US20090082129A1 - Method of Manufacturing Golf Club Head and Golf Club Head - Google Patents

Method of Manufacturing Golf Club Head and Golf Club Head Download PDF

Info

Publication number
US20090082129A1
US20090082129A1 US11/861,515 US86151507A US2009082129A1 US 20090082129 A1 US20090082129 A1 US 20090082129A1 US 86151507 A US86151507 A US 86151507A US 2009082129 A1 US2009082129 A1 US 2009082129A1
Authority
US
United States
Prior art keywords
score lines
face
grooves
side surfaces
golf club
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/861,515
Inventor
Wataru Ban
Fumiaki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Sports Co Ltd
Original Assignee
Bridgestone Sports Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Sports Co Ltd filed Critical Bridgestone Sports Co Ltd
Priority to US11/861,515 priority Critical patent/US20090082129A1/en
Assigned to BRIDGESTONE SPORTS CO., LTD. reassignment BRIDGESTONE SPORTS CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAN, WATARU, SATO, FUMIAKI
Publication of US20090082129A1 publication Critical patent/US20090082129A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0445Details of grooves or the like on the impact surface
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/047Heads iron-type
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B60/00Details or accessories of golf clubs, bats, rackets or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0408Heads characterised by specific dimensions, e.g. thickness
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B53/00Golf clubs
    • A63B53/04Heads
    • A63B53/0466Heads wood-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49995Shaping one-piece blank by removing material
    • Y10T29/49996Successive distinct removal operations

Definitions

  • the present invention relates to a golf club head and, more particularly, to score lines on the face.
  • a plurality of straight grooves are formed parallel to each other in the toe-and-heel direction (e.g., Japanese Patent Laid-Open Nos. 10-248974 and 2005-169129). These grooves are called score lines, marking lines, face lines, or the like (to be referred to as score lines in this specification). These score lines have an effect of increasing the back spin amount or suppressing a significant decrease in back spin amount of a shot in a case of a rainy day or a shot from rough.
  • As a method of forming score lines for example, cutting, forging, or casting is used.
  • the width of a score line is narrow and, for example, that of a score line of a golf club head for competitions is determined to be 0.9 mm or less by the rule. It is not always easy to form a plurality of score lines to be straight and parallel to each other. For example, when forming score lines by cutting, the score lines may be slightly distorted due to the shake or wear of a cutting tool or distortion of the material of the face. In case of forging, score lines may be slightly distorted due to the influence of distortion of the material of the face. In case of casting, score lines may be slightly distorted due to shrinkage. When score lines are distorted, their outer appearance becomes poor. In addition, individual difference in performance between the products may occur.
  • a method of manufacturing a golf club head having a plurality of score lines on a face comprising a first forming step of forming grooves for the score lines on the face, and a second forming step of forming notches uniformly along the longitudinal direction of the grooves by cutting into the edges of the grooves formed in the first forming step, the notches having first side surfaces leading to the face and second side surfaces leading to the first side surfaces and side surfaces of the grooves.
  • the grooves are formed in the first forming step, and the notches are formed by cutting into the edges of the grooves in the second forming step 1 thereby forming score lines having the notches. Since only the edges of the grooves are cut in the second forming step, the cut amount can be small. Accordingly, the shake or wear of a cutting tool or distortion of the material of the face is small, and therefore machining with a higher accuracy is possible. For the outer appearance or performance of the score lines which is influenced by the boundary portions of the score lines and face, since the notches which form the boundary portions can be machined with a higher accuracy in the second forming step, the machining accuracy of the score lines substantially increases. Therefore, a golf club head having score lines with little distortion can be provided.
  • a golf club head having a plurality of score lines on a face, wherein the score lines are formed by first forming grooves for the score lines and forming notches uniformly along the longitudinal direction of the grooves by cutting into the edges of the grooves, the notches having first side surfaces leading to the face and second side surfaces leading to the first side surfaces and side surfaces of the grooves.
  • a golf club head having a plurality of score lines on a face, wherein the score lines include notches formed at both edges of the score lines uniformly along the longitudinal direction of the grooves, the notches having first side surfaces leading to the face and second side surfaces leading to the first side surfaces and side surfaces of the grooves.
  • FIG. 1 is a view showing the outer appearance of a golf club head 1 according to an embodiment of the present invention
  • FIG. 2 shows a sectional view of a score line 20 in a direction perpendicular to the longitudinal direction (toe-and-heel direction), and its partially enlarged view;
  • FIG. 3A is a schematic view illustrating an example of a case in which a first formed groove is cut by an NC milling machine
  • FIG. 3B is a view showing an example of the sectional shape of a first formed groove 20 ′ formed in the first forming step
  • FIG. 4A is a view illustrating a machining example of a case in which a cutting tool 4 a is used which simultaneously machines notches 21 at both edges of the first formed groove 20 ′;
  • FIG. 48 is a view illustrating a machining example of a case in which the notch 21 is machined by relatively inclining the rotation axis Z of a cutting tool 4 b with respect to the face 10 ;
  • FIG. 5A shows tables of the measurement data of the score lines of an example of the present invention
  • FIG. 5B shows tables of the measurement data of the score lines of a comparative example
  • FIG. 6 is a table showing the measurement results of the actual measurement values of the groove widths (groove widths W 1 in FIG. 2 ) of the score lines and the evaluations of the machinabilities and test shot results obtained when the edge angle (angle ⁇ 2 in FIG. 3B ) of the first formed groove, a notch angle ⁇ 1 ( FIG. 2 ), and a distance D ( FIG. 2 ) changed.
  • FIG. 1 is a view showing the outer appearance of a golf club head 1 according to an embodiment of the present invention.
  • FIG. 1 shows an example in which the present invention is applied to an iron golf club head.
  • the present invention is suitable for short iron golf club heads and wedge iron golf club heads, e.g., golf club heads with a loft angle of 409 to 70° (both inclusive) and a head weight of 260 g to 320 g (both inclusive).
  • the present invention is also applicable to wood or hybrid golf club heads.
  • the golf club head 1 has a plurality of score lines 20 formed on its face 10 .
  • the respective score lines 20 are straight grooves extending in the toe-and-heel direction and parallel to each other.
  • the respective score lines 20 are arranged at regular intervals (same pitch) but they may be arranged at irregular intervals.
  • FIG. 2 shows a sectional view of the score line 20 in a direction perpendicular to the longitudinal direction (toe-and-heel direction), and its partially enlarged view.
  • the sectional shapes of the score lines 20 are the same except in two end portions in the longitudinal direction.
  • the score lines 20 have the same sectional shape.
  • the sectional shape of the score line 20 is an almost trapezoid.
  • the sectional shape of the score line 20 is not limited to this, and may be an almost square or triangle.
  • the sectional shape of the score line 20 is symmetric.
  • Notches 21 having a V-shaped cross section are formed in the edges (boundary portions with the face 10 ) of the score line 20 uniformly along its longitudinal direction.
  • the notch 21 has a side surface 21 a leading to the face 10 and a side surface 21 b leading to the side surface 21 a and a side surface (excluding the notch 21 ) 20 a of the score line 20 . Both the side surfaces 21 a and 21 b are flat. A point P 1 is the intersection point of the side surfaces 21 a and 21 b. The intersection point P 1 may be rounded. The angle between the side surfaces 21 a and 21 b is, e.g., 90° (inclusive) to 180° (exclusive) and preferably 90° to 135° (both inclusive). The widths of the side surfaces 21 a and 21 b may be the same, or may be different from each other.
  • the side surface 21 a of the notch 21 and the face 10 form an angle ⁇ 1 .
  • the angle ⁇ 1 influences a friction force between a golf ball and the face 10 which is produced upon a shot.
  • the notch 21 is formed so as to increase the angle ⁇ 1 , the back spin amount of a golf ball can increase, but the golf ball is easily damaged.
  • the notch 21 is formed so as to decrease the angle ⁇ 1 , the back spin amount of a golf ball decreases, however, damage to the ball can be prevented.
  • a distance D represents the length of the normal from the intersection point P 1 to the side surface 20 a of the score line 20 . As the distance D increases, the cut amount for forming the notch 21 increases.
  • first formed grooves first formed grooves
  • second forming step finishing the score lines 20 .
  • an NC (numerically controlled) milling machine can be used to perform cutting with a higher accuracy.
  • the first formed grooves may be formed by, e.g., any of cutting, forging, and casting. Since the notches 21 are formed after the first formed grooves, cutting is desirable. Particularly when the notches 21 are formed using an NC milling machine, it is desirable to cut the first formed grooves by using the same NC milling machine. A case in which the same NC milling machine is continuously used to form the first formed grooves and the notches 21 will be described below.
  • FIG. 3A is a schematic view illustrating an example of a case in which a first formed groove is cut using an NC milling machine.
  • a golf club head 1 ′ without the score lines 20 is fixed to the NC milling machine via a jig 2 .
  • the face 10 is integrally formed with the golf club head.
  • a face member which forms the face 10 and the head body may be prepared as separated members and joined together. In this case, the face member is fixed to the NC milling machine to form the score lines 20 .
  • the NC milling machine includes a spindle 3 which is rotatably driven around the axis Z.
  • a cutting tool (end mill) 4 is attached to the lower end of the spindle 3 .
  • the spindle 3 is rotatably driven.
  • the face 10 (golf club head 1 ′) or cutting tool 4 is moved relatively in a formation direction d 1 of the score lines 20 to mill the face 10 , thereby forming a first formed groove.
  • the cutting tool 4 is separated from the face 10 . After that, the cutting tool 4 is moved relatively in a direction perpendicular to the formation direction d 1 of the score lines 20 , and the next first formed groove is formed.
  • FIG. 38 is a view showing an example of the sectional shape of a first formed groove 20 ′ formed in the first forming step.
  • FIG. 4A illustrates a machining example of a case in which a cutting tool 4 a is used which simultaneously machines the notches 21 at both edges of the first formed groove 20 ′.
  • FIG. 4B illustrates a machining example of a case in which the notch 21 is machined by relatively inclining the rotation axis Z of a cutting tool 4 b with respect to the face 10 .
  • it is required to use an NC milling machine which can adjust the relative inclination angle of the rotation axis Z with respect to the face 10 .
  • the sectional shape of the notch 21 depends on the distal shape of the cutting tools 4 a or 4 b.
  • the angle ⁇ 1 in FIG. 2 depends on the distal shape of the cutting tool 4 a or 4 b and the cutting position.
  • Each notch 21 is formed by moving the face 10 (golf club head 1 ′) or cutting tool 4 a or 4 b relatively in the formation direction d 1 ( FIG. 3A ) of the score lines 20 , as in the case of the first formed groove 20 ′, so as to mill the edge of the first formed groove 20 ′.
  • the positions of the respective notches 21 are numerically controlled in accordance with design data.
  • the score lines 20 having the sectional shape shown in FIG. 2 are completely formed. Note that after that, the surface of the face 10 may be cut as the surface finish of the face 10 .
  • the first formed grooves 20 ′ are formed, and then the notches 21 are formed by cutting into the edges of the first formed grooves 20 ′, thereby forming the score lines 20 having the notches 21 .
  • the cut amount can be small. Accordingly, the shake or wear of the cutting tool or distortion of the material of the face 10 is small, and therefore machining with a higher accuracy is possible.
  • the machining accuracy of the score lines 20 substantially increases. Therefore, the golf club head 1 having the score lines 20 with little distortion can be provided.
  • the back spin amount of the golf ball and its susceptibility to damage can be adjusted by the degree of the angle ⁇ 1 in FIG. 2 .
  • FIG. 5A shows the measurement data of the score lines of an example of the present invention
  • FIG. 5B shows the measurement data of the score lines of a comparative example.
  • first formed grooves and notches were formed using an NC milling machine.
  • the groove depth of the first formed groove was set to 0.45 mm (design value); the edge angle (angle ⁇ 2 in FIG. 3B ), 60° (design value); and the groove width (W 2 in FIG. 3B ), 0.8 mm.
  • the notch angle ⁇ 1 was set to 70° (design value); and the distance D (see FIG. 2 ), 0.05 mm (design value).
  • the score lines of the comparative example were formed by casting such that they had no portion corresponding to the notch of the example (the same shape as the first formed groove of the example).
  • the groove depth of the score line of the comparative example was set to 0.45 mm (design value); the edge angle, 60° (design value); and the groove width, 0.7 mm (design value).
  • “groove width and measurement position (mm)” indicates the actual measurement values of the groove widths at a plurality of positions on the score line, which is the groove width W 1 in FIG. 2 for the example.
  • three score lines were set as measurement targets.
  • Each of 0 and ⁇ 1 to ⁇ 4 indicates the measurement position.
  • a phantom line (line L 1 in FIG. 1 ), which passes the point of contact of the golf club head with the ground upon soling the golf club head and is perpendicular to the score lines, is set as a reference (measurement position 0).
  • the positions away from the line L 1 toward the toe side are denoted by sign ⁇ , and those away from the line L 1 toward the heel side are denoted by sign ⁇ .
  • sign ⁇ For example, “+1” indicates a position which is shifted from the line L 1 by 1 mm toward the heel side, and “ ⁇ 2” indicates a position shifted from the line L 1 by 2 mm toward the toe side.
  • a standard deviation indicates the standard deviation of the groove widths at the respective positions on the same score line
  • a standard deviation average value indicates the average value of the standard deviations (same groove) of four score lines.
  • An error range indicates the difference between the maximum value and minimum value of the groove widths at the respective positions on the same score line
  • an error range average value indicates the average value of the error ranges (same groove) of four score lines.
  • a standard deviation (between grooves) indicates the standard deviation of the groove widths at the same position on the respective score lines
  • a standard deviation average value indicates the average value of the standard deviations (same groove) of all the measurement positions.
  • An error range indicates the difference between the maximum value and minimum value of the groove widths at the same position on the respective score lines
  • an error range average value indicates the average value of the error ranges (between grooves) of all the measurement positions.
  • the accuracy of groove width of the score lines of the example is much higher than that of groove width of the score lines of the comparative example.
  • FIG. 6 is a table showing the measurements of the actual measurement values of the groove widths (groove widths W 1 in FIG. 2 ) of the score lines and the evaluations of the machinabilities and test shot results obtained when the edge angle (angle ⁇ 2 in FIG. 3B ) of the first formed groove, the notch angle ⁇ 1 (see FIG. 2 ), and the distance D (see FIG. 2 ) changed.
  • Ten golf club heads (Nos. 1 to 10 ) were measured and evaluated. For golf club head No. 1 , only first formed grooves were machined without notches.
  • “in first formation” indicates the groove width (W 2 in FIG. 3B ) of the first formed groove, the design value of the edge angle (angle ⁇ 2 in FIG. 3B ), and the evaluation of the machinability.
  • “After notch formation” indicates the actual measurement value of the groove width (W 1 in FIG. 2 ), the design value of the notch angle ⁇ 1 (see FIG. 2 ), the design value of the distance D (see FIG. 2 ), and the evaluation of the machinability.
  • “Test shot result” indicates the test shot result obtained by using each golf club head.
  • the angle ⁇ 2 is desirably smaller than 85° and, particularly, is equal to or smaller than 80°.
  • the edge angle ⁇ 2 of the first formed groove is desirably 60° to 80°.
  • the distance D is desirably 0.1 mm or less.
  • the large notch angle al is desirable from the viewpoint of an increase in spin amount of a ball, however, the ball is easily damaged.
  • the edge angle of a score line is determined to be 90° or less. Accordingly, golf club head No. 7 cannot be used for official competitions.
  • the angle ⁇ 1 is desirably set to 90° or less.
  • the notch angle ⁇ 1 is preferably 50° or more.
  • Golf club head Nos. 8 to 10 (angle ⁇ 1 : 90°) had high spin amounts of the balls but they slightly damaged the balls. Golf club head No. 6 did not damage the ball much.
  • the notch angle ⁇ 1 is desirably 50° to 90° (both inclusive).
  • the notch angle 61 is desirably between the angle ⁇ 2 and 90° (both inclusive). In this case, the machinability of the first formed groove can be improved by decreasing the angle ⁇ 2 while preventing a decrease in spin amount by forming the notches.
  • the notch angle 61 is desirably 50° (inclusive) to 90° (exclusive) and particularly 50° to 85° (both inclusive).
  • the notch angle ⁇ 1 is desirably between the angle ⁇ 2 and 85° (both inclusive).

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Golf Clubs (AREA)

Abstract

According to this invention, there is provided a method of manufacturing a golf cub head having a plurality of score lines on the face. The method of this invention includes the first forming step of forming grooves for the score lines on the face, and the second forming step of forming notches uniformly along the longitudinal direction of the grooves by cutting into the edges of the grooves formed in the first forming step, the notches having first side surfaces leading to the face and second side surfaces leading to the first side surfaces and side surfaces of the grooves.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a golf club head and, more particularly, to score lines on the face.
  • 2. Description of the Related Art
  • Generally, on the face of a golf club head, a plurality of straight grooves are formed parallel to each other in the toe-and-heel direction (e.g., Japanese Patent Laid-Open Nos. 10-248974 and 2005-169129). These grooves are called score lines, marking lines, face lines, or the like (to be referred to as score lines in this specification). These score lines have an effect of increasing the back spin amount or suppressing a significant decrease in back spin amount of a shot in a case of a rainy day or a shot from rough. As a method of forming score lines, for example, cutting, forging, or casting is used.
  • The width of a score line is narrow and, for example, that of a score line of a golf club head for competitions is determined to be 0.9 mm or less by the rule. It is not always easy to form a plurality of score lines to be straight and parallel to each other. For example, when forming score lines by cutting, the score lines may be slightly distorted due to the shake or wear of a cutting tool or distortion of the material of the face. In case of forging, score lines may be slightly distorted due to the influence of distortion of the material of the face. In case of casting, score lines may be slightly distorted due to shrinkage. When score lines are distorted, their outer appearance becomes poor. In addition, individual difference in performance between the products may occur.
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a golf club head having score lines with little distortion.
  • According to the present invention, there is provided a method of manufacturing a golf club head having a plurality of score lines on a face, comprising a first forming step of forming grooves for the score lines on the face, and a second forming step of forming notches uniformly along the longitudinal direction of the grooves by cutting into the edges of the grooves formed in the first forming step, the notches having first side surfaces leading to the face and second side surfaces leading to the first side surfaces and side surfaces of the grooves.
  • In the present invention, the grooves are formed in the first forming step, and the notches are formed by cutting into the edges of the grooves in the second forming step 1 thereby forming score lines having the notches. Since only the edges of the grooves are cut in the second forming step, the cut amount can be small. Accordingly, the shake or wear of a cutting tool or distortion of the material of the face is small, and therefore machining with a higher accuracy is possible. For the outer appearance or performance of the score lines which is influenced by the boundary portions of the score lines and face, since the notches which form the boundary portions can be machined with a higher accuracy in the second forming step, the machining accuracy of the score lines substantially increases. Therefore, a golf club head having score lines with little distortion can be provided.
  • According to the present invention, there is provided a golf club head having a plurality of score lines on a face, wherein the score lines are formed by first forming grooves for the score lines and forming notches uniformly along the longitudinal direction of the grooves by cutting into the edges of the grooves, the notches having first side surfaces leading to the face and second side surfaces leading to the first side surfaces and side surfaces of the grooves.
  • According to the present invention, there is provided a golf club head having a plurality of score lines on a face, wherein the score lines include notches formed at both edges of the score lines uniformly along the longitudinal direction of the grooves, the notches having first side surfaces leading to the face and second side surfaces leading to the first side surfaces and side surfaces of the grooves.
  • Other features of the present invention will become apparent from the following description of an exemplary embodiment with reference to the attached drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a view showing the outer appearance of a golf club head 1 according to an embodiment of the present invention;
  • FIG. 2 shows a sectional view of a score line 20 in a direction perpendicular to the longitudinal direction (toe-and-heel direction), and its partially enlarged view;
  • FIG. 3A is a schematic view illustrating an example of a case in which a first formed groove is cut by an NC milling machine;
  • FIG. 3B is a view showing an example of the sectional shape of a first formed groove 20′ formed in the first forming step;
  • FIG. 4A is a view illustrating a machining example of a case in which a cutting tool 4 a is used which simultaneously machines notches 21 at both edges of the first formed groove 20′;
  • FIG. 48 is a view illustrating a machining example of a case in which the notch 21 is machined by relatively inclining the rotation axis Z of a cutting tool 4 b with respect to the face 10;
  • FIG. 5A shows tables of the measurement data of the score lines of an example of the present invention;
  • FIG. 5B shows tables of the measurement data of the score lines of a comparative example; and
  • FIG. 6 is a table showing the measurement results of the actual measurement values of the groove widths (groove widths W1 in FIG. 2) of the score lines and the evaluations of the machinabilities and test shot results obtained when the edge angle (angle θ2 in FIG. 3B) of the first formed groove, a notch angle θ1 (FIG. 2), and a distance D (FIG. 2) changed.
  • DESCRIPTION OF THE EMBODIMENTS
  • FIG. 1 is a view showing the outer appearance of a golf club head 1 according to an embodiment of the present invention. FIG. 1 shows an example in which the present invention is applied to an iron golf club head. The present invention is suitable for short iron golf club heads and wedge iron golf club heads, e.g., golf club heads with a loft angle of 409 to 70° (both inclusive) and a head weight of 260 g to 320 g (both inclusive). However, the present invention is also applicable to wood or hybrid golf club heads.
  • The golf club head 1 has a plurality of score lines 20 formed on its face 10. The respective score lines 20 are straight grooves extending in the toe-and-heel direction and parallel to each other. In this: embodiment, the respective score lines 20 are arranged at regular intervals (same pitch) but they may be arranged at irregular intervals. FIG. 2 shows a sectional view of the score line 20 in a direction perpendicular to the longitudinal direction (toe-and-heel direction), and its partially enlarged view. In this embodiment, the sectional shapes of the score lines 20 are the same except in two end portions in the longitudinal direction. The score lines 20 have the same sectional shape.
  • In this embodiment, the sectional shape of the score line 20 is an almost trapezoid. However, the sectional shape of the score line 20 is not limited to this, and may be an almost square or triangle. In this embodiment, the sectional shape of the score line 20 is symmetric. Notches 21 having a V-shaped cross section are formed in the edges (boundary portions with the face 10) of the score line 20 uniformly along its longitudinal direction.
  • The notch 21 has a side surface 21 a leading to the face 10 and a side surface 21 b leading to the side surface 21 a and a side surface (excluding the notch 21) 20 a of the score line 20. Both the side surfaces 21 a and 21 b are flat. A point P1 is the intersection point of the side surfaces 21 a and 21 b. The intersection point P1 may be rounded. The angle between the side surfaces 21 a and 21 b is, e.g., 90° (inclusive) to 180° (exclusive) and preferably 90° to 135° (both inclusive). The widths of the side surfaces 21 a and 21 b may be the same, or may be different from each other.
  • The side surface 21 a of the notch 21 and the face 10 form an angle θ1. The angle θ1 influences a friction force between a golf ball and the face 10 which is produced upon a shot. When the notch 21 is formed so as to increase the angle θ1, the back spin amount of a golf ball can increase, but the golf ball is easily damaged. Conversely, when the notch 21 is formed so as to decrease the angle θ1, the back spin amount of a golf ball decreases, however, damage to the ball can be prevented. A distance D represents the length of the normal from the intersection point P1 to the side surface 20 a of the score line 20. As the distance D increases, the cut amount for forming the notch 21 increases.
  • The method of forming the score lines 20 will be described next. In this embodiment, upon forming the score lines 20, grooves for the score lines 20 are first formed on the face 10 (first forming step). These grooves will be referred to as first formed grooves, hereinafter. The edges of the first formed grooves are cut so as to form the notches 21 (second forming step), thereby finishing the score lines 20.
  • Upon cutting for forming the notches 21, an NC (numerically controlled) milling machine can be used to perform cutting with a higher accuracy. The first formed grooves may be formed by, e.g., any of cutting, forging, and casting. Since the notches 21 are formed after the first formed grooves, cutting is desirable. Particularly when the notches 21 are formed using an NC milling machine, it is desirable to cut the first formed grooves by using the same NC milling machine. A case in which the same NC milling machine is continuously used to form the first formed grooves and the notches 21 will be described below.
  • FIG. 3A is a schematic view illustrating an example of a case in which a first formed groove is cut using an NC milling machine. A golf club head 1′ without the score lines 20 is fixed to the NC milling machine via a jig 2. Note that in this embodiment, a case in which the face 10 is integrally formed with the golf club head is described. However, a face member which forms the face 10 and the head body may be prepared as separated members and joined together. In this case, the face member is fixed to the NC milling machine to form the score lines 20.
  • The NC milling machine includes a spindle 3 which is rotatably driven around the axis Z. A cutting tool (end mill) 4 is attached to the lower end of the spindle 3. After setting the plane coordinates of the face 10 in the NC milling machine, the spindle 3 is rotatably driven. The face 10 (golf club head 1′) or cutting tool 4 is moved relatively in a formation direction d1 of the score lines 20 to mill the face 10, thereby forming a first formed groove. When one first formed groove has been formed, the cutting tool 4 is separated from the face 10. After that, the cutting tool 4 is moved relatively in a direction perpendicular to the formation direction d1 of the score lines 20, and the next first formed groove is formed. In this manner, the first formed grooves are sequentially formed. The positions of the respective first formed grooves are numerically controlled in accordance with design data. FIG. 38 is a view showing an example of the sectional shape of a first formed groove 20′ formed in the first forming step.
  • When all the first formed grooves have been formed, the notches 21 are then machined. At this time, the cutting tool 4 is changed as needed. FIG. 4A illustrates a machining example of a case in which a cutting tool 4 a is used which simultaneously machines the notches 21 at both edges of the first formed groove 20′. FIG. 4B illustrates a machining example of a case in which the notch 21 is machined by relatively inclining the rotation axis Z of a cutting tool 4 b with respect to the face 10. In this case, it is required to use an NC milling machine which can adjust the relative inclination angle of the rotation axis Z with respect to the face 10. In either case, the sectional shape of the notch 21 depends on the distal shape of the cutting tools 4 a or 4 b. The angle θ1 in FIG. 2 depends on the distal shape of the cutting tool 4 a or 4 b and the cutting position.
  • Each notch 21 is formed by moving the face 10 (golf club head 1′) or cutting tool 4 a or 4 b relatively in the formation direction d1 (FIG. 3A) of the score lines 20, as in the case of the first formed groove 20′, so as to mill the edge of the first formed groove 20′. The positions of the respective notches 21 are numerically controlled in accordance with design data. When the notches 21 have been completely formed, the score lines 20 having the sectional shape shown in FIG. 2 are completely formed. Note that after that, the surface of the face 10 may be cut as the surface finish of the face 10.
  • In this embodiment, as described above, the first formed grooves 20′ are formed, and then the notches 21 are formed by cutting into the edges of the first formed grooves 20′, thereby forming the score lines 20 having the notches 21. In forming the notches 21, since only the edges of the machined first formed groove 20′ are cut, the cut amount can be small. Accordingly, the shake or wear of the cutting tool or distortion of the material of the face 10 is small, and therefore machining with a higher accuracy is possible. For the outer appearance or performance of the score lines 20 which is influenced by the boundary portions of the score lines 20 and face 10, since the notches 21 which form the boundary portions can be machined with a higher accuracy, the machining accuracy of the score lines 20 substantially increases. Therefore, the golf club head 1 having the score lines 20 with little distortion can be provided. As a secondary effect, the back spin amount of the golf ball and its susceptibility to damage can be adjusted by the degree of the angle θ1 in FIG. 2.
  • EXAMPLES
  • FIG. 5A shows the measurement data of the score lines of an example of the present invention, and FIG. 5B shows the measurement data of the score lines of a comparative example. For the score lines of the example, first formed grooves and notches were formed using an NC milling machine. The groove depth of the first formed groove was set to 0.45 mm (design value); the edge angle (angle θ2 in FIG. 3B), 60° (design value); and the groove width (W2 in FIG. 3B), 0.8 mm. The notch angle θ1 (see FIG. 2) was set to 70° (design value); and the distance D (see FIG. 2), 0.05 mm (design value). The score lines of the comparative example were formed by casting such that they had no portion corresponding to the notch of the example (the same shape as the first formed groove of the example). The groove depth of the score line of the comparative example was set to 0.45 mm (design value); the edge angle, 60° (design value); and the groove width, 0.7 mm (design value).
  • In FIGS. 5A and 5B, “groove width and measurement position (mm)” indicates the actual measurement values of the groove widths at a plurality of positions on the score line, which is the groove width W1 in FIG. 2 for the example. In this embodiment, three score lines were set as measurement targets. Each of 0 and ±1 to ±4 indicates the measurement position. A phantom line (line L1 in FIG. 1), which passes the point of contact of the golf club head with the ground upon soling the golf club head and is perpendicular to the score lines, is set as a reference (measurement position=0). The positions away from the line L1 toward the toe side are denoted by sign −, and those away from the line L1 toward the heel side are denoted by sign ±. For example, “+1” indicates a position which is shifted from the line L1 by 1 mm toward the heel side, and “−2” indicates a position shifted from the line L1 by 2 mm toward the toe side.
  • A standard deviation (same groove) indicates the standard deviation of the groove widths at the respective positions on the same score line, and a standard deviation average value (same groove) indicates the average value of the standard deviations (same groove) of four score lines. An error range (same groove) indicates the difference between the maximum value and minimum value of the groove widths at the respective positions on the same score line, and an error range average value (same groove) indicates the average value of the error ranges (same groove) of four score lines.
  • A standard deviation (between grooves) indicates the standard deviation of the groove widths at the same position on the respective score lines, and a standard deviation average value (between grooves) indicates the average value of the standard deviations (same groove) of all the measurement positions. An error range (between grooves) indicates the difference between the maximum value and minimum value of the groove widths at the same position on the respective score lines, and an error range average value (between grooves) indicates the average value of the error ranges (between grooves) of all the measurement positions.
  • Referring to the measurement data shown in FIGS. 5A and 5B, the accuracy of groove width of the score lines of the example is much higher than that of groove width of the score lines of the comparative example.
  • FIG. 6 is a table showing the measurements of the actual measurement values of the groove widths (groove widths W1 in FIG. 2) of the score lines and the evaluations of the machinabilities and test shot results obtained when the edge angle (angle θ2 in FIG. 3B) of the first formed groove, the notch angle θ1 (see FIG. 2), and the distance D (see FIG. 2) changed. Ten golf club heads (Nos. 1 to 10) were measured and evaluated. For golf club head No. 1, only first formed grooves were machined without notches.
  • In FIG. 6, “in first formation” indicates the groove width (W2 in FIG. 3B) of the first formed groove, the design value of the edge angle (angle θ2 in FIG. 3B), and the evaluation of the machinability. “After notch formation” indicates the actual measurement value of the groove width (W1 in FIG. 2), the design value of the notch angle θ1 (see FIG. 2), the design value of the distance D (see FIG. 2), and the evaluation of the machinability. “Test shot result” indicates the test shot result obtained by using each golf club head.
  • As in golf club head Nos. 2 to 10, when the edge angle θ2 of the first formed groove, the notch angle θ1, and the distance D change, score lines having a plurality of types of groove widths can be obtained. When the notches are formed in the edges of the score lines, not only the machining accuracy of the score lines can improve but also the degree of freedom of groove width design can increase.
  • As for the machinability of the first formed groove, since golf cub head No. 1 has the large angle θ2, its machinability was not very good because of the draft. Golf club head Nos. 2 to 10 had no particular problem. Accordingly, from the viewpoint of the machinability of the first formed groove, the angle θ2 is desirably smaller than 85° and, particularly, is equal to or smaller than 80°. Upon machining the notch, when the edge angle θ2 of the first formed groove is small, the shake of the cutting tool and cutting resistance are small. This is desirable, however, if the edge angle θ2 is too small, the sectional area of the groove becomes small. This undesirably causes a low spin tendency (tendency for back spin to decrease) in case of a shot from rough or the like. Therefore, the edge angle θ2 of the first formed groove is desirably 60° to 80°.
  • As for the machinability of the notch, golf club head No. 10 had a large cut amount (distance D: 0.12 mm) so that it was difficult to attain a satisfactory accuracy. Therefore, from the viewpoint of the machinability, the distance D is desirably 0.1 mm or less.
  • As for the test shot result, the large notch angle al is desirable from the viewpoint of an increase in spin amount of a ball, however, the ball is easily damaged. Also, for a golf club head for official competitions, the edge angle of a score line is determined to be 90° or less. Accordingly, golf club head No. 7 cannot be used for official competitions. When the present invention is applied to a golf club head for competitions, the angle θ1 is desirably set to 90° or less.
  • Golf club head No. 3 (angle θ1: 45°) had a low spin amount of the ball. Accordingly, from the viewpoint of a spin amount of a ball, the notch angle θ1 is preferably 50° or more. Golf club head Nos. 8 to 10 (angle θ1: 90°) had high spin amounts of the balls but they slightly damaged the balls. Golf club head No. 6 did not damage the ball much.
  • Accordingly, when the spin amount of a ball is considered to be important while being applied in official competitions, the notch angle θ1 is desirably 50° to 90° (both inclusive). In addition, when the machinability of the first formed groove is considered, the notch angle 61 is desirably between the angle θ2 and 90° (both inclusive). In this case, the machinability of the first formed groove can be improved by decreasing the angle θ2 while preventing a decrease in spin amount by forming the notches.
  • When damage to the ball is prevented while considering the spin amount of a ball to be important, the notch angle 61 is desirably 50° (inclusive) to 90° (exclusive) and particularly 50° to 85° (both inclusive). In addition, when the machinability of the first formed groove is considered, the notch angle θ1 is desirably between the angle θ2 and 85° (both inclusive).
  • While the present invention has been described with reference to exemplary embodiments, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. The scope of the following claims is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures and functions.

Claims (7)

1. A method of manufacturing a golf club head having a plurality of score lines on a face, comprising:
a first forming step of forming grooves for the score lines on the face; and
a second forming step of forming notches at both edges of the grooves uniformly along the longitudinal direction of the grooves by cutting into the edges, the notches having first side surfaces leading to the face and second side surfaces leading to the first side surfaces and side surfaces of the grooves.
2. The method according to claim 1, wherein in the second forming step, the notches are formed by cutting the edges of the grooves by a cutting tool while the face or the cutting tool relatively moves in a direction of forming the score lines.
3. The method according to claim 1, wherein an angle between the plane of the side surface of the groove and the plane of the face is not greater than 80 degrees.
4. The method according to claim 3, wherein an angle between the plane of the first surface and the plane of the face is greater than 50 degrees and not greater than 90 degrees.
5. The method according to claim 1, wherein a length of a perpendicular line from the intersection point of the first side surface and the second side surface of the notch to the side surface of the groove is not greater than 0.1 mm.
6. A golf club head having a plurality of score lines on a face, wherein the score lines are formed by first forming grooves for the score lines on the face and forming notches at both edges of the grooves uniformly along the longitudinal direction of the grooves by cutting into the edges, the notches having first side surfaces leading to the face and second side surfaces leading to the first side surfaces and side surfaces of the grooves.
7. A golf club head having a plurality of score lines on a face, wherein the score lines include notches formed at both edges of the score lines uniformly along the longitudinal direction of the score lines, the notches having first side surfaces leading to the face and second side surfaces leading to the first side surfaces and side surfaces of the score lines.
US11/861,515 2007-09-26 2007-09-26 Method of Manufacturing Golf Club Head and Golf Club Head Abandoned US20090082129A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/861,515 US20090082129A1 (en) 2007-09-26 2007-09-26 Method of Manufacturing Golf Club Head and Golf Club Head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/861,515 US20090082129A1 (en) 2007-09-26 2007-09-26 Method of Manufacturing Golf Club Head and Golf Club Head

Publications (1)

Publication Number Publication Date
US20090082129A1 true US20090082129A1 (en) 2009-03-26

Family

ID=40472273

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/861,515 Abandoned US20090082129A1 (en) 2007-09-26 2007-09-26 Method of Manufacturing Golf Club Head and Golf Club Head

Country Status (1)

Country Link
US (1) US20090082129A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080102981A1 (en) * 2006-10-31 2008-05-01 Bridgestone Sports Co., Ltd. Golf club head
US20080132352A1 (en) * 2006-11-30 2008-06-05 Bridgestone Sports Co., Ltd. Golf club head
US20080132351A1 (en) * 2006-12-01 2008-06-05 Bridgestone Sports Co., Ltd. Golf club head
US20080167138A1 (en) * 2007-01-04 2008-07-10 Bridgestone Sports Co., Ltd. Golf club head
US20090029797A1 (en) * 2007-07-24 2009-01-29 Bridgestone Sports Co., Ltd. Method of manufacturing golf club head and golf club head
US20090036228A1 (en) * 2007-08-02 2009-02-05 Bridgestone Sports Co., Ltd. Method of manufacturing golf club head and golf club head
US20090209362A1 (en) * 2008-02-15 2009-08-20 Petersen David L Golf Club Head And Method Of Manufacturing
US20090209361A1 (en) * 2008-02-20 2009-08-20 Solheim John A Golf Club Heads With Grooves And Methods Of Manufacture
US20090325728A1 (en) * 2008-02-20 2009-12-31 Karsten Manufacturing Corporation Golf club heads with grooves and methods of manufacture
US7674188B2 (en) 2006-11-28 2010-03-09 Bridgestone Sports Co, Ltd. Golf club head
GB2481884A (en) * 2010-07-08 2012-01-11 Karsten Mfg Corp A groove for a golf club strike face with a rough edge
US8845455B2 (en) 2011-10-27 2014-09-30 Bridgestone Sports Co., Ltd Golf club head and method of manufacturing the same

Citations (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1289553A (en) * 1916-03-25 1918-12-31 Archibald H Sanders Golf-club.
US1337958A (en) * 1919-08-23 1920-04-20 Spalding & Bros Ag Golf-club
US1965954A (en) * 1930-04-22 1934-07-10 Mavis Machine Corp Head for golf clubs
US2005401A (en) * 1933-05-20 1935-06-18 Leon A Storz Golf club
US3693978A (en) * 1969-11-13 1972-09-26 Victor East Symmetrical golf club head with center of gravity coincident with geometric center
US4067572A (en) * 1976-08-05 1978-01-10 Coleman Marvin W Golf club
US4413825A (en) * 1977-03-25 1983-11-08 Sasse Howard A Golf club
US4753440A (en) * 1986-07-18 1988-06-28 Robert Chorne Golf club head with visual reference for addressing the golf ball
US4802672A (en) * 1987-06-24 1989-02-07 Macgregor Golf Company Set of golf irons
US4854581A (en) * 1987-06-24 1989-08-08 Macgregor Golf Company Golf irons
US4858929A (en) * 1987-06-24 1989-08-22 Macgregor Golf Company Golf irons
US4957294A (en) * 1987-06-24 1990-09-18 Macgregor Golf Company Golf club head
US5029864A (en) * 1990-06-11 1991-07-09 Keener Michael B Golf club head with grooved striking face
US5100144A (en) * 1988-10-27 1992-03-31 The Yokohama Rubber Co., Ltd. Golf club head
US5437088A (en) * 1993-01-19 1995-08-01 Igarashi; Lawrence Y. Method of making a golf club that provides enhanced backspin and reduced sidespin
US5591092A (en) * 1995-05-09 1997-01-07 Acushnet Company Golf clubs with groove configuration
US5637044A (en) * 1994-10-14 1997-06-10 Progear, Inc. Golf clubs
US5688186A (en) * 1996-04-02 1997-11-18 Michaels; Richard A. Golf club face
US5709616A (en) * 1996-05-31 1998-01-20 Rife; Guerin D. Groove configuration for a putter type golf club head
US5744780A (en) * 1995-09-05 1998-04-28 The United States Of America As Represented By The United States Department Of Energy Apparatus for precision micromachining with lasers
US5766097A (en) * 1993-12-28 1998-06-16 Sumitomo Rubber Industries, Ltd. Golf ball coated with polyurethane or epoxy resin paint
US5766087A (en) * 1996-01-23 1998-06-16 Sumitomo Rubber Industries, Ltd. Set of golf clubs
US5785610A (en) * 1995-11-21 1998-07-28 Premier Golf, Inc. Clubhead for golf club
US5788584A (en) * 1994-07-05 1998-08-04 Goldwin Golf U.S.A., Inc. Golf club head with perimeter weighting
US20020016218A1 (en) * 1999-03-24 2002-02-07 Hitoshi Takeda Golfing iron club and manufacturing method thereof
US20020025861A1 (en) * 2000-08-28 2002-02-28 Hiroyuki Ezawa Golf club head and method of manufacturing the same
US20020042306A1 (en) * 2000-05-09 2002-04-11 Chris Chappell High spin golf club groove configuration
US20020132683A1 (en) * 2001-03-15 2002-09-19 Buchanan Douglas B. Putter head with pre-machined insert
US20030008724A1 (en) * 2000-08-21 2003-01-09 Griffin Ronald E. Golf putter
US20040087387A1 (en) * 2002-11-01 2004-05-06 Bret Wahl Golf club head having dual-drafted grooves
US6733400B2 (en) * 2001-04-20 2004-05-11 U.I.G., Inc. Gold club iron head, correlated set of individually numbered golf club irons, method of matching a golf club to a golfer, and method of matching a set of golf clubs to a golfer
US20040214654A1 (en) * 2001-11-19 2004-10-28 David Pelz Golf club
US6849004B2 (en) * 2000-05-16 2005-02-01 Norman Matheson Lindsay Golf-putters
US20050037859A1 (en) * 2003-08-13 2005-02-17 Gilbert Peter J. Golf club head with face insert
US20050043113A1 (en) * 2003-01-24 2005-02-24 Mann James A. Variable scoreline golf club groove configuration
US20050085312A1 (en) * 2000-10-16 2005-04-21 Masao Nagai Iron golf club and golf club set with variable weight distribution
US20050130761A1 (en) * 2003-12-12 2005-06-16 Vokey Robert W. Spin milled grooves for a golf club
US20050143187A1 (en) * 2003-12-30 2005-06-30 Callaway Golf Company Golf club having stepped grooves
US20050277486A1 (en) * 2004-06-14 2005-12-15 Hyman Herbert B Dual purpose golf club
US7066833B2 (en) * 2002-03-20 2006-06-27 Sumitomo Rubber Industries, Ltd. Golf club head
US20060154793A1 (en) * 2002-11-27 2006-07-13 Hosokawa Yoko Co., Ltd. Packaging bag and method for manufacturing same
US7159292B2 (en) * 2002-05-27 2007-01-09 Yamaichi Electronics Co., Ltd. Recovery processing method of an electrode
US20070010346A1 (en) * 2003-08-13 2007-01-11 Acushnet Company Golf club head
US7166039B2 (en) * 2006-01-13 2007-01-23 Calaway Golf Company Putterhead with dual milled face pattern
US7192361B2 (en) * 2005-04-14 2007-03-20 Acushnet Company Iron-type golf clubs
US20070149312A1 (en) * 2004-07-30 2007-06-28 Acushnet Company Golf club head groove configuration
US20080020859A1 (en) * 2006-07-24 2008-01-24 Bridgestone Sports Co., Ltd. Golf club head
US7327017B2 (en) * 2003-07-19 2008-02-05 Utac Thai Limited Semiconductor package including leadframe roughened with chemical etchant to prevent separation between leadframe and molding compound
US20080032814A1 (en) * 2006-08-07 2008-02-07 Bridgestone Sports Co., Ltd. Golf club head
US20080051212A1 (en) * 2006-08-22 2008-02-28 Max Out Golf, Llc Treatment for the hitting surface of a golf club and a method for applying the same
US20080102981A1 (en) * 2006-10-31 2008-05-01 Bridgestone Sports Co., Ltd. Golf club head
US20080108453A1 (en) * 2007-10-18 2008-05-08 Roger Cleveland Golf Co., Inc. Golf club head
US20080125242A1 (en) * 2006-11-28 2008-05-29 Bridgestone Sports Co., Ltd. Golf club head
US20080125243A1 (en) * 2006-11-28 2008-05-29 Bridgestone Sports Co., Ltd. Golf club head
US20080132352A1 (en) * 2006-11-30 2008-06-05 Bridgestone Sports Co., Ltd. Golf club head
US20080132351A1 (en) * 2006-12-01 2008-06-05 Bridgestone Sports Co., Ltd. Golf club head
US20080167138A1 (en) * 2007-01-04 2008-07-10 Bridgestone Sports Co., Ltd. Golf club head
US20080242442A1 (en) * 2004-07-30 2008-10-02 Gilbert Peter J Golf club head with varying face grooves
US20090011852A1 (en) * 2007-07-05 2009-01-08 Karsten Manufacturing Corporation Grooves with Multiple Channels and Methods to Manufacture Grooves of a Golf Club Head
US20090029797A1 (en) * 2007-07-24 2009-01-29 Bridgestone Sports Co., Ltd. Method of manufacturing golf club head and golf club head
US20090036228A1 (en) * 2007-08-02 2009-02-05 Bridgestone Sports Co., Ltd. Method of manufacturing golf club head and golf club head

Patent Citations (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1289553A (en) * 1916-03-25 1918-12-31 Archibald H Sanders Golf-club.
US1337958A (en) * 1919-08-23 1920-04-20 Spalding & Bros Ag Golf-club
US1965954A (en) * 1930-04-22 1934-07-10 Mavis Machine Corp Head for golf clubs
US2005401A (en) * 1933-05-20 1935-06-18 Leon A Storz Golf club
US3693978A (en) * 1969-11-13 1972-09-26 Victor East Symmetrical golf club head with center of gravity coincident with geometric center
US4067572A (en) * 1976-08-05 1978-01-10 Coleman Marvin W Golf club
US4413825A (en) * 1977-03-25 1983-11-08 Sasse Howard A Golf club
US4753440A (en) * 1986-07-18 1988-06-28 Robert Chorne Golf club head with visual reference for addressing the golf ball
US4802672A (en) * 1987-06-24 1989-02-07 Macgregor Golf Company Set of golf irons
US4854581A (en) * 1987-06-24 1989-08-08 Macgregor Golf Company Golf irons
US4858929A (en) * 1987-06-24 1989-08-22 Macgregor Golf Company Golf irons
US4957294A (en) * 1987-06-24 1990-09-18 Macgregor Golf Company Golf club head
US5100144A (en) * 1988-10-27 1992-03-31 The Yokohama Rubber Co., Ltd. Golf club head
US5029864A (en) * 1990-06-11 1991-07-09 Keener Michael B Golf club head with grooved striking face
US5437088A (en) * 1993-01-19 1995-08-01 Igarashi; Lawrence Y. Method of making a golf club that provides enhanced backspin and reduced sidespin
US5766097A (en) * 1993-12-28 1998-06-16 Sumitomo Rubber Industries, Ltd. Golf ball coated with polyurethane or epoxy resin paint
US5788584A (en) * 1994-07-05 1998-08-04 Goldwin Golf U.S.A., Inc. Golf club head with perimeter weighting
US5637044A (en) * 1994-10-14 1997-06-10 Progear, Inc. Golf clubs
US5591092A (en) * 1995-05-09 1997-01-07 Acushnet Company Golf clubs with groove configuration
US5744780A (en) * 1995-09-05 1998-04-28 The United States Of America As Represented By The United States Department Of Energy Apparatus for precision micromachining with lasers
US5785610A (en) * 1995-11-21 1998-07-28 Premier Golf, Inc. Clubhead for golf club
US5766087A (en) * 1996-01-23 1998-06-16 Sumitomo Rubber Industries, Ltd. Set of golf clubs
US5688186A (en) * 1996-04-02 1997-11-18 Michaels; Richard A. Golf club face
US5709616A (en) * 1996-05-31 1998-01-20 Rife; Guerin D. Groove configuration for a putter type golf club head
US20020016218A1 (en) * 1999-03-24 2002-02-07 Hitoshi Takeda Golfing iron club and manufacturing method thereof
US20020042306A1 (en) * 2000-05-09 2002-04-11 Chris Chappell High spin golf club groove configuration
US7258627B2 (en) * 2000-05-09 2007-08-21 Taylormade-Adidas Golf Company High spin golf club groove configuration
US20060003851A1 (en) * 2000-05-09 2006-01-05 Chris Chappell High spin golf club groove configuration
US6981923B2 (en) * 2000-05-09 2006-01-03 Dunlop Sports High spin golf club groove configuration
US6849004B2 (en) * 2000-05-16 2005-02-01 Norman Matheson Lindsay Golf-putters
US20030008724A1 (en) * 2000-08-21 2003-01-09 Griffin Ronald E. Golf putter
US20020025861A1 (en) * 2000-08-28 2002-02-28 Hiroyuki Ezawa Golf club head and method of manufacturing the same
US20050085312A1 (en) * 2000-10-16 2005-04-21 Masao Nagai Iron golf club and golf club set with variable weight distribution
US20020132683A1 (en) * 2001-03-15 2002-09-19 Buchanan Douglas B. Putter head with pre-machined insert
US7275999B2 (en) * 2001-04-20 2007-10-02 U.I.G., Inc. Correlated set of individually numbered golf club irons
US6733400B2 (en) * 2001-04-20 2004-05-11 U.I.G., Inc. Gold club iron head, correlated set of individually numbered golf club irons, method of matching a golf club to a golfer, and method of matching a set of golf clubs to a golfer
US7014568B2 (en) * 2001-11-19 2006-03-21 David Pelz Golf club
US20040214654A1 (en) * 2001-11-19 2004-10-28 David Pelz Golf club
US7066833B2 (en) * 2002-03-20 2006-06-27 Sumitomo Rubber Industries, Ltd. Golf club head
US7159292B2 (en) * 2002-05-27 2007-01-09 Yamaichi Electronics Co., Ltd. Recovery processing method of an electrode
US20050085315A1 (en) * 2002-11-01 2005-04-21 Taylor Made Golf Company, Inc. Golf club head having improved grooves
US7156751B2 (en) * 2002-11-01 2007-01-02 Taylor Made Golf Company, Inc. Golf club head having improved grooves
US20040087387A1 (en) * 2002-11-01 2004-05-06 Bret Wahl Golf club head having dual-drafted grooves
US6814673B2 (en) * 2002-11-01 2004-11-09 Taylor Made Golf Company, Inc. Golf club head having improved grooves
US20060154793A1 (en) * 2002-11-27 2006-07-13 Hosokawa Yoko Co., Ltd. Packaging bag and method for manufacturing same
US7285057B2 (en) * 2003-01-24 2007-10-23 Taylormade-Adidas Golf Company Variable scoreline golf club groove configuration
US20060154739A1 (en) * 2003-01-24 2006-07-13 Mann James A Jr Variable scoreline golf club groove configuration
US20050043113A1 (en) * 2003-01-24 2005-02-24 Mann James A. Variable scoreline golf club groove configuration
US7327017B2 (en) * 2003-07-19 2008-02-05 Utac Thai Limited Semiconductor package including leadframe roughened with chemical etchant to prevent separation between leadframe and molding compound
US20050037859A1 (en) * 2003-08-13 2005-02-17 Gilbert Peter J. Golf club head with face insert
US20050075191A1 (en) * 2003-08-13 2005-04-07 Bennett Thomas O. Golf club with vibration dampening pocket
US20070010346A1 (en) * 2003-08-13 2007-01-11 Acushnet Company Golf club head
US20050130761A1 (en) * 2003-12-12 2005-06-16 Vokey Robert W. Spin milled grooves for a golf club
US20050143187A1 (en) * 2003-12-30 2005-06-30 Callaway Golf Company Golf club having stepped grooves
US7179175B2 (en) * 2003-12-30 2007-02-20 Callaway Golf Company Golf club having stepped grooves
US20060223648A1 (en) * 2003-12-30 2006-10-05 Kennedy Thomas J Iii Golf club having stepped grooves
US7056226B2 (en) * 2003-12-30 2006-06-06 Callaway Golf Company Golf club having stepped grooves
US20050277486A1 (en) * 2004-06-14 2005-12-15 Hyman Herbert B Dual purpose golf club
US20070149312A1 (en) * 2004-07-30 2007-06-28 Acushnet Company Golf club head groove configuration
US7568983B2 (en) * 2004-07-30 2009-08-04 Acushnet Company Golf club head groove configuration
US20080242442A1 (en) * 2004-07-30 2008-10-02 Gilbert Peter J Golf club head with varying face grooves
US7192361B2 (en) * 2005-04-14 2007-03-20 Acushnet Company Iron-type golf clubs
US7166039B2 (en) * 2006-01-13 2007-01-23 Calaway Golf Company Putterhead with dual milled face pattern
US20080020859A1 (en) * 2006-07-24 2008-01-24 Bridgestone Sports Co., Ltd. Golf club head
US20080032814A1 (en) * 2006-08-07 2008-02-07 Bridgestone Sports Co., Ltd. Golf club head
US20080051212A1 (en) * 2006-08-22 2008-02-28 Max Out Golf, Llc Treatment for the hitting surface of a golf club and a method for applying the same
US20080102981A1 (en) * 2006-10-31 2008-05-01 Bridgestone Sports Co., Ltd. Golf club head
US20080125242A1 (en) * 2006-11-28 2008-05-29 Bridgestone Sports Co., Ltd. Golf club head
US20080125243A1 (en) * 2006-11-28 2008-05-29 Bridgestone Sports Co., Ltd. Golf club head
US20080132352A1 (en) * 2006-11-30 2008-06-05 Bridgestone Sports Co., Ltd. Golf club head
US20080132351A1 (en) * 2006-12-01 2008-06-05 Bridgestone Sports Co., Ltd. Golf club head
US20080167138A1 (en) * 2007-01-04 2008-07-10 Bridgestone Sports Co., Ltd. Golf club head
US20090011852A1 (en) * 2007-07-05 2009-01-08 Karsten Manufacturing Corporation Grooves with Multiple Channels and Methods to Manufacture Grooves of a Golf Club Head
US20090029797A1 (en) * 2007-07-24 2009-01-29 Bridgestone Sports Co., Ltd. Method of manufacturing golf club head and golf club head
US20090036228A1 (en) * 2007-08-02 2009-02-05 Bridgestone Sports Co., Ltd. Method of manufacturing golf club head and golf club head
US20080108453A1 (en) * 2007-10-18 2008-05-08 Roger Cleveland Golf Co., Inc. Golf club head

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7798917B2 (en) 2006-10-31 2010-09-21 Bridgestone Sports Co., Ltd. Golf club head
US20080102981A1 (en) * 2006-10-31 2008-05-01 Bridgestone Sports Co., Ltd. Golf club head
US7674188B2 (en) 2006-11-28 2010-03-09 Bridgestone Sports Co, Ltd. Golf club head
US20080132352A1 (en) * 2006-11-30 2008-06-05 Bridgestone Sports Co., Ltd. Golf club head
US7677990B2 (en) 2006-11-30 2010-03-16 Bridgestone Sports Co., Ltd. Golf club head
US20080132351A1 (en) * 2006-12-01 2008-06-05 Bridgestone Sports Co., Ltd. Golf club head
US7815521B2 (en) 2006-12-01 2010-10-19 Bridgestone Sports, Co., Ltd. Golf club head
US20080167138A1 (en) * 2007-01-04 2008-07-10 Bridgestone Sports Co., Ltd. Golf club head
US7691007B2 (en) 2007-01-04 2010-04-06 Bridgestone Sports Co., Ltd. Golf club head
US20090029797A1 (en) * 2007-07-24 2009-01-29 Bridgestone Sports Co., Ltd. Method of manufacturing golf club head and golf club head
US7798918B2 (en) 2007-07-24 2010-09-21 Bridgestone Sports Co., Ltd. Method of manufacturing golf club head and golf club head
US20090036228A1 (en) * 2007-08-02 2009-02-05 Bridgestone Sports Co., Ltd. Method of manufacturing golf club head and golf club head
US8578980B2 (en) * 2008-02-15 2013-11-12 Karsten Manufacturing Corporation Groove forming machine for manufacturing golf club head
US20090209362A1 (en) * 2008-02-15 2009-08-20 Petersen David L Golf Club Head And Method Of Manufacturing
US20100210375A1 (en) * 2008-02-15 2010-08-19 Petersen David L Golf club head
US8167738B2 (en) * 2008-02-15 2012-05-01 Karsten Manufacturing Corporation Golf club head
US20110200407A1 (en) * 2008-02-15 2011-08-18 Petersen David L Groove Forming Machine for Manufacturing Golf Club Head
US7905798B2 (en) * 2008-02-15 2011-03-15 Karsten Manufacturing Corporation Golf club head and method of manufacturing
US20090209361A1 (en) * 2008-02-20 2009-08-20 Solheim John A Golf Club Heads With Grooves And Methods Of Manufacture
US20090325728A1 (en) * 2008-02-20 2009-12-31 Karsten Manufacturing Corporation Golf club heads with grooves and methods of manufacture
US7780548B2 (en) * 2008-02-20 2010-08-24 Karsten Manufacturing Corporation Golf club heads with grooves and methods of manufacture
US8602911B2 (en) 2008-02-20 2013-12-10 Karsten Manufacturing Corporation Golf club heads with grooves and methods of manufacture
US8814720B2 (en) * 2008-02-20 2014-08-26 Karsten Manufacturing Corporation Golf club heads with grooves and methods of manufacture
US9597557B2 (en) 2008-02-20 2017-03-21 Karsten Manufacturing Corporation Golf club heads with grooves and methods of manufacture
US10035052B2 (en) 2008-02-20 2018-07-31 Karsten Manufacturing Corporation Golf club heads with grooves and methods of manufacture
US10376753B2 (en) * 2008-02-20 2019-08-13 Karsten Manufacturing Corporation Golf club heads with grooves and methods of manufacture
US10716975B2 (en) * 2008-02-20 2020-07-21 Karsten Manufacturing Corporation Golf club heads with grooves and methods of manufacture
GB2481884A (en) * 2010-07-08 2012-01-11 Karsten Mfg Corp A groove for a golf club strike face with a rough edge
US8845455B2 (en) 2011-10-27 2014-09-30 Bridgestone Sports Co., Ltd Golf club head and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US7798918B2 (en) Method of manufacturing golf club head and golf club head
US20090036228A1 (en) Method of manufacturing golf club head and golf club head
US20090082129A1 (en) Method of Manufacturing Golf Club Head and Golf Club Head
US8758162B2 (en) Golf club head
US7901297B2 (en) Golf club head
US7828671B2 (en) Golf club head
US7819756B2 (en) Golf club head
US8834291B2 (en) Golf club head
US7677990B2 (en) Golf club head
US7922601B2 (en) Golf club head
US7815521B2 (en) Golf club head
US7674188B2 (en) Golf club head
US7749099B2 (en) Golf club head
US8113965B2 (en) Golf club head
JP5592065B2 (en) Golf club head
US9937394B2 (en) Iron type golf club head construction
US8251835B2 (en) Golf club head
JP2009066312A (en) Manufacturing method of golf club head and golf club head

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRIDGESTONE SPORTS CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAN, WATARU;SATO, FUMIAKI;REEL/FRAME:020181/0275

Effective date: 20071018

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION