on performance capture data |
US10463964B2 (en) | 2016-11-17 | 2019-11-05 | Activision Publishing, Inc. | Systems and methods for the real-time generation of in-game, locally accessible heatmaps |
US10709981B2 (en) | 2016-11-17 | 2020-07-14 | Activision Publishing, Inc. | Systems and methods for the real-time generation of in-game, locally accessible barrier-aware heatmaps |
US10500498B2 (en) | 2016-11-29 | 2019-12-10 | Activision Publishing, Inc. | System and method for optimizing virtual games |
US10055880B2 (en) | 2016-12-06 | 2018-08-21 | Activision Publishing, Inc. | Methods and systems to modify a two dimensional facial image to increase dimensional depth and generate a facial image that appears three dimensional |
US10861079B2 (en) | 2017-02-23 | 2020-12-08 | Activision Publishing, Inc. | Flexible online pre-ordering system for media |
US10818060B2 (en) | 2017-09-05 | 2020-10-27 | Activision Publishing, Inc. | Systems and methods for guiding motion capture actors using a motion reference system |
US10561945B2 (en) | 2017-09-27 | 2020-02-18 | Activision Publishing, Inc. | Methods and systems for incentivizing team cooperation in multiplayer gaming environments |
US10974150B2 (en) | 2017-09-27 | 2021-04-13 | Activision Publishing, Inc. | Methods and systems for improved content customization in multiplayer gaming environments |
US11040286B2 (en) | 2017-09-27 | 2021-06-22 | Activision Publishing, Inc. | Methods and systems for improved content generation in multiplayer gaming environments |
US10537809B2 (en) | 2017-12-06 | 2020-01-21 | Activision Publishing, Inc. | System and method for validating video gaming data |
US10463971B2 (en) | 2017-12-06 | 2019-11-05 | Activision Publishing, Inc. | System and method for validating video gaming data |
US10981051B2 (en) | 2017-12-19 | 2021-04-20 | Activision Publishing, Inc. | Synchronized, fully programmable game controllers |
US10596471B2 (en) | 2017-12-22 | 2020-03-24 | Activision Publishing, Inc. | Systems and methods for enabling audience participation in multi-player video game play sessions |
US10864443B2 (en) | 2017-12-22 | 2020-12-15 | Activision Publishing, Inc. | Video game content aggregation, normalization, and publication systems and methods |
US11278813B2 (en) | 2017-12-22 | 2022-03-22 | Activision Publishing, Inc. | Systems and methods for enabling audience participation in bonus game play sessions |
US11192028B2 (en) | 2018-11-19 | 2021-12-07 | Activision Publishing, Inc. | Systems and methods for the real-time customization of video game content based on player data |
US11263670B2 (en) | 2018-11-19 | 2022-03-01 | Activision Publishing, Inc. | Systems and methods for dynamically modifying video game content based on non-video gaming content being concurrently experienced by a user |
US11115712B2 (en) | 2018-12-15 | 2021-09-07 | Activision Publishing, Inc. | Systems and methods for indexing, searching for, and retrieving digital media |
US11679330B2 (en) | 2018-12-18 | 2023-06-20 | Activision Publishing, Inc. | Systems and methods for generating improved non-player characters |
US11305191B2 (en) | 2018-12-20 | 2022-04-19 | Activision Publishing, Inc. | Systems and methods for controlling camera perspectives, movements, and displays of video game gameplay |
US11344808B2 (en) | 2019-06-28 | 2022-05-31 | Activision Publishing, Inc. | Systems and methods for dynamically generating and modulating music based on gaming events, player profiles and/or player reactions |
US11097193B2 (en) | 2019-09-11 | 2021-08-24 | Activision Publishing, Inc. | Methods and systems for increasing player engagement in multiplayer gaming environments |
US11423605B2 (en) | 2019-11-01 | 2022-08-23 | Activision Publishing, Inc. | Systems and methods for remastering a game space while maintaining the underlying game simulation |
US11712627B2 (en) | 2019-11-08 | 2023-08-01 | Activision Publishing, Inc. | System and method for providing conditional access to virtual gaming items |
US11537209B2 (en) | 2019-12-17 | 2022-12-27 | Activision Publishing, Inc. | Systems and methods for guiding actors using a motion capture reference system |
US11420122B2 (en) | 2019-12-23 | 2022-08-23 | Activision Publishing, Inc. | Systems and methods for controlling camera perspectives, movements, and displays of video game gameplay |
US11563774B2 (en) | 2019-12-27 | 2023-01-24 | Activision Publishing, Inc. | Systems and methods for tracking and identifying phishing website authors |
US20220040576A1 (en) * | 2020-08-07 | 2022-02-10 | MassVR, LLC | Systems and Methods for Dynamically Modifying the Scope of Virtual Reality Environments |
US11524234B2 (en) | 2020-08-18 | 2022-12-13 | Activision Publishing, Inc. | Multiplayer video games with virtual characters having dynamically modified fields of view |
US11351459B2 (en) | 2020-08-18 | 2022-06-07 | Activision Publishing, Inc. | Multiplayer video games with virtual characters having dynamically generated attribute profiles unconstrained by predefined discrete values |
US11833423B2 (en) | 2020-09-29 | 2023-12-05 | Activision Publishing, Inc. | Methods and systems for generating level of detail visual assets in a video game |
US11724188B2 (en) | 2020-09-29 | 2023-08-15 | Activision Publishing, Inc. | Methods and systems for selecting a level of detail visual asset during the execution of a video game |
US11717753B2 (en) | 2020-09-29 | 2023-08-08 | Activision Publishing, Inc. | Methods and systems for generating modified level of detail visual assets in a video game |
US11439904B2 (en) | 2020-11-11 | 2022-09-13 | Activision Publishing, Inc. | Systems and methods for imparting dynamic and realistic movement to player-controlled avatars in video games |
US12097430B2 (en) | 2020-12-28 | 2024-09-24 | Activision Publishing, Inc. | Methods and systems for generating and managing active objects in video games |
US12064688B2 (en) | 2020-12-30 | 2024-08-20 | Activision Publishing, Inc. | Methods and systems for determining decal projections intersecting spatial units in a frame of a game space |
US11794107B2 (en) | 2020-12-30 | 2023-10-24 | Activision Publishing, Inc. | Systems and methods for improved collision detection in video games |
US11853439B2 (en) | 2020-12-30 | 2023-12-26 | Activision Publishing, Inc. | Distributed data storage system providing enhanced security |
US11756248B2 (en) * | 2021-08-23 | 2023-09-12 | International Business Machines Corporation | Computer graphics object rendering based on priority |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020015003A1 (en) * | 2000-08-07 | 2002-02-07 | Masami Kato | Virtual space system structured by plural user terminals and server device |
US6772195B1 (en) * | 1999-10-29 | 2004-08-03 | Electronic Arts, Inc. | Chat clusters for a virtual world application |
US6985937B1 (en) * | 2000-05-11 | 2006-01-10 | Ensim Corporation | Dynamically modifying the resources of a virtual server |
US20080059972A1 (en) * | 2006-08-31 | 2008-03-06 | Bmc Software, Inc. | Automated Capacity Provisioning Method Using Historical Performance Data |
US7386799B1 (en) * | 2002-11-21 | 2008-06-10 | Forterra Systems, Inc. | Cinematic techniques in avatar-centric communication during a multi-user online simulation |
US20090077475A1 (en) * | 2007-09-17 | 2009-03-19 | Areae, Inc. | System for providing virtual spaces with separate places and/or acoustic areas |
US20090077158A1 (en) * | 2007-09-17 | 2009-03-19 | Areae, Inc. | System and method for embedding a view of a virtual space in a banner ad and enabling user interaction with the virtual space within the banner ad |
US7509369B1 (en) * | 2001-07-11 | 2009-03-24 | Swsoft Holdings, Ltd. | Balancing shared servers in virtual environments |
US20090089157A1 (en) * | 2007-09-27 | 2009-04-02 | Rajesh Narayanan | Method and apparatus for controlling an avatar's landing zone in a virtual environment |
US7587492B2 (en) * | 2005-07-29 | 2009-09-08 | Hewlett-Packard Development Company, L.P. | Dynamic performance management for virtual servers |
US7814154B1 (en) * | 2007-06-26 | 2010-10-12 | Qurio Holdings, Inc. | Message transformations in a distributed virtual world |
Family Cites Families (593)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3589917A (en) | 1967-08-15 | 1971-06-29 | Dow Corning | Concrete resistant to scaling and spalling |
US3621214A (en) | 1968-11-13 | 1971-11-16 | Gordon W Romney | Electronically generated perspective images |
BE793543A (en) | 1971-12-30 | 1973-04-16 | Ibm | MECHANISM POSITION CODING METHODS |
US3996672A (en) | 1975-03-12 | 1976-12-14 | The Singer Company | Real-time simulation of a point system as viewed by a moving observer |
JPS5559886A (en) | 1978-10-25 | 1980-05-06 | Agency Of Ind Science & Technol | Treating method for waste water containing iron-cyano complexes |
US4461301A (en) | 1981-10-15 | 1984-07-24 | Self Regulation Systems, Inc. | Self adjusting bio-feedback method and apparatus |
US4902469A (en) | 1986-05-05 | 1990-02-20 | Westinghouse Electric Corp. | Status tree monitoring and display system |
US4841292A (en) | 1986-08-11 | 1989-06-20 | Allied-Signal Inc. | Third dimension pop up generation from a two-dimensional transformed image display |
US5179656A (en) | 1987-03-02 | 1993-01-12 | International Business Machines Corporation | Three dimensional directional pointer icon |
US4930077A (en) | 1987-04-06 | 1990-05-29 | Fan David P | Information processing expert system for text analysis and predicting public opinion based information available to the public |
US4879849A (en) | 1987-11-04 | 1989-11-14 | Omni Films International, Inc. | Point-of-view motion simulator system |
US4970666A (en) | 1988-03-30 | 1990-11-13 | Land Development Laboratory, Inc. | Computerized video imaging system for creating a realistic depiction of a simulated object in an actual environment |
US5015188A (en) | 1988-05-03 | 1991-05-14 | The United States Of America As Represented By The Secretary Of The Air Force | Three dimensional tactical element situation (3DTES) display |
US4895376A (en) | 1988-06-17 | 1990-01-23 | Tigers Electronics, Inc. | Interactive video game |
US4908761A (en) | 1988-09-16 | 1990-03-13 | Innovare Resourceful Marketing Group, Inc. | System for identifying heavy product purchasers who regularly use manufacturers' purchase incentives and predicting consumer promotional behavior response patterns |
JP2762502B2 (en) | 1988-12-29 | 1998-06-04 | ダイキン工業株式会社 | Stereoscopic display method and apparatus |
US5031089A (en) | 1988-12-30 | 1991-07-09 | United States Of America As Represented By The Administrator, National Aeronautics And Space Administration | Dynamic resource allocation scheme for distributed heterogeneous computer systems |
US5371851A (en) | 1989-04-26 | 1994-12-06 | Credence Systems Corporation | Graphical data base editor |
EP0402074B1 (en) | 1989-06-05 | 1996-10-30 | Canon Kabushiki Kaisha | Output apparatus |
US5255352A (en) | 1989-08-03 | 1993-10-19 | Computer Design, Inc. | Mapping of two-dimensional surface detail on three-dimensional surfaces |
US5347628A (en) | 1990-01-18 | 1994-09-13 | International Business Machines Corporation | Method of graphically accessing electronic data |
JP3245655B2 (en) | 1990-03-05 | 2002-01-15 | インキサイト ソフトウェア インコーポレイテッド | Workspace display processing method |
US5130794A (en) | 1990-03-29 | 1992-07-14 | Ritchey Kurtis J | Panoramic display system |
CA2040273C (en) | 1990-04-13 | 1995-07-18 | Kazu Horiuchi | Image displaying system |
US5058180A (en) | 1990-04-30 | 1991-10-15 | National Semiconductor Corporation | Neural network apparatus and method for pattern recognition |
FR2662009B1 (en) | 1990-05-09 | 1996-03-08 | Apple Computer | MULTIPLE FACES MANOPULABLE ICON FOR DISPLAY ON COMPUTER. |
US5276785A (en) | 1990-08-02 | 1994-01-04 | Xerox Corporation | Moving viewpoint with respect to a target in a three-dimensional workspace |
US5333272A (en) | 1991-06-13 | 1994-07-26 | International Business Machines Corporation | Warning timer for users of interactive systems |
US5381158A (en) | 1991-07-12 | 1995-01-10 | Kabushiki Kaisha Toshiba | Information retrieval apparatus |
US5745711A (en) | 1991-10-23 | 1998-04-28 | Hitachi, Ltd. | Display control method and apparatus for an electronic conference |
IL99923A0 (en) | 1991-10-31 | 1992-08-18 | Ibm Israel | Method of operating a computer in a network |
US6418424B1 (en) | 1991-12-23 | 2002-07-09 | Steven M. Hoffberg | Ergonomic man-machine interface incorporating adaptive pattern recognition based control system |
US5502638A (en) | 1992-02-10 | 1996-03-26 | Honda Giken Kogyo Kabushiki Kaisha | System for obstacle avoidance path planning for multiple-degree-of-freedom mechanism |
US5442733A (en) | 1992-03-20 | 1995-08-15 | The Research Foundation Of State University Of New York | Method and apparatus for generating realistic images using a discrete representation |
US5761083A (en) | 1992-03-25 | 1998-06-02 | Brown, Jr.; Robert J. | Energy management and home automation system |
US5367614A (en) | 1992-04-01 | 1994-11-22 | Grumman Aerospace Corporation | Three-dimensional computer image variable perspective display system |
US5310349A (en) | 1992-04-30 | 1994-05-10 | Jostens Learning Corporation | Instructional management system |
JP3273443B2 (en) | 1992-05-22 | 2002-04-08 | 本田技研工業株式会社 | Trajectory generation method and apparatus for robot links and the like |
US5287437A (en) | 1992-06-02 | 1994-02-15 | Sun Microsystems, Inc. | Method and apparatus for head tracked display of precomputed stereo images |
US5594859A (en) | 1992-06-03 | 1997-01-14 | Digital Equipment Corporation | Graphical user interface for video teleconferencing |
JPH07325934A (en) | 1992-07-10 | 1995-12-12 | Walt Disney Co:The | Method and equipment for provision of graphics enhanced to virtual world |
US5381526A (en) | 1992-09-11 | 1995-01-10 | Eastman Kodak Company | Method and apparatus for storing and retrieving generalized image data |
US5675746A (en) | 1992-09-30 | 1997-10-07 | Marshall; Paul S. | Virtual reality generator for use with financial information |
US5432895A (en) | 1992-10-01 | 1995-07-11 | University Corporation For Atmospheric Research | Virtual reality imaging system |
JP2807608B2 (en) | 1992-12-29 | 1998-10-08 | 株式会社ナムコ | Sorting processing apparatus, image synthesizing apparatus using the same, and sorting processing method |
US5633993A (en) | 1993-02-10 | 1997-05-27 | The Walt Disney Company | Method and apparatus for providing a virtual world sound system |
US5555354A (en) | 1993-03-23 | 1996-09-10 | Silicon Graphics Inc. | Method and apparatus for navigation within three-dimensional information landscape |
CA2159001A1 (en) | 1993-03-26 | 1994-10-13 | David Alan Spurgeon Brown | Generic managed object model for lan domain |
US5561736A (en) | 1993-06-04 | 1996-10-01 | International Business Machines Corporation | Three dimensional speech synthesis |
US5442569A (en) | 1993-06-23 | 1995-08-15 | Oceanautes Inc. | Method and apparatus for system characterization and analysis using finite element methods |
US5613048A (en) | 1993-08-03 | 1997-03-18 | Apple Computer, Inc. | Three-dimensional image synthesis using view interpolation |
JPH0759945A (en) | 1993-08-23 | 1995-03-07 | Sega Enterp Ltd | Electronic game device having dome screen |
US5689641A (en) | 1993-10-01 | 1997-11-18 | Vicor, Inc. | Multimedia collaboration system arrangement for routing compressed AV signal through a participant site without decompressing the AV signal |
US5498003A (en) | 1993-10-07 | 1996-03-12 | Gechter; Jerry | Interactive electronic games and screen savers with multiple characters |
US5630129A (en) | 1993-12-01 | 1997-05-13 | Sandia Corporation | Dynamic load balancing of applications |
WO1995017711A1 (en) | 1993-12-23 | 1995-06-29 | Diacom Technologies, Inc. | Method and apparatus for implementing user feedback |
US5577981A (en) | 1994-01-19 | 1996-11-26 | Jarvik; Robert | Virtual reality exercise machine and computer controlled video system |
JP3704734B2 (en) | 1994-01-26 | 2005-10-12 | 株式会社日立製作所 | Texture mapping method and apparatus |
GB2286510A (en) | 1994-02-10 | 1995-08-16 | Thomson Consumer Electronics | Device for generating applause for karaoke vocals |
US5990888A (en) | 1994-03-22 | 1999-11-23 | International Business Machines Corporation | Method and system for manipulating graphical objects |
AU2424295A (en) | 1994-04-21 | 1995-11-16 | Sandia Corporation | Multi-dimensional user oriented synthetic environment |
CA2143874C (en) | 1994-04-25 | 2000-06-20 | Thomas Edward Cooper | Method and apparatus for enabling trial period use of software products: method and apparatus for utilizing a decryption stub |
US5563946A (en) | 1994-04-25 | 1996-10-08 | International Business Machines Corporation | Method and apparatus for enabling trial period use of software products: method and apparatus for passing encrypted files between data processing systems |
US5734805A (en) | 1994-06-17 | 1998-03-31 | International Business Machines Corporation | Apparatus and method for controlling navigation in 3-D space |
JP3428151B2 (en) | 1994-07-08 | 2003-07-22 | 株式会社セガ | Game device using image display device |
US5535276A (en) | 1994-11-09 | 1996-07-09 | Bell Atlantic Network Services, Inc. | Yaksha, an improved system and method for securing communications using split private key asymmetric cryptography |
US5736982A (en) | 1994-08-03 | 1998-04-07 | Nippon Telegraph And Telephone Corporation | Virtual space apparatus with avatars and speech |
US5764232A (en) | 1994-09-16 | 1998-06-09 | Namco Ltd. | Three-dimensional simulator apparatus and image synthesis method |
US5799268A (en) | 1994-09-28 | 1998-08-25 | Apple Computer, Inc. | Method for extracting knowledge from online documentation and creating a glossary, index, help database or the like |
US5530796A (en) | 1994-09-30 | 1996-06-25 | International Business Machines Corporation | Menu bar editor |
US5685775A (en) | 1994-10-28 | 1997-11-11 | International Business Machines Corporation | Networking video games over telephone network |
US5835692A (en) | 1994-11-21 | 1998-11-10 | International Business Machines Corporation | System and method for providing mapping notation in interactive video displays |
EP0717337B1 (en) | 1994-12-13 | 2001-08-01 | International Business Machines Corporation | Method and system for the secured distribution of programs |
US5584700A (en) | 1994-12-19 | 1996-12-17 | Advanced Technology And Research Corporation | Virtual-reality based flycycle exercise machine |
US5621906A (en) | 1995-02-13 | 1997-04-15 | The Trustees Of Columbia University In The City Of New York | Perspective-based interface using an extended masthead |
JPH08287288A (en) | 1995-03-24 | 1996-11-01 | Internatl Business Mach Corp <Ibm> | Plurality of side annotations interactive three-dimensional graphics and hot link |
US5694170A (en) | 1995-04-06 | 1997-12-02 | International Business Machines Corporation | Video compression using multiple computing agents |
US5774668A (en) | 1995-06-07 | 1998-06-30 | Microsoft Corporation | System for on-line service in which gateway computer uses service map which includes loading condition of servers broadcasted by application servers for load balancing |
ATE279065T1 (en) | 1995-06-07 | 2004-10-15 | Divine Technology Ventures | ACCESS CONTROL AND MONITORING SYSTEM FOR INTERNET SERVERS |
US5706507A (en) | 1995-07-05 | 1998-01-06 | International Business Machines Corporation | System and method for controlling access to data located on a content server |
US5860137A (en) | 1995-07-21 | 1999-01-12 | Emc Corporation | Dynamic load balancing |
US5878233A (en) | 1995-08-07 | 1999-03-02 | International Business Machines Corporation | System, method, and computer program product for reviewing and creating advisories for data located on a content server |
US5781449A (en) | 1995-08-10 | 1998-07-14 | Advanced System Technologies, Inc. | Response time measurement apparatus and method |
US5736990A (en) | 1995-08-28 | 1998-04-07 | Mitsubishi Electric Information Technology Center America, Inc. | System for designing a virtual environment utilizing locales |
US5768511A (en) | 1995-09-18 | 1998-06-16 | International Business Machines Corporation | Method and system for managing objects in networked computer system with action performed in the server and object updated in the client |
JP3745802B2 (en) | 1995-10-13 | 2006-02-15 | 株式会社日立製作所 | Image generation / display device |
US5737619A (en) | 1995-10-19 | 1998-04-07 | Judson; David Hugh | World wide web browsing with content delivery over an idle connection and interstitial content display |
US5737533A (en) | 1995-10-26 | 1998-04-07 | Wegener Internet Projects Bv | System for generating a virtual reality scene in response to a database search |
US5977979A (en) | 1995-10-31 | 1999-11-02 | International Business Machines Corporation | Simulated three-dimensional display using bit-mapped information |
US6219045B1 (en) | 1995-11-13 | 2001-04-17 | Worlds, Inc. | Scalable virtual world chat client-server system |
US5762552A (en) | 1995-12-05 | 1998-06-09 | Vt Tech Corp. | Interactive real-time network gaming system |
US5880731A (en) | 1995-12-14 | 1999-03-09 | Microsoft Corporation | Use of avatars with automatic gesturing and bounded interaction in on-line chat session |
US5850225A (en) | 1996-01-24 | 1998-12-15 | Evans & Sutherland Computer Corp. | Image mapping system and process using panel shear transforms |
US5963915A (en) | 1996-02-21 | 1999-10-05 | Infoseek Corporation | Secure, convenient and efficient system and method of performing trans-internet purchase transactions |
US6426757B1 (en) | 1996-03-04 | 2002-07-30 | International Business Machines Corporation | Method and apparatus for providing pseudo-3D rendering for virtual reality computer user interfaces |
US5978841A (en) | 1996-03-08 | 1999-11-02 | Berger; Louis | Look ahead caching process for improved information retrieval response time by caching bodies of information before they are requested by the user |
US5745113A (en) | 1996-04-03 | 1998-04-28 | Institute For Research On Learning | Representing work practices |
US5702307A (en) | 1996-04-11 | 1997-12-30 | Moran; Kristen G. | Pivotal, spherically shaped, motion simulator-with shifting means for controlling its' center of gravity |
US5825877A (en) | 1996-06-11 | 1998-10-20 | International Business Machines Corporation | Support for portable trusted software |
US5898423A (en) | 1996-06-25 | 1999-04-27 | Sun Microsystems, Inc. | Method and apparatus for eyetrack-driven captioning |
US5736985A (en) | 1996-07-02 | 1998-04-07 | International Business Machines Corp. | GUI pushbutton with multi-function mini-button |
US5862337A (en) | 1996-07-12 | 1999-01-19 | Microsoft Corporation | Determining throughput dynamically |
US6570587B1 (en) | 1996-07-26 | 2003-05-27 | Veon Ltd. | System and method and linking information to a video |
US5889989A (en) | 1996-09-16 | 1999-03-30 | The Research Foundation Of State University Of New York | Load sharing controller for optimizing monetary cost |
US6195657B1 (en) | 1996-09-26 | 2001-02-27 | Imana, Inc. | Software, method and apparatus for efficient categorization and recommendation of subjects according to multidimensional semantics |
US6346956B2 (en) | 1996-09-30 | 2002-02-12 | Sony Corporation | Three-dimensional virtual reality space display processing apparatus, a three-dimensional virtual reality space display processing method, and an information providing medium |
US5990896A (en) | 1996-09-30 | 1999-11-23 | Mitsubishi Electric Information Technology Center America, Inc. (Ita) | Rapid and efficient terrain surface finding system |
US5926179A (en) | 1996-09-30 | 1999-07-20 | Sony Corporation | Three-dimensional virtual reality space display processing apparatus, a three-dimensional virtual reality space display processing method, and an information providing medium |
US6437777B1 (en) | 1996-09-30 | 2002-08-20 | Sony Corporation | Three-dimensional virtual reality space display processing apparatus, a three-dimensional virtual reality space display processing method, and an information providing medium |
US5879236A (en) | 1996-10-18 | 1999-03-09 | Starwave Corporation | System method and medium for sector windowing |
JPH10187638A (en) | 1996-10-28 | 1998-07-21 | Mitsubishi Electric Corp | Cluster control system |
US5796393A (en) | 1996-11-08 | 1998-08-18 | Compuserve Incorporated | System for intergrating an on-line service community with a foreign service |
US5982372A (en) | 1996-11-14 | 1999-11-09 | International Business Machines Corp. | Visual metaphor for shortcut navigation in a virtual world |
US5884029A (en) | 1996-11-14 | 1999-03-16 | International Business Machines Corporation | User interaction with intelligent virtual objects, avatars, which interact with other avatars controlled by different users |
US5983003A (en) | 1996-11-15 | 1999-11-09 | International Business Machines Corp. | Interactive station indicator and user qualifier for virtual worlds |
US5919045A (en) | 1996-11-18 | 1999-07-06 | Mariah Vision3 Entertainment Llc | Interactive race car simulator system |
US20010044725A1 (en) | 1996-11-19 | 2001-11-22 | Koichi Matsuda | Information processing apparatus, an information processing method, and a medium for use in a three-dimensional virtual reality space sharing system |
US5920325A (en) | 1996-11-20 | 1999-07-06 | International Business Machines Corporation | Prioritization of background display during animation |
US6023698A (en) | 1996-12-05 | 2000-02-08 | International Business Machines Corporation | System and method for transparently registering and updating information over the internet |
US5884024A (en) | 1996-12-09 | 1999-03-16 | Sun Microsystems, Inc. | Secure DHCP server |
US6148294A (en) | 1996-12-20 | 2000-11-14 | Siemens Information And Communication Networks, Inc. | System and method for computer directory updating and presentation based on frequency of access |
US5854897A (en) | 1996-12-27 | 1998-12-29 | Quantum Systems, Inc. | Network communications marketing system |
US5835094A (en) | 1996-12-31 | 1998-11-10 | Compaq Computer Corporation | Three-dimensional computer environment |
US6081270A (en) | 1997-01-27 | 2000-06-27 | International Business Machines Corporation | Method and system for providing an improved view of an object in a three-dimensional environment on a computer display |
US6111581A (en) | 1997-01-27 | 2000-08-29 | International Business Machines Corporation | Method and system for classifying user objects in a three-dimensional (3D) environment on a display in a computer system |
US5875296A (en) | 1997-01-28 | 1999-02-23 | International Business Machines Corporation | Distributed file system web server user authentication with cookies |
US5969724A (en) | 1997-01-31 | 1999-10-19 | International Business Machines Corporation | Method and system for navigating through opaque structures on a display |
US5908469A (en) | 1997-02-14 | 1999-06-01 | International Business Machines Corporation | Generic user authentication for network computers |
US5903266A (en) | 1997-02-18 | 1999-05-11 | International Business Machines Corporation | Audio setup and use instructions |
US6598029B1 (en) | 1997-02-24 | 2003-07-22 | Geophonic Networks, Inc. | Bidding for energy supply with request for service |
US5969720A (en) | 1997-03-07 | 1999-10-19 | International Business Machines Corporation | Data processing system and method for implementing an informative container for a file system |
US6138128A (en) | 1997-04-02 | 2000-10-24 | Microsoft Corp. | Sharing and organizing world wide web references using distinctive characters |
US6104406A (en) | 1997-04-04 | 2000-08-15 | International Business Machines Corporation | Back away navigation from three-dimensional objects in three-dimensional workspace interactive displays |
US6734884B1 (en) | 1997-04-04 | 2004-05-11 | International Business Machines Corporation | Viewer interactive three-dimensional objects and two-dimensional images in virtual three-dimensional workspace |
US6271842B1 (en) | 1997-04-04 | 2001-08-07 | International Business Machines Corporation | Navigation via environmental objects in three-dimensional workspace interactive displays |
US6137904A (en) | 1997-04-04 | 2000-10-24 | Sarnoff Corporation | Method and apparatus for assessing the visibility of differences between two signal sequences |
US5923324A (en) | 1997-04-04 | 1999-07-13 | International Business Machines Corporation | Viewer interactive three-dimensional workspace with interactive three-dimensional objects and corresponding two-dimensional images of objects in an interactive two-dimensional workplane |
US6115718A (en) | 1998-04-01 | 2000-09-05 | Xerox Corporation | Method and apparatus for predicting document access in a collection of linked documents featuring link proprabilities and spreading activation |
US6003065A (en) | 1997-04-24 | 1999-12-14 | Sun Microsystems, Inc. | Method and system for distributed processing of applications on host and peripheral devices |
US5911045A (en) | 1997-04-24 | 1999-06-08 | International Business Machines Corp. | Method and system for sharing information in a virtual reality world |
US5900879A (en) | 1997-04-28 | 1999-05-04 | International Business Machines Corporation | Three-dimensional workspace interactive display having browsing viewpoints for navigation and work viewpoints for user-object interactive non-navigational work functions with automatic switching to browsing viewpoints upon completion of work functions |
US6216098B1 (en) | 1997-04-30 | 2001-04-10 | Institute For Research On Learning | Simulating work behavior |
US5944824A (en) | 1997-04-30 | 1999-08-31 | Mci Communications Corporation | System and method for single sign-on to a plurality of network elements |
US6144381A (en) | 1997-05-14 | 2000-11-07 | International Business Machines Corporation | Systems, methods and computer program products for compass navigation of avatars in three dimensional worlds |
US6081271A (en) | 1997-05-23 | 2000-06-27 | International Business Machines Corporation | Determining view point on objects automatically in three-dimensional workspace from other environmental objects in a three-dimensional workspace |
US5903271A (en) | 1997-05-23 | 1999-05-11 | International Business Machines Corporation | Facilitating viewer interaction with three-dimensional objects and two-dimensional images in virtual three-dimensional workspace by drag and drop technique |
JP3199231B2 (en) | 1997-05-27 | 2001-08-13 | 日本アイ・ビー・エム株式会社 | Method and system for embedding information in three-dimensional shape model |
US6064389A (en) | 1997-05-27 | 2000-05-16 | International Business Machines Corporation | Distance dependent selective activation of three-dimensional objects in three-dimensional workspace interactive displays |
US6271843B1 (en) | 1997-05-30 | 2001-08-07 | International Business Machines Corporation | Methods systems and computer program products for transporting users in three dimensional virtual reality worlds using transportation vehicles |
US6351775B1 (en) | 1997-05-30 | 2002-02-26 | International Business Machines Corporation | Loading balancing across servers in a computer network |
US5933818A (en) | 1997-06-02 | 1999-08-03 | Electronic Data Systems Corporation | Autonomous knowledge discovery system and method |
AUPO710597A0 (en) | 1997-06-02 | 1997-06-26 | Knowledge Horizons Pty. Ltd. | Methods and systems for knowledge management |
US6025839A (en) | 1997-06-06 | 2000-02-15 | International Business Machines Corp. | Method for displaying information in a virtual reality environment |
US6179713B1 (en) | 1997-06-18 | 2001-01-30 | Circadence Corporation | Full-time turn based network multiplayer game |
US6058266A (en) | 1997-06-24 | 2000-05-02 | International Business Machines Corporation | Method of, system for, and computer program product for performing weighted loop fusion by an optimizing compiler |
CA2295150A1 (en) | 1997-06-26 | 1999-01-07 | Michael John Kenning | Data communications |
US6657642B1 (en) | 1997-07-03 | 2003-12-02 | International Business Machines Corporation | User interactive display interfaces with means for interactive formation of combination display objects representative of combined interactive functions |
US6094196A (en) | 1997-07-03 | 2000-07-25 | International Business Machines Corporation | Interaction spheres of three-dimensional objects in three-dimensional workspace displays |
US6069632A (en) | 1997-07-03 | 2000-05-30 | International Business Machines Corporation | Passageway properties: customizable protocols for entry and exit of places |
US5883628A (en) | 1997-07-03 | 1999-03-16 | International Business Machines Corporation | Climability: property for objects in 3-D virtual environments |
US6014145A (en) | 1997-07-07 | 2000-01-11 | International Business Machines Corporation | Navagation with optimum viewpoints in three-dimensional workspace interactive displays having three-dimensional objects with collision barriers |
US6072498A (en) | 1997-07-31 | 2000-06-06 | Autodesk, Inc. | User selectable adaptive degradation for interactive computer rendering system |
US6256043B1 (en) | 1997-09-26 | 2001-07-03 | Lucent Technologies Inc. | Three dimensional virtual reality enhancement techniques |
US6006223A (en) | 1997-08-12 | 1999-12-21 | International Business Machines Corporation | Mapping words, phrases using sequential-pattern to find user specific trends in a text database |
US6021268A (en) | 1997-08-21 | 2000-02-01 | Analytical Graphics, Inc. | Method and apparatus for modeling receiver bandwidth for telecommunications analysis |
US7764026B2 (en) | 1997-12-17 | 2010-07-27 | Philips Solid-State Lighting Solutions, Inc. | Systems and methods for digital entertainment |
JPH1198134A (en) | 1997-09-24 | 1999-04-09 | Nippon Telegr & Teleph Corp <Ntt> | Method for detecting fraudulent alteration and copy of cookie, and program storage medium |
US6539415B1 (en) | 1997-09-24 | 2003-03-25 | Sony Corporation | Method and apparatus for the allocation of audio/video tasks in a network system |
GB2330739A (en) | 1997-09-26 | 1999-04-28 | Ibm | Transmitting data packets over a network to remote users of a multi-user computer game according to multi-user proximity groups |
US6018734A (en) | 1997-09-29 | 2000-01-25 | Triada, Ltd. | Multi-dimensional pattern analysis |
US5938722A (en) | 1997-10-15 | 1999-08-17 | Mci Communications Corporation | Method of executing programs in a network |
GB9722343D0 (en) | 1997-10-22 | 1997-12-17 | British Telecomm | Distributed virtual environment |
US6134588A (en) | 1997-11-12 | 2000-10-17 | International Business Machines Corporation | High availability web browser access to servers |
US8272959B2 (en) | 1997-11-14 | 2012-09-25 | Elottery, Inc. | Interactive computer gaming system with audio response |
US6023270A (en) | 1997-11-17 | 2000-02-08 | International Business Machines Corporation | Delivery of objects in a virtual world using a descriptive container |
FR2770986B1 (en) | 1997-11-18 | 1999-12-31 | Aldes Aeraulique | TAKE FOR THE CONNECTION OF A DUST SUCTION PIPE TO A CENTRALIZED SUCTION SYSTEM |
JPH11154178A (en) | 1997-11-19 | 1999-06-08 | Fujitsu Ltd | Communication managing device and recording medium |
US6098056A (en) | 1997-11-24 | 2000-08-01 | International Business Machines Corporation | System and method for controlling access rights to and security of digital content in a distributed information system, e.g., Internet |
US6345287B1 (en) | 1997-11-26 | 2002-02-05 | International Business Machines Corporation | Gang scheduling for resource allocation in a cluster computing environment |
US6091410A (en) | 1997-11-26 | 2000-07-18 | International Business Machines Corporation | Avatar pointing mode |
US6070143A (en) | 1997-12-05 | 2000-05-30 | Lucent Technologies Inc. | System and method for analyzing work requirements and linking human resource products to jobs |
GB2332288A (en) | 1997-12-10 | 1999-06-16 | Northern Telecom Ltd | agent enabling technology |
US6601084B1 (en) | 1997-12-19 | 2003-07-29 | Avaya Technology Corp. | Dynamic load balancer for multiple network servers |
US6356297B1 (en) | 1998-01-15 | 2002-03-12 | International Business Machines Corporation | Method and apparatus for displaying panoramas with streaming video |
US6345264B1 (en) | 1998-01-22 | 2002-02-05 | Microsoft Corporation | Methods and apparatus, using expansion attributes having default, values, for matching entities and predicting an attribute of an entity |
US6148328A (en) | 1998-01-29 | 2000-11-14 | International Business Machines Corp. | Method and system for signaling presence of users in a networked environment |
US6329986B1 (en) | 1998-02-21 | 2001-12-11 | U.S. Philips Corporation | Priority-based virtual environment |
US6396509B1 (en) | 1998-02-21 | 2002-05-28 | Koninklijke Philips Electronics N.V. | Attention-based interaction in a virtual environment |
EP0940960A1 (en) | 1998-03-02 | 1999-09-08 | Hewlett-Packard Company | Authentication between servers |
US7302402B2 (en) | 1998-03-30 | 2007-11-27 | International Business Machines Corporation | Method, system and program products for sharing state information across domains |
US6059842A (en) | 1998-04-14 | 2000-05-09 | International Business Machines Corp. | System and method for optimizing computer software and hardware |
US6009455A (en) | 1998-04-20 | 1999-12-28 | Doyle; John F. | Distributed computation utilizing idle networked computers |
US6141699A (en) | 1998-05-11 | 2000-10-31 | International Business Machines Corporation | Interactive display system for sequential retrieval and display of a plurality of interrelated data sets |
US6249779B1 (en) | 1998-05-13 | 2001-06-19 | Ben A. Hitt | Adaptive fuzzy feature mapping |
US6185614B1 (en) | 1998-05-26 | 2001-02-06 | International Business Machines Corp. | Method and system for collecting user profile information over the world-wide web in the presence of dynamic content using document comparators |
US7146627B1 (en) | 1998-06-12 | 2006-12-05 | Metabyte Networks, Inc. | Method and apparatus for delivery of targeted video programming |
US6421051B1 (en) | 1998-06-18 | 2002-07-16 | Spatial Corporation | Multi-resolution geometry |
US6226009B1 (en) | 1998-06-29 | 2001-05-01 | Lucent Technologies Inc. | Display techniques for three dimensional virtual reality |
US6327541B1 (en) | 1998-06-30 | 2001-12-04 | Ameren Corporation | Electronic energy management system |
CA2336339A1 (en) | 1998-06-30 | 2000-01-06 | Brian M. Laliberte | Method and apparatus for manufacturing a rare earth metal doped optical fiber preform |
GB2339128A (en) | 1998-06-30 | 2000-01-12 | Ibm | Meyhod and system for transfering data using a graphical user interface |
US6275820B1 (en) | 1998-07-16 | 2001-08-14 | Perot Systems Corporation | System and method for integrating search results from heterogeneous information resources |
US6334127B1 (en) | 1998-07-17 | 2001-12-25 | Net Perceptions, Inc. | System, method and article of manufacture for making serendipity-weighted recommendations to a user |
JP3033956B2 (en) | 1998-07-23 | 2000-04-17 | インターナショナル・ビジネス・マシーンズ・コーポレイション | Method for changing display attributes of graphic objects, method for selecting graphic objects, graphic object display control device, storage medium storing program for changing display attributes of graphic objects, and program for controlling selection of graphic objects Storage media |
US6549933B1 (en) | 1998-08-04 | 2003-04-15 | International Business Machines Corporation | Managing, accessing, and retrieving networked information using physical objects associated with the networked information |
GB9817834D0 (en) | 1998-08-14 | 1998-10-14 | British Telecomm | Predicting avatar movement in a distributed virtual environment |
US6205480B1 (en) | 1998-08-19 | 2001-03-20 | Computer Associates Think, Inc. | System and method for web server user authentication |
US6177932B1 (en) | 1998-08-21 | 2001-01-23 | Kana Communications, Inc. | Method and apparatus for network based customer service |
US6282547B1 (en) | 1998-08-25 | 2001-08-28 | Informix Software, Inc. | Hyperlinked relational database visualization system |
US6393467B1 (en) | 1998-08-31 | 2002-05-21 | Nortel Networks Limited | Network interconnected computing device, server and notification method |
US6233583B1 (en) | 1998-09-10 | 2001-05-15 | International Business Machines Corporation | Report generator for use within a lotus notes database system |
US6594673B1 (en) | 1998-09-15 | 2003-07-15 | Microsoft Corporation | Visualizations for collaborative information |
US6266649B1 (en) | 1998-09-18 | 2001-07-24 | Amazon.Com, Inc. | Collaborative recommendations using item-to-item similarity mappings |
US6308208B1 (en) | 1998-09-30 | 2001-10-23 | International Business Machines Corporation | Method for monitoring network distributed computing resources using distributed cellular agents |
US6445389B1 (en) | 1998-10-06 | 2002-09-03 | International Business Machines Corp. | Compression of polygonal models with low latency decompression |
US6466550B1 (en) | 1998-11-11 | 2002-10-15 | Cisco Technology, Inc. | Distributed conferencing system utilizing data networks |
US6353449B1 (en) | 1998-12-10 | 2002-03-05 | International Business Machines Corporation | Communicating screen saver |
US9183306B2 (en) | 1998-12-18 | 2015-11-10 | Microsoft Technology Licensing, Llc | Automated selection of appropriate information based on a computer user's context |
US6363174B1 (en) | 1998-12-28 | 2002-03-26 | Sony Corporation | Method and apparatus for content identification and categorization of textual data |
US6418462B1 (en) | 1999-01-07 | 2002-07-09 | Yongyong Xu | Global sideband service distributed computing method |
US6237033B1 (en) | 1999-01-13 | 2001-05-22 | Pitney Bowes Inc. | System for managing user-characterizing network protocol headers |
US6222551B1 (en) | 1999-01-13 | 2001-04-24 | International Business Machines Corporation | Methods and apparatus for providing 3D viewpoint selection in a server/client arrangement |
US6311206B1 (en) | 1999-01-13 | 2001-10-30 | International Business Machines Corporation | Method and apparatus for providing awareness-triggered push |
US6199067B1 (en) | 1999-01-20 | 2001-03-06 | Mightiest Logicon Unisearch, Inc. | System and method for generating personalized user profiles and for utilizing the generated user profiles to perform adaptive internet searches |
EP1024647B1 (en) | 1999-01-29 | 2007-08-15 | International Business Machines Corporation | Hybrid conferencing system |
US6334141B1 (en) | 1999-02-02 | 2001-12-25 | International Business Machines Corporation | Distributed server for real-time collaboration |
US6452593B1 (en) | 1999-02-19 | 2002-09-17 | International Business Machines Corporation | Method and system for rendering a virtual three-dimensional graphical display |
US6314465B1 (en) | 1999-03-11 | 2001-11-06 | Lucent Technologies Inc. | Method and apparatus for load sharing on a wide area network |
US6469712B1 (en) | 1999-03-25 | 2002-10-22 | International Business Machines Corporation | Projected audio for computer displays |
US6388688B1 (en) | 1999-04-06 | 2002-05-14 | Vergics Corporation | Graph-based visual navigation through spatial environments |
US6753857B1 (en) | 1999-04-16 | 2004-06-22 | Nippon Telegraph And Telephone Corporation | Method and system for 3-D shared virtual environment display communication virtual conference and programs therefor |
US6346938B1 (en) | 1999-04-27 | 2002-02-12 | Harris Corporation | Computer-resident mechanism for manipulating, navigating through and mensurating displayed image of three-dimensional geometric model |
US6763371B1 (en) | 1999-05-10 | 2004-07-13 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for collaborative communication in a communication network |
US7006616B1 (en) | 1999-05-21 | 2006-02-28 | Terayon Communication Systems, Inc. | Teleconferencing bridge with EdgePoint mixing |
US6462760B1 (en) | 1999-05-26 | 2002-10-08 | International Business Machines Corporation | User interfaces, methods, and computer program products that can conserve space on a computer display screen by associating an icon with a plurality of operations |
US6505208B1 (en) | 1999-06-09 | 2003-01-07 | International Business Machines Corporation | Educational monitoring method and system for improving interactive skills based on participants on the network |
JP2001014282A (en) | 1999-06-29 | 2001-01-19 | Sony Corp | Device and method for information processing and medium |
US6499053B1 (en) | 1999-06-30 | 2002-12-24 | International Business Machines Corporation | Master/slave architecture for a distributed chat application in a bandwidth constrained network |
US6785592B1 (en) | 1999-07-16 | 2004-08-31 | Perot Systems Corporation | System and method for energy management |
GB2352154B (en) | 1999-07-16 | 2003-08-27 | Ibm | Automatic target enlargement for simplified selection |
US6496851B1 (en) | 1999-08-04 | 2002-12-17 | America Online, Inc. | Managing negotiations between users of a computer network by automatically engaging in proposed activity using parameters of counterproposal of other user |
US6330281B1 (en) | 1999-08-06 | 2001-12-11 | Richfx Ltd. | Model-based view extrapolation for interactive virtual reality systems |
US6618751B1 (en) | 1999-08-20 | 2003-09-09 | International Business Machines Corporation | Systems and methods for publishing data with expiration times |
DE60031755T2 (en) | 1999-09-24 | 2007-09-06 | Citicorp Development Center, Inc., Los Angeles | A method and apparatus for authenticated access to a plurality of network operators by a single login |
US6574477B1 (en) | 1999-10-06 | 2003-06-03 | Lucent Technologies Inc. | Dynamic load balancing during message processing in a wireless communication service network |
JP2001119403A (en) | 1999-10-20 | 2001-04-27 | Aval Data Corp | Usage pattern analysis method for data transfer resource and usage pattern analyzer |
US6684255B1 (en) | 1999-10-26 | 2004-01-27 | International Business Machines Corporation | Methods and apparatus for transmission and rendering of complex 3D models over networks using mixed representations |
US6525731B1 (en) | 1999-11-09 | 2003-02-25 | Ibm Corporation | Dynamic view-dependent texture mapping |
AU1195401A (en) | 1999-11-12 | 2001-05-30 | Net Perceptions, Inc. | Interest based recommendation method and system |
US6349091B1 (en) | 1999-11-12 | 2002-02-19 | Itt Manufacturing Enterprises, Inc. | Method and apparatus for controlling communication links between network nodes to reduce communication protocol overhead traffic |
US20050210413A1 (en) | 1999-11-24 | 2005-09-22 | Quek Su M | Utilization of digital images |
US6473085B1 (en) | 1999-12-17 | 2002-10-29 | International Business Machines Corporation | System for dynamically adjusting image quality for interactive graphics applications |
US6742032B1 (en) | 1999-12-17 | 2004-05-25 | Xerox Corporation | Method for monitoring and encouraging community activity in a networked environment |
US7012627B1 (en) | 1999-12-28 | 2006-03-14 | International Business Machines Corporation | System and method for presentation of room navigation |
US6636889B1 (en) | 2000-01-04 | 2003-10-21 | International Business Machines Corporation | System and method for client replication of collaboration space |
US6674484B1 (en) | 2000-01-10 | 2004-01-06 | Koninklijke Philips Electronics N.V. | Video sample rate conversion to achieve 3-D effects |
US7328233B2 (en) | 2000-01-19 | 2008-02-05 | Corybant, Inc. | Method and apparatus for implementing an active information model |
US6781607B1 (en) | 2000-01-27 | 2004-08-24 | International Business Machines Corporation | Method and system for dynamically determining the appropriate information and/or user interface for presentation to differing users |
JP2001204973A (en) | 2000-01-27 | 2001-07-31 | Snk Corp | Communication game system and game terminal used for communication game, and game method |
US6757068B2 (en) | 2000-01-28 | 2004-06-29 | Intersense, Inc. | Self-referenced tracking |
US6954799B2 (en) | 2000-02-01 | 2005-10-11 | Charles Schwab & Co., Inc. | Method and apparatus for integrating distributed shared services system |
JP3579823B2 (en) | 2000-02-14 | 2004-10-20 | インターナショナル・ビジネス・マシーンズ・コーポレーション | How to display a character string |
GB2359704B (en) | 2000-02-26 | 2002-05-08 | Proksim Software Inc | Sharing a computer-generated environment |
GB2368665A (en) | 2000-03-02 | 2002-05-08 | Outersonic Ltd | On-line multimedia product catalogue |
US6767287B1 (en) | 2000-03-16 | 2004-07-27 | Sony Computer Entertainment America Inc. | Computer system and method for implementing a virtual reality environment for a multi-player game |
US6672961B1 (en) | 2000-03-16 | 2004-01-06 | Sony Computer Entertainment America Inc. | Computer system and method of displaying images |
US6948168B1 (en) | 2000-03-30 | 2005-09-20 | International Business Machines Corporation | Licensed application installer |
US7353295B1 (en) | 2000-04-04 | 2008-04-01 | Motive, Inc. | Distributed services architecture through use of a dynamic service point map |
US6473597B1 (en) | 2000-04-12 | 2002-10-29 | Thomas M. Johnson | Method and apparatus for modeling transmitter bandwidth for telecommunications analysis |
AU2001259075A1 (en) | 2000-04-17 | 2001-10-30 | Circadence Corporation | System and method for web serving |
US6784901B1 (en) | 2000-05-09 | 2004-08-31 | There | Method, system and computer program product for the delivery of a chat message in a 3D multi-user environment |
US6845389B1 (en) | 2000-05-12 | 2005-01-18 | Nortel Networks Limited | System and method for broadband multi-user communication sessions |
US6954728B1 (en) | 2000-05-15 | 2005-10-11 | Avatizing, Llc | System and method for consumer-selected advertising and branding in interactive media |
US20020092015A1 (en) | 2000-05-26 | 2002-07-11 | Sprunk Eric J. | Access control processor |
US6611863B1 (en) | 2000-06-05 | 2003-08-26 | Intel Corporation | Automatic device assignment through programmable device discovery for policy based network management |
US20020107918A1 (en) | 2000-06-15 | 2002-08-08 | Shaffer James D. | System and method for capturing, matching and linking information in a global communications network |
US20020023018A1 (en) | 2000-06-20 | 2002-02-21 | Robert Kleinbaum | Method and system for network-based community for sharing information services |
WO2002003645A2 (en) | 2000-06-30 | 2002-01-10 | Nokia Inc. | Method and apparatus to synchronize audio and visual application data presentation |
WO2002003258A1 (en) | 2000-06-30 | 2002-01-10 | California Institute Of Technology | Method and apparatus for heterogeneous distributed computation |
US6832239B1 (en) | 2000-07-07 | 2004-12-14 | International Business Machines Corporation | Systems for managing network resources |
US6633823B2 (en) | 2000-07-13 | 2003-10-14 | Nxegen, Inc. | System and method for monitoring and controlling energy usage |
US7227526B2 (en) | 2000-07-24 | 2007-06-05 | Gesturetek, Inc. | Video-based image control system |
US6819669B2 (en) | 2000-07-26 | 2004-11-16 | International Business Machines Corporation | Method and system for data communication |
EP1176828B1 (en) | 2000-07-26 | 2007-10-24 | International Business Machines Corporation | Method and system for data communication |
EP1178409A1 (en) | 2000-08-01 | 2002-02-06 | DR. Riccardo Genghini Studio Notarile Genghini | Cookiemanager to control the exchange of cookies in an Internet client-server computersystem |
EP1184083B1 (en) | 2000-08-30 | 2003-07-02 | Ing. Erich Pfeiffer GmbH | Smart miniature fragrance dispensing device for multiple ambient scenting applications and environments |
KR100415372B1 (en) | 2000-08-31 | 2004-01-16 | (주) 고미드 | System and method for determining the users having the similar registered information on a cyber space |
US7027965B2 (en) | 2000-09-13 | 2006-04-11 | The University Of Washington | Time domain passivity control of haptic interfaces |
US8302127B2 (en) | 2000-09-25 | 2012-10-30 | Thomson Licensing | System and method for personalized TV |
US6681156B1 (en) | 2000-09-28 | 2004-01-20 | Siemens Aktiengesellschaft | System and method for planning energy supply and interface to an energy management system for use in planning energy supply |
US7139792B1 (en) | 2000-09-29 | 2006-11-21 | Intel Corporation | Mechanism for locking client requests to a particular server |
WO2002029513A2 (en) | 2000-10-04 | 2002-04-11 | Ezonics Corporation | A method and system for internet-based video chat |
US9605591B2 (en) | 2000-10-09 | 2017-03-28 | Energy Transfer Group, L.L.C. | Arbitrage control system for two or more available power sources |
US8316450B2 (en) | 2000-10-10 | 2012-11-20 | Addn Click, Inc. | System for inserting/overlaying markers, data packets and objects relative to viewable content and enabling live social networking, N-dimensional virtual environments and/or other value derivable from the content |
US6934756B2 (en) | 2000-11-01 | 2005-08-23 | International Business Machines Corporation | Conversational networking via transport, coding and control conversational protocols |
US6826523B1 (en) | 2000-11-01 | 2004-11-30 | Sony Computer Entertainment America Inc. | Application development interface for multi-user applications executable over communication networks |
KR20020038229A (en) | 2000-11-17 | 2002-05-23 | 김응천 | On-line game method and system for providing a real-time audio and video chatting service |
JP2002157206A (en) | 2000-11-17 | 2002-05-31 | Square Co Ltd | Method and system for taking part in electronic conference |
US6886026B1 (en) | 2000-11-21 | 2005-04-26 | International Business Machines Corporation | Method and apparatus providing autonomous discovery of potential trading partners in a dynamic, decentralized information economy |
US20030177187A1 (en) | 2000-11-27 | 2003-09-18 | Butterfly.Net. Inc. | Computing grid for massively multi-player online games and other multi-user immersive persistent-state and session-based applications |
US9047609B2 (en) | 2000-11-29 | 2015-06-02 | Noatak Software Llc | Method and system for dynamically incorporating advertising content into multimedia environments |
US6717600B2 (en) | 2000-12-15 | 2004-04-06 | International Business Machines Corporation | Proximity selection of selectable item in a graphical user interface |
JP2002197376A (en) | 2000-12-27 | 2002-07-12 | Fujitsu Ltd | Method and device for providing virtual world customerized according to user |
US6567813B1 (en) | 2000-12-29 | 2003-05-20 | Webex Communications, Inc. | Quality of service maintenance for distributed collaborative computing |
US7805680B2 (en) | 2001-01-03 | 2010-09-28 | Nokia Corporation | Statistical metering and filtering of content via pixel-based metadata |
US20020095586A1 (en) | 2001-01-17 | 2002-07-18 | International Business Machines Corporation | Technique for continuous user authentication |
EP1371019A2 (en) | 2001-01-26 | 2003-12-17 | Zaxel Systems, Inc. | Real-time virtual viewpoint in simulated reality environment |
US20020124137A1 (en) | 2001-01-29 | 2002-09-05 | Ulrich Thomas R. | Enhancing disk array performance via variable parity based load balancing |
US6964023B2 (en) | 2001-02-05 | 2005-11-08 | International Business Machines Corporation | System and method for multi-modal focus detection, referential ambiguity resolution and mood classification using multi-modal input |
US20020112002A1 (en) | 2001-02-15 | 2002-08-15 | Abato Michael R. | System and process for creating a virtual stage and presenting enhanced content via the virtual stage |
US6631309B2 (en) | 2001-02-20 | 2003-10-07 | International Business Machines Corporation | System and method to monitor datamining power usage |
US7366759B2 (en) | 2001-02-22 | 2008-04-29 | Parity Communications, Inc. | Method and system for characterizing relationships in social networks |
US6765596B2 (en) | 2001-02-27 | 2004-07-20 | International Business Machines Corporation | Multi-functional application launcher with integrated status |
US6981223B2 (en) | 2001-03-19 | 2005-12-27 | Ecrio, Inc. | Method, apparatus and computer readable medium for multiple messaging session management with a graphical user interface |
US20020138607A1 (en) | 2001-03-22 | 2002-09-26 | There | System, method and computer program product for data mining in a three-dimensional multi-user environment |
US20020152147A1 (en) | 2001-04-17 | 2002-10-17 | Shulman John Gordon | System and method for interest-based data management |
US6836480B2 (en) | 2001-04-20 | 2004-12-28 | International Business Machines Corporation | Data structures for efficient processing of multicast transmissions |
AUPR464601A0 (en) | 2001-04-30 | 2001-05-24 | Commonwealth Of Australia, The | Shapes vector |
US7571389B2 (en) | 2001-05-31 | 2009-08-04 | International Business Machines Corporation | System, computer-readable storage device, and method for combining the functionality of multiple text controls in a graphical user interface |
US20030008712A1 (en) | 2001-06-04 | 2003-01-09 | Playnet, Inc. | System and method for distributing a multi-client game/application over a communications network |
US7269632B2 (en) | 2001-06-05 | 2007-09-11 | Xdyne, Inc. | Networked computer system for communicating and operating in a virtual reality environment |
US20030040946A1 (en) | 2001-06-25 | 2003-02-27 | Sprenger Stanley C. | Travel planning system and method |
US6657617B2 (en) | 2001-06-25 | 2003-12-02 | International Business Machines Corporation | Method, apparatus and computer program product for three dimensional text creation |
US7143409B2 (en) | 2001-06-29 | 2006-11-28 | International Business Machines Corporation | Automated entitlement verification for delivery of licensed software |
US6806876B2 (en) | 2001-07-11 | 2004-10-19 | Micron Technology, Inc. | Three dimensional rendering including motion sorting |
JP4785298B2 (en) | 2001-08-17 | 2011-10-05 | 四国電力株式会社 | Forecast electricity bill calculation server computer |
US20030037131A1 (en) | 2001-08-17 | 2003-02-20 | International Business Machines Corporation | User information coordination across multiple domains |
US7454464B2 (en) | 2001-09-10 | 2008-11-18 | Intel Corporation | Peer discovery and connection management based on context sensitive social networks |
US7321925B2 (en) | 2001-09-18 | 2008-01-22 | Intel Corporation | Load balancing and fault tolerance for server-based software applications |
US7493363B2 (en) | 2001-09-19 | 2009-02-17 | Microsoft Corporation | Peer-to-peer group management and method for maintaining peer-to-peer graphs |
US7062533B2 (en) | 2001-09-20 | 2006-06-13 | International Business Machines Corporation | Specifying monitored user participation in messaging sessions |
US7439975B2 (en) | 2001-09-27 | 2008-10-21 | International Business Machines Corporation | Method and system for producing dynamically determined drop shadows in a three-dimensional graphical user interface |
US20030084302A1 (en) | 2001-10-29 | 2003-05-01 | Sun Microsystems, Inc., A Delaware Corporation | Portability and privacy with data communications network browsing |
US7496751B2 (en) | 2001-10-29 | 2009-02-24 | Sun Microsystems, Inc. | Privacy and identification in a data communications network |
KR20030035138A (en) | 2001-10-30 | 2003-05-09 | 한국전자통신연구원 | Transmit method of state message in client-server-based networked virtual environment |
KR20030039019A (en) | 2001-11-09 | 2003-05-17 | 신선혜 | Medium storing a Computer Program with a Function of Lip-sync and Emotional Expression on 3D Scanned Real Facial Image during Realtime Text to Speech Conversion, and Online Game, Email, Chatting, Broadcasting and Foreign Language Learning Method using the Same |
US7610390B2 (en) | 2001-12-04 | 2009-10-27 | Sun Microsystems, Inc. | Distributed network identity |
US6937946B1 (en) | 2001-12-04 | 2005-08-30 | The Texas A&M University System | System and method for remote identification of energy consumption systems and components |
CA2468921C (en) | 2001-12-07 | 2011-06-14 | Telefonaktiebolaget Lm Ericsson (Publ) | Service access and conferencing system and method in a telecommunications network |
EP1318453A1 (en) | 2001-12-07 | 2003-06-11 | Hewlett-Packard Company | Scheduling system, method and apparatus for a cluster |
US7100197B2 (en) | 2001-12-10 | 2006-08-29 | Electronic Data Systems Corporation | Network user authentication system and method |
US7028296B2 (en) | 2001-12-13 | 2006-04-11 | International Business Machines Corporation | Distributing computer programs to a customer's multiple client computers through a hypertext markup language document distributed to and stored on the customer's network server computer |
US6993596B2 (en) | 2001-12-19 | 2006-01-31 | International Business Machines Corporation | System and method for user enrollment in an e-community |
US7159217B2 (en) | 2001-12-20 | 2007-01-02 | Cadence Design Systems, Inc. | Mechanism for managing parallel execution of processes in a distributed computing environment |
JP2003191579A (en) | 2001-12-27 | 2003-07-09 | Sharp Corp | Electronic controller |
US20030122858A1 (en) | 2002-01-03 | 2003-07-03 | Martin Mauve | Partial identification and usage of objects in virtual worlds |
WO2003058518A2 (en) | 2002-01-07 | 2003-07-17 | Stephen James Crampton | Method and apparatus for an avatar user interface system |
US6809731B2 (en) | 2002-01-08 | 2004-10-26 | Evans & Sutherland Computer Corporation | System and method for rendering high-resolution critical items |
US7287053B2 (en) | 2002-01-15 | 2007-10-23 | International Business Machines Corporation | Ad hoc data sharing in virtual team rooms |
US20030145128A1 (en) | 2002-01-25 | 2003-07-31 | Baird Roger T. | Mapping managing devices to managed devices |
US6645153B2 (en) | 2002-02-07 | 2003-11-11 | Pacesetter, Inc. | System and method for evaluating risk of mortality due to congestive heart failure using physiologic sensors |
US20040043806A1 (en) | 2002-02-08 | 2004-03-04 | Keith Kirby | Online vehicle collection and play activity |
US7221935B2 (en) | 2002-02-28 | 2007-05-22 | Telefonaktiebolaget Lm Ericsson (Publ) | System, method and apparatus for federated single sign-on services |
US20030171851A1 (en) | 2002-03-08 | 2003-09-11 | Peter J. Brickfield | Automatic energy management and energy consumption reduction, especially in commercial and multi-building systems |
US6988240B2 (en) | 2002-03-29 | 2006-01-17 | Global Knowledge, Inc. | Methods and apparatus for low overhead enhancement of web page and markup language presentations |
US8516114B2 (en) | 2002-03-29 | 2013-08-20 | International Business Machines Corporation | Method and apparatus for content pre-fetching and preparation |
US7203909B1 (en) | 2002-04-04 | 2007-04-10 | Microsoft Corporation | System and methods for constructing personalized context-sensitive portal pages or views by analyzing patterns of users' information access activities |
JP3559024B2 (en) | 2002-04-04 | 2004-08-25 | マイクロソフト コーポレイション | GAME PROGRAM AND GAME DEVICE |
US6580981B1 (en) | 2002-04-16 | 2003-06-17 | Meshnetworks, Inc. | System and method for providing wireless telematics store and forward messaging for peer-to-peer and peer-to-peer-to-infrastructure a communication network |
US7124071B2 (en) | 2002-04-18 | 2006-10-17 | International Business Machines Corporation | Partitioning a model into a plurality of independent partitions to be processed within a distributed environment |
US6993586B2 (en) | 2002-05-09 | 2006-01-31 | Microsoft Corporation | User intention modeling for web navigation |
US20030210271A1 (en) | 2002-05-13 | 2003-11-13 | King William Davis | Power based level-of- detail management system for a portable computer graphics display |
US6970929B2 (en) | 2002-06-12 | 2005-11-29 | Inha University Foundation | Vector-based, clustering web geographic information system and control method thereof |
JP2005530233A (en) | 2002-06-17 | 2005-10-06 | ポルタ ラネリ,エセ アー | Possible communication between users visiting the same web page |
US7918730B2 (en) | 2002-06-27 | 2011-04-05 | Igt | Trajectory-based 3-D games of chance for video gaming machines |
US7230616B2 (en) | 2002-07-31 | 2007-06-12 | International Business Machines Corporation | Bi-level iso-surface compression |
US7185067B1 (en) | 2002-08-27 | 2007-02-27 | Cisco Technology, Inc. | Load balancing network access requests |
US7096360B1 (en) | 2002-08-27 | 2006-08-22 | Jeffrey Michael Fries | Frequency-time based data compression method |
US7209137B2 (en) | 2002-09-12 | 2007-04-24 | International Business Machines Corporation | Efficient triangular shaped meshes |
US7853594B2 (en) | 2002-10-31 | 2010-12-14 | International Business Machines Corporation | System and method for determining founders of an information aggregate |
US7249123B2 (en) | 2002-10-31 | 2007-07-24 | International Business Machines Corporation | System and method for building social networks based on activity around shared virtual objects |
JP2004178035A (en) | 2002-11-25 | 2004-06-24 | Hitachi Ltd | Database operation management method |
US7877235B2 (en) | 2003-01-31 | 2011-01-25 | Verisae, Inc. | Method and system for tracking and managing various operating parameters of enterprise assets |
US20090118019A1 (en) | 2002-12-10 | 2009-05-07 | Onlive, Inc. | System for streaming databases serving real-time applications used through streaming interactive video |
US6980090B2 (en) | 2002-12-10 | 2005-12-27 | Current Technologies, Llc | Device and method for coupling with electrical distribution network infrastructure to provide communications |
US7515156B2 (en) | 2003-01-08 | 2009-04-07 | Hrl Laboratories, Llc | Method and apparatus for parallel speculative rendering of synthetic images |
US7404149B2 (en) | 2003-03-28 | 2008-07-22 | International Business Machines Corporation | User-defined assistive GUI glue |
US6941236B2 (en) | 2003-03-31 | 2005-09-06 | Lucent Technologies Inc. | Apparatus and methods for analyzing graphs |
US8326713B2 (en) | 2003-04-16 | 2012-12-04 | American Express Travel Related Services Company, Inc. | Method and system for technology consumption management including allocation of fees |
US7627626B2 (en) | 2003-04-21 | 2009-12-01 | Gateway, Inc. | System for restricting use of a grid computer by a computing grid |
JP3994910B2 (en) | 2003-05-08 | 2007-10-24 | 株式会社日立製作所 | Electricity trading support system |
US20040228291A1 (en) | 2003-05-15 | 2004-11-18 | Huslak Nicolas Steven | Videoconferencing using managed quality of service and/or bandwidth allocation in a regional/access network (RAN) |
US7590984B2 (en) | 2003-05-29 | 2009-09-15 | International Business Machines Corporation | System and method for balancing a computing load among computing resources in a distributed computing problem |
US7467180B2 (en) | 2003-05-29 | 2008-12-16 | International Business Machines Corporation | Automatically segmenting and populating a distributed computing problem |
US7089266B2 (en) | 2003-06-02 | 2006-08-08 | The Board Of Trustees Of The Leland Stanford Jr. University | Computer systems and methods for the query and visualization of multidimensional databases |
US8127248B2 (en) | 2003-06-20 | 2012-02-28 | Apple Inc. | Computer interface having a virtual single-layer mode for viewing overlapping objects |
JP3962361B2 (en) | 2003-06-27 | 2007-08-22 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Phase determining device, decomposable shape generating device, structural mesh generating device, phase determining method, decomposable shape generating method, computer executable program for executing the phase determining method, and decomposable shape generating method Computer executable program and structured mesh generation system |
US7358973B2 (en) | 2003-06-30 | 2008-04-15 | Microsoft Corporation | Mixture model for motion lines in a virtual reality environment |
US7165056B2 (en) | 2003-07-25 | 2007-01-16 | Lenovo Singapore Pte, Ltd | Administering devices in dependence upon user metric vectors including relational metrics and location based device control |
GB2404546B (en) | 2003-07-25 | 2005-12-14 | Purple Interactive Ltd | A method of organising and displaying material content on a display to a viewer |
US7517282B1 (en) | 2003-08-04 | 2009-04-14 | Microsoft Corporation | Methods and systems for monitoring a game to determine a player-exploitable game condition |
US20050050137A1 (en) | 2003-08-29 | 2005-03-03 | International Business Machines Corporation | Administering devices in dependence upon metric patterns |
US7429987B2 (en) | 2003-09-19 | 2008-09-30 | International Business Machines Corporation | Intelligent positioning of items in a tree map visualization |
US20050071462A1 (en) | 2003-09-30 | 2005-03-31 | Ibm Corporation | Creating user metric patterns |
US20050080894A1 (en) | 2003-10-09 | 2005-04-14 | John Apostolopoulos | Method and system for topology adaptation to support communication in a communicative environment |
US7263511B2 (en) | 2003-10-23 | 2007-08-28 | International Business Machines Corporation | Creating user metric patterns including user notification |
US7565650B2 (en) | 2003-10-23 | 2009-07-21 | International Business Machines Corporation | Method, apparatus and computer program product for deploying software via post-load images |
US6982372B2 (en) | 2003-12-04 | 2006-01-03 | England Garnett B | Acoustic musical instrument and method |
US7305438B2 (en) | 2003-12-09 | 2007-12-04 | International Business Machines Corporation | Method and system for voice on demand private message chat |
US7478127B2 (en) | 2003-12-15 | 2009-01-13 | International Business Machines Corporation | Service for providing periodic contact to a predetermined list of contacts using multi-party rules |
US7734691B2 (en) | 2003-12-18 | 2010-06-08 | International Business Machines Corporation | Providing collaboration services to a wireless device |
US20050165512A1 (en) | 2004-01-14 | 2005-07-28 | Haso Peljto | Systems and methods for selective power transfer |
US7985138B2 (en) | 2004-02-17 | 2011-07-26 | International Business Machines Corporation | SIP based VoIP multiplayer network games |
US7428588B2 (en) | 2004-04-08 | 2008-09-23 | International Business Machines Corporation | Method for distributing and geographically load balancing location aware communication device client-proxy applications |
US8057307B2 (en) | 2004-04-08 | 2011-11-15 | International Business Machines Corporation | Handling of players and objects in massive multi-player on-line games |
US7856469B2 (en) | 2004-04-15 | 2010-12-21 | International Business Machines Corporation | Searchable instant messaging chat repositories using topic and identifier metadata |
WO2005110033A2 (en) | 2004-05-10 | 2005-11-24 | Nintendo Co., Ltd | Video game including time dilation effect and a storage medium sotring software for the video game |
US7308476B2 (en) | 2004-05-11 | 2007-12-11 | International Business Machines Corporation | Method and system for participant automatic re-invite and updating during conferencing |
US7436405B2 (en) | 2004-05-14 | 2008-10-14 | Microsoft Corporation | Terrain rendering using nested regular grids |
US7596596B2 (en) | 2004-06-24 | 2009-09-29 | International Business Machines Corporation | Chat marking and synchronization |
US7475354B2 (en) | 2004-07-09 | 2009-01-06 | International Business Machines Corporation | Method for generating a portal page |
US7426538B2 (en) | 2004-07-13 | 2008-09-16 | International Business Machines Corporation | Dynamic media content for collaborators with VOIP support for client communications |
US7698656B2 (en) | 2004-07-29 | 2010-04-13 | International Business Machines Corporation | Methods, apparatus and computer programs supporting shortcuts across a plurality of devices |
US7552177B2 (en) | 2004-07-29 | 2009-06-23 | International Business Machines Corporation | Method for determining availability of participation in instant messaging |
TWI271683B (en) | 2004-08-18 | 2007-01-21 | Benq Corp | Method for determining frame content and electronic display device therefor |
US7764954B2 (en) | 2004-09-21 | 2010-07-27 | Beyer Jr Malcolm K | Method of providing cell phones in a cell phone signal strength chart of multiple cell phones in a communication network |
US20060080613A1 (en) | 2004-10-12 | 2006-04-13 | Ray Savant | System and method for providing an interactive social networking and role playing game within a virtual community |
US20060085759A1 (en) | 2004-10-18 | 2006-04-20 | Claus Knapheide | User interface display system |
US7571224B2 (en) | 2004-10-29 | 2009-08-04 | International Business Machines Corporation | Method for using presence in a system management environment |
US7525964B2 (en) | 2004-11-03 | 2009-04-28 | International Business Machines Corporation | Mechanism for delivering messages to competing consumers in a point-to-point system |
US8176422B2 (en) | 2004-11-19 | 2012-05-08 | International Business Machines Corporation | Method for aligning demonstrated user actions with existing documentation |
US20060119598A1 (en) | 2004-12-08 | 2006-06-08 | Evil Twin Studios, Inc. | System and method for communicating travel progress within a virtual environment |
US20060123351A1 (en) | 2004-12-08 | 2006-06-08 | Evil Twin Studios, Inc. | System and method for communicating objects status within a virtual environment using translucency |
US20060135259A1 (en) | 2004-12-17 | 2006-06-22 | Nokia Corporation | System, game server, terminal, and method for game event notification in a multiplayer game |
US20060167591A1 (en) | 2005-01-26 | 2006-07-27 | Mcnally James T | Energy and cost savings calculation system |
US20070035548A1 (en) | 2005-08-12 | 2007-02-15 | Searete Llc | Rating technique for virtual world environment |
JP3880603B2 (en) | 2005-02-22 | 2007-02-14 | 株式会社コナミデジタルエンタテインメント | Image processing apparatus, image processing method, and program |
US8103640B2 (en) | 2005-03-02 | 2012-01-24 | International Business Machines Corporation | Method and apparatus for role mapping methodology for user registry migration |
US20080207322A1 (en) | 2005-03-21 | 2008-08-28 | Yosef Mizrahi | Method, System and Computer-Readable Code For Providing a Computer Gaming Device |
US7640587B2 (en) | 2005-03-29 | 2009-12-29 | International Business Machines Corporation | Source code repair method for malicious code detection |
US7467181B2 (en) | 2005-03-30 | 2008-12-16 | International Business Machines Corporation | System and method for context-specific instant messaging |
US7607129B2 (en) | 2005-04-07 | 2009-10-20 | International Business Machines Corporation | Method and apparatus for using virtual machine technology for managing parallel communicating applications |
US7506264B2 (en) | 2005-04-28 | 2009-03-17 | International Business Machines Corporation | Method and apparatus for presenting navigable data center information in virtual reality using leading edge rendering engines |
US20070005466A1 (en) | 2005-06-30 | 2007-01-04 | Capital One Financial Corp. | Systems and methods for managing a financial account that provides intangible rewards |
US7818671B2 (en) | 2005-08-29 | 2010-10-19 | Microsoft Corporation | Virtual navigation of menus |
US20080207327A1 (en) | 2007-02-20 | 2008-08-28 | Leviathan Entertainment, Llc | Virtual Environment with Alerts |
US9270976B2 (en) | 2005-11-02 | 2016-02-23 | Exelis Inc. | Multi-user stereoscopic 3-D panoramic vision system and method |
US7827208B2 (en) | 2006-08-11 | 2010-11-02 | Facebook, Inc. | Generating a feed of stories personalized for members of a social network |
US7466367B2 (en) | 2005-12-20 | 2008-12-16 | Sony Corporation | Mobile TV system and method with fast channel change |
US7443393B2 (en) | 2006-01-19 | 2008-10-28 | International Business Machines Corporation | Method, system, and program product for re-meshing of a three-dimensional input model using progressive implicit approximating levels |
US7792263B2 (en) | 2006-02-15 | 2010-09-07 | International Business Machines Corporation | Method, system, and computer program product for displaying images of conference call participants |
US20080086696A1 (en) | 2006-03-03 | 2008-04-10 | Cadcorporation.Com Inc. | System and Method for Using Virtual Environments |
US7843471B2 (en) | 2006-03-09 | 2010-11-30 | International Business Machines Corporation | Persistent authenticating mechanism to map real world object presence into virtual world object awareness |
US20070218965A1 (en) | 2006-03-15 | 2007-09-20 | Tilston Christopher I | Player deception in a video game |
US7567844B2 (en) | 2006-03-17 | 2009-07-28 | Honeywell International Inc. | Building management system |
US7720777B2 (en) | 2006-04-11 | 2010-05-18 | Palo Alto Research Center Incorporated | Method, device, and program product to monitor the social health of a persistent virtual environment |
GB0609070D0 (en) | 2006-05-09 | 2006-06-14 | Ibm | Postponing an instant messaging session |
US7503007B2 (en) | 2006-05-16 | 2009-03-10 | International Business Machines Corporation | Context enhanced messaging and collaboration system |
WO2007146967A2 (en) | 2006-06-12 | 2007-12-21 | Google Inc. | Markup language for interactive geographic information system |
US7945620B2 (en) | 2006-06-13 | 2011-05-17 | International Business Machines Corporation | Chat tool for concurrently chatting over more than one interrelated chat channels |
US7844663B2 (en) | 2006-07-10 | 2010-11-30 | International Business Machines Corporation | Methods, systems, and computer program products for gathering information and statistics from a community of nodes in a network |
KR100829561B1 (en) | 2006-08-24 | 2008-05-15 | 삼성전자주식회사 | Method for rendering 3D graphic data and apparatus therefore |
US7580888B2 (en) | 2006-09-12 | 2009-08-25 | International Business Machines Corporation | Facilitating simulated purchases of items by virtual representations of participants in computer-based simulations |
US8277316B2 (en) | 2006-09-14 | 2012-10-02 | Nintendo Co., Ltd. | Method and apparatus for using a common pointing input to control 3D viewpoint and object targeting |
US7940265B2 (en) | 2006-09-27 | 2011-05-10 | International Business Machines Corporation | Multiple spacial indexes for dynamic scene management in graphics rendering |
US7884819B2 (en) | 2006-09-27 | 2011-02-08 | International Business Machines Corporation | Pixel color accumulation in a ray tracing image processing system |
US8089481B2 (en) | 2006-09-28 | 2012-01-03 | International Business Machines Corporation | Updating frame divisions based on ray tracing image processing system performance |
US9329743B2 (en) | 2006-10-04 | 2016-05-03 | Brian Mark Shuster | Computer simulation method with user-defined transportation and layout |
US7808500B2 (en) | 2006-11-21 | 2010-10-05 | International Business Machines Corporation | Method for improving spatial index efficiency by jittering splitting planes |
US7782318B2 (en) | 2006-11-22 | 2010-08-24 | International Business Machines Corporation | Method for reducing network bandwidth by delaying shadow ray generation |
US8139060B2 (en) | 2006-11-28 | 2012-03-20 | International Business Machines Corporation | Ray tracing image processing system |
US7768514B2 (en) | 2006-12-19 | 2010-08-03 | International Business Machines Corporation | Simultaneous view and point navigation |
US7893936B2 (en) | 2007-01-12 | 2011-02-22 | International Business Machines Corporation | Generating efficient spatial indexes for predictably dynamic objects |
US8022950B2 (en) | 2007-01-26 | 2011-09-20 | International Business Machines Corporation | Stochastic culling of rays with increased depth of recursion |
US8085267B2 (en) | 2007-01-30 | 2011-12-27 | International Business Machines Corporation | Stochastic addition of rays in a ray tracing image processing system |
US7765478B2 (en) | 2007-02-06 | 2010-07-27 | International Business Machines Corporation | Scheduling and reserving virtual meeting locations in a calendaring application |
US8018453B2 (en) | 2007-02-09 | 2011-09-13 | International Business Machines Corporation | Deferred acceleration data structure optimization for improved performance |
US7719532B2 (en) | 2007-02-09 | 2010-05-18 | International Business Machines Corporation | Efficient and flexible data organization for acceleration data structure nodes |
US7796128B2 (en) | 2007-02-14 | 2010-09-14 | International Business Machines Corporation | Dynamically load balancing game physics using real-time object scaling |
US8004518B2 (en) | 2007-02-14 | 2011-08-23 | International Business Machines Corporation | Combined spatial index for static and dynamic objects within a three-dimensional scene |
US20090222276A1 (en) | 2008-03-02 | 2009-09-03 | Todd Harold Romney | Apparatus, System, and Method for Cloning Web Page Designs or Avatar Designs |
WO2008109798A2 (en) * | 2007-03-07 | 2008-09-12 | Ideaflood, Inc. | Multi-instance, multi-user animation platforms |
US8139780B2 (en) | 2007-03-20 | 2012-03-20 | International Business Machines Corporation | Using ray tracing for real time audio synthesis |
US8234234B2 (en) | 2007-03-20 | 2012-07-31 | International Business Machines Corporation | Utilizing ray tracing for enhanced artificial intelligence path-finding |
US7773087B2 (en) | 2007-04-19 | 2010-08-10 | International Business Machines Corporation | Dynamically configuring and selecting multiple ray tracing intersection methods |
US7990394B2 (en) | 2007-05-25 | 2011-08-02 | Google Inc. | Viewing and navigating within panoramic images, and applications thereof |
US8788334B2 (en) | 2007-06-15 | 2014-07-22 | Social Mecca, Inc. | Online marketing platform |
US7990387B2 (en) | 2007-08-16 | 2011-08-02 | International Business Machines Corporation | Method and apparatus for spawning projected avatars in a virtual universe |
US7747679B2 (en) | 2007-08-17 | 2010-06-29 | International Business Machines Corporation | Managing a communication availability status |
US20090063228A1 (en) | 2007-08-28 | 2009-03-05 | Forbes Jr Joseph W | Method and apparatus for providing a virtual electric utility |
US7945802B2 (en) | 2007-09-17 | 2011-05-17 | International Business Machines Corporation | Modifying time progression rates in a virtual universe |
US8245241B2 (en) | 2007-10-02 | 2012-08-14 | International Business Machines Corporation | Arrangements for interactivity between a virtual universe and the world wide web |
US8131740B2 (en) | 2007-10-09 | 2012-03-06 | International Business Machines Corporation | User-specific search indexing within a virtual environment |
US9289681B2 (en) | 2007-10-09 | 2016-03-22 | International Business Machines Corporation | Suggested actions within a virtual environment |
US8055656B2 (en) | 2007-10-10 | 2011-11-08 | International Business Machines Corporation | Generating a user-specific search index of content within a virtual environment |
US8063905B2 (en) | 2007-10-11 | 2011-11-22 | International Business Machines Corporation | Animating speech of an avatar representing a participant in a mobile communication |
US7792801B2 (en) | 2007-10-12 | 2010-09-07 | International Business Machines Corporation | Controlling and using virtual universe wish lists |
US8128487B2 (en) | 2007-10-15 | 2012-03-06 | International Business Machines Corporation | Compensating participants of virtual environments |
US9908046B2 (en) * | 2007-10-26 | 2018-03-06 | International Business Machines Corporation | System for personalizing content presented in an avatar wait state |
US8056121B2 (en) | 2007-10-26 | 2011-11-08 | International Business Machines Corporation | Virtual universe account protection |
US7743095B2 (en) | 2007-10-29 | 2010-06-22 | International Business Machines Corporation | Device, method and computer program product for providing an alert indication |
US20090113448A1 (en) | 2007-10-29 | 2009-04-30 | Andrew Bryan Smith | Satisfying a request for an action in a virtual world |
US20090113319A1 (en) | 2007-10-30 | 2009-04-30 | Dawson Christopher J | Developing user profiles in virtual worlds |
US8214750B2 (en) | 2007-10-31 | 2012-07-03 | International Business Machines Corporation | Collapsing areas of a region in a virtual universe to conserve computing resources |
US8145725B2 (en) | 2007-10-31 | 2012-03-27 | International Business Machines Corporation | Updating data stores of virtual worlds based on data stores external to the virtual worlds |
US8013861B2 (en) | 2007-10-31 | 2011-09-06 | International Business Machines Corporation | Reducing a display quality of an area in a virtual universe to conserve computing resources |
US8127297B2 (en) | 2007-10-31 | 2012-02-28 | International Business Machines Corporation | Smart virtual objects of a virtual universe independently select display quality adjustment settings to conserve energy consumption of resources supporting the virtual universe |
US8140982B2 (en) | 2007-11-08 | 2012-03-20 | International Business Machines Corporation | Method and system for splitting virtual universes into distinct entities |
US8102334B2 (en) | 2007-11-15 | 2012-01-24 | International Businesss Machines Corporation | Augmenting reality for a user |
US8062130B2 (en) | 2007-11-16 | 2011-11-22 | International Business Machines Corporation | Allowing an alternative action in a virtual world |
US8105165B2 (en) | 2007-11-16 | 2012-01-31 | International Business Machines Corporation | Controlling interaction between protected media |
US8165350B2 (en) | 2007-11-27 | 2012-04-24 | International Business Machines Corporation | Assessment of a view through the overlay of maps |
US8127235B2 (en) | 2007-11-30 | 2012-02-28 | International Business Machines Corporation | Automatic increasing of capacity of a virtual space in a virtual world |
US8151191B2 (en) | 2007-12-07 | 2012-04-03 | International Business Machines Corporation | Managing objectionable material in 3D immersive virtual worlds |
US8149241B2 (en) | 2007-12-10 | 2012-04-03 | International Business Machines Corporation | Arrangements for controlling activities of an avatar |
US8239775B2 (en) | 2007-12-14 | 2012-08-07 | International Business Machines Corporation | Method and apparatus for a computer simulated environment |
US8117551B2 (en) | 2007-12-18 | 2012-02-14 | International Business Machines Corporation | Computer system and method of using presence visualizations of avatars as persistable virtual contact objects |
US8046700B2 (en) | 2007-12-21 | 2011-10-25 | International Business Machines Corporation | System for managing encounters in a virtual world environment |
US20090164919A1 (en) | 2007-12-24 | 2009-06-25 | Cary Lee Bates | Generating data for managing encounters in a virtual world environment |
US7886045B2 (en) | 2007-12-26 | 2011-02-08 | International Business Machines Corporation | Media playlist construction for virtual environments |
US7890623B2 (en) | 2007-12-27 | 2011-02-15 | International Business Machines Corporation | Generating data for media playlist construction in virtual environments |
US8099668B2 (en) | 2008-01-07 | 2012-01-17 | International Business Machines Corporation | Predator and abuse identification and prevention in a virtual environment |
US8140978B2 (en) | 2008-01-16 | 2012-03-20 | International Business Machines Corporation | System and method for providing information in a virtual world |
US8140340B2 (en) | 2008-01-18 | 2012-03-20 | International Business Machines Corporation | Using voice biometrics across virtual environments in association with an avatar's movements |
US8230338B2 (en) | 2008-01-21 | 2012-07-24 | International Business Machines Corporation | Game determination of tag relevance for social bookmarking |
US8447993B2 (en) | 2008-01-23 | 2013-05-21 | Palo Alto Research Center Incorporated | Integrated energy savings and business operations in data centers |
US7921128B2 (en) | 2008-02-05 | 2011-04-05 | International Business Machines Corporation | Method and system for merging disparate virtual universes entities |
US8145676B2 (en) | 2008-02-11 | 2012-03-27 | International Business Machines Corporation | Shared inventory item donation in a virtual universe |
US8018462B2 (en) | 2008-02-11 | 2011-09-13 | International Business Machines Corporation | Pack avatar for shared inventory in a virtual universe |
WO2009104564A1 (en) | 2008-02-20 | 2009-08-27 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Conversation server in virtual space, method for conversation and computer program |
US8171407B2 (en) | 2008-02-21 | 2012-05-01 | International Business Machines Corporation | Rating virtual world merchandise by avatar visits |
US7447996B1 (en) | 2008-02-28 | 2008-11-04 | International Business Machines Corporation | System for using gender analysis of names to assign avatars in instant messaging applications |
JP5159375B2 (en) | 2008-03-07 | 2013-03-06 | インターナショナル・ビジネス・マシーンズ・コーポレーション | Object authenticity determination system and method in metaverse, and computer program thereof |
US8171559B2 (en) | 2008-03-13 | 2012-05-01 | International Business Machines Corporation | Detecting a phishing entity in a virtual universe |
US8006182B2 (en) | 2008-03-18 | 2011-08-23 | International Business Machines Corporation | Method and computer program product for implementing automatic avatar status indicators |
US8095881B2 (en) | 2008-03-24 | 2012-01-10 | International Business Machines Corporation | Method for locating a teleport target station in a virtual world |
US7427980B1 (en) | 2008-03-31 | 2008-09-23 | International Business Machines Corporation | Game controller spatial detection |
US8132235B2 (en) | 2008-04-03 | 2012-03-06 | International Business Machines Corporation | Method, system, and computer program product for providing e-token based access control for virtual world spaces |
US8214751B2 (en) | 2008-04-15 | 2012-07-03 | International Business Machines Corporation | Dynamic spawning of focal point objects within a virtual universe system |
US8028021B2 (en) | 2008-04-23 | 2011-09-27 | International Business Machines Corporation | Techniques for providing presentation material in an on-going virtual meeting |
US8001161B2 (en) | 2008-04-24 | 2011-08-16 | International Business Machines Corporation | Cloning objects in a virtual universe |
US8184116B2 (en) | 2008-04-24 | 2012-05-22 | International Business Machines Corporation | Object based avatar tracking |
US8233005B2 (en) | 2008-04-24 | 2012-07-31 | International Business Machines Corporation | Object size modifications based on avatar distance |
US8659623B2 (en) | 2008-04-25 | 2014-02-25 | International Business Machines Corporation | Three-dimensional (3D) virtual world wormholes |
US8217953B2 (en) | 2008-04-25 | 2012-07-10 | International Business Machines Corporation | Anisotropic texture filtering with texture data prefetching |
US7882243B2 (en) | 2008-05-01 | 2011-02-01 | International Business Machines Corporation | Connecting external devices to a gaming voice chat service |
US8584025B2 (en) | 2008-05-02 | 2013-11-12 | International Business Machines Corporation | Virtual world teleportation |
US7996164B2 (en) | 2008-05-06 | 2011-08-09 | International Business Machines Corporation | Managing energy usage by devices associated with a virtual universe resource conservation region |
US8199145B2 (en) | 2008-05-06 | 2012-06-12 | International Business Machines Corporation | Managing use limitations in a virtual universe resource conservation region |
US7873485B2 (en) | 2008-05-08 | 2011-01-18 | International Business Machines Corporation | Indicating physical site energy usage through a virtual environment |
US20090281885A1 (en) | 2008-05-08 | 2009-11-12 | International Business Machines Corporation | Using virtual environment incentives to reduce real world energy usage |
US8051462B2 (en) | 2008-05-09 | 2011-11-01 | International Business Machines Corporation | Secure communication modes in a virtual universe |
US7970837B2 (en) | 2008-05-12 | 2011-06-28 | International Business Machines Corporation | Method to invite users to a virtual world using instant messaging |
US8184092B2 (en) | 2008-05-22 | 2012-05-22 | International Business Machines Corporation | Simulation of writing on game consoles through the use of motion-sensing technology |
US8099338B2 (en) | 2008-06-09 | 2012-01-17 | International Business Machines Corporation | Management of virtual universe item returns |
US8185450B2 (en) | 2008-06-12 | 2012-05-22 | International Business Machines Corporation | Method and system for self-service manufacture and sale of customized virtual goods |
US8187067B2 (en) | 2008-06-13 | 2012-05-29 | International Business Machines Corporation | Automatic transformation of inventory items in a virtual universe |
US7970840B2 (en) | 2008-07-02 | 2011-06-28 | International Business Machines Corporation | Method to continue instant messaging exchange when exiting a virtual world |
US8510681B2 (en) | 2008-07-11 | 2013-08-13 | International Business Machines Corporation | RFID reader integration to virtual world monitoring |
US8134560B2 (en) | 2008-07-25 | 2012-03-13 | International Business Machines Corporation | Method for avatar wandering in a computer based interactive environment |
US8022948B2 (en) | 2008-07-29 | 2011-09-20 | International Business Machines Corporation | Image capture and buffering in a virtual world using situational measurement averages |
US8026913B2 (en) | 2008-07-29 | 2011-09-27 | International Business Machines Corporation | Image capture and buffering in a virtual world |
US7882222B2 (en) | 2008-07-31 | 2011-02-01 | International Business Machines Corporation | Virtual environment module bundle |
US7515136B1 (en) | 2008-07-31 | 2009-04-07 | International Business Machines Corporation | Collaborative and situationally aware active billboards |
US8037416B2 (en) | 2008-08-06 | 2011-10-11 | International Business Machines Corporation | Presenting and filtering objects in a virtual world |
US9268385B2 (en) | 2008-08-20 | 2016-02-23 | International Business Machines Corporation | Introducing selective energy efficiency in a virtual environment |
US20100057625A1 (en) | 2008-09-03 | 2010-03-04 | International Business Machines Corporation | Negotiation of power rates based on dynamic workload distribution |
US8086544B2 (en) | 2008-09-03 | 2011-12-27 | International Business Machines Corporation | Analysis of energy-related factors for selecting computational job locations |
US20100057529A1 (en) | 2008-09-03 | 2010-03-04 | International Business Machines Corporation | Provider-requested relocation of computerized workloads |
US8234016B2 (en) | 2008-09-03 | 2012-07-31 | International Business Machines Corporation | Power metadata transfer over power lines |
US8214843B2 (en) | 2008-09-03 | 2012-07-03 | International Business Machines Corporation | Framework for distribution of computer workloads based on real-time energy costs |
US8041614B2 (en) | 2008-09-04 | 2011-10-18 | International Business Machines Corporation | Inventory item expiration and renewal in a virtual universe |
US8019858B2 (en) | 2008-09-09 | 2011-09-13 | International Business Machines Corporation | System and method for utilizing system lag to send facts to an end user |
US8203561B2 (en) | 2008-09-10 | 2012-06-19 | International Business Machines Corporation | Determining valued excursion corridors in virtual worlds |
US8082245B2 (en) | 2008-09-11 | 2011-12-20 | International Business Machines Corporation | Providing location information within a virtual world |
US8127236B2 (en) | 2008-09-12 | 2012-02-28 | International Business Machines Corporation | Virtual universe subject matter expert assistance |
US8032799B2 (en) | 2008-09-17 | 2011-10-04 | International Business Machines Corporation | System and method for managing server performance degradation in a virtual universe |
US8176421B2 (en) | 2008-09-26 | 2012-05-08 | International Business Machines Corporation | Virtual universe supervisory presence |
US8241131B2 (en) | 2008-09-26 | 2012-08-14 | International Business Machines Corporation | Avatar protection within a virtual universe |
US8347235B2 (en) | 2008-09-26 | 2013-01-01 | International Business Machines Corporation | Method and system of providing information during content breakpoints in a virtual universe |
US8108774B2 (en) | 2008-09-26 | 2012-01-31 | International Business Machines Corporation | Avatar appearance transformation in a virtual universe |
US9244513B2 (en) | 2008-10-28 | 2016-01-26 | International Business Machines Corporation | Reduction of computer resource use in a virtual universe |
US8092288B2 (en) | 2008-10-31 | 2012-01-10 | International Business Machines Corporation | Managing multi-player video game input |
US8028022B2 (en) | 2008-10-31 | 2011-09-27 | International Business Machines Corporation | Generating content recommendations from an online game |
US8113959B2 (en) | 2008-12-04 | 2012-02-14 | International Business Machines Corporation | Method and system for rendering the scenes of a role playing game in a metaverse |
US8219616B2 (en) | 2008-12-15 | 2012-07-10 | International Business Machines Corporation | Use of information channels to provide communications in a virtual environment |
US8214433B2 (en) | 2008-12-15 | 2012-07-03 | International Business Machines Corporation | System and method to provide context for an automated agent to service multiple avatars within a virtual universe |
US8171408B2 (en) | 2008-12-17 | 2012-05-01 | International Business Machines Corporation | Dynamic location generation within a virtual world |
US8103959B2 (en) | 2009-01-07 | 2012-01-24 | International Business Machines Corporation | Gesture exchange via communications in virtual world applications |
US8185829B2 (en) | 2009-01-07 | 2012-05-22 | International Business Machines Corporation | Method and system for rating exchangeable gestures via communications in virtual world applications |
US8174541B2 (en) | 2009-01-19 | 2012-05-08 | International Business Machines Corporation | Dividing three-dimensional space into location based virtual packets |
US8425326B2 (en) | 2009-02-20 | 2013-04-23 | Activision Publishing, Inc. | Social network system and method for use with and integration into a video game |
US8506372B2 (en) | 2009-02-20 | 2013-08-13 | Activision Publishing, Inc. | System and method configured to provide a location-based vehicular racing videogame |
US9633465B2 (en) | 2009-02-28 | 2017-04-25 | International Business Machines Corporation | Altering avatar appearances based on avatar population in a virtual universe |
US8245283B2 (en) | 2009-03-03 | 2012-08-14 | International Business Machines Corporation | Region access authorization in a virtual environment |
US8918728B2 (en) | 2009-06-26 | 2014-12-23 | International Business Machines Corporation | Rule-based content filtering in a virtual universe |
US8234579B2 (en) | 2009-07-20 | 2012-07-31 | International Business Machines Corporation | Aging and elimination of avatars and associated objects from computer simulated displayed virtual universes |
US8972870B2 (en) | 2009-08-27 | 2015-03-03 | International Business Machines Corporation | Providing alternative representations of virtual content in a virtual universe |
US8326855B2 (en) | 2009-12-02 | 2012-12-04 | International Business Machines Corporation | System and method for abstraction of objects for cross virtual universe deployment |
US9205328B2 (en) | 2010-02-18 | 2015-12-08 | Activision Publishing, Inc. | Videogame system and method that enables characters to earn virtual fans by completing secondary objectives |
US8549125B2 (en) | 2010-03-11 | 2013-10-01 | International Business Machines Corporation | Environmentally sustainable computing in a distributed computer network |
US9682324B2 (en) | 2010-05-12 | 2017-06-20 | Activision Publishing, Inc. | System and method for enabling players to participate in asynchronous, competitive challenges |
US10376792B2 (en) | 2014-07-03 | 2019-08-13 | Activision Publishing, Inc. | Group composition matchmaking system and method for multiplayer video games |
-
2007
- 2007-11-30 US US11/947,829 patent/US8127235B2/en active Active
-
2011
- 2011-12-30 US US13/341,255 patent/US9152914B2/en active Active
-
2015
- 2015-10-05 US US14/875,270 patent/US10284454B2/en active Active
-
2019
- 2019-03-18 US US16/356,709 patent/US11972086B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6772195B1 (en) * | 1999-10-29 | 2004-08-03 | Electronic Arts, Inc. | Chat clusters for a virtual world application |
US6985937B1 (en) * | 2000-05-11 | 2006-01-10 | Ensim Corporation | Dynamically modifying the resources of a virtual server |
US20020015003A1 (en) * | 2000-08-07 | 2002-02-07 | Masami Kato | Virtual space system structured by plural user terminals and server device |
US7509369B1 (en) * | 2001-07-11 | 2009-03-24 | Swsoft Holdings, Ltd. | Balancing shared servers in virtual environments |
US7386799B1 (en) * | 2002-11-21 | 2008-06-10 | Forterra Systems, Inc. | Cinematic techniques in avatar-centric communication during a multi-user online simulation |
US7587492B2 (en) * | 2005-07-29 | 2009-09-08 | Hewlett-Packard Development Company, L.P. | Dynamic performance management for virtual servers |
US20080059972A1 (en) * | 2006-08-31 | 2008-03-06 | Bmc Software, Inc. | Automated Capacity Provisioning Method Using Historical Performance Data |
US7814154B1 (en) * | 2007-06-26 | 2010-10-12 | Qurio Holdings, Inc. | Message transformations in a distributed virtual world |
US20090077475A1 (en) * | 2007-09-17 | 2009-03-19 | Areae, Inc. | System for providing virtual spaces with separate places and/or acoustic areas |
US20090077158A1 (en) * | 2007-09-17 | 2009-03-19 | Areae, Inc. | System and method for embedding a view of a virtual space in a banner ad and enabling user interaction with the virtual space within the banner ad |
US20090089157A1 (en) * | 2007-09-27 | 2009-04-02 | Rajesh Narayanan | Method and apparatus for controlling an avatar's landing zone in a virtual environment |
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090267938A1 (en) * | 2008-04-25 | 2009-10-29 | Nicol Ii Wiliam B | Three-dimensional (3d) virtual world wormholes |
US8659623B2 (en) * | 2008-04-25 | 2014-02-25 | International Business Machines Corporation | Three-dimensional (3D) virtual world wormholes |
US20100169799A1 (en) * | 2008-12-30 | 2010-07-01 | Nortel Networks Limited | Method and Apparatus for Enabling Presentations to Large Numbers of Users in a Virtual Environment |
US8239776B2 (en) * | 2009-01-14 | 2012-08-07 | International Business Machines Corporation | Behavior detection and alert in virtual worlds based on spatial and temporal criteria |
US20100180214A1 (en) * | 2009-01-14 | 2010-07-15 | International Business Machines Corporation | Predatory Behavior Detection and Alert in Virtual Worlds Based on Spatial and Temporal Criteria |
US20100227682A1 (en) * | 2009-03-04 | 2010-09-09 | Microsoft Corporation | Awarding of avatar items in video game environment |
US20110055734A1 (en) * | 2009-08-31 | 2011-03-03 | Ganz | System and method for limiting the number of characters displayed in a common area |
US20110201423A1 (en) * | 2009-08-31 | 2011-08-18 | Ganz | System and method for limiting the number of characters displayed in a common area |
US8458602B2 (en) * | 2009-08-31 | 2013-06-04 | Ganz | System and method for limiting the number of characters displayed in a common area |
WO2011022841A1 (en) * | 2009-08-31 | 2011-03-03 | Ganz | System and method for limiting the number of characters displayed in a common area |
US9403089B2 (en) | 2009-08-31 | 2016-08-02 | Ganz | System and method for limiting the number of characters displayed in a common area |
US20110165939A1 (en) * | 2010-01-05 | 2011-07-07 | Ganz | Method and system for providing a 3d activity in a virtual presentation |
US8719730B2 (en) | 2010-04-23 | 2014-05-06 | Ganz | Radial user interface and system for a virtual world game |
US9050534B2 (en) | 2010-04-23 | 2015-06-09 | Ganz | Achievements for a virtual world game |
US20120026177A1 (en) * | 2010-08-02 | 2012-02-02 | International Business Machines Corporation | Resizing objects in regions of virtual universes |
US9024977B2 (en) * | 2010-08-02 | 2015-05-05 | International Business Machines Corporation | Resizing objects in regions of virtual universes |
US8458209B2 (en) | 2010-08-24 | 2013-06-04 | International Business Machines Corporation | Virtual world query response system |
US9378296B2 (en) | 2010-08-24 | 2016-06-28 | International Business Machines Corporation | Virtual world construction |
US9022868B2 (en) | 2011-02-10 | 2015-05-05 | Ganz | Method and system for creating a virtual world where user-controlled characters interact with non-player characters |
US8790183B2 (en) | 2011-02-15 | 2014-07-29 | Ganz | Arcade in a virtual world with reward |
US20150256501A1 (en) * | 2012-08-28 | 2015-09-10 | Glowbl | Graphical User Interface, Method, Computer Program and Corresponding Storage Medium |
CN104769539A (en) * | 2012-08-28 | 2015-07-08 | Glowbl公司 | Graphical user interface, method, computer program and corresponding storage medium |
US10382381B2 (en) * | 2012-08-28 | 2019-08-13 | Glowbl | Graphical user interface for simultaneous use by remote users each having corresponding pictograms in a virtual space of the graphical user interface, method, computer program and corresponding storage medium |
US20140129342A1 (en) * | 2012-11-06 | 2014-05-08 | Apple Inc. | Dynamically adjusting invitational content placement opportunities in interactive environments |
CN103971416A (en) * | 2012-12-21 | 2014-08-06 | 达索系统公司 | Partition of a 3D scene into a plurality of zones processed by a computing resource |
JP2014123368A (en) * | 2012-12-21 | 2014-07-03 | Dassault Systemes | Partition of 3d scene into plural zones processed by computing resource |
EP2745892A1 (en) * | 2012-12-21 | 2014-06-25 | Dassault Systèmes | Partition of a 3D scene into a plurality of zones processed by a computing resource |
US9454842B2 (en) | 2012-12-21 | 2016-09-27 | Dassault Systemes | Partition of a 3D scene into a plurality of zones processed by a computing resource |
US20150220452A1 (en) * | 2014-01-31 | 2015-08-06 | Lsi Corporation | System, Method and Computer-Readable Medium for Dynamically Mapping a Non-Volatile Memory Store |
US10268592B2 (en) * | 2014-01-31 | 2019-04-23 | Avago Technologies International Sales Pte. Limited | System, method and computer-readable medium for dynamically mapping a non-volatile memory store |
US11536796B2 (en) * | 2018-05-29 | 2022-12-27 | Tencent Technology (Shenzhen) Company Limited | Sound source determining method and apparatus, and storage medium |
US11971494B2 (en) * | 2018-05-29 | 2024-04-30 | Tencent Technology (Shenzhen) Company Limited | Sound source determining method and apparatus, and storage medium |
Also Published As
Publication number | Publication date |
---|---|
US10284454B2 (en) | 2019-05-07 |
US20160164769A1 (en) | 2016-06-09 |
US20200084133A1 (en) | 2020-03-12 |
US11972086B2 (en) | 2024-04-30 |
US8127235B2 (en) | 2012-02-28 |
US9152914B2 (en) | 2015-10-06 |
US20120124189A1 (en) | 2012-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11972086B2 (en) | Automatic increasing of capacity of a virtual space in a virtual world | |
US8659623B2 (en) | Three-dimensional (3D) virtual world wormholes | |
US10516577B2 (en) | Graceful scaling in software driven networks | |
US9526994B2 (en) | Deferred teleportation or relocation in virtual worlds | |
US9324021B2 (en) | Avoiding non-intentional separation of avatars in a virtual world | |
US20170151496A1 (en) | Service for generating graphics object data | |
WO2012135231A2 (en) | Creating virtual areas for realtime communications | |
US20150133216A1 (en) | View generation based on shared state | |
US9849384B1 (en) | Viewport selection system | |
US10112110B1 (en) | Initiating a game session with broadcast subscribers | |
US20150130814A1 (en) | Data collection for multiple view generation | |
CN111586164A (en) | Sharing method and succession method of remote cloud desktop, information processing method and electronic equipment | |
US20150130815A1 (en) | Multiple parallel graphics processing units | |
CN105978938A (en) | Service processing equipment service status determining method and scheduling equipment | |
CN113617026B (en) | Cloud game processing method and device, computer equipment and storage medium | |
CN104219404A (en) | Communication network emergency plan drill method, system and server | |
KR20180089076A (en) | Apparatus and method for providing chatting service | |
CN106161196A (en) | A kind of obtain the method for HTTP message state, equipment and system | |
CN104978327A (en) | Data query method, management control node and target data node | |
US10904223B1 (en) | Stream sniping prevention | |
CN112866616A (en) | Conference control method, server and computer storage medium | |
Anthes et al. | An adaptive network architecture for close-coupled collaboration in distributed virtual environments | |
KR101764026B1 (en) | Simulation based Pre-Planning Method and System for Optimizing the Transport on National and International Events | |
CN104199737B (en) | A kind of method and apparatus for synchronizing handled image | |
CN104200354A (en) | Information processing method and electronic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTERNATIONAL BUSINESS MACHINES CORPORATION, NEW Y Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HAGGAR, PETER F.;BOKOR, BRIAN R.;HOUSE, DANIEL E.;AND OTHERS;REEL/FRAME:020179/0127 Effective date: 20071126 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: ACTIVISION PUBLISHING, INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTERNATIONAL BUSINESS MACHINES CORPORATION;REEL/FRAME:029900/0285 Effective date: 20121231 |
|
AS | Assignment |
Owner name: BANK OF AMERICA, N.A., TEXAS Free format text: SECURITY AGREEMENT;ASSIGNOR:ACTIVISION PUBLISHING, INC.;REEL/FRAME:032240/0257 Effective date: 20140131 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: ACTIVISION ENTERTAINMENT HOLDINGS, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:040381/0487 Effective date: 20161014 Owner name: ACTIVISION ENTERTAINMENT HOLDINGS, INC., CALIFORNI Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:040381/0487 Effective date: 20161014 Owner name: ACTIVISION PUBLISHING, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:040381/0487 Effective date: 20161014 Owner name: ACTIVISION BLIZZARD INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:040381/0487 Effective date: 20161014 Owner name: BLIZZARD ENTERTAINMENT, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A.;REEL/FRAME:040381/0487 Effective date: 20161014 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |