US20090047316A1 - Porous particles loaded with cosmetically or pharmaceutically active compounds - Google Patents

Porous particles loaded with cosmetically or pharmaceutically active compounds Download PDF

Info

Publication number
US20090047316A1
US20090047316A1 US12/285,297 US28529708A US2009047316A1 US 20090047316 A1 US20090047316 A1 US 20090047316A1 US 28529708 A US28529708 A US 28529708A US 2009047316 A1 US2009047316 A1 US 2009047316A1
Authority
US
United States
Prior art keywords
particles
agents
particles according
cosmetically
porous particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/285,297
Inventor
Jean-Thierry Simonnet
Bruno Biatry
Didier Saint-Leger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LOreal SA
Original Assignee
LOreal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0307747A external-priority patent/FR2856594B1/en
Application filed by LOreal SA filed Critical LOreal SA
Priority to US12/285,297 priority Critical patent/US20090047316A1/en
Publication of US20090047316A1 publication Critical patent/US20090047316A1/en
Priority to US13/311,080 priority patent/US8507006B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/88Polyamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/0241Containing particulates characterized by their shape and/or structure
    • A61K8/0279Porous; Hollow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/25Silicon; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/08Antiseborrheics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/18Antioxidants, e.g. antiradicals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/412Microsized, i.e. having sizes between 0.1 and 100 microns
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners

Definitions

  • the present invention relates to individualized porous particles having a volume-average diameter of 10 ⁇ m or less and containing at least one cosmetically or pharmaceutically active compound.
  • the present invention further relates to use of such particles for transporting and releasing an active compound in the pilosebaceous unit.
  • the pilosebaceous unit forms, within the stratum corneum, the epidermis, the dermis and an invagination comprising a hair follicle and a sebaceous gland.
  • the pilosebaceous unit is a site of considerable biological and enzymatic activity which has a major effect on the appearance of the skin. Among these effects, mention may be made, for example, of the influence of the production of the sebum on the greasy or dry nature of the skin, and the influence of the growth or loss of growth of body hair or head hair on the pilosity of the skin.
  • the pilosebaceous unit can also be the subject of an inflammatory process. Such a process can have various causes and can in particular be related to the presence of microorganisms.
  • the pilosebaceous unit constitutes a potential route of passage for agents intended to act on deep skin tissues, such as, for example, agents of the deep anti-wrinkle type, the slimming type, etc.
  • this pilosebaceous unit both by virtue of its morphology with the presence of hair, and by virtue of its physiology with a continuous flow of sebum, naturally opposes the penetration and/or the diffusion of active compounds within and into the depths of the pilosebaceous unit.
  • EP 0 375 520 describes the use of microspheres of natural or synthetic polymers or of fatty substances with a melting point above 50° C., loaded at least with an active product, and in which at least 800% by weight of the microspheres are between 3 ⁇ m and 10 ⁇ m in diameter, for preferentially transporting the active product into the pilosebaceous unit.
  • the microspheres described in that application are either microspheres consisting of crosslinked materials, or solid microspheres loaded by partial solubilization of their constituent materials, and which have a specific surface area of less than 1 m 2 /g.
  • microspheres described in EP 0 375 520 which comprise the encapsulation of the active compound either by means of solvents having sufficient affinity with respect to the material making up the microsphere, or by an “emulsification-evaporation” method, only allow approximate control of the homogeneity of the microspheres obtained.
  • the microspheres have a low or varied capacity to load the active compound and a low or varied capacity to release the active compound in the pilosebaceous unit.
  • WO 02/07674 proposes a method for increasing the penetration of an active compound into the pilosebaceous unit using a composition in the form of microspheres or liposomes having the property of being introduced into the follicle and of swelling therein by virtue of subsequently being in contact with a swelling agent, so as to generate a passage into the follicle.
  • WO 02/07674 does not provide any concrete example illustrating the proposed method and does not therefore make it possible to verify the effectiveness of the proposed method.
  • U.S. Pat. No. 6,287,549 describes a method of hair removal using a composition comprising organic microparticles loaded with chromophore agents, in which at least 80% by weight of the microparticles are between 3 and 10 ⁇ m in size, in order to transport the chromophore agent into the pilosebaceous unit.
  • These microparticles may be of various types and may be loaded with chromophores either as they are formed, or by impregnation of already formed microcapsules.
  • the compounds transported are not active compounds as such, since they require the intervention of an outside factor in order to be able to exercise an effect. In addition, exercising of this effect does not require their release from the microparticles.
  • Pat. No. 6,287,549 which explicitly provides for an optional step of application of a composition for solubilizing the chromophores so as to allow their release from the microparticles, does not suggest the possibility of a passive release and even teaches away from such passive release.
  • U.S. Pat. No. 4,690,825 describes vehicles consisting of porous particles which are between 10 ⁇ m and 100 ⁇ m in size, for the controlled release of active ingredients. These particles are prepared by copolymerization of monomers based on styrene, vinyl stearate and divinylbenzene or methyl methacrylate and ethylene glycol dimethyl methacrylate, in the presence of a porogen which is also the active ingredient. There is a risk that products so prepared will contain residues from preparation, which are likely to affect the products' innocuousness.
  • WO 99/53904 describes soft capsules containing an oily suspension or a silicone/polyethylene glycol emulsion and spherical porous microparticles prepared in particular according to U.S. Pat. No. 4,690,825, mentioned above. More precisely, this application describes porous microparticles having a mean particle diameter by weight of 20 ⁇ m, loaded either with retinol or with ascorbic acid.
  • U.S. Pat. No. 6,387,995 describes a process for producing an adsorbent polymer in the form of agglomerated, i.e., non-individualized, microparticles with a very low density ranging from 0.02 g/cm 3 to 0.1 g/cm 3 , capable of trapping lipophilic compounds.
  • the amount of compound trapped in the particles is negligible compared with that of the compound trapped in the space formed by the agglomerated particles.
  • compositions and methods have been discovered that make it possible to improve the encapsulation of an active compound, compared to known compositions and methods, while at the same time exhibiting a particularly satisfactory innocuousness.
  • the present invention relates to individualized porous particles having a volume-average diameter of 10 ⁇ m or less and a specific surface area of 1 m 2 /g or more.
  • the individualized porous particles include at least one cosmetically or pharmaceutically active compound at least present inside the particles.
  • the present invention further relates to cosmetic or pharmaceutical compositions including particles as defined above.
  • FIG. 1 is an electron micrograph of an exemplary composition according to this invention including silica particles containing triclosan.
  • porous particles refers to particles having a structure containing pores.
  • a porous structure can allow the incorporation, at least in part, of one or more active agents into particles.
  • a porous structure may be of a matrix type, like a sponge.
  • a porous structure may also be of a vesicular type, i.e., a particle may have an internal cavity delimited by a porous wall.
  • porous particles according to the invention can have a specific surface area, measured according to the BET method, of 1 m 2 /g or more.
  • individualized particles refers to particles that are not grouped together as an aggregate or an agglomerate.
  • Exemplary individualized particles can have a density of 0.15 g/cm 3 or more and, in particular, a density ranging from 0.2 to 5 g/cm 3 .
  • cosmetically or pharmaceutically active compound refers to compounds that, by themselves (i.e., without the action of an outside agent to activate) have biological activity. Often, a compound needs to be in direct contact with its target to exhibit activity.
  • Exemplary particles according to the present invention can derive from preformed porous particles, i.e., particles formed in the absence of a compound to be encapsulated.
  • loaded particles refers to particles, which contain active compound, as distinguished from the particulate material from which they derive.
  • Exemplary loaded particles according to the invention are substantially free from residues related to the processes for producing particles from which such loaded particles are derived. This characteristic of exemplary loaded particles according to the invention constitutes an improvement in terms of innocuousness compared to particles which, in order to load an active compound, must be formed in the presence of the active compound. Moreover, they are not solid.
  • Exemplary particles of the invention can be characterized by a high specific surface area, measured by BET.
  • the BET (BRUNAUER-EMMET-TELLER) method is a method well known to those skilled in the art. It is described, for example in the Journal of the American Chemical Society, 60: 309 (1938), and corresponds to the international standard ISO 5794/1 (annex D).
  • the specific surface area measured according to the BET method corresponds to the total specific surface area, i.e., including the surface area formed by pores.
  • particles according to the invention can have a specific surface area, measured by BET, ranging from 2.5 to 1000 m 2 /g, in particular from 3 to 750 m 2 /g, more particularly 300 m 2 /g or more, or further 500 m 2 /g or more.
  • exemplary particles according to the present invention can have a volume-average diameter of greater than or equal to 10 ⁇ m.
  • exemplary particles according to the invention can penetrate into a sebaceous follicle by application of a mechanical force.
  • Mechanical force can be applied, for example, by massage.
  • Massage exerts a pushing force and generates a pump effect in a follicle.
  • Exemplary particles thus gradually reach the follicle canal in which the active compound that they are carrying can then diffuse and, possibly, reach the tissues surrounding the follicle canal.
  • a carrier which constitutes a particle, can then be discarded by virtue of the flow of sebum and/or the growth of the body hair, thus making it possible to avoid any adverse reaction by the organism with respect to solid compounds constituting particles.
  • particles having a diameter of greater than 10 ⁇ m even with application of a similar mechanical force, mostly remain located on the surface of the skin without penetrating therein, and can therefore release the active compound only on a cornified layer.
  • particles can have a volume-average diameter of greater than or equal to 0.1 ⁇ m, and in particular ranging from 0.5 to 8 ⁇ m.
  • Exemplary particles according to the invention are particles, in particular porous spherical particles, having a number-average size which can range from 0.1 to 50 ⁇ m, in particular from 0.1 to 20 ⁇ m, and most particularly from 0.5 to 10 ⁇ m.
  • number-average size refers to a size given by the statistical mean particle size to half the population, referred to as D50.
  • particles can be characterized by virtue of their particle size homogeneity.
  • exemplary particles can have a polydispersity index, PI, ranging from 1 to 4, and in particular 3 or less.
  • This polydispersity index is defined as the ratio D(4.3)/D(3.2), in which D(4.3) denotes the volume-average diameter and D(3.2) denotes the surface-average diameter.
  • Exemplary porous particles of the invention may have varied shapes, especially globular, and in particular substantially spherical.
  • Porous particles from which loaded particles according to the invention derive generally consist of materials which are completely insensitive, especially in terms of solubilization and plasticization, to processes for encapsulating active compounds, in particular when such processes employ an organic solvent for impregnation.
  • Exemplary particles may be of organic, inorganic or mixed type and are most commonly provided in the form of a powder with, in particular, a low volatility.
  • Nylon 6, Nylon 6-6, Nylon 12 or Nylon 6-12 particles such as those sold by the company ATOFINA under the generic name “Orgasol,” and particles of poly(methyl methacrylate) (PMMA) such as those sold under the name “Covabead®” by the company WAKER.
  • PMMA poly(methyl methacrylate)
  • particles used can be chosen from the nylon particles mentioned above.
  • particles according to the invention can be inorganic in nature.
  • inorganic materials which can be used in exemplary particles according to the invention, mention may be made of silica, alumina-silica, hydroxyapatite, titanium dioxide, sericite, mica, magnesium carbonate or hydrocarbonate, aluminium oxides of the alumina type and mixed silicates, such as aluminosilicates, and mixtures thereof.
  • porous mineral particles which may be suitable for the invention, mention may be made of hollow silica microspheres, porous silica microspheres and glass or ceramic microcapsules.
  • Exemplary porous mineral particles suitable for the invention can be chosen from:
  • silica particles such as those sold by ASAHI GLASS under the name “Sunsphere H series” and by SUZUKI OIL AND FAT under the name “God Balls”,
  • hydroxyapatite particles such as those sold by MERCK (under the reference 1051990010—mean particle size 15 ⁇ m), or else those sold by the companies LABORATORY SKIN CARE, ASAHI GLASS and SEKISUI under the respective names “Hydroxyzomes” (LSC and Asahi Glass), AP20C and AP12C (SEKISUI), and “ASP®” by the company SEKISUI PLASTICS.
  • alumina-silica particles such as those sold under the name “Zeeosphere®” by the company 3M,
  • titanium dioxide particles such as those sold by the company ISHIHARA, and
  • particles can be chosen from silica particles and hydroxyapatite particles.
  • Exemplary porous particles according to this invention may also consist of organic and/or inorganic composite materials.
  • Exemplary loaded particles according to this invention can comprise at least one cosmetically or pharmaceutically active compound, the compound being at least present inside the particles.
  • Active compounds can also be present at the surface of loaded particles, but in such a case, the compounds are generally present mostly inside said particles.
  • the ratio by weight of active compound to porous particles not loaded with active compound can be from 1/1000 to 10/1, in particular from 1/100 to 1/1.
  • Exemplary active agents may include compounds well known to those skilled in the art. Such compounds are generally active agents that are usual in the cosmetics or dermatological field.
  • Exemplary active compounds may be hydrophilic or lipophilic.
  • loaded particles comprise at least one lipophilic active compound.
  • Loaded particles can also comprise at least one hydrophilic active compound, it being possible for the latter to be sufficiently solubilized by amphiphilic compounds present in the sebum to allow its release.
  • Active compounds considered hereinafter are, without distinction, hydrophilic or lipophilic.
  • antibacterial agents such as triclosan, IPBC (iodo-3-propynyl-2-butyl carbamate), benzalkonium chloride, chlorhexidine, Totarol® (plant extract comprising totara-8,11,13-trien-13-ol), etc.,
  • antifungal agents such as piroctone olamine, zinc pyrithione, climbazole, rilopirox, ketoconazole, itraconazole, etc.
  • sebum regulators such as the iminodibenzyl or fluorene derivatives as described in U.S. Pat. No. 6,355,687, the substituted secondary amine derivatives as described in U.S. Pat. No. 6,355,686, the glucuronic acid and glucosamine derivatives, and their salts, as described in EP 1 219 296, or the combinations of niacinamides with a C 11 -C 30 alkyl or alkenyl ester of salicylic acid as described in WO 02/067 889,
  • sebum stimulators such as DHEA and its synthetic or natural derivatives, ⁇ -hydroxylated derivatives of vitamin D1 such as those described in U.S. Pat. No. 6,369,099,
  • keratolytic agents such as salicylic acid and its derivatives, for instance more particularly 5-n-octanoylsalicylic acid, alpha-hydroxy acids such as those, for example, of glycolic acid, lactic acid or malic acid, and resorcinol,
  • agents for treating acne such as retinol and its derivatives, retinoic acid and its all-trans or 13-cis isomers, benzoyl peroxide, the cytochrome P450 inhibitors as described in U.S. Pat. No. 6,399,774 and their derivatives, and azelaic acid,
  • antibiotics which may or may not have a macrolide structure, the avermectin compounds as described in U.S. Pat. No. 6,399,652, [(2,4,6-triisopropylphenyl)-acetyl]sulphamic acid 2,6-diisopropylphenyl ester or a salt thereof, as inhibitor of cholesteryl and wax ester synthesis, as described in WO 01/56556,
  • hair loss inhibitors and also hair growth stimulators such as minoxidil, biotin, finasteride, 2,4-dipyrimidine N-oxide, panthenol and their derivatives, flavanone T, or more generally any plant extract, having anti-5-alpha-reductase type I or II activity,
  • agents which inhibit the growth of head hair or of body hair such as the serine proteases described in U.S. Pat. No. 6,407,056, cafeic acid, quercetin, propyl gallate, nordihydroguaiaretic acid or NDGA, indomethacin, eflornithine hydrochloride, the plant extracts as described in U.S. Pat. No. 6,171,595, such as the extracts of clove, of rosehip, of bumet, of gambir, etc., the compounds described in U.S. Pat. No.
  • anti-dandruff agents such as zinc pyrithione
  • antioxidants such as butylhydroxytoluene (BHT), carotenoids such as ⁇ -carotene, lycopene, canthaxanthine, ubiquinone, dibutylpentaerythrityl hydroxycinnamate, vitamin E, trolox, vitamin C and its derivatives,
  • astringents and pore-reducing agents such as those described in WO 02/32392,
  • antiperspirant agents such as aluminium salts and zirconium salts
  • vitamins other than those mentioned above, and such as vitamin B3, vitamin K, vitamin H, vitamin PP, vitamin D, vitamin B6 and their derivatives, and anti-inflammatory agents such as ⁇ -bisabolol, dipotassium glycyrrhizinate, glycyrrhetinic acid and its derivatives, ellagic acid, ursolic acid, ibuprofen, naproxen, fenoprofen, carprofen, ketoprofen, steroidal anti-inflammatory agents such as cortisone, pregnenolone, desonide, and mixtures of alkolamines and of tyrosine, such as those described in EP 1 192 939.
  • anti-inflammatory agents such as ⁇ -bisabolol, dipotassium glycyrrhizinate, glycyrrhetinic acid and its derivatives, ellagic acid, ursolic acid, ibuprofen, naproxen, feno
  • active agents known for their activity on skin ageing, such as keratolytic or prodesquamating agents, for example ⁇ -hydroxy acids, ⁇ -hydroxy acids, ⁇ -keto acids, ⁇ -keto acids, retinoids and their esters, retinal, retinoic acid and its derivatives.
  • vitamins such as vitamins C, B3 or PP, B5, E, K1, and the derivatives of these vitamins, and in particular their esters; free-radical scavengers; DHEA and its derivatives; coenzyme Q10; bleaching and depigmenting agents such as kojic acid, para-aminophenol derivatives, arbutin and their derivatives, and mixtures thereof.
  • active agents that are useful for oily skin, such as zinc salts, and in particular zinc gluconate; antibacterial agents such as salicylic acid, triclosan, lipacide, extract of clove, octopirox, hexamidine; anti-acne active agents.
  • Amounts of active agents introduced into particles depends on a desired effect. Active agents may be present in the porous particles in an amount of active material ranging from 1 to 50% by weight, especially from 2 to 40% by weight, and in particular ranging from 5 to 30% by weight, relative to the total weight of the particles once loaded.
  • Exemplary loaded particles according to the invention can be prepared according to conventional methods, in particular by impregnation.
  • loaded particles according to the invention can be obtained by impregnation of preformed porous particles with at least one active compound.
  • this protocol does not require the presence of a porogen.
  • impregnation processes can include presolubilizing compounds to be encapsulated in a solvent which is suitable and in an amount necessary and sufficient to impregnate the particles, and bringing a resulting mixture into contact with porous particles according to the invention. Solvent is then evaporated off until a dry powder is obtained. A resulting powder generally contains only a very small proportion of residual solvent, of the order of 1/10 ppm.
  • solvents which may be used in such an impregnation process, mention may in particular be made of acetone, ethanol, isopropanol, dichloromethane, ethyl acetate, etc.
  • solvents which may be used in such an impregnation process, mention may in particular be made of acetone, ethanol, isopropanol, dichloromethane, ethyl acetate, etc.
  • the choice of solvent is made taking into account the nature of the components of porous particles and of compounds to be encapsulated.
  • compounds to be encapsulated are in the form of liquids, they may be brought directly into contact with porous particles without the addition of a secondary solvent.
  • Exemplary loaded particles of the invention allow specific administration of cosmetically or pharmaceutically active compounds into the pilosebaceous unit.
  • Particles can be introduced in various cosmetic or pharmaceutical formulations intended for topical application.
  • the present invention therefore also relates to cosmetic or pharmaceutical compositions comprising loaded particles such as described above.
  • compositions may comprise only one type of particles as described above, or else may comprise a mixture of such particles.
  • exemplary compositions contain from 0.1 to 50% by weight, and in particular from 0.2 to 20% by weight, of particles as relative to the total weight of such compositions.
  • compositions according to the invention may also comprise:
  • At least one cosmetically or pharmaceutically acceptable additive at least one cosmetically or pharmaceutically acceptable additive, and/or
  • a galenic carrier which may be of any suitable type.
  • carrier refers to any mode of vehicle compatible with cosmetic or pharmaceutical use, namely of liquid type such as water, an aqueous-alcoholic solvent, oil, or a mixture thereof, or of solid type such as wax for example.
  • compositions according to the invention may also contain conventional adjuvants such as dyes, pigments, fragrances, preserving agents, physical and chemical sunscreens, sequestering agents, liposoluble or water-soluble active agents, moisturizers such as polyols and in particular glycerol, pH adjusters (acids or bases).
  • adjuvants such as dyes, pigments, fragrances, preserving agents, physical and chemical sunscreens, sequestering agents, liposoluble or water-soluble active agents, moisturizers such as polyols and in particular glycerol, pH adjusters (acids or bases).
  • compositions of the invention are substantially free of surfactants.
  • Exemplary cosmetic or pharmaceutical compositions may be provided in the form of lotions, O/W or W/O emulsions, or aqueous or aqueous-alcoholic gels, or alternatively in anhydrous form, such as sticks, sprays or compact or free powders.
  • compositions of the invention may be care compositions, hygiene compositions or makeup compositions for the skin of the body or face, or for the keratinous materials such as the nails, the eyelashes, the eyebrows or the hair.
  • compositions may also be employed, for example, for use on the hair and may in particular be shampoos, conditioners, hair lotions, in particular for hair care.
  • compositions may also be makeup-removing products, in particular oils, gels, or makeup-removing or foaming lotions.
  • compositions may also be makeup sticks such as lipsticks, or personal hygiene sticks such as deodorants.
  • compositions may also be makeup products, in particular of the foundation, tinted cream, mascara or eyeliner types.
  • a solution containing 20 g of salicylic acid, 1 l of acetone and 200 g of porous silicas (Sunsphere H33) is prepared. This solution is kept at ambient temperature, with stirring, until the active agent is completely dissolved. The solution is then transferred into a round-bottomed flask and the acetone is evaporated off in a rotary evaporator at 40° C. After complete evaporation of the solvent, a powder consisting of porous silica particles, the pores of which comprise salicylic acid in solid form, is thus obtained. The composition by weight of the particles obtained is 10% by weight of salicylic acid and 90% by weight of silica relative to the total weight of the particles.
  • Cosmetic compositions containing the particles according to the invention are formulated.
  • composition Control Matting free powder (% by weight) (% by weight) Talc 87 69 Salicylic acid 2 — Dimethicone 7.5 7.5 Magnesium stearate 2.5 2.5 Particles according to the invention — 20 (10% salicylic acid - 90% silica) Preserving agents 1 1
  • the stability of the composition according to the invention i.e., comprising 20% of particles according to the invention, is evaluated in comparison to a control composition not containing particles in accordance with the invention.
  • the powders are packaged in a 10 g box.
  • the boxes are then placed, for a period of 2 months, in an incubator with a relative humidity set at a value of 80% and the temperature set at the value of 45° C.
  • the macroscopic appearance of the powders after storage in the incubator is then optically evaluated. The results are given in the table below:
  • composition Control According to the invention Appearance Pinkish powder, showing White powder showing no dark pink marks coloration at the surface or in the mass
  • compositions containing a lipophilic active compound, 5-n-octanoylsalicylic acid, namely respectively a gel containing 4 ⁇ m porous particles of nylon (“Orgasol®”), which is the subject of the invention, and an O/W emulsion with the same mean particle size are compared in terms of pilosebaceous unit-targeting effectiveness.
  • the amount of active principle, 5-n-octanoylsalicylic acid is identical in the two types of composition, and is set at 0.3% by weight.
  • Composition 1 (according to the invention) Poly(ammonium acryloyldimethyltaurate) 0.50 g Porous particles of Nylon-12* 4.70 g 5-n-octanoylsalicylic acid 0.30 g Poloxamer 338 0.25 g Demineralized water 94.25 g
  • the porous particles of Nylon-12 are sold under the name “Orgasol 2002 UD Nat cos” by the company ATOFINA.
  • Composition 2 (comparative O/W emulsion) Xanthan gum 0.10 g Glyceryl stearate 1.00 g Sodium hydroxide 0.10 g Cetyl alcohol 2.00 g Octyldodecanol 9.00 g Glycerol 3.00 g Hydrogenated polyisobutene 2.00 g Water 71.95 g 5-n-Octanoylsalicylic acid 0.30 g Paraffin oil 5.00 g Carbomer 0.30 g PEG-100 stearate 1.00 g Polysorbate 60 4.00 g Methylparaben 0.25 g
  • the study is carried out on eight volunteer individuals who have oily skin exhibiting dilated pores on the forehead.
  • an epidermal sample is taken from each individual by cyanoacrylate strip, by applying onto the forehead of each individual a glass slide onto which a drop of cyanoacrylate has been deposited, and then, after drying, removing the slide, which thus entrains an epidermal sample.
  • the follicles and the comedones are then removed from the samples and their content is extracted in methanol.
  • the amount of active compound is quantified by HPLC.
  • composition 1 according to the invention which contains the porous particles loaded with 5-n-octanoylsalicylic acid, makes it possible to significantly increase the amount of 5-n-octanoylsalicylic acid in the follicle by a rate of at least 50%, compared with a composition in the form of an emulsion containing the same amount of 5-n-octanoylsalicylic acid.
  • Particle composition Porous particles of Nylon-12, sold under the name 7.5 g “Orgasol 2002 UD Nat Cos” ® by the company ATOFINA Triclosan 2.5 g
  • triclosan 2.5 g of triclosan are solubilized in 50 ml of acetone. 7.5 g of “Orgasol®” are introduced into this mixture. The dispersion is then introduced into a rotary evaporator in order to eliminate the acetone. A powder loaded with triclosan is then obtained.
  • the powder thus obtained can then be redispersed in water, in a gel or in an emulsion. Care will be taken to ensure that the composition into which the particles containing the triclosan are introduced does not promote leaking of the triclosan into the galenic carrier.
  • Particle composition Porous particles of silica sold under the name 7.5 g “God Balls2 EC ®” by the company SUZUKI OILS & FATS Vitamin E 1.5 g 5-n-Octanoylsalicylic acid 1.0 g
  • the powder thus obtained can then be redispersed in water, in a gel or in an emulsion. Care will, however, be taken to ensure that the composition into which the particles containing the vitamin E and the 5-n-octanoylsalicylic acid are introduced does not promote leaking of these active agents into the galenic carrier.
  • a powder of particles is prepared with 7.5 g of “God Balls 2 EC®” porous particles and 2.5 g of triclosan. The powder is observed under an electron microscope. A micrograph thereof is shown in FIG. 1 .
  • the powder thus obtained consists of individualized particles.
  • Phase B is emulsified slowly, at ambient temperature, in phase A, and then phase C is added.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Dermatology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Oncology (AREA)
  • Biochemistry (AREA)
  • Pain & Pain Management (AREA)
  • Communicable Diseases (AREA)
  • Rheumatology (AREA)
  • Cosmetics (AREA)

Abstract

Individualized porous particles have a volume-average diameter of less than or equal to 10 μm and a specific surface area of greater than or equal to 1 m2/g, and include at least one cosmetically or pharmaceutically active compound present at least inside the particles.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This is a Division of application Ser. No. 10/876,527 filed Jun. 28, 2004 which claims the benefit of French Application No. 03 07747 filed on Jun. 26, 2003 and U.S. Provisional Application No. 60/487,245 filed on Jul. 16, 2003, the entire disclosures of which are hereby incorporated by reference herein in their entirety.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to individualized porous particles having a volume-average diameter of 10 μm or less and containing at least one cosmetically or pharmaceutically active compound. The present invention further relates to use of such particles for transporting and releasing an active compound in the pilosebaceous unit.
  • To increase the efficacy of formulations for topical application, whether they are cosmetic or pharmaceutical in type, certain methods have already been proposed that aim to improve penetration of active molecules into the stratum corneum forming the superficial layer of skin. By way of example, mention may be made of methods using, as vehicles for active molecules, liposomes, nanocapsules, O/W emulsions, short alcohols, glycols, etc.
  • The pilosebaceous unit forms, within the stratum corneum, the epidermis, the dermis and an invagination comprising a hair follicle and a sebaceous gland. The pilosebaceous unit is a site of considerable biological and enzymatic activity which has a major effect on the appearance of the skin. Among these effects, mention may be made, for example, of the influence of the production of the sebum on the greasy or dry nature of the skin, and the influence of the growth or loss of growth of body hair or head hair on the pilosity of the skin. The pilosebaceous unit can also be the subject of an inflammatory process. Such a process can have various causes and can in particular be related to the presence of microorganisms. This process can result in or contribute to the manifestation of a certain number of skin conditions such as acne. In addition, the pilosebaceous unit constitutes a potential route of passage for agents intended to act on deep skin tissues, such as, for example, agents of the deep anti-wrinkle type, the slimming type, etc.
  • The structure of this pilosebaceous unit, both by virtue of its morphology with the presence of hair, and by virtue of its physiology with a continuous flow of sebum, naturally opposes the penetration and/or the diffusion of active compounds within and into the depths of the pilosebaceous unit.
  • However, methods for targeting active compounds into the pilosebaceous unit have already been proposed.
  • EP 0 375 520 describes the use of microspheres of natural or synthetic polymers or of fatty substances with a melting point above 50° C., loaded at least with an active product, and in which at least 800% by weight of the microspheres are between 3 μm and 10 μm in diameter, for preferentially transporting the active product into the pilosebaceous unit. The microspheres described in that application are either microspheres consisting of crosslinked materials, or solid microspheres loaded by partial solubilization of their constituent materials, and which have a specific surface area of less than 1 m2/g. In addition, the processes for preparing microspheres described in EP 0 375 520, which comprise the encapsulation of the active compound either by means of solvents having sufficient affinity with respect to the material making up the microsphere, or by an “emulsification-evaporation” method, only allow approximate control of the homogeneity of the microspheres obtained. As a result, the microspheres have a low or varied capacity to load the active compound and a low or varied capacity to release the active compound in the pilosebaceous unit.
  • WO 02/07674 proposes a method for increasing the penetration of an active compound into the pilosebaceous unit using a composition in the form of microspheres or liposomes having the property of being introduced into the follicle and of swelling therein by virtue of subsequently being in contact with a swelling agent, so as to generate a passage into the follicle. However, WO 02/07674 does not provide any concrete example illustrating the proposed method and does not therefore make it possible to verify the effectiveness of the proposed method.
  • U.S. Pat. No. 6,287,549 describes a method of hair removal using a composition comprising organic microparticles loaded with chromophore agents, in which at least 80% by weight of the microparticles are between 3 and 10 μm in size, in order to transport the chromophore agent into the pilosebaceous unit. These microparticles may be of various types and may be loaded with chromophores either as they are formed, or by impregnation of already formed microcapsules. In these microparticles, the compounds transported are not active compounds as such, since they require the intervention of an outside factor in order to be able to exercise an effect. In addition, exercising of this effect does not require their release from the microparticles. Moreover, U.S. Pat. No. 6,287,549, which explicitly provides for an optional step of application of a composition for solubilizing the chromophores so as to allow their release from the microparticles, does not suggest the possibility of a passive release and even teaches away from such passive release.
  • U.S. Pat. No. 4,690,825 describes vehicles consisting of porous particles which are between 10 μm and 100 μm in size, for the controlled release of active ingredients. These particles are prepared by copolymerization of monomers based on styrene, vinyl stearate and divinylbenzene or methyl methacrylate and ethylene glycol dimethyl methacrylate, in the presence of a porogen which is also the active ingredient. There is a risk that products so prepared will contain residues from preparation, which are likely to affect the products' innocuousness.
  • WO 99/53904 describes soft capsules containing an oily suspension or a silicone/polyethylene glycol emulsion and spherical porous microparticles prepared in particular according to U.S. Pat. No. 4,690,825, mentioned above. More precisely, this application describes porous microparticles having a mean particle diameter by weight of 20 μm, loaded either with retinol or with ascorbic acid.
  • U.S. Pat. No. 6,387,995 describes a process for producing an adsorbent polymer in the form of agglomerated, i.e., non-individualized, microparticles with a very low density ranging from 0.02 g/cm3 to 0.1 g/cm3, capable of trapping lipophilic compounds. The amount of compound trapped in the particles is negligible compared with that of the compound trapped in the space formed by the agglomerated particles.
  • SUMMARY OF THE INVENTION
  • It has now been discovered that it is possible to transport at least one active compound and to release the compound in the pilosebaceous unit with increased effectiveness compared to known techniques. Compositions and methods have been discovered that make it possible to improve the encapsulation of an active compound, compared to known compositions and methods, while at the same time exhibiting a particularly satisfactory innocuousness.
  • The present invention relates to individualized porous particles having a volume-average diameter of 10 μm or less and a specific surface area of 1 m2/g or more. The individualized porous particles include at least one cosmetically or pharmaceutically active compound at least present inside the particles.
  • The present invention further relates to cosmetic or pharmaceutical compositions including particles as defined above.
  • For a better understanding of the invention as well as other aspects and further features thereof, reference is made to the following FIGURE and descriptions.
  • BRIEF DESCRIPTION OF THE FIGURE
  • Various exemplary embodiments of the invention will be described in detail with reference to the following FIGURE, wherein:
  • FIG. 1 is an electron micrograph of an exemplary composition according to this invention including silica particles containing triclosan.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • The expression “porous particles” refers to particles having a structure containing pores. In particular, a porous structure can allow the incorporation, at least in part, of one or more active agents into particles.
  • A porous structure may be of a matrix type, like a sponge. A porous structure may also be of a vesicular type, i.e., a particle may have an internal cavity delimited by a porous wall.
  • The relation of porosity to the size of particles is characterized quantitatively as specific surface area. Exemplary porous particles according to the invention can have a specific surface area, measured according to the BET method, of 1 m2/g or more.
  • The expression “individualized particles” refers to particles that are not grouped together as an aggregate or an agglomerate. Exemplary individualized particles can have a density of 0.15 g/cm3 or more and, in particular, a density ranging from 0.2 to 5 g/cm3.
  • The expression “cosmetically or pharmaceutically active compound,” as used herein, refers to compounds that, by themselves (i.e., without the action of an outside agent to activate) have biological activity. Often, a compound needs to be in direct contact with its target to exhibit activity.
  • Exemplary particles according to the present invention can derive from preformed porous particles, i.e., particles formed in the absence of a compound to be encapsulated.
  • As used herein, the expression “loaded particles” refers to particles, which contain active compound, as distinguished from the particulate material from which they derive.
  • Exemplary loaded particles according to the invention are substantially free from residues related to the processes for producing particles from which such loaded particles are derived. This characteristic of exemplary loaded particles according to the invention constitutes an improvement in terms of innocuousness compared to particles which, in order to load an active compound, must be formed in the presence of the active compound. Moreover, they are not solid.
  • Exemplary particles of the invention can be characterized by a high specific surface area, measured by BET.
  • The BET (BRUNAUER-EMMET-TELLER) method is a method well known to those skilled in the art. It is described, for example in the Journal of the American Chemical Society, 60: 309 (1938), and corresponds to the international standard ISO 5794/1 (annex D). The specific surface area measured according to the BET method corresponds to the total specific surface area, i.e., including the surface area formed by pores.
  • In various exemplary embodiments, particles according to the invention can have a specific surface area, measured by BET, ranging from 2.5 to 1000 m2/g, in particular from 3 to 750 m2/g, more particularly 300 m2/g or more, or further 500 m2/g or more.
  • As mentioned above, exemplary particles according to the present invention can have a volume-average diameter of greater than or equal to 10 μm.
  • In fact, exemplary particles according to the invention can penetrate into a sebaceous follicle by application of a mechanical force. Mechanical force can be applied, for example, by massage. Massage exerts a pushing force and generates a pump effect in a follicle.
  • Exemplary particles thus gradually reach the follicle canal in which the active compound that they are carrying can then diffuse and, possibly, reach the tissues surrounding the follicle canal. On the other hand, a carrier, which constitutes a particle, can then be discarded by virtue of the flow of sebum and/or the growth of the body hair, thus making it possible to avoid any adverse reaction by the organism with respect to solid compounds constituting particles.
  • It should be noted that particles having a diameter of greater than 10 μm, even with application of a similar mechanical force, mostly remain located on the surface of the skin without penetrating therein, and can therefore release the active compound only on a cornified layer.
  • In various exemplary embodiments, particles can have a volume-average diameter of greater than or equal to 0.1 μm, and in particular ranging from 0.5 to 8 μm.
  • Exemplary particles according to the invention are particles, in particular porous spherical particles, having a number-average size which can range from 0.1 to 50 μm, in particular from 0.1 to 20 μm, and most particularly from 0.5 to 10 μm.
  • The expression “number-average size” refers to a size given by the statistical mean particle size to half the population, referred to as D50.
  • In various exemplary embodiments, particles can be characterized by virtue of their particle size homogeneity. In particular, exemplary particles can have a polydispersity index, PI, ranging from 1 to 4, and in particular 3 or less. This polydispersity index is defined as the ratio D(4.3)/D(3.2), in which D(4.3) denotes the volume-average diameter and D(3.2) denotes the surface-average diameter. These two values are commonly measured using laser diffraction particle size measuring devices such as those sold under the name “Mastersizer 2000” by the company MALVERN.
  • Exemplary porous particles of the invention may have varied shapes, especially globular, and in particular substantially spherical.
  • Porous particles from which loaded particles according to the invention derive generally consist of materials which are completely insensitive, especially in terms of solubilization and plasticization, to processes for encapsulating active compounds, in particular when such processes employ an organic solvent for impregnation.
  • Exemplary particles may be of organic, inorganic or mixed type and are most commonly provided in the form of a powder with, in particular, a low volatility.
  • As porous particles of organic type, mention will be made, by way of example, of Nylon 6, Nylon 6-6, Nylon 12 or Nylon 6-12 particles, such as those sold by the company ATOFINA under the generic name “Orgasol,” and particles of poly(methyl methacrylate) (PMMA) such as those sold under the name “Covabead®” by the company WAKER.
  • In various exemplary embodiments, particles used can be chosen from the nylon particles mentioned above.
  • In various exemplary embodiments, particles according to the invention can be inorganic in nature.
  • By way of illustration of inorganic materials which can be used in exemplary particles according to the invention, mention may be made of silica, alumina-silica, hydroxyapatite, titanium dioxide, sericite, mica, magnesium carbonate or hydrocarbonate, aluminium oxides of the alumina type and mixed silicates, such as aluminosilicates, and mixtures thereof.
  • Exemplary porous mineral particles which may be suitable for the invention, mention may be made of hollow silica microspheres, porous silica microspheres and glass or ceramic microcapsules.
  • Exemplary porous mineral particles suitable for the invention can be chosen from:
  • silica particles such as those sold by ASAHI GLASS under the name “Sunsphere H series” and by SUZUKI OIL AND FAT under the name “God Balls”,
  • hydroxyapatite particles such as those sold by MERCK (under the reference 1051990010—mean particle size 15 μm), or else those sold by the companies LABORATORY SKIN CARE, ASAHI GLASS and SEKISUI under the respective names “Hydroxyzomes” (LSC and Asahi Glass), AP20C and AP12C (SEKISUI), and “ASP®” by the company SEKISUI PLASTICS.
  • alumina-silica particles such as those sold under the name “Zeeosphere®” by the company 3M,
  • titanium dioxide particles such as those sold by the company ISHIHARA, and
  • particles made up of a mixture of these minerals.
  • In various exemplary embodiments, particles can be chosen from silica particles and hydroxyapatite particles.
  • Exemplary porous particles according to this invention may also consist of organic and/or inorganic composite materials.
  • Exemplary loaded particles according to this invention can comprise at least one cosmetically or pharmaceutically active compound, the compound being at least present inside the particles. Active compounds can also be present at the surface of loaded particles, but in such a case, the compounds are generally present mostly inside said particles.
  • In various exemplary embodiments, the ratio by weight of active compound to porous particles not loaded with active compound can be from 1/1000 to 10/1, in particular from 1/100 to 1/1.
  • Exemplary active agents may include compounds well known to those skilled in the art. Such compounds are generally active agents that are usual in the cosmetics or dermatological field.
  • Exemplary active compounds may be hydrophilic or lipophilic. In various exemplary embodiments, loaded particles comprise at least one lipophilic active compound. Loaded particles can also comprise at least one hydrophilic active compound, it being possible for the latter to be sufficiently solubilized by amphiphilic compounds present in the sebum to allow its release.
  • Active compounds considered hereinafter are, without distinction, hydrophilic or lipophilic.
  • Among exemplary active compounds, mention may in particular be made of:
  • antibacterial agents such as triclosan, IPBC (iodo-3-propynyl-2-butyl carbamate), benzalkonium chloride, chlorhexidine, Totarol® (plant extract comprising totara-8,11,13-trien-13-ol), etc.,
  • antifungal agents such as piroctone olamine, zinc pyrithione, climbazole, rilopirox, ketoconazole, itraconazole, etc.,
  • sebum regulators such as the iminodibenzyl or fluorene derivatives as described in U.S. Pat. No. 6,355,687, the substituted secondary amine derivatives as described in U.S. Pat. No. 6,355,686, the glucuronic acid and glucosamine derivatives, and their salts, as described in EP 1 219 296, or the combinations of niacinamides with a C11-C30 alkyl or alkenyl ester of salicylic acid as described in WO 02/067 889,
  • sebum stimulators such as DHEA and its synthetic or natural derivatives, α-hydroxylated derivatives of vitamin D1 such as those described in U.S. Pat. No. 6,369,099,
  • keratolytic agents such as salicylic acid and its derivatives, for instance more particularly 5-n-octanoylsalicylic acid, alpha-hydroxy acids such as those, for example, of glycolic acid, lactic acid or malic acid, and resorcinol,
  • agents for treating acne, such as retinol and its derivatives, retinoic acid and its all-trans or 13-cis isomers, benzoyl peroxide, the cytochrome P450 inhibitors as described in U.S. Pat. No. 6,399,774 and their derivatives, and azelaic acid,
  • antibiotics which may or may not have a macrolide structure, the avermectin compounds as described in U.S. Pat. No. 6,399,652, [(2,4,6-triisopropylphenyl)-acetyl]sulphamic acid 2,6-diisopropylphenyl ester or a salt thereof, as inhibitor of cholesteryl and wax ester synthesis, as described in WO 01/56556,
  • hair loss inhibitors and also hair growth stimulators such as minoxidil, biotin, finasteride, 2,4-dipyrimidine N-oxide, panthenol and their derivatives, flavanone T, or more generally any plant extract, having anti-5-alpha-reductase type I or II activity,
  • agents which inhibit the growth of head hair or of body hair, such as the serine proteases described in U.S. Pat. No. 6,407,056, cafeic acid, quercetin, propyl gallate, nordihydroguaiaretic acid or NDGA, indomethacin, eflornithine hydrochloride, the plant extracts as described in U.S. Pat. No. 6,171,595, such as the extracts of clove, of rosehip, of bumet, of gambir, etc., the compounds described in U.S. Pat. No. 6,075,052, tetramisole, sodium orthovanadate, levamisole, disodium chromoglycate, vanadium nitrate and gallium nitrate as described in U.S. Pat. No. 6,020,006, and also the compounds described in U.S. Pat. No. 4,885,289, U.S. Pat. No. 4,720,489, U.S. Pat. No. 5,132,293, U.S. Pat. No. 5,096,911, U.S. Pat. No. 5,095,007, U.S. Pat. No. 5,143,925, U.S. Pat. No. 5,328,686, U.S. Pat. No. 5,440,090, U.S. Pat. No. 5,364,885, U.S. Pat. No. 5,411,991, U.S. Pat. No. 5,648,394, U.S. Pat. No. 5,468,476, U.S. Pat. No. 5,475,763, U.S. Pat. No. 5,455,608, U.S. Pat. No. 5,674,477, U.S. Pat. Nos. 5,728,736 and 5,652,273 and in WO 94/27586, WO 94/27563 and WO 98/03149. Use may also be made of the extracts of juniper as described in U.S. Pat. No. 6,375,948,
  • anti-dandruff agents such as zinc pyrithione,
  • antioxidants such as butylhydroxytoluene (BHT), carotenoids such as β-carotene, lycopene, canthaxanthine, ubiquinone, dibutylpentaerythrityl hydroxycinnamate, vitamin E, trolox, vitamin C and its derivatives,
  • astringents and pore-reducing agents, such as those described in WO 02/32392,
  • antiperspirant agents such as aluminium salts and zirconium salts,
  • vitamins, other than those mentioned above, and such as vitamin B3, vitamin K, vitamin H, vitamin PP, vitamin D, vitamin B6 and their derivatives, and anti-inflammatory agents such as α-bisabolol, dipotassium glycyrrhizinate, glycyrrhetinic acid and its derivatives, ellagic acid, ursolic acid, ibuprofen, naproxen, fenoprofen, carprofen, ketoprofen, steroidal anti-inflammatory agents such as cortisone, pregnenolone, desonide, and mixtures of alkolamines and of tyrosine, such as those described in EP 1 192 939.
  • Mention may in particular be made of all the active agents known for their activity on skin ageing, such as keratolytic or prodesquamating agents, for example α-hydroxy acids, β-hydroxy acids, α-keto acids, β-keto acids, retinoids and their esters, retinal, retinoic acid and its derivatives.
  • Mention may also be made of vitamins such as vitamins C, B3 or PP, B5, E, K1, and the derivatives of these vitamins, and in particular their esters; free-radical scavengers; DHEA and its derivatives; coenzyme Q10; bleaching and depigmenting agents such as kojic acid, para-aminophenol derivatives, arbutin and their derivatives, and mixtures thereof.
  • Mention may also be made of active agents that are useful for oily skin, such as zinc salts, and in particular zinc gluconate; antibacterial agents such as salicylic acid, triclosan, lipacide, extract of clove, octopirox, hexamidine; anti-acne active agents.
  • Amounts of active agents introduced into particles depends on a desired effect. Active agents may be present in the porous particles in an amount of active material ranging from 1 to 50% by weight, especially from 2 to 40% by weight, and in particular ranging from 5 to 30% by weight, relative to the total weight of the particles once loaded.
  • Exemplary loaded particles according to the invention can be prepared according to conventional methods, in particular by impregnation.
  • In particular, loaded particles according to the invention can be obtained by impregnation of preformed porous particles with at least one active compound. Advantageously, this protocol does not require the presence of a porogen.
  • By way of example, impregnation processes can include presolubilizing compounds to be encapsulated in a solvent which is suitable and in an amount necessary and sufficient to impregnate the particles, and bringing a resulting mixture into contact with porous particles according to the invention. Solvent is then evaporated off until a dry powder is obtained. A resulting powder generally contains only a very small proportion of residual solvent, of the order of 1/10 ppm.
  • As solvents which may be used in such an impregnation process, mention may in particular be made of acetone, ethanol, isopropanol, dichloromethane, ethyl acetate, etc. Of course, the choice of solvent is made taking into account the nature of the components of porous particles and of compounds to be encapsulated.
  • When compounds to be encapsulated are in the form of liquids, they may be brought directly into contact with porous particles without the addition of a secondary solvent.
  • Those skilled in the art will be capable of selecting impregnation conditions so as to obtain a dry powder.
  • Exemplary loaded particles of the invention allow specific administration of cosmetically or pharmaceutically active compounds into the pilosebaceous unit.
  • Particles can be introduced in various cosmetic or pharmaceutical formulations intended for topical application.
  • The present invention therefore also relates to cosmetic or pharmaceutical compositions comprising loaded particles such as described above.
  • Of course, compositions may comprise only one type of particles as described above, or else may comprise a mixture of such particles.
  • Generally, exemplary compositions contain from 0.1 to 50% by weight, and in particular from 0.2 to 20% by weight, of particles as relative to the total weight of such compositions.
  • Exemplary compositions according to the invention may also comprise:
  • at least one cosmetically or pharmaceutically active compound intended to act essentially outside the pilosebaceous unit, and/or
  • at least one cosmetically or pharmaceutically acceptable additive, and/or
  • a galenic carrier, which may be of any suitable type.
  • The term “carrier” refers to any mode of vehicle compatible with cosmetic or pharmaceutical use, namely of liquid type such as water, an aqueous-alcoholic solvent, oil, or a mixture thereof, or of solid type such as wax for example.
  • Care will, however, be taken to ensure that with optional additional cosmetically or pharmaceutically active compounds, such optional additives and carriers do not cause the release of active compounds in compositions.
  • Exemplary compositions according to the invention may also contain conventional adjuvants such as dyes, pigments, fragrances, preserving agents, physical and chemical sunscreens, sequestering agents, liposoluble or water-soluble active agents, moisturizers such as polyols and in particular glycerol, pH adjusters (acids or bases).
  • In various exemplary embodiments, compositions of the invention are substantially free of surfactants.
  • Exemplary cosmetic or pharmaceutical compositions may be provided in the form of lotions, O/W or W/O emulsions, or aqueous or aqueous-alcoholic gels, or alternatively in anhydrous form, such as sticks, sprays or compact or free powders.
  • Exemplary compositions of the invention may be care compositions, hygiene compositions or makeup compositions for the skin of the body or face, or for the keratinous materials such as the nails, the eyelashes, the eyebrows or the hair.
  • Exemplary compositions may also be employed, for example, for use on the hair and may in particular be shampoos, conditioners, hair lotions, in particular for hair care.
  • Exemplary compositions compositions may also be makeup-removing products, in particular oils, gels, or makeup-removing or foaming lotions.
  • Exemplary compositions may also be makeup sticks such as lipsticks, or personal hygiene sticks such as deodorants.
  • Exemplary compositions may also be makeup products, in particular of the foundation, tinted cream, mascara or eyeliner types.
  • This invention is illustrated by the following Examples, which are merely for the purpose of illustration.
  • Example 1 Preparation of Mineral Particles Containing an Active Compound and a Formulation in a Cosmetic Composition
  • A solution containing 20 g of salicylic acid, 1 l of acetone and 200 g of porous silicas (Sunsphere H33) is prepared. This solution is kept at ambient temperature, with stirring, until the active agent is completely dissolved. The solution is then transferred into a round-bottomed flask and the acetone is evaporated off in a rotary evaporator at 40° C. After complete evaporation of the solvent, a powder consisting of porous silica particles, the pores of which comprise salicylic acid in solid form, is thus obtained. The composition by weight of the particles obtained is 10% by weight of salicylic acid and 90% by weight of silica relative to the total weight of the particles.
  • Cosmetic compositions containing the particles according to the invention are formulated.
  • Composition
    Control according to the
    composition invention
    Matting free powder (% by weight) (% by weight)
    Talc 87 69
    Salicylic acid 2
    Dimethicone 7.5 7.5
    Magnesium stearate 2.5 2.5
    Particles according to the invention 20
    (10% salicylic acid - 90% silica)
    Preserving agents 1 1
  • The stability of the composition according to the invention, i.e., comprising 20% of particles according to the invention, is evaluated in comparison to a control composition not containing particles in accordance with the invention. The powders are packaged in a 10 g box. The boxes are then placed, for a period of 2 months, in an incubator with a relative humidity set at a value of 80% and the temperature set at the value of 45° C. The macroscopic appearance of the powders after storage in the incubator is then optically evaluated. The results are given in the table below:
  • Composition Control According to the invention
    Appearance Pinkish powder, showing White powder showing no
    dark pink marks coloration at the surface
    or in the mass
  • These results show that, after prolonged storage in a humid atmosphere, the composition according to the invention shows no unattractive coloration.
  • Example 2
  • Two compositions containing a lipophilic active compound, 5-n-octanoylsalicylic acid, namely respectively a gel containing 4 μm porous particles of nylon (“Orgasol®”), which is the subject of the invention, and an O/W emulsion with the same mean particle size are compared in terms of pilosebaceous unit-targeting effectiveness. The amount of active principle, 5-n-octanoylsalicylic acid, is identical in the two types of composition, and is set at 0.3% by weight.
  • Composition 1 (according to the invention)
    Poly(ammonium acryloyldimethyltaurate) 0.50 g
    Porous particles of Nylon-12* 4.70 g
    5-n-octanoylsalicylic acid 0.30 g
    Poloxamer 338 0.25 g
    Demineralized water 94.25 g 
  • The porous particles of Nylon-12 are sold under the name “Orgasol 2002 UD Nat cos” by the company ATOFINA.
  • Composition 2 (comparative O/W emulsion)
    Xanthan gum 0.10 g
    Glyceryl stearate 1.00 g
    Sodium hydroxide 0.10 g
    Cetyl alcohol 2.00 g
    Octyldodecanol 9.00 g
    Glycerol 3.00 g
    Hydrogenated polyisobutene 2.00 g
    Water 71.95 g 
    5-n-Octanoylsalicylic acid 0.30 g
    Paraffin oil 5.00 g
    Carbomer 0.30 g
    PEG-100 stearate 1.00 g
    Polysorbate 60 4.00 g
    Methylparaben 0.25 g
  • The study is carried out on eight volunteer individuals who have oily skin exhibiting dilated pores on the forehead.
  • For each individual, after having carefully cleaned the face with soap, 4 mg/cm2 of the composition to be tested are applied to the left or right side half of the forehead, and the area treated is then massaged for 1 minute and left to dry for 15 minutes. This application is repeated for 4 days under the same conditions (i.e., a total treatment period of 5 days with a single daily application).
  • On day 6, an epidermal sample is taken from each individual by cyanoacrylate strip, by applying onto the forehead of each individual a glass slide onto which a drop of cyanoacrylate has been deposited, and then, after drying, removing the slide, which thus entrains an epidermal sample.
  • The follicles and the comedones are then removed from the samples and their content is extracted in methanol. The amount of active compound is quantified by HPLC.
  • The results are presented below.
  • 5-n-Octanoylsalicylic acid
    Number of comedones in pg per comedone
    Area Area Area Area
    Tes- composition composition composition composition Enrich-
    ters 2 1 2 1 ment
    1 29 34 439 656 50%
    2 20 16 282 566 101% 
    3 25 27 121 200 66%
    4 30 33 709 1288 82%
    5 24 13 571 986 73%
    6 29 19 468 836 79%
    7 11 13 57 259 353% 
    8 28 25 144 433 201% 
  • It is noted, according to the results set out above, that composition 1 according to the invention, which contains the porous particles loaded with 5-n-octanoylsalicylic acid, makes it possible to significantly increase the amount of 5-n-octanoylsalicylic acid in the follicle by a rate of at least 50%, compared with a composition in the form of an emulsion containing the same amount of 5-n-octanoylsalicylic acid.
  • This trial shows the effectiveness of the porous particles of the invention for transporting active molecules into the pilosebaceous unit.
  • Example 3 Preparation of the Organic Particles Containing an Active Compound
  • Particle composition
    Porous particles of Nylon-12, sold under the name 7.5 g
    “Orgasol 2002 UD Nat Cos” ® by the company ATOFINA
    Triclosan 2.5 g
  • 2.5 g of triclosan are solubilized in 50 ml of acetone. 7.5 g of “Orgasol®” are introduced into this mixture. The dispersion is then introduced into a rotary evaporator in order to eliminate the acetone. A powder loaded with triclosan is then obtained.
  • The powder thus obtained can then be redispersed in water, in a gel or in an emulsion. Care will be taken to ensure that the composition into which the particles containing the triclosan are introduced does not promote leaking of the triclosan into the galenic carrier.
  • Example 4 Preparation of Organic Particles Containing an Active Compound
  • Particle composition
    Porous particles of silica sold under the name 7.5 g
    “God Balls2 EC ®” by the company SUZUKI OILS & FATS
    Vitamin E 1.5 g
    5-n-Octanoylsalicylic acid 1.0 g
  • 1.5 g of vitamin E and 1 g of 5-n-octanoylsalicylic acid are solubilized in 50 ml of acetone. 7.5 g of “God Balls 2 EC®” porous particles are introduced into this mixture. The dispersion is then introduced into a rotary evaporator in order to eliminate the acetone. A powder loaded with vitamin E and with 5-n-octanoylsalicylic acid is then obtained.
  • The powder thus obtained can then be redispersed in water, in a gel or in an emulsion. Care will, however, be taken to ensure that the composition into which the particles containing the vitamin E and the 5-n-octanoylsalicylic acid are introduced does not promote leaking of these active agents into the galenic carrier.
  • Similarly, a powder of particles is prepared with 7.5 g of “God Balls 2 EC®” porous particles and 2.5 g of triclosan. The powder is observed under an electron microscope. A micrograph thereof is shown in FIG. 1.
  • It is noted that the powder thus obtained consists of individualized particles.
  • Example 5 Preparation of Anti-Acne Cream (Oil/Water Emulsion)
  • Poly(ammonium acryloyldimethyltaurate) 0.40 g
    Xanthan gum 0.20 g
    Preserving agents 0.80 g
    Disodium EDTA 0.05 g
    Glycerol 5.00 g
    Demineralized water 75.04 g
    Porous particles according to Example 3 23.00 g
    Mixture of cetearyl alcohol/dimyristyl 1.50 g
    tartrate/C12-15 Pareth-7/PPG-25-Laureth-25
    Stearyl alcohol 1.00 g
    Mixture of glyceryl stearate/PEG-100 stearate 2.00 g
    Cyclohexasiloxane 10.00 g
    Ethylhexyl methoxycinnamate 1.00 g
    Fragrance 0.01 g
  • This smooth and fresh cream makes it possible to combat problems of acne with good effectiveness.
  • Example 6 Preparation of Tonic Lotion
  • Butylene glycol 1.00 g
    Zinc oxide 0.50 g
    Lactic acid 0.10 g
    Glycerol 1.00 g
    Propylene glycol 0.20 g
    PEG-60 hydrogenated castor oil 0.15 g
    Ethanol 5.00 g
    30 nm colloidal silica 0.50 g
    Porous particles according to Example 3 1.00 g
    Demineralized water 90.33 g
    Extract of Hamamelis virginiana 0.0002 g
    Menthoxypropanediol 0.01 g
    Methylparaben 0.20 g
    Fragrance 0.01 g
  • Example 7 Preparation of W/O Emulsion
  • Phase A
    Isohexadecane 8.00 g
    Squalane 3.70 g
    Polydimethylsiloxane (viscosity: 10 cst) 4.10 g
    Apricot kernel oils 2.30 g
    Lubrizol 5603 1.90 g
  • Phase B
    Ascorbic acid 2.00 g
    50% potassium hydroxide 1.20 g
    Demineralized water 67.80 g 
    Glycerol 5.00 g
    Preserving agents 1.00 g
  • Phase C
    Particles according to Example 3 3.00 g
  • Phase B is emulsified slowly, at ambient temperature, in phase A, and then phase C is added.
  • While this invention has been described in conjunction with the exemplary embodiments and examples outlined above, various alternatives, modifications, variations, improvements and/or substantial equivalents, whether known or that are or may be presently unforeseen, may become apparent to those having at least ordinary skill in the art. Accordingly, the exemplary embodiments of the invention, as set forth above, are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the invention. Therefore, the invention is intended to embrace all known or later developed alternatives, modifications, variations, improvements and/or substantial equivalents.

Claims (17)

1. Individualized porous particles, characterized in that they have a volume-average diameter of less than or equal to 10 μm and a specific surface area of greater than or equal to 1 m2/g, and in that they comprise at least one cosmetically or pharmaceutically active compound at least present inside said particles said compound being chosen from antibacterial agents, antifungal agents, sebum regulators, sebum stimulators, anti-skin ageing agents, in particular keratolytic or prodesquamating agents, agents for treating acne, antibiotics, hair loss inhibitors/hair-growth stimulators, agents which inhibit the growth of head hair or of body hair, anti-dandruff agents, antioxidants, astringents, pore-reducing agents, antiperspirant agents, vitamins, anti-inflammatory agents, and mixtures thereof.
2. Individualized porous particles, characterized in that they have a volume-average diameter of less than or equal to 10 μm and a specific surface area of greater than or equal to 1 m2/g, in that they derive from organic porous particles chosen from particles of Nylon 6, Nylon 6-6, Nylon 12 and Nylon 6-12, and in that they comprise at least one cosmetically or pharmaceutically active compound at least present inside said particles, said compound being chosen from keratolytic or prodesquamating agents.
3. Particles according to claim 1, having a mass by volume ranging from 0.2 to 5 g/cm3.
4. Particles according to claim 2, having a mass by volume ranging from 0.2 to 5 g/cm3.
5. Particles according to claim 1, having a polydispersity index less than or equal to 3.
6. Particles according to claim 2, having a polydispersity index less than or equal to 3.
7. Particles according to claim 1, wherein the particles derive from organic porous particles.
8. Particles according to claim 1, wherein the particles derive from inorganic porous particles.
9. Particles according to claim 1, wherein the particles derive from porous particles made of an organic and inorganic composite material.
10. Particles according to claim 1, wherein the ratio by weight of the active compound(s) to the porous particles not loaded with active compound(s) is from 1/100 to 1/1.
11. Particles according to claim 2, wherein the ratio by weight of the active compound(s) to the porous particles not loaded with active compound(s) is from 1/100 to 1/1.
12. Cosmetic or pharmaceutical composition, comprising the particles according to claim 1.
13. Cosmetic or pharmaceutical composition, comprising the particles according to claim 2.
14. Method for administering a cosmetically or pharmaceutically active compounds into the pilosebaceous unit comprising at least the step of topically applying on the surface of the skin individualized porous particles according to claim 1.
15. Method for administering a cosmetically or pharmaceutically active compounds into the pilosebaceous unit comprising at least the step of topically applying on the surface of the skin individualized porous particles according claim 2
16. Method for administering a cosmetically or pharmaceutically active compounds into the pilosebaceous unit comprising at least the step of topically applying on the surface of the skin cosmetic or pharmaceutical composition according to claim 12.
17. Method for administering a cosmetically or pharmaceutically active compounds into the pilosebaceous unit comprising at least the step of topically applying on the surface of the skin cosmetic or pharmaceutical composition according to claim 13.
US12/285,297 2003-06-26 2008-10-01 Porous particles loaded with cosmetically or pharmaceutically active compounds Abandoned US20090047316A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/285,297 US20090047316A1 (en) 2003-06-26 2008-10-01 Porous particles loaded with cosmetically or pharmaceutically active compounds
US13/311,080 US8507006B2 (en) 2003-06-26 2011-12-05 Porous particles loaded with cosmetically or pharmaceutically active compounds

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR0307747 2003-06-26
FR0307747A FR2856594B1 (en) 2003-06-26 2003-06-26 POROUS PARTICLES CHARGED WITH ACTIVE (S) COSMETIC OR PHARMACEUTICAL COMPOUND (S)
US48724503P 2003-07-16 2003-07-16
US10/876,527 US20050031699A1 (en) 2003-06-26 2004-06-28 Porous particles loaded with cosmetically or pharmaceutically active compounds
US12/285,297 US20090047316A1 (en) 2003-06-26 2008-10-01 Porous particles loaded with cosmetically or pharmaceutically active compounds

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/876,527 Division US20050031699A1 (en) 2003-06-26 2004-06-28 Porous particles loaded with cosmetically or pharmaceutically active compounds

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/311,080 Division US8507006B2 (en) 2003-06-26 2011-12-05 Porous particles loaded with cosmetically or pharmaceutically active compounds

Publications (1)

Publication Number Publication Date
US20090047316A1 true US20090047316A1 (en) 2009-02-19

Family

ID=34119431

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/876,527 Abandoned US20050031699A1 (en) 2003-06-26 2004-06-28 Porous particles loaded with cosmetically or pharmaceutically active compounds
US12/285,297 Abandoned US20090047316A1 (en) 2003-06-26 2008-10-01 Porous particles loaded with cosmetically or pharmaceutically active compounds
US13/311,080 Expired - Lifetime US8507006B2 (en) 2003-06-26 2011-12-05 Porous particles loaded with cosmetically or pharmaceutically active compounds

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/876,527 Abandoned US20050031699A1 (en) 2003-06-26 2004-06-28 Porous particles loaded with cosmetically or pharmaceutically active compounds

Family Applications After (1)

Application Number Title Priority Date Filing Date
US13/311,080 Expired - Lifetime US8507006B2 (en) 2003-06-26 2011-12-05 Porous particles loaded with cosmetically or pharmaceutically active compounds

Country Status (1)

Country Link
US (3) US20050031699A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022366A1 (en) * 2013-08-16 2015-02-19 Aimecs Gmbh Means containing microparticles for cleaning and protecting technical surfaces
US9764167B2 (en) 2009-04-21 2017-09-19 Arkema France Method for producing free powder particles of polyamide impregnated with at least one cosmetic or pharmaceutical agent, and free powder particles of polyamide having a content of at least 25 WT % of a cosmetic or pharmaceutical agent other than water

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060039938A1 (en) * 2004-08-17 2006-02-23 L'oreal Cosmetic method of caring for greasy skin
DE102006021553A1 (en) * 2006-02-08 2007-08-16 Henkel Kgaa fluid reservoir
JP2011521890A (en) * 2007-12-21 2011-07-28 シェーリング−プラウ ヘルスケア プロダクツ,インコーポレイテッド Compositions and methods for reducing or preventing water loss from skin
GB0817938D0 (en) * 2008-09-30 2008-11-05 Intrinsiq Materials Global Ltd Cosmetic formulations
GB0817936D0 (en) * 2008-09-30 2008-11-05 Intrinsiq Materials Global Ltd Porous materials
GB0817939D0 (en) * 2008-09-30 2008-11-05 Intrinsiq Materials Global Ltd Hair care compositions
EP2427178B1 (en) 2009-05-06 2023-01-04 Laboratory Skin Care, Inc. Dermal delivery compositions comprising active agent-calcium phosphate particle complexes and methods of using the same
US20170246111A1 (en) * 2014-09-15 2017-08-31 Pharmasol Gmbh Active-loaded particulate materials for topical administration
KR102114277B1 (en) * 2018-08-23 2020-05-22 주식회사 매스컨 Solid type cosmetic composition and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380763A (en) * 1992-11-19 1995-01-10 Takasago International Corporation Topical composition for treating acne vulgaris
US5814311A (en) * 1994-11-24 1998-09-29 L'oreal Cosmetic composition in the form of a compact powder and process for preparing it
US6251411B1 (en) * 1996-06-05 2001-06-26 U.S. Cosmetics Corporation Composition for hydrophobic cosmetic products
US20020012645A1 (en) * 2000-03-31 2002-01-31 Sanjeev Midha Leave-in hair cosmetic compositions for enhancing volume containing fluid-encapsulated, flexible microspheres
US6586013B2 (en) * 2001-06-01 2003-07-01 Lipo Chemicals, Inc. Method of using optically-activated particles in cosmetic preparations
US20040005340A1 (en) * 2002-07-02 2004-01-08 Dhaval Patel Aqueous cosmetic composition comprising porous silica particles and at least one humectant

Family Cites Families (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885289A (en) * 1983-12-12 1989-12-05 Breuer Miklos M Alteration of character of male beard growth
US4720489A (en) * 1984-10-15 1988-01-19 Douglas Shander Hair growth modification with ornithine decarboxylase inhibitors
US4690825A (en) 1985-10-04 1987-09-01 Advanced Polymer Systems, Inc. Method for delivering an active ingredient by controlled time release utilizing a novel delivery vehicle which can be prepared by a process utilizing the active ingredient as a porogen
US5955109A (en) * 1985-12-18 1999-09-21 Advanced Polymer Systems, Inc. Methods and compositions for topical delivery of retinoic acid
JPS62215638A (en) 1986-03-17 1987-09-22 Sekisui Plastics Co Ltd Porous polyamide powder
FR2600532B1 (en) * 1986-06-26 1988-08-26 Oreal USE, IN THE PREPARATION OF POWDERS FOR MAKEUP OR BODY OR FACE CARE, OF A SYNTHETIC THERMOPLASTIC MATERIAL IN THE FORM OF HOLLOW MICROSPHERES, AND COMPOSITIONS IN THE FORM OF NON-COMPACT POWDER CONTAINING SUCH A MATERIAL.
JP2793188B2 (en) 1986-08-15 1998-09-03 アドバンスト ポリマー システムズ,インコーポレイティド Method for producing polymer carrier composition
ZA886284B (en) 1987-08-31 1990-04-25 Advanced Polymer Systems Inc Controlled release formulations
LU87410A1 (en) 1988-12-20 1990-07-10 Cird COSMETIC OR PHARMACEUTICAL COMPOSITION CONTAINING POLYMERIC OR FATTY BODY MICROSPHERES CHARGED WITH AT LEAST ONE ACTIVE PRODUCT
LU87429A1 (en) 1989-01-17 1990-07-24 Oreal POLYMER PARTICLE PRODUCT COMPRISING MELANIC PIGMENTS, PREPARATION METHOD AND USE THEREOF, PARTICULARLY IN COSMETICS
MX173283B (en) 1989-10-25 1994-02-14 Avon Prod Inc COSMETIC COMPOSITION AND METHOD FOR ITS PREPARATION
EP0460923B1 (en) 1990-06-04 1994-12-28 Tokuyama Corporation Basic magnesium carbonate and process for preparation thereof
CA2088909C (en) * 1990-08-14 2002-03-19 Douglas Shander Enzymic alteration of hair growth
US5095007A (en) * 1990-10-24 1992-03-10 Ahluwalia Gurpreet S Alteration of rate and character of hair growth
US5143925A (en) * 1990-12-20 1992-09-01 Douglas Shander Alteration of rate and character of hair growth
US5328686A (en) * 1991-10-30 1994-07-12 Douglas Shander Treatment of acne or of pseudofolliculitis barbae
US5364885A (en) * 1992-11-13 1994-11-15 Ahluwalia Gurpreet S Reduction of hair growth
US5411991A (en) * 1992-12-22 1995-05-02 Shander; Douglas Method of reducing hair growth employing sulfhydryl active compounds
US5455608A (en) * 1993-04-30 1995-10-03 Hewlett-Packard Company Pen start up algorithm for black and color thermal ink-jet pens
US5648394A (en) * 1993-05-27 1997-07-15 Boxall; Brian Alfred Topical composition for inhibiting hair growth
US6239170B1 (en) 1993-05-28 2001-05-29 Gurpreet S. Ahluwalia Inhibition of hair growth
US6248751B1 (en) 1993-05-28 2001-06-19 Gurpreet S. Ahluwalia Inhibition of hair growth
US5698589A (en) 1993-06-01 1997-12-16 International Medical Innovations, Inc. Water-based topical cream containing nitroglycerin and method of preparation and use thereof
US5440090A (en) * 1993-06-07 1995-08-08 Atlantic Richfield Company Duplex stainless steel welding method
US5475763A (en) * 1993-07-01 1995-12-12 Digital Equipment Corp., Patent Law Group Method of deriving a per-message signature for a DSS or El Gamal encryption system
FR2709953B1 (en) * 1993-09-14 1995-11-24 Oreal Cosmetic composition containing at least one nonionic surfactant of the alkylpolyglycoside and / or polyglycerolated type and at least one polydimethylsiloxane / polyoxalkylene block copolymer.
US5468476A (en) * 1994-03-16 1995-11-21 Ahluwalia; Gurpreet S. Reduction of hair growth
JPH0867867A (en) 1994-06-23 1996-03-12 Suzuki Yushi Kogyo Kk Ultraviolet rays blocking material, ultraviolet rays blocking synthetic resin, ultraviolet rays blocking cosmetic and ultraviolet rays blocking coating film respectively using the same
US5837790A (en) * 1994-10-24 1998-11-17 Amcol International Corporation Precipitation polymerization process for producing an oil adsorbent polymer capable of entrapping solid particles and liquids and the product thereof
US5674477A (en) * 1995-02-28 1997-10-07 Ahluwalia; Gurpreet S. Reduction of hair growth
US5614206A (en) * 1995-03-07 1997-03-25 Wright Medical Technology, Inc. Controlled dissolution pellet containing calcium sulfate
US6096324A (en) * 1995-06-13 2000-08-01 Laboratory Skin Care Methods of delivering materials into the skin, and compositions used therein
US5662273A (en) * 1995-11-27 1997-09-02 Chih; I-Shun Sprayer gun
US5728736A (en) * 1995-11-29 1998-03-17 Shander; Douglas Reduction of hair growth
US5652273A (en) 1995-11-30 1997-07-29 Henry; James Reduction of hair growth
US6407056B1 (en) * 1996-07-12 2002-06-18 Johnson & Johnson Consumer Companies, Inc. Methods for altering hair growth and hair pigmentation by apoptosis in the follicular papillae and compositions therefor
US5908867A (en) 1996-07-18 1999-06-01 Henry; James P. Reduction of hair growth
TW491855B (en) * 1996-08-07 2002-06-21 Csl Ltd Purification of immunoglobulins
FR2762504B1 (en) 1997-04-29 1999-09-10 Cird Galderma HAIR REMOVAL PROCESS
JPH10310708A (en) 1997-05-13 1998-11-24 Ryuji Teraoka Functional resin molded product
EP0897781A3 (en) * 1997-08-22 2001-05-09 E.I. Du Pont De Nemours And Company Edgebanding process and apparatus
US6139827A (en) * 1997-12-31 2000-10-31 L'oreal Wear cosmetic composition
JPH11279040A (en) * 1998-03-27 1999-10-12 Kao Corp Composition for external use for skin
US6228894B1 (en) 1998-04-17 2001-05-08 Enhanced Derm Technologies, Inc. Softgel-compatible composition containing retinol
US6114317A (en) * 1998-05-21 2000-09-05 Wisconsin Alumni Research Foundation Method of locking 1α-OH of vitamin D compounds in axial orientation
US6020006A (en) * 1998-10-27 2000-02-01 The Gillette Company Reduction of hair growth
KR20020011969A (en) 1999-03-03 2002-02-09 데이비드 엠 모이어 Skin care compositions
US6375948B1 (en) * 1999-07-12 2002-04-23 Kao Corporation Treating method for suppressing hair growth
JP4450456B2 (en) 1999-09-27 2010-04-14 株式会社マルハニチロ水産 Sebum production inhibitor
JP4534279B2 (en) 1999-10-08 2010-09-01 株式会社豊田中央研究所 Porous particles made of organic-inorganic composite material
GEP20043286B (en) 2000-02-02 2004-07-26 Warner Lambert Co Dual Inhibitors of Cholesteryl Ester and Wax Ester Synthesis for Sebaceous Gland Disorders
US6399652B1 (en) * 2000-06-29 2002-06-04 L. Dean Parks Method of treating acne vulgaris using avermectin compound
US6355687B1 (en) * 2000-06-30 2002-03-12 Unilever Home And Personal Care Usa, Division Of Conopco, Inc. Cosmetic compositions containing substituted iminodibenzyl or fluorene derivatives
US6355686B1 (en) * 2000-06-30 2002-03-12 Unilever Home And Personal Care Usa, Division Of Conopco, Inc. Cosmetic compositions containing substituted amine derivatives
WO2002007674A2 (en) 2000-07-21 2002-01-31 Ceramoptec Industries, Inc. Enhancing compound penetration into hair follicles
US6252090B1 (en) * 2000-08-29 2001-06-26 Allergan Sales, Inc. Compounds having activity as inhibitors of cytochrome P450RAI
JP2002069851A (en) 2000-08-30 2002-03-08 Toray Ind Inc Double slipproof fabric and method for manufacturing the same
KR20020027198A (en) 2000-10-02 2002-04-13 차알스 제이. 메츠 Method for reduction of inflammation and erythema
US20040009140A1 (en) 2000-10-12 2004-01-15 Takafumi Nishijima Skin pore minimizers and skin elasticity improvers
FR2820972B1 (en) * 2001-02-22 2003-05-16 Oreal USE AS A MATTIFYING AGENT IN A COSMETIC COMPOSITION OF A POLYLVINYLPYRROLIDONE ALKYL POLYMER OR COPOLYMER
WO2002067889A2 (en) 2001-02-22 2002-09-06 Unilever Plc Skin composition for reducing skin oils and grease
FR2822376B1 (en) 2001-03-23 2004-06-11 Oreal USE OF POLYAMIDE PARTICLES AS ANTI-IRRITANT AGENT IN A COSMETIC OR DERMATOLOGICAL COMPOSITION
KR100845731B1 (en) 2001-12-14 2008-07-11 주식회사 코리아나화장품 Cosmetic Compositions of Powder-type Containing Whitening Active Material
KR100829719B1 (en) 2001-12-20 2008-05-15 주식회사 코리아나화장품 Cosmetic Compositions of Powder-type Containing Anti-Wrinkle Active Material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5380763A (en) * 1992-11-19 1995-01-10 Takasago International Corporation Topical composition for treating acne vulgaris
US5814311A (en) * 1994-11-24 1998-09-29 L'oreal Cosmetic composition in the form of a compact powder and process for preparing it
US6251411B1 (en) * 1996-06-05 2001-06-26 U.S. Cosmetics Corporation Composition for hydrophobic cosmetic products
US20020012645A1 (en) * 2000-03-31 2002-01-31 Sanjeev Midha Leave-in hair cosmetic compositions for enhancing volume containing fluid-encapsulated, flexible microspheres
US6586013B2 (en) * 2001-06-01 2003-07-01 Lipo Chemicals, Inc. Method of using optically-activated particles in cosmetic preparations
US20040005340A1 (en) * 2002-07-02 2004-01-08 Dhaval Patel Aqueous cosmetic composition comprising porous silica particles and at least one humectant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9764167B2 (en) 2009-04-21 2017-09-19 Arkema France Method for producing free powder particles of polyamide impregnated with at least one cosmetic or pharmaceutical agent, and free powder particles of polyamide having a content of at least 25 WT % of a cosmetic or pharmaceutical agent other than water
WO2015022366A1 (en) * 2013-08-16 2015-02-19 Aimecs Gmbh Means containing microparticles for cleaning and protecting technical surfaces

Also Published As

Publication number Publication date
US20050031699A1 (en) 2005-02-10
US8507006B2 (en) 2013-08-13
US20120076841A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP5032859B2 (en) Porous particles provided with cosmetically or pharmaceutically active compounds
US8507006B2 (en) Porous particles loaded with cosmetically or pharmaceutically active compounds
JP3652270B2 (en) Compositions containing ascorbic acid in combination with ascorbic acid derivatives
EP1948236B1 (en) Methods and compositions for treatment of skin
US9056053B2 (en) Nanoparticle compositions providing enhanced color for cosmetic formulations
US20020182238A1 (en) Fibers as anti-irritant agents
TW200304831A (en) Cosmetic and/or dermatological composition comprising at least one oxidation-sensitive hydrophilic active principle stabilized by at least one N-vinylimidazole polymer or copolymer
US20080193393A1 (en) Delivery System for Topically Applied Compounds
EP2624806B1 (en) Cosmetic skin care compositions comprising insoluble copper oxide
JP2004067676A (en) Composition containing at least one oxidation-sensitive hydrophilic active substance stabilized by at least one maleic anhydride copolymer
JPH1067641A (en) Cosmetic and/or dermal composition containing cross-linked poly(2-acrylamido-2-methylpropanesulfonic acid) and at least one active ingredient precursor
EP2421494B1 (en) Method for producing free powder particles of polyamide impregnated with at least one cosmetic or pharmaceutical agent, and free powder particles of polyamide having a content of at least 25 wt % of at least one cosmetic or pharmaceutical agent
EP1837013A1 (en) Composition comprising hydroxyapatite and a calcium salt for reinforcing the barrier function of the skin and/or semi-mucus membranes.
JP2009501209A (en) Beauty methods for the treatment of wrinkles
FR2892019A1 (en) Caring for wrinkled skin comprises applying composition including pulverulent phase comprising porous particles which comprise antiwrinkle active principle; and applying composition including fatty and/or aqueous phase comprising solvent
US20020176843A1 (en) Polyamide particles as anti-irritant agents
EP1342471B1 (en) Nanocapsules based on polyol polyester, and cosmetic and dermatological compositions containing same
JP3657752B2 (en) Topical skin preparation
JP2004506615A (en) Composition containing ceramide precursor for improving natural or reconstructed epidermis and resulting skin equivalent
CN116531269A (en) Whitening application of vitexin
JP2023553119A (en) Fermented product from structured aqueous medium and cosmetic composition containing the same
MXPA97005234A (en) Cosmetic compositions anhydration with agents dermatologically acti
KR20040105169A (en) Preparation method of stable nano-emulsion utilizing arbutin and cosmetic formulations containing the same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION