US20090090579A1 - Silencer for refrigeration cycle system - Google Patents

Silencer for refrigeration cycle system Download PDF

Info

Publication number
US20090090579A1
US20090090579A1 US12/286,724 US28672408A US2009090579A1 US 20090090579 A1 US20090090579 A1 US 20090090579A1 US 28672408 A US28672408 A US 28672408A US 2009090579 A1 US2009090579 A1 US 2009090579A1
Authority
US
United States
Prior art keywords
housing
refrigerant
bend
silencing chamber
outlet pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/286,724
Inventor
Shin Nishida
Masaaki Kawakubo
Takashi Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Assigned to DENSO CORPORATION reassignment DENSO CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KAWAKUBO, MASAAKI, NISHIDA, SHIN, YAMANAKA, TAKASHI
Publication of US20090090579A1 publication Critical patent/US20090090579A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/001Noise damping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H1/00557Details of ducts or cables
    • B60H1/00571Details of ducts or cables of liquid ducts, e.g. for coolant liquids or refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00507Details, e.g. mounting arrangements, desaeration devices
    • B60H2001/006Noise reduction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/806Pipes for fluids; Fittings therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/12Sound

Definitions

  • This invention relates to a silencer for a refrigeration cycle system for reducing the pressure pulsation of a refrigerant discharged from a compressor.
  • the silencer for this type of refrigeration cycle system is designed to reduce the pressure pulsation of a refrigerant by interference of the pressure wave in the silencing chamber (see, for example, Japanese Unexamined Patent Publications Nos. 2002-61508 and 11-62827).
  • Japanese Unexamined Patent Publication No. 2002-61508 concerns a silencer which is known as a straight type for the refrigeration cycle system, in which the inlet pipe through which the refrigerant flows into the silencing chamber is aligned with the outlet pipe through which the refrigerant flows out of the silencing chamber. As a result, the refrigerant flows linearly in the silencing chamber.
  • the refrigerant flows at right angles in the silencing chamber, and therefore interference of pressure waves occurs in the silencing chamber.
  • a higher silencing effect can be achieved than by the refrigeration cycle system silencer of a straight-type in which the refrigerant flows linearly in the silencing chamber.
  • the refrigerant that has flowed into the silencing chamber through the inlet pipe flows linearly under inertia and impinges on the part of the inner wall surface of the housing in opposed relation to the downstream end of the inlet pipe.
  • the refrigerant speed rapidly decreases, and the velocity component in the running direction is reduced to zero.
  • most of the velocity energy of the refrigerant is lost and converted into thermal energy.
  • the pressure energy of the refrigerant is then converted into velocity energy, so that the refrigerant is accelerated again and flows out of the silencing chamber through the outlet pipe.
  • the object of this invention is to reduce the pressure loss of the refrigerant while maintaining a high silencing effect.
  • a silencer for a refrigeration cycle system comprising:
  • an inlet pipe ( 20 ) connected to the housing ( 16 ) to allow the refrigerant to flow into the silencing chamber ( 15 a );
  • an outlet pipe ( 21 ) connected to the housing ( 16 ) to allow the refrigerant to flow out of the silencing chamber ( 15 a );
  • upstream end ( 21 b ) portion of the outlet pipe ( 21 ) is formed with a bend ( 21 c ) projected into the silencing chamber ( 15 a ) and bent toward the downstream end ( 20 b ) of the inlet pipe ( 20 );
  • bend ( 21 c ) is formed with an opening ( 21 d ) to open the inside part of the bend ( 21 c ).
  • the upstream end ( 21 b ) portion of the outlet pipe ( 21 ) is formed with the bend ( 21 c ) projected into the silencing chamber ( 15 a ) and bent toward the downstream end ( 20 b ) of the inlet pipe ( 20 ), and therefore the refrigerant flowing into the silencing chamber ( 15 a ) through the inlet pipe ( 20 ) can be guided smoothly to the outlet pipe ( 21 ) by the bend ( 21 c ).
  • the opening ( 21 d ) for opening the inside part of the bend ( 21 c ) is formed on the bend ( 21 c ), the interference of the pressure wave can be caused by the opening ( 21 d ).
  • the suppression of the interference of the pressure wave which otherwise might be caused by the bend ( 21 c ) projected into the silencing chamber ( 15 a ) can be avoided, and the silencing effect equivalent to that of the refrigeration cycle system silencer disclosed in Japanese Unexamined Patent Publication No. 11-62827 described above can be exhibited.
  • the opening ( 21 d ) may be formed to extend at least from the upstream end ( 21 b ) to the central portion of the bend ( 21 c ) in the direction of the refrigerant flow. In this way, the effective interference of the pressure wave can be caused by the opening ( 21 d ).
  • the outlet pipe ( 21 ) may be formed with an outward protrusion ( 21 a ) in contact with the outer surface of the housing ( 16 ).
  • the outlet pipe ( 21 ) can be positioned with respect to the housing ( 16 ) by the protrusion ( 21 a ), and therefore the outlet pipe ( 21 ) can be easily assembled on the housing ( 16 ).
  • a silencer for the refrigeration cycle system comprising:
  • an inlet pipe ( 20 ) connected to the housing ( 16 ) to allow the refrigerant to flow into the silencing chamber ( 15 a );
  • an outlet pipe ( 21 ) connected to the housing ( 16 ) to allow the refrigerant to flow out of the silencing chamber ( 15 a );
  • downstream end ( 20 b ) portion of the inlet pipe ( 20 ) is formed with a bend ( 20 c ) projected into the silencing chamber ( 15 a ) and bent toward the upstream end ( 21 b ) of the outlet pipe ( 21 );
  • bend ( 20 c ) is formed with an opening ( 20 d ) to open the inside part of the bend ( 20 c ).
  • the downstream end ( 20 b ) portion of the outlet pipe ( 20 ) is formed with the bend ( 20 c ) projected into the silencing chamber ( 15 a ) and bent toward the upstream end ( 21 b ) of the outlet pipe ( 21 ), and therefore the refrigerant flowing into the silencing chamber ( 15 a ) through the inlet pipe ( 20 ) can be directed toward the upstream end ( 21 b ) of the outlet pipe ( 21 ).
  • the refrigerant that has flowed into the silencing chamber ( 15 a ) is prevented from being rapidly decelerated by bombarding the inner wall surface of the housing ( 16 ).
  • the pressure loss of the refrigerant in the silencer ( 15 ) can be reduced.
  • the opening ( 20 d ) for opening the inside part of the bend ( 20 c ) is formed in the bend ( 20 c ), the interference of the pressure wave can be caused by the opening ( 20 d ).
  • the suppression of the interference of the pressure wave which otherwise might be caused by the bend ( 20 c ) projected in the silencing chamber ( 15 a ) can be avoided, and the silencing effect equivalent to that of the refrigeration cycle system silencer disclosed in Japanese Unexamined Patent Publication No. 11-62827 described above can be exhibited.
  • the opening ( 20 d ) may be formed to extend at least from the downstream end ( 20 b ) to the central portion of the bend ( 20 c ) in the direction of the refrigerant flow.
  • the effective interference of the pressure wave can be caused by the opening ( 21 d ).
  • the inlet pipe ( 20 ) may be formed with an outward protrusion ( 20 a ) in contact with the outer surface of the housing ( 16 ).
  • the inlet pipe ( 20 ) can be positioned with respect to the housing ( 16 ) by the protrusion ( 20 a ), and therefore can be easily assembled on the housing ( 16 ).
  • the openings ( 21 d, 20 d ) may be formed by cutting a part of the pipe wall of the bends ( 21 c, 20 c ). In this way, the openings ( 21 d, 20 d ) can be easily formed.
  • the silencing chamber ( 15 a ) is configured of a unit room. In this way, the construction can be simplified and the cost reduced.
  • FIG. 1 is a diagram showing the refrigerant circuit of the refrigeration cycle system according to a first embodiment of the invention.
  • FIG. 2 is a sectional view of the silencer shown in FIG. 1 .
  • FIG. 3 is a perspective view showing the outlet pipe unit shown in FIG. 2 .
  • FIG. 4 is a sectional view showing the silencer according to a second embodiment.
  • FIG. 5 is a sectional view showing the silencer according to a third embodiment.
  • FIG. 1 is a diagram showing the refrigerant circuit of the refrigeration cycle system 10 according to this embodiment.
  • the refrigeration cycle system 10 according to this embodiment is applicable to an automotive air conditioning system.
  • a compressor 11 for sucking in and compressing the refrigerant is rotationally driven by the vehicle engine (not shown) through an electromagnetic clutch 11 a and a belt.
  • the compressor 11 employed in this embodiment may be either a variable displacement refrigerant compressor capable of adjusting the refrigerant discharge capability with the change in the discharge capacity or a fixed displacement refrigerant compressor adapted to adjust the refrigerant discharge capability by switching on/off the electromagnetic clutch 11 and thus changing the operating efficiency of the compressor.
  • the refrigerant discharge capability can be adjusted by regulating the rotational speed of the electric motor.
  • a radiator 12 is arranged on the refrigerant outlet side of the compressor 11 .
  • the radiator 12 cools a high-pressure refrigerant by heat exchange between the high-pressure refrigerant discharged from the compressor 11 and the atmospheric air (outdoor air) blown by a cooling fan not shown.
  • the subcritical cycle of vapor compression type is constructed using, as the refrigerant of the refrigeration cycle system 10 , a refrigerant such as flon or HC in which the high pressure does not exceed the critical pressure.
  • the radiator 12 operates as a condenser for condensing the refrigerant.
  • An expansion valve 13 making up a decompression means is arranged at the outlet of the radiator 12 .
  • This expansion valve 13 functions also as a pressure control valve with the opening degree thereof adjusted so that the pressure on the high-pressure side of the cycle reaches a target high pressure.
  • the expansion valve 13 may be a mechanical expansion valve with the opening degree thereof adjusted by a mechanical means or an electrical expansion valve with the opening degree fixed or electrically controlled.
  • An evaporator 14 is connected to the outlet of the expansion valve 13 .
  • the evaporator 14 is an endothermic heat exchanger for cooling the blown air in such a manner that the low-temperature low-pressure refrigerant decompressed by the expansion valve 13 absorbs the latent heat of vaporization of the internal air (indoor air) or the atmospheric air (outdoor air) blown by an electrically-operated fan (not shown).
  • the outlet of the evaporator 14 is connected to the inlet of the compressor 11 through the silencer 15 .
  • FIG. 2 is a sectional view showing the silencer 15 .
  • the silencer 15 operates in such a manner that the pressure pulsation of the refrigerant discharged from the compressor 11 is reduced and so is the pulsation noise by causing the pressure wave interference in the silencing chamber 15 a formed in the housing 16 .
  • the housing 16 of the silencer 15 is formed by integrally brazing the disk-like lids 18 , 19 of aluminum at the ends of a cylindrical portion 17 of aluminum.
  • the silencing chamber 15 a is formed as a single chamber.
  • the lid 18 has an opening 18 a, into which the inlet pipe 20 is inserted to supply the refrigerant into the silencing chamber 15 a.
  • the upstream end of the inlet pipe 20 is connected to the outlet of the evaporator 14 .
  • the part adjacent to the other lid 19 of the cylindrical portion 17 is formed with an opening 17 a.
  • An outlet pipe 21 for allowing the refrigerant to flow out of the silencing chamber 15 a is inserted into the opening 17 a.
  • the downstream end of the outlet pipe 21 is connected to the inlet of the compressor 11 .
  • the inlet pipe 20 and the outlet pipe 21 are formed of aluminum and integrally coupled to the housing 16 by brazing.
  • the inlet pipe 20 is connected to the housing 16 along the axial direction of the housing 16 (vertical direction in FIG. 2 ), while the outlet pipe 21 is connected to the housing 16 along the diameter of the housing 16 (horizontal direction in FIG. 2 ).
  • the silencer 15 constitutes a silencer of elbow type for the refrigeration cycle system, and the direction in which the inlet pipe 20 is connected to the housing 16 is substantially orthogonal to the direction in which the outlet pipe 21 is connected to the housing 16 , so that the refrigerant flows along a path curved by about 90 degrees in the silencing chamber 15 a.
  • the part of the inlet pipe 20 located outside the housing 16 formed, by bulging, a protrusion 20 a protected in annular fashion diametrically outward of the inlet pipe 20 .
  • the protrusion 20 a comes into contact with the outer surface of the lid 18 thereby to determine the position at which the inlet pipe 20 is to be inserted into the housing 16 .
  • the part of the outlet pipe 21 located outside the housing 16 is formed, by bulging, with a protrusion 21 a projected in annular fashion diametrically outward of the outlet pipe 21 .
  • the protrusion 21 a comes into contact with the outer surface of the cylindrical portion 17 thereby to determine the position at which the outlet pipe 21 is to be inserted into the housing 16 .
  • the upstream end 21 b portion of the outlet pipe 21 is formed with a bend 21 c projected into the silencing chamber 15 a and bent at about 90 degrees toward the downstream end 20 b of the inlet pipe 20 .
  • the refrigerant flowing into the silencing chamber 15 a through the inlet pipe 20 is smoothly led to the outlet pipe 21 by the bend 21 c.
  • the bend 21 c is formed with an opening 21 d for opening the inside part of the bend 21 c.
  • the opening 21 d is formed by cutting the pipe wall inside the bend 21 c.
  • the opening 21 d is formed as a notch by cutting the outlet pipe 21 from the upstream end 21 b .
  • the opening 21 d is formed over an area extending from the upstream end 21 b beyond the central part of the bend 21 c in the direction of the refrigerant flow.
  • the upstream end 21 b of the outlet pipe 21 is formed in such a manner as to spread slightly outward (leftward in FIG. 2 ) of the downstream end 20 b of the inlet pipe 20 .
  • FIG. 3 is a perspective view showing a unit of the outlet pipe 21 .
  • the protrusion 21 a is shown in simplified fashion by dashed line for the convenience of illustration.
  • the bend 21 c is bent diametrically outward (upward in FIG. 3 ) beyond the outer diameter of the linear portion (right side in FIG. 3 ) of the outlet pipe 21 .
  • the bend 21 c is curved toward the inlet pipe 20 with a radius sufficiently larger than the diameter of the linear pipe portion.
  • the bend 21 c assumes the shape of a substantially semicircular cylinder part.
  • the bend 21 c can be called also as an open elbow pipe lacking the inner half portion.
  • the bend 21 c can also be regarded as a substantially semicircular chute with the bottom thereof curved outward in arcuate form at about 90 degrees.
  • the forward end of the bend 21 c presents the upstream end 21 b directed substantially toward the downstream end 20 b of the inlet pipe 20 .
  • the upstream end 21 b portion has a substantially semicircular arcuate shape.
  • the bend 21 c provides the opening 21 d starting with the linear pipe portion and reaching the upstream end 21 b.
  • the opening 21 d is sufficiently larger than the open area of the downstream end 20 b of the upstream pipe 20 along the axial direction of the upstream pipe 20 .
  • the opening 21 d is exposed toward the downstream end 20 b along the smoothly curved surface of the bend 21 c.
  • the bend 21 c can be fabricated by cutting off about one half of a pipe as a blank (indicated by two-dot chain in FIG. 3 ) thereby to form a part corresponding to the opening 21 d, after which the remaining part of the pipe is bent to form the bend 21 c.
  • the silencer having the constitution described above will be explained.
  • the high-temperature high-pressure refrigerant compressed in and discharged from the compressor 11 flows into the radiator 12 .
  • the radiator 12 the high-temperature refrigerant is cooled and condensed by the atmospheric air.
  • the high-pressure refrigerant that has flowed out of the radiator 12 flows into the expansion valve 13 .
  • the high-pressure refrigerant is decompressed by the expansion valve 13 , and the refrigerant (low-pressure refrigerant) after passing through the expansion valve 13 flows into the evaporator 14 .
  • the low-temperature low-pressure refrigerant is evaporated by absorbing heat from the blown air.
  • the refrigerant that has flowed out of the evaporator 14 passes through the inlet pipe 20 as indicated by arrow A in FIG. 2 and flows into the silencing chamber 15 a of the silencer 15 .
  • the refrigerant that has flowed into the silencing chamber 15 a through the inlet pipe 20 is changed about 90 degrees in its direction of flow by the bend 21 c of the outlet pipe 21 as indicated by arrow B and flows into the outlet pipe 21 . Then, the refrigerant flows out of the silencing chamber 15 a and enters the compressor 11 as indicated by arrow C.
  • the refrigerant that has flowed into the silencing chamber 15 a through the inlet pipe 20 though tending to flow linearly by inertia, is smoothly guided to the outlet pipe 21 by the bend 21 c.
  • the upstream end 21 b of the outlet pipe 21 is formed in such a manner as to spread slightly outward of the downstream end 20 b of the inlet pipe 20 , the refrigerant that has flowed into the silencing chamber 15 a through the inlet pipe 20 can be guided more smoothly into the outlet pipe 21 .
  • the pressure wave spreading in the silencing chamber 15 a can be interfered with by the opening 21 d.
  • the silencer according to this embodiment can exhibit as effective an silencing effect as the refrigeration cycle system silencer disclosed in Japanese Unexamined Patent Publication No. 11-62827 described above.
  • the opening 21 d is desirably formed to extend at least from the upstream end 21 b to the central portion of the bend 21 c in the direction of refrigerant flow.
  • the opening 21 d is formed to extend from the upstream end 21 b beyond the central portion of the bend 21 c in the direction of refrigerant flow, and therefore the effective interference of the pressure wave can be secured by the opening 21 d.
  • the pressure loss of the refrigerant can be reduced while at the same time maintaining a high silencing effect.
  • the opening 21 d is formed easily by cutting a part of the pipe wall of the bend 21 c.
  • the positions at which the inlet pipe 20 and the outlet pipe 21 are inserted into the housing 16 can be determined by the protrusions 20 a, 21 a formed on the inlet pipe 20 and the outlet pipe 21 , respectively, and therefore the inlet pipe 20 and the outlet pipe 21 can be easily assembled on the housing 16 .
  • the protrusions 20 a, 21 a are formed, by bulging, on the inlet pipe 20 and the outlet pipe 21 , and therefore the protrusions 20 a, 21 a are easy to form.
  • the silencer 15 has a very simple construction in which the inlet pipe 20 and the outlet pipe 21 are integrally brazed by being inserted into the housing 16 including the cylindrical portion 17 and the lids 18 , 19 .
  • the silencer 15 can be fabricated at a very low cost.
  • the refrigerant pipe of the refrigeration cycle system 10 is bent by 90 degrees in the silencer 15 . Therefore, the satisfactory mountability of the refrigeration cycle system 10 on the vehicle is secured.
  • the relative positions of the inlet pipe 20 and the outlet pipe 21 are reversed from those of the first embodiment.
  • the inlet pipe 20 is inserted into the opening 17 a of the cylindrical portion 17 of the housing 16
  • the outlet pipe 21 is inserted into the opening 18 a of the lid 18 of the housing 16 .
  • the bend 21 c of the outlet pipe 21 is omitted, and a bend 20 c projected into the silencing chamber 15 a and curved about 90 degrees toward the upstream end 21 b of the outlet pipe 21 is at the downstream end 20 b portion of the inlet pipe 20 .
  • This bend 20 c is formed with an opening 20 d for exposing the inner side portion of the bend 20 c.
  • the opening 20 d is formed by cutting the inner pipe wall of the bend 20 c.
  • the opening 20 d is formed to extend from the downstream end 20 b beyond the central portion of the bend 20 c in the direction of refrigerant flow.
  • the downstream end 20 b of the inlet pipe 20 is formed in such a manner as to spread slightly outward (leftward in FIG. 2 ) of the upstream end 21 b of the outlet pipe 21 .
  • the refrigerant flowing through the inlet pipe 20 as indicated by arrow A and tending to flow into the silencing chamber 15 a is changed about 90 degrees in direction by the bend 20 c as indicated by arrow D.
  • the refrigerant flow is redirected toward the upstream end 21 b of the outlet pipe 21 .
  • the refrigerant that has entered the silencing chamber 15 a toward the upstream end 21 b of the outlet pipe 21 flows straight into the outlet pipe 21 .
  • the refrigerant that has flowed into the outlet pipe 21 flows out of the silencing chamber 15 a as indicated by arrow C into the compressor 11 .
  • the stagnation of the refrigerant flow in the silencing chamber 15 a can be suppressed, and therefore the pressure loss of the refrigerant in the silencer 15 can be reduced.
  • the silencer according to this embodiment can exhibit substantially the same silencing effect as the refrigeration cycle system silencer disclosed in Japanese Unexamined Patent Publication No. 11-62827.
  • the second embodiment has a similar operational effect to the first embodiment.
  • the opening 21 d is formed as a notch by cutting the upstream end 21 b portion of the outlet pipe 21 .
  • the opening 21 d is formed as a hole in the intermediate portion of the bend 21 c in the direction of refrigerant flow.
  • This embodiment can also exhibit substantially the same operational effect as the first embodiment.
  • the direction in which the inlet pipe 20 is connected to the housing 16 is substantially orthogonal to the direction in which the outlet pipe 21 is connected to the housing 16 .
  • the invention is not limited to this configuration. Instead, the direction in which the inlet pipe 20 is connected to the housing 16 and the direction in which the outlet pipe 21 is connected to the housing 16 may cross each other.
  • the silencing chamber 15 a is configured of a single room.
  • the silencing chamber 15 a may be formed of plural rooms by arranging partition plates in the housing 16 .
  • the inlet pipe 20 and the outlet pipe 21 are assembled integrally on the housing 16 by integrally brazing the housing 16 , the inlet pipe 20 and the outlet pipe 21 to each other.
  • these members may alternatively be assembled integrally by screwing, caulking, welding or bonding instead of by brazing.
  • the invention is also applicable to the supercritical cycle of vapor compression-type in which the refrigerant with the high pressure exceeding the critical pressure such as carbon dioxide (CO 2 ) may be used as a refrigerant.
  • the refrigerant with the high pressure exceeding the critical pressure such as carbon dioxide (CO 2 ) may be used as a refrigerant.
  • the refrigeration cycle system for automotive application will be explained.
  • the invention is not limited to automotive vehicles but applicable with effect also to the stationary refrigeration cycle system of such devices as a service refrigerator, a home refrigerator, a cooling system of a vending machine or a showcase with the cooling function.

Abstract

A silencer for a refrigeration cycle system is disclosed. The silencer includes a silencing chamber 15 a formed in a housing 16, an inlet pipe 20 connected to the housing 16 to allow the refrigerant to flow into the silencing chamber 15 a, and an outlet pipe 21 connected to the housing 16 to allow the refrigerant to flow out of the silencing chamber 15 a. The direction in which the inlet pipe 20 is connected to the housing 16 and the direction in which the outlet pipe 21 is connected to the housing 16 cross each other. A bend 21 c projected into the silencing chamber 15 a and curved toward the upstream end 20 b of the inlet pipe 20 is formed at the upstream end 21 b portion of the outlet pipe 21. The bend 21 c is formed with an opening 21 d to open the inside part thereof. As a result, the refrigerant that has flowed into the silencing chamber 15 a can be guided smoothly to the outlet pipe 21 while at the same time avoiding a case in which the bend 21 c suppresses the interference of the pressure wave.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to a silencer for a refrigeration cycle system for reducing the pressure pulsation of a refrigerant discharged from a compressor.
  • 2. Description of the Related Art
  • In the prior art, the silencer for this type of refrigeration cycle system is designed to reduce the pressure pulsation of a refrigerant by interference of the pressure wave in the silencing chamber (see, for example, Japanese Unexamined Patent Publications Nos. 2002-61508 and 11-62827).
  • The conventional technique described in Japanese Unexamined Patent Publication No. 2002-61508 concerns a silencer which is known as a straight type for the refrigeration cycle system, in which the inlet pipe through which the refrigerant flows into the silencing chamber is aligned with the outlet pipe through which the refrigerant flows out of the silencing chamber. As a result, the refrigerant flows linearly in the silencing chamber.
  • The conventional technique described in Japanese Unexamined Patent Publication No. 11-62827 concerns a silencer which is known as an elbow-type for the refrigeration cycle system, in which the direction in which the inlet pipe is connected to the housing of the silencing chamber is orthogonal to the direction in which the outlet pipe is connected to the housing. As a result, the refrigerant flows substantially at right angles in the silencing chamber.
  • In the elbow-type silencer for the refrigeration cycle system, the refrigerant flows at right angles in the silencing chamber, and therefore interference of pressure waves occurs in the silencing chamber. As a result, a higher silencing effect can be achieved than by the refrigeration cycle system silencer of a straight-type in which the refrigerant flows linearly in the silencing chamber.
  • SUMMARY OF THE INVENTION
  • However, in the latter conventional technique, i.e., the refrigeration cycle system which uses an elbow-type silencer, the following phenomena occurs while the refrigerant flows at right angles in the silencing chamber.
  • First, the refrigerant that has flowed into the silencing chamber through the inlet pipe flows linearly under inertia and impinges on the part of the inner wall surface of the housing in opposed relation to the downstream end of the inlet pipe. As a result, the refrigerant speed rapidly decreases, and the velocity component in the running direction is reduced to zero. Thus, most of the velocity energy of the refrigerant is lost and converted into thermal energy. The pressure energy of the refrigerant is then converted into velocity energy, so that the refrigerant is accelerated again and flows out of the silencing chamber through the outlet pipe.
  • Therefore, in the latter conventional technique, the phenomenon described above increases the pressure loss of the refrigerant in the silencer.
  • In view of the points described above, the object of this invention is to reduce the pressure loss of the refrigerant while maintaining a high silencing effect.
  • In order to achieve the object described above, according to a first aspect of the invention, there is provided a silencer for a refrigeration cycle system, comprising:
  • a silencing chamber (15 a) formed in a housing (16);
  • an inlet pipe (20) connected to the housing (16) to allow the refrigerant to flow into the silencing chamber (15 a); and
  • an outlet pipe (21) connected to the housing (16) to allow the refrigerant to flow out of the silencing chamber (15 a);
  • wherein the direction in which the inlet pipe (20) is connected to the housing (16) crosses the direction in which the outlet pipe (21) is connected to the housing (16);
  • wherein the upstream end (21 b) portion of the outlet pipe (21) is formed with a bend (21 c) projected into the silencing chamber (15 a) and bent toward the downstream end (20 b) of the inlet pipe (20); and
  • wherein the bend (21 c) is formed with an opening (21 d) to open the inside part of the bend (21 c).
  • In this configuration, the upstream end (21 b) portion of the outlet pipe (21) is formed with the bend (21 c) projected into the silencing chamber (15 a) and bent toward the downstream end (20 b) of the inlet pipe (20), and therefore the refrigerant flowing into the silencing chamber (15 a) through the inlet pipe (20) can be guided smoothly to the outlet pipe (21) by the bend (21 c).
  • As a result, rapid deceleration of the refrigerant that has flowed into the silencing chamber (15) which otherwise might be caused by the bombardment of the inner wall surface of the housing (16) is suppressed. Thus, the pressure loss of the refrigerant in the silencer (15) can be reduced.
  • Further, since the opening (21 d) for opening the inside part of the bend (21 c) is formed on the bend (21 c), the interference of the pressure wave can be caused by the opening (21 d). Thus, the suppression of the interference of the pressure wave which otherwise might be caused by the bend (21 c) projected into the silencing chamber (15 a) can be avoided, and the silencing effect equivalent to that of the refrigeration cycle system silencer disclosed in Japanese Unexamined Patent Publication No. 11-62827 described above can be exhibited.
  • For the reason described above, the pressure loss of the refrigerant can be reduced while maintaining a high silencing effect equivalent to that of the refrigeration cycle system silencer disclosed in Japanese Unexamined Patent Publication No. 11-62827.
  • In this invention, the opening (21 d) may be formed to extend at least from the upstream end (21 b) to the central portion of the bend (21 c) in the direction of the refrigerant flow. In this way, the effective interference of the pressure wave can be caused by the opening (21 d).
  • In this invention, the outlet pipe (21) may be formed with an outward protrusion (21 a) in contact with the outer surface of the housing (16).
  • With this configuration, the outlet pipe (21) can be positioned with respect to the housing (16) by the protrusion (21 a), and therefore the outlet pipe (21) can be easily assembled on the housing (16).
  • According to a second aspect of the invention, there is provided a silencer for the refrigeration cycle system, comprising:
  • a silencing chamber (15 a) formed in a housing (16);
  • an inlet pipe (20) connected to the housing (16) to allow the refrigerant to flow into the silencing chamber (15 a); and
  • an outlet pipe (21) connected to the housing (16) to allow the refrigerant to flow out of the silencing chamber (15 a);
  • wherein the direction in which the inlet pipe (20) is connected to the housing (16) crosses the direction in which the outlet pipe (21) is connected to the housing (16);
  • wherein the downstream end (20 b) portion of the inlet pipe (20) is formed with a bend (20 c) projected into the silencing chamber (15 a) and bent toward the upstream end (21 b) of the outlet pipe (21); and
  • wherein the bend (20 c) is formed with an opening (20 d) to open the inside part of the bend (20 c).
  • In this configuration, the downstream end (20 b) portion of the outlet pipe (20) is formed with the bend (20 c) projected into the silencing chamber (15 a) and bent toward the upstream end (21 b) of the outlet pipe (21), and therefore the refrigerant flowing into the silencing chamber (15 a) through the inlet pipe (20) can be directed toward the upstream end (21 b) of the outlet pipe (21).
  • As a result, the refrigerant that has flowed into the silencing chamber (15 a) is prevented from being rapidly decelerated by bombarding the inner wall surface of the housing (16). Thus, the pressure loss of the refrigerant in the silencer (15) can be reduced.
  • Further, since the opening (20 d) for opening the inside part of the bend (20 c) is formed in the bend (20 c), the interference of the pressure wave can be caused by the opening (20 d). Thus, the suppression of the interference of the pressure wave which otherwise might be caused by the bend (20 c) projected in the silencing chamber (15 a) can be avoided, and the silencing effect equivalent to that of the refrigeration cycle system silencer disclosed in Japanese Unexamined Patent Publication No. 11-62827 described above can be exhibited.
  • For the reason described above, the pressure loss of the refrigerant can be reduced while maintaining a high silencing effect equivalent to that of the refrigeration cycle system silencer disclosed in Japanese Unexamined Patent Publication No. 11-62827.
  • In this invention, the opening (20 d) may be formed to extend at least from the downstream end (20 b) to the central portion of the bend (20 c) in the direction of the refrigerant flow. As a result, the effective interference of the pressure wave can be caused by the opening (21 d).
  • In this invention, the inlet pipe (20) may be formed with an outward protrusion (20 a) in contact with the outer surface of the housing (16).
  • With this configuration, the inlet pipe (20) can be positioned with respect to the housing (16) by the protrusion (20 a), and therefore can be easily assembled on the housing (16).
  • In this invention, the openings (21 d, 20 d) may be formed by cutting a part of the pipe wall of the bends (21 c, 20 c). In this way, the openings (21 d, 20 d) can be easily formed.
  • In this invention, the silencing chamber (15 a) is configured of a unit room. In this way, the construction can be simplified and the cost reduced.
  • The reference numeral inserted in the parenthesis following the name of each means described in this section and the claims indicates the correspondence with the specific means described in the embodiments later.
  • The present invention may be more fully understood from the description of preferred embodiments of the invention, as set forth below, together with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram showing the refrigerant circuit of the refrigeration cycle system according to a first embodiment of the invention.
  • FIG. 2 is a sectional view of the silencer shown in FIG. 1.
  • FIG. 3 is a perspective view showing the outlet pipe unit shown in FIG. 2.
  • FIG. 4 is a sectional view showing the silencer according to a second embodiment.
  • FIG. 5 is a sectional view showing the silencer according to a third embodiment.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS First Embodiment
  • The first embodiment of the invention will be explained below with reference to FIGS. 1 and 2. FIG. 1 is a diagram showing the refrigerant circuit of the refrigeration cycle system 10 according to this embodiment. The refrigeration cycle system 10 according to this embodiment is applicable to an automotive air conditioning system.
  • In the refrigeration cycle system 10 according to this embodiment, a compressor 11 for sucking in and compressing the refrigerant is rotationally driven by the vehicle engine (not shown) through an electromagnetic clutch 11 a and a belt.
  • The compressor 11 employed in this embodiment may be either a variable displacement refrigerant compressor capable of adjusting the refrigerant discharge capability with the change in the discharge capacity or a fixed displacement refrigerant compressor adapted to adjust the refrigerant discharge capability by switching on/off the electromagnetic clutch 11 and thus changing the operating efficiency of the compressor. On the other hand, in the case where the electrically-operated compressor is used as the compressor 11, the refrigerant discharge capability can be adjusted by regulating the rotational speed of the electric motor.
  • A radiator 12 is arranged on the refrigerant outlet side of the compressor 11. The radiator 12 cools a high-pressure refrigerant by heat exchange between the high-pressure refrigerant discharged from the compressor 11 and the atmospheric air (outdoor air) blown by a cooling fan not shown.
  • According to this embodiment, the subcritical cycle of vapor compression type is constructed using, as the refrigerant of the refrigeration cycle system 10, a refrigerant such as flon or HC in which the high pressure does not exceed the critical pressure. As a result, the radiator 12 operates as a condenser for condensing the refrigerant.
  • An expansion valve 13 making up a decompression means is arranged at the outlet of the radiator 12. This expansion valve 13 functions also as a pressure control valve with the opening degree thereof adjusted so that the pressure on the high-pressure side of the cycle reaches a target high pressure. The expansion valve 13 may be a mechanical expansion valve with the opening degree thereof adjusted by a mechanical means or an electrical expansion valve with the opening degree fixed or electrically controlled.
  • An evaporator 14 is connected to the outlet of the expansion valve 13. The evaporator 14 is an endothermic heat exchanger for cooling the blown air in such a manner that the low-temperature low-pressure refrigerant decompressed by the expansion valve 13 absorbs the latent heat of vaporization of the internal air (indoor air) or the atmospheric air (outdoor air) blown by an electrically-operated fan (not shown). The outlet of the evaporator 14 is connected to the inlet of the compressor 11 through the silencer 15.
  • FIG. 2 is a sectional view showing the silencer 15. The silencer 15 operates in such a manner that the pressure pulsation of the refrigerant discharged from the compressor 11 is reduced and so is the pulsation noise by causing the pressure wave interference in the silencing chamber 15 a formed in the housing 16.
  • The housing 16 of the silencer 15 is formed by integrally brazing the disk- like lids 18, 19 of aluminum at the ends of a cylindrical portion 17 of aluminum. Thus, the silencing chamber 15 a is formed as a single chamber.
  • Of the lids 18, 19 at the ends of the cylindrical portion 17, the lid 18 has an opening 18 a, into which the inlet pipe 20 is inserted to supply the refrigerant into the silencing chamber 15 a. The upstream end of the inlet pipe 20 is connected to the outlet of the evaporator 14.
  • The part adjacent to the other lid 19 of the cylindrical portion 17 is formed with an opening 17 a. An outlet pipe 21 for allowing the refrigerant to flow out of the silencing chamber 15 a is inserted into the opening 17 a. The downstream end of the outlet pipe 21 is connected to the inlet of the compressor 11.
  • According to this embodiment, the inlet pipe 20 and the outlet pipe 21 are formed of aluminum and integrally coupled to the housing 16 by brazing.
  • As understood from FIG. 2, the inlet pipe 20 is connected to the housing 16 along the axial direction of the housing 16 (vertical direction in FIG. 2), while the outlet pipe 21 is connected to the housing 16 along the diameter of the housing 16 (horizontal direction in FIG. 2).
  • Thus, the silencer 15 constitutes a silencer of elbow type for the refrigeration cycle system, and the direction in which the inlet pipe 20 is connected to the housing 16 is substantially orthogonal to the direction in which the outlet pipe 21 is connected to the housing 16, so that the refrigerant flows along a path curved by about 90 degrees in the silencing chamber 15 a.
  • The part of the inlet pipe 20 located outside the housing 16 formed, by bulging, a protrusion 20 a protected in annular fashion diametrically outward of the inlet pipe 20. When the inlet pipe 20 is inserted into the opening 18 a of the lid 18, the protrusion 20 a comes into contact with the outer surface of the lid 18 thereby to determine the position at which the inlet pipe 20 is to be inserted into the housing 16.
  • In similar fashion, the part of the outlet pipe 21 located outside the housing 16 is formed, by bulging, with a protrusion 21 a projected in annular fashion diametrically outward of the outlet pipe 21. When the outlet pipe 21 is inserted into the opening 17 a of the cylindrical portion 17, the protrusion 21 a comes into contact with the outer surface of the cylindrical portion 17 thereby to determine the position at which the outlet pipe 21 is to be inserted into the housing 16.
  • The upstream end 21 b portion of the outlet pipe 21 is formed with a bend 21 c projected into the silencing chamber 15 a and bent at about 90 degrees toward the downstream end 20 b of the inlet pipe 20. The refrigerant flowing into the silencing chamber 15 a through the inlet pipe 20 is smoothly led to the outlet pipe 21 by the bend 21 c.
  • The bend 21 c is formed with an opening 21 d for opening the inside part of the bend 21 c. The opening 21 d is formed by cutting the pipe wall inside the bend 21 c.
  • Also, the opening 21 d is formed as a notch by cutting the outlet pipe 21 from the upstream end 21 b. According to this embodiment, the opening 21 d is formed over an area extending from the upstream end 21 b beyond the central part of the bend 21 c in the direction of the refrigerant flow.
  • The upstream end 21 b of the outlet pipe 21 is formed in such a manner as to spread slightly outward (leftward in FIG. 2) of the downstream end 20 b of the inlet pipe 20.
  • FIG. 3 is a perspective view showing a unit of the outlet pipe 21. In FIG. 3, the protrusion 21 a is shown in simplified fashion by dashed line for the convenience of illustration.
  • The bend 21 c is bent diametrically outward (upward in FIG. 3) beyond the outer diameter of the linear portion (right side in FIG. 3) of the outlet pipe 21. In the housing 16 a, the bend 21 c is curved toward the inlet pipe 20 with a radius sufficiently larger than the diameter of the linear pipe portion.
  • The bend 21 c assumes the shape of a substantially semicircular cylinder part. The bend 21 c can be called also as an open elbow pipe lacking the inner half portion. The bend 21 c can also be regarded as a substantially semicircular chute with the bottom thereof curved outward in arcuate form at about 90 degrees.
  • The forward end of the bend 21 c presents the upstream end 21 b directed substantially toward the downstream end 20 b of the inlet pipe 20. The upstream end 21 b portion has a substantially semicircular arcuate shape. The bend 21 c provides the opening 21 d starting with the linear pipe portion and reaching the upstream end 21 b.
  • The opening 21 d is sufficiently larger than the open area of the downstream end 20 b of the upstream pipe 20 along the axial direction of the upstream pipe 20. The opening 21 d is exposed toward the downstream end 20 b along the smoothly curved surface of the bend 21 c.
  • The bend 21 c can be fabricated by cutting off about one half of a pipe as a blank (indicated by two-dot chain in FIG. 3) thereby to form a part corresponding to the opening 21 d, after which the remaining part of the pipe is bent to form the bend 21 c.
  • The operation of the silencer having the constitution described above will be explained. With the activation of the compressor 11 by the vehicle engine, the high-temperature high-pressure refrigerant compressed in and discharged from the compressor 11 flows into the radiator 12. In the radiator 12, the high-temperature refrigerant is cooled and condensed by the atmospheric air. The high-pressure refrigerant that has flowed out of the radiator 12 flows into the expansion valve 13.
  • The high-pressure refrigerant is decompressed by the expansion valve 13, and the refrigerant (low-pressure refrigerant) after passing through the expansion valve 13 flows into the evaporator 14. In the evaporator 14, the low-temperature low-pressure refrigerant is evaporated by absorbing heat from the blown air.
  • The refrigerant that has flowed out of the evaporator 14 passes through the inlet pipe 20 as indicated by arrow A in FIG. 2 and flows into the silencing chamber 15 a of the silencer 15.
  • The refrigerant that has flowed into the silencing chamber 15 a through the inlet pipe 20 is changed about 90 degrees in its direction of flow by the bend 21 c of the outlet pipe 21 as indicated by arrow B and flows into the outlet pipe 21. Then, the refrigerant flows out of the silencing chamber 15 a and enters the compressor 11 as indicated by arrow C.
  • According to this embodiment, the refrigerant that has flowed into the silencing chamber 15 a through the inlet pipe 20, though tending to flow linearly by inertia, is smoothly guided to the outlet pipe 21 by the bend 21 c.
  • In addition, since the upstream end 21 b of the outlet pipe 21 is formed in such a manner as to spread slightly outward of the downstream end 20 b of the inlet pipe 20, the refrigerant that has flowed into the silencing chamber 15 a through the inlet pipe 20 can be guided more smoothly into the outlet pipe 21.
  • As a result, a situation can be avoided in which the refrigerant that has flowed into the silencing chamber 15 a through the inlet pipe 20 is rapidly decelerated by bombarding the inner wall surface of the lid 19 facing the downstream end 20 b of the inlet pipe 20 on the inner wall surface of the housing 16. Therefore, stagnation of the refrigerant flow in the silencing chamber 15 a can be suppressed, thereby reducing the pressure loss of the refrigerant in the silencer 15.
  • Further, in view of the fact that the bend 21 c is formed with the opening 21 d to open the inner side portion of the bend 21 c, the pressure wave spreading in the silencing chamber 15 a can be interfered with by the opening 21 d.
  • In other words, the suppression of the interference of the pressure wave which otherwise might be caused by the bend 21 c projected into the silencing chamber 15 a can be avoided by forming the opening 21 d of the bend 21 c. As a result, the silencer according to this embodiment can exhibit as effective an silencing effect as the refrigeration cycle system silencer disclosed in Japanese Unexamined Patent Publication No. 11-62827 described above.
  • An in-depth study by the present inventor shows that in order to secure the effective interference of the pressure wave with the opening 21 d, the opening 21 d is desirably formed to extend at least from the upstream end 21 b to the central portion of the bend 21 c in the direction of refrigerant flow.
  • In view of this, according to this embodiment, the opening 21 d is formed to extend from the upstream end 21 b beyond the central portion of the bend 21 c in the direction of refrigerant flow, and therefore the effective interference of the pressure wave can be secured by the opening 21 d.
  • For the reason described above, the pressure loss of the refrigerant can be reduced while at the same time maintaining a high silencing effect.
  • Further, the opening 21 d is formed easily by cutting a part of the pipe wall of the bend 21 c.
  • According to this embodiment, the positions at which the inlet pipe 20 and the outlet pipe 21 are inserted into the housing 16 can be determined by the protrusions 20 a, 21 a formed on the inlet pipe 20 and the outlet pipe 21, respectively, and therefore the inlet pipe 20 and the outlet pipe 21 can be easily assembled on the housing 16.
  • Furthermore, the protrusions 20 a, 21 a are formed, by bulging, on the inlet pipe 20 and the outlet pipe 21, and therefore the protrusions 20 a, 21 a are easy to form.
  • Furthermore, the silencer 15 according to this embodiment has a very simple construction in which the inlet pipe 20 and the outlet pipe 21 are integrally brazed by being inserted into the housing 16 including the cylindrical portion 17 and the lids 18, 19.
  • As understood from the foregoing description, the silencer 15 can be fabricated at a very low cost.
  • According to this embodiment, as shown in FIG. 1, the refrigerant pipe of the refrigeration cycle system 10 is bent by 90 degrees in the silencer 15. Therefore, the satisfactory mountability of the refrigeration cycle system 10 on the vehicle is secured.
  • Second Embodiment
  • According to the second embodiment, as shown in FIG. 4, the relative positions of the inlet pipe 20 and the outlet pipe 21 are reversed from those of the first embodiment.
  • Specifically, the inlet pipe 20 is inserted into the opening 17 a of the cylindrical portion 17 of the housing 16, while the outlet pipe 21 is inserted into the opening 18 a of the lid 18 of the housing 16.
  • The bend 21 c of the outlet pipe 21 is omitted, and a bend 20 c projected into the silencing chamber 15 a and curved about 90 degrees toward the upstream end 21 b of the outlet pipe 21 is at the downstream end 20 b portion of the inlet pipe 20.
  • This bend 20 c is formed with an opening 20 d for exposing the inner side portion of the bend 20 c. The opening 20 d is formed by cutting the inner pipe wall of the bend 20 c.
  • According to this embodiment, the opening 20 d is formed to extend from the downstream end 20 b beyond the central portion of the bend 20 c in the direction of refrigerant flow.
  • The downstream end 20 b of the inlet pipe 20 is formed in such a manner as to spread slightly outward (leftward in FIG. 2) of the upstream end 21 b of the outlet pipe 21.
  • According to this embodiment, the refrigerant flowing through the inlet pipe 20 as indicated by arrow A and tending to flow into the silencing chamber 15 a is changed about 90 degrees in direction by the bend 20 c as indicated by arrow D. As a result, the refrigerant flow is redirected toward the upstream end 21 b of the outlet pipe 21.
  • The refrigerant that has entered the silencing chamber 15 a toward the upstream end 21 b of the outlet pipe 21 flows straight into the outlet pipe 21. The refrigerant that has flowed into the outlet pipe 21 flows out of the silencing chamber 15 a as indicated by arrow C into the compressor 11.
  • As a result, the stagnation of the refrigerant flow in the silencing chamber 15 a can be suppressed, and therefore the pressure loss of the refrigerant in the silencer 15 can be reduced.
  • In addition, the situation in which the bend 20 c projected into the silencing chamber 15 a hampers the interference of the pressure wave can be avoided by forming the opening 20 d of the bend 20 c. Therefore, the silencer according to this embodiment can exhibit substantially the same silencing effect as the refrigeration cycle system silencer disclosed in Japanese Unexamined Patent Publication No. 11-62827.
  • As understood from the foregoing description, the second embodiment has a similar operational effect to the first embodiment.
  • Third Embodiment
  • According to the first embodiment, the opening 21 d is formed as a notch by cutting the upstream end 21 b portion of the outlet pipe 21. On the other hand, according to the third embodiment, as shown in FIG. 5, the opening 21 d is formed as a hole in the intermediate portion of the bend 21 c in the direction of refrigerant flow.
  • This embodiment can also exhibit substantially the same operational effect as the first embodiment.
  • Other Embodiments
  • According to each embodiment described above, the direction in which the inlet pipe 20 is connected to the housing 16 is substantially orthogonal to the direction in which the outlet pipe 21 is connected to the housing 16. Nevertheless, the invention is not limited to this configuration. Instead, the direction in which the inlet pipe 20 is connected to the housing 16 and the direction in which the outlet pipe 21 is connected to the housing 16 may cross each other.
  • According to each embodiment described above, the silencing chamber 15 a is configured of a single room. However, the silencing chamber 15 a may be formed of plural rooms by arranging partition plates in the housing 16.
  • Further, according to each embodiment described above, the inlet pipe 20 and the outlet pipe 21 are assembled integrally on the housing 16 by integrally brazing the housing 16, the inlet pipe 20 and the outlet pipe 21 to each other. Nevertheless, these members may alternatively be assembled integrally by screwing, caulking, welding or bonding instead of by brazing.
  • Although the foregoing explanation of the embodiments refers to the subcritical cycle of vapor compression-type using the refrigerant such as flon or HC with the high pressure thereof not exceeding the critical pressure, the invention is also applicable to the supercritical cycle of vapor compression-type in which the refrigerant with the high pressure exceeding the critical pressure such as carbon dioxide (CO2) may be used as a refrigerant.
  • In this embodiment, the refrigeration cycle system for automotive application will be explained. Nevertheless, the invention is not limited to automotive vehicles but applicable with effect also to the stationary refrigeration cycle system of such devices as a service refrigerator, a home refrigerator, a cooling system of a vending machine or a showcase with the cooling function.
  • While the invention has been described by reference to specific embodiments chosen for purposes of illustration, it should be apparent that numerous modifications could be made thereto by those skilled in the art without departing from the basic concept and scope of the invention.

Claims (8)

1. A silencer for a refrigeration cycle system, comprising:
a silencing chamber formed in a housing;
an inlet pipe connected to the housing to allow the refrigerant to flow into the silencing chamber; and
an outlet pipe connected to the housing to allow the refrigerant to flow out of the silencing chamber;
wherein the direction in which the inlet pipe is connected to the housing crosses the direction in which the outlet pipe is connected to the housing;
wherein the upstream end portion of the outlet pipe is formed with a bend projected into the silencing chamber and curved toward the downstream end of the inlet pipe; and
wherein the bend is formed with an opening to open the inside part of the bend.
2. The silencer for the refrigeration cycle system according to claim 1,
wherein the opening is formed to extend at least from the upstream end to the central portion of the bend in the direction of the refrigerant flow.
3. The silencer for the refrigeration cycle system according to claim 1,
wherein the outlet pipe is formed with an outward protrusion in contact with the outer surface of the housing.
4. A silencer for the refrigeration cycle system, comprising:
a silencing chamber formed in a housing;
an inlet pipe connected to the housing to allow the refrigerant to flow into the silencing chamber; and
an outlet pipe connected to the housing to allow the refrigerant to flow out of the silencing chamber;
wherein the direction in which the inlet pipe is connected to the housing crosses the direction in which the outlet pipe is connected to the housing;
wherein the downstream end portion of the inlet pipe is formed with a bend projected into the silencing chamber and curved toward the upstream end of the outlet pipe; and
wherein the bend is formed with an opening to open the inside part of the bend.
5. The silencer for the refrigeration cycle system according to claim 4,
wherein the opening is formed to extend at least from the downstream end to the central portion of the bend in the direction of the refrigerant flow.
6. The silencer for the refrigeration cycle system according to claim 4,
wherein the inlet pipe is formed with an outward protrusion in contact with the outer surface of the housing.
7. The silencer for the refrigeration cycle system according to claim 1,
wherein the opening is formed by cutting a part of the pipe wall of the bend.
8. The silencer for the refrigeration cycle system according to claim 1,
wherein the silencing chamber is configured of a single room.
US12/286,724 2007-10-03 2008-10-01 Silencer for refrigeration cycle system Abandoned US20090090579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007259643A JP4396753B2 (en) 2007-10-03 2007-10-03 Silencer for refrigeration cycle
JP2007-259643 2007-10-03

Publications (1)

Publication Number Publication Date
US20090090579A1 true US20090090579A1 (en) 2009-04-09

Family

ID=40514589

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/286,724 Abandoned US20090090579A1 (en) 2007-10-03 2008-10-01 Silencer for refrigeration cycle system

Country Status (3)

Country Link
US (1) US20090090579A1 (en)
JP (1) JP4396753B2 (en)
DE (1) DE102008050011A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102459911A (en) * 2009-06-11 2012-05-16 三菱电机株式会社 Refrigerant compressor and heat pump device
CN102748267A (en) * 2012-07-16 2012-10-24 江苏岱洛医疗科技有限公司 Silencer of air compressor
CN103184998A (en) * 2012-08-10 2013-07-03 加西贝拉压缩机有限公司 Partition board and inner insertion tube structure of air suction silencer for compressor
WO2013171455A1 (en) * 2012-05-18 2013-11-21 Oxford Instruments Nanotechnology Tools Limited Apparatus for reducing noise in a cryocooler such as for magnetic resonance imaging systems
CN104005960A (en) * 2014-05-23 2014-08-27 美的集团股份有限公司 Silencer and air conditioner with silencer
WO2015171681A1 (en) * 2014-05-08 2015-11-12 The Coca-Cola Company Systems and methods for a dual-tuned expansion chamber muffler in a refrigeration cycle of a food or beverage device
CN106225354A (en) * 2016-08-24 2016-12-14 常州利普金属制品有限公司 Constant-current type reservoir
CN106225347A (en) * 2016-08-24 2016-12-14 常州市江浪铸造有限公司 Turbulence type cast iron casting molten metal reservoir
US20170248264A1 (en) * 2014-04-10 2017-08-31 Hanon Systems Absorbing device and method for its production
WO2017167584A1 (en) * 2016-03-30 2017-10-05 Leybold Gmbh Vacuum pump having a silencer
CN108674122A (en) * 2018-04-16 2018-10-19 浙江工贸职业技术学院 A kind of pipelines of automobile air conditioner muffler
CN110686432A (en) * 2019-10-18 2020-01-14 广东美的制冷设备有限公司 Operation control method and device, air conditioner and storage medium
US11021039B2 (en) * 2017-10-20 2021-06-01 Hanon Systems Noise attenuation from waffle pattern and tongue and groove coupling for front of dash
EP3848651A1 (en) * 2020-01-10 2021-07-14 Viessmann Werke GmbH & Co. KG Thermal device
CN115493387A (en) * 2022-08-12 2022-12-20 麦卡尼食品设备(中山)有限公司 Heatable and refrigeratable dryer

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011108372A1 (en) 2011-07-22 2013-01-24 Volkswagen Aktiengesellschaft Soundproofing in a refrigerant circuit
KR101956177B1 (en) * 2013-03-14 2019-03-08 한온시스템 주식회사 Muffler of air conditioning system for vehicles
KR101743148B1 (en) * 2014-01-07 2017-06-02 한온시스템 주식회사 Air conditioning system for automotive vehicles
JP6527008B2 (en) * 2014-07-22 2019-06-05 株式会社鷺宮製作所 Joint structure of joint members, joint method of joint members, and centrifugal pump using the same
CN104832247B (en) * 2015-04-29 2017-05-03 麦克维尔空调制冷(武汉)有限公司 Exhaust silencer for screw-type unit
KR101734314B1 (en) * 2015-05-08 2017-05-15 한국전력공사 Apparatus for preventing pulsation
JP2017089978A (en) * 2015-11-11 2017-05-25 株式会社ヴァレオジャパン Refrigerant pipe with silencer and refrigeration cycle of vehicular air conditioner including the same

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125182A (en) * 1964-03-17 earley
US3563053A (en) * 1968-09-16 1971-02-16 Edward W Bottum Suctiin accumulator
US4184566A (en) * 1978-05-10 1980-01-22 Maritec Corporation Marine engine noise suppressor
US4313715A (en) * 1979-12-21 1982-02-02 Tecumseh Products Company Anti-slug suction muffler for hermetic refrigeration compressor
US5101931A (en) * 1990-05-23 1992-04-07 Copeland Corporation Discharge muffler and method
US5435700A (en) * 1993-04-24 1995-07-25 Goldstar Co., Ltd. Refrigerant suction and discharge apparatus for a hermetic compressor
US5503542A (en) * 1995-01-13 1996-04-02 Copeland Corporation Compressor assembly with welded IPR valve
US5647314A (en) * 1994-12-01 1997-07-15 Honda Giken Kogyo Kabushikikaisha Suction silencer apparatus
US6017197A (en) * 1995-06-23 2000-01-25 Danfoss Compressors Gmbh Suction sound damper for a refrigerant compressor
US6503303B2 (en) * 2000-04-22 2003-01-07 Filterwerk Mann & Hummel Gmbh Enclosure for an air aspirating machine
US6520289B1 (en) * 1999-02-26 2003-02-18 Embraco Europe S.R.L. Intake silencer for sealed refrigerant compressor
US6524080B2 (en) * 2000-04-11 2003-02-25 R. K. Dewan & Co. Hermetically sealed compressors
US6547535B2 (en) * 2000-12-21 2003-04-15 Samsung Kwangju Electronics Co., Ltd. Suction muffler for a compressor
US6692238B2 (en) * 2001-01-11 2004-02-17 Lg Electronics Inc. Muffler of compressor
US20040262076A1 (en) * 2001-09-12 2004-12-30 Anton Wolf Fluid guideline, especially in the form of a tube for taking up untreated air in an air filter of a motor vehicle
US6845843B2 (en) * 2002-02-09 2005-01-25 Danfoss Compressor Gmbh Suction muffler for a refrigerating machine
US7052248B2 (en) * 2001-12-05 2006-05-30 Matsushita Refrigeration Company Closed compressor
US20060150590A1 (en) * 2005-01-07 2006-07-13 Alto U.S. Inc. Collection device with self sealing retention system
US20070059189A1 (en) * 2003-10-10 2007-03-15 Matsushita Electric Industrial Co., Ltd. Hermetic compressor and manufacturing method of suction muffler

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1162827A (en) 1997-08-21 1999-03-05 Matsushita Electric Ind Co Ltd Muffler for hermetic compressor
JP2002061508A (en) 2000-08-23 2002-02-28 Daikin Ind Ltd Noise suppressor

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3125182A (en) * 1964-03-17 earley
US3563053A (en) * 1968-09-16 1971-02-16 Edward W Bottum Suctiin accumulator
US4184566A (en) * 1978-05-10 1980-01-22 Maritec Corporation Marine engine noise suppressor
US4313715A (en) * 1979-12-21 1982-02-02 Tecumseh Products Company Anti-slug suction muffler for hermetic refrigeration compressor
US5101931A (en) * 1990-05-23 1992-04-07 Copeland Corporation Discharge muffler and method
US5435700A (en) * 1993-04-24 1995-07-25 Goldstar Co., Ltd. Refrigerant suction and discharge apparatus for a hermetic compressor
US5647314A (en) * 1994-12-01 1997-07-15 Honda Giken Kogyo Kabushikikaisha Suction silencer apparatus
US5503542A (en) * 1995-01-13 1996-04-02 Copeland Corporation Compressor assembly with welded IPR valve
US6017197A (en) * 1995-06-23 2000-01-25 Danfoss Compressors Gmbh Suction sound damper for a refrigerant compressor
US6520289B1 (en) * 1999-02-26 2003-02-18 Embraco Europe S.R.L. Intake silencer for sealed refrigerant compressor
US6524080B2 (en) * 2000-04-11 2003-02-25 R. K. Dewan & Co. Hermetically sealed compressors
US6503303B2 (en) * 2000-04-22 2003-01-07 Filterwerk Mann & Hummel Gmbh Enclosure for an air aspirating machine
US6547535B2 (en) * 2000-12-21 2003-04-15 Samsung Kwangju Electronics Co., Ltd. Suction muffler for a compressor
US6692238B2 (en) * 2001-01-11 2004-02-17 Lg Electronics Inc. Muffler of compressor
US20040262076A1 (en) * 2001-09-12 2004-12-30 Anton Wolf Fluid guideline, especially in the form of a tube for taking up untreated air in an air filter of a motor vehicle
US7052248B2 (en) * 2001-12-05 2006-05-30 Matsushita Refrigeration Company Closed compressor
US6845843B2 (en) * 2002-02-09 2005-01-25 Danfoss Compressor Gmbh Suction muffler for a refrigerating machine
US20070059189A1 (en) * 2003-10-10 2007-03-15 Matsushita Electric Industrial Co., Ltd. Hermetic compressor and manufacturing method of suction muffler
US20060150590A1 (en) * 2005-01-07 2006-07-13 Alto U.S. Inc. Collection device with self sealing retention system

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9011121B2 (en) 2009-06-11 2015-04-21 Mitsubishi Electric Corporation Refrigerant compressor and heat pump apparatus
CN102803734A (en) * 2009-06-11 2012-11-28 三菱电机株式会社 Refrigerant compressor and heat pump device
US8790097B2 (en) 2009-06-11 2014-07-29 Mitsubishi Electric Corporation Refrigerant compressor and heat pump apparatus
CN102459911A (en) * 2009-06-11 2012-05-16 三菱电机株式会社 Refrigerant compressor and heat pump device
US10139138B2 (en) 2012-05-18 2018-11-27 Oxford Instruments Nanotechnology Tools Limited Apparatus for reducing noise in a cryocooler such as for magnetic resonance imaging systems
WO2013171455A1 (en) * 2012-05-18 2013-11-21 Oxford Instruments Nanotechnology Tools Limited Apparatus for reducing noise in a cryocooler such as for magnetic resonance imaging systems
CN102748267A (en) * 2012-07-16 2012-10-24 江苏岱洛医疗科技有限公司 Silencer of air compressor
CN103184998A (en) * 2012-08-10 2013-07-03 加西贝拉压缩机有限公司 Partition board and inner insertion tube structure of air suction silencer for compressor
RU2677410C1 (en) * 2014-04-10 2019-01-16 Хэнон Системз Damping device and method of its manufacture
RU2656202C2 (en) * 2014-04-10 2018-05-31 Хэнон Системз Damping device and method of its manufacture
US20170248264A1 (en) * 2014-04-10 2017-08-31 Hanon Systems Absorbing device and method for its production
US9995422B2 (en) * 2014-04-10 2018-06-12 Hanon Systems Absorbing device and method for its production
WO2015171681A1 (en) * 2014-05-08 2015-11-12 The Coca-Cola Company Systems and methods for a dual-tuned expansion chamber muffler in a refrigeration cycle of a food or beverage device
CN104005960A (en) * 2014-05-23 2014-08-27 美的集团股份有限公司 Silencer and air conditioner with silencer
WO2017167584A1 (en) * 2016-03-30 2017-10-05 Leybold Gmbh Vacuum pump having a silencer
CN109072918A (en) * 2016-03-30 2018-12-21 莱宝有限公司 Vacuum pump with muffler
US11274668B2 (en) 2016-03-30 2022-03-15 Leybold Gmbh Vacuum pump having a silencer
CN106225347A (en) * 2016-08-24 2016-12-14 常州市江浪铸造有限公司 Turbulence type cast iron casting molten metal reservoir
CN106225354A (en) * 2016-08-24 2016-12-14 常州利普金属制品有限公司 Constant-current type reservoir
US11021039B2 (en) * 2017-10-20 2021-06-01 Hanon Systems Noise attenuation from waffle pattern and tongue and groove coupling for front of dash
CN108674122A (en) * 2018-04-16 2018-10-19 浙江工贸职业技术学院 A kind of pipelines of automobile air conditioner muffler
CN110686432A (en) * 2019-10-18 2020-01-14 广东美的制冷设备有限公司 Operation control method and device, air conditioner and storage medium
EP3848651A1 (en) * 2020-01-10 2021-07-14 Viessmann Werke GmbH & Co. KG Thermal device
CN115493387A (en) * 2022-08-12 2022-12-20 麦卡尼食品设备(中山)有限公司 Heatable and refrigeratable dryer

Also Published As

Publication number Publication date
JP4396753B2 (en) 2010-01-13
JP2009085570A (en) 2009-04-23
DE102008050011A1 (en) 2009-05-07

Similar Documents

Publication Publication Date Title
US20090090579A1 (en) Silencer for refrigeration cycle system
JP4259478B2 (en) Evaporator structure and ejector cycle
JP4114471B2 (en) Refrigeration cycle equipment
JP4600200B2 (en) Ejector refrigeration cycle
US20080141691A1 (en) Automotive air conditioner
JP4645681B2 (en) Evaporator unit
JP2005241236A (en) Piping structure of outdoor unit of air-conditioner
JPH11142007A (en) Refrigerating cycle
JP4415835B2 (en) Refrigeration cycle equipment for vehicles
EP1589293A2 (en) Outdoor unit of air conditioning system
US8201415B2 (en) Integrated unit for refrigeration cycle device
KR20140093833A (en) Air Conditioner
JP2007298273A (en) Vapor compression type refrigerator
WO2010113858A1 (en) Heat pump device
JP3921870B2 (en) Refrigeration cycle equipment
JP2009180419A (en) Expansion valve
WO2007040031A1 (en) Liquid gas heat exchanger for air conditioner
JP2008281338A (en) Ejector cycle
KR20080038784A (en) Muffler for air conditioner of vehicles
JP4407729B2 (en) Ejector type cycle
KR100406038B1 (en) The pipe structure of compressor for decreasing noise
JP7040285B2 (en) Ejector
KR101481502B1 (en) Cooling Cycle with Pulsation Reduction Device
KR100689905B1 (en) The spiral type condenser
CN115218559A (en) Economizer and air conditioning system

Legal Events

Date Code Title Description
AS Assignment

Owner name: DENSO CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NISHIDA, SHIN;KAWAKUBO, MASAAKI;YAMANAKA, TAKASHI;REEL/FRAME:021871/0412

Effective date: 20081013

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION