US20090096157A1 - Laterally adjustable side guide assembly for use with friction sheet feeding machines - Google Patents
Laterally adjustable side guide assembly for use with friction sheet feeding machines Download PDFInfo
- Publication number
- US20090096157A1 US20090096157A1 US12/293,200 US29320007A US2009096157A1 US 20090096157 A1 US20090096157 A1 US 20090096157A1 US 29320007 A US29320007 A US 29320007A US 2009096157 A1 US2009096157 A1 US 2009096157A1
- Authority
- US
- United States
- Prior art keywords
- side guide
- carriage
- worm screw
- sheet feeding
- support member
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H1/00—Supports or magazines for piles from which articles are to be separated
- B65H1/04—Supports or magazines for piles from which articles are to be separated adapted to support articles substantially horizontally, e.g. for separation from top of pile
- B65H1/06—Supports or magazines for piles from which articles are to be separated adapted to support articles substantially horizontally, e.g. for separation from top of pile for separation from bottom of pile
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2403/00—Power transmission; Driving means
- B65H2403/50—Driving mechanisms
- B65H2403/52—Translation screw-thread mechanisms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/10—Size; Dimensions
- B65H2511/12—Width
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65H—HANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
- B65H2511/00—Dimensions; Position; Numbers; Identification; Occurrences
- B65H2511/20—Location in space
- B65H2511/22—Distance
Definitions
- a wide variety of friction sheet feeding machines are available for feeding individual sheets from the bottom of an essentially vertical stack of sheets. Exemplary friction sheet feeding machines are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338.
- These machines typically include (i) a tray for holding a stack of sheets in an essentially vertical position, (ii) a nip for feeding a lowermost sheet from the stack, (iii) a driven friction roller or feed belt for contacting the downward facing major surface of the lowermost sheet in the stack and pulling the lowermost sheet from underneath the sheet stack towards the nip, and (iv) a friction retard surface positioned above the driven friction roller for contacting the leading edge(s) and any exposed upward facing major surface(s) of the sheet(s) positioned directly above the lowermost sheet for retarding advancement of the sheet(s) directly above the lowermost sheet and thereby facilitating separation of the lowermost sheet from the immediately overlying sheet prior to introduction of the lowermost sheet into the feed nip.
- Side guides are commonly employed on friction sheet feeding machines for providing lateral support to a sheet stack loaded onto the tray, and providing lateral guidance to sheets as they are pulled from the stack by the driven friction roller or feed belt(s) and introduced into the nip area.
- These side guides are commonly mounted on a laterally repositionable carriage to permit quick and easy repositioning of the side guides in order to accommodate sheets of different widths.
- the side guides typically extend below the upper conveying surface of the feed belts in order to prevent sheets from slipping under the side guide, the feed belts often interfere with lateral repositioning of the side guides.
- the side guides need to be detached from the carriage prior to repositioning of the subassembly and reattached after the carriage has been repositioned.
- a first aspect of the invention is a laterally repositionable side guide assembly for use with a friction sheet feeding machine.
- the side guide assembly includes (i) a support member, (ii) a carriage, (iii) a side guide, and (iv) a worm screw.
- the support member is configured and arranged for attachment to a friction sheet feeding machine.
- the carriage is repositionably mounted on the support member for selective lateral repositioning relative to the support member.
- the side guide is configured and arranged for laterally guiding sheets through a friction sheet feeding machine.
- the side guide is attached to the carriage for lateral repositioning with the carriage.
- the worm screw is in threaded communication with the carriage for effecting linear movement of the carriage along the length of the worm screw upon rotation of the worm screw.
- the side guide assembly preferably includes a pair of laterally spaced and laterally repositionable carriages, each with an associated side guide and a corresponding worm screw.
- a second aspect of the invention is a method of laterally repositioning a side guide on a friction sheet feeding machine.
- the method includes the steps of (i) obtaining a friction sheet feeding machine equipped with a repositionable side guide assembly wherein the side guide assembly includes at least (A) a support member attached to the friction sheet feeding machine, (B) a pair of laterally spaced carriage, each repositionably mounted on the support member for selective lateral repositioning relative to the support member, (C) a pair of laterally spaced side guides, each configured and arranged for laterally guiding sheets through the friction sheet feeding machine, and each attached to one of the carriages for lateral repositioning with the carriage, and (D) a pair of laterally spaced worm screws, each in threaded communication with one of the carriages for effecting linear movement of the corresponding carriage along the length of the worm screw upon rotation of the worm screw, (ii) rotating one of the worm screws to laterally reposition the corresponding carriage and attached side guide along the support
- FIG. 1 is an exploded perspective view of one embodiment of the invention.
- FIG. 2 is an enlarged perspective view of one of the carriages and associated side guide shown in FIG. 1 .
- FIG. 3 is a cross-sectional side view of the carriage shown in FIG. 2 taken along line 3 - 3 with the catch pins inserted into the carriage and the corresponding side guide shown attached to the carriage in the lower position.
- FIG. 4 is a perspective view of the invention shown in FIG. 1 attached to a friction sheet feeding machine with the side guide in the lower position.
- Friction sheet feeding machines 10 generally include a frame (not shown), a tray assembly (not shown), a gating assembly (not shown) and a drive assembly 30 .
- the machines 10 are capable of serially feeding individual sheets (not shown) in a longitudinal direction x from the bottom (not shown) of a generally vertical stack of sheets (not shown) retained within the tray assembly (not shown).
- a typical configuration of the frame is a generally rectangular frame (not shown) having (i) a generally horizontal base plate (not shown), (ii) a right side panel (not shown) extending upward from the base plate (not shown), (iii) a left side panel (not shown) also extending upward from the base plate (not shown), (iv) a rear end plate (not shown) extending upward from the base plate (not shown) and laterally interconnecting the side panels (not shown), (v) at least one lateral cross member, such as cross member 20 , transversely spaced above the base plate (not shown) and interconnecting the side panels (not shown) for supporting the gating assembly (not shown), and (vi) a plurality of laterally extending support rods (not shown) extending between and interconnecting the side panels (not shown).
- the tray assembly (not shown) is effective for holding a stack of individual sheets (not shown) in a substantially vertical position with a slight biasing of at least the lower portion (unnumbered) of the stack (not shown) towards the gating assembly (not shown) and the drive assembly 30 .
- One means for achieving the desired biasing of the stack is to incline the floor (not shown) of the tray assembly (not shown) towards the gating assembly (not shown) and the drive assembly 30 .
- Other means are known and may also be employed, such as a transversely extending strip (not shown) positioned within the tray assembly (not shown) for supporting the trailing edges (not shown) of the sheets (not shown) in the stack (not shown) wherein the lower portion (unnumbered) of the support strip (not shown) is curved towards the gating assembly (not shown) and the drive assembly 30 .
- Suitable tray types, styles and configurations are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338.
- a typical gating assembly includes a friction retard roller (not shown) driven by an auxiliary electric motor (not shown) for contacting the upward facing major surface (not shown) of sheets (not shown) as they approach the friction feed belts 35 for assisting in separation of a lowermost sheet (not shown) from the immediately overlying sheet (not shown) and preventing the simultaneous feeding of multiple sheets (not shown).
- Typical gating assemblies are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338.
- the drive assembly 30 includes a primary drive motor (not shown) and a friction feed roller 31 driven by the primary drive motor (not shown).
- the friction feed roller 31 drives friction feed belts 35 which contact the sheets (not shown).
- the drive assembly 30 on friction sheet feeding machines 10 typically includes a conveyor system (not shown) downstream from the friction feed belts 35 for receiving individual sheets (not shown) fed from the sheet stack (not shown) by the friction feed belts 35 and conveying the fed sheets (not shown) to the desired location, typically a conveyor belt (not shown) timed to receive and collate sheets (not shown) fed from several aligned friction sheet feeding machines 10 .
- a suitable drive assembly 30 includes a primary drive motor (not shown), and a plurality of laterally y aligned and spaced friction feed belts 35 , each mounted onto a driven friction feed roller 31 and an idler roller 32 .
- the friction feed roller 31 is rotatably attached to side panels (not shown).
- the idler roller 32 extends parallel with the friction feed roller 31 and is rotatably attached to the side panels (not shown).
- the friction feed roller 31 is driven by the primary drive motor (not shown) via drive belt (not shown).
- the invention is a side guide assembly 100 configured and arranged for operable attachment to a friction sheet feeding machine 10 to provided lateral y support to a sheet stack (not shown) loaded onto the machine 10 and lateral guidance to individual sheets (not shown) as they are fed through the machine 10 .
- the side guide assembly 100 includes a support rod 110 , right and left carriages 120 r and 120 s (collectively carriages 120 ), and right and left side guides 190 r and 190 s (collectively side guides 190 ).
- the support rod 110 is positioned just above the cross member 20 with the lateral ends (unnumbered) of the support rod 110 attached to the lateral y ends (unnumbered) of the cross member 20 by first mounting blocks 161 and machine screws 163 .
- the carriages 120 are slidably supported on the support rod 110 via a first lateral y bore 129 a through each carriage 120 .
- the carriages 120 are also slidably supported on the cross member 20 via a lateral y channel 127 in the front 123 of each carriage 120 .
- the right and left side guides 190 r and 190 s are mounted onto the right and left carriages 120 r and 120 s respectively.
- the side guides 190 are configured and arranged to cooperatively support a stack of sheets (not shown) therebetween.
- the carriages 120 each have a second lateral bore 129 b extending through the carriage 120 .
- a right worm screw 140 r extends through the second lateral bore 129 b in the right carriage 120 r and a left worm screw 140 s extends through the second lateral bore 129 b in the left carriage 120 s.
- the worm screws 140 r and 140 s are spirally threaded for cooperatively engaging a follower pin 131 extending into the second lateral bore 129 b in each carriage 120 , whereby rotation of the worm screw 140 causes the corresponding carriage 120 to travel along the length of the rotated worm screw 140 .
- the distal ends 142 of the worm screws 140 are rotatably supported by a center support block 150 attached to the cross member 20 by machine screws 153 .
- each worm screw 140 r and 140 s is attached to a repositioning knob 170 r and 170 s respectively (collectively repositioning knobs 170 ) for effecting independent manual rotation of the attached worm screw 140 .
- the repositioning knobs 170 are rotatably supported by second mounting blocks 162 attached to the cross member 20 by machine screws 164 .
- a locking knob 180 r and 180 s (collectively 180 ) is provided on each carriage 120 r and 120 s respectively, for selectively engaging and disengaging the support rod 110 to prevent further lateral repositioning of the corresponding carriage 120 when the locking knob 180 is rotated into locking engagement with the support member 110 , and permitting repositioning of the corresponding carriage 120 when the locking knob 180 is rotated away from the support member 110 .
- Bearings (unnumbered) are preferably provided at each end (unnumbered) of the first bores 129 a through each carriage 120 to facilitate lateral y sliding of the carriages 120 along the support rod 110 .
- Bearings (unnumbered) are also preferably provided at each end (unnumbered) of the second bores 129 b through each carriage 120 to facilitate rotation and lateral y sliding of the worm screws 140 relative to the carriages 120 .
- An e-clip 145 can be provided on each worm screw 140 proximate the distal end 142 of the worm screw 140 for serving as a stop to continued inward travel of the carriages 120 along the length of the corresponding worm screw 140 .
- Other mechanical stops are well known to those of routine skill in the art and may be substituted for the e-clip stop 145 shown and described.
- each of the side guides 190 has a top 191 , a bottom 192 , a forward edge 193 , a rearward edge 194 , an inward facing major surface 195 , and an outward facing major surface 196 .
- the side guides 190 preferably include a forward projecting finger 198 extending from proximate the bottom 192 of the side guide 190 for projecting underneath the cross member 20 and thereby providing lateral y guidance to sheets (not shown) as they are fed through the gating assembly (not shown) and drive assembly 30 .
- the side guides 190 are mounted to a corresponding carriage 120 so that they travel laterally y with the corresponding carriage 120 , and a capable of being transversely z lifted relative to the carriage 120 during repositioning of the side guide 190 without being detached from the carriage 120 .
- each side guide 190 is retained within a transversely z extending channel 128 in the back 124 of the corresponding carriage 120 which extends from the top 121 of the carriage 120 to the bottom 122 of the carriage 120 .
- L-shaped slots 199 a and 199 b are cut in the forward edge 193 of each side guide 190 for cooperatively engaging corresponding catch pins 132 positioned within the transverse z channel 128 .
- the side guides 190 are biased downward onto “locking” engagement with the catch pins 132 by gravity (i.e., the catch pins 132 are normally biased into the upper portion of the L-shaped slots 199 as depicted in FIG. 3 ).
- the transversely z extending leg (unnumbered) of the L-shaped slots 199 is elongated to permit the side guide 190 to be lifted relative to the corresponding carriage 120 so as to slide the side guide 190 along the transverse z length of the transverse channel 128 without removing the catch pins 132 from within the slots 199 .
- a lift distance of about 0.5 cm to 2 cm is sufficient to lift the bottom 192 of the side guide 190 above the friction feed belts 35 and thereby permit unimpeded lateral y repositioning of the side guide 190 .
- attachment mechanisms capable of coupling the side guide 190 to a corresponding carriage 120 with the necessary and desired upward sliding or pivoting of the side guide 190 relative to the corresponding carriage 120 without detaching the side guide 190 from the carriage 120 , are known and within the scope of this invention.
- One such example is to replace the catch pins 132 on the carriage 120 with an L-shaped slot 199 and replace the slots 199 on the side guide 190 with trunnions (not shown).
- Biasing means other than gravity are known and may be employed to bias the side guides 190 into the lower “locked” position on the corresponding carriage 120 .
- Such biasing means include springs, elastic bands, pneumatic cylinders, etc.
- the side guide assembly 100 of the present invention permits quick and easy repositioning of the side guides 190 as necessary for accommodating sheets (not shown) of different width by (i) rotating the locking knob 180 to allow the carriage 120 to slide along the support rod 120 , (ii) pulling up on the side guide 190 to position the side guide 190 into the upper position and thereby lift the bottom 192 of the side guide 190 above the friction feed belts 35 , (iii) rotating the repositioning knob 170 as necessary and appropriate to move the carriage 120 and attached side guide 190 into supporting engagement with sheets (not shown) loaded onto the friction sheet feeding machine 10 with the side guide held in the lifted position, (iv) releasing the side guide 190 so as to allow the side guide 190 to return to its lower biased position, (v) rotating the locking knob 180 to again lock the carriage 120 against the support rod 110 and prevent any further lateral y movement of the carriage 120 and the corresponding side guide 190 relative to the friction sheet feeding machine 10 , and (vi) repeating steps (i) through (v) for the
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Sheets, Magazines, And Separation Thereof (AREA)
- Transmission Devices (AREA)
Abstract
A laterally repositionable side guide assembly for use with a friction sheet feeding machine. The side guide assembly includes (i) a support member, (ii) a carriage, (iii) a side guide, and (iv) a worm screw. The support member is configured and arranged for attachment to a friction sheet feeding machine. The carriage is repositionably mounted on the support member for selective lateral repositioning relative to the support member. The side guide is configured and arranged for laterally guiding sheets through a friction sheet feeding machine. The side guide is attached to the carriage for lateral repositioning with the carriage. The worm screw is in threaded communication with the carriage for effecting linear movement of the carriage along the length of the worm screw upon rotation of the worm screw.
Description
- This application claims the benefit of U.S. Provisional Application No. 60/784,121, filed Mar. 20, 2006.
- A wide variety of friction sheet feeding machines are available for feeding individual sheets from the bottom of an essentially vertical stack of sheets. Exemplary friction sheet feeding machines are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338.
- These machines typically include (i) a tray for holding a stack of sheets in an essentially vertical position, (ii) a nip for feeding a lowermost sheet from the stack, (iii) a driven friction roller or feed belt for contacting the downward facing major surface of the lowermost sheet in the stack and pulling the lowermost sheet from underneath the sheet stack towards the nip, and (iv) a friction retard surface positioned above the driven friction roller for contacting the leading edge(s) and any exposed upward facing major surface(s) of the sheet(s) positioned directly above the lowermost sheet for retarding advancement of the sheet(s) directly above the lowermost sheet and thereby facilitating separation of the lowermost sheet from the immediately overlying sheet prior to introduction of the lowermost sheet into the feed nip.
- Side guides are commonly employed on friction sheet feeding machines for providing lateral support to a sheet stack loaded onto the tray, and providing lateral guidance to sheets as they are pulled from the stack by the driven friction roller or feed belt(s) and introduced into the nip area. These side guides are commonly mounted on a laterally repositionable carriage to permit quick and easy repositioning of the side guides in order to accommodate sheets of different widths. However, because the side guides typically extend below the upper conveying surface of the feed belts in order to prevent sheets from slipping under the side guide, the feed belts often interfere with lateral repositioning of the side guides. Hence, the side guides need to be detached from the carriage prior to repositioning of the subassembly and reattached after the carriage has been repositioned.
- While generally effective for facilitating lateral repositioning of the side guides, the repositioning process tends to be an awkward, cumbersome, time consuming and potentially dangerous as it involves detachment and reattachment of the side guides.
- Accordingly, a need exists for laterally repositionable side guides capable of being quickly, easily and safely repositioned without requiring the use of a tool or requiring detachment of the side guides.
- A first aspect of the invention is a laterally repositionable side guide assembly for use with a friction sheet feeding machine. The side guide assembly includes (i) a support member, (ii) a carriage, (iii) a side guide, and (iv) a worm screw. The support member is configured and arranged for attachment to a friction sheet feeding machine. The carriage is repositionably mounted on the support member for selective lateral repositioning relative to the support member. The side guide is configured and arranged for laterally guiding sheets through a friction sheet feeding machine. The side guide is attached to the carriage for lateral repositioning with the carriage. The worm screw is in threaded communication with the carriage for effecting linear movement of the carriage along the length of the worm screw upon rotation of the worm screw.
- The side guide assembly preferably includes a pair of laterally spaced and laterally repositionable carriages, each with an associated side guide and a corresponding worm screw.
- A second aspect of the invention is a method of laterally repositioning a side guide on a friction sheet feeding machine. The method includes the steps of (i) obtaining a friction sheet feeding machine equipped with a repositionable side guide assembly wherein the side guide assembly includes at least (A) a support member attached to the friction sheet feeding machine, (B) a pair of laterally spaced carriage, each repositionably mounted on the support member for selective lateral repositioning relative to the support member, (C) a pair of laterally spaced side guides, each configured and arranged for laterally guiding sheets through the friction sheet feeding machine, and each attached to one of the carriages for lateral repositioning with the carriage, and (D) a pair of laterally spaced worm screws, each in threaded communication with one of the carriages for effecting linear movement of the corresponding carriage along the length of the worm screw upon rotation of the worm screw, (ii) rotating one of the worm screws to laterally reposition the corresponding carriage and attached side guide along the support member without lateral movement of the one worm screw, and (iii) rotating the other worm screw to laterally reposition the corresponding carriage and attached side guide along the support member without lateral movement of the other worm screw.
-
FIG. 1 is an exploded perspective view of one embodiment of the invention. -
FIG. 2 is an enlarged perspective view of one of the carriages and associated side guide shown inFIG. 1 . -
FIG. 3 is a cross-sectional side view of the carriage shown inFIG. 2 taken along line 3-3 with the catch pins inserted into the carriage and the corresponding side guide shown attached to the carriage in the lower position. -
FIG. 4 is a perspective view of the invention shown inFIG. 1 attached to a friction sheet feeding machine with the side guide in the lower position. -
- 10 Friction Sheet Feeding Machine
- 20 Cross Member
- 30 Drive Assembly
- 31 Friction Feed Roller
- 32 Idler Roller
- 35 Friction Feed Belts
- 100 Side Guide Assembly
- 110 Support Rod
- 120 Carriages (120 r and 120 s)
- 120 r Right Carriage
- 120 s Left Carriage
- 121 Top of Carriage
- 122 Bottom of Carriage
- 123 Front of Carriage
- 124 Back of Carriage
- 127 Lateral Channel Across Front of Carriage
- 128 Transverse Channel Along Back of Carriage
- 129 a First Lateral Bore Through Carriage
- 129 b Second Lateral Bore Through Carriage
- 131 Follower Pin
- 132 Catch Pins
- 140 Worm Screws (140 r and 140 s)
- 140 r Right Worm Screw
- 140 s Left Worm Screw
- 141 Proximal End of Worm Screw
- 142 Distal End of Worm Screw
- 145 E-Clip
- 150 Center Support Block
- 153 Machine Screws
- 161 First Mounting Blocks
- 162 Second Mounting Blocks
- 163 Machine Screws
- 164 Machine Screws
- 170 Repositioning Knobs
- 170 r Right Repositioning Knob
- 170 s Left Repositioning Knob
- 180 Locking Knobs (180 r and 180 s)
- 180 r Right Locking Knob
- 180 s Left Locking Knob
- 190 Side Guides (190 r and 190 s)
- 190 r Right Side Guide
- 190 s Left Side Guide
- 191 Top of Side Guide
- 192 Bottom of Side Guide
- 193 Front or Forward Edge of Side Guide
- 194 Back or Rearward Edge of Side Guide
- 195 Inward Facing Major Surface of Side Guide
- 196 Outward Facing Major Surface of Side Guide
- 198 Forward Projecting Finger
- 199 Slots (199 a and 199 b)
- 199 a First L-shaped Slot in Forward Edge of Side Guide
- 199 b Second L-shaped Slot in Forward Edge of Side Guide
- x Longitudinal Direction
- y Lateral Direction
- z Transverse Direction
- Friction
sheet feeding machines 10 generally include a frame (not shown), a tray assembly (not shown), a gating assembly (not shown) and adrive assembly 30. Themachines 10 are capable of serially feeding individual sheets (not shown) in a longitudinal direction x from the bottom (not shown) of a generally vertical stack of sheets (not shown) retained within the tray assembly (not shown). - A typical configuration of the frame (unnumbered) is a generally rectangular frame (not shown) having (i) a generally horizontal base plate (not shown), (ii) a right side panel (not shown) extending upward from the base plate (not shown), (iii) a left side panel (not shown) also extending upward from the base plate (not shown), (iv) a rear end plate (not shown) extending upward from the base plate (not shown) and laterally interconnecting the side panels (not shown), (v) at least one lateral cross member, such as
cross member 20, transversely spaced above the base plate (not shown) and interconnecting the side panels (not shown) for supporting the gating assembly (not shown), and (vi) a plurality of laterally extending support rods (not shown) extending between and interconnecting the side panels (not shown). Other frame configurations may also be employed, such as a cross-beam construction rather than a plate construction. Exemplary frames suitable for use are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338. - The tray assembly (not shown) is effective for holding a stack of individual sheets (not shown) in a substantially vertical position with a slight biasing of at least the lower portion (unnumbered) of the stack (not shown) towards the gating assembly (not shown) and the
drive assembly 30. - One means for achieving the desired biasing of the stack (not shown), is to incline the floor (not shown) of the tray assembly (not shown) towards the gating assembly (not shown) and the
drive assembly 30. Other means are known and may also be employed, such as a transversely extending strip (not shown) positioned within the tray assembly (not shown) for supporting the trailing edges (not shown) of the sheets (not shown) in the stack (not shown) wherein the lower portion (unnumbered) of the support strip (not shown) is curved towards the gating assembly (not shown) and thedrive assembly 30. Suitable tray types, styles and configurations are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338. - A typical gating assembly (not shown) includes a friction retard roller (not shown) driven by an auxiliary electric motor (not shown) for contacting the upward facing major surface (not shown) of sheets (not shown) as they approach the
friction feed belts 35 for assisting in separation of a lowermost sheet (not shown) from the immediately overlying sheet (not shown) and preventing the simultaneous feeding of multiple sheets (not shown). Typical gating assemblies are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338. - Generally, the
drive assembly 30 includes a primary drive motor (not shown) and afriction feed roller 31 driven by the primary drive motor (not shown). Thefriction feed roller 31 drivesfriction feed belts 35 which contact the sheets (not shown). - The
drive assembly 30 on frictionsheet feeding machines 10 typically includes a conveyor system (not shown) downstream from thefriction feed belts 35 for receiving individual sheets (not shown) fed from the sheet stack (not shown) by thefriction feed belts 35 and conveying the fed sheets (not shown) to the desired location, typically a conveyor belt (not shown) timed to receive and collate sheets (not shown) fed from several aligned frictionsheet feeding machines 10. - Referring generally to
FIG. 4 , one embodiment of asuitable drive assembly 30 includes a primary drive motor (not shown), and a plurality of laterally y aligned and spacedfriction feed belts 35, each mounted onto a drivenfriction feed roller 31 and anidler roller 32. Thefriction feed roller 31 is rotatably attached to side panels (not shown). Similarly, theidler roller 32 extends parallel with thefriction feed roller 31 and is rotatably attached to the side panels (not shown). Thefriction feed roller 31 is driven by the primary drive motor (not shown) via drive belt (not shown). - Referring generally to
FIGS. 1 and 4 , the invention is aside guide assembly 100 configured and arranged for operable attachment to a frictionsheet feeding machine 10 to provided lateral y support to a sheet stack (not shown) loaded onto themachine 10 and lateral guidance to individual sheets (not shown) as they are fed through themachine 10. - The
side guide assembly 100 includes asupport rod 110, right and leftcarriages - The
support rod 110 is positioned just above thecross member 20 with the lateral ends (unnumbered) of thesupport rod 110 attached to the lateral y ends (unnumbered) of thecross member 20 by first mountingblocks 161 andmachine screws 163. - The
carriages 120 are slidably supported on thesupport rod 110 via a first lateral y bore 129 a through eachcarriage 120. Thecarriages 120 are also slidably supported on thecross member 20 via alateral y channel 127 in thefront 123 of eachcarriage 120. - The right and left side guides 190 r and 190 s are mounted onto the right and left
carriages - The
carriages 120 each have a second lateral bore 129 b extending through thecarriage 120. Aright worm screw 140 r extends through the second lateral bore 129 b in theright carriage 120 r and aleft worm screw 140 s extends through the second lateral bore 129 b in theleft carriage 120 s. The worm screws 140 r and 140 s (collectively 140) are spirally threaded for cooperatively engaging afollower pin 131 extending into the second lateral bore 129 b in eachcarriage 120, whereby rotation of the worm screw 140 causes thecorresponding carriage 120 to travel along the length of the rotated worm screw 140. - The distal ends 142 of the worm screws 140 are rotatably supported by a center support block 150 attached to the
cross member 20 bymachine screws 153. - The proximal ends 141 of each
worm screw repositioning knob blocks 162 attached to thecross member 20 bymachine screws 164. - A locking
knob carriage support rod 110 to prevent further lateral repositioning of thecorresponding carriage 120 when the locking knob 180 is rotated into locking engagement with thesupport member 110, and permitting repositioning of thecorresponding carriage 120 when the locking knob 180 is rotated away from thesupport member 110. - Bearings (unnumbered) are preferably provided at each end (unnumbered) of the
first bores 129 a through eachcarriage 120 to facilitate lateral y sliding of thecarriages 120 along thesupport rod 110. Bearings (unnumbered) are also preferably provided at each end (unnumbered) of thesecond bores 129 b through eachcarriage 120 to facilitate rotation and lateral y sliding of the worm screws 140 relative to thecarriages 120. - An e-clip 145 can be provided on each worm screw 140 proximate the
distal end 142 of the worm screw 140 for serving as a stop to continued inward travel of thecarriages 120 along the length of the corresponding worm screw 140. Other mechanical stops are well known to those of routine skill in the art and may be substituted for thee-clip stop 145 shown and described. - Referring to
FIG. 2 , each of the side guides 190 has a top 191, a bottom 192, aforward edge 193, arearward edge 194, an inward facingmajor surface 195, and an outward facingmajor surface 196. The side guides 190 preferably include a forward projectingfinger 198 extending from proximate the bottom 192 of theside guide 190 for projecting underneath thecross member 20 and thereby providing lateral y guidance to sheets (not shown) as they are fed through the gating assembly (not shown) and driveassembly 30. - The side guides 190 are mounted to a
corresponding carriage 120 so that they travel laterally y with thecorresponding carriage 120, and a capable of being transversely z lifted relative to thecarriage 120 during repositioning of theside guide 190 without being detached from thecarriage 120. - One mechanism for achieving the desired attachment is depicted in
FIG. 3 . Theforward edge 193 of eachside guide 190 is retained within a transverselyz extending channel 128 in the back 124 of thecorresponding carriage 120 which extends from the top 121 of thecarriage 120 to thebottom 122 of thecarriage 120. L-shapedslots forward edge 193 of eachside guide 190 for cooperatively engaging corresponding catch pins 132 positioned within thetransverse z channel 128. The side guides 190 are biased downward onto “locking” engagement with the catch pins 132 by gravity (i.e., the catch pins 132 are normally biased into the upper portion of the L-shaped slots 199 as depicted inFIG. 3 ). The transversely z extending leg (unnumbered) of the L-shaped slots 199 is elongated to permit theside guide 190 to be lifted relative to thecorresponding carriage 120 so as to slide theside guide 190 along the transverse z length of thetransverse channel 128 without removing the catch pins 132 from within the slots 199. Generally, a lift distance of about 0.5 cm to 2 cm is sufficient to lift thebottom 192 of theside guide 190 above thefriction feed belts 35 and thereby permit unimpeded lateral y repositioning of theside guide 190. - Other attachment mechanisms capable of coupling the
side guide 190 to acorresponding carriage 120 with the necessary and desired upward sliding or pivoting of theside guide 190 relative to thecorresponding carriage 120 without detaching theside guide 190 from thecarriage 120, are known and within the scope of this invention. One such example is to replace the catch pins 132 on thecarriage 120 with an L-shaped slot 199 and replace the slots 199 on theside guide 190 with trunnions (not shown). - Biasing means other than gravity are known and may be employed to bias the side guides 190 into the lower “locked” position on the
corresponding carriage 120. Such biasing means include springs, elastic bands, pneumatic cylinders, etc. - The
side guide assembly 100 of the present invention permits quick and easy repositioning of the side guides 190 as necessary for accommodating sheets (not shown) of different width by (i) rotating the locking knob 180 to allow thecarriage 120 to slide along thesupport rod 120, (ii) pulling up on theside guide 190 to position theside guide 190 into the upper position and thereby lift thebottom 192 of theside guide 190 above thefriction feed belts 35, (iii) rotating the repositioning knob 170 as necessary and appropriate to move thecarriage 120 and attachedside guide 190 into supporting engagement with sheets (not shown) loaded onto the frictionsheet feeding machine 10 with the side guide held in the lifted position, (iv) releasing theside guide 190 so as to allow theside guide 190 to return to its lower biased position, (v) rotating the locking knob 180 to again lock thecarriage 120 against thesupport rod 110 and prevent any further lateral y movement of thecarriage 120 and thecorresponding side guide 190 relative to the frictionsheet feeding machine 10, and (vi) repeating steps (i) through (v) for theother side guide 190.
Claims (8)
1. A laterally repositionable side guide assembly for use with a friction sheet feeding machine capable of feeding individual sheets from a stack of sheets in a longitudinal direction, comprising:
(a) a support member configured and arranged for attachment to a friction sheet feeding machine,
(b) a carriage repositionably mounted on the support member for selective lateral repositioning relative to the support member,
(c) a side guide configured and arranged for laterally guiding sheets through a friction sheet feeding machine, the side guide attached to the carriage for lateral repositioning with the carriage, and
(d) a worm screw in threaded communication with the carriage for effecting linear movement of the carriage along the length of the worm screw upon rotation of the worm screw.
2. The side guide assembly of claim 1 wherein (i) the support member is rigidly attached to a friction sheet feeding machine, (ii) the machine has a right side and a left side, (iii) safety panels are mounted on the right and left sides of the machine for limiting side access into to the machine, and (iv) an interface device for effecting manual rotation of the worm screw is located on the outside of one of the safety panels.
3. The side guide assembly of claim 2 wherein the interface device is a manually rotatable knob.
4. A laterally repositionable side guide assembly for use with a friction sheet feeding machine capable of feeding individual sheets from a stack of sheets in a longitudinal direction, comprising:
(a) a support member configured and arranged for attachment to a friction sheet feeding machine,
(b) a pair of laterally spaced carriages, each repositionably mounted on the support member for selective lateral repositioning relative to the support member,
(c) a pair of laterally spaced side guides, each configured and arranged for laterally guiding sheets through a friction sheet feeding machine, and each attached to one of the carriages for lateral repositioning with the carriage, and
(d) a pair of laterally spaced worm screws, each in threaded communication with one of the carriages for effecting linear movement of the corresponding carriage along the length of the worm screw upon rotation of the worm screw.
5. The side guide assembly of claim 3 wherein (i) the support member is rigidly attached to a friction sheet feeding machine, (ii) the machine has a right side and a left side, (iii) safety panels are mounted on the right and left sides of the machine for limiting side access into to the machine, (iv) an interface device for effecting manual rotation of the one worm screw is located on the outside of one of the safety panels, and (v) an interface device for effecting manual rotation of the other worm screw is located on the outside of the other safety panel.
6. The side guide assembly of claim 5 wherein the interface device is a manually rotatable knob.
7. The side guide assembly of claim 3 wherein each carriage and attached side guide are independently repositionable.
8. A method of laterally repositioning side guides on a friction sheet feeding machine, comprising the steps of:
(a) obtaining a friction sheet feeding machine equipped with a repositionable side guide assembly wherein the side guide assembly includes at least:
(i) a support member attached to a friction sheet feeding machine,
(ii) a pair of laterally spaced carriages, each repositionably mounted on the support member for selective lateral repositioning relative to the support member,
(iii) a pair of laterally spaced side guides, each configured and arranged for laterally guiding sheets through a friction sheet feeding machine, and each attached to one of the carriages for lateral repositioning with the carriage, and
(iv) a pair of laterally spaced worm screws, each in threaded communication with one of the carriages for effecting linear movement of the corresponding carriage along the length of the worm screw upon rotation of the worm screw,
(b) rotating one of the worm screws to laterally reposition the corresponding carriage and attached side guide along the support member without lateral movement of the one worm screw, and
(c) rotating the other worm screw to laterally reposition the corresponding carriage and attached side guide along the support member without lateral movement of the other worm screw.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/293,200 US20090096157A1 (en) | 2006-03-20 | 2007-03-20 | Laterally adjustable side guide assembly for use with friction sheet feeding machines |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US78412106P | 2006-03-20 | 2006-03-20 | |
US12/293,200 US20090096157A1 (en) | 2006-03-20 | 2007-03-20 | Laterally adjustable side guide assembly for use with friction sheet feeding machines |
PCT/US2007/064350 WO2007109642A2 (en) | 2006-03-20 | 2007-03-20 | Laterally adjustable side guide assembly for use with friction sheet feeding machines |
Publications (1)
Publication Number | Publication Date |
---|---|
US20090096157A1 true US20090096157A1 (en) | 2009-04-16 |
Family
ID=38523239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/293,200 Abandoned US20090096157A1 (en) | 2006-03-20 | 2007-03-20 | Laterally adjustable side guide assembly for use with friction sheet feeding machines |
Country Status (2)
Country | Link |
---|---|
US (1) | US20090096157A1 (en) |
WO (1) | WO2007109642A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120128461A1 (en) * | 2009-08-05 | 2012-05-24 | Teknoweb Srl | Stacking device for groups of disposable wipes |
US20140175738A1 (en) * | 2011-08-19 | 2014-06-26 | Grg Banking Equipment Co., Ltd. | Sheet-type medium stacking and guiding device, as well as control system and method based on the same |
CN105416658A (en) * | 2015-11-27 | 2016-03-23 | 浙江越创电子科技有限公司 | Money counting, detecting and bundling all-in-one machine |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2479127B1 (en) | 2011-01-20 | 2013-07-17 | Neopost Technologies | Apparatus for feeding sheetlike items |
Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1437744A (en) * | 1922-02-07 | 1922-12-05 | Berenson Israel | Guide for positioning sheets of paper |
US1948001A (en) * | 1931-11-18 | 1934-02-20 | Dexter Folder Co | Sheet feeder |
US3860232A (en) * | 1971-07-08 | 1975-01-14 | Merrill David Martin | Adjustable stacker layboy |
US4188026A (en) * | 1977-01-31 | 1980-02-12 | Ryobi, Ltd. | Paper sheet feeding device |
US4241910A (en) * | 1978-04-30 | 1980-12-30 | Masaharu Matsuo | Sheet delivering apparatus |
US4346882A (en) * | 1979-05-18 | 1982-08-31 | Giorgio Pessina | Jogging device |
US4603846A (en) * | 1984-10-03 | 1986-08-05 | Micheal Miles | Dual-stream envelope feeder |
US4697804A (en) * | 1983-06-16 | 1987-10-06 | Heidelberger Druckmaschinen Ag | Sheet feeder for rotary printing machines |
US4811939A (en) * | 1987-08-24 | 1989-03-14 | Midaco Corporation | Printing platform |
US4971311A (en) * | 1987-09-24 | 1990-11-20 | Komori Printing Machinery Co., Ltd. | Feeder for sheet-feed printing machine |
US5133543A (en) * | 1990-04-26 | 1992-07-28 | Koenig & Bauer Aktiengesellschaft | Sheet conveying apparatus |
US5135214A (en) * | 1990-07-20 | 1992-08-04 | Sharp Kabushiki Kaisha | Feeding device |
US5294108A (en) * | 1991-09-02 | 1994-03-15 | Druckmaschinen AG Heidelberger | Sheet feeder |
US5857670A (en) * | 1995-08-10 | 1999-01-12 | Sindo Ricoh Co., Ltd. | Paper arranging and positioning mechanism in a sorter with a stapler |
US6231039B1 (en) * | 1998-09-17 | 2001-05-15 | Sindoricoh Co., Ltd. | Sheet post-processing apparatus |
US6427097B1 (en) * | 2000-09-26 | 2002-07-30 | Martin Family Trust | Conveyor autoset layboy machine |
US6547233B2 (en) * | 1999-12-23 | 2003-04-15 | Pitney Bowes Inc. | Dual bin envelope supply device and method |
US6746012B2 (en) * | 2001-01-19 | 2004-06-08 | Heidelberger Druckmaschinen Ag | Method and device for controlling one sheet-material guiding element independently of the other |
US6817604B2 (en) * | 2000-09-21 | 2004-11-16 | Heidelberger Druckmaschinen Ag | Device for adjusting conveyors for flat products in rotary presses |
US6955350B2 (en) * | 2001-10-23 | 2005-10-18 | Fuji Photo Film Co., Ltd. | Sheet member positioning device |
US20060220299A1 (en) * | 2005-03-16 | 2006-10-05 | Kaiping James C | Sheet feeder |
-
2007
- 2007-03-20 US US12/293,200 patent/US20090096157A1/en not_active Abandoned
- 2007-03-20 WO PCT/US2007/064350 patent/WO2007109642A2/en active Application Filing
Patent Citations (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1437744A (en) * | 1922-02-07 | 1922-12-05 | Berenson Israel | Guide for positioning sheets of paper |
US1948001A (en) * | 1931-11-18 | 1934-02-20 | Dexter Folder Co | Sheet feeder |
US3860232A (en) * | 1971-07-08 | 1975-01-14 | Merrill David Martin | Adjustable stacker layboy |
US4188026A (en) * | 1977-01-31 | 1980-02-12 | Ryobi, Ltd. | Paper sheet feeding device |
US4241910A (en) * | 1978-04-30 | 1980-12-30 | Masaharu Matsuo | Sheet delivering apparatus |
US4346882A (en) * | 1979-05-18 | 1982-08-31 | Giorgio Pessina | Jogging device |
US4697804A (en) * | 1983-06-16 | 1987-10-06 | Heidelberger Druckmaschinen Ag | Sheet feeder for rotary printing machines |
US4603846A (en) * | 1984-10-03 | 1986-08-05 | Micheal Miles | Dual-stream envelope feeder |
US4811939A (en) * | 1987-08-24 | 1989-03-14 | Midaco Corporation | Printing platform |
US4971311A (en) * | 1987-09-24 | 1990-11-20 | Komori Printing Machinery Co., Ltd. | Feeder for sheet-feed printing machine |
US5133543A (en) * | 1990-04-26 | 1992-07-28 | Koenig & Bauer Aktiengesellschaft | Sheet conveying apparatus |
US5135214A (en) * | 1990-07-20 | 1992-08-04 | Sharp Kabushiki Kaisha | Feeding device |
US5294108A (en) * | 1991-09-02 | 1994-03-15 | Druckmaschinen AG Heidelberger | Sheet feeder |
US5857670A (en) * | 1995-08-10 | 1999-01-12 | Sindo Ricoh Co., Ltd. | Paper arranging and positioning mechanism in a sorter with a stapler |
US6231039B1 (en) * | 1998-09-17 | 2001-05-15 | Sindoricoh Co., Ltd. | Sheet post-processing apparatus |
US6547233B2 (en) * | 1999-12-23 | 2003-04-15 | Pitney Bowes Inc. | Dual bin envelope supply device and method |
US6817604B2 (en) * | 2000-09-21 | 2004-11-16 | Heidelberger Druckmaschinen Ag | Device for adjusting conveyors for flat products in rotary presses |
US6427097B1 (en) * | 2000-09-26 | 2002-07-30 | Martin Family Trust | Conveyor autoset layboy machine |
US6746012B2 (en) * | 2001-01-19 | 2004-06-08 | Heidelberger Druckmaschinen Ag | Method and device for controlling one sheet-material guiding element independently of the other |
US6955350B2 (en) * | 2001-10-23 | 2005-10-18 | Fuji Photo Film Co., Ltd. | Sheet member positioning device |
US20060220299A1 (en) * | 2005-03-16 | 2006-10-05 | Kaiping James C | Sheet feeder |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120128461A1 (en) * | 2009-08-05 | 2012-05-24 | Teknoweb Srl | Stacking device for groups of disposable wipes |
US20140175738A1 (en) * | 2011-08-19 | 2014-06-26 | Grg Banking Equipment Co., Ltd. | Sheet-type medium stacking and guiding device, as well as control system and method based on the same |
US8899580B2 (en) * | 2011-08-19 | 2014-12-02 | Grg Banking Equipment Co., Ltd. | Sheet-type medium stacking and guiding device, as well as control system and method based on the same |
CN105416658A (en) * | 2015-11-27 | 2016-03-23 | 浙江越创电子科技有限公司 | Money counting, detecting and bundling all-in-one machine |
Also Published As
Publication number | Publication date |
---|---|
WO2007109642A2 (en) | 2007-09-27 |
WO2007109642A3 (en) | 2007-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10772247B2 (en) | Tape cutting processing apparatus and processing method | |
CA2602137C (en) | Sheet feeder with feed belts | |
US5092573A (en) | Auxiliary paper feeding apparatus for high speed computer printers | |
US7094195B1 (en) | Method of folding and stacking multiple-sheet sets | |
US20090096157A1 (en) | Laterally adjustable side guide assembly for use with friction sheet feeding machines | |
EP1294628B1 (en) | Multiple card hopper for card printer | |
US6932338B1 (en) | Friction sheet feeding machine with reversible driven retard roller | |
TW201540455A (en) | Cutting device | |
US8336876B2 (en) | Side guide assembly with vertically repositionable side guides for use with friction sheet feeding machines | |
JP5412616B2 (en) | Film cover pasting system | |
US7748696B2 (en) | Sheet feeder with feed belts and traction belt | |
KR20120058495A (en) | Controller for sheet of automatic cards punch | |
KR200448046Y1 (en) | The thomson supply for upper paper of automatic paper supply device | |
US20090206542A1 (en) | Feed belt positioning assembly | |
US6776412B2 (en) | Removable sheet feeder with jam clearance for use in an envelope inserting machine | |
CN212687008U (en) | Conveying mechanism of paperboard splitting machine | |
US4240622A (en) | Mechanism for transporting sheetlike recording carriers | |
JPH08217283A (en) | Separately conveying device for set of document | |
DK200100433A (en) | Apparatus for receiving, reversing and returning sheets from and to a large format paper printer | |
CN214211985U (en) | Accurate positioner of metal sheet conveying roller | |
US3270931A (en) | Apparatus for selectively feeding sheet material from a plurality of coils | |
CN109820444A (en) | For the anti-sticking paper structure in paper delivery machine roll wheel assembly | |
CA2525627A1 (en) | Enhanced object-feeder pre-processing system | |
US1618625A (en) | Automatic register | |
CN212449795U (en) | Feeding auxiliary device of printing machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STREAMFEEDER, LLC, MINNESOTA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POPEJOY, WILLIAM L.;BERGMAN, PERRY D.;REEL/FRAME:021993/0487 Effective date: 20060710 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |