US20090031649A1 - Plastic fenestration product - Google Patents

Plastic fenestration product Download PDF

Info

Publication number
US20090031649A1
US20090031649A1 US11/832,417 US83241707A US2009031649A1 US 20090031649 A1 US20090031649 A1 US 20090031649A1 US 83241707 A US83241707 A US 83241707A US 2009031649 A1 US2009031649 A1 US 2009031649A1
Authority
US
United States
Prior art keywords
frame
dome
fenestration product
product assembly
peripheral wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/832,417
Inventor
John E. Nemazi
G. Daniel Templeton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/832,417 priority Critical patent/US20090031649A1/en
Publication of US20090031649A1 publication Critical patent/US20090031649A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage; Sky-lights
    • E04D13/03Sky-lights; Domes; Ventilating sky-lights
    • E04D13/0305Supports or connecting means for sky-lights of flat or domed shape
    • E04D13/0315Supports or connecting means for sky-lights of flat or domed shape characterised by a curb frame
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B1/00Border constructions of openings in walls, floors, or ceilings; Frames to be rigidly mounted in such openings
    • E06B1/56Fastening frames to the border of openings or to similar contiguous frames
    • E06B1/60Fastening frames to the border of openings or to similar contiguous frames by mechanical means, e.g. anchoring means
    • E06B1/6046Clamping means acting perpendicular to the wall opening; Fastening frames by tightening or drawing them against a surface parallel to the opening
    • E06B1/6061Clamping means acting perpendicular to the wall opening; Fastening frames by tightening or drawing them against a surface parallel to the opening with separate clamping means acting on opposite wall or associated surfaces
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B5/00Doors, windows, or like closures for special purposes; Border constructions therefor
    • E06B5/02Doors, windows, or like closures for special purposes; Border constructions therefor for out-buildings or cellars; Other simple closures not designed to be close-fitting
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D13/00Special arrangements or devices in connection with roof coverings; Protection against birds; Roof drainage; Sky-lights
    • E04D13/03Sky-lights; Domes; Ventilating sky-lights
    • E04D2013/034Daylight conveying tubular skylights
    • E04D2013/0345Daylight conveying tubular skylights with skylight shafts extending from roof to ceiling

Definitions

  • This invention relates to fenestration products composed primarily of plastic.
  • Plastic panels are used in doors for example, particularly storm doors to minimize the risk of injury due to glass fracture.
  • Acrylic dome panels are used in both residential and industrial building skylights, as illustrated in U.S. Pat. Nos. 3,434,257; 4,514,944, and 4,344,261.
  • the plastic dome skylight has been introduced having acrylic dome mounted in a polyurethane frame molded in situ about the dome peripheral edge, as illustrated in published U.S. patent application 2005/0178078, illustrated in website, www.vtechindustries.com/products.html and available from Vtech Industries, Inc. and Carlisle SynTec, Inc.
  • the focus of the development efforts in the plastic fenestration product area has been, how to mount the plastic panel to the building opening in a secure leak proof manner, while securely supporting the plastic panel on a frame or curb in a structural manner.
  • Many of the mounting systems are comprised of multiple component parts which require assembly and have joints which are susceptible to water leaks.
  • Some skylights are deck mounted, others use raised curbs.
  • the molded polyurethane frame of the VTechTM skylight is a simple one piece molded structure which is securely bonded to the plastic dome in a leak proof manner resulting in a very high performance skylight.
  • This skylight is expensive to manufacture as the tooling and production equipment needed is costly and the raw material cost of the high performance polyurethane utilized prevents this construction system from being used in low price point skylight applications.
  • one of the benefits of the present invention is to develop a low cost fenestration product which is suitable for use in skylights or the like which can match the state of the art water intrusion standards set by the in situ molded polyurethane frame systems. It is a further advantage of the invention to develop a fenestration product which is relatively inexpensive to manufacture and requires minimal investment in capital equipment.
  • the fenestration product made in accordance with an embodiment of the present invention includes two main components; a frame and a plastic dome formed of a transparent material which is mounted to the frame.
  • the dome has a central region which transmits visible light and a downwardly extending peripheral edge which extends about the peripheral wall of the frame.
  • the dome is further provided with an outwardly extending flashing flange for mounting the assembly to a wall of a building structure surrounding a building opening.
  • the frame comprises the unitary plastic ring having a central opening formed therein.
  • the frame peripheral wall is preferably formed of an inverted “U” shape cross-section having an outer peripheral wall cooperating with the plastic dome and an inner peripheral wall aligned with the building opening upon which the fenestration product is mounted.
  • the invention further includes the method of manufacturing a fenestration product.
  • the method includes the steps of thermoforming a first plastic sheet into a ring shape frame having a generally “U” shaped cross-section formed by an outer peripheral wall.
  • a second plastic sheet formed of a material capable of transmitting visible light and is thermoformed into a dome having a central portion and a downwardly extending peripheral wall cooperating with the outer peripheral wall of the ring shape frame.
  • the ring shape frame and dome are joined in a nested manner with the dome downwardly extending peripheral flange cooperating with the frame outer peripheral wall, where at least one of the ring shape frame and dome is formed with an integral outward extending flashing flange suitable for mounting the assembly on the building structure.
  • FIG. 1 is a perspective view of a first skylight embodiment of the invention
  • FIG. 2 is a cross-sectional view taken along line 2 - 2 of FIG. 1 ;
  • FIG. 2 a is a cross-sectional view of an alternative embodiment of the FIG. 1 skylight
  • FIG. 2b is a cross-sectional view of a second alternative embodiment of the FIG. 1 skylight
  • FIG. 3 is a cross-sectional side elevation of a light pipe alternative embodiment of the invention.
  • FIG. 4 is a side view of a window assembly embodiment of the invention.
  • FIG. 5 is a cross-sectional plan view taken along line 5 - 5 of FIG. 4 ;
  • FIG. 6 is an exploded cross-sectional side elevation taken along line 6 - 6 of FIG. 4 ;
  • FIG. 7 is a top view of a window assembly embodiment of the invention.
  • FIG. 8 is an exploded cross-sectional top view of a window assembly embodiment as illustrated in FIG. 7 .
  • skylight assembly 10 is illustrated in FIGS. 1 and 2 .
  • Skylight 10 has two main components as best seen in the FIG. 2 cross-sectional view illustrating the skylight mounted to an opening in a building roof 12 .
  • the skylight includes a dome member 14 and a frame member 16 which are both formed of sheets of plastic which have been thermoformed to a three dimensional shape using a conventional thermoforming process such as vacuforming, twin-sheet thermoforming or pressure assisted sag forming.
  • Dome 14 is preferably formed of a light transparent and plastic material such as acrylic or polycarbonate. Depending on the application, the dome may be transparent or may be translucent.
  • Plastic dome 14 has a central panel 18 forming a dome shape, a downwardly extending peripheral wall 20 and an outwardly extending flashing flange portion 22 . Dome 14 is secured to a peripheral wall portion 24 of frame 16 .
  • Frame 16 is also thermoformed of a plastic sheet with the peripheral outer wall 24 forming an annular ring to support dome 14 .
  • the frame 16 defines a light transmitting central region 26 to allow light passing through the dome 14 central panel 18 to freely enter the building roof 12 .
  • the frame 16 has a peripheral wall portion which in cross-section forms an inverted “U” shape having an inner wall portion 28 and upper wall 30 .
  • Extending radially outward from outer peripheral wall 24 is a flashing flange 32 which underlies flashing flange portion 22 of dome 14 .
  • inner peripheral wall 28 extends downwardly into the building slightly below the level of the flashing flange 32 as illustrated in FIG. 2 in order to help align the skylight with the opening formed in the roof sheathing 34 .
  • Frame 16 may be formed of a different plastic material than the dome 14 since transparency is not required in the illustrated embodiment.
  • the frame plastic material is preferably of a material which can easily be bonded to the frame using conventional adhesives, solvents or weldments.
  • the cavity formed within the inverted “U” shaped cross-section of frame 16 is filled with a foam insulation material 36 .
  • skylight 10 can be manufactured using a dome formed of acrylic having a wall thickness prior to thermoforming of 0.60 inches to 0.236 inches or the wall thickness capable of supporting an ultimate load needed in service or required by a regulation or an architect. These ultimate loads may include in excess of 20 , 40 , or 60 pounds per square feet as tested using procedure A of ASTM E330 after stabilization according to procedure A of ASTM D618.
  • the frame may be formed of acrylic or a different plastic material such as acrylic polycarbonate, terephthalate, polyoxymethylene, polyolefin, and/or polyvinylchloride, since light transmission is not an issue.
  • the wall thickness of the frame need not be thick, particularly when the frame filled with a rigid insulation foam 36 .
  • a wall thickness of the frame can range from 0.030 to 0.236 inches.
  • Foamed insulation material such as polyurethane, expanded polystyrene, or polyisocyanurate can be used having densities between 1 pound per cubic foot and 40 pounds per cubic foot.
  • the outwardly extending flashing flange 22 extends outwardly from a downwardly extending dome peripheral wall 28 at least 2′′ to 9′′ and more preferably, 3′′ to 7′′, in order to provide an adequate overlap to bond to the water barrier 38 mounted to the building sheathing 34 to allow adequate overlap with the roofing material 40 to prevent water leakage into the building opening.
  • Flashing flange 22 also serves as a mounting flange for attaching the skylight assembly to the building roof sheathing 34 .
  • corrosion resistant screws or nails are installed through the flashing flange portion 22 into the building roof sheathing 34 .
  • the mounting fasteners are preferably located significantly outboard of the dome downwardly extending peripheral wall 20 and well inboard of the outer peripheral edge of the mounting flange, but not necessarily aligned in a row, in order to minimize stress concentrations in the mounting flange caused by wind load on the skylight dome 18 .
  • holes for fasteners do not have to be pre-drilled, that way assuring that any unused fastener holes do not provide an entry leak path for water.
  • Holes for fasteners 42 may be drilled at the job site.
  • the screws are preferably provided with a relatively large low profile head or be provided with an associated washer such as a compression washer.
  • FIG. 2 a illustrates a cross-sectional view of an alternative embodiment of the skylight assembly.
  • Skylight 44 is made up of three main components; a dome 46 , a frame 48 and an insulating layer 50 .
  • Dome 46 and frame 48 are substantially similar to dome 14 and frame 16 described in reference to the embodiment invention of FIG. 2 , except that the frame 48 terminates before the region in which fasteners are inserted.
  • Insulating layer 50 is formed of a light transparent plastic material. Insulated layer 50 has a central region able to transmit visible light and an outer peripheral flange which is mounted to one of the dome 46 or frame 48 in order to define enclosed interior space 52 interposed between the central regions of dome 46 and insulated layer 50 .
  • Interior space 52 is filled with a gas such as air or argon and provides a relatively high thermal transmission resistant barrier between the interior of the building and the building exterior.
  • Insulated layer 50 may be bonded to the upper most portion 54 of frame 48 with an adhesive material or weldment in order to bond the dome to the frame as illustrated.
  • one of the top region of frame 54 or the outer peripheral edge 56 of insulated layer 50 is provided with a groove 58 as illustrated for retaining a bead of adhesive or sealing material used to bond the insulated layer 50 to the frame 48 .
  • Skylight 62 is made up of a dome 64 , a frame 66 and two insulating layers 68 and 70 .
  • Insulating layers 68 and 70 are preferably thermoformed into a dome shape and are formed of a light transmitting plastic material.
  • a first enclosed space 72 is defined between the dome and insulating layer 70 while a second adjacent enclosed space 74 is defined between insulating layers 68 and 70 .
  • the frame 66 is provided with the pair of step annular recesses 75 and 77 to align insulating layers 68 , 70 within the assembly and provide a surface on which to secure the insulating layers 68 and 70 .
  • the insulating layers 50 , 68 and 70 of skylight assembly 44 in FIG. 2 a and skylight 62 in FIG. 2b respectively, the insulating layers 50 , 68 and 70 can be made of relatively thin material since the layers are not subject to a significant mechanical loading. Material such as acrylic, polycarbonate, terephthlate, polyoxmethylene, polystyrene, and/or polyvinyl chloride may be utilized for insulating layers and the material thicknesses can be as thin as 0 . 030 .
  • a sealing bead 73 may optionally be attached to the frame 66 to provide a water resistant bed of sealant between the roof and frame 66 .
  • FIG. 3 illustrates a domed skylight 76 which is part of a larger, tubular skylight assembly 78 .
  • Skylight 76 is made up of a dome 80 , a frame 82 and an insulating layer 84 which defines an enclosed space 86 between the insulating layer 84 and dome 80 .
  • the upper portion of frame 82 forms an annular trough 88 which serves to trap condensate forming on the inner surface of insulating panel 84 .
  • Trough 88 prevents condensate from forming on the skylight interior and dripping into the building interior space.
  • Trough 88 is sufficiently large so that the condensate would be collected during periods of condensate formation and subsequently evaporated when the humidity and/or temperature changes sufficiently to cause the condensate to evaporate.
  • the tubular skylight assembly 78 includes the skylight assembly 76 as well as a light pipe 90 and light diffuser panel 92 .
  • Light diffuser panel 92 is mounted to the ceiling of a room within the building and the light pipe 90 extends between the diffuser and skylight assembly 76 to carry light from the skylight dome 80 through the light reflective interior surface of light pipe 90 into the room via the light transparent diffuser 92 .
  • Light pipe 90 can be made of a flexible conduit as illustrated or a sheet metal duct structure.
  • FIGS. 4-6 illustrate a different type of fenestration product constructed in accordance with the teachings of the present invention, namely, a window assembly 100 .
  • Window assembly 100 is adapted for permanent installation in a building opening such as a window into a building basement, crawlspace, or a fixed window in a garage, a garage door, or an entry system.
  • Window 100 is specifically designed to simulate a glass block window commonly seen in building basements. Other textures may be incorporated as desired, such as a texture simulating camed glass.
  • the window assembly 100 includes a dome 102 , a frame member 104 structure and an interior layer 106 all formed of a thermoformed plastic material which transmits visible light.
  • Dome 102 has a central panel portion 108 , an outer peripheral wall 110 and an outwardly extending flashing flange 112 .
  • Frame 104 is also formed of a transparent plastic material having an outer peripheral wall portion 114 and a transparent central wall portion 116 .
  • the frame 104 is further provided with an outwardly extending flashing flange 118 overlying flashing flange 112 of the dome 102 .
  • Interior layer 106 is provided and bonded to frame 104 thereby defining two enclosed interior spaces between interior layer 106 and the central panel 108 of dome 102 .
  • First enclosed space 120 is interposed between interior layer 106 and frame central wall portion 116 and second enclosed region 122 interposed between transparent central wall portion 116 and the central panel portion 108 of dome 102 .
  • dome, frame and interior layer 102 , 104 and 106 are forms of visible light transmitting thermoplastic sheet thermoformed to the desired shape.
  • the panels are then joined together to form a secure assembly.
  • joining methods may include, but are not limited to, ultrasonic welding, heat staking, and/or adhesives. It is understood that joining may also include fastening the three components 102 , 104 and 106 to the building with screws, staples, nails or similar mechanical fasteners.
  • the central panel 108 and interior layer 106 are provided with simulated grout lines 124 molded into the panels.
  • the remainder of the visible portion of panels 108 and 106 are provided with a textured pebble-like surface simulating the appearance of glass block.
  • the frame 104 may be formed of a translucent plastic material allowing light to pass, but, impeding the person's view through the window.
  • Window assembly 100 can be manufactured in standard basement window sizes. Windows can alternatively be designed to be mounted from the exterior or mounted from the interior of the building depending upon the architect's specification.
  • the window assembly 100 can be attached to the wood framed window opening with conventional fasteners such as screws and nails.
  • One or more bezels 126 may likewise be utilized either on the building exterior, building interior or both in order to further seal the joint between the building opening and the window assembly and to enhance the aesthetic appearance of the window.
  • the plastic sheets utilized to fabricate the three panels 102 , 104 and 106 forming window assembly 100 may be of a variety of materials as described previously. While the frame material can be relatively thin, the panel facing the exterior of the building should be sufficiently thick to provide adequate security and provide acceptable aesthetic appearance.
  • the plastic sheets may also be formed of composite sheets of plastic to provide desired enhancements. Examples of the composite sheets may include UV and/or heat transfer resistant films sandwiched between acrylic plastic. Another example may include an intrusion-resistant mylar film bonded between two thin sheets of polycarbonate plastic. It should be further appreciated that additional thin layers of thermoformed plastic material may be utilized in fabricating window 116 placed between dome 102 and inner layer 106 to increase the number of enclosed zones within the window to further improve the thermal resistance of the assembly.
  • FIGS. 7 and 8 illustrate an alternative embodiment of a window assembly 130 in accordance with the teachings of the present invention.
  • Window assembly 130 is adapted for permanent installation into a building opening such as window into a basement in a concrete block construction house member.
  • the window assembly 130 includes a dome 132 positioned in an opening in the concrete block wall section 134 .
  • the dome has a central panel 136 , a peripheral wall 138 and a peripheral flange 142 .
  • the window assembly 130 is shaped like a top hat, and defines a cavity 146 into which an interior layer 148 may be inserted.
  • the interior layer 148 includes a central wall panel 150 and a peripheral flange 152 .
  • the interior layer 148 may be inserted into the cavity 146 with the distal ends 140 of the flange 152 pointed toward the center panel 136 of the dome 132 . It is understood that the distal ends 140 of the flange 152 may be directed away from the central panel 136 without exceeding the scope of this invention.
  • the flange 152 may vary in size based on the number of inserts desired. Typically, the flange 152 may range in length from 0 . 25 to 4 . 0 inches and preferably 0 . 5 to 2 . 0 inches.
  • a sealed insulating unit 156 may be inserted adjacent to the interior layer 148 .
  • the sealed unit 156 may include a first central panel 158 , a second central panel 160 , a peripheral flange 162 .
  • the first central panel 158 is hermetically sealed to flange 162 creating an enclosed air space 166 .
  • a gas may be injected to space 166 to improve the thermal transmission resistance of the sealed unit 156 .
  • An example of the gas that may be injected is an insulator like argon.
  • other insulators may be in the sealed unit.
  • the insulator may include a vacuum, an aerogel, or a nanogel.
  • the cavity 166 should be less than 0 .
  • the flange 162 be less than 1 . 25 inch in length so that when placed adjacent to the interior layer 148 , that they form a second air space 168 that may improve the thermal transmission resistance of the window assembly 130 .
  • Optional additional interior layers such as a second interior layer 170 may be inserted into cavity 146 to further improve the thermal transmission resistance of the window assembly 130 .
  • a coating, a deposition or a film may be applied to at least one of the components of the window assembly 130 including the dome 132 , the interior layer 148 , the sealing unit 156 , and the second interior layer 170 .
  • a cap 172 opposes the central panel 136 and provides closure to the cavity 146 .
  • the cap 172 has a peripheral flange 174 which is adjacent to the flange 142 of the dome 136 .
  • the cap 172 may also have positioning ribs 178 to assist in centering the cap in the opening in flange 142 .
  • the window assembly 130 including the dome 132 and the cap 172 are fastened to the concrete wall structure 134 using fasteners known in the art.
  • An example of the fastener is a molly anchor 180 .
  • an interior trim bezel 182 may be attached to the cap flange 174 using a double stick transfer tape 184 .
  • an exterior trim bezel 186 may be attached to the exterior of the concrete block structure 134 using a barbed insert 188 .
  • An example of the barbed insert 188 is commonly referred to as a “Christmas Tree”. It is understood that the barbed insert 188 may have individual prongs or be part of a more continuous ridge of barbed inserts.
  • the window assembly 130 may optionally be insulated by injecting a foamed sealer 190 , such as a foaming polymer like foamed polyurethane into a gap between the dome 132 and concrete block wall section 134 before application of the bezel 186 .
  • the invention further includes a method of forming a fenestration product assembly.
  • the method includes steps of thermoforming a first sheet of plastic into a ring shape frame having a cross-section and the general shape of an inverted “U”.
  • a plastic dome is thermoformed from a second sheet of plastic material which transmits visible light defining a dome having a central region and a downwardly extended peripheral flange and a flashing flange extending outwardly from the outer peripheral wall.
  • the central portion of the ring shape frame is cut out forming a central opening through which light can pass.
  • the ring shaped frame and dome are then joined in a nested manner with the dome downwardly extending peripheral wall cooperating with the outer frame peripheral wall.
  • the flashing flange may be omitted from the dome and provided on the ring shaped frame or flashing flanges may be included on both the dome and the ring shape frame.
  • the method of forming the fenestration product further includes the step of forming a transparent or translucent insulating layer which is interposed between the frame and the dome and bonded to at least one of the frame and the dome to define an enclosed space between the insulating layer and the dome to increase the thermal resistance value of the assembly.
  • the method may include forming a second insulating layer interposed between the first insulating layer and the dome in order to define two separate enclosed regions between the dome and the two insulating layers to further increase the thermal resistance value of the assembly. It is understood that enclosed regions may include ventilating holes to allow relatively small transfers of gas to relieve pressure differentials or other issues associated with a sealed chamber exposed to temperature extremes.
  • the method may further include the step of filling the “U” shaped channel formed in the frame with the insulating material, such as a polymer foam which is preferably cured in place to substantially fill the “U” shaped trough defined by the frame.
  • the insulating material such as a polymer foam which is preferably cured in place to substantially fill the “U” shaped trough defined by the frame.

Abstract

A fenestration product such as a skylight or a window assembly is provided having a frame with a peripheral wall with a light transmitting central region and a plastic dome formed of a light transmitting material mounted to the frame. The plastic dome has a central region which transmits light, a downwardly extending peripheral wall extending about and mounted to the peripheral frame, and an outwardly extending flashing flange for mounting the assembly to a building structure. Various embodiments of the part illustrated include a skylight assembly having a frame formed of a plastic layer formed into an inverted “U” shape cross-section forming an annular channel filled with insulating foam. A sealed, vertically mounted window unit is also disclosed. Other embodiments have an insulating layer of transparent plastic material spaced from the dome forming an enclosed, gas filled insulating region. Methods of forming and installing a fenestration assembly are also described.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • This invention relates to fenestration products composed primarily of plastic.
  • 2. Background Art
  • Plastic is used in a variety of fenestration products such as skylights and windows in buildings as an alternative to a glass panel. Plastic and glass fenestration panels each have their respective advantages and disadvantages. Glass is relatively inexpensive, has good optical properties, is scratch resistant and stable in a variety of harsh environments. Glass, however, is relatively heavy, susceptible to catastrophic failure and can be difficult to handle and fabricate. There is a wide a variety of plastics available for use in fenestration products. Some are low cost, tough, readily formable and environmentally stable. Many plastics, however, are susceptible to scratching, lose their physical properties with age or exposure to environmental factors, and can be relatively expensive.
  • The use of plastic and fenestration products, although a very small portion of the market compared to glass, is still quite significant. Plastic panels are used in doors for example, particularly storm doors to minimize the risk of injury due to glass fracture. Acrylic dome panels are used in both residential and industrial building skylights, as illustrated in U.S. Pat. Nos. 3,434,257; 4,514,944, and 4,344,261. Recently, the plastic dome skylight has been introduced having acrylic dome mounted in a polyurethane frame molded in situ about the dome peripheral edge, as illustrated in published U.S. patent application 2005/0178078, illustrated in website, www.vtechindustries.com/products.html and available from Vtech Industries, Inc. and Carlisle SynTec, Inc.
  • The focus of the development efforts in the plastic fenestration product area has been, how to mount the plastic panel to the building opening in a secure leak proof manner, while securely supporting the plastic panel on a frame or curb in a structural manner. Many of the mounting systems are comprised of multiple component parts which require assembly and have joints which are susceptible to water leaks. Some skylights are deck mounted, others use raised curbs. The molded polyurethane frame of the VTech™ skylight is a simple one piece molded structure which is securely bonded to the plastic dome in a leak proof manner resulting in a very high performance skylight. This skylight, however, is expensive to manufacture as the tooling and production equipment needed is costly and the raw material cost of the high performance polyurethane utilized prevents this construction system from being used in low price point skylight applications.
  • SUMMARY OF THE INVENTION
  • Accordingly, one of the benefits of the present invention is to develop a low cost fenestration product which is suitable for use in skylights or the like which can match the state of the art water intrusion standards set by the in situ molded polyurethane frame systems. It is a further advantage of the invention to develop a fenestration product which is relatively inexpensive to manufacture and requires minimal investment in capital equipment.
  • The fenestration product made in accordance with an embodiment of the present invention includes two main components; a frame and a plastic dome formed of a transparent material which is mounted to the frame. The dome has a central region which transmits visible light and a downwardly extending peripheral edge which extends about the peripheral wall of the frame. The dome is further provided with an outwardly extending flashing flange for mounting the assembly to a wall of a building structure surrounding a building opening.
  • In one embodiment of the invention, the frame comprises the unitary plastic ring having a central opening formed therein. The frame peripheral wall is preferably formed of an inverted “U” shape cross-section having an outer peripheral wall cooperating with the plastic dome and an inner peripheral wall aligned with the building opening upon which the fenestration product is mounted.
  • The invention further includes the method of manufacturing a fenestration product. The method includes the steps of thermoforming a first plastic sheet into a ring shape frame having a generally “U” shaped cross-section formed by an outer peripheral wall. A second plastic sheet formed of a material capable of transmitting visible light and is thermoformed into a dome having a central portion and a downwardly extending peripheral wall cooperating with the outer peripheral wall of the ring shape frame. The ring shape frame and dome are joined in a nested manner with the dome downwardly extending peripheral flange cooperating with the frame outer peripheral wall, where at least one of the ring shape frame and dome is formed with an integral outward extending flashing flange suitable for mounting the assembly on the building structure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a first skylight embodiment of the invention;
  • FIG. 2 is a cross-sectional view taken along line 2-2 of FIG. 1;
  • FIG. 2 a is a cross-sectional view of an alternative embodiment of the FIG. 1 skylight;
  • FIG. 2b is a cross-sectional view of a second alternative embodiment of the FIG. 1 skylight;
  • FIG. 3 is a cross-sectional side elevation of a light pipe alternative embodiment of the invention;
  • FIG. 4 is a side view of a window assembly embodiment of the invention;
  • FIG. 5 is a cross-sectional plan view taken along line 5-5 of FIG. 4;
  • FIG. 6 is an exploded cross-sectional side elevation taken along line 6-6 of FIG. 4;
  • FIG. 7 is a top view of a window assembly embodiment of the invention; and
  • FIG. 8 is an exploded cross-sectional top view of a window assembly embodiment as illustrated in FIG. 7.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)
  • As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for the claims and/or as a representative basis for teaching one skilled in the art to utilize the present invention.
  • Except where expressly indicated, all numerical quantities in this description indicating the amounts of material or conditions are understood as modified by the word “about” in describing the broadest scope of the present invention. Practice within the numerical limits is generally preferred.
  • Accordingly, a number of representative examples of the present invention are illustrated in the drawings and described herein. In the first example, skylight assembly 10 is illustrated in FIGS. 1 and 2. Skylight 10 has two main components as best seen in the FIG. 2 cross-sectional view illustrating the skylight mounted to an opening in a building roof 12. The skylight includes a dome member 14 and a frame member 16 which are both formed of sheets of plastic which have been thermoformed to a three dimensional shape using a conventional thermoforming process such as vacuforming, twin-sheet thermoforming or pressure assisted sag forming. Dome 14 is preferably formed of a light transparent and plastic material such as acrylic or polycarbonate. Depending on the application, the dome may be transparent or may be translucent. A translucent layer having a whitish color can allow light to pass through and act as a diffuser. Plastic dome 14 has a central panel 18 forming a dome shape, a downwardly extending peripheral wall 20 and an outwardly extending flashing flange portion 22. Dome 14 is secured to a peripheral wall portion 24 of frame 16. Frame 16 is also thermoformed of a plastic sheet with the peripheral outer wall 24 forming an annular ring to support dome 14. The frame 16 defines a light transmitting central region 26 to allow light passing through the dome 14 central panel 18 to freely enter the building roof 12.
  • In the first embodiment of the invention illustrated in skylight assembly 10, the frame 16 has a peripheral wall portion which in cross-section forms an inverted “U” shape having an inner wall portion 28 and upper wall 30. Extending radially outward from outer peripheral wall 24 is a flashing flange 32 which underlies flashing flange portion 22 of dome 14. Optionally, inner peripheral wall 28 extends downwardly into the building slightly below the level of the flashing flange 32 as illustrated in FIG. 2 in order to help align the skylight with the opening formed in the roof sheathing 34. Frame 16 may be formed of a different plastic material than the dome 14 since transparency is not required in the illustrated embodiment. The frame plastic material is preferably of a material which can easily be bonded to the frame using conventional adhesives, solvents or weldments. In the embodiment illustrated, the cavity formed within the inverted “U” shaped cross-section of frame 16 is filled with a foam insulation material 36.
  • In a typical 2′×4′ building opening size application, skylight 10 can be manufactured using a dome formed of acrylic having a wall thickness prior to thermoforming of 0.60 inches to 0.236 inches or the wall thickness capable of supporting an ultimate load needed in service or required by a regulation or an architect. These ultimate loads may include in excess of 20, 40, or 60 pounds per square feet as tested using procedure A of ASTM E330 after stabilization according to procedure A of ASTM D618. The frame may be formed of acrylic or a different plastic material such as acrylic polycarbonate, terephthalate, polyoxymethylene, polyolefin, and/or polyvinylchloride, since light transmission is not an issue. The wall thickness of the frame need not be thick, particularly when the frame filled with a rigid insulation foam 36. A wall thickness of the frame can range from 0.030 to 0.236 inches. Foamed insulation material such as polyurethane, expanded polystyrene, or polyisocyanurate can be used having densities between 1 pound per cubic foot and 40 pounds per cubic foot.
  • Preferably, the outwardly extending flashing flange 22 extends outwardly from a downwardly extending dome peripheral wall 28 at least 2″ to 9″ and more preferably, 3″ to 7″, in order to provide an adequate overlap to bond to the water barrier 38 mounted to the building sheathing 34 to allow adequate overlap with the roofing material 40 to prevent water leakage into the building opening. Flashing flange 22 also serves as a mounting flange for attaching the skylight assembly to the building roof sheathing 34. Preferably, corrosion resistant screws or nails are installed through the flashing flange portion 22 into the building roof sheathing 34. The mounting fasteners are preferably located significantly outboard of the dome downwardly extending peripheral wall 20 and well inboard of the outer peripheral edge of the mounting flange, but not necessarily aligned in a row, in order to minimize stress concentrations in the mounting flange caused by wind load on the skylight dome 18. Ideally, holes for fasteners do not have to be pre-drilled, that way assuring that any unused fastener holes do not provide an entry leak path for water. Holes for fasteners 42 may be drilled at the job site. In order to minimize screw pull out, the screws are preferably provided with a relatively large low profile head or be provided with an associated washer such as a compression washer.
  • FIG. 2 a illustrates a cross-sectional view of an alternative embodiment of the skylight assembly. Skylight 44 is made up of three main components; a dome 46, a frame 48 and an insulating layer 50. Dome 46 and frame 48 are substantially similar to dome 14 and frame 16 described in reference to the embodiment invention of FIG. 2, except that the frame 48 terminates before the region in which fasteners are inserted. Insulating layer 50 is formed of a light transparent plastic material. Insulated layer 50 has a central region able to transmit visible light and an outer peripheral flange which is mounted to one of the dome 46 or frame 48 in order to define enclosed interior space 52 interposed between the central regions of dome 46 and insulated layer 50. Interior space 52 is filled with a gas such as air or argon and provides a relatively high thermal transmission resistant barrier between the interior of the building and the building exterior. Insulated layer 50 may be bonded to the upper most portion 54 of frame 48 with an adhesive material or weldment in order to bond the dome to the frame as illustrated. Preferably, one of the top region of frame 54 or the outer peripheral edge 56 of insulated layer 50 is provided with a groove 58 as illustrated for retaining a bead of adhesive or sealing material used to bond the insulated layer 50 to the frame 48. After the insulated layer 50 installed on the frame, the dome is attached using adhesives as described previously to form a completed assembly.
  • Yet another variation of the skylight assembly is illustrated in FIG. 2b. Skylight 62 is made up of a dome 64, a frame 66 and two insulating layers 68 and 70. Insulating layers 68 and 70 are preferably thermoformed into a dome shape and are formed of a light transmitting plastic material. When completely assembled, a first enclosed space 72 is defined between the dome and insulating layer 70 while a second adjacent enclosed space 74 is defined between insulating layers 68 and 70. These two isolated insulating spaces further enhance the thermal characteristics of the skylight assembly. Preferably, the frame 66 is provided with the pair of step annular recesses 75 and 77 to align insulating layers 68,70 within the assembly and provide a surface on which to secure the insulating layers 68 and 70. With reference to the insulating layers 50, 68 and 70 of skylight assembly 44 in FIG. 2 a and skylight 62 in FIG. 2b, respectively, the insulating layers 50, 68 and 70 can be made of relatively thin material since the layers are not subject to a significant mechanical loading. Material such as acrylic, polycarbonate, terephthlate, polyoxmethylene, polystyrene, and/or polyvinyl chloride may be utilized for insulating layers and the material thicknesses can be as thin as 0.030. A sealing bead 73 may optionally be attached to the frame 66 to provide a water resistant bed of sealant between the roof and frame 66.
  • FIG. 3 illustrates a domed skylight 76 which is part of a larger, tubular skylight assembly 78. Skylight 76 is made up of a dome 80, a frame 82 and an insulating layer 84 which defines an enclosed space 86 between the insulating layer 84 and dome 80. The upper portion of frame 82 forms an annular trough 88 which serves to trap condensate forming on the inner surface of insulating panel 84. Trough 88 prevents condensate from forming on the skylight interior and dripping into the building interior space. Trough 88 is sufficiently large so that the condensate would be collected during periods of condensate formation and subsequently evaporated when the humidity and/or temperature changes sufficiently to cause the condensate to evaporate. The tubular skylight assembly 78 includes the skylight assembly 76 as well as a light pipe 90 and light diffuser panel 92. Light diffuser panel 92 is mounted to the ceiling of a room within the building and the light pipe 90 extends between the diffuser and skylight assembly 76 to carry light from the skylight dome 80 through the light reflective interior surface of light pipe 90 into the room via the light transparent diffuser 92. Light pipe 90 can be made of a flexible conduit as illustrated or a sheet metal duct structure.
  • FIGS. 4-6 illustrate a different type of fenestration product constructed in accordance with the teachings of the present invention, namely, a window assembly 100. Window assembly 100 is adapted for permanent installation in a building opening such as a window into a building basement, crawlspace, or a fixed window in a garage, a garage door, or an entry system. Window 100 is specifically designed to simulate a glass block window commonly seen in building basements. Other textures may be incorporated as desired, such as a texture simulating camed glass. As illustrated in the FIG. 5 cross-sectional view, the window assembly 100 includes a dome 102, a frame member 104 structure and an interior layer 106 all formed of a thermoformed plastic material which transmits visible light. Dome 102 has a central panel portion 108, an outer peripheral wall 110 and an outwardly extending flashing flange 112. Frame 104 is also formed of a transparent plastic material having an outer peripheral wall portion 114 and a transparent central wall portion 116. The frame 104 is further provided with an outwardly extending flashing flange 118 overlying flashing flange 112 of the dome 102. Interior layer 106 is provided and bonded to frame 104 thereby defining two enclosed interior spaces between interior layer 106 and the central panel 108 of dome 102. First enclosed space 120 is interposed between interior layer 106 and frame central wall portion 116 and second enclosed region 122 interposed between transparent central wall portion 116 and the central panel portion 108 of dome 102. All three components; dome, frame and interior layer 102, 104 and 106 are forms of visible light transmitting thermoplastic sheet thermoformed to the desired shape. The panels are then joined together to form a secure assembly. Examples of joining methods may include, but are not limited to, ultrasonic welding, heat staking, and/or adhesives. It is understood that joining may also include fastening the three components 102, 104 and 106 to the building with screws, staples, nails or similar mechanical fasteners.
  • In the window assembly embodiment illustrated in FIGS. 4-6, the central panel 108 and interior layer 106 are provided with simulated grout lines 124 molded into the panels. Preferably, the remainder of the visible portion of panels 108 and 106 are provided with a textured pebble-like surface simulating the appearance of glass block. To further provide a visible barrier, the frame 104 may be formed of a translucent plastic material allowing light to pass, but, impeding the person's view through the window.
  • Window assembly 100 can be manufactured in standard basement window sizes. Windows can alternatively be designed to be mounted from the exterior or mounted from the interior of the building depending upon the architect's specification. The window assembly 100 can be attached to the wood framed window opening with conventional fasteners such as screws and nails. One or more bezels 126 may likewise be utilized either on the building exterior, building interior or both in order to further seal the joint between the building opening and the window assembly and to enhance the aesthetic appearance of the window.
  • The plastic sheets utilized to fabricate the three panels 102, 104 and 106 forming window assembly 100 may be of a variety of materials as described previously. While the frame material can be relatively thin, the panel facing the exterior of the building should be sufficiently thick to provide adequate security and provide acceptable aesthetic appearance. The plastic sheets may also be formed of composite sheets of plastic to provide desired enhancements. Examples of the composite sheets may include UV and/or heat transfer resistant films sandwiched between acrylic plastic. Another example may include an intrusion-resistant mylar film bonded between two thin sheets of polycarbonate plastic. It should be further appreciated that additional thin layers of thermoformed plastic material may be utilized in fabricating window 116 placed between dome 102 and inner layer 106 to increase the number of enclosed zones within the window to further improve the thermal resistance of the assembly.
  • Referring to FIGS. 7 and 8, these figures illustrate an alternative embodiment of a window assembly 130 in accordance with the teachings of the present invention. Window assembly 130 is adapted for permanent installation into a building opening such as window into a basement in a concrete block construction house member. As illustrated in the FIG. 8, an exploded top cross-sectional view, the window assembly 130 includes a dome 132 positioned in an opening in the concrete block wall section 134. The dome has a central panel 136, a peripheral wall 138 and a peripheral flange 142. The window assembly 130 is shaped like a top hat, and defines a cavity 146 into which an interior layer 148 may be inserted. The interior layer 148 includes a central wall panel 150 and a peripheral flange 152. The interior layer 148 may be inserted into the cavity 146 with the distal ends 140 of the flange 152 pointed toward the center panel 136 of the dome 132. It is understood that the distal ends 140 of the flange 152 may be directed away from the central panel 136 without exceeding the scope of this invention. The flange 152 may vary in size based on the number of inserts desired. Typically, the flange 152 may range in length from 0.25 to 4.0 inches and preferably 0.5 to 2.0 inches.
  • As an option, a sealed insulating unit 156 may be inserted adjacent to the interior layer 148. The sealed unit 156 may include a first central panel 158, a second central panel 160, a peripheral flange 162. The first central panel 158 is hermetically sealed to flange 162 creating an enclosed air space 166. Alternatively, a gas may be injected to space 166 to improve the thermal transmission resistance of the sealed unit 156. An example of the gas that may be injected is an insulator like argon. Alternatively, other insulators may be in the sealed unit. The insulator may include a vacuum, an aerogel, or a nanogel. The cavity 166 should be less than 0.625 inches in thickness and preferably less than 0.5 inches in thickness in order to prevent creation of convection cells within the cavity. The convection cells increase heat transmission. It is desirable that the flange 162 be less than 1.25 inch in length so that when placed adjacent to the interior layer 148, that they form a second air space 168 that may improve the thermal transmission resistance of the window assembly 130. Optional additional interior layers such as a second interior layer 170 may be inserted into cavity 146 to further improve the thermal transmission resistance of the window assembly 130. A coating, a deposition or a film may be applied to at least one of the components of the window assembly 130 including the dome 132, the interior layer 148, the sealing unit 156, and the second interior layer 170.
  • A cap 172 opposes the central panel 136 and provides closure to the cavity 146. The cap 172 has a peripheral flange 174 which is adjacent to the flange 142 of the dome 136. The cap 172 may also have positioning ribs 178 to assist in centering the cap in the opening in flange 142. The window assembly 130 including the dome 132 and the cap 172 are fastened to the concrete wall structure 134 using fasteners known in the art. An example of the fastener is a molly anchor 180. For aesthetic purposes, an interior trim bezel 182 may be attached to the cap flange 174 using a double stick transfer tape 184. It is understood that other means of attaching the interior trim bezel 182 that are known in the art may be used without exceeding the scope of the invention. Likewise, an exterior trim bezel 186 may be attached to the exterior of the concrete block structure 134 using a barbed insert 188. An example of the barbed insert 188 is commonly referred to as a “Christmas Tree”. It is understood that the barbed insert 188 may have individual prongs or be part of a more continuous ridge of barbed inserts. The window assembly 130 may optionally be insulated by injecting a foamed sealer 190, such as a foaming polymer like foamed polyurethane into a gap between the dome 132 and concrete block wall section 134 before application of the bezel 186.
  • The invention further includes a method of forming a fenestration product assembly. The method includes steps of thermoforming a first sheet of plastic into a ring shape frame having a cross-section and the general shape of an inverted “U”. A plastic dome is thermoformed from a second sheet of plastic material which transmits visible light defining a dome having a central region and a downwardly extended peripheral flange and a flashing flange extending outwardly from the outer peripheral wall. In one preferred embodiment of the method the central portion of the ring shape frame is cut out forming a central opening through which light can pass. The ring shaped frame and dome are then joined in a nested manner with the dome downwardly extending peripheral wall cooperating with the outer frame peripheral wall. Alternatively, the flashing flange may be omitted from the dome and provided on the ring shaped frame or flashing flanges may be included on both the dome and the ring shape frame.
  • The method of forming the fenestration product further includes the step of forming a transparent or translucent insulating layer which is interposed between the frame and the dome and bonded to at least one of the frame and the dome to define an enclosed space between the insulating layer and the dome to increase the thermal resistance value of the assembly. Alternatively, the method may include forming a second insulating layer interposed between the first insulating layer and the dome in order to define two separate enclosed regions between the dome and the two insulating layers to further increase the thermal resistance value of the assembly. It is understood that enclosed regions may include ventilating holes to allow relatively small transfers of gas to relieve pressure differentials or other issues associated with a sealed chamber exposed to temperature extremes.
  • The method may further include the step of filling the “U” shaped channel formed in the frame with the insulating material, such as a polymer foam which is preferably cured in place to substantially fill the “U” shaped trough defined by the frame.
  • While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.

Claims (27)

1. A fenestration product assembly comprising:
a frame having an upwardly extending peripheral wall portion defining a light transparent central region; and
a dome formed of a plastic material which transmits visible light, the dome mounted to the frame and having a central panel portion overlying the frame central region, a downwardly extending peripheral edge which extends about the frame peripheral wall, and an outwardly extending flashing flange for mounting the assembly to a building structure.
2. The fenestration product assembly of claim 1 wherein the frame comprises a unitary plastic ring portion having a central opening.
3. The fenestration product assembly of claim 2 wherein the frame peripheral wall portion has an inverted U-shaped cross section.
4. The fenestration product assembly of claim 3 wherein the frame further comprises a thermal insulation material which substantially fills the inverted U-shaped cross section of the frame peripheral wall portion.
5. The fenestration product assembly of claim 4 wherein the thermal insulation material comprises a polymeric foam material which is formed in situ.
6. The fenestration product assembly of claim 3 wherein the frame further comprises a flashing flange portion extending outward from the wall portion and at least partially underlying the flashing flange of the dome.
7. The fenestration product assembly of claim 1 further comprising an insulating layer formed of a plastic material which is transparent to visible light, the insulating layer mounted to at least one of the frame and the dome, and having a central panel portion overlying the frame central region and a peripheral edge which is mounted to at least one of the frame peripheral wall and the dome to define an enclose cavity between the insulating layer and the dome.
8. The fenestration product assembly of claim 7 further comprising a second insulating layer formed of a plastic material which is transparent to visible light, the second insulating layer mounted between the insulating layer and the dome, and having a central panel portion overlying the frame central region and a peripheral edge which is mounted to at least one of the frame peripheral wall, the insulating layer and the dome, thereby subdividing the enclosed cavity between the insulating layer and the dome.
9. The fenestration product assembly of claim 7 wherein the frame peripheral wall portion has an inverted U-shaped cross section.
10. The fenestration product assembly of claim 9 wherein the frame further comprises a thermal insulation material which substantially fills the inverted U-shaped cross section of the frame peripheral wall portion.
11. The fenestration product assembly of claim 1 wherein the frame comprises a unitary plastic ring portion and a light transmitting panel oriented in the frame central region in spaced apart relation to the dome central panel portion forming an enclosed cavity there between.
12. The fenestration product assembly of claim 11 further comprising an exterior panel formed of plastic material having a light transmitting central portion overlying and spaced from the frame central region forming a second central cavity there between.
13. The fenestration product assembly of claim 12 wherein the exterior panel is formed of a translucent plastic material have embossed thereon selected from a group consisting of a simulated glass block pattern and a camed glass pattern.
14. The fenestration product assembly of claim 11 wherein the light transmitting panel further comprises a peripheral flange overlying and affixed at least indirectly to the dome peripheral flange.
15. A fenestration product assembly comprising:
a plastic ring shaped frame having an inverted U-shaped cross-section defining a central opening and an outer peripheral wall portion; and
a dome formed of a plastic material which transmits visible light, the dome mounted to the frame and having a central panel portion overlying the frame central region, a downwardly extending peripheral edge which extends about the frame peripheral wall;
wherein at least one of the frame and dome is further provided with an integrally formed outwardly extending flashing flange for mounting the assembly to a building structure.
16. The fenestration product assembly of claim 15 wherein an upper region of the frame is provided with an integrally formed trough for collecting condensate forming on an interior surface of the assembly spanning the central opening in the frame.
17. The fenestration product assembly of claim 15 further comprising an insulating layer formed of a plastic material which transmits visible light, the insulating layer having a peripheral edge which is mounted to the frame and a central panel portion overlying the frame central opening forming an enclosed cavity between the insulating layer and the dome.
18. The fenestration product assembly of claim 17 further comprising a secondary insulating layer formed of a plastic material which transmits visible light, the secondary insulating layer mounted between the insulating layer and the dome, and having a central panel portion overlying the frame central opening and a peripheral edge which is mounted to at least one of the frame, the insulating layer and the dome, thereby subdividing the enclosed cavity between the insulating layer and the dome.
19. The fenestration product assembly of claim 18 wherein the frame further comprises a thermal insulation material which substantially fills the inverted U-shaped cross section of the frame.
20. A method of forming a fenestration product assembly, the method comprising:
thermoforming a first sheet of plastic into a ring shape frame having an inverted U-shaped cross section with an outer peripheral wall portion;
thermoforming a second sheet of plastic material which transmits visible light into a dome having a domed central panel portion and a downwardly extending outer peripheral wall;
joining the ring shaped frame and dome in a nested manner with the dome downwardly extending peripheral wall cooperating with the frame outer peripheral wall portion;
wherein at least one of the frame and dome is formed with an integral flashing flange extending outwardly from a bottom edge of the outer peripheral wall for mounting the assembly to a building structure.
21. A fenestration product assembly comprising:
a dome formed of a first plastic material which transmits visible light, the dome having a first central panel, a peripheral side, and a peripheral flange attached to the side, the side and central panel defining a cavity;
an interior layer of a second plastic material which transmits visible light, the interior layer having a second central panel and a peripheral rib perpendicular to the second central panel, the interior layer being nested within the cavity and providing a first barrier to thermal transmission through the fenestration product; and
a cap of a third plastic material which transmits visible light, the cap having opposed aligning ribs perpendicular to a third central panel, the aligning ribs engaging the dome to connect the cap to the dome.
22. The fenestration product assembly of claim 21, further comprising:
a sealed insert of a fourth plastic material which transmits visible light nested in the cavity, the sealed insert having a fourth center panel, a sealing sheet and a peripheral flange, the sealing sheet being connected to the flange of the sealed insert at a distance of less than 0.625 inches from the fourth center panel forming a chamber between the sealing sheet and the flange and capable of retaining an insulator within the chamber.
23. The fenestration product assembly of claim 22, wherein the flanged sealed insert is adjacent to the interior layer, defining an unsealed chamber between the sealing insert and the interior layer, the unsealed chamber having a thickness of less than 0.625 inches.
24. A method of installing a fenestration product assembly to a building, the method comprising:
inserting a fenestration product of claim 21 into an opening in the building;
securing the fenestration product with a fastener passing through the flange and attaching to the building; and
applying the cap to the dome.
25. The method of claim 24, further comprising injecting a foaming polymer into a joint between the dome and the building.
26. The method of claim 25, further comprising securing a bezel to the exterior of the building covering the joint.
27. The method of claim 24, further comprising securing an interior trim part covering at least a portion of the flange.
US11/832,417 2007-08-01 2007-08-01 Plastic fenestration product Abandoned US20090031649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/832,417 US20090031649A1 (en) 2007-08-01 2007-08-01 Plastic fenestration product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/832,417 US20090031649A1 (en) 2007-08-01 2007-08-01 Plastic fenestration product

Publications (1)

Publication Number Publication Date
US20090031649A1 true US20090031649A1 (en) 2009-02-05

Family

ID=40336822

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/832,417 Abandoned US20090031649A1 (en) 2007-08-01 2007-08-01 Plastic fenestration product

Country Status (1)

Country Link
US (1) US20090031649A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080302032A1 (en) * 2007-06-06 2008-12-11 Valentz Arthur J Fenestration Product Such as a Skylight Having a Laminated Glazing Unit
US20100071311A1 (en) * 2008-09-19 2010-03-25 D Amico Craig Method and Kit for Installing Window Between Joists
ITMI20110199A1 (en) * 2011-02-11 2012-08-12 Gennaro Bracale TUBULAR SKYLIGHT
GB2490200B (en) * 2011-04-20 2015-05-20 Leif Levon Optic junction
US20190203475A1 (en) * 2018-01-04 2019-07-04 Vkr Holding A/S Skylight diffuser accessory
WO2021099794A1 (en) * 2019-11-22 2021-05-27 Lockwood Packaging Ltd Pre-formed glazing unit
US11118356B2 (en) * 2018-11-13 2021-09-14 Ciella Inc. Skylight protection assembly and method for protecting a skylight
US20230085785A1 (en) * 2021-09-22 2023-03-23 Vkr Holding A/S Tubular skylight assembly

Citations (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US470896A (en) * 1892-03-15 Skylight
US3012375A (en) * 1954-10-22 1961-12-12 American Cyanamid Co Combination skylight and ceiling light dome
US3090613A (en) * 1959-01-28 1963-05-21 Paul E Bechtold Window structure
US3111786A (en) * 1954-10-22 1963-11-26 American Cyanamid Co Skylight and ceiling light construction
US3127699A (en) * 1959-04-27 1964-04-07 American Cyanamid Co Self flashing skylight unit
US3350823A (en) * 1967-11-07 Insulated skylight
US3434250A (en) * 1967-01-12 1969-03-25 Brunswick Corp Dual dome skylight
US3521414A (en) * 1968-08-23 1970-07-21 Penn Ventilator Co Inc Base for roof mounted devices
US3665661A (en) * 1969-11-10 1972-05-30 Frank S Beckerer Attachable prefabricated hatch
US3934383A (en) * 1973-07-09 1976-01-27 Perry Loren L Roof vent
US4173854A (en) * 1978-03-13 1979-11-13 Wallerstein Martin A Bowed skylight
US4223493A (en) * 1977-10-15 1980-09-23 Rohm Gmbh Multi-layered skylight
US4242849A (en) * 1978-07-03 1981-01-06 Dayco Corporation Skylight construction and method
US4278414A (en) * 1979-02-16 1981-07-14 Kennedy Sky-Lites, Inc. Apparatus for making plastic skylights
US4281488A (en) * 1976-01-20 1981-08-04 Para-Press S.A. Multipane window with adjustable light admission
US4344261A (en) * 1979-02-16 1982-08-17 Kennedy Sky-Lites, Inc. Skylight
US4408422A (en) * 1982-06-10 1983-10-11 Bechtold Stephen K Skylight dome assembly
US4470230A (en) * 1982-09-29 1984-09-11 Weisner Kent A Skylight and curb therefor
US4473979A (en) * 1976-05-18 1984-10-02 Bruhm Ronald R Frost barrier for skylights
US4514944A (en) * 1982-02-25 1985-05-07 Bristol Fiberlite Industries Skylight and mounting therefor
US4548006A (en) * 1984-09-13 1985-10-22 Roberts Sr Joseph W Self-flashing channeled skylight
US4549379A (en) * 1983-02-07 1985-10-29 Hoy Walter S Skylight assembly
US4570393A (en) * 1983-01-06 1986-02-18 Rolscreen Company Weather seal for frame and movable panel assembly
US4594821A (en) * 1980-07-25 1986-06-17 Bechtold Paul E Skylight assembly
US4730426A (en) * 1985-02-11 1988-03-15 Kenergy Corporation Standing seam skylight for tile roofs
US4750302A (en) * 1986-11-26 1988-06-14 Bechtold Stephen K Insulated glass skylight assembly
USRE32915E (en) * 1978-07-10 1989-05-02 Wasco Products, Inc. Skylight construction
US4825608A (en) * 1987-03-23 1989-05-02 Makin Brent A Flush mounted self-flashing dual pane skylight
US5323576A (en) * 1992-12-16 1994-06-28 Sequentia, Incorporated Metal roofing skylight
US5546712A (en) * 1994-11-03 1996-08-20 Bixby; Joseph A. System and method of constructing a skylight
US5596848A (en) * 1993-10-11 1997-01-28 Skydome Industries Limited Adjustable skylight
US5675940A (en) * 1996-10-15 1997-10-14 Bahar; Reuben Skylight leakage barrier
US5878539A (en) * 1997-06-09 1999-03-09 Grubb; Dennis Method and apparatus for a tubular skylight system
USD431291S (en) * 1999-03-31 2000-09-26 Canplas Industries, Ltd. Translucent roof vent
US6263623B1 (en) * 1998-12-07 2001-07-24 Andersen Corporation Method and apparatus for using a detent arrangement on a roof window frame and sash
US6263624B1 (en) * 1997-01-02 2001-07-24 Fox Lite, Inc. Skylight assembly
US6354046B1 (en) * 2000-07-29 2002-03-12 Michael R Swearingen Skylight membrane with diverter
US20050055901A1 (en) * 2003-08-12 2005-03-17 Portable Pipe Hangers, Inc. Skylight having a molded plastic frame
US6918216B2 (en) * 2003-08-20 2005-07-19 Fox Lite, Inc. Tubular skylight assembly
US7007434B1 (en) * 1999-04-06 2006-03-07 Erik Danielsson Building structure element and stiffening plate elements for such an element
US7059086B2 (en) * 2000-11-25 2006-06-13 Vkr Holding A/S Adjustable roof flashing and flashing kit
US20080154363A1 (en) * 2006-07-25 2008-06-26 C&C Vision International Limited "w" accommodating intraocular lens
US20080184635A1 (en) * 2007-02-06 2008-08-07 Nemazi John E Overmolded Fenestration Building Product and Method of Manufacture
US20080302032A1 (en) * 2007-06-06 2008-12-11 Valentz Arthur J Fenestration Product Such as a Skylight Having a Laminated Glazing Unit
US20090053990A1 (en) * 2007-08-15 2009-02-26 Canplas Industries Ltd. Roof vent for venting a building enclosure

Patent Citations (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US470896A (en) * 1892-03-15 Skylight
US3350823A (en) * 1967-11-07 Insulated skylight
US3012375A (en) * 1954-10-22 1961-12-12 American Cyanamid Co Combination skylight and ceiling light dome
US3111786A (en) * 1954-10-22 1963-11-26 American Cyanamid Co Skylight and ceiling light construction
US3090613A (en) * 1959-01-28 1963-05-21 Paul E Bechtold Window structure
US3127699A (en) * 1959-04-27 1964-04-07 American Cyanamid Co Self flashing skylight unit
US3434250A (en) * 1967-01-12 1969-03-25 Brunswick Corp Dual dome skylight
US3521414A (en) * 1968-08-23 1970-07-21 Penn Ventilator Co Inc Base for roof mounted devices
US3665661A (en) * 1969-11-10 1972-05-30 Frank S Beckerer Attachable prefabricated hatch
US3934383A (en) * 1973-07-09 1976-01-27 Perry Loren L Roof vent
US4281488A (en) * 1976-01-20 1981-08-04 Para-Press S.A. Multipane window with adjustable light admission
US4473979A (en) * 1976-05-18 1984-10-02 Bruhm Ronald R Frost barrier for skylights
US4223493A (en) * 1977-10-15 1980-09-23 Rohm Gmbh Multi-layered skylight
US4173854A (en) * 1978-03-13 1979-11-13 Wallerstein Martin A Bowed skylight
US4242849A (en) * 1978-07-03 1981-01-06 Dayco Corporation Skylight construction and method
USRE32915E (en) * 1978-07-10 1989-05-02 Wasco Products, Inc. Skylight construction
US4278414A (en) * 1979-02-16 1981-07-14 Kennedy Sky-Lites, Inc. Apparatus for making plastic skylights
US4344261A (en) * 1979-02-16 1982-08-17 Kennedy Sky-Lites, Inc. Skylight
US4594821A (en) * 1980-07-25 1986-06-17 Bechtold Paul E Skylight assembly
US4514944A (en) * 1982-02-25 1985-05-07 Bristol Fiberlite Industries Skylight and mounting therefor
US4408422A (en) * 1982-06-10 1983-10-11 Bechtold Stephen K Skylight dome assembly
US4470230A (en) * 1982-09-29 1984-09-11 Weisner Kent A Skylight and curb therefor
US4570393A (en) * 1983-01-06 1986-02-18 Rolscreen Company Weather seal for frame and movable panel assembly
US4549379A (en) * 1983-02-07 1985-10-29 Hoy Walter S Skylight assembly
US4548006A (en) * 1984-09-13 1985-10-22 Roberts Sr Joseph W Self-flashing channeled skylight
US4730426A (en) * 1985-02-11 1988-03-15 Kenergy Corporation Standing seam skylight for tile roofs
US4750302A (en) * 1986-11-26 1988-06-14 Bechtold Stephen K Insulated glass skylight assembly
US4825608A (en) * 1987-03-23 1989-05-02 Makin Brent A Flush mounted self-flashing dual pane skylight
US5323576A (en) * 1992-12-16 1994-06-28 Sequentia, Incorporated Metal roofing skylight
US5596848A (en) * 1993-10-11 1997-01-28 Skydome Industries Limited Adjustable skylight
US5546712A (en) * 1994-11-03 1996-08-20 Bixby; Joseph A. System and method of constructing a skylight
US5675940A (en) * 1996-10-15 1997-10-14 Bahar; Reuben Skylight leakage barrier
US6263624B1 (en) * 1997-01-02 2001-07-24 Fox Lite, Inc. Skylight assembly
US5878539A (en) * 1997-06-09 1999-03-09 Grubb; Dennis Method and apparatus for a tubular skylight system
US6263623B1 (en) * 1998-12-07 2001-07-24 Andersen Corporation Method and apparatus for using a detent arrangement on a roof window frame and sash
USD431291S (en) * 1999-03-31 2000-09-26 Canplas Industries, Ltd. Translucent roof vent
US7007434B1 (en) * 1999-04-06 2006-03-07 Erik Danielsson Building structure element and stiffening plate elements for such an element
US6354046B1 (en) * 2000-07-29 2002-03-12 Michael R Swearingen Skylight membrane with diverter
US7059086B2 (en) * 2000-11-25 2006-06-13 Vkr Holding A/S Adjustable roof flashing and flashing kit
US20050178078A1 (en) * 2003-08-12 2005-08-18 Valentz Arthur J. Window-containing assemblies having a molded plastic frame
US20050055901A1 (en) * 2003-08-12 2005-03-17 Portable Pipe Hangers, Inc. Skylight having a molded plastic frame
US20080040993A1 (en) * 2003-08-12 2008-02-21 Valentz Arthur J Skylight Having a Molded Plastic Frame
US6918216B2 (en) * 2003-08-20 2005-07-19 Fox Lite, Inc. Tubular skylight assembly
US20080154363A1 (en) * 2006-07-25 2008-06-26 C&C Vision International Limited "w" accommodating intraocular lens
US20080184635A1 (en) * 2007-02-06 2008-08-07 Nemazi John E Overmolded Fenestration Building Product and Method of Manufacture
US20080302032A1 (en) * 2007-06-06 2008-12-11 Valentz Arthur J Fenestration Product Such as a Skylight Having a Laminated Glazing Unit
US20090053990A1 (en) * 2007-08-15 2009-02-26 Canplas Industries Ltd. Roof vent for venting a building enclosure

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080302032A1 (en) * 2007-06-06 2008-12-11 Valentz Arthur J Fenestration Product Such as a Skylight Having a Laminated Glazing Unit
US20100071311A1 (en) * 2008-09-19 2010-03-25 D Amico Craig Method and Kit for Installing Window Between Joists
US8250831B2 (en) * 2008-09-19 2012-08-28 D Amico Craig Method for installing window between joists
ITMI20110199A1 (en) * 2011-02-11 2012-08-12 Gennaro Bracale TUBULAR SKYLIGHT
GB2490200B (en) * 2011-04-20 2015-05-20 Leif Levon Optic junction
US20190203475A1 (en) * 2018-01-04 2019-07-04 Vkr Holding A/S Skylight diffuser accessory
US11118356B2 (en) * 2018-11-13 2021-09-14 Ciella Inc. Skylight protection assembly and method for protecting a skylight
WO2021099794A1 (en) * 2019-11-22 2021-05-27 Lockwood Packaging Ltd Pre-formed glazing unit
US20220412152A1 (en) * 2019-11-22 2022-12-29 Lockwood Packaging Ltd Pre-formed glazing unit
GB2589130B (en) * 2019-11-22 2023-01-11 Lockwood Packaging Ltd Pre-formed glazing unit
US20230085785A1 (en) * 2021-09-22 2023-03-23 Vkr Holding A/S Tubular skylight assembly

Similar Documents

Publication Publication Date Title
US20090031649A1 (en) Plastic fenestration product
US20110289870A1 (en) Plastic fenestration product
US7631464B2 (en) Polymeric insulated glazing unit with molded frame
US8635828B2 (en) Composite insulating building panel and system and method for attaching building panels
US20080178557A1 (en) Weather barrier structure and methods for architectural openings
US8413403B2 (en) Curtainwall system
US8117790B2 (en) Overmolded fenestration building product and method of manufacture
US20120085063A1 (en) Flashing tape
CA2586917A1 (en) Self-adhered flange for use with non-flanged windows
US9228352B2 (en) Insulated skylight assembly and method of making same
US10267033B2 (en) Universal barrier system panels
CN103124820A (en) Low-e housewrap
US3350823A (en) Insulated skylight
US20080302032A1 (en) Fenestration Product Such as a Skylight Having a Laminated Glazing Unit
WO2011020019A2 (en) Building insulation sheathing systems and methods of use thereof
US11313133B2 (en) Assembly for improved insulation
US4328652A (en) Insulated structure and method for insulating a structure
US9453363B2 (en) Method for making a pane module and a window comprising such a pane module
GB2455632A (en) A composite insulation panel and frame mounted translucent panel
CN101821470A (en) Plane flashing material with drainage properties
JP3396716B2 (en) Vertical joint structure
AU2021215111A1 (en) Prefabricated panelised skylight
WO2023186899A1 (en) Apparatus and method for installing a closure in a building
JP2000027334A (en) External wall panel of building
JPH1162288A (en) Construction method of simple building

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION