US20090096157A1 - Laterally adjustable side guide assembly for use with friction sheet feeding machines - Google Patents

Laterally adjustable side guide assembly for use with friction sheet feeding machines Download PDF

Info

Publication number
US20090096157A1
US20090096157A1 US12/293,200 US29320007A US2009096157A1 US 20090096157 A1 US20090096157 A1 US 20090096157A1 US 29320007 A US29320007 A US 29320007A US 2009096157 A1 US2009096157 A1 US 2009096157A1
Authority
US
United States
Prior art keywords
side guide
carriage
worm screw
sheet feeding
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/293,200
Inventor
William L. Popejoy
Perry D. Bergman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thiele Technologies Inc
Streamfeeder LLC
Original Assignee
Thiele Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thiele Technologies Inc filed Critical Thiele Technologies Inc
Priority to US12/293,200 priority Critical patent/US20090096157A1/en
Assigned to STREAMFEEDER, LLC reassignment STREAMFEEDER, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BERGMAN, PERRY D., POPEJOY, WILLIAM L.
Publication of US20090096157A1 publication Critical patent/US20090096157A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H1/00Supports or magazines for piles from which articles are to be separated
    • B65H1/04Supports or magazines for piles from which articles are to be separated adapted to support articles substantially horizontally, e.g. for separation from top of pile
    • B65H1/06Supports or magazines for piles from which articles are to be separated adapted to support articles substantially horizontally, e.g. for separation from top of pile for separation from bottom of pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2403/00Power transmission; Driving means
    • B65H2403/50Driving mechanisms
    • B65H2403/52Translation screw-thread mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/10Size; Dimensions
    • B65H2511/12Width
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2511/00Dimensions; Position; Numbers; Identification; Occurrences
    • B65H2511/20Location in space
    • B65H2511/22Distance

Definitions

  • a wide variety of friction sheet feeding machines are available for feeding individual sheets from the bottom of an essentially vertical stack of sheets. Exemplary friction sheet feeding machines are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338.
  • These machines typically include (i) a tray for holding a stack of sheets in an essentially vertical position, (ii) a nip for feeding a lowermost sheet from the stack, (iii) a driven friction roller or feed belt for contacting the downward facing major surface of the lowermost sheet in the stack and pulling the lowermost sheet from underneath the sheet stack towards the nip, and (iv) a friction retard surface positioned above the driven friction roller for contacting the leading edge(s) and any exposed upward facing major surface(s) of the sheet(s) positioned directly above the lowermost sheet for retarding advancement of the sheet(s) directly above the lowermost sheet and thereby facilitating separation of the lowermost sheet from the immediately overlying sheet prior to introduction of the lowermost sheet into the feed nip.
  • Side guides are commonly employed on friction sheet feeding machines for providing lateral support to a sheet stack loaded onto the tray, and providing lateral guidance to sheets as they are pulled from the stack by the driven friction roller or feed belt(s) and introduced into the nip area.
  • These side guides are commonly mounted on a laterally repositionable carriage to permit quick and easy repositioning of the side guides in order to accommodate sheets of different widths.
  • the side guides typically extend below the upper conveying surface of the feed belts in order to prevent sheets from slipping under the side guide, the feed belts often interfere with lateral repositioning of the side guides.
  • the side guides need to be detached from the carriage prior to repositioning of the subassembly and reattached after the carriage has been repositioned.
  • a first aspect of the invention is a laterally repositionable side guide assembly for use with a friction sheet feeding machine.
  • the side guide assembly includes (i) a support member, (ii) a carriage, (iii) a side guide, and (iv) a worm screw.
  • the support member is configured and arranged for attachment to a friction sheet feeding machine.
  • the carriage is repositionably mounted on the support member for selective lateral repositioning relative to the support member.
  • the side guide is configured and arranged for laterally guiding sheets through a friction sheet feeding machine.
  • the side guide is attached to the carriage for lateral repositioning with the carriage.
  • the worm screw is in threaded communication with the carriage for effecting linear movement of the carriage along the length of the worm screw upon rotation of the worm screw.
  • the side guide assembly preferably includes a pair of laterally spaced and laterally repositionable carriages, each with an associated side guide and a corresponding worm screw.
  • a second aspect of the invention is a method of laterally repositioning a side guide on a friction sheet feeding machine.
  • the method includes the steps of (i) obtaining a friction sheet feeding machine equipped with a repositionable side guide assembly wherein the side guide assembly includes at least (A) a support member attached to the friction sheet feeding machine, (B) a pair of laterally spaced carriage, each repositionably mounted on the support member for selective lateral repositioning relative to the support member, (C) a pair of laterally spaced side guides, each configured and arranged for laterally guiding sheets through the friction sheet feeding machine, and each attached to one of the carriages for lateral repositioning with the carriage, and (D) a pair of laterally spaced worm screws, each in threaded communication with one of the carriages for effecting linear movement of the corresponding carriage along the length of the worm screw upon rotation of the worm screw, (ii) rotating one of the worm screws to laterally reposition the corresponding carriage and attached side guide along the support
  • FIG. 1 is an exploded perspective view of one embodiment of the invention.
  • FIG. 2 is an enlarged perspective view of one of the carriages and associated side guide shown in FIG. 1 .
  • FIG. 3 is a cross-sectional side view of the carriage shown in FIG. 2 taken along line 3 - 3 with the catch pins inserted into the carriage and the corresponding side guide shown attached to the carriage in the lower position.
  • FIG. 4 is a perspective view of the invention shown in FIG. 1 attached to a friction sheet feeding machine with the side guide in the lower position.
  • Friction sheet feeding machines 10 generally include a frame (not shown), a tray assembly (not shown), a gating assembly (not shown) and a drive assembly 30 .
  • the machines 10 are capable of serially feeding individual sheets (not shown) in a longitudinal direction x from the bottom (not shown) of a generally vertical stack of sheets (not shown) retained within the tray assembly (not shown).
  • a typical configuration of the frame is a generally rectangular frame (not shown) having (i) a generally horizontal base plate (not shown), (ii) a right side panel (not shown) extending upward from the base plate (not shown), (iii) a left side panel (not shown) also extending upward from the base plate (not shown), (iv) a rear end plate (not shown) extending upward from the base plate (not shown) and laterally interconnecting the side panels (not shown), (v) at least one lateral cross member, such as cross member 20 , transversely spaced above the base plate (not shown) and interconnecting the side panels (not shown) for supporting the gating assembly (not shown), and (vi) a plurality of laterally extending support rods (not shown) extending between and interconnecting the side panels (not shown).
  • the tray assembly (not shown) is effective for holding a stack of individual sheets (not shown) in a substantially vertical position with a slight biasing of at least the lower portion (unnumbered) of the stack (not shown) towards the gating assembly (not shown) and the drive assembly 30 .
  • One means for achieving the desired biasing of the stack is to incline the floor (not shown) of the tray assembly (not shown) towards the gating assembly (not shown) and the drive assembly 30 .
  • Other means are known and may also be employed, such as a transversely extending strip (not shown) positioned within the tray assembly (not shown) for supporting the trailing edges (not shown) of the sheets (not shown) in the stack (not shown) wherein the lower portion (unnumbered) of the support strip (not shown) is curved towards the gating assembly (not shown) and the drive assembly 30 .
  • Suitable tray types, styles and configurations are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338.
  • a typical gating assembly includes a friction retard roller (not shown) driven by an auxiliary electric motor (not shown) for contacting the upward facing major surface (not shown) of sheets (not shown) as they approach the friction feed belts 35 for assisting in separation of a lowermost sheet (not shown) from the immediately overlying sheet (not shown) and preventing the simultaneous feeding of multiple sheets (not shown).
  • Typical gating assemblies are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338.
  • the drive assembly 30 includes a primary drive motor (not shown) and a friction feed roller 31 driven by the primary drive motor (not shown).
  • the friction feed roller 31 drives friction feed belts 35 which contact the sheets (not shown).
  • the drive assembly 30 on friction sheet feeding machines 10 typically includes a conveyor system (not shown) downstream from the friction feed belts 35 for receiving individual sheets (not shown) fed from the sheet stack (not shown) by the friction feed belts 35 and conveying the fed sheets (not shown) to the desired location, typically a conveyor belt (not shown) timed to receive and collate sheets (not shown) fed from several aligned friction sheet feeding machines 10 .
  • a suitable drive assembly 30 includes a primary drive motor (not shown), and a plurality of laterally y aligned and spaced friction feed belts 35 , each mounted onto a driven friction feed roller 31 and an idler roller 32 .
  • the friction feed roller 31 is rotatably attached to side panels (not shown).
  • the idler roller 32 extends parallel with the friction feed roller 31 and is rotatably attached to the side panels (not shown).
  • the friction feed roller 31 is driven by the primary drive motor (not shown) via drive belt (not shown).
  • the invention is a side guide assembly 100 configured and arranged for operable attachment to a friction sheet feeding machine 10 to provided lateral y support to a sheet stack (not shown) loaded onto the machine 10 and lateral guidance to individual sheets (not shown) as they are fed through the machine 10 .
  • the side guide assembly 100 includes a support rod 110 , right and left carriages 120 r and 120 s (collectively carriages 120 ), and right and left side guides 190 r and 190 s (collectively side guides 190 ).
  • the support rod 110 is positioned just above the cross member 20 with the lateral ends (unnumbered) of the support rod 110 attached to the lateral y ends (unnumbered) of the cross member 20 by first mounting blocks 161 and machine screws 163 .
  • the carriages 120 are slidably supported on the support rod 110 via a first lateral y bore 129 a through each carriage 120 .
  • the carriages 120 are also slidably supported on the cross member 20 via a lateral y channel 127 in the front 123 of each carriage 120 .
  • the right and left side guides 190 r and 190 s are mounted onto the right and left carriages 120 r and 120 s respectively.
  • the side guides 190 are configured and arranged to cooperatively support a stack of sheets (not shown) therebetween.
  • the carriages 120 each have a second lateral bore 129 b extending through the carriage 120 .
  • a right worm screw 140 r extends through the second lateral bore 129 b in the right carriage 120 r and a left worm screw 140 s extends through the second lateral bore 129 b in the left carriage 120 s.
  • the worm screws 140 r and 140 s are spirally threaded for cooperatively engaging a follower pin 131 extending into the second lateral bore 129 b in each carriage 120 , whereby rotation of the worm screw 140 causes the corresponding carriage 120 to travel along the length of the rotated worm screw 140 .
  • the distal ends 142 of the worm screws 140 are rotatably supported by a center support block 150 attached to the cross member 20 by machine screws 153 .
  • each worm screw 140 r and 140 s is attached to a repositioning knob 170 r and 170 s respectively (collectively repositioning knobs 170 ) for effecting independent manual rotation of the attached worm screw 140 .
  • the repositioning knobs 170 are rotatably supported by second mounting blocks 162 attached to the cross member 20 by machine screws 164 .
  • a locking knob 180 r and 180 s (collectively 180 ) is provided on each carriage 120 r and 120 s respectively, for selectively engaging and disengaging the support rod 110 to prevent further lateral repositioning of the corresponding carriage 120 when the locking knob 180 is rotated into locking engagement with the support member 110 , and permitting repositioning of the corresponding carriage 120 when the locking knob 180 is rotated away from the support member 110 .
  • Bearings (unnumbered) are preferably provided at each end (unnumbered) of the first bores 129 a through each carriage 120 to facilitate lateral y sliding of the carriages 120 along the support rod 110 .
  • Bearings (unnumbered) are also preferably provided at each end (unnumbered) of the second bores 129 b through each carriage 120 to facilitate rotation and lateral y sliding of the worm screws 140 relative to the carriages 120 .
  • An e-clip 145 can be provided on each worm screw 140 proximate the distal end 142 of the worm screw 140 for serving as a stop to continued inward travel of the carriages 120 along the length of the corresponding worm screw 140 .
  • Other mechanical stops are well known to those of routine skill in the art and may be substituted for the e-clip stop 145 shown and described.
  • each of the side guides 190 has a top 191 , a bottom 192 , a forward edge 193 , a rearward edge 194 , an inward facing major surface 195 , and an outward facing major surface 196 .
  • the side guides 190 preferably include a forward projecting finger 198 extending from proximate the bottom 192 of the side guide 190 for projecting underneath the cross member 20 and thereby providing lateral y guidance to sheets (not shown) as they are fed through the gating assembly (not shown) and drive assembly 30 .
  • the side guides 190 are mounted to a corresponding carriage 120 so that they travel laterally y with the corresponding carriage 120 , and a capable of being transversely z lifted relative to the carriage 120 during repositioning of the side guide 190 without being detached from the carriage 120 .
  • each side guide 190 is retained within a transversely z extending channel 128 in the back 124 of the corresponding carriage 120 which extends from the top 121 of the carriage 120 to the bottom 122 of the carriage 120 .
  • L-shaped slots 199 a and 199 b are cut in the forward edge 193 of each side guide 190 for cooperatively engaging corresponding catch pins 132 positioned within the transverse z channel 128 .
  • the side guides 190 are biased downward onto “locking” engagement with the catch pins 132 by gravity (i.e., the catch pins 132 are normally biased into the upper portion of the L-shaped slots 199 as depicted in FIG. 3 ).
  • the transversely z extending leg (unnumbered) of the L-shaped slots 199 is elongated to permit the side guide 190 to be lifted relative to the corresponding carriage 120 so as to slide the side guide 190 along the transverse z length of the transverse channel 128 without removing the catch pins 132 from within the slots 199 .
  • a lift distance of about 0.5 cm to 2 cm is sufficient to lift the bottom 192 of the side guide 190 above the friction feed belts 35 and thereby permit unimpeded lateral y repositioning of the side guide 190 .
  • attachment mechanisms capable of coupling the side guide 190 to a corresponding carriage 120 with the necessary and desired upward sliding or pivoting of the side guide 190 relative to the corresponding carriage 120 without detaching the side guide 190 from the carriage 120 , are known and within the scope of this invention.
  • One such example is to replace the catch pins 132 on the carriage 120 with an L-shaped slot 199 and replace the slots 199 on the side guide 190 with trunnions (not shown).
  • Biasing means other than gravity are known and may be employed to bias the side guides 190 into the lower “locked” position on the corresponding carriage 120 .
  • Such biasing means include springs, elastic bands, pneumatic cylinders, etc.
  • the side guide assembly 100 of the present invention permits quick and easy repositioning of the side guides 190 as necessary for accommodating sheets (not shown) of different width by (i) rotating the locking knob 180 to allow the carriage 120 to slide along the support rod 120 , (ii) pulling up on the side guide 190 to position the side guide 190 into the upper position and thereby lift the bottom 192 of the side guide 190 above the friction feed belts 35 , (iii) rotating the repositioning knob 170 as necessary and appropriate to move the carriage 120 and attached side guide 190 into supporting engagement with sheets (not shown) loaded onto the friction sheet feeding machine 10 with the side guide held in the lifted position, (iv) releasing the side guide 190 so as to allow the side guide 190 to return to its lower biased position, (v) rotating the locking knob 180 to again lock the carriage 120 against the support rod 110 and prevent any further lateral y movement of the carriage 120 and the corresponding side guide 190 relative to the friction sheet feeding machine 10 , and (vi) repeating steps (i) through (v) for the

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sheets, Magazines, And Separation Thereof (AREA)
  • Transmission Devices (AREA)

Abstract

A laterally repositionable side guide assembly for use with a friction sheet feeding machine. The side guide assembly includes (i) a support member, (ii) a carriage, (iii) a side guide, and (iv) a worm screw. The support member is configured and arranged for attachment to a friction sheet feeding machine. The carriage is repositionably mounted on the support member for selective lateral repositioning relative to the support member. The side guide is configured and arranged for laterally guiding sheets through a friction sheet feeding machine. The side guide is attached to the carriage for lateral repositioning with the carriage. The worm screw is in threaded communication with the carriage for effecting linear movement of the carriage along the length of the worm screw upon rotation of the worm screw.

Description

  • This application claims the benefit of U.S. Provisional Application No. 60/784,121, filed Mar. 20, 2006.
  • BACKGROUND OF THE INVENTION
  • A wide variety of friction sheet feeding machines are available for feeding individual sheets from the bottom of an essentially vertical stack of sheets. Exemplary friction sheet feeding machines are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338.
  • These machines typically include (i) a tray for holding a stack of sheets in an essentially vertical position, (ii) a nip for feeding a lowermost sheet from the stack, (iii) a driven friction roller or feed belt for contacting the downward facing major surface of the lowermost sheet in the stack and pulling the lowermost sheet from underneath the sheet stack towards the nip, and (iv) a friction retard surface positioned above the driven friction roller for contacting the leading edge(s) and any exposed upward facing major surface(s) of the sheet(s) positioned directly above the lowermost sheet for retarding advancement of the sheet(s) directly above the lowermost sheet and thereby facilitating separation of the lowermost sheet from the immediately overlying sheet prior to introduction of the lowermost sheet into the feed nip.
  • Side guides are commonly employed on friction sheet feeding machines for providing lateral support to a sheet stack loaded onto the tray, and providing lateral guidance to sheets as they are pulled from the stack by the driven friction roller or feed belt(s) and introduced into the nip area. These side guides are commonly mounted on a laterally repositionable carriage to permit quick and easy repositioning of the side guides in order to accommodate sheets of different widths. However, because the side guides typically extend below the upper conveying surface of the feed belts in order to prevent sheets from slipping under the side guide, the feed belts often interfere with lateral repositioning of the side guides. Hence, the side guides need to be detached from the carriage prior to repositioning of the subassembly and reattached after the carriage has been repositioned.
  • While generally effective for facilitating lateral repositioning of the side guides, the repositioning process tends to be an awkward, cumbersome, time consuming and potentially dangerous as it involves detachment and reattachment of the side guides.
  • Accordingly, a need exists for laterally repositionable side guides capable of being quickly, easily and safely repositioned without requiring the use of a tool or requiring detachment of the side guides.
  • SUMMARY OF THE INVENTION
  • A first aspect of the invention is a laterally repositionable side guide assembly for use with a friction sheet feeding machine. The side guide assembly includes (i) a support member, (ii) a carriage, (iii) a side guide, and (iv) a worm screw. The support member is configured and arranged for attachment to a friction sheet feeding machine. The carriage is repositionably mounted on the support member for selective lateral repositioning relative to the support member. The side guide is configured and arranged for laterally guiding sheets through a friction sheet feeding machine. The side guide is attached to the carriage for lateral repositioning with the carriage. The worm screw is in threaded communication with the carriage for effecting linear movement of the carriage along the length of the worm screw upon rotation of the worm screw.
  • The side guide assembly preferably includes a pair of laterally spaced and laterally repositionable carriages, each with an associated side guide and a corresponding worm screw.
  • A second aspect of the invention is a method of laterally repositioning a side guide on a friction sheet feeding machine. The method includes the steps of (i) obtaining a friction sheet feeding machine equipped with a repositionable side guide assembly wherein the side guide assembly includes at least (A) a support member attached to the friction sheet feeding machine, (B) a pair of laterally spaced carriage, each repositionably mounted on the support member for selective lateral repositioning relative to the support member, (C) a pair of laterally spaced side guides, each configured and arranged for laterally guiding sheets through the friction sheet feeding machine, and each attached to one of the carriages for lateral repositioning with the carriage, and (D) a pair of laterally spaced worm screws, each in threaded communication with one of the carriages for effecting linear movement of the corresponding carriage along the length of the worm screw upon rotation of the worm screw, (ii) rotating one of the worm screws to laterally reposition the corresponding carriage and attached side guide along the support member without lateral movement of the one worm screw, and (iii) rotating the other worm screw to laterally reposition the corresponding carriage and attached side guide along the support member without lateral movement of the other worm screw.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an exploded perspective view of one embodiment of the invention.
  • FIG. 2 is an enlarged perspective view of one of the carriages and associated side guide shown in FIG. 1.
  • FIG. 3 is a cross-sectional side view of the carriage shown in FIG. 2 taken along line 3-3 with the catch pins inserted into the carriage and the corresponding side guide shown attached to the carriage in the lower position.
  • FIG. 4 is a perspective view of the invention shown in FIG. 1 attached to a friction sheet feeding machine with the side guide in the lower position.
  • DETAILED DESCRIPTION OF THE INVENTION Nomenclature
    • 10 Friction Sheet Feeding Machine
    • 20 Cross Member
    • 30 Drive Assembly
    • 31 Friction Feed Roller
    • 32 Idler Roller
    • 35 Friction Feed Belts
    • 100 Side Guide Assembly
    • 110 Support Rod
    • 120 Carriages (120 r and 120 s)
    • 120 r Right Carriage
    • 120 s Left Carriage
    • 121 Top of Carriage
    • 122 Bottom of Carriage
    • 123 Front of Carriage
    • 124 Back of Carriage
    • 127 Lateral Channel Across Front of Carriage
    • 128 Transverse Channel Along Back of Carriage
    • 129 a First Lateral Bore Through Carriage
    • 129 b Second Lateral Bore Through Carriage
    • 131 Follower Pin
    • 132 Catch Pins
    • 140 Worm Screws (140 r and 140 s)
    • 140 r Right Worm Screw
    • 140 s Left Worm Screw
    • 141 Proximal End of Worm Screw
    • 142 Distal End of Worm Screw
    • 145 E-Clip
    • 150 Center Support Block
    • 153 Machine Screws
    • 161 First Mounting Blocks
    • 162 Second Mounting Blocks
    • 163 Machine Screws
    • 164 Machine Screws
    • 170 Repositioning Knobs
    • 170 r Right Repositioning Knob
    • 170 s Left Repositioning Knob
    • 180 Locking Knobs (180 r and 180 s)
    • 180 r Right Locking Knob
    • 180 s Left Locking Knob
    • 190 Side Guides (190 r and 190 s)
    • 190 r Right Side Guide
    • 190 s Left Side Guide
    • 191 Top of Side Guide
    • 192 Bottom of Side Guide
    • 193 Front or Forward Edge of Side Guide
    • 194 Back or Rearward Edge of Side Guide
    • 195 Inward Facing Major Surface of Side Guide
    • 196 Outward Facing Major Surface of Side Guide
    • 198 Forward Projecting Finger
    • 199 Slots (199 a and 199 b)
    • 199 a First L-shaped Slot in Forward Edge of Side Guide
    • 199 b Second L-shaped Slot in Forward Edge of Side Guide
    • x Longitudinal Direction
    • y Lateral Direction
    • z Transverse Direction
    Construction
  • Friction sheet feeding machines 10 generally include a frame (not shown), a tray assembly (not shown), a gating assembly (not shown) and a drive assembly 30. The machines 10 are capable of serially feeding individual sheets (not shown) in a longitudinal direction x from the bottom (not shown) of a generally vertical stack of sheets (not shown) retained within the tray assembly (not shown).
  • A typical configuration of the frame (unnumbered) is a generally rectangular frame (not shown) having (i) a generally horizontal base plate (not shown), (ii) a right side panel (not shown) extending upward from the base plate (not shown), (iii) a left side panel (not shown) also extending upward from the base plate (not shown), (iv) a rear end plate (not shown) extending upward from the base plate (not shown) and laterally interconnecting the side panels (not shown), (v) at least one lateral cross member, such as cross member 20, transversely spaced above the base plate (not shown) and interconnecting the side panels (not shown) for supporting the gating assembly (not shown), and (vi) a plurality of laterally extending support rods (not shown) extending between and interconnecting the side panels (not shown). Other frame configurations may also be employed, such as a cross-beam construction rather than a plate construction. Exemplary frames suitable for use are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338.
  • The tray assembly (not shown) is effective for holding a stack of individual sheets (not shown) in a substantially vertical position with a slight biasing of at least the lower portion (unnumbered) of the stack (not shown) towards the gating assembly (not shown) and the drive assembly 30.
  • One means for achieving the desired biasing of the stack (not shown), is to incline the floor (not shown) of the tray assembly (not shown) towards the gating assembly (not shown) and the drive assembly 30. Other means are known and may also be employed, such as a transversely extending strip (not shown) positioned within the tray assembly (not shown) for supporting the trailing edges (not shown) of the sheets (not shown) in the stack (not shown) wherein the lower portion (unnumbered) of the support strip (not shown) is curved towards the gating assembly (not shown) and the drive assembly 30. Suitable tray types, styles and configurations are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338.
  • A typical gating assembly (not shown) includes a friction retard roller (not shown) driven by an auxiliary electric motor (not shown) for contacting the upward facing major surface (not shown) of sheets (not shown) as they approach the friction feed belts 35 for assisting in separation of a lowermost sheet (not shown) from the immediately overlying sheet (not shown) and preventing the simultaneous feeding of multiple sheets (not shown). Typical gating assemblies are shown and described in U.S. Pat. Nos. 4,991,831, 5,143,365, 5,244,198, 5,642,877, 5,772,199 and 6,932,338.
  • Generally, the drive assembly 30 includes a primary drive motor (not shown) and a friction feed roller 31 driven by the primary drive motor (not shown). The friction feed roller 31 drives friction feed belts 35 which contact the sheets (not shown).
  • The drive assembly 30 on friction sheet feeding machines 10 typically includes a conveyor system (not shown) downstream from the friction feed belts 35 for receiving individual sheets (not shown) fed from the sheet stack (not shown) by the friction feed belts 35 and conveying the fed sheets (not shown) to the desired location, typically a conveyor belt (not shown) timed to receive and collate sheets (not shown) fed from several aligned friction sheet feeding machines 10.
  • Referring generally to FIG. 4, one embodiment of a suitable drive assembly 30 includes a primary drive motor (not shown), and a plurality of laterally y aligned and spaced friction feed belts 35, each mounted onto a driven friction feed roller 31 and an idler roller 32. The friction feed roller 31 is rotatably attached to side panels (not shown). Similarly, the idler roller 32 extends parallel with the friction feed roller 31 and is rotatably attached to the side panels (not shown). The friction feed roller 31 is driven by the primary drive motor (not shown) via drive belt (not shown).
  • Referring generally to FIGS. 1 and 4, the invention is a side guide assembly 100 configured and arranged for operable attachment to a friction sheet feeding machine 10 to provided lateral y support to a sheet stack (not shown) loaded onto the machine 10 and lateral guidance to individual sheets (not shown) as they are fed through the machine 10.
  • The side guide assembly 100 includes a support rod 110, right and left carriages 120 r and 120 s (collectively carriages 120), and right and left side guides 190 r and 190 s (collectively side guides 190).
  • The support rod 110 is positioned just above the cross member 20 with the lateral ends (unnumbered) of the support rod 110 attached to the lateral y ends (unnumbered) of the cross member 20 by first mounting blocks 161 and machine screws 163.
  • The carriages 120 are slidably supported on the support rod 110 via a first lateral y bore 129 a through each carriage 120. The carriages 120 are also slidably supported on the cross member 20 via a lateral y channel 127 in the front 123 of each carriage 120.
  • The right and left side guides 190 r and 190 s are mounted onto the right and left carriages 120 r and 120 s respectively. The side guides 190 are configured and arranged to cooperatively support a stack of sheets (not shown) therebetween.
  • The carriages 120 each have a second lateral bore 129 b extending through the carriage 120. A right worm screw 140 r extends through the second lateral bore 129 b in the right carriage 120 r and a left worm screw 140 s extends through the second lateral bore 129 b in the left carriage 120 s. The worm screws 140 r and 140 s (collectively 140) are spirally threaded for cooperatively engaging a follower pin 131 extending into the second lateral bore 129 b in each carriage 120, whereby rotation of the worm screw 140 causes the corresponding carriage 120 to travel along the length of the rotated worm screw 140.
  • The distal ends 142 of the worm screws 140 are rotatably supported by a center support block 150 attached to the cross member 20 by machine screws 153.
  • The proximal ends 141 of each worm screw 140 r and 140 s is attached to a repositioning knob 170 r and 170 s respectively (collectively repositioning knobs 170) for effecting independent manual rotation of the attached worm screw 140. The repositioning knobs 170 are rotatably supported by second mounting blocks 162 attached to the cross member 20 by machine screws 164.
  • A locking knob 180 r and 180 s (collectively 180) is provided on each carriage 120 r and 120 s respectively, for selectively engaging and disengaging the support rod 110 to prevent further lateral repositioning of the corresponding carriage 120 when the locking knob 180 is rotated into locking engagement with the support member 110, and permitting repositioning of the corresponding carriage 120 when the locking knob 180 is rotated away from the support member 110.
  • Bearings (unnumbered) are preferably provided at each end (unnumbered) of the first bores 129 a through each carriage 120 to facilitate lateral y sliding of the carriages 120 along the support rod 110. Bearings (unnumbered) are also preferably provided at each end (unnumbered) of the second bores 129 b through each carriage 120 to facilitate rotation and lateral y sliding of the worm screws 140 relative to the carriages 120.
  • An e-clip 145 can be provided on each worm screw 140 proximate the distal end 142 of the worm screw 140 for serving as a stop to continued inward travel of the carriages 120 along the length of the corresponding worm screw 140. Other mechanical stops are well known to those of routine skill in the art and may be substituted for the e-clip stop 145 shown and described.
  • Referring to FIG. 2, each of the side guides 190 has a top 191, a bottom 192, a forward edge 193, a rearward edge 194, an inward facing major surface 195, and an outward facing major surface 196. The side guides 190 preferably include a forward projecting finger 198 extending from proximate the bottom 192 of the side guide 190 for projecting underneath the cross member 20 and thereby providing lateral y guidance to sheets (not shown) as they are fed through the gating assembly (not shown) and drive assembly 30.
  • The side guides 190 are mounted to a corresponding carriage 120 so that they travel laterally y with the corresponding carriage 120, and a capable of being transversely z lifted relative to the carriage 120 during repositioning of the side guide 190 without being detached from the carriage 120.
  • One mechanism for achieving the desired attachment is depicted in FIG. 3. The forward edge 193 of each side guide 190 is retained within a transversely z extending channel 128 in the back 124 of the corresponding carriage 120 which extends from the top 121 of the carriage 120 to the bottom 122 of the carriage 120. L-shaped slots 199 a and 199 b (collectively slots 199) are cut in the forward edge 193 of each side guide 190 for cooperatively engaging corresponding catch pins 132 positioned within the transverse z channel 128. The side guides 190 are biased downward onto “locking” engagement with the catch pins 132 by gravity (i.e., the catch pins 132 are normally biased into the upper portion of the L-shaped slots 199 as depicted in FIG. 3). The transversely z extending leg (unnumbered) of the L-shaped slots 199 is elongated to permit the side guide 190 to be lifted relative to the corresponding carriage 120 so as to slide the side guide 190 along the transverse z length of the transverse channel 128 without removing the catch pins 132 from within the slots 199. Generally, a lift distance of about 0.5 cm to 2 cm is sufficient to lift the bottom 192 of the side guide 190 above the friction feed belts 35 and thereby permit unimpeded lateral y repositioning of the side guide 190.
  • Other attachment mechanisms capable of coupling the side guide 190 to a corresponding carriage 120 with the necessary and desired upward sliding or pivoting of the side guide 190 relative to the corresponding carriage 120 without detaching the side guide 190 from the carriage 120, are known and within the scope of this invention. One such example is to replace the catch pins 132 on the carriage 120 with an L-shaped slot 199 and replace the slots 199 on the side guide 190 with trunnions (not shown).
  • Biasing means other than gravity are known and may be employed to bias the side guides 190 into the lower “locked” position on the corresponding carriage 120. Such biasing means include springs, elastic bands, pneumatic cylinders, etc.
  • Use
  • The side guide assembly 100 of the present invention permits quick and easy repositioning of the side guides 190 as necessary for accommodating sheets (not shown) of different width by (i) rotating the locking knob 180 to allow the carriage 120 to slide along the support rod 120, (ii) pulling up on the side guide 190 to position the side guide 190 into the upper position and thereby lift the bottom 192 of the side guide 190 above the friction feed belts 35, (iii) rotating the repositioning knob 170 as necessary and appropriate to move the carriage 120 and attached side guide 190 into supporting engagement with sheets (not shown) loaded onto the friction sheet feeding machine 10 with the side guide held in the lifted position, (iv) releasing the side guide 190 so as to allow the side guide 190 to return to its lower biased position, (v) rotating the locking knob 180 to again lock the carriage 120 against the support rod 110 and prevent any further lateral y movement of the carriage 120 and the corresponding side guide 190 relative to the friction sheet feeding machine 10, and (vi) repeating steps (i) through (v) for the other side guide 190.

Claims (8)

1. A laterally repositionable side guide assembly for use with a friction sheet feeding machine capable of feeding individual sheets from a stack of sheets in a longitudinal direction, comprising:
(a) a support member configured and arranged for attachment to a friction sheet feeding machine,
(b) a carriage repositionably mounted on the support member for selective lateral repositioning relative to the support member,
(c) a side guide configured and arranged for laterally guiding sheets through a friction sheet feeding machine, the side guide attached to the carriage for lateral repositioning with the carriage, and
(d) a worm screw in threaded communication with the carriage for effecting linear movement of the carriage along the length of the worm screw upon rotation of the worm screw.
2. The side guide assembly of claim 1 wherein (i) the support member is rigidly attached to a friction sheet feeding machine, (ii) the machine has a right side and a left side, (iii) safety panels are mounted on the right and left sides of the machine for limiting side access into to the machine, and (iv) an interface device for effecting manual rotation of the worm screw is located on the outside of one of the safety panels.
3. The side guide assembly of claim 2 wherein the interface device is a manually rotatable knob.
4. A laterally repositionable side guide assembly for use with a friction sheet feeding machine capable of feeding individual sheets from a stack of sheets in a longitudinal direction, comprising:
(a) a support member configured and arranged for attachment to a friction sheet feeding machine,
(b) a pair of laterally spaced carriages, each repositionably mounted on the support member for selective lateral repositioning relative to the support member,
(c) a pair of laterally spaced side guides, each configured and arranged for laterally guiding sheets through a friction sheet feeding machine, and each attached to one of the carriages for lateral repositioning with the carriage, and
(d) a pair of laterally spaced worm screws, each in threaded communication with one of the carriages for effecting linear movement of the corresponding carriage along the length of the worm screw upon rotation of the worm screw.
5. The side guide assembly of claim 3 wherein (i) the support member is rigidly attached to a friction sheet feeding machine, (ii) the machine has a right side and a left side, (iii) safety panels are mounted on the right and left sides of the machine for limiting side access into to the machine, (iv) an interface device for effecting manual rotation of the one worm screw is located on the outside of one of the safety panels, and (v) an interface device for effecting manual rotation of the other worm screw is located on the outside of the other safety panel.
6. The side guide assembly of claim 5 wherein the interface device is a manually rotatable knob.
7. The side guide assembly of claim 3 wherein each carriage and attached side guide are independently repositionable.
8. A method of laterally repositioning side guides on a friction sheet feeding machine, comprising the steps of:
(a) obtaining a friction sheet feeding machine equipped with a repositionable side guide assembly wherein the side guide assembly includes at least:
(i) a support member attached to a friction sheet feeding machine,
(ii) a pair of laterally spaced carriages, each repositionably mounted on the support member for selective lateral repositioning relative to the support member,
(iii) a pair of laterally spaced side guides, each configured and arranged for laterally guiding sheets through a friction sheet feeding machine, and each attached to one of the carriages for lateral repositioning with the carriage, and
(iv) a pair of laterally spaced worm screws, each in threaded communication with one of the carriages for effecting linear movement of the corresponding carriage along the length of the worm screw upon rotation of the worm screw,
(b) rotating one of the worm screws to laterally reposition the corresponding carriage and attached side guide along the support member without lateral movement of the one worm screw, and
(c) rotating the other worm screw to laterally reposition the corresponding carriage and attached side guide along the support member without lateral movement of the other worm screw.
US12/293,200 2006-03-20 2007-03-20 Laterally adjustable side guide assembly for use with friction sheet feeding machines Abandoned US20090096157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/293,200 US20090096157A1 (en) 2006-03-20 2007-03-20 Laterally adjustable side guide assembly for use with friction sheet feeding machines

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US78412106P 2006-03-20 2006-03-20
US12/293,200 US20090096157A1 (en) 2006-03-20 2007-03-20 Laterally adjustable side guide assembly for use with friction sheet feeding machines
PCT/US2007/064350 WO2007109642A2 (en) 2006-03-20 2007-03-20 Laterally adjustable side guide assembly for use with friction sheet feeding machines

Publications (1)

Publication Number Publication Date
US20090096157A1 true US20090096157A1 (en) 2009-04-16

Family

ID=38523239

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/293,200 Abandoned US20090096157A1 (en) 2006-03-20 2007-03-20 Laterally adjustable side guide assembly for use with friction sheet feeding machines

Country Status (2)

Country Link
US (1) US20090096157A1 (en)
WO (1) WO2007109642A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120128461A1 (en) * 2009-08-05 2012-05-24 Teknoweb Srl Stacking device for groups of disposable wipes
US20140175738A1 (en) * 2011-08-19 2014-06-26 Grg Banking Equipment Co., Ltd. Sheet-type medium stacking and guiding device, as well as control system and method based on the same
CN105416658A (en) * 2015-11-27 2016-03-23 浙江越创电子科技有限公司 Money counting, detecting and bundling all-in-one machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2479127B1 (en) 2011-01-20 2013-07-17 Neopost Technologies Apparatus for feeding sheetlike items

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1437744A (en) * 1922-02-07 1922-12-05 Berenson Israel Guide for positioning sheets of paper
US1948001A (en) * 1931-11-18 1934-02-20 Dexter Folder Co Sheet feeder
US3860232A (en) * 1971-07-08 1975-01-14 Merrill David Martin Adjustable stacker layboy
US4188026A (en) * 1977-01-31 1980-02-12 Ryobi, Ltd. Paper sheet feeding device
US4241910A (en) * 1978-04-30 1980-12-30 Masaharu Matsuo Sheet delivering apparatus
US4346882A (en) * 1979-05-18 1982-08-31 Giorgio Pessina Jogging device
US4603846A (en) * 1984-10-03 1986-08-05 Micheal Miles Dual-stream envelope feeder
US4697804A (en) * 1983-06-16 1987-10-06 Heidelberger Druckmaschinen Ag Sheet feeder for rotary printing machines
US4811939A (en) * 1987-08-24 1989-03-14 Midaco Corporation Printing platform
US4971311A (en) * 1987-09-24 1990-11-20 Komori Printing Machinery Co., Ltd. Feeder for sheet-feed printing machine
US5133543A (en) * 1990-04-26 1992-07-28 Koenig & Bauer Aktiengesellschaft Sheet conveying apparatus
US5135214A (en) * 1990-07-20 1992-08-04 Sharp Kabushiki Kaisha Feeding device
US5294108A (en) * 1991-09-02 1994-03-15 Druckmaschinen AG Heidelberger Sheet feeder
US5857670A (en) * 1995-08-10 1999-01-12 Sindo Ricoh Co., Ltd. Paper arranging and positioning mechanism in a sorter with a stapler
US6231039B1 (en) * 1998-09-17 2001-05-15 Sindoricoh Co., Ltd. Sheet post-processing apparatus
US6427097B1 (en) * 2000-09-26 2002-07-30 Martin Family Trust Conveyor autoset layboy machine
US6547233B2 (en) * 1999-12-23 2003-04-15 Pitney Bowes Inc. Dual bin envelope supply device and method
US6746012B2 (en) * 2001-01-19 2004-06-08 Heidelberger Druckmaschinen Ag Method and device for controlling one sheet-material guiding element independently of the other
US6817604B2 (en) * 2000-09-21 2004-11-16 Heidelberger Druckmaschinen Ag Device for adjusting conveyors for flat products in rotary presses
US6955350B2 (en) * 2001-10-23 2005-10-18 Fuji Photo Film Co., Ltd. Sheet member positioning device
US20060220299A1 (en) * 2005-03-16 2006-10-05 Kaiping James C Sheet feeder

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1437744A (en) * 1922-02-07 1922-12-05 Berenson Israel Guide for positioning sheets of paper
US1948001A (en) * 1931-11-18 1934-02-20 Dexter Folder Co Sheet feeder
US3860232A (en) * 1971-07-08 1975-01-14 Merrill David Martin Adjustable stacker layboy
US4188026A (en) * 1977-01-31 1980-02-12 Ryobi, Ltd. Paper sheet feeding device
US4241910A (en) * 1978-04-30 1980-12-30 Masaharu Matsuo Sheet delivering apparatus
US4346882A (en) * 1979-05-18 1982-08-31 Giorgio Pessina Jogging device
US4697804A (en) * 1983-06-16 1987-10-06 Heidelberger Druckmaschinen Ag Sheet feeder for rotary printing machines
US4603846A (en) * 1984-10-03 1986-08-05 Micheal Miles Dual-stream envelope feeder
US4811939A (en) * 1987-08-24 1989-03-14 Midaco Corporation Printing platform
US4971311A (en) * 1987-09-24 1990-11-20 Komori Printing Machinery Co., Ltd. Feeder for sheet-feed printing machine
US5133543A (en) * 1990-04-26 1992-07-28 Koenig & Bauer Aktiengesellschaft Sheet conveying apparatus
US5135214A (en) * 1990-07-20 1992-08-04 Sharp Kabushiki Kaisha Feeding device
US5294108A (en) * 1991-09-02 1994-03-15 Druckmaschinen AG Heidelberger Sheet feeder
US5857670A (en) * 1995-08-10 1999-01-12 Sindo Ricoh Co., Ltd. Paper arranging and positioning mechanism in a sorter with a stapler
US6231039B1 (en) * 1998-09-17 2001-05-15 Sindoricoh Co., Ltd. Sheet post-processing apparatus
US6547233B2 (en) * 1999-12-23 2003-04-15 Pitney Bowes Inc. Dual bin envelope supply device and method
US6817604B2 (en) * 2000-09-21 2004-11-16 Heidelberger Druckmaschinen Ag Device for adjusting conveyors for flat products in rotary presses
US6427097B1 (en) * 2000-09-26 2002-07-30 Martin Family Trust Conveyor autoset layboy machine
US6746012B2 (en) * 2001-01-19 2004-06-08 Heidelberger Druckmaschinen Ag Method and device for controlling one sheet-material guiding element independently of the other
US6955350B2 (en) * 2001-10-23 2005-10-18 Fuji Photo Film Co., Ltd. Sheet member positioning device
US20060220299A1 (en) * 2005-03-16 2006-10-05 Kaiping James C Sheet feeder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120128461A1 (en) * 2009-08-05 2012-05-24 Teknoweb Srl Stacking device for groups of disposable wipes
US20140175738A1 (en) * 2011-08-19 2014-06-26 Grg Banking Equipment Co., Ltd. Sheet-type medium stacking and guiding device, as well as control system and method based on the same
US8899580B2 (en) * 2011-08-19 2014-12-02 Grg Banking Equipment Co., Ltd. Sheet-type medium stacking and guiding device, as well as control system and method based on the same
CN105416658A (en) * 2015-11-27 2016-03-23 浙江越创电子科技有限公司 Money counting, detecting and bundling all-in-one machine

Also Published As

Publication number Publication date
WO2007109642A2 (en) 2007-09-27
WO2007109642A3 (en) 2007-12-13

Similar Documents

Publication Publication Date Title
US10772247B2 (en) Tape cutting processing apparatus and processing method
CA2602137C (en) Sheet feeder with feed belts
US5092573A (en) Auxiliary paper feeding apparatus for high speed computer printers
US7094195B1 (en) Method of folding and stacking multiple-sheet sets
US20090096157A1 (en) Laterally adjustable side guide assembly for use with friction sheet feeding machines
EP1294628B1 (en) Multiple card hopper for card printer
US6932338B1 (en) Friction sheet feeding machine with reversible driven retard roller
TW201540455A (en) Cutting device
US8336876B2 (en) Side guide assembly with vertically repositionable side guides for use with friction sheet feeding machines
JP5412616B2 (en) Film cover pasting system
US7748696B2 (en) Sheet feeder with feed belts and traction belt
KR20120058495A (en) Controller for sheet of automatic cards punch
KR200448046Y1 (en) The thomson supply for upper paper of automatic paper supply device
US20090206542A1 (en) Feed belt positioning assembly
US6776412B2 (en) Removable sheet feeder with jam clearance for use in an envelope inserting machine
CN212687008U (en) Conveying mechanism of paperboard splitting machine
US4240622A (en) Mechanism for transporting sheetlike recording carriers
JPH08217283A (en) Separately conveying device for set of document
DK200100433A (en) Apparatus for receiving, reversing and returning sheets from and to a large format paper printer
CN214211985U (en) Accurate positioner of metal sheet conveying roller
US3270931A (en) Apparatus for selectively feeding sheet material from a plurality of coils
CN109820444A (en) For the anti-sticking paper structure in paper delivery machine roll wheel assembly
CA2525627A1 (en) Enhanced object-feeder pre-processing system
US1618625A (en) Automatic register
CN212449795U (en) Feeding auxiliary device of printing machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: STREAMFEEDER, LLC, MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:POPEJOY, WILLIAM L.;BERGMAN, PERRY D.;REEL/FRAME:021993/0487

Effective date: 20060710

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION