US20090078709A1 - Transport container for hazardous material - Google Patents

Transport container for hazardous material Download PDF

Info

Publication number
US20090078709A1
US20090078709A1 US12/324,666 US32466608A US2009078709A1 US 20090078709 A1 US20090078709 A1 US 20090078709A1 US 32466608 A US32466608 A US 32466608A US 2009078709 A1 US2009078709 A1 US 2009078709A1
Authority
US
United States
Prior art keywords
outer shell
container system
walls
soft
inner frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/324,666
Inventor
Albert Andrew Murrer, III
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quest Diagnostics Investments LLC
Original Assignee
Quest Diagnostics Investments LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quest Diagnostics Investments LLC filed Critical Quest Diagnostics Investments LLC
Priority to US12/324,666 priority Critical patent/US20090078709A1/en
Publication of US20090078709A1 publication Critical patent/US20090078709A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/34Disposal of solid waste
    • G21F9/36Disposal of solid waste by packaging; by baling

Definitions

  • the invention relates, in general, to containers. More particularly, the invention provides containers that may be used to efficiently transport material such as bio-hazardous material.
  • the insulated containers represent a significant waste in cargo space when they are empty. For example, once an organ has been delivered to its intended destination, the empty container is usually returned to its original source. During the return trip, the empty container occupies the same amount of cargo space in, for example, a cargo airplane as the full container. An alternative to occupying the valuable cargo space is to dispose of the empty container. However, this can be an expensive proposition since such containers are typically specially constructed for a particular use and can represent a significant investment.
  • the disclosed devices are directed to containers and methods of transporting material using such containers.
  • the containers provide the advantage of occupying substantially less space when they are empty than when they are full.
  • the invention provides a method for transporting hazardous material.
  • a soft-sided container is provided, the container being at least partially collapsible when unsupported.
  • Hazardous material is positioned into the container. The hazardous material supports the container from within and causes the container to assume an at least partially assembled configuration.
  • Transporting refers to moving of an object from one location to another. In one example, transporting includes the use of an aircraft.
  • Hazardous material refers to products or materials which may pose a safety or health hazard.
  • hazardous material may include medical-related material such as biohazards.
  • Hazardous material may include organs or other body parts or radioactive material. The hazardous material may be placed within another package prior to being positioned within the container.
  • Soft-sided refers to a non-rigid characteristic. “Soft-sided” may include a surface that can be, for example, bent or folded, either easily or with relatively little force.
  • a “container” refers to a receptacle capable of retaining a material.
  • the container may be configured as a rectangular box or may be of other useful configurations, such as a hexagonal box.
  • collapsible means the ability to occupy less volume. “Collapsible” may include an organized reduction in volume through folding, for example, and may also include an unorganized reduction, as may occur with an unsupported structure. “At least partially” collapsible refers to the ability to collapse at least part of the way between a fully assembled configuration and a fully collapsed configuration.
  • positioning refers to placing of material within the container. “Positioning” may include placing the material either loosely within the container or may include using inserts to prevent undesired movement of the material within the container.
  • assembled refers to a configuration in which the container is uncollapsed. In either a partially assembled or a fully assembled configuration, a container may be capable of retaining material therein.
  • the soft-sided container satisfies IATA 602 requirements for outer packaging.
  • IATA 602 refers to “Packing Instruction 602 —Infectious substances” published by the International Air Transport Association (IATA), which are more completely described below. “Outer packaging” is described within IATA 602 .
  • the soft-sided container includes vent holes. Vent holes may be provided to allow gases to be vented from within the container to the atmosphere.
  • the method may further include removing the hazardous material from the container and collapsing the container.
  • the invention provides a container system including a soft-sided outer shell and an inner frame.
  • the outer shell is at least partially collapsible when unsupported, and the inner frame has rigid walls.
  • the inner frame is adapted to support the outer shell when the inner frame is inserted inside the outer shell.
  • the inner frame is at least partially collapsible.
  • a “container system” refers to a system capable of retaining a material.
  • the system may include a container such as a rectangular box or may be of other useful configurations, such as a hexagonal box.
  • the container may be provided in combination with other structures or elements.
  • An “outer shell” refers to a portion of a container system including its external surface.
  • the outer shell may include a bottom, plurality of walls and a lid.
  • An “inner frame” is a support frame for supporting the outer shell from within.
  • the outer shell satisfies IATA 602 requirements for outer packaging when supported from within by the inner frame.
  • the outer shell includes a plurality of vertical walls integrally formed with a bottom and an open top.
  • the outer shell also includes a lid adapted to be selectively secured to the vertical walls to close the outer shell.
  • a fastener may be provided to secure the lid to the vertical walls.
  • the fastener is a zipper.
  • the bottom may be structurally reinforced.
  • the outer shell may include an outer fabric layer and foam insulation for thermally insulating an interior of the shell from an external environment.
  • the outer fabric may include polyester.
  • the inner frame may include a pair of opposing, rigid longitudinal walls and a pair of opposing, collapsible side walls.
  • Each of the side walls may link an end of one of the longitudinal walls to an end of the other of the longitudinal walls.
  • the side walls may be adapted to collapse to allow a reduction in a distance between the longitudinal walls.
  • the inner frame also includes a rigid bottom pivotably engaged to one of the pair of opposing rigid walls. The rigid bottom is adapted to selectively pivot between a first open position and a second collapsed position.
  • the inner frame may also include a fastener to secure the side walls in a collapsed position.
  • the invention provides a method for transporting hazardous material.
  • a soft-sided outer shell is provided, the outer shell being at least partially collapsible when unsupported.
  • An inner frame is inserted into the outer shell, the inner frame having rigid walls and being adapted to support the outer shell in an assembled configuration, Hazardous material is positioned into the outer shell in an assembled configuration.
  • the method may further include removing the hazardous material from the outer shell, removing the inner frame from the outer shell, collapsing the inner frame and collapsing the outer shell.
  • an empty container can be efficiently returned to its source while occupying significantly less cargo space.
  • FIG. 1 illustrates an embodiment of a container system according to the present invention
  • FIG. 2 illustrates an embodiment of an outer shell of the container system illustrated in FIG. 1 ;
  • FIG. 3 illustrates an embodiment of an inner frame of a container system according to the present invention
  • FIG. 4 illustrates the outer shell of FIG. 2 in a partially collapsed configuration
  • FIGS. 5A-5D illustrate the collapsing of an embodiment of an inner frame according to the present invention.
  • the disclosed embodiments of the present invention provide a container system for transporting material, such as biohazards, and methods of transporting such materials in a safe and efficient manner.
  • the system and methods of the present invention allow transportation of hazardous material, while reducing the amount of cargo space used by a transport container when the container is empty.
  • FIG. 1 illustrates an embodiment of a container system according to the present invention.
  • the container system 100 includes an outer shell 110 that is configured as a rectangular box, as illustrated in FIGS. 1 and 2 .
  • the dimensions of the rectangular box may be selected for the desired application.
  • the rectangular box is 21 inches long, 12 inches wide and 15 inches high.
  • configurations other than a rectangular box may also be used.
  • a hexagonal box may be used for certain applications.
  • the outer shell 110 includes a plurality of walls, including a pair of opposing longitudinal walls 111 separated by a pair of opposing side walls 112 .
  • the walls 111 , 112 form the outer structure of the container system 100 .
  • the longitudinal walls 111 and the side walls 112 are formed of a pliable material, such as a fabric or a non-rigid plastic, which allows the walls 111 , 112 to be flexible and collapsible.
  • the longitudinal walls 111 and the side walls 112 are formed of a fabric layer, an inner liner and a foam insulating layer therebetween.
  • the fabric layer, the outermost layer, is preferably made of a rugged fabric, such as 600 Denier polyester with a PVC backing.
  • the fabric layer should be of a thickness sufficient to provide protection against puncturing or tearing.
  • the polyester fabric layer is preferably at least 0.05 mm thick.
  • the inner layer is preferably formed of a material that is watertight to prevent exposing materials in the container system 100 to the external environment. In one embodiment, a heavy-duty vinyl material may be used. As with the outer fabric layer, the inner layer should be sufficiently strong to resist punctures or tearing. In one embodiment, the inner layer has a thickness of 0.64 mm.
  • the foam layer between the fabric layer and the inner layer serves at least two functions. First, it provides thermal insulation between the interior of the outer shell 110 and the external environment. This can be a critical function, for example, when the container system 100 is used for transport of human organs. The organs must be maintained at a refrigerated temperature. Typically, dry ice or other cooling elements may be used to maintain this temperature. Transport times may be long, and the dry ice may be effective for an insufficient length of time without the thermal insulation.
  • the foam layer serves to provide a cushioning effect to protect the contents of the container system 100 in the event of unexpected jarring or impacts.
  • regulations for certification of packaging of infectious substances require the package to withstand a 9-meter drop.
  • the cushioning provided by the foam layer allows satisfaction of such requirements.
  • the foam layer in the walls 111 , 112 of the outer shell 110 is 20 mm thick.
  • the outer shell 110 also includes a reinforced bottom 113 .
  • the bottom 113 may be formed of the same materials and layers as the walls 111 , 112 , but preferably includes further reinforcement.
  • the reinforcement includes increasing the thickness of the foam layer from 20 mm to 30 mm. This provides additional cushioning in the region most likely to experience impacts and vibrations.
  • the reinforcements may also include a webbing material to protect against puncturing or tearing.
  • the webbing material may also provide a surface with a greater coefficient of friction to reduce undesired movements of the container system 100 .
  • the webbing material is a PVC material of 1-mm thickness.
  • the outer shell 110 also includes a lid 114 which may be selectively opened and closed using a fastener, such as a zipper 116 .
  • the lid 114 is rectangular in shape and is sized to cover a volume formed by the walls 111 , 112 , and is preferably made of the same materials and layers as the walls 111 , 112 .
  • the zipper 116 is formed to open the lid by detaching it from three of the four walls 111 , 1112 .
  • the zipper is formed of #8 Nylon coil with a metal pull.
  • the lid 114 is provided with vent holes 120 to prevent pressure buildup within the container system 100 .
  • Pressure may build up from, for example, evaporating dry ice or changes in altitude if the container system 100 is transported aboard an airplane.
  • the vent holes 120 are preferably formed of breathable grommets to prevent exposure of the contents of the container system 100 to the external environment.
  • the outer shell 110 may be provided with handles 118 to facilitate carrying of the container system 100 . Handles may be provided on two or more sides of the outer shell 110 . Additionally, a pouch 122 may be provided on one wall 111 of the outer shell 110 in which documents relating to the contents, source and destination of the container system 100 may be stored. The pouch 122 may be secured to the wall 11111 through a hook-and-loop arrangement such as Velcro ⁇ .
  • FIG. 4 illustrates the outer shell in a partially collapsed configuration.
  • the outer shell 110 serves as the container for transporting hazardous material.
  • the partially collapsed configuration illustrated in FIG. 4 can be achieved when the container 110 contains hazardous material, and a further collapsed configuration is achieved when the container is empty.
  • the collapsible container 110 is supported from within when hazardous material is positioned inside.
  • the hazardous material includes packaging which is independently sealed or protected.
  • the hazardous material can be positioned inside, and the bag can collapse to occupy approximately the minimum amount of space required by the hazardous material, rather than the full volume required by the rectangular box illustrated in FIG. 2 , for example.
  • the container 110 not only conserves cargo volume when empty, but also while it is partially filled.
  • An embodiment of the container 110 satisfies all requirements for certification for transportation of such material, including satisfaction of drop tests.
  • the container 110 satisfies requirements for certification by meeting standards set for outer packaging in the International Airline Transportation Authority's Packing Instruction 602 (Infectious Substances) (IATA 602 ), which is hereby incorporated herein by reference and is provide at the end of this document.
  • IATA 602 International Airline Transportation Authority's Packing Instruction 602 (Infectious Substances)
  • the container system 100 when the container system 100 is required to be used for transporting materials, the outer shell 110 is structurally supported.
  • the container system 100 includes an inner frame 130 , illustrated in FIG. 3 .
  • the inner frame 130 includes a pair of opposing longitudinal walls 131 which correspond to the longitudinal walls 111 of the outer shell 110 .
  • the inner frame 130 includes a pair of side walls 132 separating the longitudinal walls 131 .
  • the side walls 132 correspond to the side walls 112 of the outer shell 110 .
  • the side walls 132 include a crease 134 vertically bisecting each wall 132 . The crease 134 allows folding of the wall 132 onto itself as described below with reference to FIGS. 5A-5D .
  • the walls 131 , 132 of the inner frame 130 are sized such that the inner frame 130 fits within the walls 111 , 112 of the outer shell 110 in the fully uncollapsed configuration of the outer shell 110 .
  • the inner frame 130 also includes a bottom 136 ( FIGS. 5A-5D ).
  • the walls 131 , 132 and the bottom 136 are each formed to retain a flat configuration.
  • the walls 131 , 132 and the bottom are formed of plastic panels covered with a vinyl fabric.
  • Other materials, such as cardboard or sheet metal, may also be used to form the panels.
  • the inner frame 130 is inserted into the outer shell 110 to provide structural support.
  • the container system 100 provides a container for safe and secure transportation of hazardous material, such as biohazards.
  • An embodiment of the container system 100 satisfies all requirements for certification for transportation of such material, including satisfaction of drop tests.
  • the empty container system 100 can be collapsed to occupy significantly less volume than a typical container.
  • the inner frame 130 can be removed from the outer shell 110 , allowing the outer shell to be collapsed.
  • the inner frame 130 can be separately collapsed, as illustrated in FIGS. 5A-5D .
  • FIG. 5A illustrates the inner frame 130 described above and shown in FIG. 3 .
  • the inner frame 130 includes a pair of longitudinal walls 131 separated by a pair of side walls 132 .
  • Each side wall 132 is provided with a vertical crease 134 bisecting the side wall 132 .
  • a bottom 136 is provided in the form of a flap extending from the bottom edge of one of the two longitudinal walls. The bottom 136 can pivot about one edge, as illustrated by the dotted arc. In the fully expanded configuration, the bottom is in a position perpendicular to the walls 131 , 132 .
  • each side wall 132 can be folded along the vertical crease 134 , with the crease 134 being pressed inward, as shown in FIG. 5C .
  • the bottom 136 is securely held in place in its vertical, folded position.
  • fasteners such as hook-and-loop arrangements 138 can be used to secure the opposing longitudinal walls 131 to each other in the collapsed configuration.
  • the inner frame 130 can be collapsed into a thin structure occupying very little of the valuable cargo space.
  • the invention provides for efficient, safe and secure transportation of materials and return of containers.
  • the absorbing material for example cotton wool, must be sufficient to absorb the entire contents of all primary receptacles.
  • Packagings of the type known as a “dry shipper” when used to ship infectious substances must meet the testing requirements of Subsection 6.5 and the marking requirements of 6.0.6.
  • Packages must be at least 100 mm (4 in) in the smallest overall external dimension.
  • the primary receptacle or the secondary packaging used for infectious substances must be capable of withstanding, without leakage, an internal pressure which produces a pressure differential of not less than 95 kPa (0.95 bar, 13.8 lb/in 2 ) in the range of ⁇ 40° C. to +55° C. ( ⁇ 40° F. to 130° F.).
  • Primary receptacles may only be of glass metal or plastic. Positive means of ensuring a leak-proof seal must be provided, such as heat seal, skirted stopper or metal crimp seal. If screw caps are used, these must be reinforced with adhesive tape.
  • Substances shipped refrigerated or frozen (wet ice, prefrozen packs, Carbon dioxide, solid [dry ice]): Ice, Carbon dioxide, solid (dry ice) or other refrigerant must be placed outside the secondary packaging(s) or alternatively in an overpack with one or more complete packages marked in accordance with 6.0.6. Interior support must be provided to secure the secondary packaging(s) in the original position after the ice or Carbon dioxide, sold (dry ice) has been dissipated. If ice is used, the packaging must be leak-proof. If Carbon dioxide, sold (dry ice) is used, the outer packaging must permit the release of carbon-dioxide gas. The primary receptacle and the secondary packaging must maintain their containment integrity at the temperature of the refrigerant used as well as at the temperatures and pressure(s) of air transport to which the receptacle could be subjected if refrigeration were to be lost.
  • Plastic primary receptacles capable of withstanding very low temperatures must be used. Secondary packaging must also withstand very low temperatures and in most cases will need to be fitted over individual primary receptacles. Requirements for shipment of liquid nitrogen must also be observed.
  • the primary receptacle must maintain its containment integrity at the temperature of the refrigerant used as well as at the temperatures and pressure(s) of air transport to which the receptacle could be subjected if refrigeration were to be lost. Where multiple primary receptacles are contained in a single secondary packaging they must be separated and supported to ensure that contact between them Is prevented.
  • Lyophilized substances Primary receptacles must be either flame-sealed glass ampoules or rubber-stoppered glass vials with metal seals.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Packages (AREA)
  • Packging For Living Organisms, Food Or Medicinal Products That Are Sensitive To Environmental Conditiond (AREA)

Abstract

A container system and a method for transporting hazardous materials is disclosed. One embodiment of the container system includes a soft-sided outer shell and an inner frame. The outer shell is at least partially collapsible when unsupported. The outer shell may include a plurality of vertical walls integrally formed with a bottom and an open top. A lid may be adapted to be selectively secured to the vertical walls to close the outer shell. A fastener, such as a zipper, may be provided to secure the lid to the vertical walls. The inner frame has rigid walls and is adapted to support the outer shell when the inner frame is inserted inside the outer shell. The inner frame is at least partially collapsible. One embodiment of the method includes providing a soft-sided container that is at least partially collapsible when unsupported. Hazardous material is positioned into the container. The hazardous material supports the container from within and causes the container to assume an at least partially assembled configuration. In another embodiment of the method, a soft-sided outer shell that is at least partially collapsible when unsupported is provided. An inner frame is inserted into the outer shell. Hazardous material for transport, for example, is then positioned into the outer shell in an assembled configuration.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 10/629,322, filed Jul. 28, 2003, hereby incorporated by reference.
  • FIELD OF THE INVENTION
  • The invention relates, in general, to containers. More particularly, the invention provides containers that may be used to efficiently transport material such as bio-hazardous material.
  • BACKGROUND
  • The following discussion of the background of the invention is merely provided to aid the reader in understanding the invention and is not admitted to describe or constitute prior art to the present invention.
  • Transportation of material often requires specialized packaging to ensure security of the material being transported as well as safety for personnel handling the material. For example, the transport of biohazardous material, such as organs for transplant patients, requires that the material be maintained in an environment suitable to prevent contamination of the material, as well as to ensure safety of handlers of the material. In this regard, materials such as organs are typically placed in hardened containers that may be thermally insulated. The thermal insulation ensures that the material, which is often maintained at refrigeration-level temperatures, are suitable for their intended use upon delivery. The hardening of the containers ensures that the materials are not released to the external environment, thereby posing a threat to personnel in the vicinity. In this regard the containers must be sufficiently insulated to satisfy standards relating to ability to withstand impacts from falls, for example.
  • The insulated containers, however, represent a significant waste in cargo space when they are empty. For example, once an organ has been delivered to its intended destination, the empty container is usually returned to its original source. During the return trip, the empty container occupies the same amount of cargo space in, for example, a cargo airplane as the full container. An alternative to occupying the valuable cargo space is to dispose of the empty container. However, this can be an expensive proposition since such containers are typically specially constructed for a particular use and can represent a significant investment.
  • SUMMARY OF THE INVENTION
  • The disclosed devices are directed to containers and methods of transporting material using such containers. The containers provide the advantage of occupying substantially less space when they are empty than when they are full.
  • In one aspect, the invention provides a method for transporting hazardous material. According to the method, a soft-sided container is provided, the container being at least partially collapsible when unsupported. Hazardous material is positioned into the container. The hazardous material supports the container from within and causes the container to assume an at least partially assembled configuration.
  • “Transporting” refers to moving of an object from one location to another. In one example, transporting includes the use of an aircraft.
  • “Hazardous material” refers to products or materials which may pose a safety or health hazard. For example, hazardous material may include medical-related material such as biohazards. Hazardous material may include organs or other body parts or radioactive material. The hazardous material may be placed within another package prior to being positioned within the container.
  • As used herein, “soft-sided” refers to a non-rigid characteristic. “Soft-sided” may include a surface that can be, for example, bent or folded, either easily or with relatively little force.
  • As used herein, a “container” refers to a receptacle capable of retaining a material. The container may be configured as a rectangular box or may be of other useful configurations, such as a hexagonal box.
  • As used herein, “collapsible” means the ability to occupy less volume. “Collapsible” may include an organized reduction in volume through folding, for example, and may also include an unorganized reduction, as may occur with an unsupported structure. “At least partially” collapsible refers to the ability to collapse at least part of the way between a fully assembled configuration and a fully collapsed configuration.
  • As used herein, “positioning” refers to placing of material within the container. “Positioning” may include placing the material either loosely within the container or may include using inserts to prevent undesired movement of the material within the container.
  • As used herein, “assembled” refers to a configuration in which the container is uncollapsed. In either a partially assembled or a fully assembled configuration, a container may be capable of retaining material therein.
  • In a preferred embodiment, the soft-sided container satisfies IATA 602 requirements for outer packaging. “IATA 602”, as used herein, refers to “Packing Instruction 602—Infectious substances” published by the International Air Transport Association (IATA), which are more completely described below. “Outer packaging” is described within IATA 602.
  • In a preferred embodiment, the soft-sided container includes vent holes. Vent holes may be provided to allow gases to be vented from within the container to the atmosphere.
  • The method may further include removing the hazardous material from the container and collapsing the container.
  • In another aspect, the invention provides a container system including a soft-sided outer shell and an inner frame. The outer shell is at least partially collapsible when unsupported, and the inner frame has rigid walls. The inner frame is adapted to support the outer shell when the inner frame is inserted inside the outer shell. The inner frame is at least partially collapsible.
  • As used herein, a “container system” refers to a system capable of retaining a material. The system may include a container such as a rectangular box or may be of other useful configurations, such as a hexagonal box. The container may be provided in combination with other structures or elements.
  • An “outer shell” refers to a portion of a container system including its external surface. The outer shell may include a bottom, plurality of walls and a lid. An “inner frame” is a support frame for supporting the outer shell from within.
  • In a preferred embodiment, the outer shell satisfies IATA 602 requirements for outer packaging when supported from within by the inner frame.
  • In a preferred embodiment, the outer shell includes a plurality of vertical walls integrally formed with a bottom and an open top. The outer shell also includes a lid adapted to be selectively secured to the vertical walls to close the outer shell. A fastener may be provided to secure the lid to the vertical walls. In a most preferred embodiment, the fastener is a zipper. The bottom may be structurally reinforced.
  • The outer shell may include an outer fabric layer and foam insulation for thermally insulating an interior of the shell from an external environment. The outer fabric may include polyester.
  • In a preferred embodiment, the inner frame may include a pair of opposing, rigid longitudinal walls and a pair of opposing, collapsible side walls. Each of the side walls may link an end of one of the longitudinal walls to an end of the other of the longitudinal walls. The side walls may be adapted to collapse to allow a reduction in a distance between the longitudinal walls. In a most preferred embodiment, the inner frame also includes a rigid bottom pivotably engaged to one of the pair of opposing rigid walls. The rigid bottom is adapted to selectively pivot between a first open position and a second collapsed position. The inner frame may also include a fastener to secure the side walls in a collapsed position.
  • In another aspect, the invention provides a method for transporting hazardous material. According to the method, a soft-sided outer shell is provided, the outer shell being at least partially collapsible when unsupported. An inner frame is inserted into the outer shell, the inner frame having rigid walls and being adapted to support the outer shell in an assembled configuration, Hazardous material is positioned into the outer shell in an assembled configuration.
  • The method may further include removing the hazardous material from the outer shell, removing the inner frame from the outer shell, collapsing the inner frame and collapsing the outer shell. In this regard, an empty container can be efficiently returned to its source while occupying significantly less cargo space.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the following, the invention will be explained in further detail with reference to the drawings, in which:
  • FIG. 1 illustrates an embodiment of a container system according to the present invention;
  • FIG. 2 illustrates an embodiment of an outer shell of the container system illustrated in FIG. 1;
  • FIG. 3 illustrates an embodiment of an inner frame of a container system according to the present invention;
  • FIG. 4 illustrates the outer shell of FIG. 2 in a partially collapsed configuration; and
  • FIGS. 5A-5D illustrate the collapsing of an embodiment of an inner frame according to the present invention.
  • DESCRIPTION OF CERTAIN EMBODIMENTS OF THE INVENTION
  • The disclosed embodiments of the present invention provide a container system for transporting material, such as biohazards, and methods of transporting such materials in a safe and efficient manner. In particular, the system and methods of the present invention allow transportation of hazardous material, while reducing the amount of cargo space used by a transport container when the container is empty.
  • FIG. 1 illustrates an embodiment of a container system according to the present invention. The container system 100 includes an outer shell 110 that is configured as a rectangular box, as illustrated in FIGS. 1 and 2. The dimensions of the rectangular box may be selected for the desired application. In the preferred embodiment, the rectangular box is 21 inches long, 12 inches wide and 15 inches high. Of course, configurations other than a rectangular box may also be used. For example, a hexagonal box may be used for certain applications.
  • The outer shell 110 includes a plurality of walls, including a pair of opposing longitudinal walls 111 separated by a pair of opposing side walls 112. The walls 111, 112 form the outer structure of the container system 100. The longitudinal walls 111 and the side walls 112 are formed of a pliable material, such as a fabric or a non-rigid plastic, which allows the walls 111, 112 to be flexible and collapsible.
  • In a preferred embodiment, the longitudinal walls 111 and the side walls 112 are formed of a fabric layer, an inner liner and a foam insulating layer therebetween. The fabric layer, the outermost layer, is preferably made of a rugged fabric, such as 600 Denier polyester with a PVC backing. The fabric layer should be of a thickness sufficient to provide protection against puncturing or tearing. In this regard, the polyester fabric layer is preferably at least 0.05 mm thick.
  • The inner layer is preferably formed of a material that is watertight to prevent exposing materials in the container system 100 to the external environment. In one embodiment, a heavy-duty vinyl material may be used. As with the outer fabric layer, the inner layer should be sufficiently strong to resist punctures or tearing. In one embodiment, the inner layer has a thickness of 0.64 mm.
  • The foam layer between the fabric layer and the inner layer serves at least two functions. First, it provides thermal insulation between the interior of the outer shell 110 and the external environment. This can be a critical function, for example, when the container system 100 is used for transport of human organs. The organs must be maintained at a refrigerated temperature. Typically, dry ice or other cooling elements may be used to maintain this temperature. Transport times may be long, and the dry ice may be effective for an insufficient length of time without the thermal insulation.
  • Second, the foam layer serves to provide a cushioning effect to protect the contents of the container system 100 in the event of unexpected jarring or impacts. For example, regulations for certification of packaging of infectious substances require the package to withstand a 9-meter drop. The cushioning provided by the foam layer allows satisfaction of such requirements. In a preferred embodiment, the foam layer in the walls 111, 112 of the outer shell 110 is 20 mm thick.
  • The outer shell 110 also includes a reinforced bottom 113. The bottom 113 may be formed of the same materials and layers as the walls 111, 112, but preferably includes further reinforcement. In the preferred embodiment, the reinforcement includes increasing the thickness of the foam layer from 20 mm to 30 mm. This provides additional cushioning in the region most likely to experience impacts and vibrations. The reinforcements may also include a webbing material to protect against puncturing or tearing. The webbing material may also provide a surface with a greater coefficient of friction to reduce undesired movements of the container system 100. In the preferred embodiment, the webbing material is a PVC material of 1-mm thickness.
  • The outer shell 110 also includes a lid 114 which may be selectively opened and closed using a fastener, such as a zipper 116. The lid 114 is rectangular in shape and is sized to cover a volume formed by the walls 111, 112, and is preferably made of the same materials and layers as the walls 111, 112. The zipper 116 is formed to open the lid by detaching it from three of the four walls 111, 1112. In a preferred embodiment, the zipper is formed of #8 Nylon coil with a metal pull.
  • The lid 114 is provided with vent holes 120 to prevent pressure buildup within the container system 100. Pressure may build up from, for example, evaporating dry ice or changes in altitude if the container system 100 is transported aboard an airplane. The vent holes 120 are preferably formed of breathable grommets to prevent exposure of the contents of the container system 100 to the external environment.
  • The outer shell 110 may be provided with handles 118 to facilitate carrying of the container system 100. Handles may be provided on two or more sides of the outer shell 110. Additionally, a pouch 122 may be provided on one wall 111 of the outer shell 110 in which documents relating to the contents, source and destination of the container system 100 may be stored. The pouch 122 may be secured to the wall 11111 through a hook-and-loop arrangement such as Velcroθ.
  • When unsupported, the outer shell 110 may be collapsed to occupy significantly less volume, or cargo space, than in its uncollapsed configuration. FIG. 4 illustrates the outer shell in a partially collapsed configuration. In one embodiment, the outer shell 110 serves as the container for transporting hazardous material. Thus, the partially collapsed configuration illustrated in FIG. 4 can be achieved when the container 110 contains hazardous material, and a further collapsed configuration is achieved when the container is empty. In this embodiment, the collapsible container 110 is supported from within when hazardous material is positioned inside. Typically, the hazardous material includes packaging which is independently sealed or protected. Thus, the hazardous material can be positioned inside, and the bag can collapse to occupy approximately the minimum amount of space required by the hazardous material, rather than the full volume required by the rectangular box illustrated in FIG. 2, for example. In this regard, the container 110 not only conserves cargo volume when empty, but also while it is partially filled.
  • An embodiment of the container 110 satisfies all requirements for certification for transportation of such material, including satisfaction of drop tests. For example, the container 110 satisfies requirements for certification by meeting standards set for outer packaging in the International Airline Transportation Authority's Packing Instruction 602 (Infectious Substances) (IATA 602), which is hereby incorporated herein by reference and is provide at the end of this document.
  • During testing of one embodiment of the container 110, various U.S. Department of Transportation tests were conducted. The tests are specified in 49 C.F.R. § 178. The tests involved dropping, puncturing, shocking, vibrating and pressurizing the container. The following results were achieved for each of these tests:
  • DOT Test Test Level Test Result
    −18° C./Drop 9 m Pass
    Dry Ice Drop 9 m Pass
    Puncture 1 m Pass
    Thermal Shock −40° C. to +55° C. Pass
    Vibration 4.3 Hz Pass
    Pressure 28 in Hg Pass
  • In another embodiment, when the container system 100 is required to be used for transporting materials, the outer shell 110 is structurally supported. In this regard, the container system 100 includes an inner frame 130, illustrated in FIG. 3. The inner frame 130 includes a pair of opposing longitudinal walls 131 which correspond to the longitudinal walls 111 of the outer shell 110. Additionally, the inner frame 130 includes a pair of side walls 132 separating the longitudinal walls 131. The side walls 132 correspond to the side walls 112 of the outer shell 110. In one embodiment, the side walls 132 include a crease 134 vertically bisecting each wall 132. The crease 134 allows folding of the wall 132 onto itself as described below with reference to FIGS. 5A-5D.
  • Referring again to FIG. 3, the walls 131, 132 of the inner frame 130 are sized such that the inner frame 130 fits within the walls 111, 112 of the outer shell 110 in the fully uncollapsed configuration of the outer shell 110. In a preferred embodiment, the inner frame 130 also includes a bottom 136 (FIGS. 5A-5D).
  • The walls 131, 132 and the bottom 136 are each formed to retain a flat configuration. In one embodiment, the walls 131, 132 and the bottom are formed of plastic panels covered with a vinyl fabric. Other materials, such as cardboard or sheet metal, may also be used to form the panels.
  • For transporting of materials, the inner frame 130 is inserted into the outer shell 110 to provide structural support. With the inner frame 130 supporting the outer shell 110, the container system 100 provides a container for safe and secure transportation of hazardous material, such as biohazards. An embodiment of the container system 100 satisfies all requirements for certification for transportation of such material, including satisfaction of drop tests.
  • Once the materials have been delivered to their intended destination, the empty container system 100 can be collapsed to occupy significantly less volume than a typical container. The inner frame 130 can be removed from the outer shell 110, allowing the outer shell to be collapsed. The inner frame 130 can be separately collapsed, as illustrated in FIGS. 5A-5D.
  • FIG. 5A illustrates the inner frame 130 described above and shown in FIG. 3. The inner frame 130 includes a pair of longitudinal walls 131 separated by a pair of side walls 132. Each side wall 132 is provided with a vertical crease 134 bisecting the side wall 132. A bottom 136 is provided in the form of a flap extending from the bottom edge of one of the two longitudinal walls. The bottom 136 can pivot about one edge, as illustrated by the dotted arc. In the fully expanded configuration, the bottom is in a position perpendicular to the walls 131, 132.
  • In order to collapse the inner frame 130, the bottom is pivoted up to a position parallel and adjacent to one of the longitudinal walls 131, as illustrated in FIG. 5B. Now, each side wall 132 can be folded along the vertical crease 134, with the crease 134 being pressed inward, as shown in FIG. 5C. Once the side walls 132 are folded, the bottom 136 is securely held in place in its vertical, folded position. With the side walls 132 completely folded, as shown in FIG. 5D, fasteners such as hook-and-loop arrangements 138 can be used to secure the opposing longitudinal walls 131 to each other in the collapsed configuration. Thus, the inner frame 130 can be collapsed into a thin structure occupying very little of the valuable cargo space.
  • Thus, the invention provides for efficient, safe and secure transportation of materials and return of containers.
  • While particular embodiments of the present invention have been disclosed, it is to be understood that various different modifications and combinations are possible and are contemplated within the true spirit and scope of the appended claims. There is no intention, therefore, of limitations to the exact abstract or disclosure herein presented.
  • IATA 602 General Requirements
  • Shippers of infectious substances must comply with these Regulations and must ensure that shipments are prepared in such a manner that they arrive at their destination in good condition and that they present no hazard to persons or animals during shipment. The packaging must include:
  • (a) inner packagings comprising:
      • a watertight primary receptacle(s)
      • a watertight secondary packaging,
      • other than for large body parts and whole organs which require special packaging, an absorbent material which must be placed between the primary receptacle(s) and the secondary packaging. Absorbent material is not required for solid substances.
  • Multiple primary receptacles placed in a single secondary packaging must be wrapped individually or for infectious substances transported in liquid nitrogen, separated and supported to ensure that contact between them is prevented.
  • The absorbing material, for example cotton wool, must be sufficient to absorb the entire contents of all primary receptacles.
  • (b) an outer packaging of sufficient strength meeting the design type tests found in Subsection 6.5 and bearing the Specification Markings as required by 6.0.6 for shipments of infectious substances other than those containing large body parts and whole organs which require special packaging. Also infectious substances shipped on liquid nitrogen in packagings that meet the requirements of Packing Instruction 202 are excluded from the testing requirements of Subsection 6.5 and the marking requirements of 6.0.6.
  • Note: Packagings of the type known as a “dry shipper” (see Appendix A) when used to ship infectious substances must meet the testing requirements of Subsection 6.5 and the marking requirements of 6.0.6.
  • Packages must be at least 100 mm (4 in) in the smallest overall external dimension.
  • For all packages containing infectious substances other than those containing large body parts or whole organs which require special packaging, an itemized list of contents must be enclosed between the secondary packaging and the outer packaging.
  • The primary receptacle or the secondary packaging used for infectious substances must be capable of withstanding, without leakage, an internal pressure which produces a pressure differential of not less than 95 kPa (0.95 bar, 13.8 lb/in2) in the range of −40° C. to +55° C. (−40° F. to 130° F.).
  • All packages containing infectious substances must be marked durably and legibly on the outside of the package with the NAME and TELEPHONE NUMBER OF A PERSON RESPONSIBLE FOR THE SHIPMENT.
  • Shipments of Infectious Substances of Division 6.2 require the shipper to make advance arrangements with the consignee and the operator to ensure that the shipment can be transported and delivered without unnecessary delay. The following statement required by 8.1.6.11.3 must be included in the Additional Handling Information area of the Shipper's Declaration:
  • “Prior arrangements as required by the IATA Dangerous Goods Regulations 1.3.3.1 have been made.”
  • Specific Requirements
  • Although in exceptional cases, for example, the shipment of large body parts and whole organs, may require special packaging, the great majority of infectious substances can and must be packed according the following requirements:
  • Substances shipped at ambient or higher temperatures: Primary receptacles may only be of glass metal or plastic. Positive means of ensuring a leak-proof seal must be provided, such as heat seal, skirted stopper or metal crimp seal. If screw caps are used, these must be reinforced with adhesive tape.
  • Substances shipped refrigerated or frozen (wet ice, prefrozen packs, Carbon dioxide, solid [dry ice]): Ice, Carbon dioxide, solid (dry ice) or other refrigerant must be placed outside the secondary packaging(s) or alternatively in an overpack with one or more complete packages marked in accordance with 6.0.6. Interior support must be provided to secure the secondary packaging(s) in the original position after the ice or Carbon dioxide, sold (dry ice) has been dissipated. If ice is used, the packaging must be leak-proof. If Carbon dioxide, sold (dry ice) is used, the outer packaging must permit the release of carbon-dioxide gas. The primary receptacle and the secondary packaging must maintain their containment integrity at the temperature of the refrigerant used as well as at the temperatures and pressure(s) of air transport to which the receptacle could be subjected if refrigeration were to be lost.
  • Substances shipped in liquid nitrogen: Plastic primary receptacles capable of withstanding very low temperatures must be used. Secondary packaging must also withstand very low temperatures and in most cases will need to be fitted over individual primary receptacles. Requirements for shipment of liquid nitrogen must also be observed. The primary receptacle must maintain its containment integrity at the temperature of the refrigerant used as well as at the temperatures and pressure(s) of air transport to which the receptacle could be subjected if refrigeration were to be lost. Where multiple primary receptacles are contained in a single secondary packaging they must be separated and supported to ensure that contact between them Is prevented.
  • Lyophilized substances: Primary receptacles must be either flame-sealed glass ampoules or rubber-stoppered glass vials with metal seals.

Claims (29)

1. A method of transporting biohazardous material, comprising:
providing a container system comprising:
a soft-sided outer shell, said outer shell comprising a plurality of vertical walls and bottom integrally formed and having an inner layer formed of watertight material, wherein
said vertical walls and bottom forming an open top which is covered by a lid adapted to be selectively secured to said vertical walls, and
said outer shell is at least partially collapsible by an unorganized reduction in volume when unsupported such that hazardous material can be positioned inside and the outer shell can collapse to occupy approximately the minimum amount of space required by the hazardous material, and
positioning said biohazardous material into said container system.
2. The method of claim 1, wherein said container system further comprises:
a foldable inner frame adapted to support said outer shell when said inner frame is inserted inside said outer shell, wherein
said inner frame has a pair of opposing, rigid longitudinal walls, a pair of opposing, foldable side walls having rigid walls, and a rigid bottom,
each of said side walls links an end of one of said longitudinal walls to an end of the other of said longitudinal walls, and
said rigid bottom pivotably engaged to one of said pair of longitudinal walls,
said rigid bottom adapted to selectively pivot between a first open position and a second closed position, and
wherein said inner frame is positioned within said soft-sided outer shell.
3. The method of claim 2, wherein said inner frame side walls are adapted to fold inwardly by folding along a vertical crease in said side walls to allow a reduction in a distance between said longitudinal walls.
4. The method of claim 1, wherein said biohazardous material comprises an organ.
5. The method of claim 1, wherein said container system satisfies IATA 602 requirements for an outer packaging.
6. The method of claim 1, wherein said soft-sided outer shell comprises vent holes.
7. The method of claim 1, further comprising removing said biohazardous material from said container system and at least partially collapsing said container system.
8. The method of claim 2, further comprising removing said biohazardous material from said container system and at least partially collapsing said container system.
9. The method of claim 8, wherein said container system is at least partially collapsed by removing said inner frame from within said soft-sided outer shell.
10. The method of claim 1, wherein said container system is further at least partially collapsed by an unorganized reduction in the volume of said soft-sided outer shell.
11. The method of claim 1, further comprising a fastener to secure said soft-sided outer shell lid to said vertical walls.
12. The method of claim 1, wherein said soft-sided outer shell bottom is structurally reinforced.
13. The method of claim 1, wherein said soft-sided outer shell includes an outer fabric layer and foam insulation for thermally insulating an interior of said container system from an external environment.
14. The method of claim 13, wherein said outer fabric layer includes polyester.
15. A container system for transporting biohazardous material, comprising:
a soft-sided outer shell, said outer shell comprising a plurality of vertical walls and bottom integrally formed and having an inner layer formed of watertight material, wherein
said vertical walls and bottom forming an open top which is covered by a lid adapted to be selectively secured to said vertical walls, and
said outer shell is at least partially collapsible by an unorganized reduction in volume; and
a foldable inner frame adapted to support said outer shell when said inner frame is inserted inside said outer shell, wherein
said inner frame has a pair of opposing, rigid longitudinal walls, a pair of opposing, foldable side walls having rigid walls, and a rigid bottom, each of said side walls links an end of one of said longitudinal walls to an end of the other of said longitudinal walls, and
said rigid bottom pivotably engaged to one of said pair of longitudinal walls, said rigid bottom adapted to selectively pivot between a first open position and a second folded position.
16. The container system of claim 15, wherein said inner frame side walls are adapted to fold inwardly by folding along a vertical crease in said side walls to allow a reduction in a distance between said longitudinal walls.
17. The container system of claim 15, wherein said container system satisfies IATA 602 requirements for an outer packaging.
18. The container system of claim 15, wherein said soft-sided outer shell comprises vent holes.
19. The container system of claim 15, further comprising a fastener to secure said soft-sided outer shell lid to said vertical walls.
20. The container system of claim 15, wherein said soft-sided outer shell bottom is structurally reinforced.
21. The container system of claim 15, wherein said soft-sided outer shell includes an outer fabric layer and foam insulation for thermally insulating an interior of said container system from an external environment.
22. The container system of claim 21, wherein said outer fabric layer includes polyester.
23. A container system for transporting biohazardous material, comprising:
a soft-sided outer shell, said outer shell comprising a plurality of vertical walls and bottom integrally formed and having an inner layer formed of watertight material, wherein
said vertical walls and bottom forming an open top which is covered by a lid adapted to be selectively secured to said vertical walls, and
a foldable inner frame adapted to support said outer shell when said inner frame is inserted inside said outer shell, wherein
said inner frame has a pair of opposing, rigid longitudinal walls, a pair of opposing, foldable side walls having rigid walls, and a rigid bottom,
each of said side walls links an end of one of said longitudinal walls to an end of the other of said longitudinal walls
each of said side walls are adapted to fold inwardly by folding along a vertical crease in said side walls to allow a reduction in a distance between said longitudinal walls, and
said rigid bottom pivotably engaged to one of said pair of longitudinal walls, said rigid bottom adapted to selectively pivot between a first open position and a second folded position.
24. The container system of claim 23, wherein said container system satisfies IATA 602 requirements for an outer packaging.
25. The container system of claim 23, wherein said soft-sided outer shell comprises vent holes.
26. The container system of claim 23, further comprising a fastener to secure said soft-sided outer shell lid to said vertical walls.
27. The container system of claim 23, wherein said soft-sided outer shell bottom is structurally reinforced.
28. The container system of claim 23, wherein said soft-sided outer shell includes an outer fabric layer and foam insulation for thermally insulating an interior of said container system from an external environment.
29. The container system of claim 28, wherein said outer fabric layer includes polyester.
US12/324,666 2003-07-28 2008-11-26 Transport container for hazardous material Abandoned US20090078709A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/324,666 US20090078709A1 (en) 2003-07-28 2008-11-26 Transport container for hazardous material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/629,322 US7775388B2 (en) 2003-07-28 2003-07-28 Transport container for hazardous material
US12/324,666 US20090078709A1 (en) 2003-07-28 2008-11-26 Transport container for hazardous material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/629,322 Continuation US7775388B2 (en) 2003-07-28 2003-07-28 Transport container for hazardous material

Publications (1)

Publication Number Publication Date
US20090078709A1 true US20090078709A1 (en) 2009-03-26

Family

ID=34103596

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/629,322 Expired - Fee Related US7775388B2 (en) 2003-07-28 2003-07-28 Transport container for hazardous material
US12/324,666 Abandoned US20090078709A1 (en) 2003-07-28 2008-11-26 Transport container for hazardous material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/629,322 Expired - Fee Related US7775388B2 (en) 2003-07-28 2003-07-28 Transport container for hazardous material

Country Status (2)

Country Link
US (2) US7775388B2 (en)
WO (1) WO2005054061A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326985A1 (en) * 2009-06-25 2010-12-30 Chien-Jen Lin Structure of box
US20120031142A1 (en) * 2010-08-05 2012-02-09 Hyper Ice, Inc. Ice Bag with Air Release Valve for Therapeutic Treatment
US20130056373A1 (en) * 2011-09-07 2013-03-07 Joseph Benson Collapsible Laundry Container
US20130112686A1 (en) * 2010-07-19 2013-05-09 Soon Buem Kwon Foldable utility box
US8777001B1 (en) * 2009-07-07 2014-07-15 William Duffy Bennett Oil containment bag / container for the transporting and storage of electrical transformers of all types (I.E. all pole, pad mount and underground models etc.)
US20220031540A1 (en) * 2020-08-03 2022-02-03 includesign LLC Device to facilitate the transport or storage of items by a person seated in a wheelchair or using other mobile devices
US11242175B2 (en) 2019-08-21 2022-02-08 Otter Products, Llc Configurable container
US11267637B2 (en) * 2019-08-21 2022-03-08 Otter Products, Llc Configurable container
US11267621B2 (en) 2018-09-27 2022-03-08 Otter Products, Llc Storage container and floating latch
US20220170683A1 (en) * 2020-12-02 2022-06-02 Dylan M. Jacob Portable beverage coolers and methods of using the same
US11377290B2 (en) 2019-07-15 2022-07-05 Otter Products, Llc Portable insulated container
USD996059S1 (en) 2022-02-24 2023-08-22 Otter Products, Llc Container

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7007747B2 (en) * 2003-10-20 2006-03-07 Mark Charles Kitchens Structural support apparatus with active or passive heat transfer system
US20060214120A1 (en) * 2004-11-10 2006-09-28 Huang Roger C Apparatus for shipping radioactive material
US8746478B2 (en) 2005-04-29 2014-06-10 Jay V. Claeys Portable liquid storage tank
US20070000932A1 (en) * 2005-06-30 2007-01-04 Cron Frank F Apparatus for enhancing temperature stabilization of a cooler
US7735677B2 (en) * 2005-09-09 2010-06-15 Harris Rick L Drywall tools storage and transportation container
US9061815B2 (en) * 2010-09-22 2015-06-23 Signode Industrial Group Llc Container assembly and methods for making and using same
US8875876B2 (en) * 2011-03-04 2014-11-04 Comfort Revolution, LLC Stackable packages for bedding products
US8875875B2 (en) * 2011-03-04 2014-11-04 Comfort Revolution, LLC Sealable and stackable packages for bedding products
US10258032B2 (en) 2012-01-11 2019-04-16 Lifeline Scientific, Inc. Transportation bag for use with an organ transporter
US10143282B2 (en) 2014-02-07 2018-12-04 Yeti Coolers, Llc Insulating device
US9139352B2 (en) 2014-02-07 2015-09-22 Yeti Coolers, Llc Insulating container
US10029842B2 (en) 2014-02-07 2018-07-24 Yeti Coolers, Llc Insulating device
US10384855B2 (en) 2014-02-07 2019-08-20 Yeti Coolers, Llc Insulating device and method for forming insulating device
US10781028B2 (en) 2014-02-07 2020-09-22 Yeti Coolers, Llc Insulating device backpack
USD934636S1 (en) 2014-09-08 2021-11-02 Yeti Coolers, Llc Insulating device
USD948954S1 (en) 2014-09-08 2022-04-19 Yeti Coolers, Llc Insulating device
USD787187S1 (en) 2014-09-23 2017-05-23 Yeti Coolers, Llc Insulating device
GB2538066B (en) 2015-04-30 2017-06-21 Keymed (Medical & Ind Equipment) Ltd Transportation container for a medical device
WO2017079315A1 (en) 2015-11-02 2017-05-11 Yeti Coolers, Llc Closure systems and insulating devices having closure systems
USD799277S1 (en) 2016-02-05 2017-10-10 Yeti Coolers, Llc Insulating device
US12012274B2 (en) 2016-02-05 2024-06-18 Yeti Coolers, Llc Insulating device backpack
CN117243455A (en) 2016-02-05 2023-12-19 野醍冷却器有限责任公司 Heat insulation device
USD799276S1 (en) 2016-02-05 2017-10-10 Yeti Coolers, Llc Insulating device
USD809869S1 (en) 2016-02-05 2018-02-13 Yeti Coolers, Llc Insulating device
USD799905S1 (en) 2016-02-05 2017-10-17 Yeti Coolers, Llc Insulating device
USD802373S1 (en) 2016-02-05 2017-11-14 Yeti Coolers, Llc Insulating device
USD798670S1 (en) 2016-02-05 2017-10-03 Yeti Coolers, Llc Insulating device
USD801123S1 (en) 2016-02-05 2017-10-31 Yeti Coolers, Llc Insulating device
USD821825S1 (en) 2016-06-01 2018-07-03 Yeti Coolers, Llc Cooler
USD824731S1 (en) 2016-06-01 2018-08-07 Yeti Coolers, Llc Cooler
USD808730S1 (en) 2016-06-01 2018-01-30 Yeti Coolers, Llc Cooler
USD805851S1 (en) 2016-06-01 2017-12-26 Yeti Coolers, Llc Cooler
USD830134S1 (en) 2016-06-01 2018-10-09 Yeti Coolers, Llc Cooler
USD830133S1 (en) 2016-06-01 2018-10-09 Yeti Coolers, Llc Cooler
USD814879S1 (en) 2016-10-14 2018-04-10 Yeti Coolers, Llc Insulating device
USD817107S1 (en) 2016-10-14 2018-05-08 Yeti Coolers, Llc Insulating device
USD817106S1 (en) 2016-10-14 2018-05-08 Yeti Coolers, Llc Insulating device
USD815496S1 (en) 2016-10-14 2018-04-17 Yeti Coolers, Llc Insulating device
USD829244S1 (en) 2017-04-25 2018-09-25 Yeti Coolers, Llc Insulating device
EP3634882A4 (en) 2017-06-09 2021-03-03 Yeti Coolers, LLC Insulating device
USD848223S1 (en) 2017-10-30 2019-05-14 Yeti Coolers, Llc Backpack cooler
USD848220S1 (en) 2017-10-30 2019-05-14 Yeti Coolers, Llc Backpack cooler
USD848219S1 (en) 2017-10-30 2019-05-14 Yeti Coolers, Llc Backpack cooler
USD848222S1 (en) 2017-10-30 2019-05-14 Yeti Coolers, Llc Backpack cooler
USD848798S1 (en) 2017-10-30 2019-05-21 Yeti Coolers, Llc Backpack cooler
USD848221S1 (en) 2017-10-30 2019-05-14 Yeti Coolers, Llc Backpack cooler
USD849486S1 (en) 2017-10-30 2019-05-28 Yeti Coolers, Llc Backpack cooler
KR20210089137A (en) 2018-10-04 2021-07-15 패킷, 엘엘씨 Insulated carrier for temperature controlled articles
USD931059S1 (en) 2019-10-04 2021-09-21 Packit, Llc Insulated container
USD929192S1 (en) 2019-11-15 2021-08-31 Yeti Coolers, Llc Insulating device
US11242189B2 (en) 2019-11-15 2022-02-08 Yeti Coolers, Llc Insulating device
USD929191S1 (en) 2019-11-15 2021-08-31 Yeti Coolers, Llc Insulating device

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1181829A (en) * 1914-08-13 1916-05-02 Anson E Bower Hamper.
US2575191A (en) * 1948-03-08 1951-11-13 George A Seipp Collapsible insulated refrigerator bag for carrying articles to be chilled
US2667198A (en) * 1951-01-26 1954-01-26 Walter L Klein Receptacle
US3460740A (en) * 1967-12-22 1969-08-12 Du Pont Heat-sealable cushioning and insulating structures
US4196817A (en) * 1978-11-20 1980-04-08 Moser D Wescott Insulated portable beverage container
US4211267A (en) * 1977-09-23 1980-07-08 Skovgaard Leif O Thermal insulating and cushioned bag, especially a carrying bag
US4343158A (en) * 1981-03-23 1982-08-10 Campbell June H Portable pouch for insulin
US4528694A (en) * 1980-05-22 1985-07-09 Gople-Pack And Industrial Marketing Aps Carry-bag
US4585159A (en) * 1985-04-18 1986-04-29 Crown Zellerbach Corporation Collapsible container and frame
US4865899A (en) * 1987-08-12 1989-09-12 Fabrico Manufacturing Corp. Laminated containment structure
US5237838A (en) * 1992-05-22 1993-08-24 Merritt Munson Carolann Portable refrigerated cosmetic carrying bag
US5476184A (en) * 1994-03-17 1995-12-19 Hill; Richard Insert for soft-sided duffel bag
US5620069A (en) * 1995-04-12 1997-04-15 Hurwitz; Gregory J. Soft-sided luggage with collapsible frame
US6139188A (en) * 1999-04-29 2000-10-31 Marzano; Domenico Insulated transit bag
US20010019024A1 (en) * 2000-02-09 2001-09-06 Dyecor Ltd. Transport package
US20010030194A1 (en) * 1998-07-17 2001-10-18 Courier Cool Limited Collapsible transport container
US6336342B1 (en) * 2000-07-07 2002-01-08 William E. Zeddies Collapsible cooling pack
US6336340B1 (en) * 1998-08-31 2002-01-08 Ralph Henry Laby Storage container for storage of temperature sensitive materials during transport
US20030106895A1 (en) * 2001-08-10 2003-06-12 Kalal Richard K. Collapsible insulated container
US6582124B2 (en) * 1998-11-25 2003-06-24 California Innovations Inc. Insulated container and liner
US20030136702A1 (en) * 2002-01-22 2003-07-24 Travel Caddy, Inc. D/B/A Travelon Collapsible insulated cooler

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3144702A1 (en) 1981-11-11 1983-05-19 LP-Plast Gesellschaft zur Verarbeitung von Kunststoffen mbH, 5000 Köln Insulation bag
AUPQ973800A0 (en) * 2000-08-28 2000-09-21 Automated Plastic Systems Pty Ltd Medical transport container

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1181829A (en) * 1914-08-13 1916-05-02 Anson E Bower Hamper.
US2575191A (en) * 1948-03-08 1951-11-13 George A Seipp Collapsible insulated refrigerator bag for carrying articles to be chilled
US2667198A (en) * 1951-01-26 1954-01-26 Walter L Klein Receptacle
US3460740A (en) * 1967-12-22 1969-08-12 Du Pont Heat-sealable cushioning and insulating structures
US4211267A (en) * 1977-09-23 1980-07-08 Skovgaard Leif O Thermal insulating and cushioned bag, especially a carrying bag
US4196817A (en) * 1978-11-20 1980-04-08 Moser D Wescott Insulated portable beverage container
US4528694A (en) * 1980-05-22 1985-07-09 Gople-Pack And Industrial Marketing Aps Carry-bag
US4343158A (en) * 1981-03-23 1982-08-10 Campbell June H Portable pouch for insulin
US4585159A (en) * 1985-04-18 1986-04-29 Crown Zellerbach Corporation Collapsible container and frame
US4865899A (en) * 1987-08-12 1989-09-12 Fabrico Manufacturing Corp. Laminated containment structure
US5237838A (en) * 1992-05-22 1993-08-24 Merritt Munson Carolann Portable refrigerated cosmetic carrying bag
US5476184A (en) * 1994-03-17 1995-12-19 Hill; Richard Insert for soft-sided duffel bag
US5620069A (en) * 1995-04-12 1997-04-15 Hurwitz; Gregory J. Soft-sided luggage with collapsible frame
US20010030194A1 (en) * 1998-07-17 2001-10-18 Courier Cool Limited Collapsible transport container
US6609628B2 (en) * 1998-07-17 2003-08-26 Edwin Francis Tattam Collapsible transport container
US6336340B1 (en) * 1998-08-31 2002-01-08 Ralph Henry Laby Storage container for storage of temperature sensitive materials during transport
US6582124B2 (en) * 1998-11-25 2003-06-24 California Innovations Inc. Insulated container and liner
US6139188A (en) * 1999-04-29 2000-10-31 Marzano; Domenico Insulated transit bag
US20010019024A1 (en) * 2000-02-09 2001-09-06 Dyecor Ltd. Transport package
US6631801B2 (en) * 2000-02-09 2003-10-14 Inspiral, Llc Transport package
US6336342B1 (en) * 2000-07-07 2002-01-08 William E. Zeddies Collapsible cooling pack
US20030106895A1 (en) * 2001-08-10 2003-06-12 Kalal Richard K. Collapsible insulated container
US20030136702A1 (en) * 2002-01-22 2003-07-24 Travel Caddy, Inc. D/B/A Travelon Collapsible insulated cooler

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100326985A1 (en) * 2009-06-25 2010-12-30 Chien-Jen Lin Structure of box
US8777001B1 (en) * 2009-07-07 2014-07-15 William Duffy Bennett Oil containment bag / container for the transporting and storage of electrical transformers of all types (I.E. all pole, pad mount and underground models etc.)
US20140319019A1 (en) * 2009-07-07 2014-10-30 William Duffy Bennett Oil Containment Bag/Container for the Transporting and Storage of Electrical Transformers of all Types (i.e. All Pole, Pad Mount and Underground Models Etc.)
US9487331B2 (en) * 2009-07-07 2016-11-08 Abg Bag, Inc. Oil containment bag/container for the transporting and storage of electrical transformers of all types (i.e. all pole, pad mount and underground models etc.)
US20130112686A1 (en) * 2010-07-19 2013-05-09 Soon Buem Kwon Foldable utility box
US8955704B2 (en) * 2010-07-19 2015-02-17 Soon Buem Kwon Foldable utility box
US20120031142A1 (en) * 2010-08-05 2012-02-09 Hyper Ice, Inc. Ice Bag with Air Release Valve for Therapeutic Treatment
US9289323B2 (en) * 2010-08-05 2016-03-22 Hyper Ice, Inc. Ice bag with air release valve for therapeutic treatment
US20130056373A1 (en) * 2011-09-07 2013-03-07 Joseph Benson Collapsible Laundry Container
US11498727B2 (en) 2018-09-27 2022-11-15 Otter Products, Llc Storage container with floating latch
US11267621B2 (en) 2018-09-27 2022-03-08 Otter Products, Llc Storage container and floating latch
US11377290B2 (en) 2019-07-15 2022-07-05 Otter Products, Llc Portable insulated container
US11498746B2 (en) 2019-07-15 2022-11-15 Otter Products, Llc Insulated shipping container
US11242175B2 (en) 2019-08-21 2022-02-08 Otter Products, Llc Configurable container
US11267637B2 (en) * 2019-08-21 2022-03-08 Otter Products, Llc Configurable container
US11542088B2 (en) 2019-08-21 2023-01-03 Otter Products, Llc Container system
US11667455B2 (en) 2019-08-21 2023-06-06 Otter Products, Llc Configurable container
US20220031540A1 (en) * 2020-08-03 2022-02-03 includesign LLC Device to facilitate the transport or storage of items by a person seated in a wheelchair or using other mobile devices
US20220170683A1 (en) * 2020-12-02 2022-06-02 Dylan M. Jacob Portable beverage coolers and methods of using the same
US12066245B2 (en) * 2020-12-02 2024-08-20 Brumate, Inc. Portable beverage coolers and methods of using the same
USD996059S1 (en) 2022-02-24 2023-08-22 Otter Products, Llc Container

Also Published As

Publication number Publication date
WO2005054061A2 (en) 2005-06-16
WO2005054061A3 (en) 2006-03-09
US7775388B2 (en) 2010-08-17
US20050023282A1 (en) 2005-02-03

Similar Documents

Publication Publication Date Title
US7775388B2 (en) Transport container for hazardous material
US7389627B2 (en) Method of shipping container with expanding bag
US5236088A (en) Biomedical material shipment kit and method
US8763423B2 (en) Cargo container temperature control system
CA2685211C (en) Insulated shipping bags
US5160025A (en) Battery shipping container
US7624873B2 (en) Diagnostic specimen shipping kit
US5450948A (en) Container and package for transporting temperature sensitive samples
US5314087A (en) Thermal reflective packaging system
US20100072211A1 (en) Reusable shipping container and method for using the same
WO1994027871A1 (en) Thermal reflective packaging system
WO2011136821A1 (en) Jet pod
WO2018197049A1 (en) An insulating transport and storage container
GB2566792A (en) An insulating transport and storage container
US20110266107A1 (en) Method and apparatus for the transport of bottled liquids
EP3599618B1 (en) Industrial package having pressurization capability
US20240017908A1 (en) A low temperature transport and storage assembly
JP4191432B2 (en) Packing methods for waste chemicals and hazardous wastes
US7185760B2 (en) Non-contact protective packaging for surface-sensitive articles
EP4204747A1 (en) A transport apparatus and storage system
JPS6226387Y2 (en)
GB2599457A (en) A transport apparatus and storage system
WO2023170246A1 (en) An insulating transport and storage container
GB2382064A (en) Pressure resistant packaging for biological samples

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION