JPS62215638A - Porous polyamide powder - Google Patents

Porous polyamide powder

Info

Publication number
JPS62215638A
JPS62215638A JP6043986A JP6043986A JPS62215638A JP S62215638 A JPS62215638 A JP S62215638A JP 6043986 A JP6043986 A JP 6043986A JP 6043986 A JP6043986 A JP 6043986A JP S62215638 A JPS62215638 A JP S62215638A
Authority
JP
Japan
Prior art keywords
powder
pore volume
polyamide
polyamide powder
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6043986A
Other languages
Japanese (ja)
Inventor
Fumito Yamai
二三人 山井
Noboru Shinto
新堂 昇
Itaru Sakuma
佐久間 至
Akira Kawanami
河南 彰
Toshiro Maekawa
敏郎 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP6043986A priority Critical patent/JPS62215638A/en
Publication of JPS62215638A publication Critical patent/JPS62215638A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/12Face or body powders for grooming, adorning or absorbing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/88Polyamides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/56Compounds, absorbed onto or entrapped into a solid carrier, e.g. encapsulated perfumes, inclusion compounds, sustained release forms

Abstract

PURPOSE:Porous spherical powder, having a great pore volume and specific surface area and remarkable absorption and holding ability for various solvents and oily materials and particularly suitable as a base for cosmetics, etc. CONSTITUTION:Spherical porous polyamide powder, obtained by dissolving a polyamide resin in, e.g. a lower alcoholic solvent, e.g. methanol, etc., containing an anhydrous chloride of an alkaline earth metal, e.g. anhydrous calcium chloride, etc., while heating, slowly cooling the solution, separating deposited polyamide particles from the solvent, washing the separated particles with water, and drying the washed particles, etc., having >=0.25cc/g, preferably 0.25-1.5cc/g total pore volume, >=4m<2>/g, preferably 4-30m<2>/g specific surface area and 2-200mum particle diameter when used as a cosmetic base and 10-100mum particle diameter when used as a powder coating material.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、球状の多孔性ポリアミド粉末に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to spherical porous polyamide powder.

[従来技術おJ:びその問題点] 従来より、ポリアミド粉末は、粉体塗料、粉末成形品、
吸着剤等の素材として広く利用されているが、近年、こ
のポリアミド粉末を、化粧品の基剤として、特にメーキ
ャップ用の化粧品基剤として使用することがさかんに行
なわれるようになった。
[Prior art J: Problems with it] Conventionally, polyamide powder has been used in powder coatings, powder molded products,
Although it is widely used as a material for adsorbents and the like, in recent years, polyamide powder has been increasingly used as a base for cosmetics, especially for makeup.

これは、ポリアミド粉末が人体に無害であること、光の
屈折率がポリアミド樹脂と汗とでは似ているため顔全体
が均一に光り輝き肌に艶を与えること等の特徴をうまく
利用したものである。そして、特に、ポリアミド粉末の
各粒子を球状として、滑りをよくし、肌触りをよくした
ものが開発されている。
This takes advantage of the characteristics of polyamide powder, which is harmless to the human body, and because the refractive index of light is similar to that of polyamide resin and sweat, the entire face shines evenly and gives a glossy glow to the skin. . In particular, polyamide powders have been developed in which each particle is spherical to improve slippage and feel.

このようなポリアミド粉末を製造する方法としては、例
えば、特公昭48−24812や特開昭58−2192
40に開示された方法がある。これらの方法によって得
られるポリアミド粉末の各粒子は、真球に近い形状を有
しておりその表面はほとんど凹凸のない滑らかなもので
ある。よって、各粒子自体はほとんど吸着能力を有さず
、粉末全体としてもその吸収能力は箸しく低い。
Methods for producing such polyamide powder include, for example, Japanese Patent Publication No. 48-24812 and Japanese Patent Application Laid-Open No. 58-2192.
There is a method disclosed in No. 40. Each particle of polyamide powder obtained by these methods has a shape close to a true sphere, and its surface is smooth with almost no irregularities. Therefore, each particle itself has almost no adsorption capacity, and the absorption capacity of the powder as a whole is extremely low.

一般に、ペースト状化粧品または半固形状化粧品の製造
過程において、化粧品の各成分を油で混練する際、油分
を多(含む方が練り易い。
Generally, in the process of manufacturing paste cosmetics or semi-solid cosmetics, when kneading each component of the cosmetic with oil, it is easier to knead the more oil it contains.

しかし、この油分がそのままの状態で製品化粧品に残る
と、化粧した顔が脂ぎって見えるとともに、化粧した本
人もべとつき感を覚え不快である。
However, if this oil remains in the cosmetic product as it is, the face with makeup will look greasy and the person wearing the makeup will feel sticky and uncomfortable.

化粧品の基剤として前述の真球状のポリアミド粉末を用
いた場合には、粉末自体にほとんど吸収性がないので、
余剰の油分を吸収させるためには別途無機系の吸着剤や
無機繊維等を混入する必要がある。これらの無機系吸着
剤や無機繊維は、肌触りがよく肌荒れを起こさない形状
やPHのものを選択しなければならず、製造原価への圧
迫や製造工程での手間等無視できないものがある。
When using the aforementioned perfectly spherical polyamide powder as a base for cosmetics, the powder itself has almost no absorbency;
In order to absorb excess oil, it is necessary to separately mix inorganic adsorbents, inorganic fibers, etc. These inorganic adsorbents and inorganic fibers must be selected in a shape and PH that are comfortable to the touch and do not cause skin irritation, and there are factors that cannot be ignored, such as pressure on manufacturing costs and time and effort in the manufacturing process.

本発明者等は真球形状を有する上記ポリアミド粉末の欠
点を解決するために鋭意研究の結果、各粒子自体が多孔
性であって、優れた吸収能力を有するものとして、全細
孔容積が大きく且つ比表面積が大きいポリアミド粉末を
得ることに成功した。
As a result of intensive research to solve the drawbacks of the polyamide powder having a true spherical shape, the present inventors found that each particle itself is porous and has excellent absorption capacity, and the total pore volume is large. Moreover, we succeeded in obtaining polyamide powder with a large specific surface area.

[問題点を解決するための手段および作用]本発明は、
全細孔容積が0.25cc/g以上で、比表面積が4.
0112/G以上で、球状であることを特徴とする多孔
性ポリアミド粉末を提供するものである。
[Means and effects for solving the problems] The present invention has the following features:
The total pore volume is 0.25 cc/g or more, and the specific surface area is 4.
0112/G or higher and is characterized by being spherical.

ここで全細孔容積とは、1g当りのポリアミド粉末につ
いて、粉末粒子に存在する細孔の全容積を表わすもので
あり、粉末の有する多孔性の度合を示すバロメーターと
なり得る。よって、この全細孔容積と比表面積が大きい
と、粉末粒子が他の物質を収容し得る能力が大きいとい
うこととなり、ひいては、優れた吸収能力を有するとい
うこととなる。
Here, the total pore volume refers to the total volume of pores present in powder particles per gram of polyamide powder, and can serve as a barometer indicating the degree of porosity of the powder. Therefore, when the total pore volume and specific surface area are large, the powder particles have a large ability to accommodate other substances and, in turn, have excellent absorption capacity.

比較のために、市販されているポリアミド粉末(東し株
式会社製ナイロンパウダー)の全細孔容積を測定すると
0.14cc10で比表面積が1.24  m2/gで
あり、その吸収能力は、本発明のポリアミド粉末の吸収
能力の約1/3〜1/2である。また、同様に、オルガ
ノゾル(アトケミ社製ナイロンパウダー)の全細孔容積
は0.24CC/CIで比表面積は3.4010210
であって、吸収能力は本発明のポリアミド粉末の約1/
2である。
For comparison, the total pore volume of commercially available polyamide powder (nylon powder manufactured by Toshi Co., Ltd.) was measured to be 0.14 cc10, and the specific surface area was 1.24 m2/g, and its absorption capacity was It is about 1/3 to 1/2 of the absorption capacity of the polyamide powder of the invention. Similarly, the total pore volume of organosol (nylon powder manufactured by Atochemi) is 0.24 CC/CI and the specific surface area is 3.4010210.
The absorption capacity is about 1/1 of that of the polyamide powder of the present invention.
It is 2.

上記のように、全細孔容積および比表面積が大きい程、
粉末の多孔性の度合が大きくなり、吸収能力も大きくな
るのであるが、その多孔性の度合が大きくなりすぎると
機械的強度の乏しいものとなり、取扱い中に破砕されて
しまうことがある。よって、その機械的強度を損うこと
なく、また、優れた吸収能力を発揮させるためには、ポ
リアミド粉末の全細孔容積を0.25〜1.50cc/
gとし、比表面積を4.0〜30.0 m2/gとする
のが好ましい。
As mentioned above, the larger the total pore volume and specific surface area, the more
The greater the degree of porosity of the powder, the greater its absorption capacity, but if the degree of porosity becomes too great, the powder will have poor mechanical strength and may break during handling. Therefore, in order to exhibit excellent absorption capacity without impairing its mechanical strength, the total pore volume of polyamide powder should be adjusted to 0.25 to 1.50 cc/
g, and the specific surface area is preferably 4.0 to 30.0 m2/g.

このように、本発明の多孔性ポリアミド粉末は、上述し
た如き従来全く知られていなかった特定の性状を有する
ものである。よって、これを化粧品の基剤として用いた
場合には、混線の際の余剰の油分を吸収するため、製品
化粧品がべとつかず、ざらつとした使用感を与える。
As described above, the porous polyamide powder of the present invention has the above-mentioned specific properties that were completely unknown heretofore. Therefore, when this is used as a base for cosmetics, it absorbs the excess oil that occurs during cross-contamination, so that the product cosmetics are not sticky and give a rough texture.

なお、本明細−において、ポリアミド粉末についての全
細孔容積および比表面積とは、それぞれ下記方法にて測
定される値を意味する。
In addition, in this specification, the total pore volume and specific surface area of polyamide powder each mean a value measured by the following method.

(全細孔容W1) 水銀圧入方式により、株式会社島津製作所製ボアサイザ
9310によって測定される値である。
(Total pore volume W1) This is a value measured by Bore Sizer 9310 manufactured by Shimadzu Corporation by a mercury intrusion method.

この測定方法の原理は簡単に言えば次のようなものであ
る。
The principle of this measurement method is simply as follows.

すなわち、測定すべきポリアミド粉末を入れた試料セル
を真空にしてから水銀を注入し、次に、この水銀に圧力
を加えると、加圧によってポリアミド粉末の細孔内に水
銀が侵入し、細孔の容積分だけ水銀面が低下するため、
この加圧前後の水銀量の変化を読み取って細孔の容積を
求めるというものである。
That is, when the sample cell containing the polyamide powder to be measured is evacuated and mercury is injected, then pressure is applied to the mercury. Since the mercury level decreases by the volume of
The volume of the pores is determined by reading the change in the amount of mercury before and after this pressurization.

はとんどの物質に対する水銀の接触角は90’〜180
°であり、これは、水銀が物質を濡らさないことを示す
。よって、水銀を細孔内へ侵入させるためには加圧する
ことが必要であり、水銀に加えられた圧力と水銀が侵入
し得る最小の細孔径との間には、次式で示される関係が
ある。
The contact angle of mercury for most substances is between 90' and 180'.
°, which indicates that mercury does not wet the substance. Therefore, in order for mercury to penetrate into the pores, it is necessary to apply pressure, and the relationship between the pressure applied to mercury and the minimum pore diameter through which mercury can penetrate is shown by the following equation. be.

P −[)cC−4δcosθ  (Washburn
式)ここで、Pは印加圧力、D G、を細孔直径、δは
水銀の表面張力、θは水銀の試料に対する接触角である
P-[)cC-4δcosθ (Washburn
(Formula) Here, P is the applied pressure, DG is the pore diameter, δ is the surface tension of mercury, and θ is the contact angle of mercury with the sample.

上式のように、水銀に加えた圧力と水銀が侵入し得る細
孔径とは反比例の関係にあり、加える圧力が大きくなる
ほど、より細かい細孔にまで侵入することができる。
As shown in the above equation, the pressure applied to mercury is inversely proportional to the pore size through which mercury can penetrate, and the greater the pressure applied, the more fine pores can be penetrated.

また、加圧によって細孔中に侵入した水銀の伍は、セル
における水銀面の変位から求められるが、この水銀の圧
入聞が求める細孔容積である。
Furthermore, the amount of mercury that has entered the pores due to pressurization can be determined from the displacement of the mercury surface in the cell, and the amount of mercury intruded into the cell is the pore volume that is determined.

しかしながら、この方法で観察されたことは、加圧によ
る水銀面の低下が3段階で表われることである。すなわ
ち、水銀を加圧し始めると、(A)まず、粉末粒子が整
列することによって生じた空隙に水銀が侵入し、(B)
次に、整列した粒子間の空隙に水銀が侵入し、(C)最
後に、粒子表面の細孔に水銀が侵入する。よって、(C
)段階で加圧条件的30 、 OOOpsiaまでに減
少した水銀の曇が、本発明で規定する粉末の細孔容積を
表わすものとした。そして、この粉末の全細孔の容積(
CC)を、ポリアミド粉末1ク当りについて算出した値
が本発明で定義する全細孔容積(cc/g)である。
However, what was observed with this method was that the mercury level decrease due to pressurization appeared in three stages. That is, when mercury starts to be pressurized, (A) first, mercury invades the voids created by the alignment of powder particles, and (B)
Next, mercury enters into the voids between the aligned particles, and (C) finally, mercury enters into the pores on the particle surface. Therefore, (C
) The mercury haze that decreased to 30 OOpsia under pressure conditions at step ) was taken to represent the pore volume of the powder defined in the present invention. And the total pore volume of this powder (
CC) per 1 kg of polyamide powder is the total pore volume (cc/g) defined in the present invention.

〈比表面積) 窒素吸着法により求めた。測定するポリアミド粉末を6
0’Cで10分間乾燥したものを用いる。
(Specific surface area) Determined by nitrogen adsorption method. 6. Polyamide powder to be measured
Use one that has been dried at 0'C for 10 minutes.

なお、本発明のポリアミド粉末の粒子直径は特に限定さ
れるものではないが、化粧品の基剤として用いる場合に
は2〜20μmであることが好ましい。また、粉体塗料
として用いる場合には10〜100μmであることが好
ましい。
Although the particle diameter of the polyamide powder of the present invention is not particularly limited, it is preferably 2 to 20 μm when used as a base for cosmetics. Moreover, when used as a powder coating, it is preferable that it is 10-100 micrometers.

本発明の多孔性ポリアミド粉末を製造する方法としては
、例えば、次のようなポリアミド樹脂の再沈法があげら
れる。
Examples of the method for producing the porous polyamide powder of the present invention include the following polyamide resin reprecipitation method.

(1)ポリアミド樹脂を、アルカリ土類金属の無水塩化
物を含む低級アルコール溶媒に加熱溶解したのち、除冷
する方法。
(1) A method in which a polyamide resin is heated and dissolved in a lower alcohol solvent containing an anhydrous chloride of an alkaline earth metal, and then slowly cooled.

(2)ポリアミド樹脂、塩化カルシウムおよび水を、エ
チレングリコールあるいはグリセリンとともにメタノー
ルに加熱溶解したのち、冷却する方法。
(2) A method in which polyamide resin, calcium chloride, and water are heated and dissolved in methanol together with ethylene glycol or glycerin, and then cooled.

〈3〉ポリアミド樹脂を、塩化カルシウムを含むエチレ
ングリコールに加熱溶解したのら、冷却する方法。
<3> A method in which polyamide resin is heated and dissolved in ethylene glycol containing calcium chloride and then cooled.

いずれの場合も、冷却により析出したポリアミド粒子を
溶媒から分離し、水洗したのち乾燥することによって、
本発明の多孔性ポリアミド粉末を1qるものである。
In either case, the polyamide particles precipitated by cooling are separated from the solvent, washed with water, and then dried.
It contains 1 q of porous polyamide powder of the present invention.

本発明に用いるポリアミド樹脂は、どのようなものでも
よいが、例えば、ナイロン6、ナイロン12、ナイロン
66、ナイロン610があげられる。
Any polyamide resin may be used in the present invention, and examples thereof include nylon 6, nylon 12, nylon 66, and nylon 610.

[実施例] 次に、実施例にJ:って本発明の詳細な説明する。[Example] Next, the present invention will be described in detail in Examples.

実施例1 ナイロン12(宇部興産株式会社製、分子量20.00
0)0.9kg、無水塩化カルシウム2.7kaおよび
メタノール15.3kQを容恒25λのオートクレーブ
に入れ、窒素置換し、内容物を攪拌しながら136℃ま
で昇温してポリマーを溶解したのら、毎分500回転で
@痒しながら10℃/Hrの降下速度で徐冷した。沈澱
物を吸引濾過して溶剤を分離し、水洗したのち減圧乾燥
すると、平均粒径が12〜13μmである多孔質の球状
粒子からなる粉末を得ることができた。
Example 1 Nylon 12 (manufactured by Ube Industries, Ltd., molecular weight 20.00
0) 0.9 kg, anhydrous calcium chloride 2.7 ka and methanol 15.3 kQ were placed in an autoclave with a volume constant of 25λ, the atmosphere was replaced with nitrogen, and the temperature was raised to 136°C while stirring the contents to dissolve the polymer. It was slowly cooled at a rate of 10° C./Hr while rotating at 500 revolutions per minute. The precipitate was suction filtered to separate the solvent, washed with water, and then dried under reduced pressure to obtain a powder consisting of porous spherical particles with an average particle size of 12 to 13 μm.

第1図および第2図は、このポリアミド粉末の電子顕微
鏡写真を示したものである。
FIGS. 1 and 2 show electron micrographs of this polyamide powder.

このポリアミド粉末の全細孔容積を、株式会社島tlF
j作所製ポアサイザ9310で測定すると0.64cc
/gであった。第3図はそのときの測定チャートを示す
ものであり、本実施例のポリアミド粉末の測定曲線は1
である。
The total pore volume of this polyamide powder is determined by Shima tlF Co., Ltd.
0.64cc when measured with Pore Sizer 9310 manufactured by J Seisakusho
/g. Figure 3 shows the measurement chart at that time, and the measurement curve of the polyamide powder of this example is 1
It is.

このチャートにおいて、横軸は細孔直径(μm)を示し
、図の右側から左側へ進むに従って細孔直径が小さくな
る。縦軸は積算細孔容積(cclo)を示し、試料粉末
1Qについて加圧開始から加圧終了までの水銀の全圧入
1(cc)を表わす。
In this chart, the horizontal axis indicates the pore diameter (μm), and the pore diameter becomes smaller as it goes from the right side to the left side of the figure. The vertical axis indicates the cumulative pore volume (cclo), which represents the total intrusion 1 (cc) of mercury from the start of pressurization to the end of pressurization for sample powder 1Q.

本実施例のポリアミド粉末の測定曲線1においては、点
Aが加圧開始時点を示し、ここから左へ進むに従って加
圧が進み、変曲点8、Cを経由して、点りで加圧が終了
する。加圧開始点Aから変曲点Bの間では、粉末粒子が
、加圧によって、最密充填となるように整列するため、
それにより生じた空隙に水銀が侵入する。変曲点Bから
変曲点Cの間では著しい立ちあがりが見られるが、これ
は最密充填状態となった粉末粒子間の空隙に水銀が侵入
していくことを示す。
In the measurement curve 1 of the polyamide powder of this example, point A indicates the point at which pressurization starts, and from there the pressurization progresses as it moves to the left, passing through inflection point 8 and C, pressurization is applied at the point. ends. Between the pressure start point A and the inflection point B, the powder particles are aligned in a close-packed manner due to the pressure.
Mercury enters the voids created by this. A remarkable rise is seen between the inflection point B and the inflection point C, which indicates that mercury enters the voids between the powder particles in the closest packed state.

変曲点Cの時点では、粉末粒子間の空隙が水銀によって
充たされているため、更に加圧を続けると粉末表面の細
孔に水銀が侵入し始める。従って、変曲点Cから加圧終
了点りまでの間において、粉末粒子自体の表面の細孔に
水銀が実際に侵入しており、加圧終了点りの縦軸の値(
すなわち積算細孔容積)から変曲点Cの縦軸の値を差し
引いた数値が真の全細孔容積を示す。
At the point of inflection C, the voids between the powder particles are filled with mercury, so if the pressure is continued further, mercury begins to enter the pores on the powder surface. Therefore, between the inflection point C and the end point of pressurization, mercury actually enters the pores on the surface of the powder particles themselves, and the value on the vertical axis of the end point of pressurization (
In other words, the value obtained by subtracting the value on the vertical axis of the inflection point C from the integrated pore volume indicates the true total pore volume.

本実施例のポリアミド粉末については、加圧終了点りと
変曲点Cにおける積算細孔容積は、それぞれ、2.57
22cc/IJと1.9351cc、’ Qであり、そ
の差0.6371cc10がポリアミド粉末の全細孔容
積である。
Regarding the polyamide powder of this example, the cumulative pore volume at the end point of pressure and at the inflection point C was 2.57, respectively.
22cc/IJ and 1.9351cc,'Q, and the difference between them, 0.6371cc10, is the total pore volume of the polyamide powder.

実施例2 ナイロン6(宇部興産株式会社製、分子量13.000
)1.8kg、塩化カルシウム2水塩3.6kg(塩化
カルシウム純分2.7にハ水分0.9kg)、グリセリ
ン3.8kg、水1.8klllおよびメタノール8.
8koを容fi25J?のオートクレーブに入れ、窒素
置換し、内容物を攪拌しながら136℃まで昇温してポ
リマーを溶解したのも50℃/Hrの降下速度で冷却し
た。
Example 2 Nylon 6 (manufactured by Ube Industries, Ltd., molecular weight 13.000
) 1.8 kg, calcium chloride dihydrate 3.6 kg (calcium chloride purity 2.7 + water 0.9 kg), glycerin 3.8 kg, water 1.8 klll, and methanol 8.
8ko to fi25J? The autoclave was purged with nitrogen, and the contents were heated to 136° C. while stirring to dissolve the polymer, and then cooled at a rate of decline of 50° C./Hr.

沈澱物を吸引濾過して溶剤を分離し、水洗したのち減圧
乾燥すると、平均粒径が8〜10μlである多孔質の球
状粒子からなる粉末を得ることができた。
The precipitate was suction filtered to separate the solvent, washed with water, and then dried under reduced pressure to obtain a powder consisting of porous spherical particles with an average particle size of 8 to 10 μl.

第4図はこのポリアミド粉末の電子顕微鏡写真を示した
ものである。
FIG. 4 shows an electron micrograph of this polyamide powder.

このポリアミド粉末の全細孔容積を、実施例1と同様に
株式会社島津製作所製ボアサイザ9310で測定すると
0.28cc/gであった。
The total pore volume of this polyamide powder was measured using Bore Sizer 9310 manufactured by Shimadzu Corporation in the same manner as in Example 1, and was found to be 0.28 cc/g.

第5因はそのときの測定チャートを示すものであり、本
実施例のポリアミド粉末の測定曲線2におけるΔ′、B
′、C′およびD′は、第3図の測定曲線1におけるA
、8.CおよびDにそれぞれ対応する。
The fifth factor shows the measurement chart at that time, and Δ' and B in measurement curve 2 of the polyamide powder of this example.
', C' and D' are A in measurement curve 1 of FIG.
, 8. Corresponding to C and D, respectively.

従って、この場合も真の全細孔容積は、加圧終了点D′
における積算細孔容積1.7337cc/ Qと変曲点
C′におけるV4算細孔容積1゜4494cc/Qの差
の0.2843CC/!Jである。
Therefore, in this case as well, the true total pore volume is the pressure end point D'
The difference between the cumulative pore volume at 1.7337cc/Q and the V4 calculated pore volume at the inflection point C', 1°4494cc/Q, is 0.2843CC/! It is J.

比較例1 市販されているポリアミド粉末(束し株式会社製ナイロ
ンパウダー)の電子顕微鏡写真を第6図に示す。
Comparative Example 1 An electron micrograph of a commercially available polyamide powder (Nylon Powder manufactured by Tanishi Co., Ltd.) is shown in FIG.

このポリアミド粉末の全細孔容積を、実施例1および実
施例2と同様に測定すると、0.14cc/gであった
。第3図の3がそのときの測定曲線であり、alb、c
およびdは、測定回11におけるA、B、CおよびDに
それぞれ対応する。従って、真の全細孔容積は、加圧終
了点dにおける積算細孔容積1.0044cc/gと変
曲点Cにおける積算細孔容積0.8631cc/Qの差
の0.1413cc/gである。
The total pore volume of this polyamide powder was measured in the same manner as in Examples 1 and 2, and was found to be 0.14 cc/g. 3 in Figure 3 is the measurement curve at that time, alb, c
and d correspond to A, B, C, and D in measurement time 11, respectively. Therefore, the true total pore volume is 0.1413 cc/g, which is the difference between the cumulative pore volume at pressure end point d, 1.0044 cc/g, and the cumulative pore volume at inflection point C, 0.8631 cc/Q. .

比較例2 市販されているポリアミド粉末の「オルガノゾル」 (
アトケミ社製ナイロンパウダー)の電子顕微鏡写真を第
7図に示す。
Comparative Example 2 "Organosol" (commercially available polyamide powder)
Fig. 7 shows an electron micrograph of nylon powder manufactured by Atochemi Co., Ltd.

このポリアミド粉末の全細孔容積を、比較例1と同様に
測定すると、0.24cc/gであった。第3図の4が
そのときの測定曲線であり、a′、b′、C′およびd
′は、測定曲線1におけるA、B、CおよびDにそれぞ
れ対応する。
The total pore volume of this polyamide powder was measured in the same manner as Comparative Example 1, and was found to be 0.24 cc/g. 4 in Figure 3 is the measurement curve at that time, a', b', C' and d
′ correspond to A, B, C, and D in measurement curve 1, respectively.

従って、真の全細孔容積は、加圧終了点d′における積
輝細孔容11.30.41cc/gと変曲点C′におけ
る積算細孔容積1.0621cc/9の差の0.242
0cc/gである。
Therefore, the true total pore volume is 0.0 of the difference between the integrated pore volume 11.30.41 cc/g at the pressure end point d' and the integrated pore volume 1.0621 cc/9 at the inflection point C'. 242
It is 0cc/g.

上記実施例1.2並びに比較例1.2の各ポリアミド粉
末について、全細孔容積、比表面積、粒子直径およびか
さ比重の各測定値を第1表に示す。全細孔容積の値は、
前述の方法で測定したものである。比表面積は、測定す
るポリアミド粉末を60℃で10分間乾燥したのち株式
会社島津製作所製70−ソープ2300を用いて測定し
た値である。粒子直径は、電子顕微鏡を用いて基準線か
ら読み取った値であり、最小粒子と最大粒子の値を示し
ている。かさ比重は、JISK5101 (’ 50年
)により測定した値である。
Table 1 shows the measured values of total pore volume, specific surface area, particle diameter, and bulk specific gravity for each of the polyamide powders of Example 1.2 and Comparative Example 1.2. The value of total pore volume is
It was measured using the method described above. The specific surface area is a value measured using 70-SOAP 2300 manufactured by Shimadzu Corporation after drying the polyamide powder to be measured at 60° C. for 10 minutes. The particle diameter is a value read from a reference line using an electron microscope, and indicates the values of the smallest particle and the largest particle. The bulk specific gravity is a value measured according to JISK5101 ('50).

(以下余白) 第1表 次に、上記実施例1.2並びに比較例1.2の各ポリア
ミド粉末について、各種溶剤および油状物の吸収能力お
よび保持能力を測定した。
(The following is a blank space) Table 1 Next, the ability to absorb and retain various solvents and oily substances was measured for each of the polyamide powders of Example 1.2 and Comparative Example 1.2.

ポリアミド粉末の吸収能力は次のようにして求めた。The absorption capacity of polyamide powder was determined as follows.

(1)試験管に所定量の乾燥ポリアミド粉末を入れ、こ
れに過剰の溶剤または油状物を加え、充分に浸漬させる
(1) Put a predetermined amount of dry polyamide powder into a test tube, add an excess of solvent or oil, and allow the test tube to be fully immersed.

(2)次に、これを遠心弁miで、上液と含浸粉末とに
分離する。
(2) Next, this is separated into an upper liquid and an impregnated powder using a centrifugal valve mi.

(3)含浸粉末のIla(g)ともとの乾燥ポリアミド
粉末の重量(9)との差を求め、これを吸収fjl(a
)とし、この吸収ff1((J)ともとの乾燥ポリアミ
ド粉末のtxfIi((+ >との比(Q /g)を算
出する。
(3) Find the difference between Ila (g) of the impregnated powder and the weight (9) of the original dry polyamide powder, and calculate this difference by absorbing fjl (a
), and the ratio (Q 2 /g) between this absorption ff1 ((J) and txfIi ((+ >) of the original dry polyamide powder is calculated.

含浸ポリアミド粉末は、粉末粒子間の空隙および粉末粒
子の細孔内に溶剤または油状物を保有しており、前述の
吸収量と乾燥粉末の重量との比(吸収量/乾燥粉末重量
)が大きいほど粉末の有する吸収能力が大きいといえる
Impregnated polyamide powder has a solvent or oily substance in the voids between powder particles and in the pores of powder particles, and the ratio of the above-mentioned absorption amount to dry powder weight (absorption amount/dry powder weight) is large. It can be said that the powder has a greater absorption capacity.

各種溶剤等について、吸収量と乾燥粉末重量との比を測
定した値を第2表に示す。
Table 2 shows the measured ratios of absorbed amounts and dry powder weights for various solvents.

(以下余白) 第2表 ポリアミド粉末の溶剤保持能力は次のようにして求めた
(The following is a blank space) Table 2 The solvent retention ability of the polyamide powder was determined as follows.

(1)各種溶剤10mRにポリアミド粉末2gを分散さ
せる。
(1) Disperse 2 g of polyamide powder in 10 mR of various solvents.

(2)次に、これをガラスフィルター(G3)を用いて
吸引濾過する。吸引は、ハンディ−アスピレータ−を用
いて10分間行なう。
(2) Next, this is suction filtered using a glass filter (G3). Suction is performed for 10 minutes using a handheld aspirator.

(3)この吸引濾過したポリアミド粉末中に吸収されて
いる溶剤のIIともとの乾燥ポリアミド粉末の重量との
比を算出する。
(3) Calculate the ratio between the weight of the solvent II absorbed in this suction-filtered polyamide powder and the weight of the original dry polyamide powder.

この比(溶剤mfi/乾燥粉末重量)が大きいほど、粉
末の有する溶剤保持能力が大きいといえる。
It can be said that the larger this ratio (solvent mfi/dry powder weight) is, the greater the solvent holding capacity of the powder is.

各種溶剤について、溶剤と乾燥粉末との重量比を測定し
た値を第3表に示す。
Table 3 shows the measured weight ratios of solvent and dry powder for various solvents.

(以下余白) 第3表 第1表、第2表および第3表から明らかなように、本発
明のポリアミド粉末は、従来のポリアミド粉末に比べは
るかに大きな全細孔容積を有しており、にれに起因して
、溶剤等の著しい吸収能力および保持能力を有するもの
である。
(Left below) Table 3 As is clear from Tables 1, 2, and 3, the polyamide powder of the present invention has a much larger total pore volume than conventional polyamide powders. Due to its properties, it has remarkable ability to absorb and retain solvents, etc.

[発明の効果] 上述のように、本発明のポリアミド粉末は、各種溶剤お
よび油状物に対して、著しい吸収能力および保持能力を
有している。よって、本発明のポリアミド粉末を化粧品
の基剤として用いると、混練する際に入れる過剰の油分
を粉末自体が吸収するため、別途に無機系の吸着剤や無
機繊維等を混入する必要がなく、製造工程の簡略化およ
び製造原価の低減が図れる。化粧品の使用感も非常に好
ましい。
[Effects of the Invention] As described above, the polyamide powder of the present invention has a remarkable ability to absorb and retain various solvents and oily substances. Therefore, when the polyamide powder of the present invention is used as a cosmetic base, the powder itself absorbs the excess oil added during kneading, so there is no need to separately mix inorganic adsorbents, inorganic fibers, etc. The manufacturing process can be simplified and manufacturing costs can be reduced. The feel of the cosmetic product is also very favorable.

また、樹脂成形材料用の添加剤、a滑剤用添加剤、液体
りOマド用カラム充填剤、食品関係の油分の吸着剤、粉
体塗料およびその他機着剤等にも有利に使用できる。
It can also be advantageously used as an additive for resin molding materials, an additive for lubricants, a column filler for liquid additives, an adsorbent for food-related oils, powder coatings, and other adhesives.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は、本発明の多孔性ポリアミド粉末
の一実施例の粒子構造を示す電子顕微鏡写真、 第3図は、本発明の多孔性ポリアミド粉末の一実施例お
よび比較用のポリアミド粉末の、細孔直径と@算細孔容
積との関係を示す特性図、第4図は、本発明の多孔性ポ
リアミド粉末の他の実施例の粒子構造を示す電子顕微鏡
写真、第5図は、本発明の多孔性ポリアミド粉末の他の
実施例の細孔直径と積算細孔容積との関係を示す特性図
、 第6図は、比較用のポリアミド粉末の粒子構造を示す電
子顕微鏡写真、 第7図は、比較用の他のポリアミド粉末の粒子構造を示
す電子顕微鏡写真である。 特許出願人 積水化成品工業株式会社 第 I ′・′ 梳 7−  IJ 斌 (F  lcl?3
FIGS. 1 and 2 are electron micrographs showing the particle structure of an example of the porous polyamide powder of the present invention. FIG. 3 is an electron micrograph showing the particle structure of an example of the porous polyamide powder of the present invention and a polyamide for comparison. A characteristic diagram showing the relationship between the pore diameter and the calculated pore volume of the powder. FIG. 4 is an electron micrograph showing the particle structure of another example of the porous polyamide powder of the present invention. FIG. , a characteristic diagram showing the relationship between pore diameter and integrated pore volume of other examples of porous polyamide powder of the present invention, FIG. 6 is an electron micrograph showing the particle structure of polyamide powder for comparison, FIG. 7 is an electron micrograph showing the particle structure of another polyamide powder for comparison. Patent Applicant: Sekisui Plastics Co., Ltd. No. 7-IJ Bin (F lcl?3

Claims (1)

【特許請求の範囲】 1、全細孔容積が0.25cc/g以上で、比表面積が
4.0m^2/g以上で、球状であることを特徴とする
多孔性ポリアミド粉末。 2、全細孔容積が0.25〜1.50cc/gであるこ
とを特徴とする特許請求の範囲第1項記載の多孔性ポリ
アミド粉末。 3、比表面積が4.0〜30.0m^2/gであること
を特徴とする特許請求の範囲第1項記載の多孔性ポリア
ミド粉末。
[Claims] 1. A porous polyamide powder having a total pore volume of 0.25 cc/g or more, a specific surface area of 4.0 m^2/g or more, and a spherical shape. 2. The porous polyamide powder according to claim 1, which has a total pore volume of 0.25 to 1.50 cc/g. 3. The porous polyamide powder according to claim 1, which has a specific surface area of 4.0 to 30.0 m^2/g.
JP6043986A 1986-03-17 1986-03-17 Porous polyamide powder Pending JPS62215638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6043986A JPS62215638A (en) 1986-03-17 1986-03-17 Porous polyamide powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6043986A JPS62215638A (en) 1986-03-17 1986-03-17 Porous polyamide powder

Publications (1)

Publication Number Publication Date
JPS62215638A true JPS62215638A (en) 1987-09-22

Family

ID=13142305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6043986A Pending JPS62215638A (en) 1986-03-17 1986-03-17 Porous polyamide powder

Country Status (1)

Country Link
JP (1) JPS62215638A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333318A (en) * 1986-06-26 1988-02-13 ロレアル Non-compressed powder for body and face treatment or cosmetics
WO2004043411A1 (en) * 2002-11-14 2004-05-27 Ube Industries, Ltd. Cosmetic composition
WO2007069694A1 (en) * 2005-12-14 2007-06-21 Ube Industries, Ltd. Powder composed of inorganic compound-loaded polyamide porous particle
CN100374103C (en) * 2001-12-12 2008-03-12 德古萨公司 PH regulated polyamide powder for cosmetics
JP2010132768A (en) * 2008-10-28 2010-06-17 Ube Ind Ltd Almost spherical porous polyamide particle and optical material
US8507006B2 (en) 2003-06-26 2013-08-13 L'oreal Porous particles loaded with cosmetically or pharmaceutically active compounds
WO2022014463A1 (en) 2020-07-13 2022-01-20 株式会社ダイセル Cellulose acetate particles, cosmetic composition, and method for producing cellulose acetate particles
CN115087687A (en) * 2020-02-10 2022-09-20 阿科玛法国公司 Polyamide powder and corresponding production method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924267A (en) * 1972-06-26 1974-03-04
JPS5639795A (en) * 1979-09-04 1981-04-15 Mitsubishi Chem Ind Ltd Preparation of interferon
JPS5817499A (en) * 1981-07-24 1983-02-01 株式会社デンソー Variable speed type voice reproducer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4924267A (en) * 1972-06-26 1974-03-04
JPS5639795A (en) * 1979-09-04 1981-04-15 Mitsubishi Chem Ind Ltd Preparation of interferon
JPS5817499A (en) * 1981-07-24 1983-02-01 株式会社デンソー Variable speed type voice reproducer

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333318A (en) * 1986-06-26 1988-02-13 ロレアル Non-compressed powder for body and face treatment or cosmetics
CN100374103C (en) * 2001-12-12 2008-03-12 德古萨公司 PH regulated polyamide powder for cosmetics
WO2004043411A1 (en) * 2002-11-14 2004-05-27 Ube Industries, Ltd. Cosmetic composition
CN100457079C (en) * 2002-11-14 2009-02-04 宇部兴产株式会社 Cosmetic composition
US8507006B2 (en) 2003-06-26 2013-08-13 L'oreal Porous particles loaded with cosmetically or pharmaceutically active compounds
WO2007069694A1 (en) * 2005-12-14 2007-06-21 Ube Industries, Ltd. Powder composed of inorganic compound-loaded polyamide porous particle
JP2010132768A (en) * 2008-10-28 2010-06-17 Ube Ind Ltd Almost spherical porous polyamide particle and optical material
CN115087687A (en) * 2020-02-10 2022-09-20 阿科玛法国公司 Polyamide powder and corresponding production method
WO2022014463A1 (en) 2020-07-13 2022-01-20 株式会社ダイセル Cellulose acetate particles, cosmetic composition, and method for producing cellulose acetate particles

Similar Documents

Publication Publication Date Title
US5728457A (en) Porous polymeric material with gradients
AU2013305486B2 (en) Graphene-based materials
Lee et al. Adsorption of proteins onto hydrophobic polymer surfaces: adsorption isotherms and kinetics
Kayaman et al. Structure and protein separation efficiency of poly (N‐isopropylacrylamide) gels: Effect of synthesis conditions
JPH0553827B2 (en)
JPS62215638A (en) Porous polyamide powder
Haggerty et al. Diffusion of polymers through polyacrylamide gels
SA93130564B1 (en) Process for preparing crosslinked, porous, low density polymeric materials
US3499862A (en) Method of preparing shape retaining bodies of organic polymer hydrogels
CN109467738A (en) A kind of preparation method of super absorbent resin
Reinholdsson et al. Preparation and properties of porous particles from trimethylolpropane trimethacrylate
Horák et al. Porous polyHEMA beads prepared by suspension polymerization in aqueous medium
CN108579628A (en) A kind of kappa-carrageenan/graphene oxide gel bead and its preparation method and application
KR20200026307A (en) Nanoporous superabsorbent particles
US4002177A (en) Microporous styrene polymers and method of making same
KR20100087152A (en) Hydrogel with high water content and stability
US4708891A (en) Method for manufacturing polishing cloths
KR100600470B1 (en) Preparing method of porous polymethylmethacrlate
Wood et al. Characterization of Poly (2-Hyoroxyethyl Methacrylate) Gels
US3887730A (en) Microporous styrene polymers and method of making same
CA1104002A (en) Superabsorbent products
Taşar et al. Temperature-responsive poly (acrylamide-co-N-isopropyl acrylamide) hydrogel: Synthesis, characterization, and sorption application
EP1124647B1 (en) In situ fluoropolymer polymerization into porous substrates
Parrish Measurement of water regain and macropore volume of ion‐exchange resins
Kurmaz et al. Preparation of porous polymer networks of N-vinylpyrrolidone with triethylene glycol dimethacrylate and determination of their specific surface area using Rose Bengal dye