US20090137114A1 - Method of making semiconductor device - Google Patents

Method of making semiconductor device Download PDF

Info

Publication number
US20090137114A1
US20090137114A1 US12/273,795 US27379508A US2009137114A1 US 20090137114 A1 US20090137114 A1 US 20090137114A1 US 27379508 A US27379508 A US 27379508A US 2009137114 A1 US2009137114 A1 US 2009137114A1
Authority
US
United States
Prior art keywords
etching
conductive layer
etching stopper
interlayer insulating
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/273,795
Inventor
Katsuhiro Uesugi
Katsuo Katayama
Katsuhisa Sakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Original Assignee
Renesas Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp filed Critical Renesas Technology Corp
Priority to US12/273,795 priority Critical patent/US20090137114A1/en
Publication of US20090137114A1 publication Critical patent/US20090137114A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76834Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers formation of thin insulating films on the sidewalls or on top of conductors

Definitions

  • the present invention relates to a semiconductor device having an interconnection connected to a conductive layer present above a semiconductor substrate as well as to a manufacturing method thereof.
  • a method of manufacturing a semiconductor device including the step of forming a hole penetrating a second interlayer insulating film covering a conductive layer formed on a first interlayer insulating film and reaching the conductive layer has been employed.
  • the hole if a position at which the hole is formed is displaced from a position of the conductive layer, the hole reaches the first interlayer insulating film under the conductive layer.
  • Such penetration caused by misalignment of the hole is more likely in a recent semiconductor device that has been reduced in size.
  • Japanese Patent Laying-Open No. 05-299515 discloses a technique to provide an etching stopper film solely on a sidewall of the conductive layer.
  • Japanese Patent Laying-Open No. 2000-294631 discloses a technique to provide double etching stopper film in a damascene structure.
  • Japanese Patent Laying-Open No. 09-007970 discloses a technique to provide an etching stopper film only on a lower side of the conductive layer.
  • An object of the present invention is to provide a semiconductor device in which a hole reaching a conductive layer is prevented from reaching an interlayer insulating film provided under the conductive layer as well as a manufacturing method thereof.
  • a semiconductor device includes a first interlayer insulating film, a first etching stopper film formed on the first interlayer insulating film, a conductive layer formed on the first etching stopper film, and a second etching stopper film formed at least on the first etching stopper film.
  • the semiconductor device includes a second interlayer insulating film formed to cover the second etching stopper film and the conductive layer, and an interconnection formed to penetrate the second interlayer insulating film in a direction of thickness and to come in contact with the conductive layer.
  • a sandwich structure in which the conductive layer is sandwiched by the first etching stopper film and the second etching stopper film is formed. Therefore, when a method of manufacturing a semiconductor device which will be described later is employed, a hole reaching a first insulating layer, i.e., what is called hole penetration, can be prevented in forming the hole in which an interconnection is embedded.
  • a method of manufacturing a semiconductor device includes the steps of forming a first interlayer insulating film, forming a first etching stopper film on the first interlayer insulating film, and forming a conductive layer on the first etching stopper film.
  • the method of manufacturing a semiconductor device includes the steps of forming a second etching stopper film to cover the first etching stopper film and the conductive layer, forming a second interlayer insulating film on the second etching stopper film, forming a hole penetrating the second interlayer insulating film in a direction of thickness and reaching the conductive layer, and forming an interconnection in the hole.
  • the step of forming a hole includes the steps of etching the second interlayer insulating film under a first etching condition, and etching the second etching stopper film under a second etching condition different from the first etching condition.
  • Each of the first etching stopper film and the second etching stopper film described above may include any one of a silicon nitride film and a silicon rich oxide (SRO) film.
  • FIG. 1 is a diagram for illustrating a structure of a semiconductor device according to an embodiment.
  • FIGS. 2 to 6 are diagrams illustrating a method of manufacturing a semiconductor device according to the embodiment.
  • FIGS. 7 and 8 are diagrams illustrating a method of manufacturing a semiconductor device according to a comparative example.
  • a semiconductor device and a manufacturing method thereof according to an embodiment of the present invention will be described hereinafter with reference to the drawings. Initially, a structure of the semiconductor device according to the embodiment of the present invention will be described with reference to FIG. 1 .
  • the semiconductor device includes an interlayer insulating film 1 provided above a semiconductor substrate.
  • An etching stopper film 2 is formed on interlayer insulating film 1 .
  • a conductive layer 3 is formed on etching stopper film 2 .
  • An etching stopper film 4 is formed to cover an upper surface of etching stopper film 2 , one side surface of conductive layer 3 , and a part of an upper surface of conductive layer 3 .
  • an interlayer insulating film 5 is formed to cover etching stopper film 4 .
  • An interconnection 8 penetrating interlayer insulating film 5 in a direction of thickness and reaching conductive layer 3 is formed.
  • FIG. 1 A method of manufacturing the semiconductor device shown in FIG. 1 will be described with reference to FIGS. 2 to 6 .
  • interlayer insulating film 1 is formed above the semiconductor substrate.
  • etching stopper film 2 is formed on interlayer insulating film 1 .
  • conductive layer 3 is formed on etching stopper film 2 . The structure shown in FIG. 2 is thus obtained.
  • etching stopper film 4 is formed to cover etching stopper film 2 and the upper surface and opposing side surfaces of conductive layer 3 . Then, interlayer insulating film 5 is formed to cover etching stopper film 4 . Thereafter, a resist film 6 that has been patterned to form a hole reaching conductive layer 3 is formed. The structure shown in FIG. 4 is thus obtained.
  • interlayer insulating film 5 is etched to expose etching stopper film 4 .
  • etching stopper film 4 is etched under an etching condition different from that for etching interlayer insulating film 5 .
  • a hole 7 reaching conductive layer 3 is thus formed. Conductive layer 3 is exposed on a bottom surface of hole 7 .
  • interlayer insulating film 5 present above conductive layer 3 is initially etched. Thereafter, etching stopper film 4 present on conductive layer 3 is removed. Therefore, such a disadvantage as hole 7 reaching interlayer insulating film 1 is prevented. Consequently, reliability of the semiconductor device is improved.
  • etching stopper film 2 has a film thickness of approximately 20 nm to 200 nm.
  • Conductive layer 3 is implemented by a film consisting of tungsten, aluminum or the like and has a thickness of approximately 200 nm.
  • etching stopper film 4 has a film thickness of 50 nm.
  • Etching of interlayer insulating film 5 described above is carried out by dry etching such as RIE (Reactive Ion Etching).
  • RIE Reactive Ion Etching
  • an Si-rich insulating film having a composition ratio of O/Si of approximately 1.2, that is, an SRO (Silicon Rich Oxide) film is employed as etching stopper films 2 and 4 .
  • etching stopper films 2 and 4 may be implemented by a silicon nitride film.
  • a gas obtained by adding at least any one of O 2 and CO or Ar to a gas such as C 4 F 8 , C 5 F 8 , C 4 F 6 , C 2 F 4 , or C 3 F 6 representing a CF-based gas containing C and F is basically employed as an etching gas for the first etching condition of the present invention.
  • a gas such as C 4 F 8 , C 5 F 8 , C 4 F 6 , C 2 F 4 , or C 3 F 6 representing a CF-based gas containing C and F is basically employed as an etching gas for the first etching condition of the present invention.
  • interlayer insulating film 5 silicon oxide film
  • the etching gas described above is merely an example of gases that can selectively etch interlayer insulating film 5 with respect to etching stopper film 4 , and the gas for etching interlayer insulating film 5 is not limited to those described above.
  • etching gas obtained by adding at least any one of O 2 and CO or Ar to a gas such as CHF 3 or CH 2 F 2 containing C, F and H is employed as an etching gas for the second etching condition of the present invention.
  • a gas obtained by adding at least any one of O 2 and CO or Ar to a gas such as CHF 3 or CH 2 F 2 containing C, F and H is employed as an etching gas for the second etching condition of the present invention.
  • etching gas described above is merely an example of gases for efficient etching of etching stopper film 4 , and the etching gas for etching stopper film 4 is not limited to those described above.
  • FIGS. 7 and 8 are considered as comparative examples of the semiconductor device structured according to the embodiment of the present invention as above.
  • etching stopper film 4 on conductive layer 3 is provided, however, etching stopper film 2 under conductive layer 3 is not provided.
  • etching stopper film 4 should be etched under a different etching condition, so as to expose conductive layer 3 .
  • the bottom surface of hole 7 penetrates etching stopper film 4 , to reach interlayer insulating film 1 .
  • etching stopper film 2 under conductive layer 3 is provided, however, etching stopper film 4 on conductive layer 3 is not provided.
  • etching stopper film 4 on conductive layer 3 is not provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

A semiconductor device is manufactured by a method including forming a first interlayer insulating film. A first etching stopper film is formed on the first interlayer insulating film. A conductive layer is formed on the first etching stopper film. A second etching stopper film is formed to cover the conductive layer, an upper surface of the conductive layer and both side surfaces of the conductive layer. A second interlayer insulating film is formed on the second etching stopper film. A hole is formed penetrating the second interlayer insulating film in a direction of thickness and reaching the conductive layer. An interconnect is formed in the hole. The step of forming a hole includes etching the second interlayer insulating film under a first etching condition, and etching the second etching stopper film under a second etching condition different from the first etching condition. The second etching condition includes using an etching gas containing C, F, and H.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a semiconductor device having an interconnection connected to a conductive layer present above a semiconductor substrate as well as to a manufacturing method thereof.
  • 2. Description of the Background Art
  • Conventionally, a method of manufacturing a semiconductor device including the step of forming a hole penetrating a second interlayer insulating film covering a conductive layer formed on a first interlayer insulating film and reaching the conductive layer has been employed. In the method of manufacturing a semiconductor device, if a position at which the hole is formed is displaced from a position of the conductive layer, the hole reaches the first interlayer insulating film under the conductive layer. Such penetration caused by misalignment of the hole is more likely in a recent semiconductor device that has been reduced in size.
  • As a technique to prevent the hole from penetrating as far as the first insulating film under the conductive layer due to misalignment of the hole as described above, Japanese Patent Laying-Open No. 05-299515 discloses a technique to provide an etching stopper film solely on a sidewall of the conductive layer. In addition, Japanese Patent Laying-Open No. 2000-294631 discloses a technique to provide double etching stopper film in a damascene structure. Moreover, Japanese Patent Laying-Open No. 09-007970 discloses a technique to provide an etching stopper film only on a lower side of the conductive layer.
  • None of the techniques described above, however, can completely solve the problem of the hole reaching the first interlayer insulating film.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a semiconductor device in which a hole reaching a conductive layer is prevented from reaching an interlayer insulating film provided under the conductive layer as well as a manufacturing method thereof.
  • A semiconductor device according to the present invention includes a first interlayer insulating film, a first etching stopper film formed on the first interlayer insulating film, a conductive layer formed on the first etching stopper film, and a second etching stopper film formed at least on the first etching stopper film. In addition, the semiconductor device includes a second interlayer insulating film formed to cover the second etching stopper film and the conductive layer, and an interconnection formed to penetrate the second interlayer insulating film in a direction of thickness and to come in contact with the conductive layer.
  • According to the semiconductor device described above, a sandwich structure in which the conductive layer is sandwiched by the first etching stopper film and the second etching stopper film is formed. Therefore, when a method of manufacturing a semiconductor device which will be described later is employed, a hole reaching a first insulating layer, i.e., what is called hole penetration, can be prevented in forming the hole in which an interconnection is embedded.
  • A method of manufacturing a semiconductor device according to the present invention includes the steps of forming a first interlayer insulating film, forming a first etching stopper film on the first interlayer insulating film, and forming a conductive layer on the first etching stopper film. In addition, the method of manufacturing a semiconductor device includes the steps of forming a second etching stopper film to cover the first etching stopper film and the conductive layer, forming a second interlayer insulating film on the second etching stopper film, forming a hole penetrating the second interlayer insulating film in a direction of thickness and reaching the conductive layer, and forming an interconnection in the hole. The step of forming a hole includes the steps of etching the second interlayer insulating film under a first etching condition, and etching the second etching stopper film under a second etching condition different from the first etching condition.
  • Each of the first etching stopper film and the second etching stopper film described above may include any one of a silicon nitride film and a silicon rich oxide (SRO) film.
  • The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram for illustrating a structure of a semiconductor device according to an embodiment.
  • FIGS. 2 to 6 are diagrams illustrating a method of manufacturing a semiconductor device according to the embodiment.
  • FIGS. 7 and 8 are diagrams illustrating a method of manufacturing a semiconductor device according to a comparative example.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • A semiconductor device and a manufacturing method thereof according to an embodiment of the present invention will be described hereinafter with reference to the drawings. Initially, a structure of the semiconductor device according to the embodiment of the present invention will be described with reference to FIG. 1.
  • As shown in FIG. 1, the semiconductor device according to the present embodiment includes an interlayer insulating film 1 provided above a semiconductor substrate. An etching stopper film 2 is formed on interlayer insulating film 1. In addition, a conductive layer 3 is formed on etching stopper film 2. An etching stopper film 4 is formed to cover an upper surface of etching stopper film 2, one side surface of conductive layer 3, and a part of an upper surface of conductive layer 3. Furthermore, an interlayer insulating film 5 is formed to cover etching stopper film 4. An interconnection 8 penetrating interlayer insulating film 5 in a direction of thickness and reaching conductive layer 3 is formed.
  • According to the structure as above, when a hole in which interconnection 8 is embedded is formed, the hole does not reach interlayer insulating film 1, although etching stopper film 2 is partially etched. Consequently, reliability of the semiconductor device is improved.
  • A method of manufacturing the semiconductor device shown in FIG. 1 will be described with reference to FIGS. 2 to 6.
  • Initially, interlayer insulating film 1 is formed above the semiconductor substrate. Then, etching stopper film 2 is formed on interlayer insulating film 1. Thereafter, conductive layer 3 is formed on etching stopper film 2. The structure shown in FIG. 2 is thus obtained.
  • As shown in FIG. 3, etching stopper film 4 is formed to cover etching stopper film 2 and the upper surface and opposing side surfaces of conductive layer 3. Then, interlayer insulating film 5 is formed to cover etching stopper film 4. Thereafter, a resist film 6 that has been patterned to form a hole reaching conductive layer 3 is formed. The structure shown in FIG. 4 is thus obtained.
  • Then, as shown in FIG. 5, using resist film 6 as an etching mask, interlayer insulating film 5 is etched to expose etching stopper film 4. Then, etching stopper film 4 is etched under an etching condition different from that for etching interlayer insulating film 5. As shown in FIG. 6, a hole 7 reaching conductive layer 3 is thus formed. Conductive layer 3 is exposed on a bottom surface of hole 7.
  • Here, consider a case in which hole 7 is displaced from a position of conductive layer 3 and etching stopper film 4 is removed to expose one of opposing side surfaces of conductive layer 3, as shown in FIG. 6. Even in such a case, as etching stopper film 2 is provided under etching stopper film 4, the bottom surface of hole 7 does not reach interlayer insulating film 1, although the bottom surface of hole 7 penetrates etching stopper film 4 and reaches etching stopper film 2.
  • According to the method of manufacturing a semiconductor device according to the present embodiment as above, in a state where two etching stopper films sandwiching conductive layer 3 from above and below are provided, interlayer insulating film 5 present above conductive layer 3 is initially etched. Thereafter, etching stopper film 4 present on conductive layer 3 is removed. Therefore, such a disadvantage as hole 7 reaching interlayer insulating film 1 is prevented. Consequently, reliability of the semiconductor device is improved.
  • Here, etching stopper film 2 has a film thickness of approximately 20 nm to 200 nm. Conductive layer 3 is implemented by a film consisting of tungsten, aluminum or the like and has a thickness of approximately 200 nm. Meanwhile, etching stopper film 4 has a film thickness of 50 nm. Etching of interlayer insulating film 5 described above is carried out by dry etching such as RIE (Reactive Ion Etching). Desirably, an Si-rich insulating film having a composition ratio of O/Si of approximately 1.2, that is, an SRO (Silicon Rich Oxide) film, is employed as etching stopper films 2 and 4. Alternatively, etching stopper films 2 and 4 may be implemented by a silicon nitride film.
  • A gas obtained by adding at least any one of O2 and CO or Ar to a gas such as C4F8, C5F8, C4F6, C2F4, or C3F6 representing a CF-based gas containing C and F is basically employed as an etching gas for the first etching condition of the present invention. As shown in FIG. 5, with the use of this gas, interlayer insulating film 5 (silicon oxide film) is initially etched. The etching gas described above is merely an example of gases that can selectively etch interlayer insulating film 5 with respect to etching stopper film 4, and the gas for etching interlayer insulating film 5 is not limited to those described above.
  • In addition, a gas obtained by adding at least any one of O2 and CO or Ar to a gas such as CHF3 or CH2F2 containing C, F and H is employed as an etching gas for the second etching condition of the present invention. As shown in FIG. 6, with the use of this gas, exposed etching stopper film 4 is etched. Consequently, conductive layer 3 is exposed on the bottom surface of hole 7. The etching gas described above is merely an example of gases for efficient etching of etching stopper film 4, and the etching gas for etching stopper film 4 is not limited to those described above.
  • Semiconductor devices structured as shown in FIGS. 7 and 8 are considered as comparative examples of the semiconductor device structured according to the embodiment of the present invention as above.
  • In FIG. 7, etching stopper film 4 on conductive layer 3 is provided, however, etching stopper film 2 under conductive layer 3 is not provided. With such a structure, after interlayer insulating film 5 is etched, etching stopper film 4 should be etched under a different etching condition, so as to expose conductive layer 3. Here, if a position at which hole 7 is formed is displaced from an end portion of conductive layer 3, the bottom surface of hole 7 penetrates etching stopper film 4, to reach interlayer insulating film 1.
  • In FIG. 8, etching stopper film 2 under conductive layer 3 is provided, however, etching stopper film 4 on conductive layer 3 is not provided. With such a structure, when interlayer insulating film 5 is etched to expose conductive layer 3, it is difficult to stop etching at the timing of exposure of conductive layer 3, because a distance in a direction of thickness of interlayer insulating film 5 is great. Accordingly, particularly if a position at which hole 7 is formed is displaced from an end portion of conductive layer 3 by a small amount of not larger than 20 nm, the bottom surface of hole 7 penetrates etching stopper film 2, to reach interlayer insulating film 1.
  • As can been seen from comparison between the structure according to the comparative examples in FIGS. 7 and 8 and the structure according to the present embodiment shown in FIGS. 1 to 6, penetration of hole 7 as far as interlayer insulating film 1 can effectively be prevented by providing etching stopper films 2 and 4 sandwiching conductive layer 3 from above and from below.
  • Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.

Claims (6)

1-2. (canceled)
3. A method of manufacturing a semiconductor device, comprising the steps of:
forming a first interlayer insulating film;
forming a first etching stopper film on said first interlayer insulating film;
forming a conductive layer on said first etching stopper film;
forming a second etching stopper film to cover said first etching stopper film, an upper surface of said conductive layer and both side surfaces of said conductive layer conductive layer,
forming a second interlayer insulating film on said second etching stopper film;
forming a hole penetrating said second interlayer insulating film in a direction of thickness and reaching said conductive layer; and
forming an interconnection in said hole; wherein
said step of forming a hole includes the steps of
etching said second interlayer insulating film under a first etching condition, and
etching said second etching stopper film under a second etching condition different from said first etching condition, wherein said second etching condition comprises using an etching gas containing C, F, and H.
4. The method of manufacturing a semiconductor device according to claim 3, wherein
each of said first etching stopper film and said second etching stopper film includes any one of a silicon nitride film and a silicon rich oxide (SRO) film.
5. The method of manufacturing a semiconductor device according to claim 3, wherein said second etching condition comprises using an etching gas obtained by adding at least any of O2 and CO or Ar to CHF3 or CH2F2.
6. The method of manufacturing a semiconductor device according to claim 3, wherein said first etching condition comprises using an etching gas obtained by adding at least any of O2 and CO or Ar to C4F8, C5F8, C4F6, C2F4, or C3F6.
7. The method of manufacturing a semiconductor device according to claim 3, wherein said conductive layer comprises aluminum or tungsten.
US12/273,795 2004-09-22 2008-11-19 Method of making semiconductor device Abandoned US20090137114A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/273,795 US20090137114A1 (en) 2004-09-22 2008-11-19 Method of making semiconductor device

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2004-275565 2004-09-22
JP2004275565A JP2006093330A (en) 2004-09-22 2004-09-22 Semiconductor device and its manufacturing method
US11/229,550 US7301237B2 (en) 2004-09-22 2005-09-20 Semiconductor device
US11/907,438 US7465662B2 (en) 2004-09-22 2007-10-12 Method of making semiconductor device
US12/273,795 US20090137114A1 (en) 2004-09-22 2008-11-19 Method of making semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/907,438 Continuation US7465662B2 (en) 2004-09-22 2007-10-12 Method of making semiconductor device

Publications (1)

Publication Number Publication Date
US20090137114A1 true US20090137114A1 (en) 2009-05-28

Family

ID=36074618

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/229,550 Expired - Fee Related US7301237B2 (en) 2004-09-22 2005-09-20 Semiconductor device
US11/907,438 Expired - Fee Related US7465662B2 (en) 2004-09-22 2007-10-12 Method of making semiconductor device
US12/273,795 Abandoned US20090137114A1 (en) 2004-09-22 2008-11-19 Method of making semiconductor device

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/229,550 Expired - Fee Related US7301237B2 (en) 2004-09-22 2005-09-20 Semiconductor device
US11/907,438 Expired - Fee Related US7465662B2 (en) 2004-09-22 2007-10-12 Method of making semiconductor device

Country Status (5)

Country Link
US (3) US7301237B2 (en)
JP (1) JP2006093330A (en)
KR (1) KR20060051496A (en)
CN (2) CN100499068C (en)
TW (1) TW200618177A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9391020B2 (en) * 2014-03-31 2016-07-12 Stmicroelectronics, Inc. Interconnect structure having large self-aligned vias

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592024A (en) * 1993-10-29 1997-01-07 Kabushiki Kaisha Toshiba Semiconductor device having a wiring layer with a barrier layer
US5976984A (en) * 1997-10-29 1999-11-02 United Microelectronics Corp. Process of making unlanded vias
US6313029B1 (en) * 1999-06-29 2001-11-06 Hyundai Electronics Industries Co., Ltd. Method for forming multi-layer interconnection of a semiconductor device
US6518170B2 (en) * 2000-06-21 2003-02-11 Nec Corporation Method of manufacturing a semiconductor device
US20030148618A1 (en) * 2002-02-07 2003-08-07 Applied Materials, Inc. Selective metal passivated copper interconnect with zero etch stops
US20040065957A1 (en) * 2000-04-28 2004-04-08 Kaoru Maekawa Semiconductor device having a low dielectric film and fabrication process thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2953188B2 (en) 1992-04-24 1999-09-27 日本電気株式会社 Method for manufacturing semiconductor device
JPH097970A (en) 1995-06-21 1997-01-10 Sanyo Electric Co Ltd Manufacture of semiconductor device
JP2000294631A (en) 1999-04-05 2000-10-20 Mitsubishi Electric Corp Semiconductor device and manufacture of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5592024A (en) * 1993-10-29 1997-01-07 Kabushiki Kaisha Toshiba Semiconductor device having a wiring layer with a barrier layer
US5976984A (en) * 1997-10-29 1999-11-02 United Microelectronics Corp. Process of making unlanded vias
US6313029B1 (en) * 1999-06-29 2001-11-06 Hyundai Electronics Industries Co., Ltd. Method for forming multi-layer interconnection of a semiconductor device
US20040065957A1 (en) * 2000-04-28 2004-04-08 Kaoru Maekawa Semiconductor device having a low dielectric film and fabrication process thereof
US6518170B2 (en) * 2000-06-21 2003-02-11 Nec Corporation Method of manufacturing a semiconductor device
US20030148618A1 (en) * 2002-02-07 2003-08-07 Applied Materials, Inc. Selective metal passivated copper interconnect with zero etch stops

Also Published As

Publication number Publication date
TW200618177A (en) 2006-06-01
US7465662B2 (en) 2008-12-16
US7301237B2 (en) 2007-11-27
KR20060051496A (en) 2006-05-19
CN101546748A (en) 2009-09-30
CN100499068C (en) 2009-06-10
US20060063372A1 (en) 2006-03-23
JP2006093330A (en) 2006-04-06
US20080045006A1 (en) 2008-02-21
CN1758425A (en) 2006-04-12

Similar Documents

Publication Publication Date Title
KR100308101B1 (en) Semiconductor device and its manufacturing method
US5470793A (en) Method of via formation for the multilevel interconnect integrated circuits
JP3219909B2 (en) Method for manufacturing semiconductor device
US8164196B2 (en) Semiconductor device and method for manufacturing the same
US7491640B2 (en) Method of manufacturing semiconductor device
JP2003203973A (en) Semiconductor device and method for manufacturing semiconductor device
JPH10135331A (en) Contact hole forming method for semiconductor device
JP2000021983A (en) Semiconductor device and its manufacture
US7465662B2 (en) Method of making semiconductor device
US6831007B2 (en) Method for forming metal line of Al/Cu structure
US5946593A (en) Semiconductor device manufacturing method
KR20030009126A (en) Semiconductor device and production method thereof
JP4130778B2 (en) Method for forming dual damascene structure and method for manufacturing semiconductor device
US7994065B2 (en) Method for fabricating semiconductor device
JP3040500B2 (en) Method for manufacturing semiconductor device
KR100278274B1 (en) A method for forming stack contact in semiconductor device
JPH10144787A (en) Semiconductor device and fabrication thereof
US20080003823A1 (en) Method of manufacturing semiconductor device
US7125796B2 (en) Plasma etch process for multilayer vias having an organic layer with vertical sidewalls
KR100271660B1 (en) Method of fabricating inter isolation film of semiconductor device
JP2914416B2 (en) Method for manufacturing semiconductor device
JP2699454B2 (en) Manufacturing method of memory device
KR100451492B1 (en) Contact hole formation method of semiconductor device
JPS61289648A (en) Manufacture of semiconductor device
KR20000039692A (en) Method for forming via hole of semiconductor device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE