US20090036900A1 - Surgery methods using a robotic instrument system - Google Patents

Surgery methods using a robotic instrument system Download PDF

Info

Publication number
US20090036900A1
US20090036900A1 US12024760 US2476008A US2009036900A1 US 20090036900 A1 US20090036900 A1 US 20090036900A1 US 12024760 US12024760 US 12024760 US 2476008 A US2476008 A US 2476008A US 2009036900 A1 US2009036900 A1 US 2009036900A1
Authority
US
Grant status
Application
Patent type
Prior art keywords
instrument
guide
distal end
guide instrument
method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12024760
Inventor
Frederic H. Moll
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hansen Medical Inc
Original Assignee
Hansen Medical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT OR ACCOMODATION FOR PATIENTS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G7/00Beds specially adapted for nursing; Devices for lifting patients or disabled persons
    • A61G7/05Parts, details or accessories of beds
    • A61G7/0503Holders, support devices for receptacles, e.g. for drainage or urine bags
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT OR ACCOMODATION FOR PATIENTS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/10Parts, details or accessories
    • A61G13/101Clamping means for connecting accessories to the operating table
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00238Type of minimally invasive operation
    • A61B2017/00261Discectomy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/50Supports for surgical instruments, e.g. articulated arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT OR ACCOMODATION FOR PATIENTS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/10Parts, details or accessories

Abstract

Various methods for performing various surgical procedures using a robotic instrument system are disclosed. In one embodiment, the method comprises advancing a guide instrument into a patient's body and to the vicinity of a treatment area. The guide instrument may be a robotically controlled catheter which is controlled by a robotic catheter system. The guide instrument comprises an elongate flexible body having a proximal end and a distal end, and an end effector coupled to the distal end. The end effector may comprise various devices for assisting and performing the surgical procedure. For example, the end effector may be a clip applier, a laser fiber, a cryo fiber, or a needle and grasper. An image capture device may also be coupled to the distal end to assist in positioning and operating the guide instrument.

Description

    RELATED APPLICATION DATA
  • The present application claims the benefit under 35 U.S.C. § 119 to U.S. Provisional Patent Application Ser. Nos. 60/899,048, filed on Feb. 2, 2007, and 60/900,584, filed on Feb. 8, 2007. The foregoing applications are hereby incorporated by reference into the present application in their entirety.
  • FIELD OF INVENTION
  • The invention relates generally to robotically controlled systems, such as telerobotic surgical systems, and more particularly to a using a robotic instrument system for performing minimally invasive surgical and other therapeutic procedures.
  • BACKGROUND
  • Robotic interventional systems and devices are well suited for use in performing minimally invasive medical procedures, as opposed to conventional techniques wherein the patient's body cavity is open to permit the surgeon's hands access to internal organs. For example, there is a need for a highly controllable yet minimally sized system to facilitate imaging, diagnosis, and treatment of tissues which may lie deep within a patient, and which may be accessed transcutaneously (e.g., through a surgical port) or via naturally-occurring pathways such as blood vessels, other lumens, or combinations thereof.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to methods of performing various surgical procedures using robotic instrument systems. In one embodiment, the method comprises performing a medical procedure for repairing a detached retina in a patient's eye. The method comprises robotically maneuvering a guide instrument into the vitreous body of the eye. The guide instrument may be a robotically controlled catheter which is controlled by a robotic catheter system. The guide instrument comprises an elongate flexible body having a proximal end and a distal end, and an end effector coupled to the distal end. The end effector may comprise various devices for re-attaching the retina to the sclera of the eye. For example, the end effector may be a clip applier, a laser fiber, a cryo fiber, or a needle and grasper. An image capture device may also be coupled to the distal end to assist in positioning and operating the guide instrument. The guide instrument is used to push the detached retina toward the wall of the eye, and then the end effector is used to re-attach the detached retina to the sclera.
  • In another embodiment, a method for performing a minimally invasive medical procedure in the thoracic cavity of a patient and/or on the heart is provided. The method comprises advancing a first instrument assembly to vicinity of the heart, either through the thoracic cavity via the ribcage and around the lungs, or via the patient's trachea to the main bronchi and through the lung into the mediastinal or pericardial spaces. The first instrument assembly comprises a guide instrument and a sheath instrument. The guide instrument comprises an elongate flexible body having a proximal end and a distal end. The sheath instrument comprises an elongate flexible body having a working lumen therethrough. To make up the instrument assembly, the guide instrument is inserted through the lumen of the sheath instrument. An end effector is coupled to the distal end of the guide instrument for performing various functions during a procedure. For example, a needle, a grasper, an image capture device, a patch, a plurality of needles, among others, may be coupled to the distal end of the guide instrument.
  • A second instrument assembly may also be advanced to the same area as the first instrument assembly above, in order to utilize both instrument assemblies in performing the surgical procedure. The second instrument assembly may be the same or similar to the first instrument assembly, although it may be useful to have different end effectors to enable different of complementary functions to the end effector of the first instrument assembly.
  • As an example, the first and second instrument assemblies may be advanced through the inferior vena cava and into the right atrium in order to treat a patent foramen ovale (PFO), or other intracardiac procedure.
  • In any of the minimally invasive procedures of the present invention the guide instruments and instrument assemblies may be performed using a robotic instrument system, such as a robotic flexible catheter instrument system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings illustrate the design and utility of illustrated embodiments of the invention, in which similar elements are referred to by common reference numerals. In addition, elements having the same reference numeral but different letter identifiers [e.g. a robotic catheter assemblies (28 a and 28 b)], are the same or substantially similar elements, and may be described commonly without the letter identifier [e.g. robotic catheter assembly (28)].
  • FIG. 1A illustrates one embodiment of a robotic catheter system;
  • FIG. 1B illustrates another embodiment of a robotic catheter system;
  • FIGS. 2A-6B illustrate various embodiments of medical procedures for retinal detachment repair;
  • FIGS. 7A-7B illustrate alternative methods for minimally invasively accessing the thoracic cavity with one or more robotically controlled, flexible guide instruments;
  • FIGS. 8A-8C illustrate additional minimally invasive techniques for accessing the thoracic cavity, and in particular the mediastinal or pericardial spaces;
  • FIGS. 9A-9C illustrate one embodiment of a method for patent foramen ovale (PFO) closure procedure using a balloon apparatus;
  • FIGS. 10A-10F illustrate one embodiment of a method for PFO closure with a plurality of needles;
  • FIGS. 11A-11F illustrate another embodiment of a method for PFO closure using a balloon apparatus;
  • FIG. 12A-12C illustrates one embodiment of another method for a PFO closure procedure using a patch; and
  • FIGS. 13A-13F illustrate one embodiment of a method for PFO closure with a suture.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • The present invention is directed to robotic catheter systems and methods of performing various surgical procedures using such robotic catheter systems. For example, FIGS. 1A and 1B illustrate example of embodiments of robotic catheter systems (32) suitable for use in performing the surgical procedures described herein.
  • Referring first to FIG. 1A, one embodiment of a robotic catheter system (32), includes an operator control station (2) located remotely from an operating table (22), and a robotic catheter assembly (1002). The robotic catheter assembly (1002) is coupled to the operating table (22) by an instrument driver mounting brace (20). The robotic catheter assembly (1002) comprises a robotic instrument driver (16) and an instrument (18), such as a guide instrument (18) (also referred to herein as an instrument guide catheter, guide catheter, robotic guide instrument, robotic guide catheter, or the like). A communication link (14) transfers signals between the operator control station (2) and instrument driver (16). The instrument driver mounting brace (20) of the depicted embodiment is a relatively simple, arcuate-shaped structural member configured to position the instrument driver (16) above a patient (not shown) lying on the table (22).
  • In FIG. 1B, another embodiment of a robotic catheter system (32) is depicted, wherein the arcuate-shaped member (20) is replaced by a movable support assembly (26). The support assembly (26) is configured to movably support the instrument driver (16) above the operating table (22) in order to position the instrument driver (16) for convenient access into desired locations relative to a patient (not shown). The support assembly (26) in FIG. 1B is also configured to lock the instrument driver (16) into position once it is positioned.
  • The instrument (18) is typically an elongate, flexible device configured to be inserted into a patient's body. As non-limiting examples, an instrument (18) may comprise an intravascular catheter, an endoscopic surgical instrument or other medical instrument. The instrument (18) may also comprise an instrument assembly (28) comprising a robotic guide instrument (18), or a coaxially coupled and independently controllable robotic sheath instrument (30) (see FIG. 44A) and a robotic guide instrument (18), as described in the U.S. patent applications incorporated by reference below. The instrument (18) or instrument assembly (28) is configured to be operable via the instrument driver (16) such that the instrument driver (16) can operate to steer the instrument (18) or instrument assembly (28) and also to operate tools and devices which may be provided on the instrument assembly (18) or instrument assembly (28) (e.g. an imaging device or cutting tool disposed on the distal end of the instrument (18) or instrument assembly (28)). The guide instrument (18) may be movably positioned within the working lumen of the sheath instrument (30) to enable relative insertion of the two instruments (30, 18), relative rotation, or “roll” of the two instruments (30, 18), and relative steering or bending of the two instruments (30,18) relative to each other, particularly when a distal portion of the guide instrument (18) is inserted beyond the distal tip of the sheath instrument (30).
  • Alternatively, manually steerable and operable instruments or instrument assemblies may also be utilized. Thus, all of the technologies described herein may be utilized with manually or robotically steerable instruments, such as those described in the below-referenced patent application, U.S. patent application Ser. No. 11/481,433.
  • Exemplary embodiments of an operator control station (2), an instrument driver (16), an instrument (18) and instrument assembly (28), a robotic sheath instrument (30), a robotic guide instrument (18), and various instruments (50), are described in detail in the following U.S. patent applications, and are incorporated herein by reference in their entirety:
  • U.S. patent application Ser. Nos. 10/923,660, filed Aug. 20, 2004; 10/949,032, filed Sep. 24, 2005; 11/073,363, filed Mar. 4, 2005; 11/173,812, filed Jul. 1, 2005; 11/176,954, filed Jul. 6, 2005; 11/179,007, filed Jul. 6, 2005; 11/202,925, filed Aug. 12, 2005; 11/331,576, filed Jan. 13, 2006; U.S. Provisional Patent Application Nos. 60/785,001, filed Mar. 22, 2006; 60/788,176, filed Mar. 31, 2006; U.S. patent application Ser. Nos. 11/418,398, filed May 3, 2006; 11/481,433, filed Jul. 3, 2006; 11/637,951, filed Dec. 11, 2006; 11/640,099, filed Dec. 14, 2006; and U.S. Provisional Patent Applications Nos. 60/833,624, filed Jul. 26, 2006, and 60/835,592, filed Aug. 3, 2006.
  • For clarity, the sheath and guide catheter instruments described in the exemplary embodiments below may be described as having a single lumen/tool/end-effector, etc. However, it is contemplated that alternative embodiment of catheter instruments may have a plurality of lumens/tools/end-effectors/ports, etc. Furthermore, it is contemplated that in some embodiments, multiple catheter instruments may be delivered to a surgical site via a single multi-lumen sheath, each of which is robotically driven and controlled by via an instrument driver. Some of the catheter instruments described herein are noted as flexible. It is contemplated that different embodiments of flexible catheters may be designed to have varying degrees of flexibility and control. For example, one catheter embodiment may have controlled flexibility throughout its entire length whereas another embodiment may have little or no flexibility in a first portion and controlled flexibility in a second portion. Similarly, different embodiments of these catheters may be implemented with varying degrees of freedom.
  • Turning now to FIGS. 2A-6B, various embodiments of medical procedures for retinal detachment repair are illustrated. Retinal detachment is a disorder of the eye in which the retina peels away from its underlying layer of support tissue. The thin retina is stuck to the inside wall of the eye by a single-cell layer of pigment cells, called the retinal pigment epithelium (RPE). The cavity inside the more or less spherical retina is filled with a clear jelly, called the vitreous body. The vitreous body adheres to the retina. A detached retina occurs when the retina is no longer in contact with the RPE. This often occurs when the vitreous body shrinks somewhat and pulls the retina off the RPE. When the shrinkage of the vitreous body is uneven, traction on the retina becomes greater in one area. This may cause a tear or rip in the retina. Initial detachment may be localized, but without rapid treatment the entire retina may detach, leading to vision loss and blindness. The retinal tear opens an area of contact between the water expressed out of the shrinking vitreous body, and the RPE. This water tends to unglue the retina off the RPE, thus producing a retinal detachment. The detachment of the retina deprives it from nourishment. To restore vision, it is necessary to reattach the retina. Retinal detachment surgical procedures include, but are not limited to, pneumatic retinopexy, scleral buckling, photocoagulation, cryotherapy, and vitrectomy, any of which may be performed with the use of robotically controlled flexible sheath (30) and/or guide instruments (18), as described herein.
  • Referring to FIGS. 2A-2B, a flexible guide instrument (18) is inserted into the vitreous body of an eye through the bulbar conjunctiva. The guide instrument (18) is maneuvered towards the retinal detachment (999) and is used to push the retina back towards the wall of the eye. In this embodiment, a clip applier (804) for dispensing one or more clips (804) is disposed on the distal tip of the guide catheter (18). Clips (805) are fired from the clip applier (804) to fasten the retina to the sclera. In one embodiment, the clips (805) are fabricated from resorbable material such as polyglycolide so that the clips (805) will be metabolized by the body over time.
  • Referring to FIGS. 3A-3B, a similar approach for repairing a retinal detachment (999) is disclosed. In this embodiment, a flexible guide instrument (18) is equipped with an image capture device (853), an arcuate needle (5), and a grasper (802). The flexible guide instrument (19) is inserted into the vitreous body of an eye. The guide instrument (18) is robotically controlled to push the area of retinal detachment (999) back against the eye wall. Then the arcuate needle (5) and grasper (802) are used to suture the retina to the sclera using sutures (855). The sutures (855) of this embodiment are also fabricated from a resorbable polyglycolide material such as Ethicon Vicryl, Spenco Polysorb, or Syneture Dexon sutures.
  • Cryotherapy (freezing) and laser photocoagulation are treatments used to create a scar/adhesion around the retinal hole to prevent fluid from entering the hole and accumulating behind the retina and exacerbating the retinal detachment. Cryopexy and photocoagulation are generally interchangeable. However, cryopexy is generally used in instances where there is a lot of fluid behind the hole and laser retinopexy will not take. Laser photocoagulation uses heat, in the form of laser light, and cryotherapy uses extreme cold to seal the retina. Referring to FIGS. 4A-4B, a flexible guide instrument (18) having an image capture device (853) and a laser fiber (761) is inserted into the vitreous body of an eye through the bulbar conjunctiva to perform a laser photocoagulation. The guide instrument's (18) capability of robotic steerability allows the surgeon to precisely orient and position the laser (761) at the treatment location without causing undue trauma to the patient's eye. The image capture device (853) may be used to assist in positioning the guide instrument (18) and the laser fiber (761). Once the laser (761) is positioned at the desired location and orientation, the laser (761) is operated to apply laser photocoagulation to repair the retinal hole or tear in the retina.
  • Referring to FIGS. 5A-5B, a flexible guide instrument (18) having an image capture device (853) and a cryo fiber (997) is inserted into the vitreous body of an eye through the bulbar conjunctiva. Again, the image capture device (853) may be used to assist in advancing and positioning the guide instrument (18) and the cryo fiber (997). Once the cryo fiber (997) is properly positioned proximate the retinal detachment or tear, the cryo fiber (997) is operated to perform a cryotherapy on a retinal hole or tear in the retina.
  • Pneumatic retinopexy is a treatment method wherein a gas bubble is injected into the vitreous cavity inside of the eye, which forces the retina back into position. The retina usually reattaches within several days provided that the bubble is kept in position against the retinal detachment. The surgeon may help seal the retina back into place against the wall of the eye with laser photocoagulation or cryotherapy. A vitrectomy procedure involving removal of the vitreous humor may be required for more complicated retinal detachments. This procedure removes the vitreous jelly as well as any scar tissue, and replaces it with a gas bubble. This gas bubble sometimes helps push the retina back against the eye wall.
  • Referring to FIGS. 6A-6B, a flexible guide instrument (18) is inserted into the vitreous body of an eye through the bulbar conjunctiva. In this embodiment, the flexible guide instrument (18) is equipped with an image capture device (853) and an irrigation port (861). The irrigation port may be used to inject a gas or fluid into the vitreous cavity. FIG. 6B illustrates a gas bubble (998) which has been injected by the irrigation port (861) at the location of a retinal detachment (999) thereby holding the retina in place against the eye wall.
  • Referring to FIGS. 7A-7B, alternative methods of minimally invasively accessing the thoracic cavity with one or more robotically controlled, flexible catheter instrument assemblies (28) are disclosed. In FIG. 7A, a flexible catheter assembly (28) comprising a steerable sheath (30) and guide instrument (18) are introduced into the thoracic cavity through an intercostal penetration. By traversing past the ribcage and around the lungs, the catheters (18/30) may be maneuvered under the Xiphoid process to the mediastinal or pericardial spaces, thus obtaining access to the heart (8) or other tissue structure of interest, such as tumors which may lie in the mediastinal space. Alternatively, a slightly more direct access route may be utilized wherein one or more instruments are maneuvered into the mediastinal or pericardial space through a puncture directly adjacent the Xiphoid process. Such techniques may be particularly useful for minimally invasive cardiac procedures such as repair or replacement of aortic, mitral, or other heart valves, repair of septal defects, pulmonary thrombectomy, electrophysiological mapping and ablation, coronary artery bypass grafting, angioplasty, atherectomy, treating aneurysms, and resecting, biopsying, or ablating tissue structures of interest, such as tumors which may lie in the mediastinal space. Referring to FIG. 7B, a second flexible catheter assembly (28 b) comprising a second steerable sheath (30 b) and a second guide instrument (18 b) are introduced on the left side of the patient's thoracic cavity. The two sets of catheters (28 a/28 b) may be controlled to operate together on the heart (8), lungs, or upper gastrointestinal tract. It is further contemplated that additional catheters may be introduced into the thoracic cavity at alternative intercostal spaces. In alternative embodiments, catheters may be robotically steered to the diaphragm and possibly into the abdominal cavity.
  • FIGS. 8A-8C disclose additional minimally invasive techniques for accessing the thoracic cavity, and in particular the mediastinal or pericardial spaces. Referring to FIG. 8A, a flexible sheath (30) is inserted down a patient's trachea to the main bronchi. In this embodiment, the sheath (30) enters into the right lung via the right main bronchi. By using a tissue-crossing tool configuration, such as a needle and/or dilator, a puncture is made through the right lung to gain access to the mediastinal or pericardial spaces under the sternum. In this illustration, the sheath (30) is held at about the puncture and a flexible guide instrument (18) is inserted into the pericardial space. As shown in FIG. 8A, the guide instrument (18) carries an ablation catheter (6) and may be used to ablate the heart (8) or other tissue structures of interest, such as tumors which may lie within the mediastinal or pericardial spaces.
  • Referring to FIG. 8B, the example of FIG. 8A is expanded upon and a second flexible instrument assembly (28 b) comprising a flexible steerable sheath (30 b) and guide instrument (18 b) is inserted down the trachea, through the left main bronchi, and into the left lung. As described above, a puncture is made in the left lung to access the mediastinal or pericardial space. The second sheath instrument (30 b) is parked in the left lung as the second guide instrument (18 b) is introduced into the mediastinal or pericardial space. In this embodiment, the first guide catheter (18 a) is equipped with an ablation catheter (6) and the second guide catheter (18 b) carries an image capture device (853) in its central lumen. By robotically steering the two catheters (28 a/28 b) about the mediastinal or pericardial spaces, various important tissue structures, such as tumors which may lie in the mediastinal space, or external regions of the heart (8), are accessible and a surgeon may perform ablation, or other procedures using a variety of end effectors, such as RF ablation end effectors, high intensity focused ultrasound end effectors, cryo-ablation end effectors, grasper end effectors, needle biopsy end effectors, snare or loop biopsy end effectors, and the like, while viewing the region of interest on a display. The embodiments described herein in reference to FIGS. 7B and 8B, wherein two flexible instrument platforms are advanced to the same operating environment, present the operator with the advantage of having a surgical “triangulation” type of spatial configuration, wherein compressive loads, tensile loads, dissection and distraction techniques, and the like may be performed in a similar manner as they are utilized in conventional “two-handed” surgery.
  • Referring to FIG. 8C, the ablation catheter (6) of the first guide instrument (18 a) has been replaced with a first grasper (802) and a second grasper (802) is provided adjacent the image capture device (853) at the distal tip of the second guide instrument (18 b). Also visible in FIG. 8C are the left and right coronary arteries. The graspers (802) may be operated together to perform a minimally invasive coronary artery bypass surgery. Other types of surgeries may also be performed once the thoracic cavity is accessed via this method. Although these examples have been illustrated with the delivery of a limited set of tools and instruments through a catheter instrument, it is contemplated that a plurality of other tools such as a needle, clip applier, irrigation port, contrast agent port, illumination port, lasso catheter, balloon, etc. may be delivered to the mediastinal or pericardial space via a catheter instrument traversing down the trachea and through the lungs.
  • As the catheter instruments (28) are retracted from the thoracic cavity at the end of these procedures, the punctures may be closed with a resorbable material such as a fibrin sealant or polyglycolide sutures available from on commercially as Vicryl, Polysorb, or Dexon sutures. Alternatively, nonabsorbable sutures or clips may also be used in some instances.
  • FIGS. 9A-9C illustrate one embodiment of a method for a patent foramen ovale (PFO) closure procedure using a balloon apparatus. A guide instrument catheter (18) with a balloon structure (102) is advanced up the inferior vena cava (50) to the right atrium (9). The balloon (102) is deployed out the distal tip of the catheter (18) and inflated in the right atrium (9). The balloon (102) is then placed against the septal wall (64) separating the right atrium (9) and the left atrium (10). A needle (816) is extended through a lumen in the balloon (102) to pierce both sides of the PFO (66) and bring them together. In one procedure, the needle (816) is used to irritate the tissue around the PFO (66) to encourage closure. In another instance, the needle (816) is used to suture close the PFO (66). In yet another embodiment, the needle (816) may be used to inject medicine into the tissue. The needle (816) of one embodiment may be a self closing needle that locks into place when it is ejected from the balloon apparatus (102), thus hooking together the PFO (66).
  • FIGS. 10A-10F illustrate one embodiment of a method for PFO closure with a plurality of “one shot” Nitinol needles (7). A sheath catheter (30) travels up the inferior vena cava and passes a guide catheter (18) into the right atrium (9). Disposed at that distal tip of the guide catheter (18) are a plurality of harpoon looking needles (7). In one embodiment, the needles (7) are circumferentially arranged about the distal surface of the guide catheter (18). When each of these needles (7) are in a ready position on the distal surface, they are open in a linear configuration as shown in FIG. 10C, and when released, the needles (7) spring into a closed position as shown in FIG. 10D. The guide catheter (18) is maneuvered up against the PFO (66) such that the barbed ends of the needles (7) pierce through the septal wall (64) and into the left atrium (10) at FIG. 10E. The needles (7) are released from the distal surface of the guide catheter (18) at FIG. 10F and the guide catheter (18) back away from the PFO. Upon release, each of the needles (7) spring into a closed position such as that shown in FIG. 10F, thus latching together the PFO (66). In one embodiment, each of the needles (7) are separately deployable from the others. In another embodiment, the plurality of needles (7) may be grouped together with a mounting ring and deployed as a single unit.
  • FIGS. 11A-11F illustrate another embodiment of a method for PFO closure using a balloon apparatus. A guide catheter (18) is inserted into the right atrium (9) via the inferior vena cava (50). A balloon (102) is deployed out the distal tip of the guide catheter (18). In this embodiment, the top surface of the balloon (102) is comprised of a detachable fibrin or polyglactin patch (104) having a plurality of tiny barbs or hooks as shown in the enlarged view of FIG. 11C. As the balloon (102) is inflated, the patch (104) opens up and spreads out, as shown in the enlarged views of FIGS. 11C and 11D. The guide catheter (18) is robotically controlled to press the balloon (102) and the patch (104) against the PFO (66). The barbs on the patch (104) latch onto the septal wall (64) and cover the PFO (66) area. As the guide catheter (18) is retracted away from the septal wall (64), the patch (104) clings to the septal wall (64) and is detached from the balloon (102). As a result, the balloon (102) is deflated and the patch (104) is left in place over the PFO (66). Although a resorbable patch is described in this example, it is also contemplated that a nonabsorbable patch may also be used for PFO closure.
  • FIGS. 12A-12C illustrate one embodiment of another method for a PFO closure procedure using a patch. A first guide catheter (18 a) with a grasper (802) and an image capture device (853) is advanced up the inferior vena cava (50) to the right atrium (9). A second guide catheter (18 b) with another grasper (802) and an irrigation port (861) is also advanced up the inferior vena cava (50) to the right atrium (9). One of the graspers (802) deploys a patch (105) fabricated from polyglycolide or fibrin. Together, the two graspers (802) are used to position the patch (105) against the PFO (66) and mount it into place with a clip or suture (which can be applied using the graspers (802) or other device), or fibrin sealant (which can be dispensed through the irrigation port (861)).
  • FIGS. 13A-13F illustrate one embodiment of another method for PFO closure using one or more sutures. In FIG. 13A, a sheath instrument (30) and a guide instrument (18) are advanced into the right atrium (9) to a position proximate to the septal wall (64). A needle (5) is used to pierce the septal wall (64) at a location above the PFO (66) in this illustration and the guide instrument (18) is passed transseptally to the left atrium (10), as shown in FIG. 12B. The guide instrument (18) is robotically steered into a U-turn to face the septal wall (64) in the left atrium (10), as shown in FIG. 12C. The septal wall (64) is pierced at a location below the PFO (66) with a needle (5), as shown in FIG. 12C. At FIG. 12D, the guide instrument (18) is advanced back through the septal wall (64) where the wall (64) was just pierced, such that the guide instrument reenters the right atrium (9). Still referring to FIG. 12D, a hook, needle, or suture capture device (37) is deployed from the lumen of the guide instrument (18). The hook (37) is maneuvered to a suture lumen opening (39) located in the external sidewall of the sheath instrument (30). In this implementation, a suture lumen (33) located in the sidewall of the sheath (30) provides a conduit through which the suture (35) may be inserted from the proximal end of the sheath (30) and dispensed through the suture lumen opening (39) at the distal end of the sheath (30). In another embodiment, the suture lumen opening (39) may be located at the distal tip of the sheath (30) or inside the sheath instrument (30). In yet another embodiment, the suture may be deployed from a catheter separate from the sheath (30) and the guide (18). The hook (37) snares the suture (35). The guide instrument (18) is then retracted back along its path back through the septal wall (64) into the left atrium (10) and then back through the septal wall (64) again and into the right atrium (9). As the guide instrument (18) is retracted, the suture (35) is pulled along by the hook (37) until the end of the suture (35) is also in the right atrium (9), as shown in FIG. 12E. The suture (35) is pulled taut such that the PFO (66) is closed and the suture is tied together into a knot to hold the PFO (66) closed. In one embodiment a knot pusher may be used to push forth a knot from the distal end of the catheter (18) to hold the suture (35) in place. In this example, a cutter (803) is used to cut the suture (35) and then the catheters (18/30) may be withdrawn.
  • While multiple embodiments and variations of the many aspects of the invention have been disclosed and described herein, such disclosure is provided for purposes of illustration only. Many combinations and permutations of the disclosed system are useful in minimally invasive surgery, and the system is configured to be flexible. Many combinations and permutations of the disclosed system are useful in minimally invasive surgery, and the system is configured to be flexible, and it should be understood that the invention generally, as well as the specific embodiments described herein, are not limited to the particular forms or methods disclosed, but also cover all modifications, equivalents and alternatives falling within the scope of the appended claims.

Claims (25)

  1. 1. A method for repairing a detached retina in a patient's eye, comprising:
    robotically maneuvering a guide instrument in the vitreous body of the eye, the guide instrument comprising an elongate flexible body having a proximal end, a distal end, and a clip applier couple to the distal end, the clip applier configured to dispense and apply clips into tissue;
    pushing the detached retina toward the wall of the eye using the guide instrument under robotic control;
    robotically maneuvering a guide instrument to thereby position the clip applier proximate the detached retina; and
    using the clip applier to apply clips into tissue to fasten the detached retina to the sclera of the eye.
  2. 2. The method of claim 1, wherein the clips are fabricated from resorbable material that is metabolized by the patient's body over a period of time.
  3. 3. The method of claim 2, wherein the resorbable material is polyglycolide.
  4. 4. A method for repairing a detached retina in a patient's eye, comprising:
    robotically maneuvering a guide instrument in the vitreous body of the eye, the guide instrument comprising an elongate flexible body having a proximal end, a distal end, an image capture device, an arcuate needle and a grasper coupled to the instrument distal end;
    pushing the detached retina toward the wall of the eye using the guide instrument under robotic control; and
    applying sutures to suture the retina to the sclera using the arcuate needle and grasper.
  5. 5. The method of claim 4, wherein the sutures are fabricated from resorbable material that is metabolized by the patient's body over a period of time.
  6. 6. The method of claim 5, wherein the resorbable material is a polyglycolide selected from the group of Ethicon Vicryl, Spenco Polysorb, or Syneture Dexon.
  7. 7. The method of claim 4, further comprising imaging the area of the detached retina using the image capture device to assist in positioning the guide instrument and applying the sutures.
  8. 8. A method for repairing a detached retina in a patient's eye, comprising:
    robotically maneuvering a guide instrument in the vitreous body of the eye, the guide instrument comprising an elongate flexible body having a proximal end, a distal end, an image capture device, and a laser fiber coupled to the distal end;
    pushing the detached retina toward the wall of the eye using the instrument guide catheter under robotic control;
    positioning the laser fiber to thereby aim the laser at the area of the detached retina; and
    applying laser photocoagulation to the detached retina using the laser fiber.
  9. 9. The method of claim 8, further comprising imaging the area of the detached retina using the image capture device to assist in positioning the guide instrument and aiming the laser fiber.
  10. 10. A method for repairing a detached retina in a patient's eye, comprising:
    robotically maneuvering a guide instrument in the vitreous body of the eye, said the guide instrument comprising an elongate flexible body having a proximal end, a distal end, an image capture device, and a cryo-ablation element coupled to the distal end;
    pushing the detached retina toward the wall of the eye using the guide instrument guide catheter under robotic control;
    positioning the cryo fiber at a position for applying cryotherapy to the area of the detached retina; and
    applying cryotherapy to the detached retina using the cryo fiber.
  11. 11. The method of claim 10, further comprising imaging the area of the detached retina using the image capture device to assist in positioning the instrument guide catheter and aiming the cryo fiber.
  12. 12. A method for repairing a detached retina in a patient's eye, comprising:
    advancing a guide instrument into the vitreous body of the eye,
    robotically maneuvering a distal end of the guide instrument guide within the vitreous body; and
    injecting a gas or fluid bubble into a vitreous cavity of the eye using an irrigation port disposed on a distal end portion of the guide instrument in a manner such that the bubble pushes the detached retina toward the wall of the eye.
  13. 13. The method of claim 12, further comprising imaging the area of the detached retina using an image capture device coupled to the distal end portion of the guide instrument.
  14. 14. A method for performing a medical procedure in the thoracic cavity of a patient, comprising:
    advancing a first instrument assembly into the thoracic cavity via the ribcage and around the lungs, the first instrument assembly comprising a first guide instrument and a first sheath instrument, the first guide instrument comprising an elongate flexible body having a proximal end and a distal end, the sheath instrument comprising an elongate flexible body having a working lumen therethrough, wherein the first guide instrument is inserted through the working lumen of the sheath instrument; and
    robotically maneuvering the first instrument assembly into a pericardial space so that a distal end portion of the guide instrument accesses the patient's heart.
  15. 15. The method of claim 14, further comprising:
    advancing a second instrument assembly into the thoracic cavity, the second instrument assembly comprising a second guide instrument and a second sheath instrument, the second guide instrument comprising an elongate flexible body having a proximal end and a distal end, the sheath instrument comprising an elongate flexible body having a working lumen therethrough, wherein the second guide instrument is inserted through the working lumen of the second sheath instrument; and
    robotically maneuvering the second instrument assembly into the pericardial space so that a distal end portion of the second guide instrument accesses the patient's heart.
  16. 16. A method for performing a medical procedure in the thoracic cavity of a patient, comprising:
    inserting a first instrument assembly down the patient's trachea to the main bronchi, the first instrument assembly comprising a first guide instrument and a first sheath instrument, the first guide instrument comprising an elongate flexible body having a proximal end and a distal end, the first sheath instrument comprising an elongate flexible body having a working lumen therethrough, the first guide instrument being inserted through the working lumen of the first sheath instrument; and
    robotically maneuvering a distal end portion of the first guide catheter to puncture through the lung and into the patient's pericardial space, and advancing the first instrument assembly into the pericardial space to access the patient's heart.
  17. 17. The method of claim 16, further comprising:
    advancing a second instrument assembly down the patient's trachea to the main bronchi, said second instrument assembly comprising a second guide instrument and a second sheath instrument, the second guide catheter comprising an elongate flexible body having a proximal end and a distal end, the sheath instrument comprising an elongate flexible body having a working therethrough, wherein the second guide instrument is inserted through the working lumen of the second sheath instrument; and
    robotically maneuvering the second instrument the second instrument assembly to puncture through the lung and into the patient's pericardial space, and advancing the second instrument assembly into the pericardial space to access the patient's heart.
  18. 18. The method of claim 17, wherein the first guide instrument further comprises an ablation catheter disposed on the distal end of the first guide instrument, and said method further comprises the step of ablating the heart with the ablation catheter.
  19. 19. The method of claim 17, wherein the second guide instrument comprises an image capture device, and said method further comprises imaging a treatment area of the heart with the image capture device.
  20. 20. A method for treating a patent foramen ovale (PFO) in a patient's heart, comprising:
    robotically maneuvering a guide instrument up the inferior vena cava and into the right atrium of the heart, the guide instrument comprising an elongate flexible body having a proximal end and a distal end, and a balloon coupled to the distal end;
    inflating the balloon against the septal wall of the heart; and
    advancing a needle through a lumen in said balloon and piercing both sides of the PFO.
  21. 21. The method of claim 20, wherein the needle is used to irritate the tissue surrounding the PFO to encourage closure of the PFO.
  22. 22. The method of claim 20, wherein the needle is used to apply sutures to the PFO to close the PFO.
  23. 23. A method for performing a medical procedure in the thoracic cavity of a patient, comprising:
    inserting a first instrument assembly down the patient's trachea to the main bronchi, the first instrument assembly comprising a first guide instrument and a first sheath instrument, the first guide instrument comprising an elongate flexible body having a proximal end and a distal end, the first sheath instrument comprising an elongate flexible body having a working lumen therethrough, the first guide instrument being inserted through the working lumen of the first sheath instrument; and
    robotically maneuvering a distal end portion of the first guide catheter to puncture through the lung and into the patient's mediastinal space, and advancing the first instrument assembly into the mediastinal space to access tissue structures located therein.
  24. 24. The method of claim 23, further comprising:
    advancing a second instrument assembly into the thoracic cavity, the second instrument assembly comprising a second guide instrument and a second sheath instrument, the second guide instrument comprising an elongate flexible body having a proximal end and a distal end, the sheath instrument comprising an elongate flexible body having a working lumen therethrough, wherein the second guide instrument is inserted through the working lumen of the second sheath instrument; and
    robotically maneuvering the second instrument assembly into the mediastinal space so that a distal end portion of the second guide instrument accesses tissue structures located therein.
  25. 25. The method of claim 24, wherein the first guide instrument further comprises an ablation catheter disposed on the distal end of the first guide instrument, and said method further comprises the step of ablating a tumor accessible via the mediastinal space.
US12024760 2007-02-02 2008-02-01 Surgery methods using a robotic instrument system Abandoned US20090036900A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US89904807 true 2007-02-02 2007-02-02
US90058407 true 2007-02-08 2007-02-08
US12024760 US20090036900A1 (en) 2007-02-02 2008-02-01 Surgery methods using a robotic instrument system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12024760 US20090036900A1 (en) 2007-02-02 2008-02-01 Surgery methods using a robotic instrument system
US13486934 US20120253332A1 (en) 2007-02-02 2012-06-01 Surgery methods using a robotic instrument system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13486934 Division US20120253332A1 (en) 2007-02-02 2012-06-01 Surgery methods using a robotic instrument system

Publications (1)

Publication Number Publication Date
US20090036900A1 true true US20090036900A1 (en) 2009-02-05

Family

ID=39661452

Family Applications (7)

Application Number Title Priority Date Filing Date
US12024760 Abandoned US20090036900A1 (en) 2007-02-02 2008-02-01 Surgery methods using a robotic instrument system
US12012795 Abandoned US20080218770A1 (en) 2007-02-02 2008-02-01 Robotic surgical instrument and methods using bragg fiber sensors
US12024642 Abandoned US20080195081A1 (en) 2007-02-02 2008-02-01 Spinal surgery methods using a robotic instrument system
US12024883 Active 2030-06-02 US8146874B2 (en) 2007-02-02 2008-02-01 Mounting support assembly for suspending a medical instrument driver above an operating table
US13437716 Pending US20120241576A1 (en) 2007-02-02 2012-04-02 Mounting support assembly for suspending a medical instrument driver above an operating table
US13486934 Abandoned US20120253332A1 (en) 2007-02-02 2012-06-01 Surgery methods using a robotic instrument system
US13910903 Active 2030-06-05 US9566201B2 (en) 2007-02-02 2013-06-05 Mounting support assembly for suspending a medical instrument driver above an operating table

Family Applications After (6)

Application Number Title Priority Date Filing Date
US12012795 Abandoned US20080218770A1 (en) 2007-02-02 2008-02-01 Robotic surgical instrument and methods using bragg fiber sensors
US12024642 Abandoned US20080195081A1 (en) 2007-02-02 2008-02-01 Spinal surgery methods using a robotic instrument system
US12024883 Active 2030-06-02 US8146874B2 (en) 2007-02-02 2008-02-01 Mounting support assembly for suspending a medical instrument driver above an operating table
US13437716 Pending US20120241576A1 (en) 2007-02-02 2012-04-02 Mounting support assembly for suspending a medical instrument driver above an operating table
US13486934 Abandoned US20120253332A1 (en) 2007-02-02 2012-06-01 Surgery methods using a robotic instrument system
US13910903 Active 2030-06-05 US9566201B2 (en) 2007-02-02 2013-06-05 Mounting support assembly for suspending a medical instrument driver above an operating table

Country Status (2)

Country Link
US (7) US20090036900A1 (en)
WO (2) WO2008097540A3 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060253108A1 (en) * 2005-05-03 2006-11-09 Yu Alan L Support assembly for robotic catheter system
US20090228020A1 (en) * 2008-03-06 2009-09-10 Hansen Medical, Inc. In-situ graft fenestration
US20090254083A1 (en) * 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
US20100048998A1 (en) * 2008-08-01 2010-02-25 Hansen Medical, Inc. Auxiliary cavity localization
US20130027531A1 (en) * 2011-07-29 2013-01-31 Olympus Corporation Operation method of endoscope
US8613748B2 (en) 2010-11-10 2013-12-24 Perfint Healthcare Private Limited Apparatus and method for stabilizing a needle
US8652031B2 (en) 2011-12-29 2014-02-18 St. Jude Medical, Atrial Fibrillation Division, Inc. Remote guidance system for medical devices for use in environments having electromagnetic interference
US20160279394A1 (en) * 2011-01-20 2016-09-29 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US9486189B2 (en) 2010-12-02 2016-11-08 Hitachi Aloka Medical, Ltd. Assembly for use with surgery system
US9566201B2 (en) 2007-02-02 2017-02-14 Hansen Medical, Inc. Mounting support assembly for suspending a medical instrument driver above an operating table
US9693895B2 (en) 2012-06-12 2017-07-04 Altaviz, Llc Intraocular gas injector

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9126023B1 (en) * 2007-12-14 2015-09-08 Gmedelaware 2 Llc Balloon expandable cement director and related methods
US7781724B2 (en) * 2004-07-16 2010-08-24 Luna Innovations Incorporated Fiber optic position and shape sensing device and method relating thereto
US20100312129A1 (en) 2005-01-26 2010-12-09 Schecter Stuart O Cardiovascular haptic handle system
CN101247847B (en) * 2005-07-11 2013-01-09 导管机器人技术公司 Remote control catheterization system
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US8989528B2 (en) 2006-02-22 2015-03-24 Hansen Medical, Inc. Optical fiber grating sensors and methods of manufacture
EP1996063A1 (en) * 2006-03-22 2008-12-03 Hansen Medical, Inc. Fiber optic instrument sensing system
US8050523B2 (en) 2007-04-20 2011-11-01 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
EP2628460A3 (en) 2007-08-14 2017-06-28 Koninklijke Philips N.V. Robotic instrument systems and methods utilizing optical fiber sensors
US20130165945A9 (en) * 2007-08-14 2013-06-27 Hansen Medical, Inc. Methods and devices for controlling a shapeable instrument
EP2214575A2 (en) * 2007-11-29 2010-08-11 SurgiQuest, Incorporated Surgical instruments with improved dexterity for use in minimally invasive surgical procedures
WO2009092059A3 (en) 2008-01-16 2009-12-30 Catheter Robotics, Inc. Remotely controlled catheter insertion system
US9486292B2 (en) * 2008-02-14 2016-11-08 Immersion Corporation Systems and methods for real-time winding analysis for knot detection
US8792964B2 (en) * 2008-03-12 2014-07-29 Siemens Aktiengesellschaft Method and apparatus for conducting an interventional procedure involving heart valves using a robot-based X-ray device
CA2709099C (en) * 2008-06-18 2017-06-13 Mako Surgical Corp. Fiber optic tracking system and method for tracking
GB0811971D0 (en) 2008-06-30 2008-07-30 Oliver Crispin Robotics Ltd Robotic arm
US7815376B2 (en) * 2008-06-30 2010-10-19 Intuitive Surgical Operations, Inc. Fixture for shape-sensing optical fiber in a kinematic chain
US7720322B2 (en) * 2008-06-30 2010-05-18 Intuitive Surgical, Inc. Fiber optic shape sensor
US10004387B2 (en) 2009-03-26 2018-06-26 Intuitive Surgical Operations, Inc. Method and system for assisting an operator in endoscopic navigation
EP3023941A3 (en) 2009-03-26 2016-08-03 Intuitive Surgical Operations, Inc. System for providing visual guidance for steering a tip of an endoscopic device towards one or more landmarks and assisting an operator in endoscopic navigation
US8337397B2 (en) 2009-03-26 2012-12-25 Intuitive Surgical Operations, Inc. Method and system for providing visual guidance to an operator for steering a tip of an endoscopic device toward one or more landmarks in a patient
JP5827219B2 (en) * 2009-05-29 2015-12-02 ナンヤン テクノロジカル ユニヴァーシティNanyang Technological University Robotic system for flexible endoscopy
US8780339B2 (en) 2009-07-15 2014-07-15 Koninklijke Philips N.V. Fiber shape sensing systems and methods
JP2012533383A (en) * 2009-07-20 2012-12-27 ザ エーデルマン リサーチ リミテッド Surgical access device
US8377013B2 (en) * 2009-08-05 2013-02-19 The University Of Toledo Needle for directional control of the injection of bone cement into a vertebral compression fracture
KR101606097B1 (en) * 2009-10-01 2016-03-24 마코 서지컬 코포레이션 Surgical System for the positioning of prosthetic components and / or limit the movement of surgical tools
US10045882B2 (en) 2009-10-30 2018-08-14 The Johns Hopkins University Surgical instrument and systems with integrated optical sensor
CN102711586B (en) 2010-02-11 2015-06-17 直观外科手术操作公司 Method and system for automatically maintaining an operator selected roll orientation at a distal tip of a robotic endoscope
US9285246B2 (en) * 2010-02-12 2016-03-15 Intuitive Surgical Operations, Inc. Method and system for absolute three-dimensional measurements using a twist-insensitive shape sensor
US9220554B2 (en) 2010-02-18 2015-12-29 Globus Medical, Inc. Methods and apparatus for treating vertebral fractures
EP2545421A4 (en) * 2010-03-10 2014-01-01 Robotic Drilling Systems As Method and device for securing operation of automatic or autonomous equipment
US8460236B2 (en) 2010-06-24 2013-06-11 Hansen Medical, Inc. Fiber optic instrument sensing system
US8672837B2 (en) * 2010-06-24 2014-03-18 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
CA2811450A1 (en) * 2010-09-14 2012-03-22 The Johns Hopkins University Robotic system to augment endoscopes
US20120071894A1 (en) 2010-09-17 2012-03-22 Tanner Neal A Robotic medical systems and methods
WO2012046202A1 (en) 2010-10-08 2012-04-12 Koninklijke Philips Electronics N.V. Flexible tether with integrated sensors for dynamic instrument tracking
CN103188997B (en) * 2010-11-05 2017-05-24 皇家飞利浦电子股份有限公司 The imaging apparatus for imaging an object for
WO2012101563A3 (en) * 2011-01-27 2012-10-18 Koninklijke Philips Electronics N.V. Integration of fiber optic shape sensing within an nterventional environment
US20120220879A1 (en) * 2011-02-24 2012-08-30 Vascomed Gmbh Catheter and Catheter Arrangement
WO2012131658A1 (en) * 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Small active medical robot and passive holding structure
US9308050B2 (en) * 2011-04-01 2016-04-12 Ecole Polytechnique Federale De Lausanne (Epfl) Robotic system and method for spinal and other surgeries
US8942828B1 (en) 2011-04-13 2015-01-27 Stuart Schecter, LLC Minimally invasive cardiovascular support system with true haptic coupling
KR101782352B1 (en) 2011-04-25 2017-09-29 한국기술교육대학교 산학협력단 Apparatus For Measuring Operating Cable Force which applied to the Robot Manipulator Using Fiber Bragg Grating Sensor And Romote Operating Apparatus for Robot Mnipulator thereof
US8900131B2 (en) 2011-05-13 2014-12-02 Intuitive Surgical Operations, Inc. Medical system providing dynamic registration of a model of an anatomical structure for image-guided surgery
US9572481B2 (en) * 2011-05-13 2017-02-21 Intuitive Surgical Operations, Inc. Medical system with multiple operating modes for steering a medical instrument through linked body passages
US9138166B2 (en) 2011-07-29 2015-09-22 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
CN103889506B (en) 2011-08-16 2016-10-05 皇家飞利浦有限公司 For the treatment planning system and treatment system
WO2013057620A1 (en) * 2011-10-20 2013-04-25 Koninklijke Philips Electronics N.V. Shape sensing assisted medical procedure
US9622825B2 (en) * 2011-11-28 2017-04-18 National University Of Singapore Robotic system for flexible endoscopy
US9956042B2 (en) 2012-01-13 2018-05-01 Vanderbilt University Systems and methods for robot-assisted transurethral exploration and intervention
US9539726B2 (en) * 2012-04-20 2017-01-10 Vanderbilt University Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots
US9549720B2 (en) 2012-04-20 2017-01-24 Vanderbilt University Robotic device for establishing access channel
US9687303B2 (en) 2012-04-20 2017-06-27 Vanderbilt University Dexterous wrists for surgical intervention
US10013082B2 (en) 2012-06-05 2018-07-03 Stuart Schecter, LLC Operating system with haptic interface for minimally invasive, hand-held surgical instrument
EP2863827A4 (en) 2012-06-21 2016-04-20 Globus Medical Inc Surgical robot platform
RU2515850C1 (en) * 2012-10-04 2014-05-20 государственное бюджетное образовательное учреждение высшего профессионального образования "Омская государственная медицинская академия" Министерства здравоохранения Российской Федерации (ГБОУ ВПО ОмГМА Минздрава России) Method for combined drainage of pleural cavity and intermuscular spaces accompanying spinal operations in children
JP6219396B2 (en) 2012-10-12 2017-10-25 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Positioning the medical device in the branch anatomy
DE102012110193A1 (en) 2012-10-25 2014-04-30 Mis-Robotics Gmbh Holding device for releasably fastening e.g. surgical robot to rail for use in minimally invasive surgery, has quick release mechanism that is fastened onto rail, for securing robot having robot port
US9533121B2 (en) 2013-02-26 2017-01-03 Catheter Precision, Inc. Components and methods for accommodating guidewire catheters on a catheter controller system
US10080576B2 (en) 2013-03-08 2018-09-25 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US9532840B2 (en) 2013-03-08 2017-01-03 Hansen Medical, Inc. Slider control of catheters and wires
US9057600B2 (en) 2013-03-13 2015-06-16 Hansen Medical, Inc. Reducing incremental measurement sensor error
US9014851B2 (en) 2013-03-15 2015-04-21 Hansen Medical, Inc. Systems and methods for tracking robotically controlled medical instruments
US20140364870A1 (en) * 2013-06-11 2014-12-11 Auris Surgical Robotics, Inc. Method, apparatus, and a system for robotic assisted cataract surgery
JP2015016181A (en) * 2013-07-12 2015-01-29 オリンパス株式会社 Surgery support robot
US9724493B2 (en) 2013-08-27 2017-08-08 Catheter Precision, Inc. Components and methods for balancing a catheter controller system with a counterweight
US9993614B2 (en) 2013-08-27 2018-06-12 Catheter Precision, Inc. Components for multiple axis control of a catheter in a catheter positioning system
EP3041429A1 (en) * 2013-09-04 2016-07-13 Koninklijke Philips N.V. Robotic system
US9750577B2 (en) 2013-09-06 2017-09-05 Catheter Precision, Inc. Single hand operated remote controller for remote catheter positioning system
US9999751B2 (en) 2013-09-06 2018-06-19 Catheter Precision, Inc. Adjustable nose cone for a catheter positioning system
US9700698B2 (en) 2013-09-27 2017-07-11 Catheter Precision, Inc. Components and methods for a catheter positioning system with a spreader and track
US9795764B2 (en) 2013-09-27 2017-10-24 Catheter Precision, Inc. Remote catheter positioning system with hoop drive assembly
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
US9241771B2 (en) 2014-01-15 2016-01-26 KB Medical SA Notched apparatus for guidance of an insertable instrument along an axis during spinal surgery
WO2015121311A1 (en) 2014-02-11 2015-08-20 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
KR20150097238A (en) * 2014-02-18 2015-08-26 삼성전자주식회사 Master device for surgical robot and control method thereof
DE102014203921B4 (en) * 2014-03-04 2017-11-09 Deutsches Zentrum für Luft- und Raumfahrt e.V. management systems
US9907696B2 (en) * 2014-04-18 2018-03-06 The Johns Hopkins University Fiber optic distal sensor controlled micro-manipulation systems and methods
EP3134022B1 (en) 2014-04-24 2018-01-10 KB Medical SA Surgical instrument holder for use with a robotic surgical system
EP3197646A4 (en) * 2014-09-23 2018-06-06 Covidien LP Surgical robotic arm support systems and methods of use
US20160097658A1 (en) * 2014-10-06 2016-04-07 Caterpillar Inc. Fiber optic implement position determination system
US9951904B2 (en) 2015-03-24 2018-04-24 Stryker Corporation Rotatable seat clamps for rail clamp
USD787071S1 (en) * 2015-06-25 2017-05-16 General Electric Company Integration management system for patient table
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
USD792595S1 (en) * 2016-01-25 2017-07-18 Dongguan Weihong Hardware And Plastic Products Co., Ltd. Automatic support for headrest
USD816848S1 (en) * 2016-02-22 2018-05-01 Innovative Medical Products, Inc. Clamp for surgical support table
US20180207794A1 (en) * 2016-09-16 2018-07-26 GYS Tech, LLC d/b/a Cardan Robotics System and Method for Mounting a Robotic Arm in a Surgical Robotic System
WO2018052796A1 (en) * 2016-09-19 2018-03-22 Intuitive Surgical Operations, Inc. Positioning indicator system for a remotely controllable arm and related methods
WO2018057633A1 (en) * 2016-09-21 2018-03-29 Intuitive Surgical Operations, Inc. Systems and methods for instrument buckling detection
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559942A (en) * 1984-02-29 1985-12-24 William Eisenberg Method utilizing a laser for eye surgery
US4583539A (en) * 1982-01-12 1986-04-22 Cornell Research Foundation, Inc. Laser surgical system
US5423798A (en) * 1988-04-20 1995-06-13 Crow; Lowell M. Ophthalmic surgical laser apparatus
US6743221B1 (en) * 2001-03-13 2004-06-01 James L. Hobart Laser system and method for treatment of biological tissues
US6800076B2 (en) * 2000-10-18 2004-10-05 Retinalabs, Inc. Soft tip cannula and methods for use thereof
US20050137478A1 (en) * 2003-08-20 2005-06-23 Younge Robert G. System and method for 3-D imaging
US20050197530A1 (en) * 2003-09-25 2005-09-08 Wallace Daniel T. Balloon visualization for traversing a tissue wall
US20050222554A1 (en) * 2004-03-05 2005-10-06 Wallace Daniel T Robotic catheter system
US20060084945A1 (en) * 2004-03-05 2006-04-20 Hansen Medical, Inc. Instrument driver for robotic catheter system
US20060095022A1 (en) * 2004-03-05 2006-05-04 Moll Frederic H Methods using a robotic catheter system
US20060111692A1 (en) * 2004-07-19 2006-05-25 Hlavka Edwin J Robotically controlled intravascular tissue injection system
US20060200026A1 (en) * 2005-01-13 2006-09-07 Hansen Medical, Inc. Robotic catheter system
US20060253108A1 (en) * 2005-05-03 2006-11-09 Yu Alan L Support assembly for robotic catheter system
US20060276775A1 (en) * 2005-05-03 2006-12-07 Hansen Medical, Inc. Robotic catheter system
US7167622B2 (en) * 2004-04-08 2007-01-23 Omniguide, Inc. Photonic crystal fibers and medical systems including photonic crystal fibers
US20070043338A1 (en) * 2004-03-05 2007-02-22 Hansen Medical, Inc Robotic catheter system and methods
US20070156123A1 (en) * 2005-12-09 2007-07-05 Hansen Medical, Inc Robotic catheter system and methods
US20070197896A1 (en) * 2005-12-09 2007-08-23 Hansen Medical, Inc Robotic catheter system and methods
US20100010504A1 (en) * 2006-09-19 2010-01-14 The Trustees Of Columbia University In The City Of New York Systems, devices, and methods for surgery on a hollow anatomically suspended organ

Family Cites Families (202)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1598569A (en) * 1925-09-23 1926-08-31 Fitzhugh Champe Geraldine Combined table and bookrest
US2048449A (en) * 1935-01-24 1936-07-21 William C Holtzmann Support
US2466518A (en) * 1944-07-24 1949-04-05 Rudolph W Wagner Combined angle bracket and stationary clamping jaws having a selectively mountable clamping jaw
US2452816A (en) * 1945-05-21 1948-11-02 Venus M Wagner Jaw-supporting appliance
US2569729A (en) * 1948-01-28 1951-10-02 Nold Elton Lewis Child's adjustable seat
US2535559A (en) * 1949-03-15 1950-12-26 Wolf Monroe Surgical clamp
US2788529A (en) * 1954-09-28 1957-04-16 Moritzacky Fred Adjustable headrest for beds
US2970798A (en) * 1956-10-23 1961-02-07 Central Scient Co Laboratory clamps
US2940715A (en) * 1957-12-02 1960-06-14 Arthur E Schultz Lantern holder
US3495519A (en) * 1967-02-01 1970-02-17 Microform Data Systems Xy table
US3807390A (en) * 1972-12-04 1974-04-30 American Optical Corp Fiber optic catheter
US3823709A (en) * 1973-04-27 1974-07-16 Guire G Mc Table supported surgical retractor and pelvic support
US4099521A (en) * 1975-06-16 1978-07-11 Nestor Engineering Associates, Inc. Surgical retractor adjustable mounting apparatus
GB1596036A (en) * 1977-04-01 1981-08-19 Nat Res Dev Surgical apparatus
US4151812A (en) * 1977-08-12 1979-05-01 Miller John J Attachment for use on veterinarian tables
DE3016104C2 (en) * 1980-04-25 1990-11-15 Siemens Ag, 1000 Berlin Und 8000 Muenchen, De
US4355631A (en) * 1981-03-19 1982-10-26 Minnesota Scientific, Inc. Surgical retractor apparatus with improved clamping device
US4432525A (en) * 1981-12-23 1984-02-21 Duvall Clarence E Adjustable chair support
US4545573A (en) * 1983-03-03 1985-10-08 Saginaw Automation & Machine, Inc. Surgical leg clamp
US4761073A (en) * 1984-08-13 1988-08-02 United Technologies Corporation Distributed, spatially resolving optical fiber strain gauge
US4583725A (en) * 1985-03-05 1986-04-22 Arnold Roger D Patient support frame for posterior lumbar laminectomy
US4766838A (en) * 1987-06-30 1988-08-30 Grady Johnson Auxiliary boat seat
US4729336A (en) * 1987-07-06 1988-03-08 Rohne Richard E Boat seat bracket security device
US4773709A (en) * 1987-09-04 1988-09-27 Slinkard Ronald L Swivel seat and insulated cooler combination
US4886258A (en) * 1988-08-24 1989-12-12 Scott James W Well leg operative support
US4971037A (en) * 1988-09-19 1990-11-20 Pilling Co. Surgical retractor support
US4960410A (en) * 1989-03-31 1990-10-02 Cordis Corporation Flexible tubular member for catheter construction
US4930523A (en) * 1989-04-13 1990-06-05 Lincoln Mills, Inc. Surgical shoulder positioning apparatus
US4996419A (en) * 1989-12-26 1991-02-26 United Technologies Corporation Distributed multiplexed optical fiber Bragg grating sensor arrangeement
US5007705A (en) * 1989-12-26 1991-04-16 United Technologies Corporation Variable optical fiber Bragg filter arrangement
US5025802A (en) * 1990-02-08 1991-06-25 Lincoln Mills, Inc. Surgical holding apparatus for distracting ankle
US5112015A (en) * 1990-03-19 1992-05-12 Chris Williams Air conditioner bracket assembly
US5118931A (en) * 1990-09-07 1992-06-02 Mcdonnell Douglas Corporation Fiber optic microbending sensor arrays including microbend sensors sensitive over different bands of wavelengths of light
US5066133A (en) * 1990-10-18 1991-11-19 United Technologies Corporation Extended length embedded Bragg grating manufacturing method and arrangement
US5144960A (en) * 1991-03-20 1992-09-08 Medtronic, Inc. Transvenous defibrillation lead and method of use
US5400772A (en) * 1991-05-24 1995-03-28 Minnesota Scientific, Inc. Surgical retractor apparatus with improved clamping device
JP2584151B2 (en) * 1991-06-11 1997-02-19 株式会社フジクラ Optical fiber
US20030073908A1 (en) 1996-04-26 2003-04-17 2000 Injectx, Inc. Method and apparatus for delivery of genes, enzymes and biological agents to tissue cells
US6763836B2 (en) 1998-06-02 2004-07-20 Arthrocare Corporation Methods for electrosurgical tendon vascularization
US5290220A (en) * 1992-03-16 1994-03-01 Guhl James F Non-invasive distraction system for ankle arthroscopy
US5857996A (en) * 1992-07-06 1999-01-12 Catheter Imaging Systems Method of epidermal surgery
US5397891A (en) * 1992-10-20 1995-03-14 Mcdonnell Douglas Corporation Sensor systems employing optical fiber gratings
US5380995A (en) * 1992-10-20 1995-01-10 Mcdonnell Douglas Corporation Fiber optic grating sensor systems for sensing environmental effects
US5330147A (en) * 1993-01-22 1994-07-19 Mayline Company, Inc. Video monitor clamp
US6363279B1 (en) 1996-01-08 2002-03-26 Impulse Dynamics N.V. Electrical muscle controller
US5401956A (en) * 1993-09-29 1995-03-28 United Technologies Corporation Diagnostic system for fiber grating sensors
US5575810A (en) 1993-10-15 1996-11-19 Ep Technologies, Inc. Composite structures and methods for ablating tissue to form complex lesion patterns in the treatment of cardiac conditions and the like
US5876325A (en) 1993-11-02 1999-03-02 Olympus Optical Co., Ltd. Surgical manipulation system
US5571216A (en) 1994-01-19 1996-11-05 The General Hospital Corporation Methods and apparatus for joining collagen-containing materials
US5462551A (en) * 1994-04-04 1995-10-31 Innovative Medical Products Inc. Knee positioner
US5492131A (en) * 1994-09-06 1996-02-20 Guided Medical Systems, Inc. Servo-catheter
US5590619A (en) * 1995-08-21 1997-01-07 Meador; Thomas R. Holder for a boat seat clamp assembly
US5722959A (en) 1995-10-24 1998-03-03 Venetec International, Inc. Catheter securement device
ES2241037T3 (en) 1996-02-15 2005-10-16 Biosense Webster, Inc. precise positioning of endoscopes.
US5762458A (en) * 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6699177B1 (en) * 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5855583A (en) * 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6436107B1 (en) * 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5798521A (en) * 1996-02-27 1998-08-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus and method for measuring strain in bragg gratings
US5830224A (en) 1996-03-15 1998-11-03 Beth Israel Deaconess Medical Center Catheter apparatus and methodology for generating a fistula on-demand between closely associated blood vessels at a pre-chosen anatomic site in-vivo
US5828059A (en) * 1996-09-09 1998-10-27 Udd; Eric Transverse strain measurements using fiber optic grating based sensors
US5845646A (en) 1996-11-05 1998-12-08 Lemelson; Jerome System and method for treating select tissue in a living being
US5926876A (en) * 1996-11-19 1999-07-27 Compacta International, Ltd. Surgical operating table accessory for shoulder procedures
US6132368A (en) 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US5917978A (en) * 1997-01-10 1999-06-29 Siecor Corporation Buffered optical fiber having improved low temperature performance and stripability
US5876373A (en) 1997-04-04 1999-03-02 Eclipse Surgical Technologies, Inc. Steerable catheter
US6129668A (en) 1997-05-08 2000-10-10 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US6061587A (en) 1997-05-15 2000-05-09 Regents Of The University Of Minnesota Method and apparatus for use with MR imaging
GB9713018D0 (en) * 1997-06-20 1997-08-27 Secr Defence Optical fibre bend sensor
US6256090B1 (en) * 1997-07-31 2001-07-03 University Of Maryland Method and apparatus for determining the shape of a flexible body
US6015414A (en) 1997-08-29 2000-01-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter
US6200312B1 (en) 1997-09-11 2001-03-13 Vnus Medical Technologies, Inc. Expandable vein ligator catheter having multiple electrode leads
US6154901A (en) * 1997-09-26 2000-12-05 New York Society For The Relief Of The Ruptured And Crippled Maintaining The Hospital For Special Surgery Spinal-surgery table
US6086532A (en) 1997-09-26 2000-07-11 Ep Technologies, Inc. Systems for recording use of structures deployed in association with heart tissue
US6404956B1 (en) * 1997-10-02 2002-06-11 3M Intellectual Properties Company Long-length continuous phase Bragg reflectors in optical media
US20020120200A1 (en) 1997-10-14 2002-08-29 Brian Brockway Devices, systems and methods for endocardial pressure measurement
US6144026A (en) * 1997-10-17 2000-11-07 Blue Road Research Fiber optic grating corrosion and chemical sensor
US7169141B2 (en) 1998-02-24 2007-01-30 Hansen Medical, Inc. Surgical instrument
US20030135204A1 (en) 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
US7214230B2 (en) 1998-02-24 2007-05-08 Hansen Medical, Inc. Flexible instrument
US7766894B2 (en) 2001-02-15 2010-08-03 Hansen Medical, Inc. Coaxial catheter system
US8414505B1 (en) 2001-02-15 2013-04-09 Hansen Medical, Inc. Catheter driver system
US7699835B2 (en) 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
US7789875B2 (en) * 1998-02-24 2010-09-07 Hansen Medical, Inc. Surgical instruments
US6035082A (en) * 1998-03-16 2000-03-07 Luna Innovations, Inc. Process for preparing an optical fiber sensor with enhanced sensitivity
JPH11267133A (en) 1998-03-25 1999-10-05 Olympus Optical Co Ltd Therapeutic apparatus
DE69940792D1 (en) 1998-03-31 2009-06-04 Medtronic Vascular Inc Tissue penetrating catheter with transducers for imaging
US6301420B1 (en) * 1998-05-01 2001-10-09 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Multicore optical fibre
US6004271A (en) 1998-05-07 1999-12-21 Boston Scientific Corporation Combined motor drive and automated longitudinal position translator for ultrasonic imaging system
US6215943B1 (en) * 1998-06-23 2001-04-10 Luna Innovations, Inc. Optical fiber holder
US5960746A (en) * 1998-06-23 1999-10-05 Salts; Nancy L. Rigid dog grooming restraint
US6275511B1 (en) * 1998-07-13 2001-08-14 E-Tek Dynamics Overlapping multiple fiber Bragg gratings
US6189478B1 (en) * 1998-07-27 2001-02-20 Clinton S. Myers Boat carrier with retractable wheels
US20030074011A1 (en) 1998-09-24 2003-04-17 Super Dimension Ltd. System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure
US6409674B1 (en) 1998-09-24 2002-06-25 Data Sciences International, Inc. Implantable sensor with wireless communication
US6426796B1 (en) * 1998-09-28 2002-07-30 Luna Innovations, Inc. Fiber optic wall shear stress sensor
US6771262B2 (en) 1998-11-25 2004-08-03 Siemens Corporate Research, Inc. System and method for volume rendering-based segmentation
US6275628B1 (en) * 1998-12-10 2001-08-14 Luna Innovations, Inc. Single-ended long period grating optical device
US6571639B1 (en) * 1999-03-01 2003-06-03 Luna Innovations, Inc. Fiber optic system
US6366722B1 (en) * 1999-03-04 2002-04-02 Luna Innovations, Inc. Optical waveguide sensors having high refractive index sensitivity
US6545760B1 (en) * 1999-03-25 2003-04-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Apparatus and method for measuring strain in optical fibers using rayleigh scatter
CA2620783C (en) 1999-04-09 2011-04-05 Evalve, Inc. Methods and apparatus for cardiac valve repair
US8442618B2 (en) 1999-05-18 2013-05-14 Mediguide Ltd. Method and system for delivering a medical device to a selected position within a lumen
US6245028B1 (en) * 1999-11-24 2001-06-12 Marconi Medical Systems, Inc. Needle biopsy system
DE19964016B4 (en) * 1999-12-30 2005-06-23 Brainlab Ag Method and apparatus for positioning a body with a position sensor for irradiating
DE10011790B4 (en) * 2000-03-13 2005-07-14 Siemens Ag A medical instrument for insertion into an examination subject, as well as medical examination or treatment device
US6564406B2 (en) * 2000-03-28 2003-05-20 Hill-Rom Services, Inc. Shoulder surgery attachment for a surgical table
US8888688B2 (en) 2000-04-03 2014-11-18 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US6610007B2 (en) 2000-04-03 2003-08-26 Neoguide Systems, Inc. Steerable segmented endoscope and method of insertion
US6671055B1 (en) * 2000-04-13 2003-12-30 Luna Innovations, Inc. Interferometric sensors utilizing bulk sensing mediums extrinsic to the input/output optical fiber
JP2004516044A (en) 2000-08-08 2004-06-03 エスディージーアイ・ホールディングス・インコーポレーテッド Improved methods and apparatus of the stereotactic implantation
US6551273B1 (en) 2000-08-23 2003-04-22 Scimed Life Systems, Inc. Catheter having a shaft keeper
US6499158B1 (en) * 2000-10-30 2002-12-31 Steris, Inc. Surgical table top and accessory clamp used thereon
US6856400B1 (en) * 2000-12-14 2005-02-15 Luna Technologies Apparatus and method for the complete characterization of optical devices including loss, birefringence and dispersion effects
US7020917B1 (en) * 2001-03-12 2006-04-04 Steris Corporation Radiolucent surgical table with low shadow accessory interface profile
US6598275B1 (en) * 2001-03-12 2003-07-29 Steris, Inc. Low shadow radiolucent surgical table, clamp systems, and accessories therefore
WO2002075405A8 (en) * 2001-03-16 2003-04-10 Cidra Corp Multi-core waveguide
US6533794B2 (en) 2001-04-19 2003-03-18 The Ohio State University Simplified stereotactic apparatus and methods
US7022109B1 (en) * 2001-07-09 2006-04-04 Ditto Deborah L Pain abatement catheter system
US6728599B2 (en) 2001-09-07 2004-04-27 Computer Motion, Inc. Modularity system for computer assisted surgery
US7038190B2 (en) * 2001-12-21 2006-05-02 Eric Udd Fiber grating environmental sensing system
US7831292B2 (en) 2002-03-06 2010-11-09 Mako Surgical Corp. Guidance system and method for surgical procedures with improved feedback
US6804846B2 (en) * 2002-03-14 2004-10-19 Peter Schuerch Shoulder arthroscopy chair
US6820621B2 (en) * 2002-03-22 2004-11-23 Imp Inc. Lateral surgical positioner unit
US7010182B2 (en) * 2002-07-31 2006-03-07 Luna Innovations Incorporated Biosensors having enhanced environmental sensitivity
US20040176751A1 (en) 2002-08-14 2004-09-09 Endovia Medical, Inc. Robotic medical instrument system
US7156806B2 (en) * 2002-08-23 2007-01-02 Minnesota Scientific, Inc. Stabilized table rail clamp
DE10239673A1 (en) * 2002-08-26 2004-03-11 Peter Pott Device for processing parts
US6876786B2 (en) * 2002-10-02 2005-04-05 Cicese-Centro De Investigation Fiber-optic sensing system for distributed detection and localization of alarm conditions
US6965708B2 (en) * 2002-10-04 2005-11-15 Luna Innovations, Inc. Devices, systems, and methods for sensing moisture
US7201747B2 (en) * 2002-10-21 2007-04-10 Edrich Vascular Devices, Inc. Surgical instrument positioning system and method of use
WO2004042429A3 (en) * 2002-10-31 2004-11-25 Luna Innovations Inc Fiber-optic flow cell and method relating thereto
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US7154081B1 (en) * 2002-11-26 2006-12-26 Luna Innovations Incorporated Composite structures, such as coated wiring assemblies, having integral fiber optic-based condition detectors and systems which employ the same
JP2004251779A (en) * 2003-02-20 2004-09-09 Fuji Photo Optical Co Ltd Three-dimensional shape detector for long flexible member
US6888623B2 (en) * 2003-02-26 2005-05-03 Dynamic Technology, Inc. Fiber optic sensor for precision 3-D position measurement
US8882657B2 (en) 2003-03-07 2014-11-11 Intuitive Surgical Operations, Inc. Instrument having radio frequency identification systems and methods for use
US7143458B2 (en) * 2003-03-17 2006-12-05 Slater Jr Robert R Stabilizer for forearm traction
US6898337B2 (en) * 2003-03-19 2005-05-24 Luna Innovations, Incorporated Fiber-optic apparatus and method for making simultaneous multiple parameter measurements
US7101387B2 (en) 2003-04-30 2006-09-05 Scimed Life Systems, Inc. Radio frequency ablation cooling shield
US20040220588A1 (en) 2003-05-01 2004-11-04 James Kermode Guide assembly
US20050045785A1 (en) * 2003-08-25 2005-03-03 Warren Cohen Mounting system for mounting a support to a rail of a deck
US6923048B2 (en) * 2003-09-24 2005-08-02 Siemens Aktiengesellschaft Method and apparatus of monitoring temperature and strain by using fiber Bragg grating (FBG) sensors
US7280863B2 (en) 2003-10-20 2007-10-09 Magnetecs, Inc. System and method for radar-assisted catheter guidance and control
EP1691666B1 (en) 2003-12-12 2012-05-30 University of Washington Catheterscope 3d guidance and interface system
US8046049B2 (en) * 2004-02-23 2011-10-25 Biosense Webster, Inc. Robotically guided catheter
US7976539B2 (en) * 2004-03-05 2011-07-12 Hansen Medical, Inc. System and method for denaturing and fixing collagenous tissue
US20050201664A1 (en) * 2004-03-12 2005-09-15 Eric Udd Fiber grating pressure wave speed measurement system
US7003827B2 (en) * 2004-06-21 2006-02-28 Innovative Medical Products Inc. Operating table support clamp
WO2006005012A3 (en) * 2004-06-29 2007-08-02 Walter M Blume Navigation of remotely actuable medical device using control variable and length
US7781724B2 (en) * 2004-07-16 2010-08-24 Luna Innovations Incorporated Fiber optic position and shape sensing device and method relating thereto
US7772541B2 (en) * 2004-07-16 2010-08-10 Luna Innnovations Incorporated Fiber optic position and/or shape sensing based on rayleigh scatter
US20060013523A1 (en) * 2004-07-16 2006-01-19 Luna Innovations Incorporated Fiber optic position and shape sensing device and method relating thereto
US8905637B2 (en) * 2004-07-30 2014-12-09 Neurologica Corp. X-ray transparent bed and gurney extender for use with mobile computerized tomography (CT) imaging systems
US7285125B2 (en) 2004-10-18 2007-10-23 Tyco Healthcare Group Lp Compression anastomosis device and method
US20060094956A1 (en) 2004-10-29 2006-05-04 Viswanathan Raju R Restricted navigation controller for, and methods of controlling, a remote navigation system
US8182433B2 (en) * 2005-03-04 2012-05-22 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8075498B2 (en) * 2005-03-04 2011-12-13 Endosense Sa Medical apparatus system having optical fiber load sensing capability
EP1869511B1 (en) * 2005-03-10 2012-08-01 Luna Innovations, Inc. Calculation of birefringence in a waveguide based on rayleigh scatter
US20070038181A1 (en) 2005-08-09 2007-02-15 Alexander Melamud Method, system and device for delivering a substance to tissue
US20070094798A1 (en) 2005-10-28 2007-05-03 Yu Chun H Platform assembly for an operating bed
US7930065B2 (en) * 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US7561276B2 (en) * 2006-01-13 2009-07-14 Luna Innovations Incorporated Demodulation method and apparatus for fiber optic sensors
US8989528B2 (en) * 2006-02-22 2015-03-24 Hansen Medical, Inc. Optical fiber grating sensors and methods of manufacture
EP1996063A1 (en) * 2006-03-22 2008-12-03 Hansen Medical, Inc. Fiber optic instrument sensing system
US8048063B2 (en) * 2006-06-09 2011-11-01 Endosense Sa Catheter having tri-axial force sensor
EP2035792B1 (en) * 2006-06-16 2018-05-23 Intuitive Surgical Operations, Inc. Distributed strain and temperature discrimination in polarization maintaining fiber
EP2046227A2 (en) * 2006-08-03 2009-04-15 Hansen Medical, Inc. Systems for performing minimally invasive procedures
EP2068716B1 (en) * 2006-10-02 2011-02-09 Hansen Medical, Inc. Systems for three-dimensional ultrasound mapping
WO2008086493A3 (en) * 2007-01-10 2008-09-04 Hansen Medical Inc Robotic catheter system
US20090036900A1 (en) 2007-02-02 2009-02-05 Hansen Medical, Inc. Surgery methods using a robotic instrument system
US7922693B2 (en) * 2007-03-19 2011-04-12 Hansen Medical, Inc. Apparatus systems and methods for flushing gas from a catheter of a robotic catheter system
EP2139422B1 (en) * 2007-03-26 2016-10-26 Hansen Medical, Inc. Robotic catheter systems and methods
US8050523B2 (en) * 2007-04-20 2011-11-01 Koninklijke Philips Electronics N.V. Optical fiber shape sensing systems
US20080275367A1 (en) 2007-04-23 2008-11-06 Hansen Medical, Inc Systems and methods for mapping intra-body tissue compliance
US20090138025A1 (en) 2007-05-04 2009-05-28 Hansen Medical, Inc. Apparatus systems and methods for forming a working platform of a robotic instrument system by manipulation of components having controllably rigidity
US8409234B2 (en) * 2007-05-25 2013-04-02 Hansen Medical, Inc. Rotational apparatus system and method for a robotic instrument system
US9468412B2 (en) 2007-06-22 2016-10-18 General Electric Company System and method for accuracy verification for image based surgical navigation
EP2628460A3 (en) 2007-08-14 2017-06-28 Koninklijke Philips N.V. Robotic instrument systems and methods utilizing optical fiber sensors
US7992238B2 (en) * 2007-09-13 2011-08-09 Thomas Hejkal Rotatable surgery table
US20090221908A1 (en) 2008-03-01 2009-09-03 Neil David Glossop System and Method for Alignment of Instrumentation in Image-Guided Intervention
US20090318797A1 (en) 2008-06-19 2009-12-24 Vision-Sciences Inc. System and method for deflecting endoscopic tools
US8086298B2 (en) 2008-09-29 2011-12-27 Civco Medical Instruments Co., Inc. EM tracking systems for use with ultrasound and other imaging modalities
US8720448B2 (en) * 2008-11-07 2014-05-13 Hansen Medical, Inc. Sterile interface apparatus
US20100125284A1 (en) * 2008-11-20 2010-05-20 Hansen Medical, Inc. Registered instrument movement integration
US9254123B2 (en) * 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US8230864B2 (en) * 2009-08-31 2012-07-31 Hunter Jr Alton Lee Arm stabilizer for elbow surgical procedure
US8672837B2 (en) * 2010-06-24 2014-03-18 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
US20120071894A1 (en) * 2010-09-17 2012-03-22 Tanner Neal A Robotic medical systems and methods
EP2740433B1 (en) * 2011-08-04 2016-04-27 Olympus Corporation Surgical implement and medical treatment manipulator
JP5841451B2 (en) * 2011-08-04 2016-01-13 オリンパス株式会社 Surgical instruments and a method of controlling the same
EP2884934A4 (en) 2012-08-15 2016-04-20 Intuitive Surgical Operations Movable surgical mounting platform controlled by manual motion of robotic arms
WO2014028702A1 (en) 2012-08-15 2014-02-20 Intuitive Surgical Operations, Inc. User initiated break-away clutching of a surgical mounting platform
US8894610B2 (en) * 2012-11-28 2014-11-25 Hansen Medical, Inc. Catheter having unirail pullwire architecture
US8671817B1 (en) * 2012-11-28 2014-03-18 Hansen Medical, Inc. Braiding device for catheter having acuately varying pullwires
US9057600B2 (en) * 2013-03-13 2015-06-16 Hansen Medical, Inc. Reducing incremental measurement sensor error
US9326822B2 (en) * 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US20140277334A1 (en) * 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9408669B2 (en) * 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US20140276647A1 (en) * 2013-03-15 2014-09-18 Hansen Medical, Inc. Vascular remote catheter manipulator
US9014851B2 (en) * 2013-03-15 2015-04-21 Hansen Medical, Inc. Systems and methods for tracking robotically controlled medical instruments
US9452018B2 (en) * 2013-03-15 2016-09-27 Hansen Medical, Inc. Rotational support for an elongate member

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583539A (en) * 1982-01-12 1986-04-22 Cornell Research Foundation, Inc. Laser surgical system
US4559942A (en) * 1984-02-29 1985-12-24 William Eisenberg Method utilizing a laser for eye surgery
US5423798A (en) * 1988-04-20 1995-06-13 Crow; Lowell M. Ophthalmic surgical laser apparatus
US6800076B2 (en) * 2000-10-18 2004-10-05 Retinalabs, Inc. Soft tip cannula and methods for use thereof
US6743221B1 (en) * 2001-03-13 2004-06-01 James L. Hobart Laser system and method for treatment of biological tissues
US20050137478A1 (en) * 2003-08-20 2005-06-23 Younge Robert G. System and method for 3-D imaging
US20050197530A1 (en) * 2003-09-25 2005-09-08 Wallace Daniel T. Balloon visualization for traversing a tissue wall
US20070043338A1 (en) * 2004-03-05 2007-02-22 Hansen Medical, Inc Robotic catheter system and methods
US20050222554A1 (en) * 2004-03-05 2005-10-06 Wallace Daniel T Robotic catheter system
US20060084945A1 (en) * 2004-03-05 2006-04-20 Hansen Medical, Inc. Instrument driver for robotic catheter system
US20060095022A1 (en) * 2004-03-05 2006-05-04 Moll Frederic H Methods using a robotic catheter system
US20060100610A1 (en) * 2004-03-05 2006-05-11 Wallace Daniel T Methods using a robotic catheter system
US7167622B2 (en) * 2004-04-08 2007-01-23 Omniguide, Inc. Photonic crystal fibers and medical systems including photonic crystal fibers
US20060111692A1 (en) * 2004-07-19 2006-05-25 Hlavka Edwin J Robotically controlled intravascular tissue injection system
US20060200026A1 (en) * 2005-01-13 2006-09-07 Hansen Medical, Inc. Robotic catheter system
US20060253108A1 (en) * 2005-05-03 2006-11-09 Yu Alan L Support assembly for robotic catheter system
US20060276775A1 (en) * 2005-05-03 2006-12-07 Hansen Medical, Inc. Robotic catheter system
US20070156123A1 (en) * 2005-12-09 2007-07-05 Hansen Medical, Inc Robotic catheter system and methods
US20070197896A1 (en) * 2005-12-09 2007-08-23 Hansen Medical, Inc Robotic catheter system and methods
US20100010504A1 (en) * 2006-09-19 2010-01-14 The Trustees Of Columbia University In The City Of New York Systems, devices, and methods for surgery on a hollow anatomically suspended organ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Hunter et al; "Ophthalmic Microsurgical Robot and Associated Virtual Environment";l Comput. Biol. Med.; Vol 25, No 2, 1995, pp173-182 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8968333B2 (en) 2005-05-03 2015-03-03 Hansen Medical, Inc. Support assembly for robotic catheter system
US20060253108A1 (en) * 2005-05-03 2006-11-09 Yu Alan L Support assembly for robotic catheter system
US7789874B2 (en) * 2005-05-03 2010-09-07 Hansen Medical, Inc. Support assembly for robotic catheter system
US20100308195A1 (en) * 2005-05-03 2010-12-09 Hansen Medical, Inc. Support assembly for robotic catheter system
US9566201B2 (en) 2007-02-02 2017-02-14 Hansen Medical, Inc. Mounting support assembly for suspending a medical instrument driver above an operating table
US20090228020A1 (en) * 2008-03-06 2009-09-10 Hansen Medical, Inc. In-situ graft fenestration
US20090254083A1 (en) * 2008-03-10 2009-10-08 Hansen Medical, Inc. Robotic ablation catheter
US20100048998A1 (en) * 2008-08-01 2010-02-25 Hansen Medical, Inc. Auxiliary cavity localization
US8290571B2 (en) 2008-08-01 2012-10-16 Koninklijke Philips Electronics N.V. Auxiliary cavity localization
US8613748B2 (en) 2010-11-10 2013-12-24 Perfint Healthcare Private Limited Apparatus and method for stabilizing a needle
US9486189B2 (en) 2010-12-02 2016-11-08 Hitachi Aloka Medical, Ltd. Assembly for use with surgery system
US20160279394A1 (en) * 2011-01-20 2016-09-29 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
US9393001B2 (en) * 2011-07-29 2016-07-19 Olympus Corporation Operation method of endoscope
US20130027531A1 (en) * 2011-07-29 2013-01-31 Olympus Corporation Operation method of endoscope
US8652031B2 (en) 2011-12-29 2014-02-18 St. Jude Medical, Atrial Fibrillation Division, Inc. Remote guidance system for medical devices for use in environments having electromagnetic interference
US9693895B2 (en) 2012-06-12 2017-07-04 Altaviz, Llc Intraocular gas injector

Also Published As

Publication number Publication date Type
WO2008097540A3 (en) 2009-01-15 application
US20080195081A1 (en) 2008-08-14 application
WO2008097540A2 (en) 2008-08-14 application
US20080218770A1 (en) 2008-09-11 application
US20130269109A1 (en) 2013-10-17 application
US20120253332A1 (en) 2012-10-04 application
US20080245946A1 (en) 2008-10-09 application
WO2008097853A3 (en) 2008-11-06 application
US8146874B2 (en) 2012-04-03 grant
WO2008097853A2 (en) 2008-08-14 application
US9566201B2 (en) 2017-02-14 grant
US20120241576A1 (en) 2012-09-27 application

Similar Documents

Publication Publication Date Title
US5527264A (en) Methods of using endoscopic inflatable retraction devices
US7018390B2 (en) Medical device introducer and obturator
US6264670B1 (en) Tissue dissection method
US5465711A (en) Surgical procedures using endoscopic inflatable retraction devices
US6605037B1 (en) Endoscopic inflatable retraction device
US5823945A (en) Endoscopic inflatable retraction device with additional inflatable chamber
US6027476A (en) Methods and systems for performing thoracoscopic coronary bypass and other procedures
US5536251A (en) Thoracoscopic devices and methods for arresting the heart
US5873889A (en) Tissue separation cannula with dissection probe and method
US5496310A (en) Endoscopic cholangiogram guide instrument and method of use
US20060237022A1 (en) Transgastric abdominal access
US7338434B1 (en) Method and system for organ positioning and stabilization
US5441059A (en) Method of minimally invasive surgery
US20050216039A1 (en) Method and device for catheter based repair of cardiac valves
US20060237023A1 (en) Transgastric tubal ligation
US6494211B1 (en) Device and methods for port-access multivessel coronary artery bypass surgery
US20080119868A1 (en) Methods and Apparatus for Natural Orifice Vaginal Hysterectomy
US6311693B1 (en) Method and systems for performing thoracoscopic cardiac bypass and other procedures
US20050182465A1 (en) Instruments and methods for accessing an anatomic space
US7721742B2 (en) Methods for diagnostic and therapeutic interventions in the peritoneal cavity
US20100069925A1 (en) Devices and methods for ligating anatomical structures
US5749892A (en) Device for isolating a surgical site
US20120053406A1 (en) Minimally invasive surgery
US6478029B1 (en) Devices and methods for port-access multivessel coronary artery bypass surgery
US20020013569A1 (en) Methods and systems for performing thoracoscopic coronary bypass and other procedures

Legal Events

Date Code Title Description
AS Assignment

Owner name: HANSEN MEDICAL, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOLL, FREDERIC H.;REEL/FRAME:020806/0913

Effective date: 20080227