US20090069565A1 - New indole derivatives as factor xa inhibitors - Google Patents

New indole derivatives as factor xa inhibitors Download PDF

Info

Publication number
US20090069565A1
US20090069565A1 US12/119,013 US11901308A US2009069565A1 US 20090069565 A1 US20090069565 A1 US 20090069565A1 US 11901308 A US11901308 A US 11901308A US 2009069565 A1 US2009069565 A1 US 2009069565A1
Authority
US
United States
Prior art keywords
alkyl
indole
carboxylic acid
chloro
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/119,013
Inventor
Mark NAZARE
Melanie Essrich
David William Will
Hans Matter
Kurt Ritter
Volkmar Wehner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanofi Aventis Deutschland GmbH
Original Assignee
Sanofi Aventis Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanofi Aventis Deutschland GmbH filed Critical Sanofi Aventis Deutschland GmbH
Priority to US12/119,013 priority Critical patent/US20090069565A1/en
Publication of US20090069565A1 publication Critical patent/US20090069565A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/18Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D209/22Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with an aralkyl radical attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Definitions

  • the present invention relates to compounds of the formula I,
  • R 0 ; R 1 ; R 2 ; R 3 ; R 4 ; R 5 ; R 6 ; R 7 ; Q; V, G and M have the meanings indicated below.
  • the compounds of the formula I are valuable pharmacologically active compounds. They exhibit a strong anti-thrombotic effect and are suitable, for example, for the therapy and prophylaxis of cardiovascular disorders like thromboembolic diseases or restenoses.
  • the invention furthermore relates to processes for the preparation of compounds of the formula I, their use, in particular as active ingredients in pharmaceuticals, and pharmaceutical preparations comprising them.
  • Normal haemeostasis is the result of a complex balance between the processes of clot initiation, formation and clot dissolution.
  • Many significant disease states are related to abnormal haemeostasis. For example, local thrombus formation due to rupture of atherosclerotic plaque is a major cause of acute myocardial infarction and unstable angina. Treatment of an occlusive coronary thrombus by either thrombolytic therapy or percutaneous angioplasty may be accompanied by acute thrombolytic reclosure of the affected vessel.
  • factor Xa-specific blood clotting inhibitors that are effective but do not cause unwanted side effects have been described, for example, in WO-A-95/29189.
  • WO-A-99/33800 discloses indole derivatives, which inhibit factor Xa activity.
  • the present invention satisfies the above needs by providing novel compounds of the formula I which exhibit better factor Xa and/or factor VIIa inhibitory activity and are favorable agents with high bioavailability.
  • the present invention also relates to the selected compounds of formula I, wherein
  • the present invention also relates to the preferred compounds of formula I, wherein R 0 is phenyl, said phenyl being unsubstituted or substituted with one or two substituents independently selected from the R 8′′ substituents defined below; or a monocyclic 4- to 14-membered heteroaryl radical selected from the group consisting of thienyl, thiadiazolyl, isoxazolyl and thiazolyl, said heteroaryl radical being substituted by a residue selected from the group consisting of thienyl, 2-thienyl and 3-thienyl, wherein said residue is unsubstituted or substituted with one or two substituents independently selected from the R 8′′ substituents defined below;
  • the present invention also relates to the compounds of formula I, which are selected from the group consisting of:
  • the present invention further relates to a process for the preparation of a compound of formula I which comprises condensing a compound of formula 14
  • a pharmaceutical preparation comprising at least one compound of formula I as defined above, as well as to methods for inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation or fibrinolysis comprising administering to a patient in need thereof an effective amount of such pharmaceutical preparation, more particularly, to the use of such preparation for influencing a condition selected from the group consisting of blood coagulation, inflammatory response, fibrinolysis, cardiovascular disorders, thromboembolic diseases, restenoses, abnormal thrombus formation, acute myocardial infarction, unstable angina, acute vessel closure associated with thrombolytic therapy, thromboembolism, percutaneous, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee and hip surgery, transluminal coronary angioplasty, transient ischemic attacks, stroke, disseminated systemic intravascular coagulatopathy occurring in vascular systems during septic shock, a risk of pulmonary thromboembolism, certain viral infections or cancer, intra
  • alkyl is to be understood in the broadest sense to mean hydrocarbon residues which can be linear, i.e. straight-chain, or branched and which can be acyclic or cyclic residues or comprise any combination of acyclic and cyclic subunits.
  • alkyl as used herein expressly includes saturated groups as well as unsaturated groups, which latter groups contain one or more, for example, one, two or three, double bonds and/or triple bonds, provided that the double bonds are not located within a cyclic alkyl group in such a manner that an aromatic system results.
  • alkyl group occurs as a substituent on another residue, for example in an alkyloxy residue, an alkyloxycarbonyl residue or an arylalkyl residue.
  • alkyl residues containing 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, the n-isomers of all these residues, isopropyl, isobutyl, 1-methylbutyl, isopentyl, neopentyl, 2,2-dimethylbutyl, 2-methylpentyl, 3-methylpentyl, isohexyl, sec-butyl, tBu, tert-pentyl, sec-butyl, tert-butyl and tert-pentyl.
  • cyclic alkyl residues are cycloalkyl residues containing 3, 4, 5 or 6 ring carbon atoms like cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, which can also be substituted and/or unsaturated.
  • Unsaturated cyclic alkyl groups and unsaturated cycloalkyl groups like, for example, cyclopentenyl or cyclohexenyl can be bonded via any carbon atom.
  • a cyclic alkyl group has to contain at least three carbon atoms, and an unsaturated alkyl group has to contain at least two carbon atoms.
  • a group like (C 1 -C 8 )-alkyl is to be understood as comprising, among others, saturated acyclic (C 1 -C 8 )-alkyl, (C 3 -C 6 )-cycloalkyl, and unsaturated (C 2 -C 8 )-alkyl like (C 2 -C 8 )-alkenyl or (C 2 -C 8 )-alkynyl.
  • a group like (C 1 -C 4 )-alkyl is to be understood as comprising, among others, saturated acyclic (C 1 -C 4 )-alkyl, and unsaturated (C 2 -C 4 )-alkyl like (C 2 -C 4 )-alkenyl or (C 2 -C 4 )-alkynyl.
  • alkyl preferably comprises acyclic saturated hydrocarbon residues which have from one to six carbon atoms and which can be linear or branched.
  • a particular group of interest comprises such saturated acyclic alkyl residues as (C 1 -C 4 )-alkyl residues like methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tBu.
  • alkyl groups can in general be unsubstituted or substituted by one or more, for example one, two or three, identical or different substituents. Any kind of substituents generally present in substituted alkyl residues can be present in any desired position provided that the substitution does not lead to an unstable molecule.
  • substituted alkyl residues are alkyl residues in which one or more, for example, 1, 2 or 3, hydrogen atoms are replaced with halogen atoms, in particular, fluorine atoms.
  • mono- or bicyclic 4- to 14-membered heteroaryl refers to (C 4 -C 14 )-aryl in which one or more of the 5 to 14 ring carbon atoms are replaced by heteroatoms such as nitrogen, oxygen or sulfur.
  • Examples are azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalinyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenz
  • pyridyl such as 2-pyridyl, 3-pyridyl or 4-pyridyl
  • pyrrolyl such as 2-pyrrolyl and 3-pyrrolyl
  • furyl such as 2-furyl and 3-furyl
  • thienyl such as 2-thienyl and 3-thienyl
  • R 1 and R 2 together with the nitrogen atom and V to which they are bonded form a 5- to 7-membered cyclic group refers to structures of heterocycles which can be derived from compounds such as piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, thiadiazole and thiomorpholine.
  • a 3- to 7-membered cyclic residue, containing up to 1, 2, 3 or 4 heteroatoms refers to structures of heterocycles which can be derived from compounds such as, aziridine, azirine, azetidine, pyrrole, pyrrolidine, imidazole, pyrazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, pyridine, pyrimidine, pyrazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, tetrazine, tetrazole, azepine, diazirine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, pyridazine, piperidine, piperazine, pyrrolidinone, ketopiperazine, furan, pyran, dioxole, oxazole, isoxazole, 2-iso
  • R 11 and R 12 together with the nitrogen atom to which they are bonded form a saturated or unsaturated 5- to 7-membered monocyclic heterocyclic ring refers to residues which can be derived from compounds such as piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, thiadiazole and thiomorpholine.
  • the 4-15 membered mono- or polycyclic group could only be derived from the respective unsaturated ring system.
  • the names here only serve to describe the ring system with respect to ring size and the number of the heteroatoms and their relative positions.
  • the 4-15 membered mono- or polycyclic group can be saturated or partially unsaturated or aromatic, and can thus be derived not only from the before-listed heterocycles themselves but also from all their partially or completely hydrogenated analogues and also from their more highly unsaturated analogues if applicable.
  • a pyrrolyl residue can be 1-pyrrolyl, 2-pyrrolyl or 3-pyrrolyl
  • a pyridinyl residue can be pyridin-2-yl, pyridin-3-yl or pyridin-4-yl
  • Furyl can be 2-furyl or 3-furyl
  • thienyl can be 2-thienyl or 3-thienyl
  • imidazolyl can be imidazol-1-yl, imidazol-2-yl, imidazol-4-yl or imidazol-5-yl
  • 1,3-oxazolyl can be 1,3-oxazol-2-yl, 1,3-oxazol-4-yl or 1,3-oxazol-5-yl
  • 1,3-thiazolyl can be 1,3-thiazol-2-yl, 1,3-thiazol-4-yl or 1,3-thiazol-5-yl
  • Indolyl can be indol-1-yl, indol-2-yl, indol-3-yl, indol-4-yl, indol-5-yl, indol-6-yl or indol-7-yl.
  • benzimidazolyl, benzoxazolyl and benzothiazol residues can be bonded via the 2-position and via any of the positions 4, 5, 6, and 7.
  • Quinolinyl can be quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-5-yl, quinolin-6-yl, quinolin-7-yl or quinolin-8-yl
  • isoqinolinyl can be isoquinol-1-yl, isoquinolin-3-yl, isoquinolin-4-yl, isoquinolin-5-yl, isoquinolin-6-yl, isoquinolin-7-yl or isoquinolin-8-yl.
  • 1,2,3,4-tetrahydroquinolinyl and 1,2,3,4-tetrahydroisoquinolinyl can also be bonded via the nitrogen atoms in 1-position and 2-position, respectively.
  • the 4-15 membered mono- or polycyclic group can be unsubstituted or substituted on ring carbon atoms with one or more, for example one, two, three, four or five, identical or different substituents, such as (C 1 -C 8 )-alkyl, in particular (C 1 -C 4 )-alkyl, (C 1 -C 8 )-alkyloxy, in particular (C 1 -C 4 )-alkyloxy, (C 1 -C 4 )-alkylthio, halogen, nitro, amino, ((C 1 -C 4 )-alkyl)carbonylamino like acetylamino, trifluoromethyl, trifluoromethoxy, hydroxy, oxo, hydroxy-(C 1 -C 4 )
  • the substituents can be present in any desired position provided that a stable molecule results.
  • an oxo group cannot be present in an aromatic ring.
  • Each suitable ring nitrogen atom in the 4-15 membered mono- or polycyclic group can independently be unsubstituted, i.e.
  • (C 1 -C 8 )-alkyl for example (C 1 -C 4 )-alkyl such as methyl or ethyl, optionally substituted phenyl, phenyl-(C 1 -C 4 )-alkyl, for example benzyl, optionally substituted in the phenyl group, hydroxy-(C 2 -C 4 )-alkyl, such as, for example, 2-hydroxyethyl, acetyl or another acyl group, methylsulfonyl or another sulfonyl group, aminocarbonyl, (C 1 -C 4 )-alkyloxycarbonyl, etc.
  • nitrogen heterocycles can also be present as N-oxides or as quaternary salts.
  • Ring sulfur atoms can be oxidized to the sulfoxide or to the sulfone.
  • a tetrahydrothienyl residue may be present as S,S-dioxotetrahydro-thienyl residue or a thiomorpholinyl residue like thiomorpholin-4-yl may be present as 1-oxo-thiomorpholin-4-yl or 1,1-dioxo-thiomorpholin-4-yl.
  • a substituted 4-15 membered mono- or polycyclic group that can be present in a specific position of the compounds of formula I can independently of other groups be substituted by substituents selected from any desired subgroup of the substituents listed before and/or in the definition of that group.
  • a pyrrolyl residue can be 1-pyrrolyl, 2-pyrrolyl or 3-pyrrolyl
  • a pyridinyl residue can be pyridin-2-yl, pyridin-3-yl or pyridin-4-yl
  • Furyl can be 2-furyl or 3-furyl
  • thienyl can be 2-thienyl or 3-thienyl
  • imidazolyl can be imidazol-1-yl, imidazol-2-yl, imidazol-4-yl or imidazol-5-yl
  • 1,3-oxazolyl can be 1,3-oxazol-2-yl, 1,3-oxazol-4-yl or 1,3-oxazol-5-yl
  • 1,3-thiazolyl can be 1,3-thiazol-2-yl, 1,3-thiazol-4-yl or 1,3-thiazol-5-yl
  • any specific substituents bonded to the 3-7 membered monocyclic group, or any other heterocyclic groups which are indicated in the definition of the compounds of the formula I can be unsubstituted or substituted on ring carbon atoms with one or more, for example, one, two, three, four or five, identical or different substituents like (C 1 -C 8 )-alkyl, in particular, (C 1 -C 4 )-alkyl, (C 1 -C 8 )-alkyloxy, in particular, (C 1 -C 4 )-alkyloxy, (C 1 -C 4 )-alkylthio, halogen, nitro, amino, ((C 1 -C 4 )-alkyl)carbonylamino like acetylamino, trifluoromethyl, trifluoromethoxy, hydroxy, oxo, hydroxy-(C 1 -C 4 )-alkyl such as, for example,
  • the substituents can be present in any desired position provided that a stable molecule results.
  • an oxo group cannot be present in an aromatic ring.
  • Each suitable ring nitrogen atom in the 3-7 membered monocyclic group can independently be unsubstituted, i.e. carry a hydrogen atom, or can be substituted, i.e.
  • (C 1 -C 8 )-alkyl for example, (C 1 -C 4 )-alkyl such as methyl or ethyl, optionally substituted phenyl, phenyl-(C 1 -C 4 )-alkyl, for example benzyl, optionally substituted in the phenyl group, hydroxy-(C 2 -C 4 )-alkyl such as, for example 2-hydroxyethyl, acetyl or another acyl group, methylsulfonyl or another sulfonyl group, aminocarbonyl, (C 1 -C 4 )-alkyloxycarbonyl, etc.
  • (C 1 -C 8 )-alkyl for example, (C 1 -C 4 )-alkyl such as methyl or ethyl, optionally substituted phenyl, phenyl-(C 1 -C 4 )-alkyl, for example benzyl, optionally substituted in the
  • nitrogen heterocycles can also be present as N-oxides or as quaternary salts.
  • Ring sulfur atoms can be oxidized to the sulfoxide or to the sulfone.
  • a tetrahydrothienyl residue may be present as S,S-dioxotetrahydrothienyl residue or a thiomorpholinyl residue like thiomorpholin-4-yl may be present as 1-oxo-thiomorpholin-4-yl or 1,1-dioxo-thiomorpholin-4-yl.
  • a substituted 3-7 membered monocyclic group that can be present in a specific position of the compounds of formula I can independently of other groups be substituted by substituents selected from any desired subgroup of the substituents listed before and/or in the definition of that group.
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, particularly preferably chlorine or bromine.
  • Optically active carbon atoms present in the compounds of formula I can, independently of each other, have R configuration or S configuration.
  • the compounds of formula I can be present in the form of pure enantiomers or pure diastereomers or in the form of mixtures of enantiomers and/or diastereomers, for example, in the form of racemates.
  • the present invention relates to pure enantiomers and mixtures of enantiomers as well as to pure diastereomers and mixtures of diastereomers.
  • the invention comprises mixtures of two or of more than two stereoisomers of formula I, and it also comprises all ratios of the stereoisomers in the mixtures.
  • the invention relates to pure E isomers and pure Z isomers as well as to E/Z mixtures in all ratios.
  • the invention also comprises all tautomeric forms of the compounds of formula I.
  • Diastereomers including E/Z isomers, can be separated into the individual isomers, for example, by chromatography. Racemates can be separated into the two enantiomers by customary methods, for example, by chromatography on chiral phases or by resolution, for example, by crystallization of diastereomeric salts obtained with optically active acids or bases. Stereochemically uniform compounds of formula I can also be obtained by employing stereochemically uniform starting materials or by using stereoselective reactions.
  • Physiologically tolerable salts of the compounds of formula I are nontoxic salts that are physiologically acceptable, in particular, pharmaceutically utilizable salts.
  • Such salts of compounds of formula I containing acidic groups, for example, a carboxyl group (COOH) include, for example, alkali metal salts or alkaline earth metal salts, such as sodium salts, potassium salts, magnesium salts and calcium salts, as well as salts with physiologically tolerable quaternary ammonium ions, such as tetramethylammonium or tetraethylammonium, and acid addition salts with ammonia and physiologically tolerable organic amines, such as methylamine, dimethylamine, trimethylamine, ethylamine, triethylamine, ethanolamine or tris-(2-hydroxyethyl)amine.
  • alkali metal salts or alkaline earth metal salts such as sodium salts, potassium salts, magnesium salts and calcium salts
  • Basic groups contained in the compounds of formula I form acid addition salts, for example, with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid or phosphoric acid, or with organic carboxylic acids and sulfonic acids such as formic acid, acetic acid, oxalic acid, citric acid, lactic acid, malic acid, succinic acid, malonic acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, methanesulfonic acid or p-toluenesulfonic acid.
  • inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid or phosphoric acid
  • organic carboxylic acids and sulfonic acids such as formic acid, acetic acid, oxalic acid, citric acid, lactic acid, malic acid, succinic acid, malonic acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, methane
  • Salts of compounds of formula I can be obtained by customary methods known to those skilled in the art, for example, by combining a compound of the formula I with an inorganic or organic acid or base in a solvent or dispersant, or from other salts by cation exchange or anion exchange.
  • the present invention also includes all salts of the compounds of formula I which, because of low physiologically tolerability, are not directly suitable for use in pharmaceuticals but are suitable, for example, as intermediates for carrying out further chemical modifications of the compounds of formula I or as starting materials for the preparation of physiologically tolerable salts.
  • the present invention furthermore includes all solvates of compounds of formula I, for example, hydrates or adducts with alcohols.
  • the invention also includes derivatives and modifications of the compounds of formula I, for example, prodrugs, protected forms and other physiologically tolerable derivatives, as well as active metabolites of the compounds of formula I.
  • the invention relates, in particular, to prodrugs and protected forms of compounds of the formula I which can be converted into compounds of formula I under physiological conditions.
  • Suitable prodrugs for the compounds of the formula I i.e. chemically modified derivatives of the compounds of the formula I having properties which are improved in a desired manner, for example, with respect to solubility, bioavailability or duration of action, are known to those skilled in the art. More detailed information relating to prodrugs is found in standard literature like, for example, Design of Prodrugs, H.
  • Suitable prodrugs for the compounds of the formula I are especially acyl prodrugs and carbamate prodrugs of acylatable nitrogen-containing groups, such as amino groups and the guanidino group and also ester prodrugs and amide prodrugs of carboxylic acid groups which may be present in compounds of formula I.
  • acyl prodrugs and carbamate prodrugs one or more, for example, one or two, hydrogen atoms on nitrogen atoms in such groups are replaced with an acyl group or a carbamate, preferably a (C 1 -C 6 )-alkyloxycarbonyl group.
  • Suitable acyl groups and carbamate groups for acyl prodrugs and carbamate prodrugs are, for example, the groups R p1 —CO— and R p2 O—CO—, in which R p1 is hydrogen, (C 1 -C 18 )-alkyl, (C 3 -C 8 )-cycloalkyl, (C 3 -C 8 )-cycloalkyl-(C 1 -C 4 )-alkyl-, (C 6 -C 14 )-aryl, Het-, (C 6 -C 14 )-aryl-(C 1 -C 4 )-alkyl- or Het-(C 1 -C 4 )-alkyl- and in which R p2 has the meanings indicated for R p1 with the exception of hydrogen.
  • Especially preferred compounds of formula I are those wherein two or more residues are defined as indicated before for preferred compounds of formula I, or contain residues that have one or more of the specific definitions of the residues given in their general definitions or in the definitions of preferred compounds above.
  • the compounds of formula I can be prepared by utilizing procedures and techniques, which per se are well known and appreciated by one of ordinary skill in the art. Starting materials or building blocks for use in the general synthetic procedures that can be applied in the preparation of the compounds of formula I are readily available to one of ordinary skill in the art. In many cases, they are commercially available or have been described in the literature. Otherwise, they can be prepared from readily available precursor compounds analogously to procedures described in the literature, or by procedures or analogously to procedures described in this application.
  • compounds of formula I can be prepared, for example, in the course of a convergent synthesis, by linking two or more fragments which can be derived retrosynthetically from formula I. More specifically, suitably substituted starting indole derivatives are employed as building blocks in the preparation of the compounds of formula I.
  • such indole derivatives can be prepared according to the well-known standard procedures for the formation of the indole ring system such as, for example, the Fischer indole synthesis, the Madelung indole synthesis, the indole synthesis starting from N-chloroanilines and ⁇ -ketosulfides described by Gassman et al., the Bischler indole synthesis, the Reissert indole synthesis, or the Nenitzescu indole synthesis.
  • indole-2-carboxylic acid examples include indole-2-carboxylic acid, indole-3-carboxylic acid, indole-3-acetic acid, 3-(3-indolyl)-propionic acid, indole-2,3-dicarboxylic acid, 3-ethoxycarbonylmethyl-indole-2-carboxylic acid, 3-methyl-indole-2-carboxylic acid, 5-fluoroindole-2-carboxylic acid, 5-chloro-indole-2-carboxylic acid, 5-bromo-indole-2-carboxylic acid, 5-methoxy-indole-2-carboxylic acid, 5-hydroxy-indole-2-carboxylic acid, 5,6-dimethoxy-ind
  • the Fischer indole synthesis comprises the acid cyclization of phenylhydrazones, for example of the general formula 2,
  • R 31 and R 32 can especially denote ester groups or methyl or ethyl groups or 2,2,2-trifluoroethyl groups carrying an ester group as substituent thus allowing the introduction into the indole molecule of the (CH 2 ) p —CO moiety occurring in the groups R 2 and/or R 3 in the compounds of the formula I.
  • R 31 and R 32 can especially denote ester groups or methyl or ethyl groups or 2,2,2-trifluoroethyl groups carrying an ester group as substituent thus allowing the introduction into the indole molecule of the (CH 2 ) p —CO moiety occurring in the groups R 2 and/or R 3 in the compounds of the formula I.
  • the Reissert indole synthesis comprises the reductive cyclization of o-nitrophenylpyruvic acids or esters thereof, for example of the general formula 3,
  • the groups R 30 can have a wide variety of denotations and can be present in all positions of the benzene ring.
  • the Reissert indole synthesis leads to derivatives of indole-2-carboxylic acids.
  • the pyruvic acid derivatives of the formula 3 can be obtained by condensation of oxalic acid esters with substituted o-nitrotoluenes.
  • the indole structure can be built up by employment of a variety of ketones under palladium catalysis by adopting and modifying a procedure described by C. Chen, D. Liebermann, R. Larsen, T. Verhoeven and P. Reider J. Org. Chem. 62 (1997) 2676 as indicated below:
  • the Nenitzescu indole synthesis provides a valuable route to indole-3-carboxylic acid derivatives carrying a hydroxy group in the 5-position. It comprises the reaction of a para-benzoquinone with a ⁇ -aminocrotonate, for example of the compounds of the formulae 11 and 12.
  • indolines 2,3-dihydroindoles
  • Indolines can undergo a variety of electrophilic aromatic substitution reaction allowing the introduction of various substituents into the benzene nucleus which cannot directly be introduced by such reactions into the benzene nucleus of the indole molecule.
  • the indolines can then be dehydrogenated to the corresponding indoles, for example with reagents like chloranil, or palladium together with a hydrogen acceptor. Again, details on these syntheses can be found in the above-mentioned book edited by Houlihan.
  • 2-H-indoles can be converted into the corresponding carboxylic acids or carboxylic esters by lithiation of the 2-position of the indoles of the general formula 13 and subsequent reaction with carbon dioxide or alkylchloroformate according to 1.
  • R 45 represents hydrogen or a protecting group like, for example, benzenesulfonyl or tert-butoxycarbonyl.
  • mixtures of positional isomers may be obtained which, however, can be separated by modern separation techniques like, for example, preparative HPLC.
  • the functional groups introduced into the ring system during the indole synthesis can be chemically modified.
  • indoles carrying a hydrogen atom in the 2-position or the 3-position can also be obtained by saponification and subsequent decarboxylation of indoles carrying an ester group in the respective position.
  • Carboxylic acid groups and acetic acid groups in the 2-position and the 3-position can be converted into their homologues by usual reactions for chain elongation of carboxylic acids.
  • Halogen atoms can be introduced into the 2-position or the 3-position, for example by reacting the respective indolinone with a halogenating agent such as phosphorus pentachloride analogously to the method described by J. C. Powers, J. Org. Chem. 31 (1966) 2627.
  • a halogenating agent such as phosphorus pentachloride
  • the starting indolinones for such a synthesis can be obtained from 2-aminophenyl acetic acids.
  • Starting indole derivatives for the preparation of compounds of the formula I carrying a halogen substituent in the 3-position can also be obtained according to procedures described in the literature like the following.
  • N-fluoro-2,4,6-trimethylpyridinium triflate is the reagent of choice (T. Umemoto, S. Fukami, G. Tomizawa, K. Harasawa, K. Kawada, K. Tomita J. Am. Chem. Soc. 112 (1990) 8563).
  • nitro groups can be reduced to amino group with various reducing agents, such as sulfides, dithionites, complex hydrides or by catalytic hydrogenation.
  • a reduction of a nitro group may also be carried out at a later stage of the synthesis of a compound of the formula I, and a reduction of a nitro group to an amino group may also occur simultaneously with a reaction performed on another functional group, for example when reacting a group like a cyano group with hydrogen sulfide or when hydrogenating a group.
  • amino groups can then be modified according to standard procedures for alkylation, for example by reaction with (substituted) alkyl halogenides or by reductive amination of carbonyl compounds, according to standard procedures for acylation, for example by reaction with activated carboxylic acid derivatives such as acid chlorides, anhydrides, activated esters or others or by reaction with carboxylic acids in the presence of an activating agent, or according to standard procedures for sulfonylation, for example by reaction with sulfonyl chlorides.
  • Carboxylic acids, carboxylic acid chlorides or carboxylic acid esters can be introduced by procedures described by F. Santangelo, C. Casagrande, G.
  • Halogens or hydroxy groups—via the triflate or nonaflate—or primary amines—via its diazonium salt—or after interconversion to the corresponding stannane, or boronic acid—present in the indole structure can be converted into a variety of other functional groups like for example —CN, —CF 3 , Ethers, acids, esters, amides, amines, alkyl- or aryl groups mediated by means of transition metals, namely palladium or nickel catalysts or copper salts and reagents for example referred to below (F. Diederich, P. Stang, Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, 1998; or M. Beller, C.
  • Ester groups present in the benzene nucleus can be hydrolyzed to the corresponding carboxylic acids, which after activation can then be reacted with amines or alcohols under standard conditions.
  • Ether groups present at the benzene nucleus for example benzyloxy groups or other easily cleavable ether groups, can be cleaved to give hydroxy groups which then can be reacted with a variety of agents, for example etherification agents or activating agents allowing replacement of the hydroxy group by other groups.
  • Sulfur-containing groups can be reacted analogously.
  • the structural elements present in the residues in the 1-position of the indole ring in the compounds of the formula I and in the COR 8 group present in the 2-position and/or in the 3-position of the indole ring can be introduced into the starting indole derivative obtainable as outlined above by consecutive reaction steps using parallel synthesis methodologies like those outlines below using procedures which per se are well known to one skilled in the art.
  • the compound of the formula 15 thus obtained can already contain the desired final groups, i.e.
  • the groups R 8′ and R 50 can be the groups —N(R 1 )R 2 —V-G-M and R 0 -Q- as defined in the formula I, or optionally in the compound of the formula 15 thus obtained subsequently the residue or the residues R 8′ and the residue R 50 are converted into the residues —N(R 1 )R 2 —V-G-M and R 0 -Q-, respectively, to give the desired compound of the formula I.
  • residues R 8′ and the residues R 1′ and R 2′ —V-G-M contained therein can have the denotations of R 1 and R 2 —V-G-M, respectively, given above or in addition in the residues R 1′ and R 2′ —V-G-M functional groups can also be present in the form of groups that can subsequently be transformed into the final groups R 1 and R 2 —V-G-M, i.e. functional groups can be present in the form of precursor groups or of derivatives, for example in protected form.
  • nitro groups and cyano groups may be mentioned which can in a later step be transformed into carboxylic acid derivatives or by reduction into aminomethyl groups, or nitro groups which may be transformed by reduction like catalytic hydrogenation into amino groups by reduction.
  • Protective groups can also have the meaning of a solid phase, and cleavage from the solid phase stands for the removal of the protective group. The use of such techniques is known to those skilled in the art (Burgess K (Ed.) Solid Phase Organic Synthesis, New York: Wiley, 2000).
  • a phenolic hydroxy group can be attached to a trityl-polystyrene resin, which serves as a protecting group, and the molecule is cleaved from this resin by treatment with TFA at a later stage of the synthesis.
  • the residue R 50 in the compounds of the formulae 14 and 15 can denote the group -Q-R 0 as defined above which finally is to be present in the desired target molecule of the formula I, or it can denote a group which can subsequently be transformed into the group -Q-R 0 , for example a precursor group or a derivative of the group -Q-R 0 in which functional groups are present in protected form, or R 50 can denote a hydrogen atom or a protective group for the nitrogen atom of the indole ring.
  • residues R 1e , R 1a , R 1b , R 1c and R 1d in the formulae 14 and 15 have the corresponding definitions of R 7 , R 6 , R 5 , R 4 , and R 3 in formula I as defined above, however, for the synthesis of the compounds of the formula I these residues, too, can in principle be present at the stage of the condensation of a compound of the formula 14 with a compound of the formula HR 8′ giving a compound of the formula 15 in the form of precursor groups or in protected form.
  • the residues R 49 in the compounds of the formula 14 which can be identical or different, can be, for example, hydroxy or (C 1 -C 4 )-alkoxy, i.e., the groups COR 49 present in the compounds of the formula 14 can be, for example, the free carboxylic acids or esters thereof like alkyl esters as can be the groups COR 8 in the compounds of the formula I.
  • the groups COR 49 can also be any other activated derivative of a carboxylic acid which allows amide formation, ester formation or thioester formation with a compound of the formula HR 8′ .
  • the group COR 49 can be, for example, an acid chloride, an activated ester like a substituted phenyl ester, an azolide like an imidazolide, an azide or a mixed anhydride, for example a mixed anhydride with a carbonic acid ester or with a sulfonic acid, which derivatives can all be prepared from the carboxylic acid by standard procedures and can be reacted with an amine, an alcohol or a mercaptan of the formula HR 8′ under standard conditions.
  • a carboxylic acid group COOH representing COR 49 in a compound of the formula 14 can be obtained, for example, from an ester group introduced into the indole system during an indole synthesis by standard hydrolysis procedures.
  • Compounds of the formula I in which a group COR 8 is an ester group can also be prepared from compounds of the formula 14 in which COR 49 is a carboxylic acid group by common esterification reactions like, for example, reacting the acid with an alcohol under acid catalysis, or alkylation of a salt of the carboxylic acid with an electrophile like an alkyl halogenide, or by transesterification from another ester.
  • Compounds of the formula I in which a group COR 8 is an amide group can be prepared from amines and compounds of the formula 14 in which COR 49 is a carboxylic acid group or an ester thereof by common amination reactions.
  • the compounds of the formula 14 in which COR 49 is a carboxylic acid group can be condensed under standard conditions with compounds of the formula HR 8′ which are amines by means of common coupling reagents used in peptide synthesis.
  • Such coupling reagents are, for example, carbodiimides like dicyclohexylcarbodiimide (DCC) or diisopropylcarbodiimide, carbonyldiazoles like carbonyldiimidazole (CDI) and similar reagents, propylphosphonic anhydride, O-((cyano-(ethoxycarbonyl)-methylene)amino)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TOTU), diethylphosphoryl cyanide (DEPC) or bis-(2-oxo-3-oxazolidinyl)-phosphoryl chloride (BOP-Cl) and many others.
  • DEC diethylphosphoryl cyanide
  • BOP-Cl bis-(2-oxo-3-oxazolidinyl)-phosphoryl chloride
  • residue -Q-R 0 present in an indole of the formula I or the residue R 50 present in an indole of the formula 14, or a residue in which functional groups within the residue -Q-R 0 or R 50 are present in protected form or in the form of a precursor group have not already been introduced during a preceding step, for example during a synthesis of the indole nucleus, these residues can, for example, be introduced into the 1-position of the indole system by conventional literature procedures well known to one skilled in the art for N-alkylation, reductive amination, N-arylation, N-acylation or N-sulfonylation of ring nitrogen atoms of heterocycles.
  • N-Alkylation of a ring nitrogen atom can, for example, be performed under standard conditions, preferably in the presence of a base, using an alkylating compound of the formula LG-Q-R 0 or of the formula R 50 -LG, wherein the atom in the group Q or in the group R 50 bonded to the group LG in this case is an aliphatic carbon atom of an alkyl moiety and LG is a leaving group, for example halogen like chlorine, bromine or iodine, or a sulfonyloxy group like tosyloxy, mesyloxy or trifluormethylsulfonyloxy.
  • LG may, for example, also be a hydroxy group which, in order to achieve the alkylation reaction, is activated by a conventional activating agent.
  • a conventional activating agent for the preparation of compounds in which A is a direct linkage and an aromatic group is directly bonded to the 1-position of the indole system, conventional arylation procedures can be used.
  • aryl fluorides like alkyl fluorobonzoates or 4-fluorophenyl methyl sulfones can be employed as arylating agents.
  • Such processes are described, for example, By S. Stabler, Jahangir, Synth. Commun. 24 (1994) 123; I. Khanna, R. Weier, Y. Yu, X. Xu. F. Koszyk, J. Med. Chem.
  • Preferred methods include, but are not limited to those described in the examples.
  • the compounds of the present invention are serine protease inhibitors, which inhibit the activity of the blood coagulation enzyme factors Xa and/or factor VIIa. In particular, they are highly active inhibitors of factor Xa. They are specific serine protease inhibitors inasmuch as they do not substantially inhibit the activity of other proteases whose inhibition is not desired.
  • the activity of the compounds of the formula I can be determined, for example, in the assays described below or in other assays known to those skilled in the art.
  • a preferred embodiment of the invention comprises compounds which have a Ki ⁇ 1 for factor Xa inhibition as determined in the assay described below, with or without concomitant factor VIIa inhibition, and which preferably do not substantially inhibit the activity of other proteases involved in coagulation and fibrinolysis whose inhibition is not desired (using the same concentration of the inhibitor).
  • the compounds of the invention inhibit factor Xa catalytic activity either directly, within the prothrombinase complex or as a soluble subunit, or indirectly, by inhibiting the assembly of factor Xa into the prothrombinase complex.
  • the present invention also relates to the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for use as pharmaceuticals (or medicaments), to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the production of pharmaceuticals for inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation, inflammatory response or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for the production of pharmaceuticals for the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses.
  • the invention also relates to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for use in the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses, and to methods of treatment aiming at such purposes including methods for said therapies and prophylaxis.
  • the present invention also relates to pharmaceutical preparations (or pharmaceutical compositions) which contain an effective amount of at least one compound of the formula I and/or its physiologically tolerable salts and/or its prodrugs in addition to a customary pharmaceutically acceptable carrier, i.e. one or more pharmaceutically acceptable carrier substances or excipients and/or auxiliary substances or additives.
  • a customary pharmaceutically acceptable carrier i.e. one or more pharmaceutically acceptable carrier substances or excipients and/or auxiliary substances or additives.
  • the invention also relates to the treatment of disease states such as abnormal thrombus formation, acute myocardial infarction, unstable angina, thromboembolism, acute vessel closure associated with thrombolytic therapy or percutaneous transluminal coronary angioplasty, transient ischemic attacks, stroke, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee and hip surgery, a risk of pulmonary thromboembolism, or disseminated systemic intravascular coagulatopathy occurring in vascular systems during septic shock, certain viral infections or cancer.
  • disease states such as abnormal thrombus formation, acute myocardial infarction, unstable angina, thromboembolism, acute vessel closure associated with thrombolytic therapy or percutaneous transluminal coronary angioplasty, transient ischemic attacks, stroke, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee and hip surgery, a risk of pulmonary thromboembolism, or disseminated systemic intravascular
  • the compounds of the formula I and their physiologically tolerable salts and their prodrugs can be administered to animals, preferably to mammals, and in particular to humans as pharmaceuticals for therapy or prophylaxis. They can be administered on their own, or in mixtures with one another or in the form of pharmaceutical preparations which permit enteral or parenteral administration.
  • the pharmaceuticals can be administered orally, for example in the form of pills, tablets, lacquered tablets, coated tablets, granules, hard and soft gelatin capsules, solutions, syrups, emulsions, suspensions or aerosol mixtures.
  • Administration can also be carried out rectally, for example in the form of suppositories, or parenterally, for example intravenously, intramuscularly or subcutaneously, in the form of injection solutions or infusion solutions, microcapsules, implants or rods, or percutaneously or topically, for example in the form of ointments, solutions or tinctures, or in other ways, for example in the form of aerosols or nasal sprays.
  • compositions according to the invention are prepared in a manner known per se and familiar to one skilled in the art, pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs.
  • pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs.
  • pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs.
  • Carriers for soft gelatin capsules and suppositories are, for example, fats, waxes, semisolid and liquid polyols, natural or hardened oils, etc.
  • Suitable carriers for the production of solutions for example injection solutions, or of emulsions or syrups are, for example, water, saline, alcohols, glycerol, polyols, sucrose, invert sugar, glucose, vegetable oils, etc.
  • Suitable carriers for microcapsules, implants or rods are, for example, copolymers of glycolic acid and lactic acid.
  • the pharmaceutical preparations normally contain about 0.5% to 90% by weight of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs.
  • the amount of the active ingredient of the formula I and/or its physiologically tolerable salts and/or its prodrugs in the pharmaceutical preparations normally is from about 0.5 mg to about 1000 mg, preferably from about 1 mg to about 500 mg.
  • the pharmaceutical preparations can contain additives such as, for example, fillers, disintegrants, binders, lubricants, wetting agents, stabilizers, emulsifiers, preservatives, sweeteners, colorants, flavorings, aromatizers, thickeners, diluents, buffer substances, solvents, solubilizers, agents for achieving a depot effect, salts for altering the osmotic pressure, coating agents or antioxidants. They can also contain two or more compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs.
  • a pharmaceutical preparation contains two or more compounds of the formula I the selection of the individual compounds can aim at a specific overall pharmacological profile of the pharmaceutical preparation. For example, a highly potent compound with a shorter duration of action may be combined with a long-acting compound of lower potency.
  • the flexibility permitted with respect to the choice of substituents in the compounds of the formula I allows a great deal of control over the biological and physico-chemical properties of the compounds and thus allows the selection of such desired compounds.
  • the pharmaceutical preparations can also contain one or more other therapeutically or prophylactically active ingredients.
  • the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for the therapy and prophylaxis of conditions in which the activity of factor Xa and/or factor VIIa plays a role or has an undesired extent, or which can favorably be influenced by inhibiting factor Xa and/or factor VIIa or decreasing their activities, or for the prevention, alleviation or cure of which an inhibition of factor Xa and/or factor VIIa or a decrease in their activity is desired by the physician.
  • the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for reducing blood clotting, or for the therapy and prophylaxis of conditions in which the activity of the blood coagulation system plays a role or has an undesired extent, or which can favorably be influenced by reducing blood clotting, or for the prevention, alleviation or cure of which a decreased activity of the blood coagulation system is desired by the physician.
  • a specific subject of the present invention thus are the reduction or inhibition of unwanted blood clotting, in particular in an individual, by administering an effective amount of a compound I or a physiologically tolerable salt or a prodrug thereof, as well as pharmaceutical preparations therefor.
  • Conditions in which a compound of the formula I can be favorably used include, for example, cardiovascular disorders, thromboembolic diseases or complications associated, for example, with infection or surgery.
  • the compounds of the present invention can also be used to reduce an inflammatory response.
  • specific disorders for the treatment or prophylaxis of which the compounds of the formula I can be used are coronary heart disease, myocardial infarction, angina pectoris, vascular restenosis, for example restenosis following angioplasty like PTCA, adult respiratory distress syndrome, multi-organ failure, stroke and disseminated intravascular clotting disorder.
  • Examples of related complications associated with surgery are thromboses like deep vein and proximal vein thrombosis, which can occur following surgery.
  • the compounds of the invention can replace or supplement other anticoagulant agents such as heparin.
  • the use of a compound of the invention can result, for example, in a cost saving as compared to other anticoagulants.
  • the dose can vary within wide limits and, as is customary and is known to the physician, is to be suited to the individual conditions in each individual case. It depends, for example, on the specific compound employed, on the nature and severity of the disease to be treated, on the mode and the schedule of administration, or on whether an acute or chronic condition is treated or whether prophylaxis is carried out.
  • An appropriate dosage can be established using clinical approaches well known in the medical art.
  • the daily dose for achieving the desired results in an adult weighing about 75 kg is from 0.01 mg/kg to 100 mg/kg, preferably from 0.1 mg/kg to 50 mg/kg, in particular from 0.1 mg/kg to 10 mg/kg, (in each case in mg per kg of body weight).
  • the daily dose can be divided, in particular in the case of the administration of relatively large amounts, into several, for example 2, 3 or 4, part administrations. As usual, depending on individual behavior it may be necessary to deviate upwards or downwards from the daily dose indicated.
  • a compound of the formula I can also advantageously be used as an anticoagulant outside an individual.
  • an effective amount of a compound of the invention can be contacted with a freshly drawn blood sample to prevent coagulation of the blood sample.
  • a compound of the formula I and its salts can be used for diagnostic purposes, for example in in vitro diagnoses, and as an auxiliary in biochemical investigations.
  • a compound of the formula I can be used in an assay to identify the presence of factor Xa and/or factor VIIa or to isolate factor Xa and/or factor VIIa in a substantially purified form.
  • a compound of the invention can be labeled with, for example, a radioisotope, and the labeled compound bound to factor Xa and/or factor VIIa is then detected using a routine method useful for detecting the particular label.
  • a compound of the formula I or a salt thereof can be used as a probe to detect the location or amount of factor Xa and/or factor VIIa activity in vivo, in vitro or ex vivo.
  • the compounds of the formula I can be used as synthesis intermediates for the preparation of other compounds, in particular of other pharmaceutical active ingredients, which are obtainable from the compounds of the formula I, for example by introduction of substituents or modification of functional groups.
  • an acid such as trifluoroacetic acid or acetic acid was used, for example when trifluoroacetic acid was employed to remove a tBu group or when a compound was purified by chromatography using an eluent which contained such an acid, in some cases, depending on the work-up procedure, for example the details of a freeze-drying process, the compound was obtained partially or completely in the form of a salt of the acid used, for example in the form of the acetic acid salt or trifluoroacetic acid salt or hydrochloric acid salt.
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 1 (iv), using 3-Cyano-1H-indole-2-carboxylic acid methyl ester as the starting material.
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 1 (v), using 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-1H-indole-2-carboxylic acid methyl ester as the starting material.
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 1 (vi), using 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-1H-indole-2-carboxylic acid as the starting material.
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 169 (i), using 2-(3-methoxyphenyl)-ethanol as the starting material.
  • the compound was chromatographed on silica gel eluting with n-heptane/ethyl acetate (4/1).
  • the title compound was prepared analogously to example 204 with the difference that 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-nitro-1H-indole-2-carboxylic acid was used instead of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid.

Abstract

The present invention relates to compounds of formula I,
Figure US20090069565A1-20090312-C00001
in which R0; R1; R2; R3; R4; R5; R6; R7; Q; V, G and M have the meanings indicated in the claims. The compounds of formula I are valuable pharmacologically active compounds. They exhibit a strong antithrombotic effect and are suitable, for example, for the therapy and prophylaxis of cardiovascular disorders like thromboembolic diseases or restenoses. They are reversible inhibitors of the blood clotting enzymes factor Xa (FXa) and/or factor VIIa (FVIIa), and can in general be applied in conditions in which an undesired activity of factor Xa and/or factor VIIa is present or for the cure or prevention of which an inhibition of factor Xa and/or factor VIIa is indicated. The invention furthermore relates to processes for the preparation of compounds of formula I, their use, in particular as pharmaceuticals for treating the foregoing conditions, and pharmaceutical preparations comprising them.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. application Ser. No. 10/926,909, filed Aug. 26, 2004, which is a division of U.S. application Ser. No. 10/301,397, filed Nov. 21, 2002, now U.S. Pat. No. 6,906,084, issued, Jun. 14, 2005, which claims the benefit of priority from European Patent Application 01127809.0, filed Nov. 22, 2001.
  • SUMMARY OF THE INVENTION
  • The present invention relates to compounds of the formula I,
  • Figure US20090069565A1-20090312-C00002
  • in which R0; R1; R2; R3; R4; R5; R6; R7; Q; V, G and M have the meanings indicated below. The compounds of the formula I are valuable pharmacologically active compounds. They exhibit a strong anti-thrombotic effect and are suitable, for example, for the therapy and prophylaxis of cardiovascular disorders like thromboembolic diseases or restenoses. They are reversible inhibitors of the blood clotting enzymes factor Xa (FXa) and/or factor VIIa (FVIIa), and can in general be applied in conditions in which an undesired activity of factor Xa and/or factor VIIa is present or for the cure or prevention of which an inhibition of factor Xa and/or factor VIIa is intended. The invention furthermore relates to processes for the preparation of compounds of the formula I, their use, in particular as active ingredients in pharmaceuticals, and pharmaceutical preparations comprising them.
  • DETAILED DESCRIPTION
  • Normal haemeostasis is the result of a complex balance between the processes of clot initiation, formation and clot dissolution. The complex interactions between blood cells, specific plasma proteins and the vascular surface, maintain the fluidity of blood unless injury and blood loss occurs (EP-A-987274). Many significant disease states are related to abnormal haemeostasis. For example, local thrombus formation due to rupture of atherosclerotic plaque is a major cause of acute myocardial infarction and unstable angina. Treatment of an occlusive coronary thrombus by either thrombolytic therapy or percutaneous angioplasty may be accompanied by acute thrombolytic reclosure of the affected vessel.
  • There continues to be a need for safe and effective therapeutic anticoagulants to limit or prevent thrombus formation. It is most desirable to develop agents that inhibit coagulation without directly inhibiting thrombin but by inhibiting other steps in the coagulation cascade like factor Xa and/or factor VIIa activity. It is now believed that inhibitors of factor Xa carry a lower bleeding risk than thrombin inhibitors (A. E. P. Adang & J. B. M. Rewinkel, Drugs of the Future 2000, 25, 369-383).
  • Low molecular weight, factor Xa-specific blood clotting inhibitors that are effective but do not cause unwanted side effects have been described, for example, in WO-A-95/29189.
  • However, besides being an effective factor Xa-specific blood clotting inhibitor, it is desirable that such inhibitors also have further advantageous properties, for instance stability in plasma and liver and selectivity versus other serine proteases whose inhibition is not intended, such as thrombin. There is an ongoing need for further low molecular weight factor Xa specific blood clotting inhibitors, which are effective and have the above advantages as well.
  • Specific inhibition of the factor VIIa/tissue factor catalytic complex using monoclonal antibodies (WO-A-92/06711) or a protein such as chloromethyl ketone inactivated factor VIIa
  • (WO-A-96/12800, WO-A-97/47651) is an extremely effective means of controlling thrombus formation caused by acute arterial injury or the thrombotic complications related to bacterial septicemia. There is also experimental evidence suggesting that inhibition of factor VIIa/tissue factor activity inhibits restenosis following balloon angioplasty. Bleeding studies have been conducted in baboons and indicate that inhibition of the factor VIIa/tissue factor complex has the widest safety window with respect to therapeutic effectiveness and bleeding risk of any anticoagulant approach tested including thrombin, platelet and factor Xa inhibition. Certain inhibitors of factor VIIa have already been described. EP-A-987274, for example discloses compounds containing a tripeptide unit, which inhibit factor VIIa. However, the property profile of these compounds is still not ideal, and there is an ongoing need for further low molecular weight factor VIIa inhibitory blood clotting inhibitors. WO-A-99/33800 discloses indole derivatives, which inhibit factor Xa activity.
  • The present invention satisfies the above needs by providing novel compounds of the formula I which exhibit better factor Xa and/or factor VIIa inhibitory activity and are favorable agents with high bioavailability.
  • Thus, the present invention relates to compounds of the formula I,
  • Figure US20090069565A1-20090312-C00003
  • wherein
      • R0 is selected from the group consisting of
        • 1) monocyclic and bicyclic 6- to 14-membered aryl radicals, said aryl radicals
        • being substituted with one two or three substituents independently
        • selected from the R8 substituents defined below, provided that at least one R8 is halogen,
        • —C(O)—NH2 or —O—(C1-C8)-alkyl;
        • 2) monocyclic and bicyclic 4- to 14-membered heteroaryl radicals selected from the group consisting of pyridyl, pyrimidinyl, indolyl, isoindolyl, indazolyl, phthalazinyl, quinolyl, isoquinolyl, benzothiophene, quinazolinyl and phenylpyridyl radicals, said heteroaryl radicals being unsubstituted or substituted with one two or three substituents independently selected from the R8 substituents defined below;
        • 3) monocyclic or bicyclic 4- to 14-membered heteroaryl radicals containing one, two, three or four heteroatoms selected from the group consisting of nitrogen, sulfur and oxygen, said heteroaryl radicals being unsubstituted or substituted with one two or three substituents independently selected from the R8 substituents defined below, as well as by a monocyclic or bicyclic 4- to
        • 14-membered heteroaryl, containing one, two, three or four heteroatoms selected from the group consisting of nitrogen, sulfur and oxygen, which heteroaryl radical is unsubstituted or substituted with one two or three substituents independently selected from the R8 substituents defined below;
      • R8 is selected from the group consisting of
        • halogen, —NO2; —CN; —C(O)—NH2; —OH; —NH2; —OCF3; monocyclic and bicyclic 4- to 14-membered aryl radicals, said aryl radicals being substituted with one, two, or three substituents independently selected from halogen and
        • —O—(C1-C8)-alkyl; —(C1-C8)-alkyl, said alkyl being unsubstituted or substituted with up to three substituents independently selected from halogen, NH2, —OH and methoxy; and —O—(C1-C8)-alkyl, said alkyl being unsubstituted or substituted with up to three substituents independently selected from halogen, NH2, —OH and methoxy;
      • Q is selected from the group consisting of
        • a direct bond; —C(O)—; —(C0-C2)-alkylene-C(O)—NR10—; —NR10—C(O)—NR10—;
        • —NR10—C(O)—; —SO2—; —(C1-C6)-alkylene, wherein alkylene is unsubstituted or substituted with up to three substituents independently selected from halogen,
        • —NH2 and —OH; and (C3-C6)-cycloalkylene, wherein cycloalkylene is unsubstituted or substituted with up to three substituents independently selected from halogen,
        • —NH2 and —OH;
      • R1 is selected from the group consisting of
        • hydrogen; —(C1-C4)-alkyl radicals, said alkyl radicals being unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined below; and monocyclic or bicyclic 4- to 14-membered heteroaryl radicals said heteroaryl radical is unsubstituted or substituted with one two or three substituents independently selected from the R14 substituents defined below;
      • R2 is a direct bond or —(C1-C4)-alkylene; provided that:
      • a) R1 and R7 together with the atoms to which they are bonded can form a 4- to 7-membered cyclic group, which may contain 1, 2, 3 or 4 heteroatoms selected from the group consisting of nitrogen, sulfur and oxygen, said cyclic group being unsubstituted or substituted with one two or three substituents independently selected from the R14 substituents defined below;
      • b) R1—N—R2—V can form a 4- to 7-membered cyclic group, which may contain 1, 2, 3 or 4 heteroatoms selected from the group consisting of nitrogen, sulfur and oxygen, said cyclic group being unsubstituted or substituted with one two or three substituents independently selected from the R14 substituents defined below;
      • R14 is selected from the group consisting of
        • halogen, —OH, ═O, —(C1-C8)-alkyl, —(C1-C4)-alkoxy, —NO2, —C(O)—OH, —CN, —NH2,
        • —C(O)—O—(C1-C4)-alkyl, —(C1-C8)-alkylsulfonyl, —SO2, —C(O)—NH—(C1-C8)-alkyl,
        • —C(O)—N—[(C1-C8)-alkyl]2, —NR10—C(O)—NH—(C1-C8)-alkyl, —C(O)—NH2, —SR10, and —NR10—C(O)—NH—[(C1-C8)-alkyl]2, said R10 being selected from hydrogen,
        • —(C1-C3)-perfluoroalkyl and —(C1-C6)-alkyl;
      • V is selected from the group consisting of
        • a 3- to 7-membered cyclic group, which may contain 1, 2, 3 or 4 heteroatoms selected from the group consisting of nitrogen, sulfur and oxygen, said cyclic group being unsubstituted or substituted with one two or three substituents independently selected from the R14 substituents defined above; a 6- to 14-membered aryl, said aryl being unsubstituted or substituted with one two or three substituents independently selected from the R14 substituents defined above; and a monocyclic or bicyclic 4- to 14-membered heteroaryl, said heteroaryl being unsubstituted or substituted with one two or three substituents independently selected from the R14 substituents defined above;
      • G is selected from the group consisting of:
        • a direct bond, —(CH2)m—NR10—SO2—NR10—(CH2)n—, —(CH2)m—CH(OH)—(CH2)n, —(CH2)m—, —(CH2)m—O—(CH2)n—, —(CH2)m—C(O)—NR10—(CH2)n—, —(CH2)—SO2—(CH2)n—, —(CH2)m—NR10—C(O)—NR10—(CH2)n—, —(CH2)m—NR10—C(O)—(CH2)n—, —(CH2)m—C(O)—(CH2)n—, —(CH2)—S—(CH2)n—, —(CH2)m—SO2—NR10—(CH2)n—, —(CH2)m—NR10—SO2—(CH2)n—, —(CH2)m—NR10—, (CH2)m—O—C(O)—NR10—(CH2)n— and —(CH2)m—NR10—C(O)—O—(CH2)n—,
      • n and m are independently selected from zero and the integers 1, 2, 3, 4, 5 and 6,
      • R10 is hydrogen, —(C1-C3)-perfluoroalkyl or (C1-C6)-alkyl,
      • M is selected from the group consisting of
        • hydrogen; —(C1-C8)-alkyl, said alkyl being unsubstituted or substituted with one two or three substituents independently selected from the R14 substituents defined above; —C(O)—NR11R12; —(CH2)m—NR10; —(C6-C14)-aryl, said aryl being unsubstituted or substituted with one two or three substituents independently selected from the R14 substituents defined above; —(C4-C14)-heteroaryl, said heteroaryl being unsubstituted or substituted with one two or three substituents independently selected from the R14 substituents defined above; (C3-C7)-cycloalkyl, said cycloalkyl being unsubstituted or substituted with one two or three substituents independently selected from the R14 substituents defined above; a
        • 3- to 7-membered cyclic residue, optionally containing 1, 2, 3 or 4 heteroatoms selected from nitrogen, sulfur and oxygen, said cyclic residue being unsubstituted or substituted with one two or three substituents independently selected from the R14 substituents defined above;
      • R11 and R12 are independently selected from the group consisting of:
        • hydrogen; —(C1-C6)-alkyl, said alkyl being unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined below; —(C6-C14)-aryl-(C1-C4)-alkyl-, wherein said alkyl and said aryl are each independently unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined below;
        • —(C6-C14)-aryl-, said aryl being unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined below;
        • —(C4-C14)-heteroaryl, said heteroaryl being unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined below; —(C4-C14)-heteroaryl-(C1-C4)-alkyl-, wherein said alkyl and said heteroaryl are each independently unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined below; or, alternatively,
      • R11 and R12, together with the nitrogen atom to which they are bonded, form a saturated
        • 5- to 7-membered monocyclic heterocyclic ring which, in addition to said nitrogen atom, may contain one or two identical or different ring heteroatoms selected from oxygen, sulfur and nitrogen; said heterocyclic ring being unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined below;
      • R13 is selected from the group consisting of:
        • halogen; —NO2; —CN; ═O; —OH; —(C1-C8)-alkyl; —(C1-C8)-alkoxy; —CF3; phenyl; phenyloxy-; —C(O)—O—R11; phenyl-(C1-C4)-alkoxy-; —C(O)—N—R11R12; —NR11R12;
        • —NR10—SO2—R10; —S—R10; —SOn—R10; wherein n is 1 or 2; —SO2—NR11R12;
        • —C(O)—R10;
        • —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)—R17; —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)O—R17, and a residue of formula Va,
  • Figure US20090069565A1-20090312-C00004
        • wherein R10, R11, R12 are as defined above and R15, R16 or R17 are as defined below;
      • R15 and R16 are independently selected from hydrogen, and —(C1-C6)-alkyl, or, alternatively, together with the carbon atom to which they are bonded, form a 3- to 6 membered carbocyclic ring, said carbocyclic ring being unsubstituted or substituted with one two or three substituents independently selected from the R10 substituents defined above;
      • R17 is selected from the group consisting of —(C1-C6)-alkyl, —(C1-C8)-cycloalkyl, and
        • —(C1-C6)-alkyl-(C1-C8)-cycloalkyl, each said cycloalkyl ring being unsubstituted or substituted with one two or three substituents independently selected from the R10 substituents defined above;
      • R3, R4, R5, R6 and R7 are each independently selected from the group consisting of:
        • hydrogen; halogen; —(C1-C4)-alkyl, said alkyl being unsubstituted or substituted with one, two or three substituents independently selected from the R13 substituents defined above; —(C1-C3)-perfluoroalkyl; phenyl, said phenyl being unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined above; —O—(C1-C4)-alkyl, said alkyl being unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined above; —NO2; —CN; —OH; phenyloxy-, said phenyloxy being unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined above; benzyloxy-, said benzyloxy being unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined above; —C(O)—O—R11, wherein R11 is as defined above; —C(O)—N—R11R12, wherein R11 and R12 are as defined above; —NR11R12, wherein R11 and R12 are as defined above; —NR10—SO2—R10, wherein R10 is as defined above; —SR10, wherein R10 is as defined above; —SOn—R10, wherein n is 1 or 2 and R10 is as defined above; —SO2—NR11R12, wherein R11 and R12 are as defined above; —C(O)—R10, wherein R10 is as defined above;
        • —C(O)—O—C(R15R16)—O—C(O)—R17, wherein R15, R16 and R17 are as defined above;
        • —C(O)—O—C(R15R16)—O—C(O)O—R17, wherein R15, R16 and R17 are as defined above; a residue of formula Va,
  • Figure US20090069565A1-20090312-C00005
          • wherein R10 is as defined above;
        • a residue of formula Vb or Vc,
  • Figure US20090069565A1-20090312-C00006
      • —NR10—(C1-C4)-alkyl, said alkyl being unsubstituted or substituted with one two or three substituents independently selected from the R13 substituents defined above; —O—CF3; and a residue selected from the group consisting of:
  • Figure US20090069565A1-20090312-C00007
      • wherein R10, R11, R12 and R13 are as defined above,
      • in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts.
  • The present invention also relates to the selected compounds of formula I, wherein
      • R0 is selected from the group consisting of phenyl, said phenyl being unsubstituted or substituted with one, two or three substituents independently selected from the R8′ substituents defined below; bicyclic 5- to 14-membered heteroaryl radicals selected from the group consisting of indolyl, isoindolyl, benzofuranyl, benzothiophenyl, 1,3-benzodioxolyl, indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl, isoquinolinyl, chromanyl, isochromanyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, purinyl and pteridinyl, said heteroaryl radicals being unsubstituted or substituted with one, two or three substituents independently selected from the R8′ substituents defined below; said heteroaryl radicals being optionally further substituted by an additional residue selected from the group consisting of pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyl; thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, triazolyl, isothiazolyl, thiadiazolyl, tetrazolyl, pyrimidinyl, pyridazinyl and pyrazinyl, said additional residue being unsubstituted or substituted with one, two or three substituents independently selected from the R8′ substituents defined below; a monocyclic 5- to 14-membered heteroaryl radical selected from the group consisting of pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyl; thienyl, 2-thienyl,
        • 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl and pyrazinyl, said heteroaryl radical being unsubstituted or substituted with one, two or three substituents independently selected from the R8′ substituents defined below said heteroaryl radical being optionally further substituted by a residue selected from the group consisting of pyridyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, pyrrolyl, 2-pyrrolyl, 3-pyrrolyl, furyl, 2-furyl, 3-furyl, thienyl, 2-thienyl, 3-thienyl, imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, thiadiazolyl, isothiazolyl, triazolyl, tetrazolyl, pyridazinyl and pyrazinyl, said residue being unsubstituted or substituted with one, two or three substituents independently selected from the R8′ substituents defined below
      • R8′ is selected from the group consisting of:
        • halogen, including F, Cl, Br and I; —C(O)—NH2; —(C1-C4)-alkyl, said alkyl being unsubstituted or independently substituted by one, two or three substituents selected from halogen, —OH and methoxy; and —O—(C1-C4)-alkyl, said alkyl being unsubstituted or independently substituted by one, two or three substituents selected from halogen and methoxy, provided that at least one R8 is halogen,
        • —C(O)—NH2 or a —O—(C1-C8)-alkyl residue when R0 is a monocyclic or bicyclic 6- to
        • 14-membered aryl;
      • Q is selected from the group consisting of:
        • a direct bond; —C(O)—; —SO2—; —(C1-C6)-alkylene; and —(C0-C2)-alkylene-C(O)—NR10—;
      • R1 is hydrogen or —(C1-C2)-alkyl;
      • R2 is a direct bond or —(C1-C2)-alkylene; or, alternatively,
      • R1—N—R2—V, together, form a 5- to 7-membered cyclic radical selected from the group consisting of piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole,
        • 1,2,4-triazole, tetrazine, tetrazole, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, thiadiazole or thiomorpholine, said cyclic radical being unsubstituted or substituted with one, two or three substituents independently selected from the R14 substituents defined below;
      • R14 is halogen, —(C1-C4)-alkyl or —NH2,
      • V is selected from the group consisting of derivatives of 3- to 7-membered cyclic residues selected from the group consisting of aziridine, azirine, azetidine, pyrrole, pyrrolidine, pyridonyl, imidazole, pyrazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, pyridine, pyrimidine, pyrazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, tetrazine, tetrazole, azepine, diazirine, 1,2-diazepine, 1,3-diazepine,
        • 1,4-diazepine, pyridazine, piperidine, piperazine, pyrrolidinone, ketopiperazine, furan, pyran, dioxole, oxazole, isoxazole, 2-isoxazoline, isoxazolidine, morpholine, oxirane, oxaziridine, 1,3-dioxolene, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxaziridine, thiophene, thiopyran, thietan, thiazole, isothiazole, isothiazoline, isothiazolidine, 1,2-oxathiolan, thiopyran, 1,2-thiazine, 1,3-thiazole, 1,3-thiazine, 1,4-thiazine, thiadiazine and thiomorpholine, said cyclic residue being unsubstituted or substituted with one, two or three substituents independently selected from the R14 substituents defined above; phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from the R14 substituents defined above; and a bicyclic 5- to 14-membered heteroaryl selected from the group consisting of quinolyl, isoquinolyl and quinoxalinyl, said heteroaryl being unsubstituted or substituted with one, two or three substituents independently selected from the R14 substituents defined above;
      • G is a direct bond, —(CH2)m—, or —(CH2)m—NR10—;
      • m is zero or an integer selected from 1, 2, 3 and 4;
      • R10 is hydrogen, —(C1-C3)-perfluoroalkyl or —(C1-C4)-alkyl;
      • M is selected from the group consisting of:
        • hydrogen; —(C6-C14)-heteroaryl, said heteroaryl being a residue selected from the group consisting of the derivatives of piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, pyridonyl, imidazole, pyridazine, pyrazine,
        • 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, tetrahydropyran, thiadiazole and thiomorpholine, which are unsubstituted or substituted with one, two or three substituents independently selected from the R14 substituents defined above; —(C1-C6)-alkyl, said alkyl being unsubstituted or substituted with one, two or three substituents independently selected from the R14 substituents defined above; and (C3-C6)-cycloalkyl;
      • R3, R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen; F; Cl; Br; —(C1-C4)-alkyl, said alkyl being unsubstituted or substituted by R13 as defined below; —CF3; phenyl, said phenyl being unsubstituted or substituted with one, two or three substituents independently selected from the R13 substituents defined below; —O—(C1-C4)-alkyl, wherein alkyl is unsubstituted or substituted by R13 as defined below; —NO2; —CN; —OH; phenyloxy-, said phenyloxy being unsubstituted or substituted by R13, as defined below; benzyloxy-, said benzyloxy being unsubstituted or substituted by R13 as defined below; —C(O)—O—R11; —C(O)—N—R11R12; —NR11R12; —NR10—SO2—R11; —SOn—R10, wherein n is 1 or 2; —SO2—NR11R12; —C(O)—R10; —C(O)—O—C(R15R16)—O—C(O)—R17; —C(O)—O—C(R15R16)—O—C(O)O—R17; a residue of formula Va
  • Figure US20090069565A1-20090312-C00008
        • a residue of formula Vb or Vc,
  • Figure US20090069565A1-20090312-C00009
        • —O—CF3; and a residue selected from the group consisting of
  • Figure US20090069565A1-20090312-C00010
      • R13 is selected from the group consisting of
        • halogen; —NO2; —CN, ═O; —OH; —(C1-C8)-alkoxy; —CF3; —C(O)—O—R11; —C(O)—N—R11R12; —NR11R12; —NR10—SO2—R10; —SOn—R10, wherein n is 1 or 2; —SO2—NR11R12; —C(O)—R10; —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)—R17; —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)O—R17; and a residue of formula Va,
  • Figure US20090069565A1-20090312-C00011
        • and R10, R11, R12, R15, R16 and R17 are as first defined above in the definition of formula I,
      • in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically tolerable salts.
  • The present invention also relates to the preferred compounds of formula I, wherein R0 is phenyl, said phenyl being unsubstituted or substituted with one or two substituents independently selected from the R8″ substituents defined below; or a monocyclic 4- to 14-membered heteroaryl radical selected from the group consisting of thienyl, thiadiazolyl, isoxazolyl and thiazolyl, said heteroaryl radical being substituted by a residue selected from the group consisting of thienyl, 2-thienyl and 3-thienyl, wherein said residue is unsubstituted or substituted with one or two substituents independently selected from the R8″ substituents defined below;
      • R8″ is selected from the group consisting of F, Cl, Br, —O—CH3, —C(O)—NH2 and —O—CF3,
      • Q is a direct bond, —C(O)—, —SO2—, methylene or ethylene,
      • R1 is hydrogen;
      • R2 is a direct bond or methylene, or, alternatively,
      • R1—N—R2—V together form a 5- to 7-membered cyclic group selected from the group consisting of pyrrolidine, piperidine and piperazine;
      • R13 is selected from the group consisting of
        • —C(O)—O—R11; —C(O)—N—R11R12; —NR11R12; —NR10—SO2—R10; —SOn—R10, wherein n is 1 or 2;
        • —SO2—NR11R12; —C(O)—R10; —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)—R17;
        • —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)O—R17; and a residue of formula Va,
  • Figure US20090069565A1-20090312-C00012
        • wherein R10, R11, R12, R15, R16 or R17 are as first defined above in the definition of formula I;
      • R14 is halogen, methyl, ethyl or —NH2,
      • V is a cyclic residue selected from the group consisting of compounds derived from
        • isoquinoline, quinoline, quinazoline, piperidine, azetidine, tetrahydropyran, piperazine and isoxazole, said cyclic residue being substituted with one or two substituents independently selected from the R14 substituents defined above; and phenyl, which phenyl is unsubstituted or substituted with one or two substituents independently selected from the R14 substituents defined above;
      • G is a direct bond, —(CH2)m—, or —(CH2)m—NR10—, wherein m is zero, 1 or 2, and R10 is hydrogen or —(C1-C4)-alkyl;
      • M is selected from hydrogen, (C2-C4)-alkyl, imidazolyl, pyrazolyl, pyrrolidinyl, tetrahydropyranyl, piperidinyl, pyridinyl, pyrimidyl, pyrazinyl, pyridazinyl, and
        • (C3-C6)-cycloalkyl, which cyclic residues are unsubstituted or substituted with one or two substituents independently selected from the R14 substituents defined above; and
      • R3, R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen; F; Cl; —(C1-C4)-alkyl, wherein alkyl is unsubstituted or substituted by R13, as defined above; phenyl, which is unsubstituted or substituted with one, two or three substituents independently selected from the R13 substituents defined above;
        • —O—(C1-C4)-alkyl, wherein alkyl is unsubstituted or substituted by R13, as defined above; —C(O)—O—R11; —C(O)—N—R11R12; —NR11R12; —NR10—SO2—R10; —SO2—NR11R12; —C(O)—R10
        • —C(O)—O—C(R15R16)—O—C(O)—R17, wherein R15, R16 and R17 are as first defined above in the definition of formula I; —C(O)—O—C(R15R16)—O—C(O)O—R17, wherein R15, R16 and R17 are as first defined above in the definition of formula I; a residue of formula Va
  • Figure US20090069565A1-20090312-C00013
        • a residue of formula Vb or Vc,
  • Figure US20090069565A1-20090312-C00014
        • and a residue selected from the group consisting of:
  • Figure US20090069565A1-20090312-C00015
  • in all its stereoisomeric forms and mixtures thereof in any ratio, and its physiologically acceptable salts.
  • The present invention also relates to the compounds of formula I, which are selected from the group consisting of:
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-methanesulfonyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-nitro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 5-Benzyloxy-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 5-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-6-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-methyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,6-dimethoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5,6-dimethoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-nitro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-trifluoromethoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[6-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-(2,2-dimethyl-propionylamino)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-phenyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-6-hydroxy-5-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,6-difluoro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 4-Benzyloxy-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 7-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 6-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-ethyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-fluoro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-nitro-3-phenyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 5-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-phenyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5,7-difluoro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5,7-dinitro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-nitro-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-[4-(pyridin-4-ylamino)-piperidin-1-yl]-methanone,
    • {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-nitro-1H-indol-2-yl}-[4-(pyridin-4-ylamino)-piperidin-1-yl]-methanone,
    • {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indol-2-yl}-[4-(pyridin-4-ylamino)-piperidin-1-yl]-methanone,
    • {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-(4-isopropylamino-piperidin-1-yl)-methanone,
    • {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indol-2-yl}-(4-isopropylamino-piperidin-1-yl)-methanone,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-ethyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid (1-ethyl-piperidin-4-yl)-amide,
    • {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-(4-pyrrolidin-1-yl-piperidin-1-yl)-methanone,
    • [1,4′]Bipiperidinyl-1′-yl-{1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-methanone,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (3-pyridin-4-yl-4,5-dihydro-isoxazol-5-ylmethyl)-amide,
    • {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-(4-pyridin-4-ylmethyl-piperazin-1-yl)-methanone,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-ylmethyl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-ylmethyl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-cyclopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(tetrahydro-pyran-4-yl)-piperidin-4-yl]-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-cyclopentyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-cyclohexyl-piperidin-4-yl)-amide,
    • 1-(3-Methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(3-Methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-ylmethyl)-amide,
    • 1-(3-Methoxy-benzyl)-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-ylmethyl)-amide,
    • (4-Isopropylamino-piperidin-1-yl)-[1-(3-methoxy-benzyl)-1H-indol-2-yl]-methanone,
    • 1-(3-Methoxy-benzyl)-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • [1-(3-Methoxy-benzyl)-1H-indol-2-yl]-[4-(pyridin-4-ylamino)-piperidin-1-yl]-methanone,
    • 4-Methoxy-1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 5-Chloro-1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 6-Methoxy-1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(3-Methoxy-benzyl)-5-methyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 5-Benzyloxy-1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(3-Methoxy-benzyl)-5-nitro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 5-Methoxy-1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(3-Methoxy-benzoyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(3-Methoxy-benzenesulfonyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • (4-Isopropylamino-piperidin-1-yl)-[1-(4-methoxy-phenyl)-1H-indol-2-yl]-methanone,
    • 1-(3-Methoxy-phenyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(3-Chloro-phenyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(3-Chloro-phenyl)-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • 1-(3-Chloro-phenyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-ylmethyl)-amide,
    • 1-(3,5-Dichloro-phenyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(4-Chloro-phenyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(6-Chloro-benzo[b]thiophen-2-ylmethyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-[1,3,4]thiadiazol-2-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[3-(5-Chloro-thiophen-2-yl)-isoxazol-5-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 3-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 3-Bromo-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(4-Chloro-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
    • 1-(4-Chloro-benzyl)-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • 1-(2,4-Dichloro-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(4-Methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 4-Isopropylamino-piperidin-1-yl)-[1-(4-methoxy-benzyl)-1H-indol-2-yl]-methanone,
    • 1-(4-Trifluoromethoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-mide,
    • 1-(2-Chloro-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
    • 1-(2-Chloro-benzyl)-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • 1-(2-Chloro-benzyl)-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-ylmethyl)-amide,
    • 1-(3,5-Dichloro-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • [1-(3,5-Dichloro-benzyl)-1H-indol-2-yl]-(4-isopropylamino-piperidin-1-yl)-methanone,
    • 3-Fluoro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-7-methyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[2-(5-Chloro-thiophen-2-yl)-thiazol-5-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(3-Chloro-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • [1-(3-Chloro-benzyl)-1H-indol-2-yl]-(4-isopropylamino-piperidin-1-yl)-methanone, 1-[2-(4-Chloro-phenyl)-ethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[2-(2,4-Dichloro-phenyl)-ethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[2-(3-Methoxy-phenyl)-ethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[2-(4-Chloro-phenyl)-ethyl]-4-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 4-Bromo-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-methyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 5-Bromo-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-cyano-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-trifluoromethyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 4,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 5,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 4-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (4-methyl-piperazin-1-yl)-amide,
    • [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester,
    • [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(1-ethyl-propyl)-piperidin-4-yl]-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-methyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2,2,2-trifluoro-ethyl)-piperidin-4-yl]-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-formyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-carbamoyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-methanesulfonyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-acetyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2-chloro-pyrimidin-4-yl)-piperidin-4-yl]-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-pyrimidin-4-yl-piperidin-4-yl)-amide,
    • {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-[4-(pyridin-4-yloxy)-piperidin-1-yl]-methanone,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [4-(1H-imidazol-4-yl)-phenyl]-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (4-pyridin-3-yl-thiazol-2-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [3-(pyrrolidine-1-carbonyl)-4,5-dihydro-isoxazol-5-ylmethyl]-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isobutyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-propyl-piperidin-4-yl)-amide,
    • 4-({1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-amino)-piperidine-1-carboxylic acid methyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (4-isopropyl-piperazin-1-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (4-ethyl-piperazin-1-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid pyridin-4-yl-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-nitro-1H-indole-2-carboxylic acid pyridin-4-yl-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3,7-diiodo-4-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3,7-dicyano-4-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[2-(4-Chloro-phenyl)-thiazol-4-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-(1,7-Dichloro-isoquinolin-3-ylmethyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[3-(4-Chloro-phenyl)-isoxazol-5-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(4-Chloro-phenyl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[3-(4-Chloro-phenyl)-[1,2,4]oxadiazol-5-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5-methanesulfonyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[(4-Chloro-phenylcarbamoyl)-methyl]-5-methanesulfonyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 5-Chloro-1-[(5-chloro-pyridin-2-ylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5-fluoro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5,7-difluoro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • S-1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-ethyl-pyrrolidin-3-yl)-amide,
    • R-1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid 1-ethyl-pyrrolidin-3-yl)-amide,
    • R-1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-pyrrolidin-3-yl)-amide,
    • S-1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-pyrrolidin-3-yl)-amide,
    • [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-trifluoromethyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester,
    • [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester,
    • [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethoxy-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester,
    • [{4,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester,
    • [{5,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester,
    • [{4-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester,
    • [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-trifluoromethyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid,
    • [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid,
    • [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethoxy-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid,
    • [{4,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid,
    • [{5,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid,
    • [{4-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-hydroxymethyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid ethyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid methyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid 2,2-dimethyl-propionyloxymethyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-[1,3,4]thiadiazol-2-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-[1,3,4]thiadiazol-2-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid,
    • 1-[(4-Chloro-phenylcarbamoyl)-methyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester,
    • 1-[(4-Chloro-phenylcarbamoyl)-methyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid methyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,5-dicarboxylic acid 5-amide 2-[(1-isopropyl-piperidin-4-yl)-amide],
    • 1-[(4-chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid 1-isopropyl-piperidin-4-yl)-amide,
    • 1-[(5-chloro-thiophen-2-ylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[(4-chloro-2-fluoro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[(5-chloro-pyridin-2-ylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[(4-chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid 3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-ylmethyl)-amide,
    • 1-[(4-chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid 3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide,
    • N-(4-chloro-phenyl)-2-{2-[4-(pyridin-4-ylamino)-piperidine-1-carbonyl]-indol-1-yl}-cetamide,
    • 1-[(4-chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-cyclopropyl-piperidin-4-yl)-amide,
    • N-(4-chloro-phenyl)-2-[2-(4-pyrrolidin-1-yl-piperidine-1-carbonyl)-indol-1-yl]-acetamide,
    • 1-[(4-chloro-phenylcarbamoyl)-methyl]-5-nitro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 5-amino-4-chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide,
    • 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-cyanomethyl-piperidin-4-yl)-amide,
    • 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2-hydroxy-ethyl)-piperidin-4-yl]-amide,
    • 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2-methoxy-ethyl)-piperidin-4-yl]-amide,
    • 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-carbamoylmethyl-piperidin-4-yl)-amide,
    • 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-methylcarbamoylmethyl-piperidin-4-yl)-amide,
    • 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(1H-imidazol-2-ylmethyl)-piperidin-4-yl]-amide,
    • 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2-dimethylamino-acetyl)-piperidin-4-yl]-amide,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid 1-ethoxycarbonyloxy-ethyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid 1-ethoxycarbonyloxy-ethyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid 2,2-dimethyl-propionyloxymethyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid 1-(2,2-dimethyl-propionyloxy)-ethyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid 1-(2,2-dimethyl-propionyloxy)-ethyl ester,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid 5-methyl-2-oxo-[1,3]dioxol-4-ylmethyl,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid 5-methyl-2-oxo-[1,3]dioxol-4-ylmethyl,
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid 1-cyclohexyloxycarbonyloxy-ethyl ester and
    • 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid 1-cyclohexyloxycarbonyloxy-ethyl ester.
  • In addition, the present invention further relates to a process for the preparation of a compound of formula I which comprises condensing a compound of formula 14
  • Figure US20090069565A1-20090312-C00016
  • with a compound of the formula HR8′ to give a compound of formula 15 and optionally converting the compound of the formula 15 into a compound of formula I,
    wherein the residue R8′ is —N(R1)—R2—V-G-M, wherein each of R1, R2, V, G, and M are as first defined above in the definition formula I, but wherein said R8 functional groups can also be present in the form of precursor groups that are subsequently transformed into the final functional groups present in —N(R1)—R2—V-G-M; wherein the residue R50 denotes the group -Q-Ro, as Q and R0 are first defined above in the definition of formula I, or a precursor group which is subsequently transformed into the group -Q-Ro; the group —C(O)R49 is a carboxylic acid group or derivative thereof; and the groups R1e, R1a, R1b, R1c and R1d in the formulae 14 and 15 have the meanings corresponding to the definitions of R7, R6, R5, R4, and R3, respectively, in the definition of formula I as first defined above, or contain such functional groups in protected form or in the form of precursor groups.
  • It relates, also, to a pharmaceutical preparation, comprising at least one compound of formula I as defined above, as well as to methods for inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation or fibrinolysis comprising administering to a patient in need thereof an effective amount of such pharmaceutical preparation, more particularly, to the use of such preparation for influencing a condition selected from the group consisting of blood coagulation, inflammatory response, fibrinolysis, cardiovascular disorders, thromboembolic diseases, restenoses, abnormal thrombus formation, acute myocardial infarction, unstable angina, acute vessel closure associated with thrombolytic therapy, thromboembolism, percutaneous, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee and hip surgery, transluminal coronary angioplasty, transient ischemic attacks, stroke, disseminated systemic intravascular coagulatopathy occurring in vascular systems during septic shock, a risk of pulmonary thromboembolism, certain viral infections or cancer, intravascular coagulatopathy occurring in vascular systems during septic shock, coronary heart disease, myocardial infarction, angina pectoris, vascular restenosis, for example, restenosis following angioplasty like PTCA, adult respiratory distress syndrome, multi-organ failure, stroke and disseminated intravascular clotting disorder, and thromboses such as deep vein and proximal vein thrombosis which can occur following surgery.
  • In general, the meaning of any group, residue, heteroatom, number etc., which can occur more than once in the compounds of formula I, is independent of the meaning of this group, residue, heteroatom, number etc. in any other occurrence. All groups, residues, heteroatoms, numbers etc., which can occur more than once in the compounds of the formula I can be identical or different.
  • As used herein, the term alkyl is to be understood in the broadest sense to mean hydrocarbon residues which can be linear, i.e. straight-chain, or branched and which can be acyclic or cyclic residues or comprise any combination of acyclic and cyclic subunits. Further, the term alkyl as used herein expressly includes saturated groups as well as unsaturated groups, which latter groups contain one or more, for example, one, two or three, double bonds and/or triple bonds, provided that the double bonds are not located within a cyclic alkyl group in such a manner that an aromatic system results. All these statements also apply if an alkyl group occurs as a substituent on another residue, for example in an alkyloxy residue, an alkyloxycarbonyl residue or an arylalkyl residue. Examples of alkyl residues containing 1, 2, 3, 4, 5, 6, 7 or 8 carbon atoms are methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, the n-isomers of all these residues, isopropyl, isobutyl, 1-methylbutyl, isopentyl, neopentyl, 2,2-dimethylbutyl, 2-methylpentyl, 3-methylpentyl, isohexyl, sec-butyl, tBu, tert-pentyl, sec-butyl, tert-butyl and tert-pentyl.
  • Unsaturated alkyl residues are, for example, alkenyl residues such as vinyl, 1-propenyl, 2-propenyl (=allyl), 2-butenyl, 3-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 5-hexenyl or 1,3-pentadienyl, or alkynyl residues such as ethynyl, 1-propynyl, 2-propynyl (=propargyl) or 2-butynyl. Alkyl residues can also be unsaturated when they are substituted.
  • Examples of cyclic alkyl residues are cycloalkyl residues containing 3, 4, 5 or 6 ring carbon atoms like cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl, which can also be substituted and/or unsaturated. Unsaturated cyclic alkyl groups and unsaturated cycloalkyl groups like, for example, cyclopentenyl or cyclohexenyl can be bonded via any carbon atom.
  • Of course, a cyclic alkyl group has to contain at least three carbon atoms, and an unsaturated alkyl group has to contain at least two carbon atoms. Thus, a group like (C1-C8)-alkyl is to be understood as comprising, among others, saturated acyclic (C1-C8)-alkyl, (C3-C6)-cycloalkyl, and unsaturated (C2-C8)-alkyl like (C2-C8)-alkenyl or (C2-C8)-alkynyl. Similarly, a group like (C1-C4)-alkyl is to be understood as comprising, among others, saturated acyclic (C1-C4)-alkyl, and unsaturated (C2-C4)-alkyl like (C2-C4)-alkenyl or (C2-C4)-alkynyl.
  • Unless stated otherwise, the term alkyl preferably comprises acyclic saturated hydrocarbon residues which have from one to six carbon atoms and which can be linear or branched. A particular group of interest comprises such saturated acyclic alkyl residues as (C1-C4)-alkyl residues like methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tBu.
  • Unless stated otherwise, and irrespective of any specific substituents bonded to alkyl groups which are indicated in the definition of the compounds of formula I, alkyl groups can in general be unsubstituted or substituted by one or more, for example one, two or three, identical or different substituents. Any kind of substituents generally present in substituted alkyl residues can be present in any desired position provided that the substitution does not lead to an unstable molecule. Examples of substituted alkyl residues are alkyl residues in which one or more, for example, 1, 2 or 3, hydrogen atoms are replaced with halogen atoms, in particular, fluorine atoms.
  • The term “mono- or bicyclic 4- to 14-membered heteroaryl” refers to (C4-C14)-aryl in which one or more of the 5 to 14 ring carbon atoms are replaced by heteroatoms such as nitrogen, oxygen or sulfur. Examples are azocinyl, benzimidazolyl, benzofuranyl, benzothiofuranyl, benzothiophenyl, benzoxazolyl, benzthiazolyl, benztriazolyl, benztetrazolyl, benzisoxazolyl, benzisothiazolyl, benzimidazalinyl, carbazolyl, 4aH-carbazolyl, carbolinyl, chromanyl, chromenyl, cinnolinyl, decahydrochinolinyl, 2H,6H-1,5,2-dithiazinyl, dihydrofuro[2,3-b]-tetrahydrofuran, furanyl, furazanyl, imidazolidinyl, imidazolinyl, imidazolyl, 1H-indazolyl, indolinyl, indolizinyl, indolyl, 3H-indolyl, isobenzofuranyl, isochromanyl, isoindazolyl, isoindolinyl, isoindolyl, isoquinolinyl (benzimidazolyl), isothiazolyl, isoxazolyl, morpholinyl, naphthyridinyl, octahydroisoquinolinyl, oxadiazolyl, 1,2,3-oxadiazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, oxazolidinyl, oxazolyl, oxazolidinyl, pyrimidinyl, phenanthridinyl, phenanthrolinyl, phenazinyl, phenothiazinyl, phenoxathiinyl, phenoxazinyl, phthalazinyl, piperazinyl, piperidinyl, pteridinyl, purynyl, pyranyl, pyrazinyl, pyroazolidinyl, pyrazolinyl, pyrazolyl, pyridazinyl, pyridooxazole, pyridoimidazole, pyridothiazole, pyridinyl, pyridyl, pyrimidinyl, pyrrolidinyl, pyrrolinyl, 2H-pyrrolyl, pyrrolyl, quinazolinyl, quinolinyl, 4H-quinolizinyl, quinoxalinyl, quinuclidinyl, tetrahydrofuranyl, tetrahydroisochinolinyl, tetrahydrochinolinyl, 6H-1,2,5-thiadazinyl, 1,2,3-thiadiazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, 1,3,4-thiadiazolyl and xanthenyl. Preferred are pyridyl; such as 2-pyridyl, 3-pyridyl or 4-pyridyl; pyrrolyl; such as 2-pyrrolyl and 3-pyrrolyl; furyl; such as 2-furyl and 3-furyl; thienyl; such as 2-thienyl and 3-thienyl; imidazolyl, pyrazolyl, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, tetrazolyl, pyridazinyl, pyrazinyl, pyrimidinyl, indolyl, isoindolyl, benzofuranyl, benzothiophenyl, 1,3-benzodioxolyl, indazolyl, benzimidazolyl, benzoxazolyl, benzothiazolyl, quinolinyl, isoquinolinyl, chromanyl, isochromanyl, cinnolinyl, quinazolinyl, quinoxalinyl, phthalazinyl, pyridoimidazolyl, pyridopyridinyl, pyridopyrimidinyl, purinyl and pteridinyl.
  • The term “R1 and R2 together with the nitrogen atom and V to which they are bonded form a 5- to 7-membered cyclic group” refers to structures of heterocycles which can be derived from compounds such as piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, thiadiazole and thiomorpholine.
  • The term “a 3- to 7-membered cyclic residue, containing up to 1, 2, 3 or 4 heteroatoms” refers to structures of heterocycles which can be derived from compounds such as, aziridine, azirine, azetidine, pyrrole, pyrrolidine, imidazole, pyrazole, 1,2,3-triazole, 1,2,4-triazole, tetrazole, pyridine, pyrimidine, pyrazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, tetrazine, tetrazole, azepine, diazirine, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, pyridazine, piperidine, piperazine, pyrrolidinone, ketopiperazine, furan, pyran, dioxole, oxazole, isoxazole, 2-isoxazoline, isoxazolidine, morpholine, oxirane, oxaziridine, 1,3-dioxolene, 1,2-oxazine, 1,3-oxazine, 1,4-oxazine, oxaziridine, thiophene, thiopyran, thietan, thiazole, isothiazole, isothiazoline, isothiazolidine, 1,2-oxathiolan, thiopyran, 1,2-thiazine, 1,3-thiazole, 1,3-thiazine, 1,4-thiazine, thiadiazine and thiomorpholine.
  • The term “R11 and R12 together with the nitrogen atom to which they are bonded form a saturated or unsaturated 5- to 7-membered monocyclic heterocyclic ring” refers to residues which can be derived from compounds such as piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, thiadiazole and thiomorpholine.
  • The fact that many of the before-listed names of heterocycles are the chemical names of unsaturated or aromatic ring systems does not imply that the 4-15 membered mono- or polycyclic group could only be derived from the respective unsaturated ring system. The names here only serve to describe the ring system with respect to ring size and the number of the heteroatoms and their relative positions. As explained above, the 4-15 membered mono- or polycyclic group can be saturated or partially unsaturated or aromatic, and can thus be derived not only from the before-listed heterocycles themselves but also from all their partially or completely hydrogenated analogues and also from their more highly unsaturated analogues if applicable. As examples of completely or partially hydrogenated analogues of the before-listed heterocycles from which this group may be derived the following may be mentioned: pyrroline, pyrrolidine, tetrahydrofuran, tetrahydrothiophene, dihydropyridine, tetrahydropyridine, piperidine, 1,3-dioxolane, 2-imidazoline, imidazolidine, 4,5-dihydro-1,3-oxazol, 1,3-oxazolidine, 4,5-dihydro-1,3-thiazole, 1,3-thiazolidine, perhydro-1,4-dioxane, piperazine, perhydro-1,4-oxazine (=morpholine), perhydro-1,4-thiazine (=thiomorpholine), perhydroazepine, indoline, isoindoline, 1,2,3,4-tetrahydroquinoline, 1,2,3,4-tetrahydroisoquinoline, etc.
  • The 4-15 membered mono- or polycyclic group may be bonded via any ring carbon atom, and, in the case of nitrogen heterocycles, via any suitable ring nitrogen atom. Thus, for example, a pyrrolyl residue can be 1-pyrrolyl, 2-pyrrolyl or 3-pyrrolyl, a pyrrolidinyl residue can be pyrrolidin-1-yl (=pyrrolidino), pyrrolidin-2-yl or pyrrolidin-3-yl, a pyridinyl residue can be pyridin-2-yl, pyridin-3-yl or pyridin-4-yl, a piperidinyl residue can be piperidin-1-yl (=piperidino), piperidin-2-yl, piperidin-3-yl or piperidin-4-yl. Furyl can be 2-furyl or 3-furyl, thienyl can be 2-thienyl or 3-thienyl, imidazolyl can be imidazol-1-yl, imidazol-2-yl, imidazol-4-yl or imidazol-5-yl, 1,3-oxazolyl can be 1,3-oxazol-2-yl, 1,3-oxazol-4-yl or 1,3-oxazol-5-yl, 1,3-thiazolyl can be 1,3-thiazol-2-yl, 1,3-thiazol-4-yl or 1,3-thiazol-5-yl, pyrimidinyl can be pyrimidin-2-yl, pyrimidin-4-yl (=6-pyrimidinyl) or 5-pyrimidinyl, piperazinyl can be piperazin-1-yl (=piperazin-4-yl=piperazino) or piperazin-2-yl. Indolyl can be indol-1-yl, indol-2-yl, indol-3-yl, indol-4-yl, indol-5-yl, indol-6-yl or indol-7-yl. Similarly, benzimidazolyl, benzoxazolyl and benzothiazol residues can be bonded via the 2-position and via any of the positions 4, 5, 6, and 7. Quinolinyl can be quinolin-2-yl, quinolin-3-yl, quinolin-4-yl, quinolin-5-yl, quinolin-6-yl, quinolin-7-yl or quinolin-8-yl, isoqinolinyl can be isoquinol-1-yl, isoquinolin-3-yl, isoquinolin-4-yl, isoquinolin-5-yl, isoquinolin-6-yl, isoquinolin-7-yl or isoquinolin-8-yl. In addition to being bonded via any of the positions indicated for quinolinyl and isoquinolinyl, 1,2,3,4-tetrahydroquinolinyl and 1,2,3,4-tetrahydroisoquinolinyl can also be bonded via the nitrogen atoms in 1-position and 2-position, respectively.
  • Unless stated otherwise, and irrespective of any specific substituents bonded to the 4-15 membered mono- or polycyclic group or any other heterocyclic groups which are indicated in the definition of the compounds of formula I, the 4-15 membered mono- or polycyclic group can be unsubstituted or substituted on ring carbon atoms with one or more, for example one, two, three, four or five, identical or different substituents, such as (C1-C8)-alkyl, in particular (C1-C4)-alkyl, (C1-C8)-alkyloxy, in particular (C1-C4)-alkyloxy, (C1-C4)-alkylthio, halogen, nitro, amino, ((C1-C4)-alkyl)carbonylamino like acetylamino, trifluoromethyl, trifluoromethoxy, hydroxy, oxo, hydroxy-(C1-C4)-alkyl, such as, for example, hydroxymethyl or 1-hydroxyethyl or 2-hydroxyethyl, methylenedioxy, ethylenedioxy, formyl, acetyl, cyano, aminosulfonyl, methylsulfonyl, hydroxycarbonyl, aminocarbonyl, (C1-C4)-alkyloxycarbonyl, optionally substituted phenyl, optionally substituted phenoxy, benzyl optionally substituted in the phenyl group, benzyloxy optionally substituted in the phenyl group, etc. The substituents can be present in any desired position provided that a stable molecule results. Of course, an oxo group cannot be present in an aromatic ring. Each suitable ring nitrogen atom in the 4-15 membered mono- or polycyclic group can independently be unsubstituted, i.e. carry a hydrogen atom, or can be substituted, i.e., carry a substituent like (C1-C8)-alkyl, for example (C1-C4)-alkyl such as methyl or ethyl, optionally substituted phenyl, phenyl-(C1-C4)-alkyl, for example benzyl, optionally substituted in the phenyl group, hydroxy-(C2-C4)-alkyl, such as, for example, 2-hydroxyethyl, acetyl or another acyl group, methylsulfonyl or another sulfonyl group, aminocarbonyl, (C1-C4)-alkyloxycarbonyl, etc. In general, in the compounds of the formula I nitrogen heterocycles can also be present as N-oxides or as quaternary salts. Ring sulfur atoms can be oxidized to the sulfoxide or to the sulfone. Thus, for example, a tetrahydrothienyl residue may be present as S,S-dioxotetrahydro-thienyl residue or a thiomorpholinyl residue like thiomorpholin-4-yl may be present as 1-oxo-thiomorpholin-4-yl or 1,1-dioxo-thiomorpholin-4-yl. A substituted 4-15 membered mono- or polycyclic group that can be present in a specific position of the compounds of formula I can independently of other groups be substituted by substituents selected from any desired subgroup of the substituents listed before and/or in the definition of that group.
  • The 3-7 membered monocyclic group may be bonded via any ring carbon atom, and, in the case of nitrogen heterocycles, via any suitable ring nitrogen atom. Thus, for example, a pyrrolyl residue can be 1-pyrrolyl, 2-pyrrolyl or 3-pyrrolyl, a pyrrolidinyl residue can be pyrrolidin-1-yl (=pyrrolidino), pyrrolidin-2-yl or pyrrolidin-3-yl, a pyridinyl residue can be pyridin-2-yl, pyridin-3-yl or pyridin-4-yl, a piperidinyl residue can be piperidin-1-yl (=piperidino), piperidin-2-yl, piperidin-3-yl or piperidin-4-yl. Furyl can be 2-furyl or 3-furyl, thienyl can be 2-thienyl or 3-thienyl, imidazolyl can be imidazol-1-yl, imidazol-2-yl, imidazol-4-yl or imidazol-5-yl, 1,3-oxazolyl can be 1,3-oxazol-2-yl, 1,3-oxazol-4-yl or 1,3-oxazol-5-yl, 1,3-thiazolyl can be 1,3-thiazol-2-yl, 1,3-thiazol-4-yl or 1,3-thiazol-5-yl, pyrimidinyl can be pyrimidin-2-yl, pyrimidin-4-yl (=6-pyrimidinyl) or 5-pyrimidinyl, piperazinyl can be piperazin-1-yl (=piperazin-4-yl=piperazino) or piperazin-2-yl. Unless stated otherwise, and, irrespective of any specific substituents bonded to the 3-7 membered monocyclic group, or any other heterocyclic groups which are indicated in the definition of the compounds of the formula I, can be unsubstituted or substituted on ring carbon atoms with one or more, for example, one, two, three, four or five, identical or different substituents like (C1-C8)-alkyl, in particular, (C1-C4)-alkyl, (C1-C8)-alkyloxy, in particular, (C1-C4)-alkyloxy, (C1-C4)-alkylthio, halogen, nitro, amino, ((C1-C4)-alkyl)carbonylamino like acetylamino, trifluoromethyl, trifluoromethoxy, hydroxy, oxo, hydroxy-(C1-C4)-alkyl such as, for example, hydroxymethyl or 1-hydroxyethyl or 2-hydroxyethyl, methylenedioxy, ethylenedioxy, formyl, acetyl, cyano, aminosulfonyl, methylsulfonyl, hydroxycarbonyl, aminocarbonyl, (C1-C4)-alkyloxycarbonyl, optionally substituted phenyl, optionally substituted phenoxy, benzyl optionally substituted in the phenyl group, benzyloxy optionally substituted in the phenyl group, etc. The substituents can be present in any desired position provided that a stable molecule results. Of course, an oxo group cannot be present in an aromatic ring. Each suitable ring nitrogen atom in the 3-7 membered monocyclic group can independently be unsubstituted, i.e. carry a hydrogen atom, or can be substituted, i.e. carry a substituent like (C1-C8)-alkyl, for example, (C1-C4)-alkyl such as methyl or ethyl, optionally substituted phenyl, phenyl-(C1-C4)-alkyl, for example benzyl, optionally substituted in the phenyl group, hydroxy-(C2-C4)-alkyl such as, for example 2-hydroxyethyl, acetyl or another acyl group, methylsulfonyl or another sulfonyl group, aminocarbonyl, (C1-C4)-alkyloxycarbonyl, etc. In general, in the compounds of formula I, nitrogen heterocycles can also be present as N-oxides or as quaternary salts. Ring sulfur atoms can be oxidized to the sulfoxide or to the sulfone. Thus, for example, a tetrahydrothienyl residue may be present as S,S-dioxotetrahydrothienyl residue or a thiomorpholinyl residue like thiomorpholin-4-yl may be present as 1-oxo-thiomorpholin-4-yl or 1,1-dioxo-thiomorpholin-4-yl. A substituted 3-7 membered monocyclic group that can be present in a specific position of the compounds of formula I can independently of other groups be substituted by substituents selected from any desired subgroup of the substituents listed before and/or in the definition of that group.
  • Halogen is fluorine, chlorine, bromine or iodine, preferably fluorine, chlorine or bromine, particularly preferably chlorine or bromine.
  • Optically active carbon atoms present in the compounds of formula I can, independently of each other, have R configuration or S configuration. The compounds of formula I can be present in the form of pure enantiomers or pure diastereomers or in the form of mixtures of enantiomers and/or diastereomers, for example, in the form of racemates. The present invention relates to pure enantiomers and mixtures of enantiomers as well as to pure diastereomers and mixtures of diastereomers. The invention comprises mixtures of two or of more than two stereoisomers of formula I, and it also comprises all ratios of the stereoisomers in the mixtures. When the compounds of formula I can be present as E isomers or Z isomers (or cis isomers or trans isomers), the invention relates to pure E isomers and pure Z isomers as well as to E/Z mixtures in all ratios. The invention also comprises all tautomeric forms of the compounds of formula I.
  • Diastereomers, including E/Z isomers, can be separated into the individual isomers, for example, by chromatography. Racemates can be separated into the two enantiomers by customary methods, for example, by chromatography on chiral phases or by resolution, for example, by crystallization of diastereomeric salts obtained with optically active acids or bases. Stereochemically uniform compounds of formula I can also be obtained by employing stereochemically uniform starting materials or by using stereoselective reactions.
  • Physiologically tolerable salts of the compounds of formula I are nontoxic salts that are physiologically acceptable, in particular, pharmaceutically utilizable salts. Such salts of compounds of formula I containing acidic groups, for example, a carboxyl group (COOH), include, for example, alkali metal salts or alkaline earth metal salts, such as sodium salts, potassium salts, magnesium salts and calcium salts, as well as salts with physiologically tolerable quaternary ammonium ions, such as tetramethylammonium or tetraethylammonium, and acid addition salts with ammonia and physiologically tolerable organic amines, such as methylamine, dimethylamine, trimethylamine, ethylamine, triethylamine, ethanolamine or tris-(2-hydroxyethyl)amine. Basic groups contained in the compounds of formula I, for example, amino groups or guanidino groups, form acid addition salts, for example, with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid or phosphoric acid, or with organic carboxylic acids and sulfonic acids such as formic acid, acetic acid, oxalic acid, citric acid, lactic acid, malic acid, succinic acid, malonic acid, benzoic acid, maleic acid, fumaric acid, tartaric acid, methanesulfonic acid or p-toluenesulfonic acid. Compounds of the formula I which simultaneously contain a basic group and an acidic group, for example, a guanidino group and a carboxyl group, can also be present as zwitterions (betaines) which are likewise included in the scope of the present invention.
  • Salts of compounds of formula I can be obtained by customary methods known to those skilled in the art, for example, by combining a compound of the formula I with an inorganic or organic acid or base in a solvent or dispersant, or from other salts by cation exchange or anion exchange. The present invention also includes all salts of the compounds of formula I which, because of low physiologically tolerability, are not directly suitable for use in pharmaceuticals but are suitable, for example, as intermediates for carrying out further chemical modifications of the compounds of formula I or as starting materials for the preparation of physiologically tolerable salts.
  • The present invention furthermore includes all solvates of compounds of formula I, for example, hydrates or adducts with alcohols.
  • The invention also includes derivatives and modifications of the compounds of formula I, for example, prodrugs, protected forms and other physiologically tolerable derivatives, as well as active metabolites of the compounds of formula I. The invention relates, in particular, to prodrugs and protected forms of compounds of the formula I which can be converted into compounds of formula I under physiological conditions. Suitable prodrugs for the compounds of the formula I, i.e. chemically modified derivatives of the compounds of the formula I having properties which are improved in a desired manner, for example, with respect to solubility, bioavailability or duration of action, are known to those skilled in the art. More detailed information relating to prodrugs is found in standard literature like, for example, Design of Prodrugs, H. Bundgaard (ed.), Elsevier, 1985, Fleisher et al., Advanced Drug Delivery Reviews 19 (1996) 115-130; or H. Bundgaard, Drugs of the Future 16 (1991) 443, the contents of all of which are hereby incorporated herein by reference. Suitable prodrugs for the compounds of the formula I are especially acyl prodrugs and carbamate prodrugs of acylatable nitrogen-containing groups, such as amino groups and the guanidino group and also ester prodrugs and amide prodrugs of carboxylic acid groups which may be present in compounds of formula I. In the acyl prodrugs and carbamate prodrugs, one or more, for example, one or two, hydrogen atoms on nitrogen atoms in such groups are replaced with an acyl group or a carbamate, preferably a (C1-C6)-alkyloxycarbonyl group. Suitable acyl groups and carbamate groups for acyl prodrugs and carbamate prodrugs are, for example, the groups Rp1—CO— and Rp2O—CO—, in which Rp1 is hydrogen, (C1-C18)-alkyl, (C3-C8)-cycloalkyl, (C3-C8)-cycloalkyl-(C1-C4)-alkyl-, (C6-C14)-aryl, Het-, (C6-C14)-aryl-(C1-C4)-alkyl- or Het-(C1-C4)-alkyl- and in which Rp2 has the meanings indicated for Rp1 with the exception of hydrogen.
  • Especially preferred compounds of formula I are those wherein two or more residues are defined as indicated before for preferred compounds of formula I, or contain residues that have one or more of the specific definitions of the residues given in their general definitions or in the definitions of preferred compounds above.
  • Also, with respect to all preferred compounds of formula I, all their stereoisomeric forms and mixtures thereof in any ratio and their physiologically acceptable salts explicitly are a subject of the present invention, as well as are their prodrugs. Similarly, also in all preferred compounds of formula I, all residues that are present more than one time in the molecule are independent of each other and can be identical or different.
  • The compounds of formula I can be prepared by utilizing procedures and techniques, which per se are well known and appreciated by one of ordinary skill in the art. Starting materials or building blocks for use in the general synthetic procedures that can be applied in the preparation of the compounds of formula I are readily available to one of ordinary skill in the art. In many cases, they are commercially available or have been described in the literature. Otherwise, they can be prepared from readily available precursor compounds analogously to procedures described in the literature, or by procedures or analogously to procedures described in this application.
  • In general, compounds of formula I can be prepared, for example, in the course of a convergent synthesis, by linking two or more fragments which can be derived retrosynthetically from formula I. More specifically, suitably substituted starting indole derivatives are employed as building blocks in the preparation of the compounds of formula I. If not commercially available, such indole derivatives can be prepared according to the well-known standard procedures for the formation of the indole ring system such as, for example, the Fischer indole synthesis, the Madelung indole synthesis, the indole synthesis starting from N-chloroanilines and ∃-ketosulfides described by Gassman et al., the Bischler indole synthesis, the Reissert indole synthesis, or the Nenitzescu indole synthesis. By choosing suitable precursor molecules, these indole syntheses allow the introduction of a variety of substituents into the various positions of the indole system which can then be chemically modified in order to finally arrive at the molecule of the formula I having the desired substituent pattern. As one of the comprehensive reviews in which numerous details and literature references on the chemistry of indoles and on synthetic procedures for their preparation can be found, W. J. Houlihan (ed.), “Indoles, Part One”, volume 25, 1972, out of the series “The Chemistry of Heterocyclic Compounds”, A. Weissberger and E. C. Taylor (ed.), John Wiley & Sons, is preferred.
  • Examples of the many commercially available indole derivatives that are suitable as starting materials for the preparation of the compounds of formula I, are the following (the acids listed are commercially available as the free acids themselves and/or as the methyl or ethyl esters): indole-2-carboxylic acid, indole-3-carboxylic acid, indole-3-acetic acid, 3-(3-indolyl)-propionic acid, indole-2,3-dicarboxylic acid, 3-ethoxycarbonylmethyl-indole-2-carboxylic acid, 3-methyl-indole-2-carboxylic acid, 5-fluoroindole-2-carboxylic acid, 5-chloro-indole-2-carboxylic acid, 5-bromo-indole-2-carboxylic acid, 5-methoxy-indole-2-carboxylic acid, 5-hydroxy-indole-2-carboxylic acid, 5,6-dimethoxy-indole-2-carboxylic acid, 4-benzyloxy-indole-2-carboxylic acid, 5-benzyloxy-indole-2-carboxylic acid, 6-benzyloxy-5-methoxy-indole-2-carboxylic acid, 5-methyl-indole-2-carboxylic acid, 5-ethyl-indole-2-carboxylic acid, 7-methyl-indole-2-carboxylic acid, 4-methoxy-indole-2-carboxylic acid, 6-methoxy-indole-2-carboxylic acid, 4,6-dimethoxy-indole-2-carboxylic acid, 4,6-dichloro-indole-2-carboxylic acid, 5-nitro-indole-2-carboxylic acid, 5-methylsulfonyl-indole-2-carboxylic acid, 7-nitro-indole-2-carboxylic acid, 7-tert-butylcarbonylamino-indole-2-carboxylic acid, 7-(3-trifluoro-methylbenzoylamino)-indole-2-carboxylic acid, 7-(4-methoxyphenylsulfonylamino)-indole-2-carboxylic acid, 5-bromo-3-methyl-indole-2-carboxylic acid, 3-(2-carboxyethyl)-6-chloroindole-2-carboxylic acid.
  • If starting indole derivatives are to be synthesized this can be done, for example, according to the well known indole syntheses mentioned above. In the following they are explained briefly, however, they are standard procedures comprehensively discussed in the literature, and are well known to one skilled in the art.
  • The Fischer indole synthesis comprises the acid cyclization of phenylhydrazones, for example of the general formula 2,
  • Figure US20090069565A1-20090312-C00017
  • which can be obtained by various methods and in which R30, R31 and R32 and n can have a wide variety of denotations. Besides hydrogen and alkyl, R31 and R32 can especially denote ester groups or methyl or ethyl groups or 2,2,2-trifluoroethyl groups carrying an ester group as substituent thus allowing the introduction into the indole molecule of the (CH2)p—CO moiety occurring in the groups R2 and/or R3 in the compounds of the formula I. As examples of the many literature references describing the synthesis of indole derivatives according to the Fischer synthesis, besides the above-mentioned book edited by Houlihan, the following articles are mentioned: F. G. Salituro et al., J. Med. Chem. 33 (1990) 2944; N. M. Gray et al., J. Med. Chem. 34 (1991) 1283; J. Sh. Chikvaidze et al., Khim. Geterotsikl. Soedin. (1991) 1508; S. P. Hiremath et al., Indian J. Chem. 19 (1980) 770; J. Bornstein, J. Amer. Chem. Soc. 79 (1957) 1745; S. Wagaw, B. Yang and S. Buchwald, J. Am. Chem. Soc. 121 (1999) 10251 or by Y. Murakami, Y. Yokoyama, T. Miura, H. Hirasawa Y. Kamimura and M. Izaki, Heterocycles 22 (1984) 1211.
  • The Reissert indole synthesis comprises the reductive cyclization of o-nitrophenylpyruvic acids or esters thereof, for example of the general formula 3,
  • Figure US20090069565A1-20090312-C00018
  • in which the groups R30 can have a wide variety of denotations and can be present in all positions of the benzene ring. The Reissert indole synthesis leads to derivatives of indole-2-carboxylic acids. The pyruvic acid derivatives of the formula 3 can be obtained by condensation of oxalic acid esters with substituted o-nitrotoluenes. As literature references, besides the above-mentioned book edited by Houlihan and the literature articles mentioned therein, for example the articles by H. G. Lindwall and G. J. Mantell, J. Org. Chem. 18 (1953) 345 or by H. Burton and J. L. Stoves, J. Chem. Soc. (1937) 1726 or by W. Noland, F. Baude, Org. Synth Coil. Vol. V, J. Wiley, New York, (1973) 567 are mentioned. Another method to gain regioselective access to the indole structure involves palladium catalysis, for example o-haloanilines (X═Cl, Br, I) or o-trifluoromethanesulfonyloxyanilines (X=OTf) of the general formula 4 can be cyclized to indoles utilizing several alkynes by adopting procedures described by J. Ezquerra, C. Pedregal. C. Lamas, J. Barluenga, M. Pérez, M. Garcia-Martin, J. Gonzalez, J. Org. Chem. 61 (1996) 5805; or F. Ujjainwalla, D. Warner, Tetrahedron Lett. 39 (1998) 5355 and furthermore A. Rodriguez, C. Koradin, W. Dohle, P. Knochel, Angew. Chem. 112 (2000) 2607; or R. Larock, E. Yum, M. Refyik, J. Org. Chem. 63 (1998) 7653; R. Larock, E. Yum, J. Am. Chem. Soc. 113 (1991) 6689; K. Roesch; R. Larock, J. Org. Chem. 66 (2001) 412
  • Figure US20090069565A1-20090312-C00019
  • Alternatively the indole structure can be built up by employment of a variety of ketones under palladium catalysis by adopting and modifying a procedure described by C. Chen, D. Liebermann, R. Larsen, T. Verhoeven and P. Reider J. Org. Chem. 62 (1997) 2676 as indicated below:
  • Figure US20090069565A1-20090312-C00020
  • According to the Bischler indole synthesis β-anilinoketones, for example of the general formula 10,
  • Figure US20090069565A1-20090312-C00021
  • can be cyclized to indole derivatives.
  • The Nenitzescu indole synthesis provides a valuable route to indole-3-carboxylic acid derivatives carrying a hydroxy group in the 5-position. It comprises the reaction of a para-benzoquinone with a β-aminocrotonate, for example of the compounds of the formulae 11 and 12.
  • Figure US20090069565A1-20090312-C00022
  • A further route to specifically substituted indole derivatives proceeds via 2,3-dihydroindoles (indolines) which can be easily obtained by reduction of indoles, for example by hydrogenation, or by cyclization of suitable phenylethylamine derivatives. Indolines can undergo a variety of electrophilic aromatic substitution reaction allowing the introduction of various substituents into the benzene nucleus which cannot directly be introduced by such reactions into the benzene nucleus of the indole molecule. The indolines can then be dehydrogenated to the corresponding indoles, for example with reagents like chloranil, or palladium together with a hydrogen acceptor. Again, details on these syntheses can be found in the above-mentioned book edited by Houlihan.
  • Figure US20090069565A1-20090312-C00023
  • Moreover 2-H-indoles can be converted into the corresponding carboxylic acids or carboxylic esters by lithiation of the 2-position of the indoles of the general formula 13 and subsequent reaction with carbon dioxide or alkylchloroformate according to 1. Hasan, E. Marinelli, L. Lin, F. Fowler, A. Levy, J. Org. Chem. 46 (1981) 157; T. Kline J. Heterocycl. Chem. 22 (1985) 505; J.-R. Dormoy, A. Heymes, Tetrahedron 49, (1993) 2885; E. Desarbre, S. Coudret, C. Meheust, J.-Y. Mérour, Tetrahedron 53 (1997) 3637 indicated below:
  • R45 represents hydrogen or a protecting group like, for example, benzenesulfonyl or tert-butoxycarbonyl.
  • Depending on the substituents in the starting materials, in certain indole syntheses, mixtures of positional isomers may be obtained which, however, can be separated by modern separation techniques like, for example, preparative HPLC.
  • Further, in order to obtain the desired substituents in the benzene nucleus and in the heterocyclic nucleus of the indole ring system in the formula I, the functional groups introduced into the ring system during the indole synthesis can be chemically modified. For example, indoles carrying a hydrogen atom in the 2-position or the 3-position can also be obtained by saponification and subsequent decarboxylation of indoles carrying an ester group in the respective position. Carboxylic acid groups and acetic acid groups in the 2-position and the 3-position can be converted into their homologues by usual reactions for chain elongation of carboxylic acids. Halogen atoms can be introduced into the 2-position or the 3-position, for example by reacting the respective indolinone with a halogenating agent such as phosphorus pentachloride analogously to the method described by J. C. Powers, J. Org. Chem. 31 (1966) 2627. The starting indolinones for such a synthesis can be obtained from 2-aminophenyl acetic acids. Starting indole derivatives for the preparation of compounds of the formula I carrying a halogen substituent in the 3-position can also be obtained according to procedures described in the literature like the following. For the fluorination of 1H-indole-2-carboxylic acid ethyl ester derivatives in the 3-position N-fluoro-2,4,6-trimethylpyridinium triflate is the reagent of choice (T. Umemoto, S. Fukami, G. Tomizawa, K. Harasawa, K. Kawada, K. Tomita J. Am. Chem. Soc. 112 (1990) 8563). Chlorination of 1H-indole-2-carboxylic acid ethyl ester derivatives in the 3-position by reaction with sulfuryl chloride in benzene yields 3-chloro-1H-indole-2-carboxylic acid ethyl ester (Chem. Abstr. 1962, 3441i-3442b); the same result can obtained by means of NCS (D. Comins, M. Killpack, Tetrahedron Lett. 33 (1989) 4337; M. Brennan, K. Erickson, F. Szmlac, M. Tansey, J. Thornton, Heterocycles 24 (1986) 2879). Bromination of 1H-indole-2-carboxylic acid ethyl ester derivatives in the 3-position can be achieved by reaction with NBS (M. Tani, H. Ikegami, M. Tashiro, T. Hiura, H. Tsukioka, Heterocycles 34 (1992) 2349). Analogously to the procedures described above NIS can be used efficiently for the iodination in the of 1H-indole-2-carboxylic acid ethyl ester derivatives in the 3-position. Furthermore the iodination of 1H-indole-2-carboxylic acid ethyl ester derivatives in the 3-position the use of iodine is efficient (T. Sakamoto, T. Nagano, Y. Kondo, H. Yamanaka Chem. Pharm. Bull. 36 (1988) 2248).
  • Especially the groups present in the indole ring system can be modified by a variety of reactions and thus the desired residues R1a, R1b, R1c, R1d and R1e be obtained. For example, nitro groups can be reduced to amino group with various reducing agents, such as sulfides, dithionites, complex hydrides or by catalytic hydrogenation. A reduction of a nitro group may also be carried out at a later stage of the synthesis of a compound of the formula I, and a reduction of a nitro group to an amino group may also occur simultaneously with a reaction performed on another functional group, for example when reacting a group like a cyano group with hydrogen sulfide or when hydrogenating a group. In order to introduce or derive the residues R1a-e, amino groups can then be modified according to standard procedures for alkylation, for example by reaction with (substituted) alkyl halogenides or by reductive amination of carbonyl compounds, according to standard procedures for acylation, for example by reaction with activated carboxylic acid derivatives such as acid chlorides, anhydrides, activated esters or others or by reaction with carboxylic acids in the presence of an activating agent, or according to standard procedures for sulfonylation, for example by reaction with sulfonyl chlorides. Carboxylic acids, carboxylic acid chlorides or carboxylic acid esters can be introduced by procedures described by F. Santangelo, C. Casagrande, G. Norcini, F. Gerli, Synth. Commun. 23 (1993) 2717; P. Beswick, C. Greenwood, T. Mowlem, G. Nechvatal, D. Widdowson, Tetrahedron 44 (1988) 7325; V. Collot, M. Schmitt, P. Marwah, J. Bourguignon, Heterocycles 51 (1999) 2823. Halogens or hydroxy groups—via the triflate or nonaflate—or primary amines—via its diazonium salt—or after interconversion to the corresponding stannane, or boronic acid—present in the indole structure can be converted into a variety of other functional groups like for example —CN, —CF3, Ethers, acids, esters, amides, amines, alkyl- or aryl groups mediated by means of transition metals, namely palladium or nickel catalysts or copper salts and reagents for example referred to below (F. Diederich, P. Stang, Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, 1998; or M. Beller, C. Bolm, Transition Metals for Organic Synthesis, Wiley-VCH, 1998; J. Tsuji, Palladium Reagents and Catalysts, Wiley, 1996; J. Hartwig, Angew. Chem. 110 (1998) 2154; B. Yang, S. Buchwald, J. Organomet. Chem. 576 (1999) 125; T. Sakamoto, K. Ohsawa, J. Chem. Soc. Perkin Trans I, (1999), 2323; D. Nichols, S. Frescas, D. Marona-Lewicka, X. Huang, B. Roth, G. Gudelsky, J. Nash, J. Med. Chem., 37 (1994), 4347; P. Lam, C. Clark, S. Saubern, J. Adams, M. Winters, D. Chan, A. Combs, Tetrahedron Lett., 39 (1998) 2941; D. Chan, K. Monaco, R. Wang, M. Winters, Tetrahedron Lett. 39 (1998) 2933; V. Farina, V. Krishnamurthy, W. Scott, The Stille Reaction, Wiley, 1994; A. Klaspars, X. Huang, S. Buchwald, J. Am. Chem. Soc. 124 (2002) 7421; F. Kwong, A. Klapars, S. Buchwald, Org. Lett. 4 (2002) 581; M Wolter, G. Nordmann, G. Job, S. Buchwald, 4 (2002) 973).
  • Ester groups present in the benzene nucleus can be hydrolyzed to the corresponding carboxylic acids, which after activation can then be reacted with amines or alcohols under standard conditions. Ether groups present at the benzene nucleus, for example benzyloxy groups or other easily cleavable ether groups, can be cleaved to give hydroxy groups which then can be reacted with a variety of agents, for example etherification agents or activating agents allowing replacement of the hydroxy group by other groups. Sulfur-containing groups can be reacted analogously.
  • During the course of the synthesis in order to modify the groups R50 or R8′ attached to the indole ring system by application of parallel synthesis methodology, beside a variety of reactions, palladium or copper salt catalysis can be extremely useful. Such reactions are described for example in F. Diederich, P. Stang, Metal-catalyzed Cross-coupling Reactions, Wiley-VCH, 1998; or M. Beller, C. Bolm, Transition Metals for Organic Synthesis, Wiley-VCH, 1998; J. Tsuji, Palladium Reagents and Catalysts, Wiley, 1996; J. Hartwig, Angew. Chem. 110 (1998), 2154; B. Yang, S. Buchwald, J. Organomet. Chem. 576 (1999) 125; P. Lam, C. Clark, S. Saubern, J. Adams, M. Winters, D. Chan, A. Combs, Tetrahedron Lett. 39 (1998) 2941; D. Chan, K. Monaco, R. Wang, M. Winters, Tetrahedron Lett. 39 (1998) 2933; J. Wolfe, H. Tomori, J. Sadight, J. Yin, S. Buchwald, J. Org. Chem. 65 (2000) 1158; V. Farina, V. Krishnamurthy, W. Scott, The Stille Reaction, Wiley, 1994; A. Klaspars, X. Huang, S. Buchwald, J. Am. Chem. Soc. 124 (2002) 7421; F. Kwong, A. Klapars, S. Buchwald, Org. Lett. 4 (2002) 581; M Wolter, G. Nordmann, G. Job, S. Buchwald, 4 (2002) 973).
  • The previously-mentioned reactions for the conversion of functional groups are furthermore, in general, extensively described in textbooks of organic chemistry like M. Smith, J. March, March's Advanced Organic Chemistry, Wiley-VCH, 2001 and in treatises like Houben-Weyl, “Methoden der Organischen Chemie” (Methods of Organic Chemistry), Georg Thieme Verlag, Stuttgart, Germany, or “Organic Reactions”, John Wiley & Sons, New York, or R. C. Larock, “Comprehensive Organic Transformations”, Wiley-VCH, 2nd ed (1999), B. Trost, I. Fleming (eds.) Comprehensive Organic Synthesis, Pergamon, 1991; A. Katritzky, C. Rees, E. Scriven Comprehensive Heterocyclic Chemistry II, Elsevier Science, 1996) in which details on the reactions and primary source literature can be found. Due to the fact that in the present case the functional groups are attached to an indole ring it may in certain cases become necessary to specifically adapt reaction conditions or to choose specific reagents from a variety of reagents that can in principle be employed into a conversion reaction, or otherwise to take specific measures for achieving a desired conversion, for example to use protection group techniques. However, finding out suitable reaction variants and reaction conditions in such cases does not cause any problems for one skilled in the art.
  • The structural elements present in the residues in the 1-position of the indole ring in the compounds of the formula I and in the COR8 group present in the 2-position and/or in the 3-position of the indole ring can be introduced into the starting indole derivative obtainable as outlined above by consecutive reaction steps using parallel synthesis methodologies like those outlines below using procedures which per se are well known to one skilled in the art.
  • The residues R8′ that can be introduced in formula 14, for example, by condensing a corresponding carboxylic acid of the formula 14 with a compound of the formula HR8′, i.e. with an amine of the formula HN(R1′)R2′—V-G-M to give a compound of the formula 15. The compound of the formula 15 thus obtained can already contain the desired final groups, i.e. the groups R8′ and R50 can be the groups —N(R1)R2—V-G-M and R0-Q- as defined in the formula I, or optionally in the compound of the formula 15 thus obtained subsequently the residue or the residues R8′ and the residue R50 are converted into the residues —N(R1)R2—V-G-M and R0-Q-, respectively, to give the desired compound of the formula I.
  • Figure US20090069565A1-20090312-C00024
  • Thus, the residues R8′ and the residues R1′ and R2′—V-G-M contained therein can have the denotations of R1 and R2—V-G-M, respectively, given above or in addition in the residues R1′ and R2′—V-G-M functional groups can also be present in the form of groups that can subsequently be transformed into the final groups R1 and R2—V-G-M, i.e. functional groups can be present in the form of precursor groups or of derivatives, for example in protected form. In the course of the preparation of the compounds of the formula I it can generally be advantageous or necessary to introduce functional groups which reduce or prevent undesired reactions or side reactions in the respective synthesis step, in the form of precursor groups which are later converted into the desired functional groups, or to temporarily block functional groups by a protective group strategy suited to the synthesis problem. Such strategies are well known to those skilled in the art (see, for example, Greene and Wuts, Protective Groups in Organic Synthesis, Wiley, 1991, or P. Kocienski, Protecting Groups, Thieme 1994). As examples of precursor groups nitro groups and cyano groups may be mentioned which can in a later step be transformed into carboxylic acid derivatives or by reduction into aminomethyl groups, or nitro groups which may be transformed by reduction like catalytic hydrogenation into amino groups by reduction. Protective groups can also have the meaning of a solid phase, and cleavage from the solid phase stands for the removal of the protective group. The use of such techniques is known to those skilled in the art (Burgess K (Ed.) Solid Phase Organic Synthesis, New York: Wiley, 2000). For example, a phenolic hydroxy group can be attached to a trityl-polystyrene resin, which serves as a protecting group, and the molecule is cleaved from this resin by treatment with TFA at a later stage of the synthesis.
  • The residue R50 in the compounds of the formulae 14 and 15 can denote the group -Q-R0 as defined above which finally is to be present in the desired target molecule of the formula I, or it can denote a group which can subsequently be transformed into the group -Q-R0, for example a precursor group or a derivative of the group -Q-R0 in which functional groups are present in protected form, or R50 can denote a hydrogen atom or a protective group for the nitrogen atom of the indole ring. Similarly, the residues R1e, R1a, R1b, R1c and R1d in the formulae 14 and 15 have the corresponding definitions of R7, R6, R5, R4, and R3 in formula I as defined above, however, for the synthesis of the compounds of the formula I these residues, too, can in principle be present at the stage of the condensation of a compound of the formula 14 with a compound of the formula HR8′ giving a compound of the formula 15 in the form of precursor groups or in protected form.
  • The residues R49 in the compounds of the formula 14 which can be identical or different, can be, for example, hydroxy or (C1-C4)-alkoxy, i.e., the groups COR49 present in the compounds of the formula 14 can be, for example, the free carboxylic acids or esters thereof like alkyl esters as can be the groups COR8 in the compounds of the formula I. The groups COR49 can also be any other activated derivative of a carboxylic acid which allows amide formation, ester formation or thioester formation with a compound of the formula HR8′. The group COR49 can be, for example, an acid chloride, an activated ester like a substituted phenyl ester, an azolide like an imidazolide, an azide or a mixed anhydride, for example a mixed anhydride with a carbonic acid ester or with a sulfonic acid, which derivatives can all be prepared from the carboxylic acid by standard procedures and can be reacted with an amine, an alcohol or a mercaptan of the formula HR8′ under standard conditions. A carboxylic acid group COOH representing COR49 in a compound of the formula 14 can be obtained, for example, from an ester group introduced into the indole system during an indole synthesis by standard hydrolysis procedures.
  • Compounds of the formula I in which a group COR8 is an ester group can also be prepared from compounds of the formula 14 in which COR49 is a carboxylic acid group by common esterification reactions like, for example, reacting the acid with an alcohol under acid catalysis, or alkylation of a salt of the carboxylic acid with an electrophile like an alkyl halogenide, or by transesterification from another ester. Compounds of the formula I in which a group COR8 is an amide group can be prepared from amines and compounds of the formula 14 in which COR49 is a carboxylic acid group or an ester thereof by common amination reactions. Especially for the preparation of amides the compounds of the formula 14 in which COR49 is a carboxylic acid group can be condensed under standard conditions with compounds of the formula HR8′ which are amines by means of common coupling reagents used in peptide synthesis. Such coupling reagents are, for example, carbodiimides like dicyclohexylcarbodiimide (DCC) or diisopropylcarbodiimide, carbonyldiazoles like carbonyldiimidazole (CDI) and similar reagents, propylphosphonic anhydride, O-((cyano-(ethoxycarbonyl)-methylene)amino)-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TOTU), diethylphosphoryl cyanide (DEPC) or bis-(2-oxo-3-oxazolidinyl)-phosphoryl chloride (BOP-Cl) and many others.
  • If the residue -Q-R0 present in an indole of the formula I or the residue R50 present in an indole of the formula 14, or a residue in which functional groups within the residue -Q-R0 or R50 are present in protected form or in the form of a precursor group, have not already been introduced during a preceding step, for example during a synthesis of the indole nucleus, these residues can, for example, be introduced into the 1-position of the indole system by conventional literature procedures well known to one skilled in the art for N-alkylation, reductive amination, N-arylation, N-acylation or N-sulfonylation of ring nitrogen atoms of heterocycles. The starting indole derivative that is to be employed in such a reaction carries a hydrogen atom in the 1-position. N-Alkylation of a ring nitrogen atom can, for example, be performed under standard conditions, preferably in the presence of a base, using an alkylating compound of the formula LG-Q-R0 or of the formula R50-LG, wherein the atom in the group Q or in the group R50 bonded to the group LG in this case is an aliphatic carbon atom of an alkyl moiety and LG is a leaving group, for example halogen like chlorine, bromine or iodine, or a sulfonyloxy group like tosyloxy, mesyloxy or trifluormethylsulfonyloxy. LG may, for example, also be a hydroxy group which, in order to achieve the alkylation reaction, is activated by a conventional activating agent. For the preparation of compounds in which A is a direct linkage and an aromatic group is directly bonded to the 1-position of the indole system, conventional arylation procedures can be used. For example aryl fluorides like alkyl fluorobonzoates or 4-fluorophenyl methyl sulfones can be employed as arylating agents. Such processes are described, for example, By S. Stabler, Jahangir, Synth. Commun. 24 (1994) 123; I. Khanna, R. Weier, Y. Yu, X. Xu. F. Koszyk, J. Med. Chem. 40 (1997) 1634. Alternatively a wide variety of substituted aryl iodides, aryl bromides or aryl triflates can serve as arylating agents at the 1-position of the indole system in a copper salt or palladium mediated reaction according to R. Sarges, H. Howard, K. Koe, A. Weissmann, J. Med. Chem., 32 (1989) 437; P. Unangst, D. Connor, R. Stabler, R. Weikert, J. Heterocycl. Chem., 24 (1987) 811; G. Tokmakov, I. Grandberg, Tetrahedron 51 (1995) 2091; D. Old, M. Harris, S. Buchwald, Org. Lett. 2 (2000) 1403, G. Mann, J. Hartwig, M. Driver, C. Fernandez-Rivas, J. Am. Chem. Soc. 120 (1998) 827; J. Hartwig, M. Kawatsura, S. Hauk, K. Shaughnessy, L. J. Org. Chem. 64 (1999) 5575. Moreover such arylations can also be accomplished by reaction of a wide range of substituted aryl boronic acids as demonstrated for example by W. Mederski, M. Lefort, M. Germann, D. Kux, Tetrahedron 55 (1999)12757.
  • In the course of the synthesis the employment of microwave assistance for speeding-up, facilitating or enabling reactions may be beneficial or even required in many cases. Some reactions are for example described by J. L. Krstenansky, I. Cotteril, Curr. Opin. Drug. Disc. & Development., 4 (2000), 454; P. Lidstrom, J. Tierney, B. Wathey, J. Westman, Tetrahedron, 57 (2001), 9225; M. Larhed, A. Hallberg, Drug Discovery Today, 8 (2001) 406; S. Caddick, Tetrahedron, 51 (1995) 10403.
  • Preferred methods include, but are not limited to those described in the examples.
  • The compounds of the present invention are serine protease inhibitors, which inhibit the activity of the blood coagulation enzyme factors Xa and/or factor VIIa. In particular, they are highly active inhibitors of factor Xa. They are specific serine protease inhibitors inasmuch as they do not substantially inhibit the activity of other proteases whose inhibition is not desired. The activity of the compounds of the formula I can be determined, for example, in the assays described below or in other assays known to those skilled in the art. With respect to factor Xa inhibition, a preferred embodiment of the invention comprises compounds which have a Ki≦1 for factor Xa inhibition as determined in the assay described below, with or without concomitant factor VIIa inhibition, and which preferably do not substantially inhibit the activity of other proteases involved in coagulation and fibrinolysis whose inhibition is not desired (using the same concentration of the inhibitor). The compounds of the invention inhibit factor Xa catalytic activity either directly, within the prothrombinase complex or as a soluble subunit, or indirectly, by inhibiting the assembly of factor Xa into the prothrombinase complex.
  • The present invention also relates to the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for use as pharmaceuticals (or medicaments), to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the production of pharmaceuticals for inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation, inflammatory response or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for the production of pharmaceuticals for the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses. The invention also relates to the use of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs for the inhibition of factor Xa and/or factor VIIa or for influencing blood coagulation or fibrinolysis or for the therapy or prophylaxis of the diseases mentioned above or below, for example for use in the therapy and prophylaxis of cardiovascular disorders, thromboembolic diseases or restenoses, and to methods of treatment aiming at such purposes including methods for said therapies and prophylaxis. The present invention also relates to pharmaceutical preparations (or pharmaceutical compositions) which contain an effective amount of at least one compound of the formula I and/or its physiologically tolerable salts and/or its prodrugs in addition to a customary pharmaceutically acceptable carrier, i.e. one or more pharmaceutically acceptable carrier substances or excipients and/or auxiliary substances or additives.
  • The invention also relates to the treatment of disease states such as abnormal thrombus formation, acute myocardial infarction, unstable angina, thromboembolism, acute vessel closure associated with thrombolytic therapy or percutaneous transluminal coronary angioplasty, transient ischemic attacks, stroke, pathologic thrombus formation occurring in the veins of the lower extremities following abdominal, knee and hip surgery, a risk of pulmonary thromboembolism, or disseminated systemic intravascular coagulatopathy occurring in vascular systems during septic shock, certain viral infections or cancer.
  • The compounds of the formula I and their physiologically tolerable salts and their prodrugs can be administered to animals, preferably to mammals, and in particular to humans as pharmaceuticals for therapy or prophylaxis. They can be administered on their own, or in mixtures with one another or in the form of pharmaceutical preparations which permit enteral or parenteral administration.
  • The pharmaceuticals can be administered orally, for example in the form of pills, tablets, lacquered tablets, coated tablets, granules, hard and soft gelatin capsules, solutions, syrups, emulsions, suspensions or aerosol mixtures. Administration, however, can also be carried out rectally, for example in the form of suppositories, or parenterally, for example intravenously, intramuscularly or subcutaneously, in the form of injection solutions or infusion solutions, microcapsules, implants or rods, or percutaneously or topically, for example in the form of ointments, solutions or tinctures, or in other ways, for example in the form of aerosols or nasal sprays.
  • The pharmaceutical preparations according to the invention are prepared in a manner known per se and familiar to one skilled in the art, pharmaceutically acceptable inert inorganic and/or organic carriers being used in addition to the compound(s) of the formula I and/or its (their) physiologically tolerable salts and/or its (their) prodrugs. For the production of pills, tablets, coated tablets and hard gelatin capsules it is possible to use, for example, lactose, cornstarch or derivatives thereof, talc, stearic acid or its salts, etc. Carriers for soft gelatin capsules and suppositories are, for example, fats, waxes, semisolid and liquid polyols, natural or hardened oils, etc. Suitable carriers for the production of solutions, for example injection solutions, or of emulsions or syrups are, for example, water, saline, alcohols, glycerol, polyols, sucrose, invert sugar, glucose, vegetable oils, etc. Suitable carriers for microcapsules, implants or rods are, for example, copolymers of glycolic acid and lactic acid. The pharmaceutical preparations normally contain about 0.5% to 90% by weight of the compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs. The amount of the active ingredient of the formula I and/or its physiologically tolerable salts and/or its prodrugs in the pharmaceutical preparations normally is from about 0.5 mg to about 1000 mg, preferably from about 1 mg to about 500 mg.
  • In addition to the active ingredients of the formula I and/or their physiologically acceptable salts and/or prodrugs and to carrier substances, the pharmaceutical preparations can contain additives such as, for example, fillers, disintegrants, binders, lubricants, wetting agents, stabilizers, emulsifiers, preservatives, sweeteners, colorants, flavorings, aromatizers, thickeners, diluents, buffer substances, solvents, solubilizers, agents for achieving a depot effect, salts for altering the osmotic pressure, coating agents or antioxidants. They can also contain two or more compounds of the formula I and/or their physiologically tolerable salts and/or their prodrugs. In case a pharmaceutical preparation contains two or more compounds of the formula I the selection of the individual compounds can aim at a specific overall pharmacological profile of the pharmaceutical preparation. For example, a highly potent compound with a shorter duration of action may be combined with a long-acting compound of lower potency. The flexibility permitted with respect to the choice of substituents in the compounds of the formula I allows a great deal of control over the biological and physico-chemical properties of the compounds and thus allows the selection of such desired compounds. Furthermore, in addition to at least one compound of the formula I and/or its physiologically tolerable salts and/or its prodrugs, the pharmaceutical preparations can also contain one or more other therapeutically or prophylactically active ingredients.
  • As inhibitors of factor Xa and/or factor VIIa the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for the therapy and prophylaxis of conditions in which the activity of factor Xa and/or factor VIIa plays a role or has an undesired extent, or which can favorably be influenced by inhibiting factor Xa and/or factor VIIa or decreasing their activities, or for the prevention, alleviation or cure of which an inhibition of factor Xa and/or factor VIIa or a decrease in their activity is desired by the physician. As inhibition of factor Xa and/or factor VIIa influences blood coagulation and fibrinolysis, the compounds of the formula I and their physiologically tolerable salts and their prodrugs are generally suitable for reducing blood clotting, or for the therapy and prophylaxis of conditions in which the activity of the blood coagulation system plays a role or has an undesired extent, or which can favorably be influenced by reducing blood clotting, or for the prevention, alleviation or cure of which a decreased activity of the blood coagulation system is desired by the physician. A specific subject of the present invention thus are the reduction or inhibition of unwanted blood clotting, in particular in an individual, by administering an effective amount of a compound I or a physiologically tolerable salt or a prodrug thereof, as well as pharmaceutical preparations therefor.
  • Conditions in which a compound of the formula I can be favorably used include, for example, cardiovascular disorders, thromboembolic diseases or complications associated, for example, with infection or surgery. The compounds of the present invention can also be used to reduce an inflammatory response. Examples of specific disorders for the treatment or prophylaxis of which the compounds of the formula I can be used are coronary heart disease, myocardial infarction, angina pectoris, vascular restenosis, for example restenosis following angioplasty like PTCA, adult respiratory distress syndrome, multi-organ failure, stroke and disseminated intravascular clotting disorder. Examples of related complications associated with surgery are thromboses like deep vein and proximal vein thrombosis, which can occur following surgery. In view of their pharmacological activity the compounds of the invention can replace or supplement other anticoagulant agents such as heparin. The use of a compound of the invention can result, for example, in a cost saving as compared to other anticoagulants.
  • When using the compounds of the formula I the dose can vary within wide limits and, as is customary and is known to the physician, is to be suited to the individual conditions in each individual case. It depends, for example, on the specific compound employed, on the nature and severity of the disease to be treated, on the mode and the schedule of administration, or on whether an acute or chronic condition is treated or whether prophylaxis is carried out. An appropriate dosage can be established using clinical approaches well known in the medical art. In general, the daily dose for achieving the desired results in an adult weighing about 75 kg is from 0.01 mg/kg to 100 mg/kg, preferably from 0.1 mg/kg to 50 mg/kg, in particular from 0.1 mg/kg to 10 mg/kg, (in each case in mg per kg of body weight). The daily dose can be divided, in particular in the case of the administration of relatively large amounts, into several, for example 2, 3 or 4, part administrations. As usual, depending on individual behavior it may be necessary to deviate upwards or downwards from the daily dose indicated.
  • A compound of the formula I can also advantageously be used as an anticoagulant outside an individual. For example, an effective amount of a compound of the invention can be contacted with a freshly drawn blood sample to prevent coagulation of the blood sample. Further, a compound of the formula I and its salts can be used for diagnostic purposes, for example in in vitro diagnoses, and as an auxiliary in biochemical investigations. For example, a compound of the formula I can be used in an assay to identify the presence of factor Xa and/or factor VIIa or to isolate factor Xa and/or factor VIIa in a substantially purified form. A compound of the invention can be labeled with, for example, a radioisotope, and the labeled compound bound to factor Xa and/or factor VIIa is then detected using a routine method useful for detecting the particular label. Thus, a compound of the formula I or a salt thereof can be used as a probe to detect the location or amount of factor Xa and/or factor VIIa activity in vivo, in vitro or ex vivo.
  • Furthermore, the compounds of the formula I can be used as synthesis intermediates for the preparation of other compounds, in particular of other pharmaceutical active ingredients, which are obtainable from the compounds of the formula I, for example by introduction of substituents or modification of functional groups.
  • The general synthetic sequences for preparing the compounds useful in the present invention are outlined in the examples given below. Both an explanation of, and the actual procedure for, the various aspects of the present invention are described where appropriate. The following examples are intended to be merely illustrative of the present invention, and not limiting thereof in either scope or spirit. Those with skill in the art will readily understand that known variations of the conditions and processes described in the examples can be used to synthesize the compounds of the present invention.
  • It is understood that changes that do not substantially affect the activity of the various embodiments of this invention are included within the invention disclosed herein. Thus, the following examples are intended to illustrate but not limit the present invention.
  • EXAMPLES
  • When in the final step of the synthesis of a compound an acid such as trifluoroacetic acid or acetic acid was used, for example when trifluoroacetic acid was employed to remove a tBu group or when a compound was purified by chromatography using an eluent which contained such an acid, in some cases, depending on the work-up procedure, for example the details of a freeze-drying process, the compound was obtained partially or completely in the form of a salt of the acid used, for example in the form of the acetic acid salt or trifluoroacetic acid salt or hydrochloric acid salt.
  • ABBREVIATIONS USED
    • tert-Butyl tBu
    • 2,2′-bis(diphenylphoshino-1,1′-binaphthyl Binap
    • Bis-(oxo-3-oxazolidinyl)-phosphoryl chloride BOP-Cl
    • dibenzylidenacetone dba
    • Dicyclohexyl-carbodiimide DCC
    • Dichloromethane DCM
    • Diethylphosphoryl cyanide DEPC
    • 4-Dimethyaminopyridine DMAP
    • N,N-Dimethylformamide DMF
    • Dimethylsulfoxide DMSO
    • Ethyl-diisopropyl-amine DIPEA
    • 1,1′-Bis(diphenylphosphino)ferrocene DPPF
    • O-(7-Azabenzotriazol-1-yl)-N,N, N′,N′-tetramethyluronium-Hexafluorophosphate HATU
    • N-Bromosuccinimide NBS
    • N-Chlorosuccinimide NCS
    • N-Iodosuccinimide NIS
    • N-Ethylmorpholine NEM
    • Methanol MeOH
    • Room temperature RT
    • Tetrahydrofuran THF
    • Trifluoroacetic acid TFA
    • O-((Ethoxycarbonyl)cyanomethyleneamino)-N,N,N′,N′-tetramethyluronium tetrafluoroborate TOTU
    Example 1 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00025
  • (i) (1-Isopropyl-piperidin-4-yl)-carbamic acid tert-butyl ester
  • Figure US20090069565A1-20090312-C00026
  • To a solution of 5.0 g Piperidin-4-yl-carbamic acid tert-butyl ester in 15 ml methanol, 7.34 ml acetone, 3.14 g Na(CN)BH3 and 0.3 ml acetic acid were added. After stirring for 16 h at room temperature the solvent was removed under reduced pressure and the residue was partitioned between 30 ml of water and 30 ml ethyl acetate. The organic layer was washed with saturated Na2CO3 solution, water and then dried over Na2SO4. The solvent was removed under reduced pressure to give the product as a white solid.
  • Yield: 4.8 g MS (ES+): m/e = 243.
  • (ii) 1-Isopropyl-piperidin-4-ylamine
  • Figure US20090069565A1-20090312-C00027
  • To 4.8 g (1-Isopropyl-piperidin-4-yl)-carbamic acid tert-butyl ester in 15 ml methanol, 20 ml methanolic hydrochloric acid (8M) were added and the mixture was stirred for 16 h. Removal of the solvent under reduced pressure, followed by removal of residual volatiles by twice coevaporating with toluene, gave the product. Yield: 5.42 g MS (ES+): m/e=143.
  • (iii) 1H-Indole-2-carboxylic acid methyl ester
  • 2 g of 1H-indole-2-carboxylic acid was dissolved in 15 ml of methanolic hydrochloric acid (8M) and the mixture was stirred at RT for 16 h. After removal of the solvent under reduced pressure, residual volatiles were removed by codistillation twice with 10 ml toluene. The remaining slightly yellow solid was subjected to the subsequent reaction without further purification.
  • Yield: 2.3 g
  • (iv) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid methyl ester
  • Figure US20090069565A1-20090312-C00028
  • To a solution of 244.2 mg 1H-Indole-2-carboxylic acid methyl ester in 2 ml DMF, 52.2 mg sodium hydride (60% in oil) were added at RT. After stirring for 30 min 500 mg 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole [prepared by adopting a procedure described by Ewing, William R.; Becker, Michael R.; Choi-Sledeski, Yong Mi; Pauls, Heinz W.; He, Wei; Condon, Stephen M.; Davis, Roderick S.; Hanney, Barbara A.; Spada, Alfred P.; Burns, Christopher J.; Jiang, John Z.; Li, Aiwen; Myers, Michael R.; Lau, Wan F.; Poli, Gregory B; PCT Int. Appl. (2001), 460 pp. WO 0107436 A2] were added and the mixture was heated for 1 h at 80° C. After subsequent cooling of the reaction to RT and addition of 5 ml water the mixture was filtered through a chem Elut® cartridge by elution with ethyl acetate. After concentration under reduced pressure the residue was directly subjected to the subsequent saponification reaction without further purification.
  • Yield: 288 mg MS (ES+): m/e = 373.
  • (v) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid
  • To a solution of 288 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid methyl ester in 10 ml THF, 3 ml water and 57.0 mg lithium hydroxide monohydrate were added. After stirring for 2 h at 60° C. the reaction was cooled to RT. The mixture was acidified with half concentrated hydrochloric acid. The resulting precipitate was collected by filtration and washed with 3 ml water. The product was obtained as a white solid which was dried under reduced pressure.
  • Yield: 253 mg MS (ES+): m/e = 359, chloro pattern.
  • (vi) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • To a solution of 117 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid in 1 ml DCM and 0.17 ml NEt3, 76 mg BOP-Cl were added at RT and the mixture was stirred for 30 min. After addition of 81 mg 1-Isopropyl-piperidin-4-ylamine hydrochloride the mixture was stirred over night. After removal of the solvent under reduced pressure the residue was purified by preparative HPLC (C18 reverse phase column, elution with a H2O/MeCN gradient with 0.1% TFA). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
  • Yield: 93 mg MS (ES+): m/e = 483, chloro pattern.
  • Analogously to example 1 the following compounds were prepared by a similar procedure:
  • Example Structure MS (ESI+)
    2
    Figure US20090069565A1-20090312-C00029
    561, chloropattern
    3
    Figure US20090069565A1-20090312-C00030
    528, chloropattern
    4
    Figure US20090069565A1-20090312-C00031
    589, chloropattern
    5
    Figure US20090069565A1-20090312-C00032
    517, chloropattern
    6
    Figure US20090069565A1-20090312-C00033
    513, chloropattern
    7
    Figure US20090069565A1-20090312-C00034
    513, chloropattern
    8
    Figure US20090069565A1-20090312-C00035
    497, chloropattern
    9
    Figure US20090069565A1-20090312-C00036
    543, chloropattern
    10
    Figure US20090069565A1-20090312-C00037
    543, chloropattern
    11
    Figure US20090069565A1-20090312-C00038
    528, chloropattern
    12
    Figure US20090069565A1-20090312-C00039
    567, chloropattern
    13
    Figure US20090069565A1-20090312-C00040
    497, chloropattern
    14
    Figure US20090069565A1-20090312-C00041
    582, chloropattern
    15
    Figure US20090069565A1-20090312-C00042
    513, chloropattern
    16
    Figure US20090069565A1-20090312-C00043
    559, chloropattern
    17
    Figure US20090069565A1-20090312-C00044
    529, chloropattern
    18
    Figure US20090069565A1-20090312-C00045
    519, chloropattern
    19
    Figure US20090069565A1-20090312-C00046
    589, chloropattern
    20
    Figure US20090069565A1-20090312-C00047
    517, chloropattern
    21
    Figure US20090069565A1-20090312-C00048
    517, chloropattern
    22
    Figure US20090069565A1-20090312-C00049
    511, chloropattern
    23
    Figure US20090069565A1-20090312-C00050
    501, chloropattern
    24
    Figure US20090069565A1-20090312-C00051
    604, chloropattern
    25
    Figure US20090069565A1-20090312-C00052
    593, chloropattern
    26
    Figure US20090069565A1-20090312-C00053
    519, chloropattern
    27
    Figure US20090069565A1-20090312-C00054
    573, chloropattern
  • Example 28 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide
  • Figure US20090069565A1-20090312-C00055
  • (i) (3,4,5,6-Tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-carbamic acid tert-butyl ester
  • Figure US20090069565A1-20090312-C00056
  • A solution of 3 g Piperidin-4-yl-carbamic acid tert-butyl ester and 2.5 g 4-Chloropyridine in 9 ml n-butanol/water/NEt3 1:1:1 was heated at 100° C. for 48 h. The solution was cooled to RT, diluted with DCM and was washed with NaHCO3 solution and then with water. The organic layer was dried over Na2SO4 and the solvent was removed under reduced pressure. Chromatographic purification of the residue on silica gel with DCM as eluent gave after evaporation of the fractions containing the product a white foam. Yield 1.7 g.
  • (ii) 3,4,5,6-Tetrahydro-2H-[1,4′]bipyridinyl-4-ylamine
  • Figure US20090069565A1-20090312-C00057
  • To a solution of 4 g (3,4,5,6-Tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-carbamic acid tert-butyl ester in 4 ml DCM, 12 ml TFA was added at RT. After stirring for 20 h the solution was diluted with 20 ml of toluene and was evaporated under reduced pressure. The residue was codistilled twice with toluene and was used in the subsequent reactions without further purification. The product was obtained as its trifluoroacetate salt. Yield: 2.7 g.
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide
  • The title compound was prepared analogously to example 1 with the difference that 3,4,5,6-Tetrahydro-2H-[1,4′]bipyridinyl-4-ylamine was used instead of 1-Isopropyl-piperidin-4-ylamine.
  • MS (ESI+): m/e=518, chloro pattern.
  • Example 29 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide
  • Figure US20090069565A1-20090312-C00058
  • The title compound was prepared analogously to example 28 with the difference that 7-Methyl-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid. MS (ESI+): m/e=532, chloro pattern.
  • Example 30 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-nitro-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide
  • Figure US20090069565A1-20090312-C00059
  • The title compound was prepared analogously to example 28 with the difference that 5-Nitro-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid. MS (ESI+): m/e=563, chloro pattern.
  • Example 31 {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-[4-(pyridin-4-ylamino)-piperidin-1-yl]-methanone
  • Figure US20090069565A1-20090312-C00060
  • (i) 4-(Pyridin-4-ylamino)-piperidine-1-carboxylic acid tert-butyl ester
  • Figure US20090069565A1-20090312-C00061
  • A solution of 2.5 g 4-Amino-piperidine-1-carboxylic acid tert-butyl ester and 2.5 g 4-chloropyridine in 9 ml n-butanol/water/NEt3 1:1:1 was heated at 100° C. for 85 h. Then the solution was cooled to RT was diluted with DCM and was washed with NaHCO3 solution and water. The organic layer was dried over Na2SO4 and the solvent was removed under reduced pressure. Chromatographic purification of the residue on silica gel with DCM as eluent gave after evaporation of the fractions containing the product, a white foam. Yield 1.7 g.
  • (ii) Piperidin-4-yl-pyridin-4-yl-amine
  • Figure US20090069565A1-20090312-C00062
  • To a solution of 1.7 4-(Pyridin-4-ylamino)-piperidine-1-carboxylic acid tert-butyl ester in 4 ml DCM, 12 ml TFA was added at RT. After stirring for 20 h the solution was diluted with 20 ml of toluene and was evaporated under reduced pressure. The residue was codistilled twice with toluene and was used in the subsequent reactions without further purification. The product was obtained as its trifluoroacetate salt. Yield: 4.0 g.
  • (iii) {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-[4-(pyridin-4-ylamino)-piperidin-1-yl]-methanone
  • The title compound was prepared analogously to example 1 with the difference that Piperidin-4-yl-pyridin-4-yl-amine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=518, chloro pattern.
  • Example 32 {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-nitro-1H-indol-2-yl}-[4-(pyridin-4-ylamino)-piperidin-1-yl]-methanone
  • Figure US20090069565A1-20090312-C00063
  • The title compound was prepared analogously to example 31 with the difference that 5-Nitro-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid. MS (ESI+): m/e=563, chloro pattern.
  • Example 33 {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indol-2-yl}-[4-(pyridin-4-ylamino)-piperidin-1-yl]-methanone
  • Figure US20090069565A1-20090312-C00064
  • The title compound was prepared analogously to example 31 with the difference that 7-Methyl-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid. MS (ESI+): m/e=532, chloro pattern.
  • Example 34 {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-(4-isopropylamino-piperidin-1-yl)-methanone
  • Figure US20090069565A1-20090312-C00065
  • (i) 4-Isopropylamino-piperidine-1-carboxylic acid tert-butyl ester
  • Figure US20090069565A1-20090312-C00066
  • To a solution of 1.5 g 4-Amino-piperidine-1-carboxylic acid tert-butyl ester in 20 ml acetonitrile, 2.6 ml acetone, 0.94 g Na(CN)BH3 and 0.3 ml acetic acid were added. After stirring for 16 h at RT the solvent was removed under reduced pressure and the residue was partitioned between 30 ml of water and 30 ml of ethyl acetate. The organic layer was washed with saturated Na2CO3 solution, water and was dried over Na2SO4. Removal of the solvent under reduced pressure yields a white solid. Yield: 2.8 g MS (ES+): m/e=243.
  • (ii) Isopropyl-piperidin-4-yl-amine
  • Figure US20090069565A1-20090312-C00067
  • To a solution of 2.8 g 4-Isopropylamino-piperidine-1-carboxylic acid tert-butyl ester in 8 ml DCM, 4 ml TFA was added at RT. After stirring for 20 h the solution was diluted with 20 ml of toluene and was evaporated under reduced pressure. The residue was codistilled twice with toluene and was used in the subsequent reactions without further purification. The product was obtained as its trifluoroacetate salt. Yield: 4.4 g MS (ES+): m/e=143.
  • (iii) {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-(4-isopropylamino-piperidin-1-yl)-methanone
  • The title compound was prepared analogously to example 1 with the difference that Isopropyl-piperidin-4-yl-amine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=483, chloro pattern.
  • Example 35 {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indol-2-yl}-(4-isopropylamino-piperidin-1-yl)-methanone
  • Figure US20090069565A1-20090312-C00068
  • The title compound was prepared analogously to example 34 with the difference that 7-Methyl-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid. MS (ESI+): m/e=497, chloro pattern.
  • Example 36 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-ethyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00069
  • (i) (1-Ethyl-piperidin-4-yl)-carbamic acid tert-butyl ester
  • Figure US20090069565A1-20090312-C00070
  • To a solution of 5 g Piperidin-4-yl-carbamic acid tert-butyl ester in 20 ml methanol, 5.6 ml acetaldehyde, 3.2 g Na(CN)BH3 and 3.2 g acetic acid were added. After stirring for 16 h at RT the solvent was removed under reduced pressure and the residue was partitioned between 30 ml of water and 200 ml of ethyl acetate. The organic layer was washed with saturated Na2CO3 solution, water and then it was dried over Na2SO4. Removal of the solvent under reduced pressure gave a white solid. Yield: 4.4 g.
  • (ii) 1-Ethyl-piperidin-4-ylamine
  • Figure US20090069565A1-20090312-C00071
  • To 4.4 g (1-Ethyl-piperidin-4-yl)-carbamic acid tert-butyl ester in 15 ml methanol, 20 ml of methanolic hydrochloric acid (8M) was added and the mixture was stirred for 16 h. Removal of the solvent under reduced pressure gave a white solid, which was coevaporated twice with 20 ml toluene. The product was obtained as its hydrochloride. Yield: 4.3 g.
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-ethyl-piperidin-4-yl)-amide
  • The title compound was prepared analogously to example 1 with the difference that 1-Ethyl-piperidin-4-ylamine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=469, chloro pattern.
  • Example 37 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid (1-ethyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00072
  • The title compound was prepared analogously to example 36 with the difference that 7-methyl-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid. MS (ESI+): m/e=483, chloro pattern.
  • Example 38 {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-(4-pyrrolidin-1-yl-piperidin-1-yl)-methanone
  • Figure US20090069565A1-20090312-C00073
  • The title compound was prepared analogously to example 1 with the difference that 4-Pyrrolidin-1-yl-piperidine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=509, chloro pattern.
  • Example 39 {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-[4-(1-methyl-piperidin-4-yl)-piperazin-1-yl]-methanone
  • Figure US20090069565A1-20090312-C00074
  • The title compound was prepared analogously to example 1 with the difference that 1-(1-Methyl-piperidin-4-yl)-piperazine was used instead of 1-Isopropyl-piperidin-4-ylamine.
  • MS (ESI+): m/e=524, chloro pattern.
  • Example 40 [1,4′]Bipiperidinyl-1′-yl-{1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-methanone
  • Figure US20090069565A1-20090312-C00075
  • The title compound was prepared analogously to example 1 with the difference that [1,4′]bipiperidinyl was used instead of 1-Isopropyl-piperidin-4-ylamine.
  • MS (ESI+): m/e=523, chloro pattern.
  • Example 41 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (3-pyridin-4-yl-4,5-dihydro-isoxazol-5-ylmethyl)-amide
  • Figure US20090069565A1-20090312-C00076
  • The title compound was prepared analogously to example 1 with the difference that C-(3-Pyridin-4-yl-4,5-dihydro-isoxazol-5-yl)-methylamine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=518, chloro pattern.
  • Example 42 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid 4-amino-quinazolin-7-ylmethyl)-amide
  • Figure US20090069565A1-20090312-C00077
  • The title compound was prepared analogously to example 1 with the difference that 7-Aminomethyl-quinazolin-4-ylamine [Ewing, William R. et al. PCT Int. Appl. (2001), 460 pp. WO 0107436 A2] was used instead of 1-Isopropyl-piperidin-4-ylamine.
  • MS (ESI+): m/e=515, chloro pattern.
  • Example 43 {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-(4-pyridin-4-ylmethyl-piperazin-1-yl)-methanone
  • Figure US20090069565A1-20090312-C00078
  • The title compound was prepared analogously to example 1 with the difference that 1-Pyridin-4-ylmethyl-piperazine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=518, chloro pattern.
  • Example 44 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid 3,5-dichloro-benzylamide
  • Figure US20090069565A1-20090312-C00079
  • The title compound was prepared analogously to example 1 with the difference that 3,5-Dichloro-benzylamine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=516, chloro pattern.
  • Example 45 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (4-tert-butyl-phenyl)-amide
  • Figure US20090069565A1-20090312-C00080
  • The title compound was prepared analogously to example 1 with the difference that 4-tert-Butyl-phenylamine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=490, chloro pattern.
  • Example 46 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-ylmethyl)-amide
  • Figure US20090069565A1-20090312-C00081
  • (i) (1-Isopropyl-piperidin-4-ylmethyl)-carbamic acid tert-butyl ester
  • Figure US20090069565A1-20090312-C00082
  • To a solution of 1.0 g Piperidin-4-ylmethyl-carbamic acid tert-butyl ester in 20 ml acetonitrile, 2.6 ml acetone and 586 mg Na(CN)BH3 were added. After stirring for 16 h at RT the solvent was removed under reduced pressure and the residue was partitioned between 30 ml of water and 30 ml of ethyl acetate. The organic layer was washed with saturated Na2CO3 solution, water and was dried over Na2SO4. Removal of the solvent under reduced pressure gave a white solid. Yield: 802 mg.
  • (ii) C-(1-Isopropyl-piperidin-4-yl)-methylamine
  • Figure US20090069565A1-20090312-C00083
  • To a solution of 802 mg (1-Isopropyl-piperidin-4-ylmethyl)-carbamic acid tert-butyl ester in 5 ml DCM, 4 ml TFA was added at RT. After stirring for 20 h the solution was diluted with 20 ml of toluene and was evaporated under reduced pressure. The residue was codistilled twice with toluene and was used in the subsequent reactions without further purification. The product was obtained as its trifluoroacetate salt. Yield: 1.7 g
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-ylmethyl)-amide
  • The title compound was prepared analogously to example 1 with the difference that C-(1-Isopropyl-piperidin-4-yl)-methylamine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=496, chloro pattern.
  • Example 47 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-ylmethyl)-amide
  • Figure US20090069565A1-20090312-C00084
  • (i) (3,4,5,6-Tetrahydro-2H-[1,4′]bipyridinyl-4-ylmethyl)-carbamic acid tBu ester
  • Figure US20090069565A1-20090312-C00085
  • A suspension of 5 g (23.3 mmol) Piperidin-4-ylmethyl-carbamic acid tBu ester 3.85 g (25.7 mmol) and 4-Chloropyridine hydrochloride in 15 ml n-BuOH/H2O/NEt3 1:1:1 was boiled under reflux for 3 days. After removal of the solvent under reduced pressure the residue was purified by chromatography on silica gel with DCM/MeOH 100:1->50:1->10:1-5:1. The product was obtained as a white solid. Yield: 4.3 g.
  • (ii) C-(3,4,5,6-Tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-methylamine
  • Figure US20090069565A1-20090312-C00086
  • To a solution of 4.58 g (3,4,5,6-Tetrahydro-2H-[1,4′]bipyridinyl-4-ylmethyl)-carbamic acid tBu ester in 12 ml DCM, 12 ml TFA was added at RT. After stirring for 30 min the solution was diluted with 20 ml of toluene and was evaporated under reduced pressure. The residue was codistilled twice with toluene and was used in the subsequent reactions without further purification. The product was obtained as its trifluoroacetate salt.
  • Yield: 3.3 g.
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-ylmethyl)-amide
  • The title compound was prepared analogously to example 1 with the difference that C-(3,4,5,6-Tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-methylamine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=532, chloro pattern.
  • Example 48 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-cyclopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00087
  • (i) (1-Cyclopropyl-piperidin-4-yl)-carbamic acid tert-butyl ester
  • Figure US20090069565A1-20090312-C00088
  • To a suspension of 1 g Piperidin-4-yl-carbamic acid tert-butyl ester, 2 g freshly activated 3 Å molecular sieve, 1 ml acetic acid, 6 ml 1-Ethoxycyclopropyl-oxy-trimethylsilane in 25 ml methanol, 22.5 ml Na(CN)BH3 (1 M in THF) were added and the mixture was heated under reflux for 2 h. The reaction mixture was filtered through a plug of celite, concentrated under reduced pressure and the residue was taken-up in ethyl acetate. The organic layer was washed with 1 M NaOH and saturated NaCl solution and finally was dried over Na2SO4. Evaporation of the solvents under reduced pressure gave a clear oil. Yield: 1.44 g.
  • (ii) 1-Cyclopropyl-piperidin-4-ylamine
  • Figure US20090069565A1-20090312-C00089
  • To a solution of 0.72 g (1-Cyclopropyl-piperidin-4-yl)-carbamic acid tert-butyl ester in 5 ml DCM, 3 ml TFA was added at RT. After stirring for 20 h the solution was diluted with 20 ml of toluene and evaporated under reduced pressure. The residue was codistilled wice with toluene and was used in the subsequent reactions without further purification. The product was obtained as its trifluoroacetate salt. Yield: 870 mg.
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-cyclopropyl-piperidin-4-yl)-amide
  • The title compound was prepared analogously to example 1 with the difference that 1-Cyclopropyl-piperidin-4-ylamine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=481, chloro pattern.
  • Example 49 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(tetrahydro-pyran-4-yl)-piperidin-4-yl]-amide
  • Figure US20090069565A1-20090312-C00090
  • (i) 4-({1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-amino)-piperidine-1-carboxylic acid tert-butyl ester
  • Figure US20090069565A1-20090312-C00091
  • To a solution of 1 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid and 1.4 ml NEM in 5 ml DCM, 0.9 g TOTU were added and the mixture was stirred for 30 min at RT. Then 0.7 g 4-Amino-piperidine-1-carboxylic acid tert-butyl ester were added and the reaction was stirred for 16 h. After removal of the solvent under reduced pressure the residue was purified by chromatography on silica gel with ethyl acetate/heptane 4:1 as eluent. The fractions containing the product were evaporated to give a white foam. Yield: 1 g.
  • (ii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide
  • Figure US20090069565A1-20090312-C00092
  • To 1 g of 4-({1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-amino)-piperidine-1-carboxylic acid tert-butyl ester, 10 ml of methanolic hydrochloric acid (8M) were added and the mixture was stirred at RT for 2 h. After removal of the solvent under reduced pressure the residue was codistilled twice with 10 ml toluene. The resulting slightly yellow solid was used in the subsequent reaction without further purification. Yield: 0.85 g.
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(tetrahydro-pyran-4-yl)-piperidin-4-yl]-amide
  • To a solution of 50 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide and 35 mg Tetrahydro-pyran-4-one in 2 ml acetonitrile, 14 mg Na(CN)BH3 was introduced. After stirring at RT for 16 h the reaction mixture was concentrated under reduced pressure and was purified by preparative HPLC (C18 reverse phase column, elution with a H2O/MeCN gradient with 0.5% TFA). The fractions containing the product were evaporated and lyophilized. The product was obtained as its trifluoroacetate salt.
  • Yield: 14 mg MS (ES+): m/e = 525, chloro pattern.
  • According to example 49 the following compounds were prepared by a similar procedure:
  • Example Structure MS (ESI+)
    50
    Figure US20090069565A1-20090312-C00093
    495, chloropattern
    51
    Figure US20090069565A1-20090312-C00094
    509, chloropattern
  • Example 52 1-(3-Methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00095
  • The title compound was prepared analogously to example 1 with the difference that 1-Bromomethyl-3-methoxy-benzene was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=406.
  • According to example 52 the following compounds were prepared by a similar procedure:
  • Example Structure MS (ESI+)
    53
    Figure US20090069565A1-20090312-C00096
    441
    54
    Figure US20090069565A1-20090312-C00097
    420
    55
    Figure US20090069565A1-20090312-C00098
    455
    56
    Figure US20090069565A1-20090312-C00099
    441
    57
    Figure US20090069565A1-20090312-C00100
    441
    58
    Figure US20090069565A1-20090312-C00101
    427
    59
    Figure US20090069565A1-20090312-C00102
    439, chloropattern
    60
    Figure US20090069565A1-20090312-C00103
    438
    61
    Figure US20090069565A1-20090312-C00104
    405
    62
    Figure US20090069565A1-20090312-C00105
    441
    63
    Figure US20090069565A1-20090312-C00106
    413
    64
    Figure US20090069565A1-20090312-C00107
    420
  • Example 65 1-(3-Methoxy-benzyl)-1H-indole-2-carboxylic acid (4-pyridin-4-yl-phenyl)-amide
  • Figure US20090069565A1-20090312-C00108
  • (i) 1-(3-Methoxy-benzyl)-1H-indole-2-carboxylic acid (4-iodo-phenyl)-amide
  • Figure US20090069565A1-20090312-C00109
  • To a solution of 500 mg 1-(3-Methoxy-benzyl)-1H-indole-2-carboxylic acid in 8 ml DCM and 0.9 ml NEt3 452 mg, BOP-Cl was added at RT and the mixture was stirred for 30 min. After addition of 583 mg 4-Iodo-phenylamine the mixture was stirred for 16 h. Then the solvent was removed under reduced pressure to yield a white precipitate, which was washed with 1 ml MeOH/DCM 1:1. Yield: 380 mg.
  • (ii) 1-(3-Methoxy-benzyl)-1H-indole-2-carboxylic acid (4-pyridin-4-yl-phenyl)-amide
  • A solution of 100 mg 1-(3-Methoxy-benzyl)-1H-indole-2-carboxylic acid (4-iodo-phenyl)-amide, 31 mg 4-Pyridyl boronic acid and 200 μl aqueous Na2CO3 solution (2M) in 5 ml dimethoxyethane (dme) was purged with argon for 15 min. Then 20 mg Pd(PPh3)4 was added and the mixture was heated to 80° C. for 16 h. Finally, 3 ml saturated NaHCO3 solution were added and the mixture was filtered through a chem Elut® cartridge by elution with ethyl acetate. After subsequent removal of the solvent under reduced pressure the residue was purified by preparative HPLC (C18 reverse phase column, elution with a H2O/MeCN gradient with 0.1% TFA). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt. Yield: 15 mg MS (ESI+): m/e=434.
  • Example 66 4-Methoxy-1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00110
  • The title compound was prepared analogously to example 52 with the difference that 4-Methoxy-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid.
  • MS (ESI+): m/e=436.
  • Example 67 5-Chloro-1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00111
  • The title compound was prepared analogously to example 57 with the difference that 5-Chloro-1H-indole-2-carboxylic acid was used instead of 1H-indole-2-carboxylic acid. MS (ESI+): m/e=440, chloro pattern.
  • Example 68 6-Methoxy-1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00112
  • The title compound was prepared analogously to example 52 with the difference that 6-Methoxy-1H-indole-2-carboxylic acid was used instead of 1H-indole-2-carboxylic acid.
  • MS (ESI+): m/e=436.
  • Example 69 1-(3-Methoxy-benzyl)-5-methyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00113
  • The title compound was prepared analogously to example 52 with the difference that 5-Methyl-1H-indole-2-carboxylic acid was used instead of 1H-indole-2-carboxylic acid. MS (ESI+): m/e=420.
  • Example 70 5-Benzyloxy-1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid 1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00114
  • The title compound was prepared analogously to example 52 with the difference that 5-Benzyloxy-1H-indole-2-carboxylic acid was used instead of 1H-indole-2-carboxylic acid.
  • MS (ESI+): m/e=512.
  • Example 71 1-(3-Methoxy-benzyl)-5-nitro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00115
  • The title compound was prepared analogously to example 52 with the difference that 5-Nitro-1H-indole-2-carboxylic acid was used instead of 1H-indole-2-carboxylic acid. MS (ESI+): m/e=451.
  • Example 72 5-Methoxy-1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00116
  • The title compound was prepared analogously to example 52 with the difference that 5-Methoxy-1H-indole-2-carboxylic acid was used instead of 1H-indole-2-carboxylic acid.
  • MS (ESI+): m/e=436.
  • Example 73 1-(3-Methoxy-benzoyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00117
  • The title compound was prepared analogously to example 1 with the difference that 3-Methoxy-benzoyl chloride was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=420.
  • Example 74 1-(3-Methoxy-benzenesulfonyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00118
  • The title compound was prepared analogously to example 1 with the difference that 3-Methoxy-benzenesulfonyl chloride was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=456.
  • Example 75 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00119
  • (i) 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid methyl ester
  • To a suspension of 2 g 1H-Indole-2-carboxylic acid methyl ester, 3.2 g 4-Methoxyphenyl boronic acid, 2 g molecular sieve (4 Å), 1.7 ml pyridine, 3 ml NEt3 in 40 ml DCM, 3.9 g Cu(OAc)2 were added. The suspension was stirred for 3 d at RT and for 2 d at 50° C. then 3 ml saturated NaHCO3 solution was added and the mixture filtered through a chem Elut® cartridge by elution with ethyl acetate. After concentration under reduced pressure and chromatographic purification on silica gel with ethyl acetate/heptane 4:1 the fractions containing the product were evaporated. Yield: 3 g.
  • (ii) 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid
  • To a solution of 3 g 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid methyl ester in 50 ml THF, 10 ml water and 0.58 g lithium hydroxide monohydrate were added. After stirring for 2 h at 60° C. the reaction was cooled to RT. The mixture was acidified with half concentrated hydrochloric acid and the precipitate was collected by filtration and was washed with 10 ml water The product was obtained as a white solid which was dried under reduced pressure. Yield: 520 mg.
  • (vi) 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • To a solution of 36 mg 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid in 1 ml DCM and 0.17 ml NEt3, 34 mg BOP-Cl were added at RT and the mixture was stirred for 30 min. After addition of 57 mg 1-Isopropyl-piperidin-4-ylamine hydrochloride the mixture was stirred over night. Subsequently the solvent was removed under reduced pressure and the residue was purified by preparative HPLC (C18 reverse phase column, elution with a H2O/MeCN gradient with 0.1% TFA). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
  • Yield: 14 mg MS (ES+): m/e = 329.
  • According to example 75 the following compounds were prepared by a similar procedure:
  • Example Structure MS (ESI+)
    76
    Figure US20090069565A1-20090312-C00120
    427
    77
    Figure US20090069565A1-20090312-C00121
    391
    78
    Figure US20090069565A1-20090312-C00122
    424
    79
    Figure US20090069565A1-20090312-C00123
    405
    80
    Figure US20090069565A1-20090312-C00124
    424
    81
    Figure US20090069565A1-20090312-C00125
    441
    82
    Figure US20090069565A1-20090312-C00126
    425, chloropattern
    83
    Figure US20090069565A1-20090312-C00127
    413
    84
    Figure US20090069565A1-20090312-C00128
    427
    85
    Figure US20090069565A1-20090312-C00129
    427
  • Example 86 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid 4-pyridin-4-yl-benzylamide
  • Figure US20090069565A1-20090312-C00130
  • (i) (4-Bromo-benzyl)-carbamic acid tert-butyl ester
  • To a solution of 5 g 4-Bromo-benzylamine and 7 ml NEt3 in 30 ml DCM 5.4 g Boc2O were added. After stirring for 16 h at RT the reaction mixture was concentrated and the precipitate was collected by filtration. The solid product was dried under reduced pressure and was used in the subsequent reaction without further purification. Yield: 6.5 g.
  • (ii) (4-Pyridin-4-yl-benzyl)-carbamic acid tert-butyl ester
  • Figure US20090069565A1-20090312-C00131
  • A solution of 500 mg (4-Bromo-benzyl)-carbamic acid tert-butyl ester, 213 mg 4-Pyridyl boronic acid and 500 μl aqueous Na2CO3 solution (2M) in 5 ml dimethoxyethane was purged with argon for 15 min. Then 60 mg Pd(PPh3)4 were added and the mixture was heated to 100° C. for 16 h. Finally, 10 ml saturated NaHCO3 solution was added and the mixture was filtered through a chem Elut® cartridge by elution with ethyl acetate. After subsequent removal of the solvent under reduced pressure the residue was purified by chromatography on silica gel with ethyl acetate as eluent. The fractions containing the product were evaporated to yield a white solid. Yield: 490 mg.
  • (iii) 4-Pyridin-4-yl-benzylamine
  • Figure US20090069565A1-20090312-C00132
  • To a solution of 490 mg (4-Pyridin-4-yl-benzyl)-carbamic acid tert-butyl ester in 2 ml DCM, 3 ml TFA were added at RT. After stirring for 12 h the reaction mixture was diluted with 10 ml toluene and was evaporated under reduced pressure to yield a brown foam. The product was obtained as its trifluoro acetate salt. Yield: 330 mg
  • (iii) 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid 4-pyridin-4-yl-benzylamide
  • To solution of 50 mg 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid and 100 μl NEt3 in 2 ml DCM, 47 mg BOP-Cl were added at RT. After 1 h, 51 mg 4-Pyridin-4-yl-benzylamine were added and the reaction mixture was stirred for 16 h. After removal of the solvent under reduced pressure the residue was purified by preparative HPLC (C18 reverse phase column, elution with a H2O/MeCN gradient with 0.1% TFA). The fractions containing the product were evaporated and were lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
  • Yield: 27 mg MS (ESI+): m/e = 434.
  • Example 87 1-(3-Methoxy-phenyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00133
  • The title compound was prepared analogously to example 75 with the difference that 3-Methoxyphenyl boronic acid was used instead of 4-Methoxyphenyl boronic acid. MS (ESI+): m/e=392.
  • Example 88 1-(3-Chloro-phenyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00134
  • The title compound was prepared analogously to example 75 with the difference that 3-Chlorophenyl boronic acid was used instead of 4-Methoxyphenyl boronic acid. MS (ESI+): m/e=396, chloro pattern.
  • Analogously to example 88 the following compounds were prepared by a similar procedure:
  • Example Structure MS (ESI+)
    89
    Figure US20090069565A1-20090312-C00135
    431, chloropattern
    90
    Figure US20090069565A1-20090312-C00136
    396, chloropattern
    91
    Figure US20090069565A1-20090312-C00137
    409, chloropattern
    92
    Figure US20090069565A1-20090312-C00138
    417, chloropattern
    93
    Figure US20090069565A1-20090312-C00139
    431, chloropattern
    94
    Figure US20090069565A1-20090312-C00140
    431, chloropattern
    95
    Figure US20090069565A1-20090312-C00141
    428, chloropattern
    96
    Figure US20090069565A1-20090312-C00142
    445, chloropattern
    97
    Figure US20090069565A1-20090312-C00143
    429, chloropattern
  • Example 98 1-(3-Chloro-phenyl)-1H-indole-2-carboxylic acid 4-pyridin-4-yl-benzylamide
  • Figure US20090069565A1-20090312-C00144
  • The title compound was prepared analogously to example 86 with the difference that 1-(3-Chloro-phenyl)-1H-indole-2-carboxylic acid was used instead of 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid.
  • MS (ESI+): m/e=438, chloro pattern.
  • Example 99 1-(3,5-Dichloro-phenyl)-1H-indole-2-carboxylic acid 1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00145
  • The title compound was prepared analogously to example 75 with the difference that 3,5-Dichlorophenyl boronic acid was used instead of 4-Methoxyphenyl boronic acid. MS (ESI+): m/e=430, chloro pattern.
  • Analogously to example 99 the following compounds were prepared by a similar procedure:
  • Ex-
    am-
    ple Structure MS (ESI+)
    100
    Figure US20090069565A1-20090312-C00146
    430, chloropattern
    101
    Figure US20090069565A1-20090312-C00147
    465, chloropattern
    102
    Figure US20090069565A1-20090312-C00148
    479, chloropattern
    103
    Figure US20090069565A1-20090312-C00149
    465, chloropattern
    104
    Figure US20090069565A1-20090312-C00150
    451, chloropattern
    105
    Figure US20090069565A1-20090312-C00151
    465, chloropattern
  • Example 106 1-(4-Chloro-phenyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00152
  • The title compound was prepared analogously to example 75 with the difference 4-Chlorophenyl boronic acid was used instead of 4-Methoxyphenyl boronic acid. MS (ESI+): m/e=396, chloro pattern.
  • Analogously to example 107 the following compounds were prepared by a similar procedure:
  • Example Structure MS (ESI+)
    108
    Figure US20090069565A1-20090312-C00153
    428, chloropattern
    109
    Figure US20090069565A1-20090312-C00154
    415, chloropattern
    110
    Figure US20090069565A1-20090312-C00155
    429, chloropattern
    111
    Figure US20090069565A1-20090312-C00156
    410, chloropattern
    112
    Figure US20090069565A1-20090312-C00157
    445, chloropattern
    113
    Figure US20090069565A1-20090312-C00158
    431, chloropattern
    114
    Figure US20090069565A1-20090312-C00159
    431, chloropattern
    115
    Figure US20090069565A1-20090312-C00160
    431, chloropattern
    116
    Figure US20090069565A1-20090312-C00161
    396, chloropattern
  • Example 117 1-(4-Chloro-phenyl)-1H-indole-2-carboxylic acid 4-pyridin-4-yl-benzylamide
  • Figure US20090069565A1-20090312-C00162
  • The title compound was prepared analogously to example 86 with the difference that 1-(4-Chloro-phenyl)-1H-indole-2-carboxylic acid was used instead of 1-(4-Methoxy-phenyl)-1H-indole-2-carboxylic acid.
  • MS (ESI+): m/e 438, chloro pattern.
  • Example 118 1-(4-Amino-quinazolin-7-ylmethyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00163
  • The title compound was prepared analogously to example 1 with the difference that 7-Bromomethyl-quinazolin-4-ylamine [prepared by adopting a procedure described by Ewing, William R.; Becker, Michael R.; Choi-Sledeski, Yong Mi; Pauls, Heinz W.; He, Wei; Condon, Stephen M.; Davis, Roderick S.; Hanney, Barbara A.; Spada, Alfred P.; Burns, Christopher J.; Jiang, John Z.; Li, Aiwen; Myers, Michael R.; Lau, Wan F.; Poli, Gregory B. PCT Int. Appl. (2001), 460 pp. WO 0107436 A2] was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole.
  • MS (ESI+): m/e=443.
  • Example 119 1-(6-Chloro-benzo[b]thiophen-2-ylmethyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00164
  • The title compound was prepared analogously to example 1 with the difference that 2-Bromomethyl-6-chloro-benzo[b]thiophene [prepared by adopting a procedure described by Ewing, William R. et al. in; PCT Int. Appi. (1999), 300 pp. WO 9937304 A1; and Ewing, William R. et al. PCT Int. Appl. (2001), 460 pp. WO 0107436 A2] was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole.
  • MS (ESI+): m/e=466, chloro pattern.
  • Example: 120 1-[5-(5-Chloro-thiophen-2-yl)-[1,3,4]thiadiazol-2-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00165
  • The title compound was prepared analogously to example 1 with the difference that 2-Bromomethyl-5-(5-chloro-thiophen-2-yl)-[1,3,4]thiadiazole [prepared by adopting a procedure described by Ewing, William R. et al. PCT Int. Appl. (2001), 460 pp. WO 0107436 A2] was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole.
  • MS (ESI+): m/e=500, chloro pattern.
  • Example: 121 1-[3-(5-Chloro-thiophen-2-yl)-isoxazol-5-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00166
  • The title compound was prepared analogously to example 1 with the difference that 5-Bromomethyl-3-(5-chloro-thiophen-2-yl)-isoxazole [Ewing, William R. et al. PCT Int. Appl. (2001), 460 pp. WO 0107436 A2] was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole.
  • MS (ESI+): m/e=483, chloro pattern.
  • Example 122 3-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00167
  • To a solution of 40 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide in 1 ml DCM, 17 mg NCS were added and the mixture was stirred at RT for 16 h. Finally, the reaction mixture was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt.
  • Yield: 15 mg MS (ES+): m/e=517, chloro pattern.
  • Example 123 3-Bromo-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00168
  • To a solution of 40 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide in 1 ml DCM, 22 mg NBS were added and the mixture was stirred at RT over night. Finally, the reaction mixture was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt.
  • Yield: 18 mg MS (ES+): m/e = 562, chloro pattern.
  • Example 124 1-(4-Chloro-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00169
  • The title compound was prepared analogously to example I with the difference that 1-Chloromethyl-4-chloro-benzene was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole.
  • MS (ESI+): m/e=410, chloro pattern.
  • Analogously to example 124 the following compounds were prepared by a similar procedure:
  • Example Structure MS (ESI+)
    125
    Figure US20090069565A1-20090312-C00170
    445, chloropattern
    126
    Figure US20090069565A1-20090312-C00171
    409, chloropattern
    127
    Figure US20090069565A1-20090312-C00172
    423, chloropattern
    128
    Figure US20090069565A1-20090312-C00173
    431, chloropattern
    129
    Figure US20090069565A1-20090312-C00174
    443, chloropattern
    130
    Figure US20090069565A1-20090312-C00175
    445, chloropattern
    131
    Figure US20090069565A1-20090312-C00176
    442, chloropattern
    132
    Figure US20090069565A1-20090312-C00177
    445, chloropattern
    133
    Figure US20090069565A1-20090312-C00178
    445, chloropattern
    134
    Figure US20090069565A1-20090312-C00179
    459, chloropattern
  • Example 135 1-(2,4-Dichloro-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00180
  • The title compound was prepared analogously to example 1 with the difference that 1-Chloromethyl-2,4-dichloro-benzene was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole.
  • MS (ESI+): m/e=444, chloro pattern.
  • According to example 135 the following compounds were prepared by a similar procedure:
  • Ex-
    am-
    ple Structure MS (ESI+)
    136
    Figure US20090069565A1-20090312-C00181
    465, chloropattern
    137
    Figure US20090069565A1-20090312-C00182
    493, chloropattern
    138
    Figure US20090069565A1-20090312-C00183
    479, chloropattern
    139
    Figure US20090069565A1-20090312-C00184
    457, chloropattern
    140
    Figure US20090069565A1-20090312-C00185
    479, chloropattern
    141
    Figure US20090069565A1-20090312-C00186
    479, chloropattern
    142
    Figure US20090069565A1-20090312-C00187
    476, chloropattern
    143
    Figure US20090069565A1-20090312-C00188
    478, chloropattern
  • Example 144 1-(4-Methoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00189
  • The title compound was prepared analogously to example 1 with the difference that 1-Chloromethyl-4-methoxy-benzene was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=406.
  • Example 145 (4-Isopropylamino-piperidin-1-yl)-[1-(4-methoxy-benzyl)-1H-indol-2-yl]-methanone
  • Figure US20090069565A1-20090312-C00190
  • The title compound was prepared analogously to example 144 with the difference that 4-Isopropyl-piperidin-1-yl-amine was used instead of 1-Isopropyl-piperidin-4-ylamine MS (ESI+): m/e=406.
  • Example 146 1-(4-Trifluoromethoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00191
  • The title compound was prepared analogously to example 1 with the difference that 1-Bromomethyl-4-trifluoromethoxy-benzene was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=459.
  • Example 147 (4-Isopropylamino-piperidin-1-yl)-[1-(4-trifluoromethoxy-benzyl)-1H-indol-2-yl]-methanone
  • Figure US20090069565A1-20090312-C00192
  • The title compound was prepared analogously to example 146 with the difference that Isopropyl-piperidin-4-yl-amine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=459.
  • Example 148 1-(2-Chloro-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00193
  • The title compound was prepared analogously to example 1 with the difference that 1-Bromomethyl-2-chloro-benzene was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole.
  • MS (ESI+): m/e=410, chloro pattern.
  • According to example 148 the following compounds were prepared by a similar procedure:
  • Example Structure MS (ESI+)
    149
    Figure US20090069565A1-20090312-C00194
    410, chloropattern
    150
    Figure US20090069565A1-20090312-C00195
    459, chloropattern
    151
    Figure US20090069565A1-20090312-C00196
    409, chloropattern
    152
    Figure US20090069565A1-20090312-C00197
    443, chloropattern
    153
    Figure US20090069565A1-20090312-C00198
    431, chloropattern
    154
    Figure US20090069565A1-20090312-C00199
    423, chloropattern
    155
    Figure US20090069565A1-20090312-C00200
    445, chloropattern
    156
    Figure US20090069565A1-20090312-C00201
    445, chloropattern
  • Example 157 1-(3,5-Dichloro-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00202
  • The title compound was prepared analogously to example 1 with the difference that 1-Chloromethyl-3,5-dichloro-benzene was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole.
  • MS (ESI+): m/e=444, chloro pattern.
  • Example 158 [1-(3,5-Dichloro-benzyl)-1H-indol-2-yl]-(4-isopropylamino-piperidin-1-yl)-methanone
  • Figure US20090069565A1-20090312-C00203
  • The title compound was prepared analogously to example 157 with the difference that Isopropyl-piperidin-4-yl-amine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=443, chloro pattern.
  • Example 159 3-Fluoro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00204
  • To a solution of 40 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide in 1 ml DCM 22 mg N-Fluoropyridinium triflate were added and the mixture was stirred at RT for 4 days. Finally, the reaction mixture was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt.
  • Yield: 22 mg MS (ES+): m/e = 501, chloro pattern.
  • Example 160 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00205
  • (i) 3-Iodo-1H-indole-2-carboxylic acid methyl ester
  • To a solution of 2 g 1H-Indole-2-carboxylic acid methyl ester and 2.1 g KOH in 20 ml DMF a solution of 2.7 g I2 in 10 ml DMF were added dropwise at RT. After 30 min the reaction mixture was diluted with a solution of 2.5 g NaHSO3 in 100 ml water. The product was collected as a white precipitate by filtration and was washed with 10 ml water. Yield: 3 g.
  • (ii) 3-Cyano-1H-indole-2-carboxylic acid methyl ester
  • To a solution of 2 g 3-Iodo-1H-indole-2-carboxylic acid methyl ester in 10 ml DMF and 20 ml THF, 1.5 g CuCN, 434 mg Et4NCN and 461 mg DPPF were added and the mixture was purged with argon for 15 min. Then, 254 mg Pd2(dba)3 were introduced and the reaction was heated to 80° C. for 5 h. Finally, 10 ml saturated NaHCO3 solution were added and the mixture was filtered through a chem Elut® cartridge by elution with DCM. After subsequent removal of the solvent under reduced pressure the residue was purified by chromatography on silica gel with ethylacetate as eluent. The fractions containing the product were evaporated to yield a white solid. Yield: 1.2 g.
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-1H-indole-2-carboxylic acid methyl ester
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 1 (iv), using 3-Cyano-1H-indole-2-carboxylic acid methyl ester as the starting material.
  • (iv) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-1H-indole-2-carboxylic acid
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 1 (v), using 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-1H-indole-2-carboxylic acid methyl ester as the starting material.
  • (v) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 1 (vi), using 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-1H-indole-2-carboxylic acid as the starting material.
  • MS (ES+): m/e=508, chloro pattern.
  • Example 161 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-7-methyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00206
  • The title compound was prepared analogously to example 186 with the difference that 7-Methyl-1H-indole-2-carboxylic acid methyl ester was used instead of 1H-Indole-2-carboxylic acid methyl ester. MS (ESI+): m/e=522, chloro pattern.
  • Example 162 1-[2-(5-Chloro-thiophen-2-yl)-thiazol-5-ylmethyl]-1H-indole-2-carboxylic acid 1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00207
  • The title compound was prepared analogously to example 1 with the difference that 5-Bromomethyl-2-(5-chloro-thiophen-2-yl)-thiazole [prepared by adopting a procedure described by Ewing, William R. et al.; PCT Int. Appl. (2001), 460 pp. WO 0107436 A2] was used instead 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole
  • MS (ESI+): m/e=499, chloro pattern.
  • Example 163 1-(3-Chloro-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00208
  • The title compound was prepared analogously to example 1 with the difference that 1-Bromomethyl-3-chloro-benzene was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole.
  • MS (ESI+): m/e=410, chloro pattern.
  • Example 164 [1-(3-Chloro-benzyl)-1H-indol-2-yl]-(4-isopropylamino-piperidin-1-yl)-methanone
  • Figure US20090069565A1-20090312-C00209
  • The title compound was prepared analogously to example 163 with the difference that Isopropyl-piperidin-4-yl-amine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=409, chloro pattern.
  • Example 165 1-(3-Carbamoyl-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00210
  • The title compound was prepared analogously to example 1 with the difference that 3-Bromomethyl-benzamide was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=419.
  • Example 166 3-[2-(4-Isopropylamino-piperidine-1-carbonyl)-indol-1-ylmethyl]-benzamide
  • Figure US20090069565A1-20090312-C00211
  • The title compound was prepared analogously to example 165 with the difference that Isopropyl-piperidin-4-yl-amine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=419.
  • Example 167 1-(3,5-Dimethoxy-benzyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00212
  • The title compound was prepared analogously to example 1 with the difference that 1-Chloromethyl-3,5-dimethoxy-benzene was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=435.
  • Example 168 [1-(3,5-Dimethoxy-benzyl)-1H-indol-2-yl]-(4-isopropylamino-piperidin-1-yl)-methanone
  • Figure US20090069565A1-20090312-C00213
  • The title compound was prepared analogously to example 167 with the difference that Isopropyl-piperidin-4-yl-amine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=435.
  • Example 169 1-[2-(4-Chloro-phenyl)-ethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00214
  • (i) Toluene-4-sulfonic acid 2-(4-chloro-phenyl)-ethyl ester
  • 5 g (31.9 mmol) of 2-(4-Chloro-phenyl)-ethanol was dissolved in 100 ml of pyridine and the solution was cooled to 0° C. 6.09 g (31.9 mmol) of para-toluene sulfonyl chloride was added to this solution and the reaction was stirred at 0° C. for 2 h, then at room temperature for 16 h. The solvent was removed under reduced pressure, the residue was taken-up in ethyl acetate and the solution was washed once with saturated aqueous sodium bicarbonate, once with water, and once with saturated aqueous sodium chloride. The organic phase was dried with sodium sulfate, filtered and the solvent was removed under reduced pressure. The compound was recrystallised from n-heptane/ethyl acetate. Yield: 6.23 g MS (Cl+): m/e=311, chloro pattern.
  • (ii) 1-[2-(4-Chloro-phenyl)-ethyl]-1H-indole-2-carboxylic acid ethyl ester
  • 0.5 g (2.6 mmol) of 1H-Indole-2-carboxylic acid ethyl ester was dissolved in DMF and 116 mg (2.9 mmol) of sodium hydride (60% dispersion in mineral oil) was added. The solution was stirred for 30 min at room temperature, then cooled to −78° C. A solution of 0.82 g (2.6 mmol) of toluene-4-sulfonic acid 2-(4-chloro-phenyl)-ethyl ester in DMF was added to this cooled solution. The solution was warmed to RT and was stirred for 16 h. The solvent was removed under reduced pressure, the residue was taken-up in ethyl acetate and the solution was washed once with saturated aqueous sodium bicarbonate, once with water, and once with saturated aqueous sodium chloride. The organic phase was dried with magnesium sulfate, filtered and the solvent was removed under reduced pressure. The residue was chromatographed on silica gel eluting with a gradient of n-heptane/ethyl acetate.
  • Yield: 480 mg MS (Cl+): m/e = 328, chloro pattern.
  • (iii) 1-[2-(4-Chloro-phenyl)-ethyl]-1H-indole-2-carboxylic acid
  • 480 mg (1.5 mmol) of 1-[2-(4-Chloro-phenyl)-ethyl]-1H-indole-2-carboxylic acid ethyl ester was dissolved in 5 ml of dioxan and 5 ml of 2N aqueous sodium hydroxide was added. The reaction was heated to 60° C. for 2 h, then was cooled to 0° C. The solution was diluted with 10 ml of water and the pH of the solution was adjusted to between 2 and 3 by the addition of concentrated aqueous HCl, whereupon the product precipitates. The product was filtered off and dried under reduced pressure. Yield: 390 mg MS (Cl+): m/e=300, chloro pattern.
  • (iv) 1-[2-(4-Chloro-phenyl)-ethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • 50 mg (0.2 mmol) of 1-[2-(4-Chloro-phenyl)-ethyl]-1H-indole-2-carboxylic acid was dissolved in 2 ml of DMF and 54.7 mg (0.2 mmol) of TOTU and 0.21 ml (1.7 mmol) of NEM was added. This solution was stirred at room temperature for 30 min. 35.9 mg (0.2 mmol) of 1-isopropyl-piperidin-4-ylamine dihydrochloride was added and the resulting solution was stirred at room temperature for 16 h. The product was purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water(+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt. Yield: 46.9 mg MS (TOF-ES+): m/e=424, chloro pattern.
  • Example 170 1-[2-(2,4-Dichloro-phenyl)-ethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00215
  • (i) Toluene-4-sulfonic acid 2-(2,4-dichloro-phenyl)-ethyl ester
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 169 (i), using 2-(2,4-dichloro-phenyl)-ethanol as the starting material. The compound was recrystallised from n-heptane/ethyl acetate. Yield: 7.12 g MS (Cl+): m/e=345, chloro pattern.
  • (ii) 1-[2-(2,4-Dichlorophenyl)-ethyl]-1H-indole-2-carboxylic acid ethyl ester
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 169 (ii), and using toluene-4-sulfonic acid 2-(2,4-dichloro-phenyl)-ethyl ester as the starting material. Yield: 91 mg MS (LC-MS-ES+): m/e=362, chloro pattern.
  • (iii) 1-[2-(2,4-Dichlorophenyl)-ethyl]-1H-indole-2-carboxylic acid
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 169 (iii), using 1-[2-(2,4-Dichlorophenyl)-ethyl]-1H-indole-2-carboxylic acid ethyl ester as the starting material. Yield: 69 mg MS (Cl+): m/e=334, chloro pattern.
  • (iv) 1-[2-(2,4-Dichlorophenyl)-ethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 169 (iv), using 1-[2-(2,4-Dichlorophenyl)-ethyl]-1H-indole-2-carboxylic acid as the starting material. Yield: 69 mg MS (Cl+): m/e=334, chloro pattern.
  • Example 171 1-[2-(3-Methoxy-phenyl)-ethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00216
  • (i) Toluene-4-sulfonic acid 2-(3-methoxyphenyl)-ethyl ester
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 169 (i), using 2-(3-methoxyphenyl)-ethanol as the starting material. The compound was chromatographed on silica gel eluting with n-heptane/ethyl acetate (4/1).
  • Yield: 5.13 g. MS (Cl+): m/e = 306 (M+).
  • (ii) 1-[2-(3-Methoxy-phenyl)-ethyl]-1H-indole-2-carboxylic acid ethyl ester
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 169 (ii), using toluene-4-sulfonic acid 2-(3-methoxyphenyl)-ethyl ester as the starting material. Yield: 554 mg. MS (LC-MS-ES+): m/e=324 (M+H+).
  • (iii) 1-[2-(3-Methoxy-phenyl)-ethyl]-1H-indole-2-carboxylic acid
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 169 (iii), using 1-[2-(3-Methoxy-phenyl)-ethyl]-1H-indole-2-carboxylic acid ethyl ester as the starting material. Yield: 384 mg. MS (Cl+): m/e 10=296 (M+H+).
  • (iv) 1-[2-(3-Methoxy-phenyl)-ethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 169 (iv), using 1-[2-(3-Methoxy-phenyl)-ethyl]-1H-indole-2-carboxylic acid as the starting material. Yield: 44 mg MS (LC-MS-ES+): m/e=419 (M+).
  • Example 172 1-[2-(4-Chloro-phenyl)-ethyl]-4-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00217
  • This compound was prepared using a procedure analogous to that described for the preparation of Example 169, using 4-methoxy-1H-indole-2-carboxylic acid methyl ester as the starting material. Yield: 67 mg. MS (ES+): m/e=454 (M+), chloro pattern.
  • Example 173 4-Bromo-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00218
  • The title compound was prepared analogously to example 1 with the difference that 4-Bromo-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid. MS (ESI+): m/e=562, chloro pattern.
  • Example 174 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-methyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00219
  • The title compound was prepared analogously to example 1 with the difference that 4-Methyl-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid. MS (ESI+): m/e=497, chloro pattern.
  • Example 175 5-Bromo-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00220
  • The title compound was prepared analogously to example 1 with the difference that 5-Bromo-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid. MS (ESI+): m/e=562, chloro pattern.
  • Example 176 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-cyano-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00221
  • The title compound was prepared analogously to example 1 with the difference that 5-Cyano-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid. MS (ESI+): m/e=508, chloro pattern.
  • Example 177 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-trifluoromethyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00222
  • The title compound was prepared analogously to example 1 with the difference that 4-Trifluoromethyl-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid.
  • MS (ESI+): m/e=551, chloro pattern.
  • Example 178 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00223
  • The title compound was prepared analogously to example 1 with the difference that 4,7-Dimethyl-1H-indole-2-carboxylic acid was used instead of I H-Indole-2-carboxylic acid.
  • MS (ESI+): m/e=511, chloro pattern.
  • Example: 179 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00224
  • The title compound was prepared analogously to example 1 with the difference that 4,7-Dimethoxy-1H-indole-2-carboxylic acid was used instead of 1H-indole-2-carboxylic acid.
  • MS (ESI+): m/e=543, chloro pattern.
  • Example: 180 4,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00225
  • The title compound was prepared analogously to example 1 with the difference that 4,7-Dichloro-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid.
  • MS (ESI+): m/e=551, chloro pattern.
  • Example 181 5,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00226
  • The title compound was prepared analogously to example 1 with the difference that 5,7-Dichloro-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid.
  • MS (ESI+): m/e=551, chloro pattern.
  • Example 182 4-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00227
  • The title compound was prepared analogously to example 1 with the difference that 4-Chloro-1H-indole-2-carboxylic acid was used instead of 1H-Indole-2-carboxylic acid. MS (ESI+): m/e=517, chloro pattern.
  • Example 183 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (4-methyl-piperazin-1-yl)-amide
  • Figure US20090069565A1-20090312-C00228
  • The title compound was prepared analogously to example 1 with the difference that 4-Methyl-piperazin-1-ylamine was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=456, chloro pattern.
  • Example 184 [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-Indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester
  • Figure US20090069565A1-20090312-C00229
  • (i) (1-Isopropyl-piperidin-4-ylamino)-acetic acid ethyl ester
  • To a solution of 1 g 1-Isopropyl-piperidin-4-ylamine hydrochloride in 10 ml DMF, 1.2 g 2-Bromoacetic acid ethyl ester, 2.3 g Cs2CO3, and 2 ml NEt3, were added and the reaction mixture was stirred for 2 h at RT. Finally, 10 ml saturated NaHCO3 solution were added and the mixture was filtered through a chem Elut® cartridge by elution with DCM. After evaporation of the solvent under reduced pressure the product was obtained as a white foam and employed in the following reaction without further purification.
  • Yield: 1.3 g.
  • (ii) [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester
  • To a solution of 70 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid in 1 ml DMF, 0.1 ml NEt3, 47 mg BOP-Cl and 81 mg (1-Isopropyl-piperidin-4-ylamino)-acetic acid ethyl ester were added and the mixture was stirred for 16 h. After removal of the solvent under reduced pressure the residue was filtered through a chem Elut® cartridge by elution with ethyl acetate and then purified by preparative HPLC (C18 reverse phase column, elution with a H2O/MeCN gradient with 0.1% TFA). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
  • Yield: 9.3 mg MS (ES+): m/e = 583, chloro pattern.
  • Example 185 [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid
  • Figure US20090069565A1-20090312-C00230
  • To a solution of 15 mg [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester in 2 ml water/THF 1:2, 25 μl aqueous NaOH solution (2M) were added and the reaction stirred for 16 h at RT. The reaction mixture was acidified by addition of hydrochloric acid (5M), concentrated under reduced pressure and the residue taken-up in DCM. The inorganic salts were filtered off, the filtrate was concentrated under reduced pressure, taken-up in 1 ml water and lyophilized to yield a white solid. The product was obtained as its HCl salt. Yield: 5 mg MS (ES+): m/e=555, chloro pattern.
  • Example 186 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(1-ethyl-propyl)-piperidin-4-yl]-amide
  • Figure US20090069565A1-20090312-C00231
  • The title compound was prepared analogously to example 49 with the difference that Pentan-3-one was used instead of Tetrahydro-pyran-4-one. MS (ESI+): m/e=511, chloro pattern.
  • Example 187 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-methyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00232
  • To a solution of 50 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide in 1 ml DMF and 40 μl NEt3, 24 mg methyl iodide were added at RT and the reaction mixture stirred for 4 h. After removal of the solvent under reduced pressure the residue was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt.
  • Yield: 32 mg MS (ES+): m/e = 455, chloro pattern.
  • Example 188 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2,2,2-trifluoro-ethyl)-piperidin-4-yl]-amide
  • Figure US20090069565A1-20090312-C00233
  • The title compound was prepared analogously to example 187 with the difference that 2-Iodo1,1,1-trifluoroethane was used instead of methyl iodide.
  • MS (ESI+): m/e=523, chloro pattern.
  • Example 189 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-formyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00234
  • A solution of 50 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide in 2 ml formic acid was heated to 100° C. for 5 h. After removal of the solvent under reduced pressure the residue directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as a white solid.
  • Yield: 14 mg MS (ES+): m/e=469, chloro pattern.
  • Example 190 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-carbamoyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00235
  • To a solution of 50 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide in 2 ml acetic acid, 14 mg KOCN were added at RT and stirred over night. After removal of the solvent under reduced pressure the residue directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as a white solid.
  • Yield: 31 mg MS (ES+): m/e = 484, chloro pattern.
  • Example 191 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-methanesulfonyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00236
  • To a solution of 50 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide in 2 ml DCM, 0.3 ml NEt3 and 20 mg Methanesulfonyl chloride were added at RT and stirred for 16 h. After removal of the solvent under reduced pressure the residue was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as a white solid.
  • Yield: 23 mg MS (ES+): m/e = 519, chloro pattern.
  • Example 192 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-acetyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00237
  • To a solution of 50 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide in 2 ml DCM, 0.3 ml NEt3 and 11 mg acetic acid anhydride were added at RT and stirred over night. After removal of the solvent under reduced pressure the residue was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as a white solid.
  • Yield: 24 mg MS (ES+): m/e = 483, chloro pattern.
  • Example 193 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2-chloro-pyrimidin-4-yl)-piperidin-4-yl]-amide
  • Figure US20090069565A1-20090312-C00238
  • (i) [1-(2-Chloro-pyrimidin-4-yl)-piperidin-4-yl]-carbamic acid tert-butyl ester
  • To a solution of 500 mg Piperidin-4-yl-carbamic acid tert-butyl ester in 6 ml n-BuOH/water/NEt3 1:1:1, 557 mg 2,4-Dichloro-pyrimidine were added and the reaction mixture was heated to 100° C. over night. After cooling the reaction to RT, the solvent as evaporated under reduced pressure and the residue was taken-up in ethyl acetate washed twice with water and then with brine. The organic layer was dried over Na2SO4 and the solvent removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with ethyl acetate/heptane 2:1. The fractions containing the product were evaporated under reduced pressure to give a white solid. Yield: 630 mg.
  • (ii) 1-(2-Chloro-pyrimidin-4-yl)-piperidin-4-ylamine
  • To a solution of 250 mg [1-(2-Chloro-pyrimidin-4-yl)-piperidin-4-yl]-carbamic acid tert-butyl ester in 1 ml DCM, 1 ml TFA was added and the mixture was stirred for 2 h at RT. Then, 10 ml toluene was added and the solvents were removed under reduced pressure. The residue was codistilled twice with toluene to yield a yellow oil. The product was obtained as its trifluoroacetate salt.
  • Yield: 367 mg
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2-chloro-pyrimidin-4-yl)-piperidin-4-yl]-amide
  • To a solution of 100 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid in 3 ml of DCM 91 mg TOTU and 0.13 ml NEM were added. This solution was stirred at room temperature for 30 min. Then 148 mg 1-(2-Chloro-pyrimidin-4-yl)-piperidin-4-ylamine trifluoro acetate was added and the resulting solution was stirred at room temperature for 16 h. The product was purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt.
  • Yield: 71 mg MS (ES+): m/e = 553, chloro pattern.
  • Example 194 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-pyrimidin-4-yl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00239
  • (i) (1-Pyrimidin-4-yl-piperidin-4-yl)-carbamic acid tert-butyl ester
  • To a solution of 395 mg [1-(2-Chloro-pyrimidin-4-yl)-piperidin-4-yl]-carbamic acid tert-butyl ester in 10 ml ethanol and 0.3 ml acetic acid, 20 mg Pd/C (10%) were added and the mixture purged with argon for 10 min. Then the flask was stirred under a hydrogen atmosphere for 5 h at RT. After addition of 10 ml ethyl acetate the reaction mixture was filtered through a pad of celite. The solvent was evaporated under reduced pressure and the residue codistilled twice with toluene to give the product as a white solid. Yield: 468 mg.
  • (ii) 1-Pyrimidin-4-yl-piperidin-4-ylamine
  • To a solution of 468 mg (1-Pyrimidin-4-yl-piperidin-4-yl)-carbamic acid tert-butyl ester in 2 ml DCM, 2 ml TFA were added and the mixture was stirred for 2 h at RT. Then, 10 ml toluene was added and the solvents were removed under reduced pressure. The residue was codistilled twice with toluene to yield a yellow oil. The product was obtained as its trifluoroacetate salt.
  • Yield: 703 mg.
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-pyrimidin-4-yl-piperidin-4-yl)-amide
  • To a solution of 100 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid in 3 ml of DCM, 91 mg TOTU and 0.13 ml NEM were added. This solution was stirred at room temperature for 30 min. Then 135 mg 1-Pyrimidin-4-yl-piperidin-4-ylamine trifluoroacetate was added and the resulting solution was stirred at room temperature for 16 h. The product was purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt.
  • Yield: 52 mg MS (ES+): m/e=519, chloro pattern.
  • Example 195 {1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indol-2-yl}-[4-(pyridin-4-yloxy)-piperidin-1-yl]-methanone
  • Figure US20090069565A1-20090312-C00240
  • The title compound was prepared analogously to example 1 with the difference that 4-(Piperidin-4-yloxy)-pyridine [prepared by adopting a procedure described Baxter, Andrew Douglas; Owen, David Alan; Montana, John Gary; Watson, Robert John PCT Int. Appl. (1999), 44 pp. WO 9924399 A1] was used instead of 1-Isopropyl-piperidin-4-ylamine.
  • MS (ESI+): m/e=519, chloro pattern.
  • Example 196 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [4-(1H-imidazol-4-yl)-phenyl]-amide
  • Figure US20090069565A1-20090312-C00241
  • The title compound was prepared analogously to example 1 with the difference that 4-(1H-Imidazol-4-yl)-phenylamine was used instead of 1-Isopropyl-piperidin-4-ylamine.
  • MS (ESI+): m/e=500, chloro pattern.
  • Example 197 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (4-pyridin-3-yl-thiazol-2-yl)-amide
  • Figure US20090069565A1-20090312-C00242
  • The title compound was prepared analogously to example 1 with the difference that 4-Pyridin-3-yl-thiazol-2-ylamine was used instead of 1-Isopropyl-piperidin-4-ylamine.
  • MS (ESI+): m/e=518, chloro pattern.
  • Example 198 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [3-(pyrrolidine-1-carbonyl)-4,5-dihydro-isoxazol-5-ylmethyl]-amide
  • Figure US20090069565A1-20090312-C00243
  • The title compound was prepared analogously to example 1 with the difference that (5-Aminomethyl-4,5-dihydro-isoxazol-3-yl)-pyrrolidin-1-yl-methanone was used instead of 1-Isopropyl-piperidin-4-ylamine. MS (ESI+): m/e=538, chloro pattern.
  • Example 199 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isobutyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00244
  • The title compound was prepared analogously to example 187 with the difference that 1-Iodo-2-methylpropane was used instead of methyl iodide
  • MS (ESI+): m/e=497, chloro pattern.
  • Example 200 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid 1-propyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00245
  • The title compound was prepared analogously to example 187 with the difference that 1-Iodopropane was used instead of methyl iodide. MS (ESI+): m/e=483, chloro pattern.
  • Example 201 4-({1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-amino)-piperidine-1-carboxylic acid methyl ester
  • Figure US20090069565A1-20090312-C00246
  • To a solution of 50 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide in 2 ml DCM, 0.3 ml NEt3 and 20 mg Methyl chloroformate were added at RT and stirred over night. After removal of the solvent under reduced pressure the residue was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt a white solid.
  • Yield: 24 mg MS (ES+): m/e = 499, chloro pattern.
  • Example 202 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (4-isopropyl-piperazin-1-yl)-amide
  • Figure US20090069565A1-20090312-C00247
  • (i) 4-Amino-piperazine-1-carboxylic acid tert-butyl ester
  • To a solution of piperazin-1-ylamine in 20 ml THF and 1.37 ml NEt3, 2.2 g Boc2O in 5 ml THF were added dropwise at 0° C. The reaction mixture was stirred for 16 h at RT then 50 ml ethyl acetate and 20 ml water were added. The organic layer was separated, washed with brine and dried over Na2SO4. After removal of the solvent under reduced pressure the product was obtained as a white solid.
  • Yield: 1.53 g.
  • (ii) 4-({1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-amino)-piperazine-1-carboxylic acid tert-butyl ester
  • To a solution of 1 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid and 1.3 ml NEM in 8 ml DCM, 914 mg TOTU were added and the mixture was stirred for 30 min at RT. Then 673 mg 4-Amino-piperazine-1-carboxylic acid tert-butyl ester were added and the reaction was stirred over night. After removal of the solvent under reduced pressure the residue was directly purified by chromatography on silica gel eluting with an ethyl acetate/heptane gradient. Yield: 1.1 g.
  • (iv) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperazin-1-ylamide
  • To 1.1 g 4-({1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-amino)-piperazine-1-carboxylic acid tert-butyl ester in 5 ml MeOH, 20 ml sat. methanolic HCl were added and the reaction was stirred for 5 h at RT. Then, 70 ml toluene were added and the solvents were evaporated under reduced pressure to yield a yellow solid. The product was obtained as its hydrochloride salt. Yield: 941 mg.
  • (v) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (4-isopropyl-piperazin-1-yl)-amide
  • To 100 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperazin-1-ylamide in 2 ml methanol and 2 ml DMF and 0.2 ml acetone, 0.42 ml of Na(CN)BH3 in THF (1 M) were added and the mixture was heated to 80° C. for 30 min. After cooling the reaction to RT the solvent was removed under reduced pressure and the residue was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt.
  • Yield: 39 mg MS (ESI+): m/e = 484, chloro pattern.
  • Example 203 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (4-ethyl-piperazin-1-yl)-amide
  • Figure US20090069565A1-20090312-C00248
  • The title compound was prepared analogously to example 202 with the difference that acetaldehyde was used instead of acetone in the reductive amination step.
  • MS (ESI+): m/e=470, chloro pattern.
  • Example 204 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid pyridin-4-yl-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide
  • Figure US20090069565A1-20090312-C00249
  • (i) Pyridin-4-yl-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-carbamic acid tert-butyl ester
  • A solution of 5 g Piperidin-4-yl-carbamic acid tert-butyl ester and 8 g 4-Chloropyridine hydrochloride in 9 ml n-butanol/water/NEt3 1:1:1 was heated at 100° C. for 48 h. Then the reaction mixture was cooled to RT, concentrated under reduced pressure and directly purified by chromatography on silica gel eluting with DCM. The fractions containing the product were evaporated under reduced pressure to yield a white foam. Yield: 7 g.
  • (ii) Pyridin-4-yl-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amine
  • To 2 g Pyridin-4-yl-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-carbamic acid tert-butyl ester in 10 ml MeOH, 30 ml sat. methanolic HCl was added and stirred for 5 h at RT. Then, 70 ml toluene were added and the solvents were evaporated under reduced pressure to give a yellow solid. The product was obtained as its hydrochloride salt. Yield: 1.6 g.
  • (ii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid pyridin-4-yl-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide
  • To a solution of 200 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid and 0.3 ml NEM in 2 ml DCM, 182 mg TOTU were added and the mixture was stirred for 30 min at RT. Then 170 mg Pyridin-4-yl-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amine were added and the reaction was stirred for 16 h. After removal of the solvent under reduced pressure the residue was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt. Yield: 39 mg MS (ESI+): m/e=595, chloro pattern.
  • Example 205 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-nitro-1H-indole-2-carboxylic acid pyridin-4-yl-(3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide
  • Figure US20090069565A1-20090312-C00250
  • The title compound was prepared analogously to example 204 with the difference that 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-nitro-1H-indole-2-carboxylic acid was used instead of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid.
  • MS (ESI+): m/e=642, chloro pattern.
  • Example 206 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3-cyano-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide
  • Figure US20090069565A1-20090312-C00251
  • The title compound was prepared analogously to example 160 with the difference that 3,4,5,6-Tetrahydro-2H-[1,4′]bipyridinyl-4-ylamine was used instead of 1-Isopropyl-piperidin-4-ylamine.
  • MS (ESI+): m/e=543, chloro pattern.
  • Example 207 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3,7-diiodo-4-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00252
  • (i) 3,7-Diiodo-4-methoxy-1H-indole-2-carboxylic acid methyl ester
  • To a solution of 1 g 4-Methoxy-1H-indole-2-carboxylic acid methyl ester in 15 ml DCM, 5.4 g Bis(pyridine)iodonium(1) tetrafluoroborate were added at RT and the reaction was stirred over night. Then, the reaction mixture was diluted with 20 ml DCM and washed with sat. Na2S2O3 solution and water. The organic layer was separated and dried over Na2SO4 and the solvent removed under reduced pressure. The residue was used in the subsequent reaction without further purification. Yield: 1.6 g.
  • (ii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3,7-diiodo-4-methoxy-1H-indole-2-carboxylic acid
  • To a solution of 200 mg 3,7-Diiodo-4-methoxy-1H-indole-2-carboxylic acid methyl ester in 2 ml DMF 20 mg (60% in oil) sodium hydride were added at RT. After stirring for 30 min 121 mg 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole [prepared by adopting a procedure described by Ewing, William R.; Becker, Michael R.; Choi-Sledeski, Yong Mi; Pauls, Heinz W.; He, Wei; Condon, Stephen M.; Davis, Roderick S.; Hanney, Barbara A.; Spada, Alfred P.; Burns, Christopher J.; Jiang, John Z.; Li, Aiwen; Myers, Michael R.; Lau, Wan F.; Poli, Gregory B; PCT Int. Appl. (2001), 460 pp. WO 0107436 A2] were added and the mixture was heated for 1 h at 60° C. After subsequent cooling of the reaction to RT and addition of 5 ml water the mixture was filtered through a chem Elut® cartridge by elution with ethyl acetate. After concentration under reduced pressure the residue was treated with 30 mg lithium hydroxide monohydrate in THF/water 2:1. After stirring for 2 h at 60° C. the reaction was cooled to RT. The mixture was acidified with half concentrated hydrochloric acid to pH 2 and the precipitate collected by filtration and washed with 3 ml water The product was obtained as a white solid which was dried under reduced pressure. Yield: 200 mg.
  • (iv) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3,7-diiodo-4-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • To a solution of 100 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3,7-diiodo-4-methoxy-1H-indole-2-carboxylic acid and 0.1 ml NEM in 2 ml DCM, 63 mg TOTU were added and the mixture was stirred for 30 min at RT. Then 41 mg 1-isopropyl-piperidin-4-ylamine hydrochloride were added and the reaction was stirred for 2 h. After removal of the solvent under reduced pressure the residue was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt.
  • Yield: 67 mg MS (ESI+): m/e = 765, chloro pattern.
  • Example 208 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3,7-dicyano-4-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00253
  • To a solution of 20 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-3,7-diiodo-4-methoxy-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide in 1 ml DMF and 1 ml THF, 14 mg CuCN, 4 mg Et4NCN, 5 mg DPPF were added and the mixture was purged with argon for 15 min. Then, 3 mg Pd2(dba)3 were introduced and the reaction was heated for 5 min to 120° C. under microwave irradiation (150 W, CEM Discover™ apparatus). Finally, 10 ml saturated NaHCO3 solution were added and the mixture was filtered through a chem Elut® cartridge by elution with DCM. After removal of the solvent under reduced pressure the residue was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt.
  • Yield: 3 mg MS (ESI+): m/e=563, chloro pattern.
  • Example 209 1-[2-(4-Chloro-phenyl)-thiazol-4-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00254
  • The title compound was prepared analogously to example 1 with the difference that 4-Chloromethyl-2-(4-chloro-phenyl)-thiazole was used in the alkylation step instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=493, chloro pattern.
  • Example 210 1-(1,7-Dichloro-isoquinolin-3-ylmethyl)-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00255
  • The title compound was prepared analogously to example 1 with the difference that 3-Bromomethyl-1,7-dichloro-isoquinoline [prepared by adopting a procedure described by Ewing, William R.; Becker, Michael R.; Choi-Sledeski, Yong Mi; Pauls, Heinz W.; He, Wei; Condon, Stephen M.; Davis, Roderick S.; Hanney, Barbara A.; Spada, Alfred P.; Burns, Christopher J.; Jiang, John Z.; Li, Aiwen; Myers, Michael R.; Lau, Wan F.; Poli, Gregory B; PCT Int. Appi. (1999), 300 pp. WO 9937304 A1] was used in the alkylation step instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=495, chloro pattern.
  • Example 211 1-[3-(4-Chloro-phenyl)-isoxazol-5-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00256
  • The title compound was prepared analogously to example 1 with the difference that 5-Chloromethyl-3-(4-chloro-phenyl)-isoxazole was used in the alkylation step instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=477, chloro pattern.
  • Example 212 1-[5-(4-Chloro-phenyl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00257
  • The title compound was prepared analogously to example 1 with the difference that 3-Chloromethyl-5-(4-chloro-phenyl)-isoxazole was used in the alkylation step instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=477, chloro pattern.
  • Example 213 1-[3-(4-Chloro-phenyl)-[1,2,4]oxadiazol-5-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00258
  • The title compound was prepared analogously to example 1 with the difference that 5-Chloromethyl-3-(4-chloro-phenyl)-[1,2,4]oxadiazole was used in the alkylation step instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole. MS (ESI+): m/e=478, chloro pattern.
  • Example 214 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5-methanesulfonyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00259
  • (i) 2-Bromo-N-(5-chloro-pyridin-2-yl)-acetamide
  • To a solution of 5 g 5-Chloro-pyridin-2-ylamine and 1.5 ml pyridine in 30 ml toluene, 8 g bromo-acetyl bromide dissolved in 10 ml toluene was added dropwise under ice cooling. After 2 h the precipitate was isolated by filtration and recrystallized from toluene to yield a white solid. Yield: 12 g.
  • (ii) 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5-methanesulfonyl-1H-indole-2-carboxylic acid
  • To a solution of 1 g 5-Methanesulfonyl-1H-indole-2-carboxylic acid methyl ester in 10 ml DMF, 158 mg (60% in oil) sodium hydride were added at RT. After stirring for 10 min 985 mg 2-Bromo-N-(5-chloro-pyridin-2-yl)-acetamide were added and the mixture was stirred for 2 h. After the addition of 7 ml water the mixture was filtered through a chem Elut® cartridge by elution with ethyl acetate and concentrated under reduced pressure. The residue was taken-up in 10 ml water/THF 1:2 and treated with 2 ml aqueous KOH solution (10%). After stirring for 16 h at RT the reaction mixture was acidified with hydrochloric acid (5M). The precipitate was collected by filtration and dried in vacuo to yield the product as a yellow solid. Yield: 1.1 g.
  • (iii) 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5-methanesulfonyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • To a solution of 500 mg 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5-methanesulfonyl-1H-indole-2-carboxylic acid in 5 ml DMF and 0.7 ml NEt3, 312 mg BOP-Cl and 264 mg 1-Isopropyl-piperidin-4-ylamine hydrochloride were added at RT and the mixture was stirred for 16 h. Subsequently the solvent was removed under reduced pressure and the residue was purified by preparative HPLC (C18 reverse phase column, elution with a H2O/MeCN gradient with 0.1% TFA). The fractions containing the product were evaporated and lyophilized to give a white solid. The product was obtained as its trifluoroacetate salt.
  • Yield: 364 mg MS (ES+): m/e = 532, chloro pattern.
  • Example 215 1-[(4-Chloro-phenylcarbamoyl)-methyl]-5-methanesulfonyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00260
  • The title compound was prepared analogously to example 214 with the difference that 2-Bromo-N-(4-chloro-phenyl)-acetamide was used instead of 2-Bromo-N-(5-chloro-pyridin-2-yl)-acetamide in the alkylation step.
  • MS (ESI+): m/e=531, chloro pattern.
  • Example 216 5-Chloro-1-[(5-chloro-pyridin-2-ylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00261
  • The title compound was prepared analogously to example 214 with the difference that 5-Chloro-1H-indole-2-carboxylic acid methyl ester was used instead of 5-Methanesulfonyl-1H-indole-2-carboxylic acid methyl ester.
  • MS (ESI+): m/e=488, chloro pattern.
  • Example 217 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5-fluoro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00262
  • The title compound was prepared analogously to example 214 with the difference that 5-Fluoro-1H-indole-2-carboxylic acid methyl ester was used instead of 5-Methanesulfonyl-1H-indole-2-carboxylic acid methyl ester.
  • MS (ESI+): m/e=472, chloro pattern.
  • Example 218 1-[(5-Chloro-pyridin-2-ylcarbamoyl)-methyl]-5,7-difluoro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00263
  • The title compound was prepared analogously to example 214 with the difference that 5,7-Difluoro-1H-indole-2-carboxylic acid methyl ester was used instead of 5-Methanesulfonyl-1H-indole-2-carboxylic acid methyl ester.
  • MS (ESI+): m/e=490, chloro pattern.
  • Example 219 S-1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid 1-ethyl-pyrrolidin-3-yl)-amide
  • Figure US20090069565A1-20090312-C00264
  • The title compound was prepared analogously to example 36 with the difference that S-3-tert.Butoxycarbonylpyrrolidine was used instead of (1-Isopropyl-piperidin-4-yl)-carbamic acid tert-butyl ester in the reductive amination step. MS (ESI+): m/e=455, chloro pattern.
  • Example 220 R-1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-ethyl-pyrrolidin-3-yl)-amide
  • Figure US20090069565A1-20090312-C00265
  • The title compound was prepared analogously to example 36 with the difference 3R-3-tert. Butoxycarbonylpyrrolidine was used instead of (1-Isopropyl-piperidin-4-yl)-carbamic acid tert-butyl ester in the reductive amination step. MS (ESI+): m/e=455, chloro pattern.
  • Example 221 R-1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-pyrrolidin-3-yl)-amide
  • Figure US20090069565A1-20090312-C00266
  • The title compound was prepared analogously to example 1 with the difference that 3R-3-tert.Butoxycarbonylpyrrolidine was used instead of (1-Isopropyl-piperidin-4-yl)-carbamic acid tert-butyl ester in the reductive amination step. MS (ESI+): m/e=469, chloro pattern.
  • Example 222 S-1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic (1-isopropyl-pyrrolidin-3-yl)-amide
  • Figure US20090069565A1-20090312-C00267
  • The title compound was prepared analogously to example 1 with the difference that 3S-3-tert.Butoxycarbonylpyrrolidine was used instead of (1-Isopropyl-piperidin-4-yl)-carbamic acid tert-butyl ester in the reductive amination step. MS (ESI+): m/e=469, chloro pattern.
  • Example 223 [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-trifluoromethyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester
  • Figure US20090069565A1-20090312-C00268
  • The title compound was prepared analogously to example 184 with the difference that 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-trifluoromethyl-1H-indole-2-carboxylic acid was used instead of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid. MS (ESI+): m/e=637, chloro pattern.
  • Example 224 [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester
  • Figure US20090069565A1-20090312-C00269
  • The title compound was prepared analogously to example 184 with the difference that 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethyl-1H-indole-2-carboxylic acid was used instead of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid. MS (ESI+): m/e=, 597, chloro pattern.
  • Example 225 [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethoxy-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester
  • Figure US20090069565A1-20090312-C00270
  • The title compound was prepared analogously to example 184 with the difference that 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethoxy-1H-indole-2-carboxylic acid was used instead of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid. MS (ESI+): m/e=629, chloro pattern.
  • Example 226 [{4,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester
  • Figure US20090069565A1-20090312-C00271
  • The title compound was prepared analogously to example 184 with the difference that 4,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid was used instead of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid. MS (ESI+): m/e=638, chloro pattern.
  • Example 227 [{5,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester
  • Figure US20090069565A1-20090312-C00272
  • The title compound was prepared analogously to example 184 with the difference that 5,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid was used instead of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid. MS (ESI+): m/e=638, chloro pattern.
  • Example 228 [{4-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester
  • Figure US20090069565A1-20090312-C00273
  • The title compound was prepared analogously to example 184 with the difference that 4-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid was used instead of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carboxylic acid. MS (ESI+): m/e=603, chloro pattern.
  • Example 229 [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-trifluoromethyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid
  • Figure US20090069565A1-20090312-C00274
  • The title compound was prepared analogously to example 185 with the difference that [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4-trifluoromethyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester was used instead [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester. MS (ESI+): m/e=609, chloro pattern.
  • Example 230 [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid
  • Figure US20090069565A1-20090312-C00275
  • The title compound was prepared analogously to example 185 with the difference that [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester was used instead of [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester. MS (ESI+): m/e=569, chloro pattern.
  • Example 231 [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethoxy-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid
  • Figure US20090069565A1-20090312-C00276
  • The title compound was prepared analogously to example 185 with the difference that [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-4,7-dimethoxy-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester was used instead of [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester. MS (ESI+): m/e=601, chloro pattern.
  • Example 232 [{4,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid
  • Figure US20090069565A1-20090312-C00277
  • The title compound was prepared analogously to example 185 with the difference [{4,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester was used instead of [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester. MS (ESI+): m/e=609, chloro pattern.
  • Example 233 [{5,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid
  • Figure US20090069565A1-20090312-C00278
  • The title compound was prepared analogously to example 185 with the difference that [{5,7-Dichloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester was used instead of [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester. MS (ESI+): m/e=609, chloro pattern.
  • Example 234 [{4-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid
  • Figure US20090069565A1-20090312-C00279
  • The title compound was prepared analogously to example 185 with the difference that [{4-Chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester was used instead of [{1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-7-methyl-1H-indole-2-carbonyl}-(1-isopropyl-piperidin-4-yl)-amino]-acetic acid ethyl ester. MS (ESI+): m/e=575, chloro pattern.
  • Example 235 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester
  • Figure US20090069565A1-20090312-C00280
  • (i) 1H-Indole-2,5-dicarboxylic acid 2-ethyl ester 5-isopropyl ester
  • To a solution of 15.5 g AlCl3 in 400 ml DCM, 10 ml oxalyl dichloride was added dropwise. Then, after 30 min 10 g 1H-Indole-2-carboxylic acid ethyl ester in 100 ml DCM were added and the reaction mixture was stirred for 2 h. The reaction mixture was poured on to crushed ice and extracted twice with 500 ml DCM. The organic layer was dried over MgSO4 and the solvent removed under reduced pressure. The residue was taken-up in 300 ml Propan-2-ol and stirred for 4 h at room temperature. After concentration of the reaction mixture under reduced pressure the residue was purified by chromatography on silica gel eluting with an ethyl acetate/heptane gradient 1:10->4:1. Yield: 2.71 g.
  • (ii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,5-dicarboxylic acid 2-ethyl ester 5-isopropyl ester
  • This compound was prepared using a procedure analogous to that described for the preparation of example 1 (iv), using 1H-Indole-2,5-dicarboxylic acid 2-ethyl ester 5-isopropyl ester as the starting material. The compound was purified by chromatography on silica gel eluting with n-heptane/ethyl acetate 6:1. Yield 6.3 g. MS (ESI+): m/e=473 (M+) chloro pattern.
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,5-dicarboxylic acid 5-isopropyl ester
  • To a solution of 6.21 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,5-dicarboxylic acid 2-ethyl ester 5-isopropyl ester in 100 ml THF and 40 ml MeOH 52 ml of an aqueous 1 M LiOH solution were added and stirred for 2 h. The organic solvents were removed under reduced pressure and the residue acidified with 2 M hydrochloric acid to pH 2. The precipitated product was collected by filtration and dried over P2O5 in vacuo to yield a white solid. Yield: 5.77 g.
  • (iv) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester
  • To a solution of 5.77 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,5-dicarboxylic acid 5-isopropyl ester and 2.79 g 1-Isopropyl-piperidin-4-ylamine hydrochloride in 100 ml DMF, 4.25 g TOTU and 6.6 ml DIPEA were added and the mixture was stirred for 3 h at room temperature. After removal of the solvent under reduced pressure the residue was dissolved in 200 ml ethyl acetate and washed with sat. NaHCO3 solution. The organic layer was dried over MgSO4. After removal of the solvent under reduced pressure the residue was purified by chromatography on silica gel eluting with DCM/MeOH/AcOH/H2O 95:5:0.5:0.5. The fractions containing the product were collected and the solvent evaporated under reduced pressure. The product was obtained as its acetate salt. Yield: 6.13 g MS (ES+): m/e=569, chloro pattern.
  • Example 236 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid
  • Figure US20090069565A1-20090312-C00281
  • To a solution of 6.13 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester in 200 ml MeOH 54 ml of a 1 M aqueous LiOH solution were added and heated for 24 h to 60° C. The reaction mixture was the concentrated under reduced pressure and acidified with 2 M hydrochloric acid to pH 3. Then the mixture was extracted with ethyl acetate (2×200 ml) and the organic layer was dried over MgSO4 which yielded after evaporation of the solvent under reduced pressure 5.3 g of the crude acid as a yellow solid. 600 mg of this acid were purified by preparative HPLC (C18 reverse phase column, elution with a H2O/MeCN gradient with 0.1% TFA). The fractions containing the product were evaporated and lyophilized after addition of 2M hydrochloric acid to give a white solid. The product was obtained as its hydrochloride.
  • Yield: 280 mg MS (ES+): m/e = 527, chloro pattern.
  • Example 237 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-hydroxymethyl-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00282
  • To a solution of 100 mg 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid and 50 μl NEt3 in 4 ml THF, 17 μl ethyl chloroformate were added at −7° C. After stirring for 2 h at −7° C. the reaction mixture was filtered, the filtrate was treated with 24 mg NaBH4 and warmed to room temperature. After 2 h additional 24 mg NaBH4 were added and the reaction mixture stirred for 16 h. Then, 110 μl MeOH in 4 ml THF were added within 2 h and the reaction mixture was stirred for additional 4 h at room temperature. After removal of the solvents under reduced pressure the residue was purified by chromatography on silica gel eluting with DCM/MeOH 8:2. The fractions containing the product were collected and evaporated under reduced pressure.
  • Yield: 39 mg MS (ES+): m/e = 513, chloro pattern.
  • Example 238 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid ethyl ester
  • Figure US20090069565A1-20090312-C00283
  • To a solution of 0.6 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid in 10 ml DMF sequentially 0.4 ml EtOH, 110 mg DMAP and 256 mg DCC were added and the reaction mixture was stirred for 16 h at room temperature. The precipitate was then filtered off and the filtrate was concentrated and purified by chromatography on silica gel eluting with DCM/MeOH/AcOH/H2O 95:3:0.5:0.5. The fractions containing the product were collected and the solvent evaporated under reduced pressure.
  • Yield: 418 mg MS (ES+): m/e = 555, chloro pattern.
  • Example 239 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid methyl ester
  • Figure US20090069565A1-20090312-C00284
  • The title compound was prepared analogously to example 238 with the difference that methanol was used instead of ethanol in the esterification reaction.
  • MS (ESI+): m/e=541, chloro pattern.
  • Alternatively the title compound can be prepared by the following procedure:
  • (i) 1H-Indole-2,5-dicarboxylic acid 5-methyl ester
  • A solution of 25 g 4-Amino-3-iodo-benzoic acid methyl ester, 19 ml 2-Oxo-propionic acid, 30.4 g 1,4-Diaza-bicyclo[2.2.2]octane and 1 g Pd(OAc)2 was heated under argon to 100° C. After 5 h the reaction mixture was concentrated under reduced pressure and the residue was partitioned between 300 ml ethyl acetate and 200 ml 1 M hydrochloric acid. The organic layer was dried over MgSO4 and the solvent removed under reduced pressure to yield a yellow solid (6.4 g). From the aqueous layer additional product slowly precipitated as a white solid (7.9 g) which was collected by filtration. Both fractions were combined, dried in vacuo and used in the next reaction without further purification. Yield: 14.3 g MS (ES+): m/e=220.
  • (ii) 1H-Indole-2,5-dicarboxylic acid 2-tert-butyl ester 5-methyl ester
  • To 13 g 1H-Indole-2,5-dicarboxylic acid 5-methyl ester in 300 ml toluene, 59 ml Di-tert-butoxymethyl-dimethyl-amine were added dropwise at 80° C. Then, the reaction mixture was heated under reflux for additional 6 h. After removal of the solvents under reduced pressure the residue was dissolved in 300 ml DCM and washed with sat. aqueous NaHCO3 solution (2×100 ml). The organic layer was dried over MgSO4 and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with a n-heptane/ethyl acetate gradient. The fractions containing the product were collected and concentrated under reduced pressure.
  • Yield: 8.3 g MS (ES+): m/e = 276.
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,5-dicarboxylic acid 2-tert-butyl ester 5-methyl ester
  • This compound was prepared using a procedure analogous to that described for the preparation of example 1(iv), using 1H-Indole-2,5-dicarboxylic acid 2-tert-butyl ester 5-methyl ester as the starting material. The compound was chromatographed on silica gel eluting with n-heptane/ethyl acetate 6:1. Yield 9.6 g. MS (ESI+): m/e=417, chloro pattern.
  • (iv) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,5-dicarboxylic acid 5-methyl ester
  • 9.5 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,5-dicarboxylic acid 2-tert-butyl ester 5-methyl ester were dissolved in 300 ml trifluoro-acetic acid and stirred for 1 h at RT. Then 200 ml toluene were added and the solvents were removed under reduced pressure. This procedure was repeated three times, then the residue was dried in vacuo. Yield: 8.4 g.
  • (v) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid methyl ester
  • This compound was prepared using a procedure analogous to that described for the preparation of example 1 (vi), using 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,5-dicarboxylic acid 5-methyl ester as the starting material. The compound was chromatographed on silica gel eluting with DCM/MeOH/AcOH/H2O 95:3:0.5:0.5. Yield 10 g. MS (ESI+): m/e=541, chloro pattern.
  • Example 240 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid 2,2-dimethyl-propionyloxymethyl ester
  • Figure US20090069565A1-20090312-C00285
  • To a solution of 1.2 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid in 30 ml DMF 0.641 g 2,2-Dimethyl-propionic acid chloromethyl ester and 885 μl NEt3 were added and the reaction mixture was stirred for 5 h a 60° C. Then additional 0.32 g 2,2-Dimethyl-propionic acid chloromethyl ester and 295 μl NEt3 were added and the reaction mixture was stirred for 6 h at 60° C. After removal of the solvent under reduced pressure the residue was dissolved in CH2Cl2 and the solution was washed with water. The phases were separated and the organic phase (after drying over Na2SO4) was concentrated in vacuo. The residue was purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After addition of 1 M hydrochloric acid and lyophilization in an acetonitrile/water mixture, the product was obtained as its hydrochloride. Yield: 1.17 g MS (ESI+): m/e=641, chloro pattern.
  • Example 241 1-[5-(5-Chloro-thiophen-2-yl)-[1,3,4]thiadiazol-2-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester
  • Figure US20090069565A1-20090312-C00286
  • The title compound was prepared analogously to example 235 with the difference that 2-Bromomethyl-5-(5-chloro-thiophen-2-yl)-[1,3,4]thiadiazole [prepared by adopting a procedure described by Ewing, William R. et al. PCT Int. Appl. (2001), 460 pp. WO 0107436 A2] was used instead of 3-Bromomethyl-5-(5-chloro-thiophen-2-yl)-isoxazole.
  • MS (ESI+): m/e=586, chloro pattern.
  • Example 242 1-[5-(5-Chloro-thiophen-2-yl)-[1,3,4]thiadiazol-2-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid
  • Figure US20090069565A1-20090312-C00287
  • The title compound was prepared analogously to example 236 with the difference that 1-[5-(5-Chloro-thiophen-2-yl)-[1,3,4]thiadiazol-2-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester was used instead of 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester.
  • MS (ESI+): m/e=544, chloro pattern.
  • Example 243 1-[(4-Chloro-phenylcarbamoyl)-methyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester
  • Figure US20090069565A1-20090312-C00288
  • (i) 1H-Indole-2,5-dicarboxylic acid 5-isopropyl ester
  • To a solution of 855 mg I H-Indole-2,5-dicarboxylic acid 2-ethyl ester 5-isopropyl ester in 50 ml MeOH, 12.4 ml 1 M aqueous LiOH solution were added. After heating the reaction mixture at 50° C. for 1 h the organic solvents were removed under reduced pressure and the residue was acidified to pH 2 with 1 M hydrochloric acid. The precipitated product was collected by filtration and dried in vacuo. Yield: 673 mg.
  • (ii) 2-(1-Isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester
  • To a solution of 673 mg 1H-Indole-2,5-dicarboxylic acid 5-isopropyl ester and 702 mg 1-Isopropyl-piperidin-4-ylamine hydrochloride in 20 ml DMF, 1.07 g TOTU and 1.67 ml DIPEA were added and the mixture was stirred for 1 h at room temperature. After removal of the solvent under reduced pressure the residue was dissolved in 100 ml DCM and washed with sat. NaHCO3 solution. The organic layer was dried over MgSO4. After removal of the solvent under reduced pressure the residue was purified by chromatography on silica gel eluting with DCM/MeOH/AcOH/H2O 95:5:0.5:0.5. The fractions containing the product were collected and the solvent evaporated under reduced pressure. The product was obtained as its acetate salt.
  • Yield: 698 mg.
  • (iii) 2-Bromo-N-(4-chloro-phenyl)-acetamide
  • To a solution of 5 g 4-Chloro-phenylamine and 1.5 ml pyridine in 30 ml toluene, 8 g bromo-acetyl bromide dissolved in 10 ml toluene was added dropwise under ice cooling. After 2 h the precipitate was isolated by filtration and recrystallized from toluene to yield a white solid.
  • Yield: 10 g.
  • (iv) 1-[(4-Chloro-phenylcarbamoyl)-methyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester
  • To a solution of 100 mg 2-(1-Isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester in 2 ml DMF, 8 mg sodium hydride (60% in oil) were added at RT. After 30 min 67 mg 2-Bromo-N-(4-chloro-phenyl)-acetamide were added and the reaction mixture was stirred for 3 h. After removal of the solvent under reduced pressure the residue was purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After lyophilization the product was obtained as its trifluoroacetate salt.
  • Yield: 66 mg MS (ESI+): m/e = 539, chloro pattern.
  • Example 244 1-[(4-Chloro-phenylcarbamoyl)-methyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid
  • Figure US20090069565A1-20090312-C00289
  • To a solution of 1.2 g 1-[(4-Chloro-phenylcarbamoyl)-methyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid isopropyl ester in 150 ml MeOH, 11 ml of a 1 M aqueous LiOH solution were added and the reaction mixture was heated to 60° C. for 24 h. Then after concentration under reduced pressure the residue was acidified to pH 2 with 2 M hydrochloric acid. The precipitated product was collected by filtration and purified by chromatography on silica gel eluting with DCM/MeOH/AcOH/H2O 95:3:0.5:0.5. The fractions containing the product were collected and concentrated under reduced pressure. After addition of 3 ml 2 M hydrochloric acid and lyophilization the product was obtained as its hydrochloride.
  • Yield: 499 mg MS (ESI+): m/e=497, chloro pattern.
  • Example 245 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid methyl ester
  • Figure US20090069565A1-20090312-C00290
  • (i) 4-Bromo-1H-indole-2-carboxylic acid tert-butyl ester
  • To 7 g 4-Bromo-1H-indole-2-carboxylic acid in 150 ml toluene, 28 ml Di-tert-butoxymethyl-dimethyl-amine were added dropwise at 80° C. The reaction mixture was heated under reflux for additional 12 h. After removal of the solvents under reduced pressure the residue was dissolved in 200 ml DCM and washed with sat. aqueous NaHCO3 solution (2×50 ml). The organic layer was dried over MgSO4 and concentrated under reduced pressure. The residue was purified by chromatography on silica gel eluting with n-heptane/ethyl acetate 9:1. The fractions containing the product were collected and concentrated under reduced pressure.
  • Yield: 6.5 g MS (ESI+): m/e = 297.
  • (ii) 1H-Indole-2,4-dicarboxylic acid 2-tert-butyl ester 4-methyl ester
  • To a solution of 7.3 g 4-Bromo-1H-indole-2-carboxylic acid tert-butyl ester in 100 ml DMF, 6.8 ml NEt3, 276 mg Pd(OAc)2, 128 mg 1,1′-Bis(diphenylphosphino)ferrocene, 12 ml MeOH were added and purged with argon for 15 min. This solution was then purged with carbon monoxide and heated to 70° C. for 4 h. The reaction mixture was concentrated under reduced pressure, the residue dissolved in 200 ml DCM and washed with 100 ml water. The organic layer was dried over MgSO4 and, after removal of the solvent under reduced pressure, the residue was purified by chromatography on silica gel eluting with n-heptane/ethyl acetate 9:1. The fractions containing the product were collected and concentrated under reduced pressure.
  • Yield: 3.8 g MS (ESI+): m/e = 276.
  • (iii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,4-dicarboxylic acid 2-tert-butyl ester 4-methyl ester
  • This compound was prepared using a procedure analogous to that described for the preparation of example 1 (iv), using 1H-Indole-2,4-dicarboxylic acid 2-tert-butyl ester 4-methyl ester as the starting material. The compound was chromatographed on silica gel eluting n-heptane/ethyl acetate 6:1. Yield 4.1 g. MS (ESI+): m/e=473(M+) chloro pattern.
  • (iv) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,4-dicarboxylic acid 4-methyl ester
  • 4.1 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,4-dicarboxylic acid 2-tert-butyl ester 4-methyl ester were dissolved in 100 ml trifluoro-acetic acid and stirred for 1 h at RT. Then 100 ml toluene was added and the solvents were removed under reduced pressure. This procedure was repeated three times, then the residue was dried in vacuo.
  • Yield: 3.4 g MS (ESI+): m/e = 416, chloro pattern.
  • (v) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid methyl ester
  • This compound was prepared using a procedure analogous to that described for the preparation of example 235 (iv), using 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,4-dicarboxylic acid 4-methyl ester as the starting material. The compound was chromatographed on silica gel eluting with DCM/MeOH/AcOH/H2O 95:3:0.5:0.5.
  • Yield 4.2 g. MS (ESI+): m/e = 541, chloro pattern.
  • Example 246 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid
  • Figure US20090069565A1-20090312-C00291
  • This compound was prepared using a procedure analogous to that described for the preparation of example 236, using 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid methyl ester as the starting material. The compound was chromatographed on silica gel eluting with DCM/MeOH/AcOH/H2O 95:3:0.5:0.5.
  • MS (ESI+): m/e=527 (M+), chloro pattern.
  • Example 247 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2,5-dicarboxylic acid 5-amide 2-[(1-isopropyl-piperidin-4-yl)-amide]
  • Figure US20090069565A1-20090312-C00292
  • The title compound was isolated as a by-product in example 176.
  • MS (ES+): m/e=526, chloro pattern.
  • Example 248 1-[(4-chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00293
  • (i) 1H-Indole-2-carboxylic acid benzyl ester
  • To a solution of 10.32 g 1H-indole-2-carboxylic acid in 100 ml tetrahydro-furan 10.38 g di-imidazol-1-yl-methanone were added and the mixture was stirred for 20 min at room temperature. 7.29 ml phenyl-methanol were added to the mixture and the reaction mixture was refluxed for 10 h. The mixture was allowed to cool to ambient temperature and then partitioned between 200 ml water and 200 ml dichloro-methane. The organic layer was washed with additional water and then dried over sodium sulphate. After filtration the solvent was removed under reduced pressure, a white solid was obtained. The residue was directly subjected to the subsequent reaction without further purification.
  • Yield: 18.8 g MS (ES+): m/e = 252, chloro pattern.
  • 1H-NMR (400 MHz, DMSO/TMS): δ=7.65 (d, 1H), 7.40 (m, 7H); 7.25 (t, 1H); 7.20 (s, 1H); 7.07 (t, 1H); 5.39 (s, 2H).
  • (ii) 1-tert.-Butoxycarbonylmethyl-1H-indole-2-carboxylic acid benzyl ester
  • To a solution of 18.80 g 1H-indole-2-carboxylic acid benzyl ester in 70 ml N,N-dimethylformamide 1.98 g sodium hydride were added at 0° C. After stirring for 1 hour 15.91 ml bromo-acetic acid tert.-butyl ester were added to the mixture and the reaction mixture was stirred for 2 hours at room temperature. After removal of the solvent under reduced pressure the residue was partitioned between 300 ml water and 300 ml dichloromethane. The aqueous layer was washed twice with additional 200 ml dichloromethane. Subsequently the combined organic phases were washed with a saturated aqueous solution of sodium chloride. After filtration the solvent was removed under reduced pressure and the residue was crystallized from ethoxy-ethane/heptane. The product was obtained as a white solid.
  • Yield: 23.8 g MS (ES+): m/e = 366, chloro pattern.
  • 1H-NMR (400 MHz, DMSO/TMS): δ=7.70 (d, 1H), 7.62 (d, 1H); 7.46 (d, 2H); 7.38 (m, 5H); 7.15 (t, 1H); 5.35 (s, 2H); 5.28 (s, 2H); 1.39 (s, 9H).
  • (iii) 1-tert.-Butoxycarbonylmethyl-1H-indole-2-carboxylic acid
  • To a solution of 3.0 g 1-tert.-butoxycarbonylmethyl-1H-indole-2-carboxylic acid benzyl ester in a mixture of 10 ml N,N-dimethylformamide and 10 ml ethanol 0.5 g palladium, 5% an carbon were added. The reaction mixture was stirred for 2 hours under a hydrogen atmosphere. The mixture was filtered through a chem Elut® cartridge and the compound was eluted with ethanol. After concentration under reduced pressure the residue was directly subjected to the subsequent reaction without further purification.
  • Yield: 2.2 g.
  • 1H-NMR (400 MHz, DMSO/TMS): δ=12.50 (s, 1H); 7.68 (d, 1H), 7.59 (d, 1H); 7.31 (t, 1H); 7.25 (s, 1H); 7.13 (t, 1H); 5.26 (s, 2H); 1.40 (s, 9H)
  • (iv) tert.-Butyl [2-(1-isopropyl-piperidin-4-ylcarbamoyl)-indol-1-yl]-acetate
  • To a solution of 0.5 g 1-tert.-butoxycarbonylmethyl-1H-indole-2-carboxylic acid and 0.91 ml N-ethylmorpholine in 3 ml dichloromethane 0.6 g O-[(ethoxycarbonyl) cyanomethylenamino]-N,N,N′,N′-tetramethyluronium tetrafluoroborate were added and the mixture was stirred for 30 min at room temperature. 0.39 g 1-isopropyl-piperidin-4-ylamine hydrochloride were added to the mixture and the reaction mixture was further stirred for 1 hour. After removal of the solvent under reduced pressure the residue was partitioned between 15 ml water and 15 ml dichloromethane. The organic layer was washed with additional water and then dried over sodium sulphate. After filtration the solvent was removed under reduced pressure and a white solid was obtained. The residue was directly subjected to the subsequent reaction without further purification.
  • Yield: 0.51 g MS (ES+): m/e = 400.
  • 1H-NMR (400 MHz, DMSO/TMS): δ=8.38 (d, 1H); 7.63 (d, 1H); 7.51 (d, 1H); 7.25 (t, 1H); 7.20 (s, 1H); 7.11 (t, 1H); 5.27 (s, 2H); 3.55 (m, 1H); 2.82 (m, 2H); 2.30 (m, 1H), 2.18 (m, 2H); 1.77 (m, 2H); 1.55 (m, 2H); 1.39 (s, 9H); 0.98 (d, 6H).
  • (v) [2-(1-Isopropyl-piperidin-4-ylcarbamoyl)-indol-1-yl]-acetic acid
  • To 0.51 g tert.-butyl [2-(1-isopropyl-piperidin-4-ylcarbamoyl)-indol-1-yl]-acetic acid in 5 ml dichloro-methane 1 ml trifluoroacetic acid was added and the mixture was stirred for 16 hours. Removal of the solvent under reduced pressure yielded a white solid, which was coevaporated twice with 15 ml toluene. The product was obtained as its trifluoroacetate salt.
  • Yield: 0.43 g MS (ES+): m/e = 344.
  • 1H-NMR (400 MHz, DMSO/TMS): δ=12.6 (1H); 9.17 (s, 1H); 8.56 (d, 1H); 7.66 (d, 1H); 7.53 (d, 1H); 7.27 (t, 1H); 7.25 (s, 1H); 7.11 (t, 1H); 5.30 (s, 2H); 4.02 (m, 1H); 3.43 (m, 2H); 3.10 (m, 2H), 2.06 (m, 3H); 1.83 (m, 2H); 1.25 (d, 6H).
  • (vi) 1-[(4-Chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • To a suspension of 50 mg [2-(1-isopropyl-piperidin-4-ylcarbamoyl)-indol-1-yl]-acetic acid, 22 mg 4-chloro-phenylamine and 37 mg bis(2-oxo-3-oxazolidinyl)phosphinic chloride in 1 ml dichloro-methane 0.08 ml N-ethylmorpholine were added at room temperature and the mixture was stirred for 16 hours. After removal of the solvent under reduced pressure the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
  • Yield: 12.6 mg MS (ES+): m/e = 453, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=10.44 (s, 1H); 8.95 (s, 1H); 8.58 (d, 1H); 7.67 (d, 1H); 7.60 (d, 2H); 7.58 (d, 1H); 7.35 (d, 2H); 7.28 (t, 1H); 7.25 (s, 1H); 7.13 (t, 1H); 5.45 (s, 2H); 4.03 (s, 1H); 3.43 (m, 2H); 3.08 (m, 2H), 2.05 (m, 3H); 1.80 (m, 2H); 1.23 (d, 6H),
  • Example 249 1-[(5-chloro-thiophen-2-ylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00294
  • The title compound was prepared analogously to example 248 with the difference that 5-Chloro-thiophen-2-ylamine [prepared according to a procedure published in Synth. Comm. 1977, 255-256] was used instead of 4-chloro-phenylamine.
  • MS (ESI+): m/e=459, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=11.72 (s, 1H); 8.90 (s, 1H); 8.57 (d, 1H); 7.68 (d, 1H); 7.58 (d, 1H); 7.27 (t, 1H); 7.25 (s, 1H); 7.14 (t, 1H); 6.88 (d, 1H); 6.53 (d, 1H); 5.46 (s, 2H); 4.00 (s, 1H); 3.43 (m, 2H); 3.08 (m, 2H), 2.03 (m, 3H); 1.80 (m, 2H); 1.23 (d, 6H)
  • Example 250 1-[(4-chloro-2-fluoro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00295
  • The title compound was prepared analogously to example 248 with the difference that 4-Chloro-2-fluoro-phenylamine was used instead of 4-chloro-phenylamine.
  • MS (ESI+): m/e=471, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=10.24 (s, 1H); 8.93 (s, 1H); 8.60 (d, 1H); 7.95 (t, 1H); 7.68 (d, 1H); 7.55 (d, 1H); 7.50 (d, 1H); 7.26 (d, 1H); 7.24 (s, 1H); 7.22 (s, 1H); 7.13 (t, 1H); 5.48 (s, 2H); 4.04 (s, 1H); 3.43 (m, 2H); 3.10 (m, 2H), 2.08 (m, 3H); 1.80 (m, 2H); 1.25 (d, 6H).
  • Example 251 1-[(5-chloro-pyridin-2-ylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00296
  • The title compound was prepared analogously to example 248 with the difference that 5-Chloro-pyridin-2-ylamine was used instead of 4-chloro-phenylamine.
  • MS (ESI+): m/e=454, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=10.99 (s, 1H); 8.90 (s, 1H); 8.58 (d, 1H); 8.39 (d, 1H); 7.97 (d, 1H); 7.87 (dd, 1H); 7.68 (d, 1H); 7.56 (d, 1H); 7.27 (t, 1H); 7.25 (s, 1H); 7.13 (t, 1H); 5.45 (s, 2H); 4.02 (s, 1H); 3.43 (m, 2H); 3.08 (m, 2H), 2.03 (m, 3H); 1.80 (m, 2H); 1.23 (d, 6H).
  • Example 252 1-[(4-chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-ylmethyl)-amide
  • Figure US20090069565A1-20090312-C00297
  • (i) 1-[(4-Chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid ethyl ester
  • To a solution of 1.0 g 1H-indole-2-carboxylic acid ethyl ester in 10 ml N,N-dimethylformamide 0.14 g sodium hydride were added at 0° C. After stirring for 30 min 1.58 g 2-bromo-N-(4-chloro-phenyl)-acetamide were added and the mixture was stirred for 2 hours at room temperature. After diluting with 15 ml water the mixture was filtered through a chem Elut® cartridge and the compound was eluted with ethyl acetate. After concentration under reduced pressure the residue was directly subjected to the subsequent saponification reaction without further purification.
  • Yield: 1.45 g. MS (ESI+): m/e = 357, chloro pattern.
  • (ii) 1-[(4-Chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid
  • To a solution of 1.45 g 1-[(4-chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid ethyl ester in 100 ml tetrahydrofuran 30 ml water and 0.59 g potassium hydroxide were added. After stirring for 2 hours at room temperature the reaction mixture was acidified with 6 N hydrochloric acid. The precipitate was collected by filtration and was washed with 20 ml water. The product was obtained as a white solid which was dried under reduced pressure.
  • Yield: 1.37 g. MS (ESI+): m/e = 329, chloro pattern.
  • 1H-NMR (400 MHz, DMSO/TMS): δ=10.50 (s, 1H); 7.70 (d, 1H); 7.61 (d, 2H); 7.58 (d, 1H); 7.37 (d, 2H); 7.32 (t, 1H); 7.25 (s, 1H); 7.14 (t, 1H); 5.44 (s, 2H).
  • (iii) 1-[(4-Chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-ylmethyl)-amide
  • To a suspension of 50 mg 1-[(4-chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid, 97 mg (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-methylamine and 38.7 mg bis(2-oxo-3-oxazolidinyl)phosphinic chloride in 1 ml N,N-dimethylformamide 61.7 μl triethylamine were added. After stirring at room temperature for 16 hours the solvent was removed under reduced pressure and the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
  • Yield: 6.9 mg MS (ES+): m/e = 502, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=13.14 (s, 1H); 10.45 (s, 1H), 8.63 (t, 1H); 8.17 (d, 2H); 7.64 (d, 1H); 7.61 (d, 2H); 7.56 (d, 1H); 7.38 (d, 2H); 7.26 (t, 1H); 7.17 (s, 1H); 7.12 (m, 3H); 5.43 (s, 2H); 4.13 (d, 2H); 3.13 (m, 4H); 1.80 (m, 2H); 1.21 (m, 3H).
  • Example 253 1-[(4-chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-amide
  • Figure US20090069565A1-20090312-C00298
  • The title compound was prepared analogously to example 252 with the difference that 3,4,5,6-Tetrahydro-2H-[1,4′]bipyridinyl-4-ylamine was used instead of (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-methylamine.
  • MS (ES+): m/e=488, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=13.23 (s, 1H); 10.44 (s, 1H), 8.43 (d, 1H); 8.23 (d, 2H); 7.65 (d, 1H); 7.61 (d, 2H); 7.56 (d, 1H); 7.35 (d, 2H); 7.23 (m, 4H); 7.12 (t, 1H); 5.44 (s, 2H); 4.20 (m, 3H); 3.32 (m, 2H); 1.95 (m, 2H); 1.58 (m, 2H).
  • Example 254 N-(4-chloro-phenyl)-2-{2-[4-(pyridin-4-ylamino)-piperidine-1-carbonyl]-indol-1-yl}-acetamide
  • Figure US20090069565A1-20090312-C00299
  • The title compound was prepared analogously to example 252 by using Piperidin-4-yl-pyridin-4-yl-amine was used instead of (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-methylamine.
  • MS (ES+): m/e=488, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=13.24 (s, 1H); 10.45 (s, 1H), 8.43 (d, 1H); 8.23 (d, 2H); 7.64 (d, 1H); 7.60 (d, 2H); 7.55 (d, 1H); 7.35 (d, 2H); 7.22 (m, 4H); 7.11 (t, 1H); 5.44 (s, 2H); 4.20 (m, 3H); 3.33 (m, 2H); 1.95 (m, 2H); 1.57 (m, 2H).
  • Example 255 1-[(4-chloro-phenylcarbamoyl)-methyl]-1H-indole-2-carboxylic acid (1-cyclopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00300
  • The title compound was prepared analogously to example 252 with the difference that 1-Cyclopropyl-piperidin-4-ylamine was used instead of (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-methylamine. MS (ES+): m/e=451, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=10.44 (s, 1H); 8.78 (s, 1H); 8.57 (d, 1H); 7.68 (d, 1H); 7.60 (d, 2H); 7.57 (d, 1H); 7.36 (d, 2H); 7.27 (t, 1H); 7.23 (s, 1H); 7.12 (t, 1H); 5.44 (s, 2H); 3.44 (m, 2H); 3.25 (m, 2H); 2.03 (m, 3H); 1.73 (m, 2H); 0.84 (m, 5H).
  • Example 256 N-(4-chloro-phenyl)-2-[2-(4-pyrrolidin-1-yl-piperidine-1-carbonyl)-indol-1-yl]-acetamide
  • Figure US20090069565A1-20090312-C00301
  • The title compound was prepared analogously to example 252 with the difference that 4-Pyrrolidin-1-yl-piperidine was used instead of (3,4,5,6-tetrahydro-2H-[1,4′]bipyridinyl-4-yl)-methylamine.
  • MS (ES+): m/e=465, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=10.53 (s, 1H); 9.64 (s, 1H); 7.64 (d, 1H); 7.57 (m, 3H); 7.36 (d, 2H); 7.26 (t, 1H); 7.13 (t, 1H); 6.76 (s, 1H); 5.20 (s, 2H); 4.45 (s, 2H); 3.45 (m, 3H); 3.06 (m, 3H); 1.97 (m, 7H); 1.55 (s, 2H).
  • Example 257 1-[(4-chloro-phenylcarbamoyl)-methyl]-5-nitro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00302
  • The title compound was prepared in analogy to example 248 with the difference that 5-nitro-1H-indole-2-carboxylic acid ethyl ester was used instead of the unsubstituted 1H-indole-2-carboxylic acid ethyl ester.
  • MS (ES+): m/e=498, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=10.53 (s, 1H); 8.98 (s, 1H); 8.83 (d, 1H); 8.74 (s, 1H); 8.14 (d, 1H); 7.85 (d, 1H); 7.59 (d, 2H); 7.50 (s, 1H); 7.38 (d, 2H); 5.52 (s, 2H); 4.02 (m, 1H); 3.45 (m, 2H); 3.07 (m, 2H); 2.03 (m, 3H); 1.81 (m, 2H); 1.25 (d, 6H).
  • Example 258 5-amino-4-chloro-1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00303
  • 24.4 mg 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-5-nitro-1H-indole-2-carboxylic acid (1-isopropyl-piperidin-4-yl)-amide were added to a solution of 58.5 mg tin chloride dihydrate in 1 ml ethanol. 0.5 ml 12 N aqueous hydrochloric acid was added and the mixture was stirred at room temperature for 16 hours. After cooling of the reaction mixture it was basified to pH 12 with saturated aqueous solution of sodium hydroxide and the product isolated by filtration. The product was obtained as a white solid which was dried under reduced pressure.
  • Yield: 10.0 mg MS (ES+): m/e = 532, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=8.40 (d, 1H); 7.56 (d, 1H); 7.28 (d, 1H); 7.24 (d, 1H); 7.07 (s, 1H); 6.86 (d, 1H); 6.54 (s, 1H); 5.83 (s, 2H); 4.97 (s, 2H); 3.70 (m, 1H); 2.78 (m, 2H); 2.68 (m, 1H); 2.14 (m, 2H); 1.78 (m, 2H); 1.53 (m, 2H); 0.96 (d, 6H).
  • Example 259 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-cyanomethyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00304
  • To a suspension of 50 mg 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide in 1 ml ethanol 43.5 mg potassium carbonate, 14.5 μL triethylamine and 7.3 μl bromo-acetonitrile were added. After stirring at room temperature for 16 hours the solvent was removed under reduced pressure and the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
  • Yield: 13.8 mg MS (ES+): m/e = 480, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=8.49 (d, 1H); 7.67 (d, 1H); 7.58 (d, 1H); 7.55 (d, 1H); 7.28 (t, 1H); 7.25 (d, 1H); 7.22 (s, 1H); 7.13 (t, 1H); 6.59 (s, 1H); 5.90 (s, 2H); 3.87 (m, 3H); 3.00 (m, 2H); 2.48 (m, 2H); 1.91 (m, 2H); 1.67 (m, 2H).
  • Example 260 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2-hydroxy-ethyl)-piperidin-4-yl]-amide
  • Figure US20090069565A1-20090312-C00305
  • The title compound was prepared analogously to example 259 with the difference that 2-bromo-ethanol was used instead of bromo-acetonitrile.
  • MS (ES+): m/e=485, chloro pattern
  • 1H-NMR (300 MHz, DMSO/TMS): δ=9.35 (s, 1H); 8.63 (m, 1H); 7.68 (d, 1H); 7.61 (d, 1H); 7.55 (d, 1H); 7.30 (t, 1H); 7.25 (m, 2H); 7.14 (t, 1H); 6.59 (s, 1H); 5.90 (s, 2H); 5.33 (s, 1H); 4.04 (m, 1H); 3.76 (m, 2H); 3.56 (m, 2H); 3.33 (m, 2H); 3.12 (m, 2H); 2.02 (m, 2H); 1.87 (m, 1H); 1.73 (m, 1H)
  • Example 261 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2-methoxy-ethyl)-piperidin-4-yl]-amide
  • Figure US20090069565A1-20090312-C00306
  • The title compound was prepared analogously to example 259 with the difference that 1-bromo-2-methoxy-ethane was used instead of bromo-acetonitrile and acetonitrile as solvent.
  • MS (ES+): m/e=499, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=9.30 (s, 1H); 8.65 (d, 1H); 7.68 (d, 1H); 7.60 (d, 1H); 7.54 (d, 1H); 7.30 (t, 1H); 7.25 (m, 2H); 7.15 (t, 1H); 6.58 (s, 1H); 5.90 (s, 2H); 4.02 (m, 1H); 3.67 (t, 2H); 3.54 (m, 2H); 3.33 (s, 3H); 3.28 (t, 2H); 3.10 (m, 2H); 2.04 (m, 2H); 1.83 (m, 2H).
  • Example 262 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-carbamoylmethyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00307
  • To a suspension of 50 mg 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide in 1 ml acetonitrile 42.4 μl ethyl-diisopropyl-amine and 29.4 mg 2-chloro-acetamide were added. The reaction mixture was stirred at 80° C. for 3 hours. After removal of the solvent under reduced pressure the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
  • MS (ES+): m/e=498, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=9.62 (s, 1H); 8.65 (d, 1H); 7.94 (s, 1H); 7.68 (m, 2H); 7.60 (d, 1H); 7.54 (d, 1H); 7.28 (t, 1H); 7.25 (m, 2H); 7.15 (t, 1H); 6.58 (s, 1H); 5.90 (s, 2H); 4.00 (m, 1H); 3.88 (m, 2H); 3.53 (m, 2H); 3.16 (m, 2H); 2.00 (m, 4H).
  • Example 263 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid (1-methylcarbamoylmethyl-piperidin-4-yl)-amide
  • Figure US20090069565A1-20090312-C00308
  • The title compound was prepared analogously to example 262 with the difference that 2-chloro-N-methyl-acetamide was used instead of 2-chloro-acetamide.
  • MS (ES+): m/e=512, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=9.74 (s, 1H); 8.65 (d, 1H); 8.45 (s, 1H); 7.68 (d, 1H); 7.60 (d, 1H); 7.53 (d, 1H); 7.29 (t, 1H); 7.25 (m, 2H); 7.14 (t, 1H); 6.56 (s, 1H); 5.90 (s, 2H); 4.00 (m, 1H); 3.88 (m, 2H); 3.53 (m, 2H); 3.16 (m, 2H); 2.69 (d, 3H); 2.04 (m, 2H); 1.92 (m, 2H).
  • Example 264 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(1H-imidazol-2-ylmethyl)-piperidin-4-yl]-amide
  • Figure US20090069565A1-20090312-C00309
  • A solution of 50 mg 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide in 1.5 ml 1,2-dichloro-ethane was treated with 66.76 mg sodium triacetoxyborohydride, 18 μl glacial acid and 11.1 mg 1H-imidazole-2-carbaldehyde. After stirring of the reaction mixture for 16 hours at room temperature the solvent was removed under reduced pressure. The residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
  • MS (ES+): m/e=521, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=8.54 (d, 1H); 7.68 (d, 1H); 7.58 (d, 1H); 7.53 (d, 1H); 7.45 (s, 2H); 7.29 (t, 1H); 7.25 (d, 1H); 7.22 (s, 1H); 7.14 (t, 1H); 6.57 (s, 1H); 5.90 (s, 2H); 4.13 (m, b); 3.87 (m, b); 3.18 (m, 2H); 1.95 (m, 2H); 1.75 (m, 2H).
  • Example 265 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(1-methyl-1H-imidazol-2-ylmethyl)-piperidin-4-yl]-amide
  • Figure US20090069565A1-20090312-C00310
  • The title compound was prepared analogously to example 264 with the difference that 1-methyl-1H-imidazole-2-carbaldehyde was used instead of 1H-imidazole-2-carbaldehyde
  • MS (ES+): m/e=535, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=8.54 (d, 1H); 7.68 (d, 1H); 7.59 (d, 1H); 7.55 (d, 1H); 7.50 (s, 1H); 7.29 (t, 1H); 7.25 (d, 1H); 7.22 (s, 1H); 7.14 (t, 1H); 6.57 (s, 1H); 5.90 (s, 2H); 4.13 (m, b); 3.93 (m, b); 3.78 (s, 3H); 3.23 (m, b); 1.95 (m, 2H); 1.75 (m, 2H).
  • Example 266 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2-dimethylamino-acetyl)-piperidin-4-yl]-amide
  • Figure US20090069565A1-20090312-C00311
  • A solution of 50 mg 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide in 1 ml N,N-dimethylformamide was treated with 29.0 mg potassium carbonate, 187.5 μl ethyl-diisopropyl-amine and 16.7 μl chloro-acetyl chloride. After stirring oft the reaction mixture for 15 min at room temperature 19.5 mg dimethylamine hydrochloride were added and the mixture was further stirred at room temperature for 16 hours. The solvent was removed under reduced pressure and the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt. MS (ES+): m/e=526, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): characteristic protons for aromatic and amide moieties: 9.50 (s, 1H); 8.53 (d, 1H); 7.68 (d, 1H); 7.60 (d, 1H); 7.55 (d, 1H); 7.28 (t, 1H); 7.25 (d, 1H); 7.20 (s, 1H); 7.15 (t, 1H); 6.59 (s, 1H).
  • Example 267 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2-amino-acetyl)-piperidin-4-yl]-amide
  • Figure US20090069565A1-20090312-C00312
  • (i) {2-[4-({1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-amino)-piperidin-1-yl]-2-oxo-ethyl}-carbamic acid tert.-butyl ester.
  • To a solution of 50 mg 1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid piperidin-4-ylamide and 44.1 μl N-ethylmorpholine in 1 ml dichloro-methane 28.5 mg O-[(ethoxycarbonyl) cyanomethylenamino]-N,N,N′,N′-tetramethyluronium tetrafluoroborate were added and the mixture was stirred for 1 hour at room temperature. 15.2 mg tert.-butoxycarbonylamino-acetic acid were added to the mixture and the reaction mixture was further stirred for 1 hour. After removal of the solvent under reduced pressure the residue was purified by preparative HPLC (C18 reverse phase column, elution with a water/acetonitrile gradient with 0.1% trifluoroacetic acid). The fractions containing the product were evaporated and lyophilized to yield a white solid. The product was obtained as its trifluoroacetate salt.
  • Yield: 22.0 mg MS (ES+): m/e = 598.
  • (ii) 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carboxylic acid [1-(2-amino-acetyl)-piperidin-4-yl]-amide
  • A solution of 22.0 mg {2-[4-({1-[5-(5-chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-1H-indole-2-carbonyl}-amino)-piperidin-1-yl]-2-oxo-ethyl}-carbamic acid tert.-butyl ester in 5 ml of a 8 N solution of hydrochloric acid in methanol) was stirred at room temperature for 16 hours. 10 ml water was added to the reaction mixture and the resulting mixture was lyophilized to yield a white solid. The product was obtained as its hydrochloride salt.
  • MS (ES+): m/e=498, chloro pattern.
  • 1H-NMR (300 MHz, DMSO/TMS): δ=8.54 (d, 1H); 8.03 (m, 2H); 7.68 (d, 1H); 7.59 (d, 1H); 7.55 (d, 1H); 7.28 (t, 1H); 7.25 (d, 1H); 7.22 (s, 1H); 7.13 (t, 1H); 6.59 (s, 1H); 5.90 (s, 2H); 4.35 (m, 1H); 4.07 (m, 1H); 3.95 (m, 1H); 3.87 (m, 1H); 3.73 (m, 1H); 3.16 (m, 1H); 2.86 (m, 1H); 1.90 (m, 2H); 1.54 (m, 1H); 1.44 (m, 1H).
  • Example 268 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid 1-ethoxycarbonyloxy-ethyl ester
  • Figure US20090069565A1-20090312-C00313
  • To a solution of 0.39 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid hydrochloride in 15 ml DMF 0.23 g KI, 0.383 g K2CO3 and 0.37 ml 1-chloroethyl-ethylcarbonate were added and the reaction mixture was stirred for 3 h at 60° C. in an argon atmosphere. After filtration and removal of the solvent under reduced pressure the residue was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After addition of 1 M hydrochloric acid and lyophilization in an acetonitrile/water mixture, the product was obtained as its hydrochloride. Yield: 0.33 g MS (ESI+): m/e=643, chloro pattern.
  • Example 269 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid 1-ethoxycarbonyloxy-ethyl ester
  • Figure US20090069565A1-20090312-C00314
  • To a solution of 0.6 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid hydrochloride in 20 ml DMF 0.679 g KI, 1.13 g K2CO3 and 1.094 ml 1-chloroethyl-ethylcarbonate were added and the reaction mixture was stirred for 3 h at 60° C. in an argon atmosphere. After filtration and removal of the solvent under reduced pressure the residue was directly purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After addition of 1 M hydrochloric acid and lyophilization in an acetonitrile/water mixture, the product was obtained as its hydrochloride. Yield: 0.56 g MS (ESI+): m/e=643, chloro pattern.
  • Example 270 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid 2,2-dimethyl-propionyloxymethyl ester
  • Figure US20090069565A1-20090312-C00315
  • To a solution of 0.6 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid in 20 ml DMF 0.319 g 2,2-Dimethyl-propionic acid chloromethyl ester and 441 μl NEt3 were added and the reaction mixture was stirred for 5 h at 60° C. Then additional 0.16 g 2,2-Dimethyl-propionic acid chloromethyl ester and 147 μl NEt3 were added and the reaction mixture was stirred for 6 h at 60° C. After removal of the solvent under reduced pressure the residue was dissolved in CH2Cl2 and the solution was washed with water. The phases were separated and the organic phase (after drying over Na2SO4) was concentrated in vacuo. The residue was purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After addition of 1 M hydrochloric acid and lyophilization in an acetonitrile/water mixture, the product was obtained as its hydrochloride. Yield: 0.5 g MS (ESI+): m/e=641, chloro pattern.
  • Example 271 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid 1-(2,2-dimethyl-propionyloxy)-ethyl ester
  • Figure US20090069565A1-20090312-C00316
  • To a suspension of 0.5 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid in 30 ml acetone 531 μl DBU were added and the mixture was stirred for 15 min. at room temperature. To this solution 0.556 g 2,2-Dimethyl-propionic acid 1-bromo-ethyl ester (prepared as described by E. Defossa et al., Liebigs Ann. 1996, 1743-1749) was added and the reaction mixture stirred for 4 h at room temperature. Then additional 266 μl DBU and 0.185 g 2,2-Dimethyl-propionic acid 1-bromo-ethyl ester were added. After 16 h at room temperature the mixture was concentrated in vacuo and the residue purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After addition of 1 M hydrochloric acid and lyophilization in an acetonitrile/water mixture, the product was obtained as its hydrochloride.
  • Yield: 0.48 g MS (ESI+): m/e=655, chloro pattern.
  • Example 272 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid 1-(2,2-dimethyl-propionyloxy)-ethyl ester
  • Figure US20090069565A1-20090312-C00317
  • To a suspension of 0.427 g 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid in 30 ml acetone 453 μl DBU were added and the mixture was stirred for 15 min. at room temperature. To this solution 0.475 g 2,2-Dimethyl-propionic acid 1-bromo-ethyl ester (prepared as described by E. Defossa et al., Liebigs Ann. 1996, 1743-1749) was added and the reaction mixture stirred for 4 h at room temperature. Then additional 227 μl DBU and 0.158 g 2,2-Dimethyl-propionic acid 1-bromo-ethyl ester were added. After 16 h at room temperature the mixture was concentrated in vacuo and the residue purified by preparative RP-HPLC eluting with a gradient of 0-100% acetonitrile in water (+0.01% trifluoroacetic acid). After addition of 1 M hydrochloric acid and lyophilization in an acetonitrile/water mixture, the product was obtained as its hydrochloride.
  • Yield: 0.4 g MS (ESI+): m/e=655, chloro pattern.
  • Example 273 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid 5-methyl-2-oxo-[1,3]dioxol-4-ylmethyl
  • Figure US20090069565A1-20090312-C00318
  • can be prepared from 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid and 4-Chloromethyl-5-methyl-[1,3]dioxol-2-one by the procedure described by H. Yanagisawa et al., J. Med. Chem. 1996, 39, 323-338.
  • Example 274 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid 5-methyl-2-oxo-[1,3]dioxol-4-ylmethyl
  • Figure US20090069565A1-20090312-C00319
  • can be prepared from 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid and 4-Chloromethyl-5-methyl-[1,3]dioxol-2-one by the procedure described by H. Yanagisawa et al., J. Med. Chem. 1996, 39, 323-338.
  • Example 275 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid 1-cyclohexyloxycarbonyloxy-ethyl ester
  • Figure US20090069565A1-20090312-C00320
  • can be prepared from 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-5-carboxylic acid and cyclohexyl 1-chloroethyl carbonate by the procedure described by K. Kubo et al., J. Med. Chem. 1993, 36, 2343-2349.
  • Example 276 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid 1-cyclohexyloxycarbonyloxy-ethyl ester
  • Figure US20090069565A1-20090312-C00321
  • can be prepared from 1-[5-(5-Chloro-thiophen-2-yl)-isoxazol-3-ylmethyl]-2-(1-isopropyl-piperidin-4-ylcarbamoyl)-1H-indole-4-carboxylic acid and cyclohexyl 1-chloroethyl carbonate by the procedure described by K. Kubo et al., J. Med. Chem. 1993, 36, 2343-2349.
  • Pharmacological Testing
  • The ability of the compounds of the formula I to inhibit factor Xa or factor VIIa or other enzymes like thrombin, plasmin, or trypsin can be assessed by determining the concentration of the compound of the formula I that inhibits enzyme activity by 50%, i.e. the IC50 value, which was related to the inhibition constant Ki. Purified enzymes were used in chromogenic assays. The concentration of inhibitor that causes a 50% decrease in the rate of substrate hydrolysis was determined by linear regression after plotting the relative rates of hydrolysis (compared to the uninhibited control) versus the log of the concentration of the compound of formula I. For calculating the inhibition constant Ki, the IC50 value was corrected for competition with substrate using the formula Ki=IC50/{1+(substrate concentration/Km)}wherein Km is the Michaelis-Menten constant (Chen and Prusoff, Biochem. Pharmacol. 22 (1973), 3099-3108; I. H. Segal, Enzyme Kinetics, 1975, John Wiley & Sons, New York, 100-125; which were incorporated herein by reference).
  • a) Factor Xa Assay
  • In the assay for determining the inhibition of factor Xa activity TBS-PEG buffer (50 mM Tris-HCl, pH 7.8, 200 mM NaCl, 0.05% (w/v) PEG-8000, 0.02% (w/v) NaN3) was used. The IC50 was determined by combining in appropriate wells of a Costar half-area microtiter plate 25 μl human factor Xa (Enzyme Research Laboratories, Inc.; South Bend, Ind.) in TBS-PEG; 40 μl 10% (v/v) DMSO in TBS-PEG (uninhibited control) or various concentrations of the compound to be tested diluted in 10% (v/v) DMSO in TBS-PEG; and substrate S-2765 (N(α)-benzyloxycarbonyl-D-Arg-Gly-L-Arg-p-nitroanilide; Kabi Pharmacia, Inc.; Franklin, Ohio) in TBS-PEG
  • The assay was performed by pre-incubating the compound of formula I plus enzyme for 10 min. Then the assay was initiated by adding substrate to obtain a final volume of 100 μl. The initial velocity of chromogenic substrate hydrolysis was measured by the change in absorbance at 405 nm using a Bio-tek Instruments kinetic plate reader (Ceres UV900HDi) at 25° C. during the linear portion of the time course (usually 1.5 min after addition of substrate). The enzyme concentration was 0.5 nM and substrate concentration was 140 μM.
  • b) Factor VIIa Assay
  • The inhibitory activity towards factor VIIa/tissue factor activity was determined using a chromogenic assay essentially as described previously (J. A. Ostrem et al., Biochemistry 37 (1998) 1053-1059 which was incorporated herein by reference). Kinetic assays were conducted at 25° C. in half-area microtiter plates (Costar Corp., Cambridge, Mass.) using a kinetic plate reader (Molecular Devices Spectramax 250). A typical assay consisted of 25 μl human factor VIIa and TF (5 nM and 10 nM, respective final concentration) combined with 40 μl of inhibitor dilutions in 10% DMSO/TBS-PEG buffer (50 mM Tris, 15 mM NaCl, 5 mM CaCl27 0.05% PEG 8000, pH 8.15). Following a 15 minutes preincubation period, the assay was initiated by the addition of 35 μl of the chromogenic substrate S-2288 (D-Ile-Pro-Arg-p-nitroanilide, Pharmacia Hepar Inc., 500 μM final concentration). The results (inhibition constants Ki (FXa) for inhibition of factor Xa) are shown in Table 1.
  • TABLE1
    Ki(FXa)
    Example (μM)
    1 0.0033
    2 0.020
    3 0.001
    4 0.834
    5 0.005
    6 0.013
    7 0.004
    8 0.009
    9 0.003
    10 0.182
    11 0.0001
    12 0.114
    13 0.00025
    14 1.718
    15 0.0035
    16 0.055
    17 1.966
    18 0.016
    19 0.050
    20 0.007
    21 0.007
    22 0.217
    23 0.003
    24 0.132
    25 0.336
    26 0.0001
    27 0.0002
    28 0.014
    29 0.019
    30 0.025
    31 0.018
    32 0.037
    33 0.011
    34 2.997
    35 0.502
    36 0.018
    37 0.003
    38 0.701
    39 2.001
    41 1.029
    43 0.504
    46 0.161
    47 0.064
    48 0.027
    50 0.071
    51 0.106
    52 0.089
    55 1.700
    61 0.475
    66 0.043
    67 0.187
    69 0.159
    70 0.114
    71 0.277
    72 0.167
    119 0.040
    120 0.004
    121 0.003
    122 0.002
    123 0.002
    146 0.44
    148 1.930
    157 0.686
    159 0.002
    160 0.0001
    161 0.0001
    162 0.057
    163 0.654
    165 0.765
    169 0.073
    170 0.47
    172 0.041
    173 0.015
    174 0.003
    175 0.009
    176 0.002
    177 0.015
    178 0.0013
    179 0.0055
    180 0.024
    181 0.014
    182 0.005
    183 0.076
    184 0.013
    185 0.005
    186 0.220
    187 0.040
    188 1.031
    189 2.020
    190 1.075
    191 0.136
    192 0.763
    193 0.199
    194 0.095
    199 0.142
    200 0.064
    201 1.782
    202 0.020
    203 0.028
    204 0.074
    205 0.034
    206 0.012
    208 0.001
    210 0.079
    211 0.400
    212 0.810
    213 2.230
    214 0.052
    215 0.023
    216 0.009
    217 0.700
    218 0.001
    219 0.173
    220 0.102
    221 0.048
    222 0.103
    223 0.110
    224 0.021
    225 0.026
    226 0.083
    227 0.088
    228 0.051
    229 0.172
    230 0.012
    231 0.020
    232 0.055
    233 0.074
    234 0.056
    235 0.042
    236 0.010
    237 0.003
    238 0.011
    239 0.005
    240 0.035
    242 0.004
    243 0.010
    244 0.004
    246 0.004
    247 0.024
    248 0.003
    249 0.015
    250 0.031
    251 0.001
    252 0.230
    253 0.340
    254 0.223
    255 0.106
    256 0.754
    257 0.006
    258 0.011
    259 0.772
    260 0.131
    261 0.139
    262 0.250
    263 0.580
    264 0.559
    265 0.404
    267 0.891
    268 0.042
    269 0.007
    270 0.013
    271 0.092
    272 0.017

Claims (4)

1. A compound of formula I,
Figure US20090069565A1-20090312-C00322
wherein
R0 is selected from the group consisting of:
monocyclic and bicyclic 6- to 14-membered aryl carbon rings, said aryl rings being substituted with one to three R8 groups independently selected from those substituents defined below, with the stipulation that at least one R8 group is halogen, —C(O)—NH2 or —O—(C1-C8)-alkyl;
R8 is selected from the group consisting of:
halogen, —NO2; —CN; —C(O)—NH2; —OH; —NH2; —OCF3; monocyclic and bicyclic 4- to 14-membered aryl radicals, said aryl radicals being substituted with one, two, or three groups independently selected from halogen, —O—(C1-C8)-alkyl; and —(C1-C8)-alkyl which are both unsubstituted or substituted with up to three groups independently selected from halogen, NH2, —OH and methoxy;
Q is selected from the group consisting of
—C(O)—; —(C0-C2)-alkylene-C(O)—NR10—; —NR10—C(O)—NR10—; —NR10—C(O)—; —SO2— and —(C1-C6)-alkylene, wherein alkylene is unsubstituted or substituted with up to three substituents independently selected from halogen,
—NH2 and —OH; and (C3-C6)-cycloalkylene, wherein cycloalkylene is unsubstituted or substituted with up to three groups independently selected from halogen, —NH2 and —OH;
R1 is selected from the group consisting of
hydrogen; —(C1-C4)-alkyl radicals, said alkyl radicals being unsubstituted or substituted with one to three substituents independently selected from the R13 substituents defined below; and monocyclic or bicyclic 4- to 14-membered heteroaryl radicals said heteroaryl radical is unsubstituted or substituted with one to three substituents independently selected from the R14 substituents defined below;
R2 is a bond or —(C1-C4)-alkylene;
R14 is selected from the group consisting of
halogen, —OH, —(C1-C8)-alkyl, —(C1-C4)-alkoxy, —NO2, —C(O)—OH, —CN, —NH2, —C(O)—O—(C1-C4)-alkyl, —(C1-C8)-alkylsulfonyl, —SO2, —C(O)—NH—(C1-C8)-alkyl, —C(O)—N—[(C1-C8)-alkyl]2, —NR10—C(O)—NH—(C1-C8)-alkyl, —C(O)—NH2, —SR10, and —NR10—C(O)—NH—[(C1-C8)-alkyl]2, said R10 being selected from hydrogen, —(C1-C3)-perfluoroalkyl and —(C1-C6)-alkyl;
V is a monocyclic or bicyclic 4 to 14-member heteroaryl group in which one or more of the 5 to 14 ring carbon atoms are replaced by heteroatoms selected from the group consisting of nitrogen, oxygen and sulphur.
G is selected from the group consisting of a bond, —(CH2)m—NR10—SO2—NR10—(CH2)n—, —(CH2)m—CH(OH)—(CH2)n-1-(CH2)m-1-(CH2)m—O—(CH2)n—, —(CH2)m—C(O)—NR10—(CH2)n—, —(CH2)—SO2—(CH2)n—, —(CH2)m—NR10—C(O)—NR10—(CH2)—, —(CH2)m—NR10—C(O)—(CH2)n—(CH2)m—C(O)—(CH2)n—, —(CH2)—S—(CH2)n—, —(CH2)m—SO2—NR10—(CH2)n—, —(CH2)m—NR10SO2—(CH2)n—, —(CH2)m—NR10—(CH2)m—O—C(O)—NR10—(CH2)n— and —(CH2)m—NR10—C(O)—O—(CH2)n—,
n and m are independently selected from zero and the integers 1, 2, 3, 4, 5 and 6,
R10 is hydrogen, —(C1-C3)-perfluoroalkyl or —C1-C6)-alkyl,
M is selected from the group consisting of:
hydrogen; —(C1-C8)-alkyl, said alkyl being unsubstituted or substituted with one to three groups independently selected from the R14 substituents defined above; —C(O)—NR11R12; —(CH2)m—NR10; —(C6-C14)-aryl, said aryl being unsubstituted or substituted with one to three groups independently selected from the R14 substituents defined above; —(C4-C14)-heteroaryl, said heteroaryl being unsubstituted or substituted with one to three groups independently selected from the R14 substituents defined above; (C3-C7)-cycloalkyl, said cycloalkyl being unsubstituted or substituted with one to three groups independently selected from the R14 substituents defined above; a 3- to 7-membered cyclic residue, optionally containing 1, 2, 3 or 4 heteroatoms selected from the group consisting of nitrogen, sulfur and oxygen, said cyclic residue being unsubstituted or substituted with one to three groups independently selected from the R14 substituents defined above;
R11 and R12 are independently selected from the group consisting of:
hydrogen; —(C1-C6)-alkyl, said alkyl being unsubstituted or substituted with from one to three groups independently selected from the R13 substituents defined below; —(C6-C14)-aryl-(C1-C4)-alkyl-, wherein said alkyl and said aryl are each independently unsubstituted or substituted with one to three groups independently selected from the R13 substituents defined below; —(C6-C14)-aryl-, said aryl being unsubstituted or substituted with one to three groups independently selected from the R13 substituents defined below;
—(C4-C14)-heteroaryl, said heteroaryl being unsubstituted or substituted with one to three substituents independently selected from the R13 substituents defined below; —(C4-C14)-heteroaryl-(C1-C4)-alkyl-, wherein said alkyl and said heteroaryl are each independently unsubstituted or substituted with one to three substituents independently selected from the R13 substituents defined below; or, alternatively,
R11 and R12, together with the nitrogen atom to which they are bonded, form a saturated 5- to 7-membered monocyclic heterocyclic ring which, in addition to said nitrogen atom, may contain one or two identical or different ring heteroatoms selected from oxygen, sulfur and nitrogen; said heterocyclic ring being unsubstituted or substituted with one to three substituents independently selected from the R13 substituents defined below;
R13 is selected from the group consisting of:
halogen; —NO2; —CN; ═O; —OH; —(C1-C8)-alkyl; —(C1-C8)-alkoxy; —CF3; phenyl; phenyloxy-; —C(O)—O—R11; phenyl-(C1-C4)-alkoxy-; —C(O)—N—R11R12; —NR11R12; —NR10—SO2—R10; —S—R10; —SOn—R10; wherein n is 1 or 2; —SO2—NR11R12; —C(O)—R10; —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)—R17; —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)O—R17 and a residue of formula Va,
Figure US20090069565A1-20090312-C00323
wherein R10, R11 and R12 are as defined above and R15, R16 or R17 are as defined below;
R15 and R16 are independently selected from the group consisting of hydrogen, and —(C1-C6)-alkyl, or they alternatively, together with the carbon atom to which they are bonded, form a 3- to 6 membered carbocyclic ring, said carbocyclic ring being unsubstituted or substituted with one to three groups independently selected from the group consisting of the R10 substituents defined above;
R17 is selected from the group consisting of —(C1-C6)-alkyl, —(C1-C8)-cycloalkyl, and —(C1-C6)-alkyl-(C1-C8)-cycloalkyl, each said cycloalkyl ring being unsubstituted or substituted with one to three groups independently selected from the R10 substituents defined above;
R3, R4, R5, R6 and R7 are each independently selected from the group consisting of: hydrogen; halogen and —(C1-C4)-alkyl, said alkyl being unsubstituted or substituted with one to three groups independently selected from the group consisting of the R13 substituents defined above; —(C1-C3)-perfluoroalkyl and phenyl, said phenyl being unsubstituted or substituted with one to three groups independently selected from the group consisting of the R13 substituents defined above; —O—(C1-C4)-alkyl, said alkyl being unsubstituted or substituted with one to three groups independently selected from the R13 substituents defined above; —NO2; —CN; —OH and phenyloxy-, said phenyloxy being unsubstituted or substituted with one to three groups independently selected from the R13 substituents defined above; benzyloxy-, said benzyloxy being unsubstituted or substituted with one to three groups independently selected from the R13 substituents defined above; —C(O)—O—R11, wherein R11 is as defined above; —C(O)—N—R11R12, wherein R11 and R12 are as defined above; —NR11R12, wherein R11 and R12 are as defined above; —NR10—SO2—R10, wherein R10 is as defined above; —SR10, wherein R10 is as defined above; —SOn—R10, wherein n is 1 or 2 and R10 is as defined above; —SO2—NR11R12, wherein R11 and
R12 are as defined above; —C(O)—R10, wherein R10 is as defined above; —C(O)—O—C(R15R16)—O—C(O)—R17, wherein R15, R16 and R17 are as defined above; —C(O)—O—C(R15R16)—O—C(O)O—R17, wherein R15, R16 and R17 are as defined above; a residue of formula Va,
Figure US20090069565A1-20090312-C00324
wherein R10 is as defined above, and a residue of formula Vb or Vc,
Figure US20090069565A1-20090312-C00325
—NR10—(C1-C4)-alkyl, said alkyl being unsubstituted or substituted with one to three groups independently selected from the R13 substituents defined above; —O—CF3; and a residue selected from the group consisting of:
Figure US20090069565A1-20090312-C00326
wherein R10, R11, R12 and R13 are as defined above;
its stereoisomers, salts and mixtures thereof
2. The compound of formula I, as claimed in claim 1, wherein
R0 is selected from the group consisting of:
monocyclic and bicyclic 6- to 14-membered aryl carbon rings, said aryl rings being substituted with one to three R8 groups independently selected from those substituents previously defined above, with the stipulation that at least one R8 group is halogen, —C(O)—NH2 or —O—(C1-C8)-alkyl;
Q is selected from the group consisting of:
—C(O)—; —SO2—; —(C1-C6)-alkylene; and —(C0-C2)-alkylene-C(O)—NR10—;
R1 is hydrogen or —(C1-C2)-alkyl;
R2 is a direct bond or —(C1-C2)-alkylene;
R14 is halogen, —(C1-C4)-alkyl or —NH2;
V is a monocyclic or bicyclic 4 to 14-member heteroaryl group in which one or more of the 5 to 14 ring carbon atoms are replaced by heteroatoms selected from the group consisting of nitrogen, oxygen and sulphur, G is a bond, —(CH2)m—, or —(CH2)m—NR10—;
m is zero or an integer selected from 1, 2, 3 and 4;
R10 is hydrogen, —(C1-C3)-perfluoroalkyl or —(C1-C4)-alkyl;
M is selected from the group consisting of
hydrogen; —(C6-C14)-heteroaryl, said heteroaryl being a residue selected from the group consisting of the derivatives of piperidine, piperazine, pyridine, pyrimidine, pyrrolidine, pyrrolidinone, pyridonyl, imidazole, pyridazine, pyrazine, 1,2,3-triazine, 1,2,4-triazine, 1,3,5-triazine, 1,2,3-triazole, 1,2,4-triazole, tetrazine, tetrazole, 1,2-diazepine, 1,3-diazepine, 1,4-diazepine, azepine, ketopiperazine, oxazole, isoxazole, isoxazolidine, 2-isoxazoline, morpholine, thiazole, isothiazole, tetrahydropyran, thiadiazole and thiomorpholine, which are unsubstituted or substituted with one to three substituents independently selected from the R14 substituents defined above; —(C1-C6)-alkyl, said alkyl being unsubstituted or substituted with one to three substituents independently selected from the R14 substituents defined above; and (C3-C6)-cycloalkyl;
R3, R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen; F; Cl; Br; —(C1-C4)-alkyl, said alkyl being unsubstituted or substituted by R13 as defined below; —CF3; phenyl, said phenyl being unsubstituted or substituted with one to three substituents independently selected from the R13 substituents defined below; —O—(C1-C4)-alkyl, wherein alkyl is unsubstituted or substituted by R13 as defined below; —NO2; —CN; —OH; phenyloxy-, said phenyloxy being unsubstituted or substituted by R13 as defined below; benzyloxy-, said benzyloxy being unsubstituted or substituted by R13 as defined below; —C(O)—O—R11; —C(O)—N—R11R12; —NR11R12; —NR10—SO2—R10; —SO, —R10, wherein n is 1 or 2; —SO2—NR11R12; —C(O)—R10; —C(O)—O—C(R15R16)—O—C(O)—R17; —C(O)—O—C(R15R16)—O—C(O)O—R17; a residue of formula Va:
Figure US20090069565A1-20090312-C00327
a residue of formula Vb or Vc,
Figure US20090069565A1-20090312-C00328
—O—CF3; and a residue selected from the group consisting of
Figure US20090069565A1-20090312-C00329
R13 is selected from the group consisting of
halogen; —NO2; —CN, ═O; —OH; —(C1-C8)-alkoxy; —CF3; —C(O)—O—R11; —C(O)—N—R11R12; —NR11R12; —NR10—SO2—R10; —SOn—R10, wherein n is 1 or 2; —SO2—NR11R12; —C(O)—R10; —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)—R17; —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)O—R17; and a residue of formula Va,
Figure US20090069565A1-20090312-C00330
and R10, R11, R12, R15, R16 and R17 are as defined in claim 1 above, its' isomers, salts and mixtures thereof
3. The compound of formula I as recited in claim 1, wherein
R0 is monocyclic and bicyclic 6- to 14-membered aryl carbon rings, said aryl rings being substituted with one to three R8 groups independently selected from those substituents previously defined herein, with the stipulation that at least one R8 group is halogen, —C(O)—NH2 or —O—(C1-C8)-alkyl;
Q is —C(O)—, —SO2—, methylene or ethylene;
R1 is hydrogen;
R2 is a bond or methylene;
R13 is selected from the group consisting of
—C(O)—O—R11; —C(O)—N—R11R12; —NR11R12; —NR10—SO2—R10; and —SOn—R10, wherein n is 1 or 2;
—SO2—NR11R12; —C(O)—R10; —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)—R17; —(C0-C4)-alkyl-C(O)—O—C(R15R16)—O—C(O)O—R17; and a residue of formula Va,
Figure US20090069565A1-20090312-C00331
wherein R10, R11, R12, R15, R16 or R17 are as defined in claim 1 above;
R14 is halogen, methyl, ethyl or —NH2;
V is a monocyclic or bicyclic 4 to 14-member heteroaryl group in which one or more of the 5 to 14 ring carbon atoms are replaced by heteroatoms selected from the group consisting of nitrogen, oxygen and sulphur;
G is a bond, (CH2)m—, or —(CH2)m—NR10—, wherein m is zero, 1 or 2, and R10 is hydrogen or —(C1-C4)-alkyl;
M is selected from the group consisting of hydrogen, (C2-C4)-alkyl, imidazolyl, pyrazolyl, pyrrolidinyl, tetrahydropyranyl, piperidinyl, pyridinyl, pyrimidyl, pyrazinyl, pyridazinyl, and (C3-C6)-cycloalkyl, which cyclic residues are unsubstituted or substituted with one or two substituents independently selected from the R14 substituents defined above; and
R3, R4, R5, R6 and R7 are independently selected from the group consisting of hydrogen; F; Cl; —(C1-C4)-alkyl, wherein alkyl is unsubstituted or substituted by R13, as defined above; phenyl, which is unsubstituted or substituted with one to three substituents independently selected from the R13 substituents defined above; —O—(C1-C4)-alkyl, wherein alkyl is unsubstituted or substituted by R13, as defined above; —C(O)—O—R11; —C(O)—N—R11R12; —NR11R12; —NR10—SO2—R10;
—SO2—NR11R12; —C(O)—R10; —C(O)—O—C(R15R16)—O—C(O)—R17, wherein R15, R16 and R17 are as defined in claim 1 above; —C(O)—O—C(R15R16)—O—C(O)O—R17, wherein R15, R16 and R17 are as defined in claim 1 above; a residue of formula Va
Figure US20090069565A1-20090312-C00332
a residue of formula Vb or Vc,
Figure US20090069565A1-20090312-C00333
and a residue selected from the group consisting of:
Figure US20090069565A1-20090312-C00334
its' isomers, salts and mixtures thereof
4. The compound of formula I as recited in claim 1 selected from the group consisting of:
1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid (3-pyridin-4-yl-4,5-dihydro-isoxazol-5-ylmethyl)-amide;
1-(3-methoxy-benzyl)-1H-indole-2-carboxylic acid (4-amino-quinazolin-7-ylmethyl)-amide;
1-(4-chloro-phenyl)-1H-indole-2-carboxylic acid ((4-amino-quinazolin-7-ylmethyl)-amide;
1-(4-chloro-benzyl)-1H-indole-2-carboxylic acid (3-pyridin-4-yl-4,5-dihydro-isoxazol-5-ylmethyl)-amide;
1-(2,4-dichloro-benzyl)-1H-indole-2-carboxylic acid (3-pyridin-4-yl-4,5-dihydro-isoxazol-5-ylmethyl)-amide; and
1-(2,4-dichloro-benzyl)-1H-indole-2-carboxylic acid ((4-amino-quinazolin-7-ylmethyl)-amide.
US12/119,013 2001-11-22 2008-05-12 New indole derivatives as factor xa inhibitors Abandoned US20090069565A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/119,013 US20090069565A1 (en) 2001-11-22 2008-05-12 New indole derivatives as factor xa inhibitors

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP01127809A EP1314733A1 (en) 2001-11-22 2001-11-22 Indole-2-carboxamides as factor Xa inhibitors
EP01127809.0 2001-11-22
US10/301,397 US6906084B2 (en) 2001-11-22 2002-11-21 Indole derivatives as factor Xa inhibitors
US10/926,909 US20050043302A1 (en) 2001-11-22 2004-08-26 New indole derivatives as factor Xa inhibitors
US12/119,013 US20090069565A1 (en) 2001-11-22 2008-05-12 New indole derivatives as factor xa inhibitors

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/926,909 Continuation US20050043302A1 (en) 2001-11-22 2004-08-26 New indole derivatives as factor Xa inhibitors

Publications (1)

Publication Number Publication Date
US20090069565A1 true US20090069565A1 (en) 2009-03-12

Family

ID=8179313

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/301,397 Expired - Lifetime US6906084B2 (en) 2001-11-22 2002-11-21 Indole derivatives as factor Xa inhibitors
US10/926,909 Abandoned US20050043302A1 (en) 2001-11-22 2004-08-26 New indole derivatives as factor Xa inhibitors
US12/119,013 Abandoned US20090069565A1 (en) 2001-11-22 2008-05-12 New indole derivatives as factor xa inhibitors

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/301,397 Expired - Lifetime US6906084B2 (en) 2001-11-22 2002-11-21 Indole derivatives as factor Xa inhibitors
US10/926,909 Abandoned US20050043302A1 (en) 2001-11-22 2004-08-26 New indole derivatives as factor Xa inhibitors

Country Status (31)

Country Link
US (3) US6906084B2 (en)
EP (2) EP1314733A1 (en)
JP (1) JP4664592B2 (en)
KR (2) KR100954508B1 (en)
CN (1) CN1283638C (en)
AR (1) AR037656A1 (en)
AU (1) AU2002351918B2 (en)
BR (1) BR0214396A (en)
CA (1) CA2467374C (en)
CO (1) CO5580764A2 (en)
EC (1) ECSP045115A (en)
HK (1) HK1070352A1 (en)
HR (1) HRP20040453A2 (en)
HU (1) HUP0402063A3 (en)
IL (2) IL162105A0 (en)
MA (1) MA27350A1 (en)
ME (1) MEP43008A (en)
MX (1) MXPA04004797A (en)
MY (1) MY131516A (en)
NO (1) NO327466B1 (en)
NZ (1) NZ533044A (en)
OA (1) OA12727A (en)
PE (1) PE20030593A1 (en)
PL (1) PL210986B1 (en)
RS (1) RS40404A (en)
RU (1) RU2299881C2 (en)
TN (1) TNSN04091A1 (en)
TW (1) TWI291950B (en)
UA (1) UA78731C2 (en)
WO (1) WO2003044014A1 (en)
ZA (1) ZA200402945B (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9718847B2 (en) 2013-03-15 2017-08-01 Plexxikon Inc. Heterocyclic compounds and uses thereof
US9822109B2 (en) 2013-03-15 2017-11-21 Plexxikon Inc. Heterocyclic compounds and uses thereof
US10351532B2 (en) 2014-12-29 2019-07-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Small molecule inhibitors of lactate dehydrogenase and methods of use thereof
US10717735B2 (en) 2017-10-13 2020-07-21 Plexxikon Inc. Solid forms of a compound for modulating kinases

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071213B2 (en) * 2001-11-14 2006-07-04 Schering Corporation Cannabinoid receptor ligands
US7358268B2 (en) * 2002-12-04 2008-04-15 Sanofi-Aventis Deutschland Gmbh Imidazole derivatives as factor Xa inhibitors
US7429581B2 (en) * 2002-12-23 2008-09-30 Sanofi-Aventis Deutschland Gmbh Pyrazole-derivatives as factor Xa inhibitors
ES2337254T3 (en) 2003-02-14 2010-04-22 Glaxo Group Limited CARBOXAMIDE DERIVATIVES
US7539725B2 (en) * 2003-04-03 2009-05-26 Zix Corporation Auditor system
US7741341B2 (en) 2003-05-19 2010-06-22 Sanofi-Aventis Deutschland Gmbh Benzimidazole-derivatives as factor Xa inhibitors
US7223780B2 (en) * 2003-05-19 2007-05-29 Sanofi-Aventis Deutschland Gmbh Triazole-derivatives as blood clotting enzyme factor Xa inhibitors
EP1479677A1 (en) * 2003-05-19 2004-11-24 Aventis Pharma Deutschland GmbH New indole derivatives as factor xa inhibitors
EP1479675A1 (en) * 2003-05-19 2004-11-24 Aventis Pharma Deutschland GmbH Indazole-derivatives as factor Xa inhibitors
US7317027B2 (en) * 2003-05-19 2008-01-08 Sanofi-Aventis Deutschland Gmbh Azaindole-derivatives as factor Xa inhibitors
EP1479680A1 (en) * 2003-05-19 2004-11-24 Aventis Pharma Deutschland GmbH Azaindole derivatives as Factor Xa inhibitors
WO2004108671A1 (en) * 2003-06-06 2004-12-16 Suven Life Sciences Limited Substituted indoles with serotonin receptor affinity, process for their preparation and pharmaceutical compositions containing them
TWI372050B (en) 2003-07-03 2012-09-11 Astex Therapeutics Ltd (morpholin-4-ylmethyl-1h-benzimidazol-2-yl)-1h-pyrazoles
EP1568698A1 (en) * 2004-02-27 2005-08-31 Aventis Pharma Deutschland GmbH Pyrrole-derivatives as factor Xa inhibitors
EP1571154A1 (en) * 2004-03-03 2005-09-07 Aventis Pharma Deutschland GmbH Beta-aminoacid-derivatives as factor Xa inhibitors
KR20070028553A (en) 2004-06-18 2007-03-12 바이올리폭스 에이비 Indoles useful in the treatment of inflammation
US8013006B2 (en) 2004-07-14 2011-09-06 Ptc Therapeutics, Inc. Methods for treating hepatitis C
US7781478B2 (en) 2004-07-14 2010-08-24 Ptc Therapeutics, Inc. Methods for treating hepatitis C
US7772271B2 (en) * 2004-07-14 2010-08-10 Ptc Therapeutics, Inc. Methods for treating hepatitis C
US7868037B2 (en) 2004-07-14 2011-01-11 Ptc Therapeutics, Inc. Methods for treating hepatitis C
WO2006019832A1 (en) 2004-07-22 2006-02-23 Ptc Therapeutics, Inc. Thienopyridines for treating hepatitis c
FR2874015B1 (en) * 2004-08-05 2006-09-15 Sanofi Synthelabo N- (1H-INDOLYL) -1H-INDOLE-2-CARBOXAMIDE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC USE
AU2005299693B2 (en) 2004-10-26 2012-07-05 Janssen Pharmaceutica, N.V. Factor Xa compounds
ATE405553T1 (en) * 2004-12-08 2008-09-15 Bristol Myers Squibb Co HETEROCYCLIC COMPOUNDS AS INHIBITORS OF FACTOR VIIA
MX2007008008A (en) 2004-12-30 2007-11-12 Astex Therapeutics Ltd Pyrazole compounds that modulate the activity of cdk, gsk and aurora kinases.
FR2880625B1 (en) * 2005-01-07 2007-03-09 Sanofi Aventis Sa N- (HETEROARYL) -1H-INDOLE-2-CARBOXAMIDE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC USE
ATE501119T1 (en) 2005-01-19 2011-03-15 Biolipox Ab ANTI-INFLAMMATORY INDOLE DERIVATIVES
EP2308839B1 (en) 2005-04-20 2017-03-01 Takeda Pharmaceutical Company Limited Fused heterocyclic compounds
FR2888847B1 (en) 2005-07-22 2007-08-31 Sanofi Aventis Sa N- (HETERIARYL) -1-HETEORARYLALKYL-1H-INDOLE-2-CARBOXAMIDE DERIVATIVES, THEIR PREPARATION AND THERAPEUTIC APPLICATION
US8399666B2 (en) 2005-11-04 2013-03-19 Panmira Pharmaceuticals, Llc 5-lipoxygenase-activating protein (FLAP) inhibitors
GB2431927B (en) * 2005-11-04 2010-03-17 Amira Pharmaceuticals Inc 5-Lipoxygenase-activating protein (FLAP) inhibitors
US7977359B2 (en) 2005-11-04 2011-07-12 Amira Pharmaceuticals, Inc. 5-lipdxygenase-activating protein (FLAP) inhibitors
JP5474354B2 (en) 2005-12-30 2014-04-16 アステックス、セラピューティックス、リミテッド Pharmaceutical compounds
KR101126895B1 (en) * 2006-01-24 2012-03-20 일라이 릴리 앤드 캄파니 Indole sulfonamide modulators of progesterone receptors
US7943622B2 (en) 2006-06-06 2011-05-17 Cornerstone Therapeutics, Inc. Piperazines, pharmaceutical compositions and methods of use thereof
US8435970B2 (en) 2006-06-29 2013-05-07 Astex Therapeutics Limited Pharmaceutical combinations of 1-cyclopropyl-3-[3-(5-morpholin-4-ylmethyl-1H-benzoimidazol-2-yl)-1H-pyrazol-4-yl]-urea
MX2009011211A (en) * 2007-04-16 2009-10-30 Abbott Lab 7-substituted indole mcl-1 inhibitors.
NZ582056A (en) * 2007-08-10 2012-08-31 Lundbeck & Co As H Bicyclic heteroaryl compounds for treating conditions related to p2x7 receptor activation
TW200920369A (en) 2007-10-26 2009-05-16 Amira Pharmaceuticals Inc 5-lipoxygenase activating protein (flap) inhibitor
RU2484090C2 (en) * 2007-12-07 2013-06-10 Эбботт Гмбх Унд Ко.Кг 5-halogen-substituted oxindole derivatives and use thereof in treating vasopressin-dependent diseases
WO2009083559A1 (en) * 2007-12-27 2009-07-09 Abbott Gmbh & Co. Kg Substituted oxindole-derivatives and the use thereof for the treatment of vasopressin-dependent illnesses
CA2713716A1 (en) 2008-02-22 2009-08-27 F. Hoffmann-La Roche Ag Modulators for amyloid beta
KR20160129109A (en) 2008-05-23 2016-11-08 아미라 파마슈티칼스 인코포레이티드 5-lipoxygenase-activating protein inhibitor
GB0813144D0 (en) 2008-07-17 2008-08-27 Glaxo Group Ltd Novel compounds
GB0813142D0 (en) 2008-07-17 2008-08-27 Glaxo Group Ltd Novel compounds
US8940752B2 (en) 2009-06-29 2015-01-27 Incyte Corporation Pyrimidinones as PI3K inhibitors
WO2011075643A1 (en) 2009-12-18 2011-06-23 Incyte Corporation Substituted heteroaryl fused derivatives as pi3k inhibitors
US8486967B2 (en) * 2010-02-17 2013-07-16 Hoffmann-La Roche Inc. Heteroaryl substituted piperidines
EP2558463A1 (en) 2010-04-14 2013-02-20 Incyte Corporation Fused derivatives as i3 inhibitors
US9062055B2 (en) 2010-06-21 2015-06-23 Incyte Corporation Fused pyrrole derivatives as PI3K inhibitors
TW201249844A (en) 2010-12-20 2012-12-16 Incyte Corp N-(1-(substituted-phenyl)ethyl)-9H-purin-6-amines as PI3K inhibitors
US9108984B2 (en) 2011-03-14 2015-08-18 Incyte Corporation Substituted diamino-pyrimidine and diamino-pyridine derivatives as PI3K inhibitors
US9126948B2 (en) 2011-03-25 2015-09-08 Incyte Holdings Corporation Pyrimidine-4,6-diamine derivatives as PI3K inhibitors
FR2974576B1 (en) * 2011-04-29 2013-07-19 Sanofi Aventis N - [(1H-PYRAZOL-1-YL) ARYL] -1H-INDOLE OR 1H-INDAZOLE-3-CARBOXAMIDE DERIVATIVES, THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATIONS
CA2846652C (en) 2011-09-02 2019-11-05 Incyte Corporation Heterocyclylamines as pi3k inhibitors
WO2013130703A2 (en) * 2012-02-29 2013-09-06 Institute For Hepatitis And Virus Research Binhibitors of hepatitis b virus convalently closed circular dna formation and their method of use
AR090548A1 (en) 2012-04-02 2014-11-19 Incyte Corp BICYCLIC AZAHETEROCICLOBENCILAMINS AS PI3K INHIBITORS
CN105829293B (en) * 2013-12-20 2018-11-09 中国人民解放军军事医学科学院毒物药物研究所 New piperidine carbamyl class compound, preparation method and its usage
JP2017516845A (en) 2014-05-22 2017-06-22 ノース チャイナ ファーマシューティカル カンパニー リミテッド Hydrazide compounds as blood coagulation factor Xa inhibitors
WO2015191677A1 (en) 2014-06-11 2015-12-17 Incyte Corporation Bicyclic heteroarylaminoalkyl phenyl derivatives as pi3k inhibitors
EP3193600A4 (en) * 2014-09-10 2018-05-23 Epizyme, Inc. Smyd inhibitors
MY187502A (en) 2015-02-27 2021-09-24 Incyte Corp Salts of pi3k inhibitor and processes for their preparation
US9732097B2 (en) 2015-05-11 2017-08-15 Incyte Corporation Process for the synthesis of a phosphoinositide 3-kinase inhibitor
US9988401B2 (en) 2015-05-11 2018-06-05 Incyte Corporation Crystalline forms of a PI3K inhibitor
EP3313846B1 (en) * 2015-06-25 2020-05-06 Promega Corporation Thienopyrrole compounds and uses thereof as inhibitors of oplophorus-derived luciferases
KR101725451B1 (en) * 2016-05-25 2017-04-13 한국화학연구원 N--4--1H--2- - N-piperidin-4-yl-1H-indole-2-carboxamide derivatives preparation method thereof and pharmaceutical composition for use in preventing or treating Urotensin- receptor activity related diseases containing the same as an active ingredient
KR102613198B1 (en) * 2016-10-18 2023-12-15 셰브런 오로나이트 테크놀로지 비.브이. Marine diesel lubricant composition
US10815247B2 (en) 2016-12-28 2020-10-27 Promega Corporation Functionalized NANOLUC inhibitors
CN116332818B (en) * 2021-12-22 2023-12-15 王喆明 Tetrahydropyrrole derivatives and their use

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317524A (en) * 1965-02-04 1967-05-02 American Home Prod Substituted 1, 2, 3, 4-tetrahydro-pyrazino[1, 2-a]indoles
US5534530A (en) * 1993-04-16 1996-07-09 Elf Sanofi 5-acylamino-1,2,4-thiadiazoles, their preparation and pharmaceutical compositions containing them
US6436965B1 (en) * 2000-03-02 2002-08-20 Merck Frosst Canada & Co. PDE IV inhibiting amides, compositions and methods of treatment
US7196103B2 (en) * 2003-05-19 2007-03-27 Sanofi-Aventis Deutschland Gmbh Indole derivatives as factor Xa inhibitors
US7745467B2 (en) * 2005-07-22 2010-06-29 Sanofi-Aventis N-(heteroaryl)-1-heteroarylalkyl-1H-indole-2-carboxamide derivatives, preparation and therapeutic use thereof
US7868024B2 (en) * 2007-01-19 2011-01-11 Sanofi-Aventis Derivatives of N-(heteroaryl)-1-heteroaryl-1H-indole-2-carboxamides, preparation thereof and therapeutic use thereof

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2260332A1 (en) * 1974-02-12 1975-09-05 Delalande Sa 1-Phenyl-2-aminocarbonyl-indoles - with respiratory analeptic, antiinflammatory analgesic, vasodilator, diuretic and anti-ulcer activity
US4675332A (en) * 1984-12-10 1987-06-23 Warner-Lambert Company Acidic tetrazolyl substituted indole compounds and their use as antiallergy agents
IE68593B1 (en) * 1989-12-06 1996-06-26 Sanofi Sa Heterocyclic substituted acylaminothiazoles their preparation and pharmaceutical compositions containing them
US5506134A (en) 1990-10-22 1996-04-09 Corvas International, Inc. Hypridoma and monoclonal antibody which inhibits blood coagulation tissue factor/factor VIIa complex
US5788965A (en) 1991-02-28 1998-08-04 Novo Nordisk A/S Modified factor VII
US5833982A (en) 1991-02-28 1998-11-10 Zymogenetics, Inc. Modified factor VII
TW229140B (en) * 1992-06-05 1994-09-01 Shell Internat Res Schappej B V
US5518231A (en) 1993-04-19 1996-05-21 Xerox Corporation Self adjusting sheet gripping apparatus
CN1181091C (en) 1994-04-26 2004-12-22 西莱克泰德公司 Factor Xa inhibitors
AU6370196A (en) * 1995-07-18 1997-02-18 Kyowa Hakko Kogyo Co. Ltd. Indole derivatives
JPH0987282A (en) * 1995-09-21 1997-03-31 Kyowa Hakko Kogyo Co Ltd Thiazole derivative
WO1997045119A1 (en) * 1996-05-24 1997-12-04 Novartis Ag Use of substance p antagonists for treating social phobia
FR2763337B1 (en) * 1997-05-13 1999-08-20 Sanofi Sa NOVEL TRIAZOLE DERIVATIVES, A PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM
GB9716657D0 (en) * 1997-08-07 1997-10-15 Zeneca Ltd Chemical compounds
PT1042287E (en) * 1997-12-24 2005-08-31 Aventis Pharma Gmbh INDOLE DERIVATIVES AS FACTOR XA INHIBITORS
DE69934093T2 (en) 1998-01-27 2007-06-21 Aventis Pharmaceuticals Inc. SUBSTITUTED OXOAZAHETEROCYCLYL FACTOR Xa HEMMER
EP0987274A1 (en) 1998-09-15 2000-03-22 Hoechst Marion Roussel Deutschland GmbH Factor VIIa Inhibitors
JP4241970B2 (en) * 1998-10-30 2009-03-18 中外製薬株式会社 Indole derivatives having amide bonds, and mono- or diazaindole derivatives
JP2001002642A (en) * 1999-06-21 2001-01-09 Nippon Nohyaku Co Ltd Heterocyclic dicarboxylic acid diamide derivative, herbicide and its use
DE60041584D1 (en) 1999-07-28 2009-04-02 Aventis Pharma Inc SUBSTITUTED OXOAZAHETEROZYCLIC COMPOUNDS
US6486211B1 (en) * 1999-10-22 2002-11-26 Smithkline Beecham Corporation Indole compounds
DE60115394T2 (en) 2000-02-29 2006-10-19 Millennium Pharmaceuticals, Inc., Cambridge BENZAMID AND SIMILAR INHIBITORS FROM FACTOR XA
AU2001268711A1 (en) 2000-06-23 2002-01-08 Bristol-Myers Squibb Pharma Company Heteroaryl-phenyl substituted factor xa inhibitors
DE10147672A1 (en) * 2001-09-27 2003-04-10 Bayer Ag Substituted 2,5-diamidoindoles and their use
US7071213B2 (en) * 2001-11-14 2006-07-04 Schering Corporation Cannabinoid receptor ligands

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3317524A (en) * 1965-02-04 1967-05-02 American Home Prod Substituted 1, 2, 3, 4-tetrahydro-pyrazino[1, 2-a]indoles
US5534530A (en) * 1993-04-16 1996-07-09 Elf Sanofi 5-acylamino-1,2,4-thiadiazoles, their preparation and pharmaceutical compositions containing them
US6436965B1 (en) * 2000-03-02 2002-08-20 Merck Frosst Canada & Co. PDE IV inhibiting amides, compositions and methods of treatment
US7196103B2 (en) * 2003-05-19 2007-03-27 Sanofi-Aventis Deutschland Gmbh Indole derivatives as factor Xa inhibitors
US7745467B2 (en) * 2005-07-22 2010-06-29 Sanofi-Aventis N-(heteroaryl)-1-heteroarylalkyl-1H-indole-2-carboxamide derivatives, preparation and therapeutic use thereof
US8318775B2 (en) * 2005-07-22 2012-11-27 Sanofi N-(heteroaryl)-1-heteroarylalkyl-1H-indole-2-carboxamide derivatives, preparation and therapeutic use thereof
US7868024B2 (en) * 2007-01-19 2011-01-11 Sanofi-Aventis Derivatives of N-(heteroaryl)-1-heteroaryl-1H-indole-2-carboxamides, preparation thereof and therapeutic use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Isoxazoline "Chem Spider" p.1 (2013) *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9718847B2 (en) 2013-03-15 2017-08-01 Plexxikon Inc. Heterocyclic compounds and uses thereof
US9822109B2 (en) 2013-03-15 2017-11-21 Plexxikon Inc. Heterocyclic compounds and uses thereof
US10501460B2 (en) 2013-03-15 2019-12-10 Plexxikon Inc. Heterocyclic compounds and uses thereof
US10519177B2 (en) 2013-03-15 2019-12-31 Plexxikon Inc. Heterocyclic compounds and uses thereof
US10351532B2 (en) 2014-12-29 2019-07-16 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Small molecule inhibitors of lactate dehydrogenase and methods of use thereof
US10961200B2 (en) 2014-12-29 2021-03-30 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Small molecule inhibitors of lactate dehydrogenase and methods of use thereof
US11247971B2 (en) 2014-12-29 2022-02-15 The Trustees Of The University Of Pennsylvania Small molecule inhibitors of lactate dehydrogenase and methods of use thereof
US10717735B2 (en) 2017-10-13 2020-07-21 Plexxikon Inc. Solid forms of a compound for modulating kinases

Also Published As

Publication number Publication date
NO20042592L (en) 2004-06-21
RU2299881C2 (en) 2007-05-27
ECSP045115A (en) 2004-07-23
CN1589270A (en) 2005-03-02
IL162105A0 (en) 2005-11-20
PL210986B1 (en) 2012-03-30
KR20100027248A (en) 2010-03-10
PE20030593A1 (en) 2003-08-21
HUP0402063A2 (en) 2005-02-28
MEP43008A (en) 2011-02-10
CA2467374A1 (en) 2003-05-30
TW200408625A (en) 2004-06-01
OA12727A (en) 2006-06-27
AU2002351918B2 (en) 2008-04-03
HUP0402063A3 (en) 2008-03-28
MA27350A1 (en) 2005-06-01
KR100954508B1 (en) 2010-04-27
MY131516A (en) 2007-08-30
TNSN04091A1 (en) 2006-06-01
US6906084B2 (en) 2005-06-14
IL162105A (en) 2012-05-31
KR20040073441A (en) 2004-08-19
HK1070352A1 (en) 2005-06-17
NO327466B1 (en) 2009-07-06
HRP20040453A2 (en) 2005-08-31
CN1283638C (en) 2006-11-08
CA2467374C (en) 2012-11-27
US20050043302A1 (en) 2005-02-24
NZ533044A (en) 2005-11-25
CO5580764A2 (en) 2005-11-30
AR037656A1 (en) 2004-12-01
RS40404A (en) 2007-11-15
UA78731C2 (en) 2007-04-25
TWI291950B (en) 2008-01-01
WO2003044014A8 (en) 2004-07-22
KR101033798B1 (en) 2011-05-13
AU2002351918A1 (en) 2003-06-10
BR0214396A (en) 2004-09-14
JP4664592B2 (en) 2011-04-06
PL368949A1 (en) 2005-04-04
JP2005514365A (en) 2005-05-19
EP1451185A1 (en) 2004-09-01
EP1314733A1 (en) 2003-05-28
MXPA04004797A (en) 2004-08-11
ZA200402945B (en) 2005-02-23
RU2004118710A (en) 2005-03-27
WO2003044014A1 (en) 2003-05-30
EP1451185B1 (en) 2014-08-06
US20030199689A1 (en) 2003-10-23

Similar Documents

Publication Publication Date Title
US6906084B2 (en) Indole derivatives as factor Xa inhibitors
US7196103B2 (en) Indole derivatives as factor Xa inhibitors
US7910606B2 (en) Pyrazole-derivatives as factor Xa inhibitors
US20080280946A1 (en) Azaindole-Derivatives As Factor Xa Inhibitors
EP1433788A1 (en) Pyrazole-derivatives as factor Xa inhibitors
EP1426364A1 (en) Imidazole-derivatives as factor Xa inhibitors
US7358268B2 (en) Imidazole derivatives as factor Xa inhibitors
EP1569927A2 (en) IMIDAZOLE-DERIVATIVES AS FACTOR Xa INHIBITORS
EP1479680A1 (en) Azaindole derivatives as Factor Xa inhibitors
EP1479676A1 (en) Benzimidazole-derivatives as factor xa inhibitors
EP1479674A1 (en) Imidiazole-derivatives as factor xa inhibitors

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION