US20090015461A1 - Cellular augmented radar/laser detector - Google Patents
Cellular augmented radar/laser detector Download PDFInfo
- Publication number
- US20090015461A1 US20090015461A1 US11/400,278 US40027806A US2009015461A1 US 20090015461 A1 US20090015461 A1 US 20090015461A1 US 40027806 A US40027806 A US 40027806A US 2009015461 A1 US2009015461 A1 US 2009015461A1
- Authority
- US
- United States
- Prior art keywords
- radar
- cellular
- emission
- detector
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001413 cellular effect Effects 0.000 title claims abstract description 116
- 230000003190 augmentative effect Effects 0.000 title claims abstract description 63
- 238000001514 detection method Methods 0.000 claims abstract description 83
- 238000000034 method Methods 0.000 claims description 25
- 230000005540 biological transmission Effects 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 5
- 230000000977 initiatory effect Effects 0.000 claims 5
- 239000003999 initiator Substances 0.000 claims 2
- 230000010267 cellular communication Effects 0.000 abstract description 8
- 239000011159 matrix material Substances 0.000 description 22
- 238000005516 engineering process Methods 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 5
- 238000005457 optimization Methods 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012358 sourcing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/021—Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
- G01S7/022—Road traffic radar detectors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/003—Transmission of data between radar, sonar or lidar systems and remote stations
Definitions
- This invention relates generally to wireless telecommunications. More particularly, it relates to the combination of cellular communication technology with radar/laser detection technology.
- Radar detectors are well known, as are laser detectors. Radar detectors detect radio frequency emissions in a given frequency range. Laser detectors detect an impinging laser beam directed toward the detector.
- radar or laser detectors are used for automobiles, and are often quite small and many times are battery operated to eliminate the need for power cords.
- a modern radar or laser detector can run for 60 to 90 days on two AA 1.5v cell batteries, so their power needs are relatively small.
- Radar or laser detectors detect the presence of any of a variety of radar or laser emissions. They warn a driver of a vehicle of an impending radar trap by emitting an audible and/or visible warning indicating the detection of radar impinging upon the antenna of the radar device. For instance, different audio tones may be sounded representing each type of detection. Technology attempts to increase the amount of advance warning given to the driver.
- any given radar detector warns the occupants and particularly the driver of any given vehicle, some giving more warning time than others.
- a driver of the vehicle must react immediately to avoid consequences related to being detected by the radar or laser. Ideally, this is sufficient time to avoid the consequences, but in many instances it may already be too late as at that point the speed of the vehicle may have already been measured. This is particularly true if the operator of the radar or laser emission is pointing and shooting once the driver's vehicle comes into range.
- Vehicles to follow may suffer the same fate, especially since they at best will not receive any earlier warning of the detection of radar or laser than did the driver before. This is because a driver is warned about emissions that their device detects directly.
- a cellular augmented emission detection device comprises a radar emission detector element, and a signal processor to process detection made by the radar emission detector element.
- a cellular front end is in direct communication with the signal processor.
- a warning is initiated from the cellular augmented emission detection device upon receipt of information over the cellular front end relating to detection of radar emission not detected by the radar emission detector element but rather by another cellular augmented emission detection device.
- a cellular augmented emission detection device comprises a laser emission detector element, and a signal processor to process detection made by the laser emission detector element.
- a cellular front end is in direct communication with the laser signal processor.
- a warning is initiated from the cellular augmented emission detection device upon receipt of information over the cellular front end relating to detection of laser emission not detected by the laser emission detector element but rather by another cellular augmented emission detection device.
- a method of passing radar or laser emission data from one radar/laser detector device to another in accordance with yet another aspect of the invention comprises augmenting a radar/laser emission detector with a cellular front end. A transmission is initiated over the cellular front end, and information related to detection of radar or laser is passed by the augmented radar/laser emission detector in the initiated transmission.
- Another method of passing radar or laser emission data from one radar/laser detector device to another comprises augmenting a radar/laser emission detector with a cellular front end, and receiving information over the cellular front end relating to detection of radar or laser by another radar/laser detector at a time that the radar or laser emission detector is not detecting emission.
- FIG. 1 shows a hybrid radar/laser detector device including cellular communications capability, in accordance with the principles of the present invention.
- FIG. 2 shows a plurality of hybrid radar/laser emission detector devices each having the capability to source the location of radar or laser emission detections, and each being warned when within a proximity of a recent radar or laser emission detection reported by at least one of the plurality of hybrid radar/laser detector devices, in accordance with the principles of the present invention.
- FIG. 3 shows an exemplary Cellular Augmented Radar Detector (CARD) local mobile net, in accordance with the principles of the present invention.
- CDA Cellular Augmented Radar Detector
- FIG. 4 shows figurative coverage of the Earth's surface with successively finer grained gridlines, in accordance with the principles of the present invention.
- FIG. 5 shows an exemplary CARDloc table including identifier, location (latitude and longitude), and optimization indices, in a CARD local mobile net in accordance with the principles of the present invention.
- FIG. 6 shows a matrix for Primary indices for a CARD nexus that maintains a collection of matrices in Random Access Memory (RAM), i.e., not in a relational database, in accordance with the principles of the present invention.
- RAM Random Access Memory
- the present invention isn't so much a remedy for a problem with the existing technology as it is a significant enhancement to the existing technology.
- the present invention provides warnings about emissions detected by other detection devices on the road ahead of the driver. This significantly increases the amount of advance time of warning, giving the driver much more time to react.
- automatic sharing of emission detection information is provided among drivers of separate vehicles by combining or augmenting an otherwise conventional radar or laser detector with a cellular communication front end. This makes it possible for one emission detector device to share its information with other devices, e.g., similarly capable cellular augmented radar devices.
- Modern radar/laser detector devices have very low battery consumption requirements and provide some warning of nearby radar and/or laser emissions. Typically these devices emit an audio tone when emissions are detected. The warning tone is audible within the vehicle so that the driver (and any passengers) within the vehicle will receive warning.
- Modern cellular communication devices have higher battery consumption requirements but also have much more powerful batteries.
- Cellular communication devices have the ability, through a wireless network, to share analog and digital information with other cellular communication devices.
- a hybrid device in accordance with the present invention preferably has the ability to detect both radar and laser emissions, though detection of only radar emission or only laser emission is within the scope of the present invention.
- the device includes the ability to communicate via a cellular network.
- a cellular network Such use of the cellular front end is relatively small, and wouldn't require any more battery capacity than is already provided for the cellular device.
- communication on the wireless network is preferably performed only when detection of emission occurs.
- the cellular front end may be activated to allow the hybrid device to report to an established mobile network that detection has occurred.
- Receiving devices may be provided with advance warning by polling their wireless network, e.g., by dialing a central database containing current detection information.
- the size of the device need not be much bigger than an otherwise conventional radar detector devices, as a keypad and a large LCD display as provided by most mobile cellular devices is not required.
- the hybrid device need be larger only to include a cellular antenna, and if desired to include a larger battery, space for the cellular processor card, etc.
- FIG. 1 shows a hybrid radar/laser detector device including cellular communications capability, in accordance with the principles of the present invention.
- a cellular augmented radar/laser detection device 100 as shown in FIG. 1 provides the capability to share emission detection information amongst drivers to give those drivers even more advanced warning.
- the cellular augmented radar/laser detection device 100 includes a cellular processor front end 120 together with an associated cellular antenna 122 .
- the cellular augmented radar/laser detection device 100 also includes otherwise conventional radar/laser emission detection components, including a laser emission detector 130 , a radar emission detector 137 , a battery 132 , an emission signal processor 134 , and front panel user interface 136 including LCD display and control buttons.
- the cellular processor front end 120 and emission signal processor 134 may be integrated with one another into a common physical component.
- FIG. 2 shows a plurality of hybrid radar/laser emission detector devices each having the capability to source the location of radar or laser emission detections, and each being warned when within a proximity of a recent radar or laser emission detection reported by at least one of the plurality of hybrid radar/laser detector devices, in accordance with the principles of the present invention.
- radar or laser emissions 201 detected by a cellular augmented radar detector (CARD) device warns the driver of that vehicle 202 a via audible tone, but also importantly relays the detection information digitally 202 b to a cellular network system 200 .
- relayed detection information is transmitted to other CARD devices 203 a , 203 b via the cellular network 200 .
- the CARD devices 203 a , 203 b then warns their respective drivers in those vehicles of the remote detection of radar or laser by another networked CARD device 100 a .
- the warning may be via audible tone 204 a , 204 b .
- the audible tone 204 a , 204 b is distinctive from an audible tone otherwise emitted as a result of direct detection of radar or laser by the respective CARD device 100 b , 100 c itself.
- CARD devices 100 b , 100 c within proximity of the source of a CARD device 100 a directly detecting emission of radar or laser emission are notified. This may be accomplished in a number of different ways. For instance, CARD device users with given phone number area codes may be presumed to be primarily within a given physical area serviced by those area codes, but this is not at all accurate and can result in erroneous warning. Warning a CARD device owner that another CARD device has detected radar or laser emissions is impractical and at the least annoying if the detection isn't in relatively close proximity.
- CARD devices themselves are unable to determine which other CARD devices are in close proximity. The problem is aggravated because the use of cellular technology enables CARD devices to communicate with other CARD devices anywhere in the world.
- Mobile Position Centers are provided in ANSI41 networks and Gateway Mobile Location Centres (GMLCs) are provided in GSM networks, to enable the capability to find CARD devices within a configurable proximity limit of any “announcing” CARD device (i.e. any CARD device that is broadcasting an emission detection warning).
- GMLCs Gateway Mobile Location Centres
- a CARD device detects emission, it reports via a cellular network to an application that then identifies other proximate CARD devices via query to an MPC (or GMLC), and transmits a detection warning message to only the CARD devices that are identified as currently being proximate to the detecting CARD device at the time of the detection and query.
- MPCs and GMLCs are known and currently in operation to enable location services for locating a given mobile device.
- current MPCs or GMLCs do not provide a proximity determination service.
- location information available from MPCs and/or GMLCs for every querying CARD device provides the identity of all other CARD devices that are in close proximity to the querying (and emission detecting) CARD device. This enables the formation of a temporary local “network” based on a current proximity to one another. In this way, CARD devices are able to share emission detection information with only those CARD devices that will find the information useful and practical.
- FIG. 3 shows an exemplary Cellular Augmented Radar Detector (CARD) local mobile net, in accordance with the principles of the present invention.
- CDA Cellular Augmented Radar Detector
- a “CARD announcement coordination processor” or “CARD Nexus” gateway 300 ensures that CARD announcements are relayed only to those CARD devices for which the relevant announcement is pertinent.
- the CARD Nexus gateway 300 may be a fully qualified Mobile Position Center (for ANSI-41 networks) or a fully qualified Gateway Mobile Location Centre (for GSM networks).
- the CARD Nexus gateway 300 also includes proximity evaluation logic. In an alternative, more practical architecture, only the proximity evaluation logic is implemented in the CARD Nexus gateway 300 .
- a CARD Nexus interface is implemented with an MPC/GMLC 320 to get the location(s) for each of the operating CARD devices.
- the given embodiments show a system utilizing a CARD Nexus gateway 300 that works with a separate MPC/GMLC 320 .
- the disclosed embodiments prefer that CARD devices that are powered off will not interact with the CARD Nexus in any way.
- the disclosed embodiments also presume that any CARD device that is not enabled for cellular broadcast will not interact with the CARD Nexus in any way.
- CARD devices that are powered on but not enabled for cellular broadcast would function in otherwise the same manner as otherwise conventional radar detectors, i.e., they detect radar and laser emissions and emit an audible warning tone only to the driver and passengers within the vehicle in which the CARD device is mounted.
- CARD devices that are powered on and enabled to broadcast via its cellular subsystem periodically connect (z in FIG. 3 ) to the cellular system to allow the CARD Nexus gateway 300 to determine that CARD device's current location.
- the CARD Nexus gateway 300 accesses the MPC/GMLC 320 to determine the CARD's location, and then saves the CARD's identity with its newly determined location (hereafter referred to as “CARDloc”) in a relational database for easy retrieval during proximity evaluation.
- a CARD device e.g., device B in FIG. 3
- a CARD device that is powered ON and enabled to broadcast via its cellular subsystem detects either radar or laser emissions 301 , it issues an emission detection announcement 302 .
- the emission detection announcement 302 is routed through the hosting cellular carrier's core network 303 , 304 to the CARD Nexus gateway 300 .
- the CARD Nexus gateway 300 determines the current location of the announcing CARD device by interfacing 305 , 306 with the MPC/GMLC 320 , and then accesses a relational database to identify other CARD devices in close proximity to the announcing device (C and D but not E).
- close proximity may be predefined by the CARD Nexus system operator based on linear distance. Alternatively, close proximity may be defined on a device by device basis, or even defined within each query from the announcing CARD device to the CARD Nexus gateway 300 .
- the CARD Nexus gateway 300 then issues warnings 307 , 308 a , 308 b to those CARD devices within the designated proximity so that relayed warnings 309 a , 309 b will alert the passengers of those vehicles.
- the CARD Nexus gateway 300 reduces a CARD device's location, represented in decimal degrees of latitude and longitude, into indices of latitude and indices of longitude within four (4) layers, and makes a simple calculation of a linear distance between an announcing CARD device and each potentially proximate CARD device:
- FIG. 4 shows figurative coverage of the Earth's surface with successively finer grained gridlines, in accordance with the principles of the present invention.
- seconds of latitude and longitude yield a grid whose vertices are approximately 100 feet apart at the equator and somewhat closer together the farther away from the equator (North or South) the CARD device is located.
- a fifth (Quinary) and even sixth (Senary) layer can be added to represent 10 ths of seconds ( ⁇ 10 feet) and 100ths of seconds ( ⁇ 12 inches).
- FIG. 5 shows an exemplary CARDloc table including identifier, location (latitude and longitude), and optimization indices, in a CARD local mobile net in accordance with the principles of the present invention.
- the Lat and Lon values are normalized to be decimal degrees in the range ⁇ 90.0 through +90.0 for Latitude and ⁇ 180.0 through +180.0 for Longitude.
- the indices are computed as follows:
- the intent is to compute an index based on the lower left corner of the square in which the CARD is located.
- the primary square (Q) is a 10 degree by 10 degree square.
- the secondary square (R) is a one degree by one degree square located within the primary.
- the tertiary square (S) is a one minute by one minute square located within the secondary.
- the quaternary square (T) is a one second by one second square located within the tertiary.
- FIG. 6 shows a matrix for primary indices for a CARD Nexus gateway 300 that maintains a collection of matrices in temporary memory such as Random Access Memory (RAM), i.e., not in a relational database, in accordance with the principles of the present invention.
- RAM Random Access Memory
- a collection of matrices in accordance with the principles of the present invention preferably always includes a matrix for the primary indices, as shown in FIG. 6 .
- the primary matrix is preferably accompanied by a PrimaryCount indicating how many CARDS are present.
- Each element in the 36 ⁇ 18 Primary matrix preferably contains: (1) A count of how many CARDs are present in that particular 10 deg ⁇ 10 deg area; and (2) reference to a secondary matrix (reference will be NULL if count is zero).
- Each secondary matrix is also preferably accompanied by an array or list of the secondary matrix elements in which CARDs can be found. (Note that the list will be empty if its SecondaryCount is zero.)
- Each element in a 10 ⁇ 10 secondary matrix preferably contains: (1) count of how many CARDs are present in that particular 1 deg ⁇ 1 deg area; and (2) reference to a tertiary matrix. (Note that the reference will be NULL if the count is zero).
- Each tertiary matrix is preferably accompanied by a TertiaryCount indicating how many CARDs are present in that 1 deg ⁇ 1 deg area.
- Each tertiary matrix is preferably accompanied by an array or list of the tertiary matrix elements in which CARDs can be found. (Note that the list will be empty if its TertiaryCount is zero.)
- Each element in a 60 ⁇ 60 tertiary matrix preferably contains: (1) A count of how many CARDs are present in that particular 1 minute ⁇ 1 minute area; and (2) a reference to a quaternary matrix. (Note that the reference will be NULL if the count is zero.)
- Each quaternary matrix is preferably accompanied by an array or list of the quaternary elements in which CARDs can be found. (Note that the list will be empty if QuaternaryCount is zero.)
- Each element in a 60 ⁇ 60 quaternary matrix preferably contains: (1) A count of how many CARDs are present in that particular 1 second ⁇ 1 second area; and (2) An array or list of CARD Identifiers that are present in the 1 sec ⁇ 1 sec area. (Note that the list will be empty if count is zero.)
- the invention has particular applicability with people driving ground transportation.
- the use of a mobile area wireless network using cellular technology can be expanded to include the sharing of other relevant vehicle information with proximate other vehicles communicating together on a cellular local area network.
- vehicles may advertise to other proximate vehicles that they are accelerating, braking, emergency braking, or beginning to change lanes. This technology may also lead to the ability to foster auto-piloting of a vehicle.
- Buses may advertise to their next bus stop how far away they are and what their estimated arrival time is.
- Airplanes may advertise to other planes what their speed is, what their altitude is, and what their heading is, to provide more automated collision avoidance.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mobile Radio Communication Systems (AREA)
- Traffic Control Systems (AREA)
Abstract
Description
- The present application claims priority from U.S. Provisional Application 60/777,541 to Pitt et al. entitled “Cellular Augmented Radar/Laser Detector”, the entirety of which is expressly incorporated herein by reference.
- 1. Field of the Invention
- This invention relates generally to wireless telecommunications. More particularly, it relates to the combination of cellular communication technology with radar/laser detection technology.
- 2. Background of the Related Art
- Radar detectors are well known, as are laser detectors. Radar detectors detect radio frequency emissions in a given frequency range. Laser detectors detect an impinging laser beam directed toward the detector.
- In a popular application, radar or laser detectors are used for automobiles, and are often quite small and many times are battery operated to eliminate the need for power cords. A modern radar or laser detector can run for 60 to 90 days on two AA 1.5v cell batteries, so their power needs are relatively small. Radar or laser detectors detect the presence of any of a variety of radar or laser emissions. They warn a driver of a vehicle of an impending radar trap by emitting an audible and/or visible warning indicating the detection of radar impinging upon the antenna of the radar device. For instance, different audio tones may be sounded representing each type of detection. Technology attempts to increase the amount of advance warning given to the driver.
- Thus, any given radar detector warns the occupants and particularly the driver of any given vehicle, some giving more warning time than others. A driver of the vehicle must react immediately to avoid consequences related to being detected by the radar or laser. Ideally, this is sufficient time to avoid the consequences, but in many instances it may already be too late as at that point the speed of the vehicle may have already been measured. This is particularly true if the operator of the radar or laser emission is pointing and shooting once the driver's vehicle comes into range.
- Vehicles to follow may suffer the same fate, especially since they at best will not receive any earlier warning of the detection of radar or laser than did the driver before. This is because a driver is warned about emissions that their device detects directly.
- There is a need for providing earlier warning to users of radar and/or laser detectors.
- In accordance with the principles of the present invention, a cellular augmented emission detection device comprises a radar emission detector element, and a signal processor to process detection made by the radar emission detector element. Importantly, a cellular front end is in direct communication with the signal processor. A warning is initiated from the cellular augmented emission detection device upon receipt of information over the cellular front end relating to detection of radar emission not detected by the radar emission detector element but rather by another cellular augmented emission detection device.
- In another aspect, a cellular augmented emission detection device comprises a laser emission detector element, and a signal processor to process detection made by the laser emission detector element. Importantly, a cellular front end is in direct communication with the laser signal processor. A warning is initiated from the cellular augmented emission detection device upon receipt of information over the cellular front end relating to detection of laser emission not detected by the laser emission detector element but rather by another cellular augmented emission detection device.
- A method of passing radar or laser emission data from one radar/laser detector device to another in accordance with yet another aspect of the invention comprises augmenting a radar/laser emission detector with a cellular front end. A transmission is initiated over the cellular front end, and information related to detection of radar or laser is passed by the augmented radar/laser emission detector in the initiated transmission.
- Another method of passing radar or laser emission data from one radar/laser detector device to another comprises augmenting a radar/laser emission detector with a cellular front end, and receiving information over the cellular front end relating to detection of radar or laser by another radar/laser detector at a time that the radar or laser emission detector is not detecting emission.
-
FIG. 1 shows a hybrid radar/laser detector device including cellular communications capability, in accordance with the principles of the present invention. -
FIG. 2 shows a plurality of hybrid radar/laser emission detector devices each having the capability to source the location of radar or laser emission detections, and each being warned when within a proximity of a recent radar or laser emission detection reported by at least one of the plurality of hybrid radar/laser detector devices, in accordance with the principles of the present invention. -
FIG. 3 shows an exemplary Cellular Augmented Radar Detector (CARD) local mobile net, in accordance with the principles of the present invention. -
FIG. 4 shows figurative coverage of the Earth's surface with successively finer grained gridlines, in accordance with the principles of the present invention. -
FIG. 5 shows an exemplary CARDloc table including identifier, location (latitude and longitude), and optimization indices, in a CARD local mobile net in accordance with the principles of the present invention. -
FIG. 6 shows a matrix for Primary indices for a CARD nexus that maintains a collection of matrices in Random Access Memory (RAM), i.e., not in a relational database, in accordance with the principles of the present invention. - The present invention isn't so much a remedy for a problem with the existing technology as it is a significant enhancement to the existing technology.
- Being warned about radar or laser emissions detected by ones own device gives some advance warning. However, the present invention provides warnings about emissions detected by other detection devices on the road ahead of the driver. This significantly increases the amount of advance time of warning, giving the driver much more time to react.
- In accordance with the principles of the present invention, automatic sharing of emission detection information is provided among drivers of separate vehicles by combining or augmenting an otherwise conventional radar or laser detector with a cellular communication front end. This makes it possible for one emission detector device to share its information with other devices, e.g., similarly capable cellular augmented radar devices.
- Modern radar/laser detector devices have very low battery consumption requirements and provide some warning of nearby radar and/or laser emissions. Typically these devices emit an audio tone when emissions are detected. The warning tone is audible within the vehicle so that the driver (and any passengers) within the vehicle will receive warning.
- Modern cellular communication devices have higher battery consumption requirements but also have much more powerful batteries. Cellular communication devices have the ability, through a wireless network, to share analog and digital information with other cellular communication devices.
- A hybrid device in accordance with the present invention preferably has the ability to detect both radar and laser emissions, though detection of only radar emission or only laser emission is within the scope of the present invention.
- Importantly, the device includes the ability to communicate via a cellular network. Such use of the cellular front end is relatively small, and wouldn't require any more battery capacity than is already provided for the cellular device. For instance, communication on the wireless network is preferably performed only when detection of emission occurs. Preferably, upon detection of emission, the cellular front end may be activated to allow the hybrid device to report to an established mobile network that detection has occurred.
- Receiving devices may be provided with advance warning by polling their wireless network, e.g., by dialing a central database containing current detection information.
- The size of the device need not be much bigger than an otherwise conventional radar detector devices, as a keypad and a large LCD display as provided by most mobile cellular devices is not required. The hybrid device need be larger only to include a cellular antenna, and if desired to include a larger battery, space for the cellular processor card, etc.
-
FIG. 1 shows a hybrid radar/laser detector device including cellular communications capability, in accordance with the principles of the present invention. - In particular, a cellular augmented radar/
laser detection device 100 as shown inFIG. 1 provides the capability to share emission detection information amongst drivers to give those drivers even more advanced warning. The cellular augmented radar/laser detection device 100 includes a cellularprocessor front end 120 together with an associatedcellular antenna 122. The cellular augmented radar/laser detection device 100 also includes otherwise conventional radar/laser emission detection components, including alaser emission detector 130, aradar emission detector 137, abattery 132, anemission signal processor 134, and frontpanel user interface 136 including LCD display and control buttons. - Of course, the cellular processor
front end 120 andemission signal processor 134, and any other components within the cellular augmented radar/laser detection device 100, may be integrated with one another into a common physical component. -
FIG. 2 shows a plurality of hybrid radar/laser emission detector devices each having the capability to source the location of radar or laser emission detections, and each being warned when within a proximity of a recent radar or laser emission detection reported by at least one of the plurality of hybrid radar/laser detector devices, in accordance with the principles of the present invention. - In particular, as shown in
FIG. 2 , radar orlaser emissions 201 detected by a cellular augmented radar detector (CARD) device warns the driver of thatvehicle 202 a via audible tone, but also importantly relays the detection information digitally 202 b to acellular network system 200. For instance, in the given example ofFIG. 2 , relayed detection information is transmitted toother CARD devices cellular network 200. TheCARD devices networked CARD device 100 a. The warning may be viaaudible tone audible tone respective CARD device - Ideally, only CARD
devices CARD device 100 a directly detecting emission of radar or laser emission are notified. This may be accomplished in a number of different ways. For instance, CARD device users with given phone number area codes may be presumed to be primarily within a given physical area serviced by those area codes, but this is not at all accurate and can result in erroneous warning. Warning a CARD device owner that another CARD device has detected radar or laser emissions is impractical and at the least annoying if the detection isn't in relatively close proximity. - CARD devices themselves are unable to determine which other CARD devices are in close proximity. The problem is aggravated because the use of cellular technology enables CARD devices to communicate with other CARD devices anywhere in the world.
- In accordance with the present invention, Mobile Position Centers (MPCs) are provided in ANSI41 networks and Gateway Mobile Location Centres (GMLCs) are provided in GSM networks, to enable the capability to find CARD devices within a configurable proximity limit of any “announcing” CARD device (i.e. any CARD device that is broadcasting an emission detection warning). Thus, once a CARD device detects emission, it reports via a cellular network to an application that then identifies other proximate CARD devices via query to an MPC (or GMLC), and transmits a detection warning message to only the CARD devices that are identified as currently being proximate to the detecting CARD device at the time of the detection and query.
- MPCs and GMLCs are known and currently in operation to enable location services for locating a given mobile device. However, current MPCs or GMLCs do not provide a proximity determination service. In accordance with the principles of the present invention, location information available from MPCs and/or GMLCs for every querying CARD device provides the identity of all other CARD devices that are in close proximity to the querying (and emission detecting) CARD device. This enables the formation of a temporary local “network” based on a current proximity to one another. In this way, CARD devices are able to share emission detection information with only those CARD devices that will find the information useful and practical.
- Thus, practical localized sharing of digital information is accomplished over a network of physically proximate devices, all of which being part of a global network. This local area network, otherwise called a mobile area wireless network (MAWN), makes interaction of Cellular Augmented Radar Detector (CARD) devices practical. Armed with proximity information, emission detection broadcasts are transmitted only to CARD devices in close proximity to the sourcing CARD device.
-
FIG. 3 shows an exemplary Cellular Augmented Radar Detector (CARD) local mobile net, in accordance with the principles of the present invention. - In particular, as shown in
FIG. 3 , a “CARD announcement coordination processor” or “CARD Nexus”gateway 300 ensures that CARD announcements are relayed only to those CARD devices for which the relevant announcement is pertinent. - The
CARD Nexus gateway 300 may be a fully qualified Mobile Position Center (for ANSI-41 networks) or a fully qualified Gateway Mobile Location Centre (for GSM networks). TheCARD Nexus gateway 300 also includes proximity evaluation logic. In an alternative, more practical architecture, only the proximity evaluation logic is implemented in theCARD Nexus gateway 300. A CARD Nexus interface is implemented with an MPC/GMLC 320 to get the location(s) for each of the operating CARD devices. The given embodiments show a system utilizing aCARD Nexus gateway 300 that works with a separate MPC/GMLC 320. - The disclosed embodiments prefer that CARD devices that are powered off will not interact with the CARD Nexus in any way. The disclosed embodiments also presume that any CARD device that is not enabled for cellular broadcast will not interact with the CARD Nexus in any way. CARD devices that are powered on but not enabled for cellular broadcast would function in otherwise the same manner as otherwise conventional radar detectors, i.e., they detect radar and laser emissions and emit an audible warning tone only to the driver and passengers within the vehicle in which the CARD device is mounted.
- CARD devices that are powered on and enabled to broadcast via its cellular subsystem periodically connect (z in
FIG. 3 ) to the cellular system to allow theCARD Nexus gateway 300 to determine that CARD device's current location. TheCARD Nexus gateway 300 accesses the MPC/GMLC 320 to determine the CARD's location, and then saves the CARD's identity with its newly determined location (hereafter referred to as “CARDloc”) in a relational database for easy retrieval during proximity evaluation. - When a CARD device (e.g., device B in
FIG. 3 ) that is powered ON and enabled to broadcast via its cellular subsystem detects either radar orlaser emissions 301, it issues anemission detection announcement 302. Theemission detection announcement 302 is routed through the hosting cellular carrier'score network CARD Nexus gateway 300. - The
CARD Nexus gateway 300 determines the current location of the announcing CARD device by interfacing 305, 306 with the MPC/GMLC 320, and then accesses a relational database to identify other CARD devices in close proximity to the announcing device (C and D but not E). - The term “close proximity” may be predefined by the CARD Nexus system operator based on linear distance. Alternatively, close proximity may be defined on a device by device basis, or even defined within each query from the announcing CARD device to the
CARD Nexus gateway 300. - Close proximity may alternatively be defined as a shortest distance based on length of roads to the announcing CARD device, but this approach requires route calculations for each CARD device and thus will be significantly slow unless the processor of the CARD Nexus is capable of making such route calculations in a timely manner.
- The
CARD Nexus gateway 300 then issueswarnings warnings - For the purposes of this invention, close proximity evaluation methodology is designed for speed of performance during proximity evaluation processing. Thus, the
CARD Nexus gateway 300 reduces a CARD device's location, represented in decimal degrees of latitude and longitude, into indices of latitude and indices of longitude within four (4) layers, and makes a simple calculation of a linear distance between an announcing CARD device and each potentially proximate CARD device: -
1) Primary: tens of degrees (~700 statute mile resolution) 2) Secondary: Degrees (~70 statute mile resolution) 3) Tertiary: minutes (~6000 foot resolution) 4) Quaternary: seconds (~100 foot resolution) -
FIG. 4 shows figurative coverage of the Earth's surface with successively finer grained gridlines, in accordance with the principles of the present invention. - In particular, as shown in
FIG. 4 , seconds of latitude and longitude yield a grid whose vertices are approximately 100 feet apart at the equator and somewhat closer together the farther away from the equator (North or South) the CARD device is located. Should the need arise to attain even finer granularity than seconds, a fifth (Quinary) and even sixth (Senary) layer can be added to represent 10 ths of seconds (˜10 feet) and 100ths of seconds (˜12 inches). -
FIG. 5 shows an exemplary CARDloc table including identifier, location (latitude and longitude), and optimization indices, in a CARD local mobile net in accordance with the principles of the present invention. - In particular, every time a CARD device notifies the CARD Nexus gateway 300 (CARDloc) or makes an emission detection announcement, the
CARD Nexus gateway 300 saves that CARD's identifier, location (latitude and longitude), and optimization indices in a CARDloc table as exemplified inFIG. 5 . - The Lat and Lon values are normalized to be decimal degrees in the range −90.0 through +90.0 for Latitude and −180.0 through +180.0 for Longitude. The indices are computed as follows:
-
PrimaryX = int(round((Lon/10.0) − 0.5)) PrimaryY = int(round((Lat/10.0) − 0.5)) SecondaryX = int(truncate(Lon − (PrimaryX * 10.0))) SecondaryY = int(truncate(Lat − (PrimaryY * 10.0))) TertiaryX = int(truncate((Lon − ((PrimaryX * 10.0) + SecondaryX)) * 60.0)) TertiaryY = int(truncate((Lat − ((PrimaryY * 10.0) + SecondaryY)) * 60.0)) QuaternaryX = int(truncate((Lon − ((PrimaryX * 10.0) + SecondaryX + (TertiaryX/60.0))) * 3600.0)) QuaternaryY = int(truncate((Lat − ((PrimaryY * 10.0) + SecondaryY + (TertiaryY/60.0))) * 3600.0)) - These equations presume that the round( ) function always rounds an “n.5” value up, so that 0.5 becomes 1.0, 2.5 becomes 3.0, −3.5 becomes −3.0, etc. Some adjustments might be necessary to accommodate specific hardware architectures, operating systems, and compilers.
- The intent, though, is to compute an index based on the lower left corner of the square in which the CARD is located. The primary square (Q) is a 10 degree by 10 degree square. The secondary square (R) is a one degree by one degree square located within the primary. The tertiary square (S) is a one minute by one minute square located within the secondary. The quaternary square (T) is a one second by one second square located within the tertiary.
- These computations produce values in the following ranges:
-
−18 <= PrimaryX <= 18 −9 <= PrimaryY <= 9 0 <= SecondaryX <= 9 0 <= SecondaryY <= 9 0 <= TertiaryX <= 60 0 <= TertiaryY <= 60 0 <= QuaternaryX <= 60 0 <= QuaternaryY <= 60 -
FIG. 6 shows a matrix for primary indices for aCARD Nexus gateway 300 that maintains a collection of matrices in temporary memory such as Random Access Memory (RAM), i.e., not in a relational database, in accordance with the principles of the present invention. - A collection of matrices in accordance with the principles of the present invention preferably always includes a matrix for the primary indices, as shown in
FIG. 6 . - The primary matrix is preferably accompanied by a PrimaryCount indicating how many CARDS are present.
- The Primary Matrix is also preferably accompanied by an array or list of the primary matrix elements in which CARDs can be found (list will be empty if PrimaryCount is zero).
- Each element in the 36×18 Primary matrix preferably contains: (1) A count of how many CARDs are present in that particular 10 deg×10 deg area; and (2) reference to a secondary matrix (reference will be NULL if count is zero).
- Secondary (10×10 matrix), tertiary (60×60), and quaternary (60×60) matrices will be allocated, maintained, and eliminated as needed to manage memory use in the
CARD Nexus gateway 300. - Each secondary matrix is preferably accompanied by a SecondaryCount indicating how many CARD devices are present in that 10 deg×10 deg area.
- Each secondary matrix is also preferably accompanied by an array or list of the secondary matrix elements in which CARDs can be found. (Note that the list will be empty if its SecondaryCount is zero.)
- Each element in a 10×10 secondary matrix preferably contains: (1) count of how many CARDs are present in that particular 1 deg×1 deg area; and (2) reference to a tertiary matrix. (Note that the reference will be NULL if the count is zero).
- Each tertiary matrix is preferably accompanied by a TertiaryCount indicating how many CARDs are present in that 1 deg×1 deg area.
- Each tertiary matrix is preferably accompanied by an array or list of the tertiary matrix elements in which CARDs can be found. (Note that the list will be empty if its TertiaryCount is zero.)
- Each element in a 60×60 tertiary matrix preferably contains: (1) A count of how many CARDs are present in that particular 1 minute×1 minute area; and (2) a reference to a quaternary matrix. (Note that the reference will be NULL if the count is zero.)
- Each quaternary matrix is preferably accompanied by a QuaternaryCount indicating how many CARDs are present in that 1 min×1 min area.
- Each quaternary matrix is preferably accompanied by an array or list of the quaternary elements in which CARDs can be found. (Note that the list will be empty if QuaternaryCount is zero.)
- Each element in a 60×60 quaternary matrix preferably contains: (1) A count of how many CARDs are present in that particular 1 second×1 second area; and (2) An array or list of CARD Identifiers that are present in the 1 sec×1 sec area. (Note that the list will be empty if count is zero.)
- This four (4) tier data structure makes it possible for the
CARD Nexus gateway 300 to rapidly identify all of the CARD devices in close proximity to an announcing CARD device so that warnings can be relayed in a timely manner. Maintenance of this four (4) tier structure is complex but will be clearly understood by those of ordinary skill in data structures. - Proximity can be a configured reference value defined in terms of hundreds of feet, thousands of feet, tens of miles, hundreds of miles, etc. Regardless of the defined distance for ‘proximate’, the
CARD Nexus gateway 300 is able to rapidly identify which CARD devices meet the criteria. The broader the proximity value is defined, though, the longer it will generally take theCARD Nexus gateway 300 to send all the notifications due to latencies imposed by the carrier's core network. - The invention has particular applicability with people driving ground transportation. Moreover, the use of a mobile area wireless network using cellular technology can be expanded to include the sharing of other relevant vehicle information with proximate other vehicles communicating together on a cellular local area network. For instance, vehicles may advertise to other proximate vehicles that they are accelerating, braking, emergency braking, or beginning to change lanes. This technology may also lead to the ability to foster auto-piloting of a vehicle. Buses may advertise to their next bus stop how far away they are and what their estimated arrival time is. Airplanes may advertise to other planes what their speed is, what their altitude is, and what their heading is, to provide more automated collision avoidance.
- While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.
Claims (36)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/400,278 US7471236B1 (en) | 2006-03-01 | 2006-04-10 | Cellular augmented radar/laser detector |
US12/289,116 US7764219B2 (en) | 2006-03-01 | 2008-10-21 | Cellular augmented radar/laser detector |
US12/801,163 US7965222B2 (en) | 2006-03-01 | 2010-05-26 | Cellular augmented radar/laser detector |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US77754106P | 2006-03-01 | 2006-03-01 | |
US11/400,278 US7471236B1 (en) | 2006-03-01 | 2006-04-10 | Cellular augmented radar/laser detector |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/289,116 Continuation US7764219B2 (en) | 2006-03-01 | 2008-10-21 | Cellular augmented radar/laser detector |
Publications (2)
Publication Number | Publication Date |
---|---|
US7471236B1 US7471236B1 (en) | 2008-12-30 |
US20090015461A1 true US20090015461A1 (en) | 2009-01-15 |
Family
ID=40138515
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/400,278 Active 2026-10-14 US7471236B1 (en) | 2006-03-01 | 2006-04-10 | Cellular augmented radar/laser detector |
US12/289,116 Expired - Fee Related US7764219B2 (en) | 2006-03-01 | 2008-10-21 | Cellular augmented radar/laser detector |
US12/801,163 Expired - Fee Related US7965222B2 (en) | 2006-03-01 | 2010-05-26 | Cellular augmented radar/laser detector |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/289,116 Expired - Fee Related US7764219B2 (en) | 2006-03-01 | 2008-10-21 | Cellular augmented radar/laser detector |
US12/801,163 Expired - Fee Related US7965222B2 (en) | 2006-03-01 | 2010-05-26 | Cellular augmented radar/laser detector |
Country Status (1)
Country | Link |
---|---|
US (3) | US7471236B1 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070075848A1 (en) * | 2005-10-05 | 2007-04-05 | Pitt Lance D | Cellular augmented vehicle alarm |
US20100045520A1 (en) * | 2004-10-15 | 2010-02-25 | Lance Douglas Pitt | Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas |
US20100093371A1 (en) * | 2008-10-14 | 2010-04-15 | Todd Gehrke | Location based geo-reminders |
US20100238065A1 (en) * | 2006-03-01 | 2010-09-23 | Lance Douglas Pitt | Cellular augmented radar/laser detector |
US20120032833A1 (en) * | 2010-08-09 | 2012-02-09 | Milligan Stephen D | Radar coherent processing interval scheduling via ad hoc network |
US8126889B2 (en) | 2002-03-28 | 2012-02-28 | Telecommunication Systems, Inc. | Location fidelity adjustment based on mobile subscriber privacy profile |
US8364136B2 (en) | 1999-02-01 | 2013-01-29 | Steven M Hoffberg | Mobile system, a method of operating mobile system and a non-transitory computer readable medium for a programmable control of a mobile system |
US8369967B2 (en) | 1999-02-01 | 2013-02-05 | Hoffberg Steven M | Alarm system controller and a method for controlling an alarm system |
US8892495B2 (en) | 1991-12-23 | 2014-11-18 | Blanding Hovenweep, Llc | Adaptive pattern recognition based controller apparatus and method and human-interface therefore |
US20150123834A1 (en) * | 2009-12-07 | 2015-05-07 | Cobra Electronics Corporation | Analyzing data from networked radar detectors |
US10361802B1 (en) | 1999-02-01 | 2019-07-23 | Blanding Hovenweep, Llc | Adaptive pattern recognition based control system and method |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8525723B2 (en) | 1999-06-14 | 2013-09-03 | Escort Inc. | Radar detector with navigation function |
US6947772B2 (en) * | 2002-01-31 | 2005-09-20 | Qualcomm Incorporated | System and method for providing messages on a wireless device connecting to an application server |
US6996394B2 (en) | 2002-08-30 | 2006-02-07 | Qualcomm Incorporated | Server processing in providing messages for a wireless device connecting to a server |
US7039398B2 (en) | 2002-08-30 | 2006-05-02 | Qualcomm Incorporated | Server processing of interactive screens for a wireless device |
US7899450B2 (en) * | 2006-03-01 | 2011-03-01 | Telecommunication Systems, Inc. | Cellular augmented radar/laser detection using local mobile network within cellular network |
US8384555B2 (en) * | 2006-08-11 | 2013-02-26 | Michael Rosen | Method and system for automated detection of mobile phone usage |
US8131205B2 (en) * | 2008-05-01 | 2012-03-06 | Michael Rosen | Mobile phone detection and interruption system and method |
US8138975B2 (en) | 2008-12-30 | 2012-03-20 | Trueposition, Inc. | Interference detection, characterization and location in a wireless communications or broadcast system |
US8436768B2 (en) | 2008-12-30 | 2013-05-07 | Trueposition, Inc. | Diversity time and frequency location receiver |
US8624771B2 (en) * | 2009-02-20 | 2014-01-07 | Escort Inc. | Wireless connectivity in a radar detector |
US8373588B2 (en) * | 2009-02-20 | 2013-02-12 | Escort Inc. | Wireless connectivity in a radar detector |
US9848114B2 (en) | 2009-12-07 | 2017-12-19 | Cobra Electronics Corporation | Vehicle camera system |
US9132773B2 (en) | 2009-12-07 | 2015-09-15 | Cobra Electronics Corporation | Mobile communication system and method for analyzing alerts associated with vehicular travel |
RU2525835C2 (en) | 2009-12-22 | 2014-08-20 | Кобра Электроникс Корпорейшн | Radar detector interacting with mobile communication device |
US8688087B2 (en) | 2010-12-17 | 2014-04-01 | Telecommunication Systems, Inc. | N-dimensional affinity confluencer |
US8942743B2 (en) | 2010-12-17 | 2015-01-27 | Telecommunication Systems, Inc. | iALERT enhanced alert manager |
US8774837B2 (en) | 2011-04-30 | 2014-07-08 | John Anthony Wright | Methods, systems and apparatuses of emergency vehicle locating and the disruption thereof |
NL2008757C2 (en) | 2012-05-04 | 2013-11-06 | Stichting Noble House | DEVICE FOR WARNING FOR RADAR CHECKS. |
US9208346B2 (en) | 2012-09-05 | 2015-12-08 | Telecommunication Systems, Inc. | Persona-notitia intellection codifier |
US9279881B2 (en) | 2013-03-12 | 2016-03-08 | Escort Inc. | Radar false alert reduction |
TWI534765B (en) * | 2014-09-26 | 2016-05-21 | 富智康(香港)有限公司 | System and method for easing traffic |
WO2017058906A1 (en) | 2015-09-28 | 2017-04-06 | Escort Inc. | Radar detector with multi-band directional display and enhanced detection of false alerts |
EP3165944B1 (en) | 2015-11-04 | 2022-04-20 | Nxp B.V. | Embedded communication authentication |
EP3165940B1 (en) * | 2015-11-04 | 2022-04-20 | Nxp B.V. | Embedded communication authentication |
US11061108B1 (en) | 2017-12-18 | 2021-07-13 | Escort Inc. | Sliding window discrete Fourier transform (SWDFT) police signal warning receiver |
Citations (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4445118A (en) * | 1981-05-22 | 1984-04-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Navigation system and method |
US5283570A (en) * | 1989-12-14 | 1994-02-01 | Motorola, Inc. | Multiple format signalling protocol for a selective call receiver |
US5301354A (en) * | 1989-11-30 | 1994-04-05 | Motorola, Inc. | Satellite based global paging system |
US5485163A (en) * | 1994-03-30 | 1996-01-16 | Motorola, Inc. | Personal locator system |
US5504491A (en) * | 1994-04-25 | 1996-04-02 | Chapman; Robert W. | Global status and position reporting system |
US5506886A (en) * | 1993-12-27 | 1996-04-09 | Motorola, Inc. | Wide area paging with roaming subscriber units |
US5594780A (en) * | 1991-10-10 | 1997-01-14 | Space Systems/Loral, Inc. | Satellite communication system that is coupled to a terrestrial communication network and method |
US5606618A (en) * | 1989-06-02 | 1997-02-25 | U.S. Philips Corporation | Subband coded digital transmission system using some composite signals |
US5721781A (en) * | 1995-09-13 | 1998-02-24 | Microsoft Corporation | Authentication system and method for smart card transactions |
US5731785A (en) * | 1994-05-13 | 1998-03-24 | Lemelson; Jerome H. | System and method for locating objects including an inhibiting feature |
US5857201A (en) * | 1996-06-18 | 1999-01-05 | Wright Strategies, Inc. | Enterprise connectivity to handheld devices |
US5864667A (en) * | 1995-04-05 | 1999-01-26 | Diversinet Corp. | Method for safe communications |
US5874914A (en) * | 1995-10-09 | 1999-02-23 | Snaptrack, Inc. | GPS receiver utilizing a communication link |
US5896369A (en) * | 1993-09-20 | 1999-04-20 | Nokia Telecommunications Oy | Mobile communication system and a method for connecting a remote workstation to a data communication network via a mobile communication network |
US6032051A (en) * | 1997-12-01 | 2000-02-29 | Telefonaktiebolaget L/M Ericsson | Wireless mobile comunication devices for group use |
US6052081A (en) * | 1997-02-03 | 2000-04-18 | Snaptrack, Inc. | Method and apparatus for satellite positioning system based time measurement |
US6169901B1 (en) * | 1996-03-27 | 2001-01-02 | U.S. Philips Corporation | Mobile telephone with interial identifier in location messages |
US6169902B1 (en) * | 1997-04-09 | 2001-01-02 | Sony Corporation | Information terminal, processing method by information terminal, information providing apparatus and information network system |
US6178506B1 (en) * | 1998-10-23 | 2001-01-23 | Qualcomm Inc. | Wireless subscription portability |
US6185427B1 (en) * | 1996-09-06 | 2001-02-06 | Snaptrack, Inc. | Distributed satellite position system processing and application network |
US6189098B1 (en) * | 1996-05-15 | 2001-02-13 | Rsa Security Inc. | Client/server protocol for proving authenticity |
US6188909B1 (en) * | 1996-02-26 | 2001-02-13 | Nokia Mobile Phones, Ltd. | Communication network terminal supporting a plurality of applications |
US6188354B1 (en) * | 1999-03-29 | 2001-02-13 | Qualcomm Incorporated | Method and apparatus for determining the location of a remote station in a CDMA communication network |
US6195557B1 (en) * | 1998-04-20 | 2001-02-27 | Ericsson Inc. | System and method for use of override keys for location services |
US6205330B1 (en) * | 1995-08-30 | 2001-03-20 | Microsoft Corporation | System and host arrangement for transmission of electronic mail |
US6208290B1 (en) * | 1996-03-08 | 2001-03-27 | Snaptrack, Inc. | GPS receiver utilizing a communication link |
US6215441B1 (en) * | 1997-04-15 | 2001-04-10 | Snaptrack, Inc. | Satellite positioning reference system and method |
US6360093B1 (en) * | 1999-02-05 | 2002-03-19 | Qualcomm, Incorporated | Wireless push-to-talk internet broadcast |
US6363254B1 (en) * | 1998-09-30 | 2002-03-26 | Global Research Systems, Inc. | System and method for enciphering and communicating vehicle tracking information |
US20020037735A1 (en) * | 2000-03-03 | 2002-03-28 | Mark Maggenti | Communication device for reregistering in a net within a group communication network |
US6367019B1 (en) * | 1999-03-26 | 2002-04-02 | Liquid Audio, Inc. | Copy security for portable music players |
US6377209B1 (en) * | 1997-02-03 | 2002-04-23 | Snaptrack, Inc. | Method and apparatus for satellite positioning system (SPS) time measurement |
US6504491B1 (en) * | 1999-05-27 | 2003-01-07 | Motorola, Inc. | Simultaneous multi-data stream transmission method and apparatus |
US20030009602A1 (en) * | 2001-05-18 | 2003-01-09 | Jacobs Paul E. | Extensible event notification mechanism |
US6510387B2 (en) * | 1999-04-23 | 2003-01-21 | Global Locate, Inc. | Correction of a pseudo-range model from a GPS almanac |
US6512922B1 (en) * | 1999-07-13 | 2003-01-28 | Motorola, Inc. | Information services provision in a telecommunications network |
US6512930B2 (en) * | 1997-12-30 | 2003-01-28 | Telefonaktiebolaget Lm Ericsson (Publ) | On-line notification in a mobile communications system |
US6515623B2 (en) * | 2001-06-29 | 2003-02-04 | Motorola, Inc. | Enhanced location methodology for a location system |
US6519466B2 (en) * | 2000-08-14 | 2003-02-11 | Sirf Technology, Inc. | Multi-mode global positioning system for use with wireless networks |
US6522682B1 (en) * | 1996-03-15 | 2003-02-18 | Sirf Technology, Inc. | Triple multiplexing spread spectrum receiver |
US20030037163A1 (en) * | 2001-08-15 | 2003-02-20 | Atsushi Kitada | Method and system for enabling layer 2 transmission of IP data frame between user terminal and service provider |
US6525688B2 (en) * | 2000-12-04 | 2003-02-25 | Enuvis, Inc. | Location-determination method and apparatus |
US6525687B2 (en) * | 2001-02-12 | 2003-02-25 | Enuvis, Inc. | Location-determination method and apparatus |
US6529829B2 (en) * | 2000-08-24 | 2003-03-04 | Sirf Technology, Inc. | Dead reckoning system for reducing auto-correlation or cross-correlation in weak signals |
US6531982B1 (en) * | 1997-09-30 | 2003-03-11 | Sirf Technology, Inc. | Field unit for use in a GPS system |
US6539200B1 (en) * | 1999-07-29 | 2003-03-25 | Qualcomm, Incorporated | Method and apparatus for paging a user terminal within the “sweet spot” of a satellite |
US6538757B1 (en) * | 2000-05-19 | 2003-03-25 | Pitney Bowes Inc. | Method for automatically reading electronic tickets |
US6539304B1 (en) * | 2000-09-14 | 2003-03-25 | Sirf Technology, Inc. | GPS navigation system using neural networks |
US6542464B1 (en) * | 1997-08-08 | 2003-04-01 | Nec Corporation | High throughput wireless data communication using transferred protocol data for communication across land-line network |
US6542734B1 (en) * | 2000-03-30 | 2003-04-01 | Qualcomm Incorporated | Method and apparatus for detecting specified events in a mobile station |
US6542743B1 (en) * | 1999-08-31 | 2003-04-01 | Qualcomm, Incorporated | Method and apparatus for reducing pilot search times utilizing mobile station location information |
US20030065788A1 (en) * | 2001-05-11 | 2003-04-03 | Nokia Corporation | Mobile instant messaging and presence service |
US6549844B1 (en) * | 1999-09-21 | 2003-04-15 | Siemens Ag | Method for navigating a vehicle |
US6549776B1 (en) * | 1999-07-30 | 2003-04-15 | Telefonaktiebolaget Lm Ericsson (Publ) | System, method, and apparatus for pushing data in a direct digital call environment |
US20030078064A1 (en) * | 2001-10-22 | 2003-04-24 | Chan Victor H. | System and method for queuing talk requests in wireless dispatch system |
US6556832B1 (en) * | 2000-02-04 | 2003-04-29 | Qualcomm Incorporated | Method and apparatus for evaluation of position location performance |
US20040002326A1 (en) * | 2002-06-28 | 2004-01-01 | Philip Maher | System and method for application management through threshold events |
US6680694B1 (en) * | 1997-08-19 | 2004-01-20 | Siemens Vdo Automotive Corporation | Vehicle information system |
US6691019B2 (en) * | 2001-12-21 | 2004-02-10 | General Electric Company | Method and system for controlling distortion of turbine case due to thermal variations |
US6694258B2 (en) * | 1999-09-30 | 2004-02-17 | Siemens Vdo Automotive Corporation | Hand held car locator |
US6697629B1 (en) * | 2000-10-11 | 2004-02-24 | Qualcomm, Incorporated | Method and apparatus for measuring timing of signals received from multiple base stations in a CDMA communication system |
US6701144B2 (en) * | 2001-03-05 | 2004-03-02 | Qualcomm Incorporated | System for automatically configuring features on a mobile telephone based on geographic location |
US6698195B1 (en) * | 1999-01-15 | 2004-03-02 | Voith Turbo Gmbh & Co. Kg | Hydrodynamic coupling |
US20040044623A1 (en) * | 2002-08-28 | 2004-03-04 | Wake Susan L. | Billing system for wireless device activity |
US6703971B2 (en) * | 2001-02-21 | 2004-03-09 | Sirf Technologies, Inc. | Mode determination for mobile GPS terminals |
US6704651B2 (en) * | 2000-07-13 | 2004-03-09 | Global Locate, Inc. | Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris |
US6707421B1 (en) * | 1997-08-19 | 2004-03-16 | Siemens Vdo Automotive Corporation | Driver information system |
US6714793B1 (en) * | 2000-03-06 | 2004-03-30 | America Online, Inc. | Method and system for instant messaging across cellular networks and a public data network |
US20040064550A1 (en) * | 2000-12-28 | 2004-04-01 | Tsuyoshi Sakata | Data processing system |
US6718174B2 (en) * | 2000-10-27 | 2004-04-06 | Qualcomm Incorporated | Method and apparatus for estimating velocity of a terminal in a wireless communication system |
US20040068724A1 (en) * | 2002-08-30 | 2004-04-08 | Gardner Richard Wayne | Server processing for updating dataset versions resident on a wireless device |
US6720915B2 (en) * | 2000-03-20 | 2004-04-13 | Snaptrack Incorporated | Methods and apparatuses for using assistance data relating to satellite position systems |
US6721871B2 (en) * | 2002-04-02 | 2004-04-13 | Nokia Corporation | Method and apparatus for synchronizing data stores with respect to changes in folders |
US6721578B2 (en) * | 2002-01-31 | 2004-04-13 | Qualcomm Incorporated | System and method for providing an interactive screen on a wireless device interacting with a server |
US6724342B2 (en) * | 2002-04-19 | 2004-04-20 | Sirf Technology, Inc. | Compensation for frequency adjustment in mobile communication-positioning device with shared oscillator |
US6725159B2 (en) * | 1996-09-06 | 2004-04-20 | Snaptrack Incorporated | GPS receiver and method for processing GPS signals |
US6839021B2 (en) * | 1997-02-03 | 2005-01-04 | Qualcomm Incorporated | Method and apparatus for determining time in a satellite positioning system |
US20050003797A1 (en) * | 2003-07-02 | 2005-01-06 | Baldwin Johnny E. | Localized cellular awareness and tracking of emergencies |
US6842715B1 (en) * | 2003-07-21 | 2005-01-11 | Qualcomm Incorporated | Multiple measurements per position fix improvements |
US20050028034A1 (en) * | 2003-07-28 | 2005-02-03 | Alexander Gantman | Fault diagnosis, repair and upgrades using the acoustic channel |
US6856282B2 (en) * | 2002-02-08 | 2005-02-15 | Qualcomm Incorporated | Directly acquiring precision code GPS signals |
US20050039178A1 (en) * | 2003-06-27 | 2005-02-17 | Sunil Marolia | System and method for downloading update packages into a mobile handset in a carrier network |
US20050041578A1 (en) * | 2003-08-18 | 2005-02-24 | Nokia Corporation | Setting up communication sessions |
US6861980B1 (en) * | 2004-05-26 | 2005-03-01 | Qualcomm Incorporated | Data messaging efficiency for an assisted wireless position determination system |
US6865171B1 (en) * | 1999-10-22 | 2005-03-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and apparatus for selectively providing user-specific information to origin servers in wireless application protocol applications |
US6865395B2 (en) * | 2002-08-08 | 2005-03-08 | Qualcomm Inc. | Area based position determination for terminals in a wireless network |
US6867734B2 (en) * | 2002-05-17 | 2005-03-15 | Motorola, Inc. | System and method for frequency management in a communications positioning device |
US6873854B2 (en) * | 2002-02-14 | 2005-03-29 | Qualcomm Inc. | Method and an apparatus for adding a new member to an active group call in a group communication network |
US6985105B1 (en) * | 2004-10-15 | 2006-01-10 | Telecommunication Systems, Inc. | Culled satellite ephemeris information based on limiting a span of an inverted cone for locating satellite in-range determinations |
US6996720B1 (en) * | 1999-12-17 | 2006-02-07 | Microsoft Corporation | System and method for accessing protected content in a rights-management architecture |
US6999782B2 (en) * | 2003-02-19 | 2006-02-14 | Motorola, Inc. | Method for joining dispatch calls |
US20060053225A1 (en) * | 2004-09-08 | 2006-03-09 | Nokia Corporation | Group details of group services |
US20070026854A1 (en) * | 2005-07-28 | 2007-02-01 | Mformation Technologies, Inc. | System and method for service quality management for wireless devices |
US20070030539A1 (en) * | 2005-07-28 | 2007-02-08 | Mformation Technologies, Inc. | System and method for automatically altering device functionality |
Family Cites Families (217)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3639753A1 (en) | 1986-11-21 | 1988-06-01 | Inst Rundfunktechnik Gmbh | METHOD FOR TRANSMITTING DIGITALIZED SOUND SIGNALS |
JP2609292B2 (en) | 1988-06-22 | 1997-05-14 | 株式会社日立製作所 | GPS positioning device |
US5539829A (en) | 1989-06-02 | 1996-07-23 | U.S. Philips Corporation | Subband coded digital transmission system using some composite signals |
US5327529A (en) | 1990-09-24 | 1994-07-05 | Geoworks | Process of designing user's interfaces for application programs |
KR940000251B1 (en) | 1991-01-29 | 1994-01-12 | 삼성전자 주식회사 | Watchdog circuit of automatic car tracing device |
US5126722A (en) | 1991-02-04 | 1992-06-30 | Lubriquip, Inc. | Point of lube monitor |
FI94581C (en) | 1991-02-12 | 1995-09-25 | Nokia Telecommunications Oy | System for automatically communicating contact information in a mobile telephone network or the like |
CA2079827C (en) | 1991-12-09 | 2003-08-19 | Theresa Chen Yen Wang | Mobile unit tracking system |
US5546445A (en) | 1991-12-26 | 1996-08-13 | Dennison; Everett | Cellular telephone system that uses position of a mobile unit to make call management decisions |
SE469867B (en) | 1992-02-17 | 1993-09-27 | Ericsson Telefon Ab L M | Paging Procedure |
US5311516A (en) | 1992-05-29 | 1994-05-10 | Motorola, Inc. | Paging system using message fragmentation to redistribute traffic |
US5335246A (en) | 1992-08-20 | 1994-08-02 | Nexus Telecommunication Systems, Ltd. | Pager with reverse paging facility |
US5689245A (en) | 1992-10-19 | 1997-11-18 | Radio Satellite Corporation | Integrated communications terminal |
US5418537A (en) | 1992-11-18 | 1995-05-23 | Trimble Navigation, Ltd. | Location of missing vehicles |
US5422813A (en) | 1992-12-17 | 1995-06-06 | Stanford Telecommunications, Inc. | No-outage GPS/commercial RF positioning system |
CA2134729C (en) | 1993-11-01 | 1999-09-07 | Thomas E. Buss | Location dependent information receiving device and method |
US5629693A (en) | 1993-11-24 | 1997-05-13 | Trimble Navigation Limited | Clandestine location reporting by a missing vehicle |
US5661652A (en) | 1994-02-22 | 1997-08-26 | Trimble Navigation Limited | Mobile network with automatic position reporting between member units |
US5479408A (en) | 1994-02-22 | 1995-12-26 | Will; Craig A. | Wireless personal paging, communications, and locating system |
DE4413451A1 (en) | 1994-04-18 | 1995-12-14 | Rolf Brugger | Device for the distribution of music information in digital form |
US5704029A (en) | 1994-05-23 | 1997-12-30 | Wright Strategies, Inc. | System and method for completing an electronic form |
US5583774A (en) | 1994-06-16 | 1996-12-10 | Litton Systems, Inc. | Assured-integrity monitored-extrapolation navigation apparatus |
US5530914A (en) | 1994-08-15 | 1996-06-25 | Motorola, Inc. | Method for determining when a radio leaves a radio talk group |
EP0738441B1 (en) | 1994-11-04 | 2002-03-13 | Koninklijke Philips Electronics N.V. | Encoding and decoding of a wideband digital information signal |
CA2172564C (en) | 1995-04-28 | 1999-12-28 | Mark Jeffrey Foladare | Call redirection system |
US5517199A (en) | 1995-05-11 | 1996-05-14 | Aerodata Corporation | Emergency locator device |
US5568153A (en) | 1995-05-30 | 1996-10-22 | Telefonaktiebolaget Lm Ericsson | Individually defined personal home area for subscribers in a cellular telecommunications network |
NL1001162C2 (en) | 1995-09-08 | 1997-03-11 | Nederland Ptt | Communication system for interactive services with a packet-switched interaction channel over a narrow-band circuit-switched network, as well as a device for application in such a communication system. |
US5774670A (en) | 1995-10-06 | 1998-06-30 | Netscape Communications Corporation | Persistent client state in a hypertext transfer protocol based client-server system |
US6131067A (en) | 1995-10-09 | 2000-10-10 | Snaptrack, Inc. | Client-server based remote locator device |
US5841396A (en) | 1996-03-08 | 1998-11-24 | Snaptrack, Inc. | GPS receiver utilizing a communication link |
US6633255B2 (en) | 1995-10-09 | 2003-10-14 | Qualcomm Inc. | Method for open loop tracking GPS signals |
US5765152A (en) | 1995-10-13 | 1998-06-09 | Trustees Of Dartmouth College | System and method for managing copyrighted electronic media |
US6807534B1 (en) | 1995-10-13 | 2004-10-19 | Trustees Of Dartmouth College | System and method for managing copyrighted electronic media |
US5771353A (en) | 1995-11-13 | 1998-06-23 | Motorola Inc. | System having virtual session manager used sessionless-oriented protocol to communicate with user device via wireless channel and session-oriented protocol to communicate with host server |
US5946629A (en) | 1995-11-28 | 1999-08-31 | Telefonaktiebolaget L M Ericsson | Cellular telephone network having short message service interaction with other networks |
US5809415A (en) | 1995-12-11 | 1998-09-15 | Unwired Planet, Inc. | Method and architecture for an interactive two-way data communication network |
US5898391A (en) | 1996-01-03 | 1999-04-27 | Jefferies; James | Vehicle tracking system |
US6133874A (en) | 1996-03-08 | 2000-10-17 | Snaptrack, Inc. | Method and apparatus for acquiring satellite positioning system signals |
US5945944A (en) | 1996-03-08 | 1999-08-31 | Snaptrack, Inc. | Method and apparatus for determining time for GPS receivers |
US6125325A (en) | 1996-04-25 | 2000-09-26 | Sirf Technology, Inc. | GPS receiver with cross-track hold |
US6853849B1 (en) * | 1996-05-30 | 2005-02-08 | Sun Microsystems, Inc. | Location/status-addressed radio/radiotelephone |
US5983099A (en) | 1996-06-11 | 1999-11-09 | Qualcomm Incorporated | Method/apparatus for an accelerated response to resource allocation requests in a CDMA push-to-talk system using a CDMA interconnect subsystem to route calls |
US5960362A (en) | 1996-06-24 | 1999-09-28 | Qualcomm Incorporated | Method and apparatus for access regulation and system protection of a dispatch system |
US5812086A (en) | 1996-06-27 | 1998-09-22 | Motorola, Inc. | Method and apparatus for providing duplex communication service in geographical areas where conventional services are obstructed |
FI103546B1 (en) | 1996-09-16 | 1999-07-15 | Nokia Telecommunications Oy | Data service in a mobile telephone network |
KR19980021532A (en) | 1996-09-17 | 1998-06-25 | 유기범 | How to locate MS location in CDM personal mobile communication |
SE510664C2 (en) | 1996-10-29 | 1999-06-14 | Ericsson Telefon Ab L M | Methods and apparatus for message management in a communication system |
US6456852B2 (en) | 1997-01-08 | 2002-09-24 | Trafficmaster Usa, Inc. | Internet distributed real-time wireless location database |
US5922074A (en) | 1997-02-28 | 1999-07-13 | Xcert Software, Inc. | Method of and apparatus for providing secure distributed directory services and public key infrastructure |
US6411254B1 (en) | 1997-04-15 | 2002-06-25 | Snaptrack, Inc. | Satellite positioning reference system and method |
DE19718654C2 (en) | 1997-05-02 | 1999-05-06 | Ericsson Telefon Ab L M | Communication system for electronic messages |
SE509435C2 (en) | 1997-05-16 | 1999-01-25 | Ericsson Telefon Ab L M | Privacy protection in a telecommunications system |
US6147598A (en) * | 1997-07-03 | 2000-11-14 | Trimble Navigation Limited | Vehicle theft system including a handheld computing device |
KR100571490B1 (en) | 1997-07-11 | 2006-04-17 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | Device to verify playback rights |
US6560461B1 (en) | 1997-08-04 | 2003-05-06 | Mundi Fomukong | Authorized location reporting paging system |
US6070085A (en) | 1997-08-12 | 2000-05-30 | Qualcomm Inc. | Method and apparatus for controlling transmit power thresholds based on classification of wireless communication subscribers |
FI113119B (en) | 1997-09-15 | 2004-02-27 | Nokia Corp | A method for securing communications over telecommunications networks |
US6252544B1 (en) * | 1998-01-27 | 2001-06-26 | Steven M. Hoffberg | Mobile communication device |
US6275692B1 (en) | 1998-02-11 | 2001-08-14 | Telefonaktiebolaget L M Ericsson (Publ) | Server request including code for customizing service to requesting cellular mobile station |
US6081229A (en) | 1998-03-17 | 2000-06-27 | Qualcomm Incorporated | System and method for determining the position of a wireless CDMA transceiver |
US6154172A (en) | 1998-03-31 | 2000-11-28 | Piccionelli; Gregory A. | System and process for limiting distribution of information on a communication network based on geographic location |
ATE297102T1 (en) * | 1998-04-17 | 2005-06-15 | Motorola Inc | DATA PROCESSING SYSTEM AND METHOD THEREOF |
US5999124A (en) | 1998-04-22 | 1999-12-07 | Snaptrack, Inc, | Satellite positioning system augmentation with wireless communication signals |
AU4360999A (en) | 1998-04-28 | 1999-11-16 | Nokia Mobile Phones Limited | A method of and a network for handling wireless session protocol (wsp) sessions. |
US6061018A (en) | 1998-05-05 | 2000-05-09 | Snaptrack, Inc. | Method and system for using altitude information in a satellite positioning system |
US6816710B2 (en) | 1998-05-06 | 2004-11-09 | Snaptrack, Inc. | Method and apparatus for signal processing in a satellite positioning system |
US6313786B1 (en) | 1998-07-02 | 2001-11-06 | Snaptrack, Inc. | Method and apparatus for measurement processing of satellite positioning system (SPS) signals |
US6067045A (en) | 1998-09-01 | 2000-05-23 | Hughes Electronics Corporation | Communication network initialization apparatus and method for fast GPS-based positioning |
US6327473B1 (en) | 1998-09-08 | 2001-12-04 | Qualcomm Incorporated | Method and apparatus for increasing the sensitivity of a global positioning satellite receiver |
US6665539B2 (en) | 1998-09-09 | 2003-12-16 | Qualcomm Inc. | Position location with low tolerance oscillator |
US6360102B1 (en) * | 1998-09-10 | 2002-03-19 | Ericsson Inc. | System and method for defining a subscriber location privacy profile |
US6124810A (en) | 1998-09-15 | 2000-09-26 | Qualcomm Incorporated | Method and apparatus for automatic event detection in a wireless communication system |
EP0987912B1 (en) | 1998-09-18 | 2008-11-26 | Siemens Enterprise Communications GmbH & Co. KG | Method and system for wireless communication by at least two switching servers |
US6253203B1 (en) | 1998-10-02 | 2001-06-26 | Ncr Corporation | Privacy-enhanced database |
US6584552B1 (en) | 1998-11-02 | 2003-06-24 | Matsushita Electric Industrial Co., Ltd. | Recording/reproducing apparatus, program recorded medium, recorded medium, cache device, and transmitter |
US6324524B1 (en) | 1998-11-03 | 2001-11-27 | Nextcard, Inc. | Method and apparatus for an account level offer of credit and real time balance transfer |
US6118403A (en) * | 1998-11-13 | 2000-09-12 | Lang; Brook | Speed trap information system |
US6463272B1 (en) | 1998-12-21 | 2002-10-08 | Intel Corporation | Location reporting pager |
US6058338A (en) | 1999-02-12 | 2000-05-02 | Qualcomm Incorporated | Method and apparatus for efficient GPS assistance in a communication system |
US6121923A (en) | 1999-02-19 | 2000-09-19 | Motorola, Inc. | Fixed site and satellite data-aided GPS signal acquisition method and system |
US6297768B1 (en) | 1999-02-25 | 2001-10-02 | Lunareye, Inc. | Triggerable remote controller |
US6247135B1 (en) | 1999-03-03 | 2001-06-12 | Starfish Software, Inc. | Synchronization process negotiation for computing devices |
US6449476B1 (en) | 1999-03-12 | 2002-09-10 | Qualcomm Incorporated | System and method for independently downloading features into a set of storage locations in a wireless communication device |
DE19912871A1 (en) | 1999-03-22 | 2000-09-28 | Emitec Emissionstechnologie | Method and device for producing a metallic honeycomb body |
US7103574B1 (en) | 1999-03-27 | 2006-09-05 | Microsoft Corporation | Enforcement architecture and method for digital rights management |
US7024393B1 (en) | 1999-03-27 | 2006-04-04 | Microsoft Corporation | Structural of digital rights management (DRM) system |
US7136838B1 (en) | 1999-03-27 | 2006-11-14 | Microsoft Corporation | Digital license and method for obtaining/providing a digital license |
US6577271B1 (en) | 1999-03-30 | 2003-06-10 | Sirf Technology, Inc | Signal detector employing coherent integration |
US6204798B1 (en) * | 1999-04-14 | 2001-03-20 | Fleming, Iii Hoyt A. | Method and apparatus for alerting an operator of a motor vehicle to an incoming radar signal |
US6301545B1 (en) | 1999-04-30 | 2001-10-09 | Sirf Technology, Inc. | Global positioning system tag system |
SE513804C2 (en) | 1999-06-28 | 2000-11-06 | Ericsson Telefon Ab L M | Method and device in a telecommunication system |
US6973166B1 (en) | 1999-07-15 | 2005-12-06 | Tsumpes William J | Automated parallel and redundant subscriber contact and event notification system |
US6829475B1 (en) | 1999-09-22 | 2004-12-07 | Motorola, Inc. | Method and apparatus for saving enhanced information contained in content sent to a wireless communication device |
US6816719B1 (en) | 1999-11-03 | 2004-11-09 | Nokia Corporation | Method and system for making wireless terminal profile information accessible to a network |
US6820069B1 (en) | 1999-11-10 | 2004-11-16 | Banker Systems, Inc. | Rule compliance system and a rule definition language |
EP1109374A3 (en) | 1999-12-13 | 2001-06-27 | TELEFONAKTIEBOLAGET LM ERICSSON (publ) | Method and apparatus for performing network operations |
US6526322B1 (en) | 1999-12-16 | 2003-02-25 | Sirf Technology, Inc. | Shared memory architecture in GPS signal processing |
US7047411B1 (en) | 1999-12-17 | 2006-05-16 | Microsoft Corporation | Server for an electronic distribution system and method of operating same |
US6772340B1 (en) | 2000-01-14 | 2004-08-03 | Microsoft Corporation | Digital rights management system operating on computing device and having black box tied to computing device |
US6477150B1 (en) | 2000-03-03 | 2002-11-05 | Qualcomm, Inc. | System and method for providing group communication services in an existing communication system |
BR0108899A (en) | 2000-03-03 | 2005-10-18 | Qualcomm Inc | Method and apparatus for participating in group communication services in an existing communication system |
US6430504B1 (en) | 2000-03-07 | 2002-08-06 | Trimble Navigation Ltd. | User interface for global positioning system receiver |
US6731940B1 (en) | 2000-04-28 | 2004-05-04 | Trafficmaster Usa, Inc. | Methods of using wireless geolocation to customize content and delivery of information to wireless communication devices |
US6665541B1 (en) | 2000-05-04 | 2003-12-16 | Snaptrack, Incorporated | Methods and apparatuses for using mobile GPS receivers to synchronize basestations in cellular networks |
US6400304B1 (en) * | 2000-05-15 | 2002-06-04 | Chubbs, Iii William | Integrated GPS radar speed detection system |
US6427120B1 (en) | 2000-08-14 | 2002-07-30 | Sirf Technology, Inc. | Information transfer in a multi-mode global positioning system used with wireless networks |
US6671620B1 (en) | 2000-05-18 | 2003-12-30 | Sirf Technology, Inc. | Method and apparatus for determining global position using almanac information |
US6778136B2 (en) | 2001-12-13 | 2004-08-17 | Sirf Technology, Inc. | Fast acquisition of GPS signal |
CN1270259C (en) | 2000-05-29 | 2006-08-16 | 诺基亚有限公司 | Synchronization method |
US6484096B2 (en) * | 2000-06-06 | 2002-11-19 | Satellite Devices Limited | Wireless vehicle monitoring system |
US6795699B1 (en) | 2000-06-27 | 2004-09-21 | Motorola, Inc. | Geolocation techniques for an airborne cellular system |
US6895249B2 (en) | 2000-07-14 | 2005-05-17 | Qualcomm Incorporated | Method and apparatus for broadcasting position location data in a wireless communication system |
US7024321B1 (en) | 2000-07-20 | 2006-04-04 | Qualcomm, Incorporated | Battery monitoring system with low power and end-of-life messaging and shutdown |
US6687504B1 (en) * | 2000-07-28 | 2004-02-03 | Telefonaktiebolaget L. M. Ericsson | Method and apparatus for releasing location information of a mobile communications device |
US6775802B2 (en) | 2000-08-08 | 2004-08-10 | Qualcomm Incorporated | Method, apparatus, and system for signal prediction |
US6675085B2 (en) * | 2000-08-17 | 2004-01-06 | Michael P. Straub | Method and apparatus for storing, accessing, generating and using information about speed limits and speed traps |
US6665612B1 (en) | 2000-08-29 | 2003-12-16 | Sirf Technology, Inc. | Navigation processing for a satellite positioning system receiver |
FI20001918A (en) | 2000-08-30 | 2002-03-01 | Nokia Corp | Multimodal content automatic voice identification in a wireless telecommunication system |
NL1017189C1 (en) | 2000-08-30 | 2002-03-01 | Koninkl Kpn Nv | Method and system for activation of a local terminal. |
US6618670B1 (en) | 2000-09-15 | 2003-09-09 | Sirf Technology, Inc. | Resolving time ambiguity in GPS using over-determined navigation solution |
US6609004B1 (en) | 2000-09-22 | 2003-08-19 | Motorola Inc | Communication management system for personalized mobility management of wireless services and method therefor |
US6810323B1 (en) | 2000-09-25 | 2004-10-26 | Motorola, Inc. | System and method for storing and using information associated with geographic locations of interest to a mobile user |
US6718184B1 (en) * | 2000-09-28 | 2004-04-06 | Lucent Technologies Inc. | Method and system for adaptive signal processing for an antenna array |
US6748195B1 (en) | 2000-09-29 | 2004-06-08 | Motorola, Inc. | Wireless device having context-based operational behavior |
US6778885B2 (en) | 2000-10-16 | 2004-08-17 | Qualcomm Inc. | Apparatus, method, and system of transferring correction information |
US6640184B1 (en) | 2000-11-10 | 2003-10-28 | Motorola, Inc. | Method and apparatus for providing location information |
US6560534B2 (en) | 2001-06-06 | 2003-05-06 | Global Locate, Inc. | Method and apparatus for distributing satellite tracking information |
US6417801B1 (en) | 2000-11-17 | 2002-07-09 | Global Locate, Inc. | Method and apparatus for time-free processing of GPS signals |
US6832373B2 (en) | 2000-11-17 | 2004-12-14 | Bitfone Corporation | System and method for updating and distributing information |
US6937187B2 (en) | 2000-11-17 | 2005-08-30 | Global Locate, Inc. | Method and apparatus for forming a dynamic model to locate position of a satellite receiver |
US6804524B1 (en) | 2000-11-21 | 2004-10-12 | Openwave Systems Inc. | System and method for the acquisition of automobile traffic data through wireless networks |
US20020112047A1 (en) | 2000-12-05 | 2002-08-15 | Rakesh Kushwaha | System and method for wireless data terminal management using general packet radio service network |
US6970917B1 (en) | 2000-12-05 | 2005-11-29 | Mformation Technologies Inc. | System and method for remote control and management of wireless devices |
US6570530B2 (en) | 2001-03-05 | 2003-05-27 | Qualcomm Incorporated | Method and apparatus providing improved position estimate based on an initial coarse position estimate |
MXPA03008298A (en) | 2001-03-15 | 2004-02-17 | Qualcomm Inc | Time acquisition in a wireless position determination system. |
US7065507B2 (en) | 2001-03-26 | 2006-06-20 | Microsoft Corporation | Supervised license acquisition in a digital rights management system on a computing device |
US6895238B2 (en) | 2001-03-30 | 2005-05-17 | Motorola, Inc. | Method for providing entertainment to a portable device |
US20020135504A1 (en) * | 2001-04-09 | 2002-09-26 | Neil Singer | Networked radar detection system and method |
FI112314B (en) | 2001-04-11 | 2003-11-14 | Sonera Oyj | Procedure and system for using the information on the status of terminal equipment |
US6745038B2 (en) | 2001-04-30 | 2004-06-01 | Motorola, Inc. | Intra-piconet location determination and tomography |
US6594483B2 (en) | 2001-05-15 | 2003-07-15 | Nokia Corporation | System and method for location based web services |
US6799050B1 (en) | 2001-06-04 | 2004-09-28 | Snaptrack, Inc. | Reducing cross-interference in a combined GPS receiver and communication system |
US6757544B2 (en) * | 2001-08-15 | 2004-06-29 | Motorola, Inc. | System and method for determining a location relevant to a communication device and/or its associated user |
US6941144B2 (en) | 2001-09-14 | 2005-09-06 | Qualcomm Incorporated | Method and apparatus for detecting excess delay in a communication signal |
US6912395B2 (en) | 2001-09-25 | 2005-06-28 | Motorola, Inc. | Network and method for monitoring location capabilities of a mobile station |
US6606554B2 (en) | 2001-09-27 | 2003-08-12 | Siemens Information & Communication Mobile Llc | Method and apparatus for defining location coordinates |
US7570668B2 (en) | 2001-10-03 | 2009-08-04 | Nokia Corporation | Data synchronization |
US7155521B2 (en) | 2001-10-09 | 2006-12-26 | Nokia Corporation | Starting a session in a synchronization system |
US6965754B2 (en) | 2001-10-09 | 2005-11-15 | Motorola, Inc. | Satellite positioning system receiver with reference oscillator circuit and methods therefor |
US6900758B1 (en) | 2001-10-17 | 2005-05-31 | Sirf Technology, Inc. | System, method, apparatus and means for constructing building tomography and timing information |
US6950058B1 (en) | 2001-10-17 | 2005-09-27 | Sirf Technology, Inc. | System, method, apparatus and means for providing GPS aiding data to networked receivers |
US6756938B2 (en) | 2001-11-06 | 2004-06-29 | Motorola, Inc. | Satellite positioning system receivers and methods therefor |
US20030101341A1 (en) | 2001-11-26 | 2003-05-29 | Electronic Data Systems Corporation | Method and system for protecting data from unauthorized disclosure |
US6567035B1 (en) * | 2001-11-30 | 2003-05-20 | Bbnt Solutions Llc | Systems and methods for networking radar detectors |
BR0206906A (en) | 2001-12-03 | 2004-02-25 | Nokia Corp | Method and apparatus for retrieving logical node tree information |
US7162221B2 (en) | 2001-12-14 | 2007-01-09 | Inphonic, Inc. | Systems, methods, and computer program products for registering wireless device users in direct marketing campaigns |
US20030119528A1 (en) | 2001-12-26 | 2003-06-26 | Boathouse Communication Partners, Llc | System and method for an automated intermediary to broker remote transaction between parties based on actively managed private profile information |
US7064656B2 (en) | 2002-01-22 | 2006-06-20 | Belcher Brian E | Access control for vehicle mounted communications devices |
US6947772B2 (en) | 2002-01-31 | 2005-09-20 | Qualcomm Incorporated | System and method for providing messages on a wireless device connecting to an application server |
US20030151507A1 (en) | 2002-02-11 | 2003-08-14 | Paul Andre | Automotive security and monitoring system |
US20030153343A1 (en) | 2002-02-14 | 2003-08-14 | Crockett Douglas M. | Communication device for initiating a group call in a group communication network |
US6781963B2 (en) | 2002-02-14 | 2004-08-24 | Qualcomm Inc | Method and an apparatus for terminating a user from a group call in a group communication network |
US6898436B2 (en) | 2002-02-14 | 2005-05-24 | Qualcomm Incorporated | Communication device for joining a user to a group call in a group communication network |
US20030153340A1 (en) | 2002-02-14 | 2003-08-14 | Crockett Douglas M. | Server for joining a user to a group call in a group communication network |
US20030153341A1 (en) | 2002-02-14 | 2003-08-14 | Crockett Douglas M. | Server for initiating a group call in a group communication network |
EP1476980B1 (en) | 2002-02-22 | 2017-09-13 | Nokia Technologies Oy | Requesting digital certificates |
US6833785B2 (en) | 2002-03-07 | 2004-12-21 | International Business Machines Corporation | Vehicle security system |
JP2003272072A (en) | 2002-03-13 | 2003-09-26 | Mitsubishi Electric Corp | Mobile theft reporting device |
US6801159B2 (en) | 2002-03-19 | 2004-10-05 | Motorola, Inc. | Device for use with a portable inertial navigation system (“PINS”) and method for transitioning between location technologies |
US6956467B1 (en) | 2002-03-22 | 2005-10-18 | Mercado Jr Adelino | Car alarm with automatic dialer |
JP2003282016A (en) * | 2002-03-26 | 2003-10-03 | Seiko Instruments Inc | Gradient mechanism of sample stage in charged particle microscope provided with peripheral device |
US20040204806A1 (en) | 2002-03-27 | 2004-10-14 | Sin Etke Technology Co., Ltd. | Active rescue-asking burglar alarm system and its method |
US6944540B2 (en) | 2002-03-28 | 2005-09-13 | Motorola, Inc. | Time determination in satellite positioning system receivers and methods therefor |
US6937872B2 (en) | 2002-04-15 | 2005-08-30 | Qualcomm Incorporated | Methods and apparatuses for measuring frequencies of basestations in cellular networks using mobile GPS receivers |
US6973320B2 (en) | 2002-04-29 | 2005-12-06 | Motorola, Inc. | Method and apparatus for locating a remote unit within a communication system |
JP2005524182A (en) | 2002-04-30 | 2005-08-11 | ノキア コーポレイション | Tree data exchange management method and apparatus |
US6650288B1 (en) | 2002-05-23 | 2003-11-18 | Telecommunication Systems | Culled satellite ephemeris information for quick assisted GPS location determination |
US6580390B1 (en) | 2002-05-30 | 2003-06-17 | General Motors Corporation | Method and system for global positioning system mask angle optimization |
US8576878B2 (en) | 2002-06-04 | 2013-11-05 | Nokia Corporation | Method for controlling parties in real-time data communication |
US6961562B2 (en) | 2002-06-19 | 2005-11-01 | Openwave Systems Inc. | Method and apparatus for acquiring, processing, using and brokering location information associated with mobile communication devices |
US6747596B2 (en) | 2002-06-20 | 2004-06-08 | Sirf Technology, Inc. | Generic satellite positioning system receivers with programmable inputs |
US6738013B2 (en) | 2002-06-20 | 2004-05-18 | Sirf Technology, Inc. | Generic satellite positioning system receivers with selective inputs and outputs |
US6907238B2 (en) | 2002-08-30 | 2005-06-14 | Qualcomm Incorporated | Beacon for locating and tracking wireless terminals |
US6816734B2 (en) | 2002-09-17 | 2004-11-09 | Motorola, Inc. | Method and apparatus for improved location determination in a private radio network using a public network system |
US6957073B2 (en) | 2002-09-18 | 2005-10-18 | Motorola, Inc. | Mobile location explorer and methods therefor |
US6741842B2 (en) | 2002-09-30 | 2004-05-25 | Motorola, Inc. | System and method for frequency management in a communication device having a positioning device |
AU2003284292A1 (en) | 2002-10-21 | 2004-05-13 | Bitfone Corporation | System with required enhancements to syncml dm environment to support firmware updates |
US6903684B1 (en) | 2002-10-22 | 2005-06-07 | Qualcomm Incorporated | Method and apparatus for optimizing GPS-based position location in presence of time varying frequency error |
US20040090121A1 (en) | 2002-11-12 | 2004-05-13 | Simonds Craig John | Context-based service delivery system and method |
US6980816B2 (en) | 2002-11-26 | 2005-12-27 | Motorola, Inc. | Contextual information management in wireless communications devices and methods therefor |
US6816111B2 (en) | 2002-12-13 | 2004-11-09 | Qualcomm Incorporated | Calibration and correction system for satellite position location systems |
US20040205151A1 (en) | 2002-12-19 | 2004-10-14 | Sprigg Stephen A. | Triggering event processing |
US6888497B2 (en) | 2002-12-27 | 2005-05-03 | Motorola, Inc. | Method and mobile station for determining a code phase |
US6904029B2 (en) | 2003-01-23 | 2005-06-07 | Motorola, Inc. | Method and apparatus for a source-initiated handoff from a source cellular wireless network to a target non-cellular wireless network |
US7065351B2 (en) | 2003-01-30 | 2006-06-20 | Qualcomm Incorporated | Event-triggered data collection |
US7489938B2 (en) | 2003-05-14 | 2009-02-10 | Nokia Corporation | Apparatus and method for providing location information |
US6839020B2 (en) * | 2003-06-02 | 2005-01-04 | Motorola, Inc. | Aiding location determinations in satellite positioning system receivers |
US6975266B2 (en) | 2003-06-17 | 2005-12-13 | Global Locate, Inc. | Method and apparatus for locating position of a satellite signal receiver |
US6788249B1 (en) | 2003-07-23 | 2004-09-07 | Snaptrack Incorporated | System for setting coarse GPS time in a mobile station within an asynchronous wireless network |
US20050112030A1 (en) | 2003-08-21 | 2005-05-26 | Gaus Stephanie E. | Meshwell plates |
JP4330628B2 (en) | 2003-08-22 | 2009-09-16 | ノキア コーポレイション | Apparatus and associated method for facilitating mobile station location determination according to location-based applications |
FI20040036A0 (en) | 2004-01-13 | 2004-01-13 | Nokia Corp | Providing location information on a visited network |
US8219664B2 (en) | 2004-01-30 | 2012-07-10 | Nokia Corporation | Defining nodes in device management system |
EP1723562A1 (en) * | 2004-03-10 | 2006-11-22 | Nokia Corporation | Storage of content-location information |
GB0407823D0 (en) | 2004-04-06 | 2004-05-12 | Nokia Corp | A method of communication |
US7301494B2 (en) * | 2004-05-03 | 2007-11-27 | Jeffrey Waters | Combination cellular telephone and radar detector |
US20060132349A1 (en) * | 2004-12-22 | 2006-06-22 | Stern Ari K | Radar detector with signal source location determination and filtering |
EP1859358A4 (en) | 2005-03-15 | 2010-12-15 | Mformation Technologies Inc | System and method for trap management and monitoring on wireless terminals |
US8010100B2 (en) | 2005-03-15 | 2011-08-30 | Mformation Technologies, Inc. | System and method for monitoring and measuring end-to-end performance using wireless devices |
US7283816B2 (en) | 2005-04-14 | 2007-10-16 | Qualcomm Incorporated | Apparatus and process for a universal diagnostic monitor module on a wireless device |
US8160577B2 (en) * | 2005-08-19 | 2012-04-17 | Global Locate, Inc. | Method and apparatus for providing intelligent deactivation of electronic devices in aircraft |
US7899450B2 (en) * | 2006-03-01 | 2011-03-01 | Telecommunication Systems, Inc. | Cellular augmented radar/laser detection using local mobile network within cellular network |
US7471236B1 (en) * | 2006-03-01 | 2008-12-30 | Telecommunication Systems, Inc. | Cellular augmented radar/laser detector |
US7504983B2 (en) * | 2007-02-16 | 2009-03-17 | Adaptiv Technologies Llc | Motorcycle communication system with radar detector, and mounting assemblies therefor |
US8373588B2 (en) * | 2009-02-20 | 2013-02-12 | Escort Inc. | Wireless connectivity in a radar detector |
US8624771B2 (en) * | 2009-02-20 | 2014-01-07 | Escort Inc. | Wireless connectivity in a radar detector |
-
2006
- 2006-04-10 US US11/400,278 patent/US7471236B1/en active Active
-
2008
- 2008-10-21 US US12/289,116 patent/US7764219B2/en not_active Expired - Fee Related
-
2010
- 2010-05-26 US US12/801,163 patent/US7965222B2/en not_active Expired - Fee Related
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4445118A (en) * | 1981-05-22 | 1984-04-24 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Navigation system and method |
US5606618A (en) * | 1989-06-02 | 1997-02-25 | U.S. Philips Corporation | Subband coded digital transmission system using some composite signals |
US5301354A (en) * | 1989-11-30 | 1994-04-05 | Motorola, Inc. | Satellite based global paging system |
US5283570A (en) * | 1989-12-14 | 1994-02-01 | Motorola, Inc. | Multiple format signalling protocol for a selective call receiver |
US5594780A (en) * | 1991-10-10 | 1997-01-14 | Space Systems/Loral, Inc. | Satellite communication system that is coupled to a terrestrial communication network and method |
US5896369A (en) * | 1993-09-20 | 1999-04-20 | Nokia Telecommunications Oy | Mobile communication system and a method for connecting a remote workstation to a data communication network via a mobile communication network |
US5506886A (en) * | 1993-12-27 | 1996-04-09 | Motorola, Inc. | Wide area paging with roaming subscriber units |
US5485163A (en) * | 1994-03-30 | 1996-01-16 | Motorola, Inc. | Personal locator system |
US5504491A (en) * | 1994-04-25 | 1996-04-02 | Chapman; Robert W. | Global status and position reporting system |
US5731785A (en) * | 1994-05-13 | 1998-03-24 | Lemelson; Jerome H. | System and method for locating objects including an inhibiting feature |
US5864667A (en) * | 1995-04-05 | 1999-01-26 | Diversinet Corp. | Method for safe communications |
US6205330B1 (en) * | 1995-08-30 | 2001-03-20 | Microsoft Corporation | System and host arrangement for transmission of electronic mail |
US5721781A (en) * | 1995-09-13 | 1998-02-24 | Microsoft Corporation | Authentication system and method for smart card transactions |
US5874914A (en) * | 1995-10-09 | 1999-02-23 | Snaptrack, Inc. | GPS receiver utilizing a communication link |
US6188909B1 (en) * | 1996-02-26 | 2001-02-13 | Nokia Mobile Phones, Ltd. | Communication network terminal supporting a plurality of applications |
US6208290B1 (en) * | 1996-03-08 | 2001-03-27 | Snaptrack, Inc. | GPS receiver utilizing a communication link |
US6522682B1 (en) * | 1996-03-15 | 2003-02-18 | Sirf Technology, Inc. | Triple multiplexing spread spectrum receiver |
US6169901B1 (en) * | 1996-03-27 | 2001-01-02 | U.S. Philips Corporation | Mobile telephone with interial identifier in location messages |
US6189098B1 (en) * | 1996-05-15 | 2001-02-13 | Rsa Security Inc. | Client/server protocol for proving authenticity |
US5857201A (en) * | 1996-06-18 | 1999-01-05 | Wright Strategies, Inc. | Enterprise connectivity to handheld devices |
US6185427B1 (en) * | 1996-09-06 | 2001-02-06 | Snaptrack, Inc. | Distributed satellite position system processing and application network |
US6725159B2 (en) * | 1996-09-06 | 2004-04-20 | Snaptrack Incorporated | GPS receiver and method for processing GPS signals |
US6052081A (en) * | 1997-02-03 | 2000-04-18 | Snaptrack, Inc. | Method and apparatus for satellite positioning system based time measurement |
US6839021B2 (en) * | 1997-02-03 | 2005-01-04 | Qualcomm Incorporated | Method and apparatus for determining time in a satellite positioning system |
US6377209B1 (en) * | 1997-02-03 | 2002-04-23 | Snaptrack, Inc. | Method and apparatus for satellite positioning system (SPS) time measurement |
US6169902B1 (en) * | 1997-04-09 | 2001-01-02 | Sony Corporation | Information terminal, processing method by information terminal, information providing apparatus and information network system |
US6215441B1 (en) * | 1997-04-15 | 2001-04-10 | Snaptrack, Inc. | Satellite positioning reference system and method |
US6542464B1 (en) * | 1997-08-08 | 2003-04-01 | Nec Corporation | High throughput wireless data communication using transferred protocol data for communication across land-line network |
US6680694B1 (en) * | 1997-08-19 | 2004-01-20 | Siemens Vdo Automotive Corporation | Vehicle information system |
US6707421B1 (en) * | 1997-08-19 | 2004-03-16 | Siemens Vdo Automotive Corporation | Driver information system |
US6531982B1 (en) * | 1997-09-30 | 2003-03-11 | Sirf Technology, Inc. | Field unit for use in a GPS system |
US6032051A (en) * | 1997-12-01 | 2000-02-29 | Telefonaktiebolaget L/M Ericsson | Wireless mobile comunication devices for group use |
US6512930B2 (en) * | 1997-12-30 | 2003-01-28 | Telefonaktiebolaget Lm Ericsson (Publ) | On-line notification in a mobile communications system |
US6195557B1 (en) * | 1998-04-20 | 2001-02-27 | Ericsson Inc. | System and method for use of override keys for location services |
US6677894B2 (en) * | 1998-04-28 | 2004-01-13 | Snaptrack, Inc | Method and apparatus for providing location-based information via a computer network |
US6363254B1 (en) * | 1998-09-30 | 2002-03-26 | Global Research Systems, Inc. | System and method for enciphering and communicating vehicle tracking information |
US6178506B1 (en) * | 1998-10-23 | 2001-01-23 | Qualcomm Inc. | Wireless subscription portability |
US6698195B1 (en) * | 1999-01-15 | 2004-03-02 | Voith Turbo Gmbh & Co. Kg | Hydrodynamic coupling |
US6360093B1 (en) * | 1999-02-05 | 2002-03-19 | Qualcomm, Incorporated | Wireless push-to-talk internet broadcast |
US6367019B1 (en) * | 1999-03-26 | 2002-04-02 | Liquid Audio, Inc. | Copy security for portable music players |
US6188354B1 (en) * | 1999-03-29 | 2001-02-13 | Qualcomm Incorporated | Method and apparatus for determining the location of a remote station in a CDMA communication network |
US6510387B2 (en) * | 1999-04-23 | 2003-01-21 | Global Locate, Inc. | Correction of a pseudo-range model from a GPS almanac |
US6853916B2 (en) * | 1999-04-23 | 2005-02-08 | Global Locate, Inc. | Method and apparatus for forming a pseudo-range model |
US6504491B1 (en) * | 1999-05-27 | 2003-01-07 | Motorola, Inc. | Simultaneous multi-data stream transmission method and apparatus |
US6512922B1 (en) * | 1999-07-13 | 2003-01-28 | Motorola, Inc. | Information services provision in a telecommunications network |
US6539200B1 (en) * | 1999-07-29 | 2003-03-25 | Qualcomm, Incorporated | Method and apparatus for paging a user terminal within the “sweet spot” of a satellite |
US6549776B1 (en) * | 1999-07-30 | 2003-04-15 | Telefonaktiebolaget Lm Ericsson (Publ) | System, method, and apparatus for pushing data in a direct digital call environment |
US6542743B1 (en) * | 1999-08-31 | 2003-04-01 | Qualcomm, Incorporated | Method and apparatus for reducing pilot search times utilizing mobile station location information |
US6549844B1 (en) * | 1999-09-21 | 2003-04-15 | Siemens Ag | Method for navigating a vehicle |
US6694258B2 (en) * | 1999-09-30 | 2004-02-17 | Siemens Vdo Automotive Corporation | Hand held car locator |
US6865171B1 (en) * | 1999-10-22 | 2005-03-08 | Telefonaktiebolaget Lm Ericsson (Publ) | Methods and apparatus for selectively providing user-specific information to origin servers in wireless application protocol applications |
US6996720B1 (en) * | 1999-12-17 | 2006-02-07 | Microsoft Corporation | System and method for accessing protected content in a rights-management architecture |
US6556832B1 (en) * | 2000-02-04 | 2003-04-29 | Qualcomm Incorporated | Method and apparatus for evaluation of position location performance |
US20020037735A1 (en) * | 2000-03-03 | 2002-03-28 | Mark Maggenti | Communication device for reregistering in a net within a group communication network |
US6714793B1 (en) * | 2000-03-06 | 2004-03-30 | America Online, Inc. | Method and system for instant messaging across cellular networks and a public data network |
US6720915B2 (en) * | 2000-03-20 | 2004-04-13 | Snaptrack Incorporated | Methods and apparatuses for using assistance data relating to satellite position systems |
US6542734B1 (en) * | 2000-03-30 | 2003-04-01 | Qualcomm Incorporated | Method and apparatus for detecting specified events in a mobile station |
US6538757B1 (en) * | 2000-05-19 | 2003-03-25 | Pitney Bowes Inc. | Method for automatically reading electronic tickets |
US6703972B2 (en) * | 2000-07-13 | 2004-03-09 | Global Locate, Inc. | Apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris |
US6704651B2 (en) * | 2000-07-13 | 2004-03-09 | Global Locate, Inc. | Method and apparatus for locating mobile receivers using a wide area reference network for propagating ephemeris |
US6519466B2 (en) * | 2000-08-14 | 2003-02-11 | Sirf Technology, Inc. | Multi-mode global positioning system for use with wireless networks |
US6680695B2 (en) * | 2000-08-24 | 2004-01-20 | Sirf Technology, Inc. | Communications system that reduces auto-correlation or cross-correlation in weak signals |
US6529829B2 (en) * | 2000-08-24 | 2003-03-04 | Sirf Technology, Inc. | Dead reckoning system for reducing auto-correlation or cross-correlation in weak signals |
US6539304B1 (en) * | 2000-09-14 | 2003-03-25 | Sirf Technology, Inc. | GPS navigation system using neural networks |
US6697629B1 (en) * | 2000-10-11 | 2004-02-24 | Qualcomm, Incorporated | Method and apparatus for measuring timing of signals received from multiple base stations in a CDMA communication system |
US6718174B2 (en) * | 2000-10-27 | 2004-04-06 | Qualcomm Incorporated | Method and apparatus for estimating velocity of a terminal in a wireless communication system |
US6525688B2 (en) * | 2000-12-04 | 2003-02-25 | Enuvis, Inc. | Location-determination method and apparatus |
US20040064550A1 (en) * | 2000-12-28 | 2004-04-01 | Tsuyoshi Sakata | Data processing system |
US6525687B2 (en) * | 2001-02-12 | 2003-02-25 | Enuvis, Inc. | Location-determination method and apparatus |
US6703971B2 (en) * | 2001-02-21 | 2004-03-09 | Sirf Technologies, Inc. | Mode determination for mobile GPS terminals |
US6701144B2 (en) * | 2001-03-05 | 2004-03-02 | Qualcomm Incorporated | System for automatically configuring features on a mobile telephone based on geographic location |
US20030065788A1 (en) * | 2001-05-11 | 2003-04-03 | Nokia Corporation | Mobile instant messaging and presence service |
US20030009602A1 (en) * | 2001-05-18 | 2003-01-09 | Jacobs Paul E. | Extensible event notification mechanism |
US6515623B2 (en) * | 2001-06-29 | 2003-02-04 | Motorola, Inc. | Enhanced location methodology for a location system |
US20030037163A1 (en) * | 2001-08-15 | 2003-02-20 | Atsushi Kitada | Method and system for enabling layer 2 transmission of IP data frame between user terminal and service provider |
US20030078064A1 (en) * | 2001-10-22 | 2003-04-24 | Chan Victor H. | System and method for queuing talk requests in wireless dispatch system |
US6691019B2 (en) * | 2001-12-21 | 2004-02-10 | General Electric Company | Method and system for controlling distortion of turbine case due to thermal variations |
US6721578B2 (en) * | 2002-01-31 | 2004-04-13 | Qualcomm Incorporated | System and method for providing an interactive screen on a wireless device interacting with a server |
US6856282B2 (en) * | 2002-02-08 | 2005-02-15 | Qualcomm Incorporated | Directly acquiring precision code GPS signals |
US6873854B2 (en) * | 2002-02-14 | 2005-03-29 | Qualcomm Inc. | Method and an apparatus for adding a new member to an active group call in a group communication network |
US6721871B2 (en) * | 2002-04-02 | 2004-04-13 | Nokia Corporation | Method and apparatus for synchronizing data stores with respect to changes in folders |
US6724342B2 (en) * | 2002-04-19 | 2004-04-20 | Sirf Technology, Inc. | Compensation for frequency adjustment in mobile communication-positioning device with shared oscillator |
US6867734B2 (en) * | 2002-05-17 | 2005-03-15 | Motorola, Inc. | System and method for frequency management in a communications positioning device |
US20040002326A1 (en) * | 2002-06-28 | 2004-01-01 | Philip Maher | System and method for application management through threshold events |
US6865395B2 (en) * | 2002-08-08 | 2005-03-08 | Qualcomm Inc. | Area based position determination for terminals in a wireless network |
US20040044623A1 (en) * | 2002-08-28 | 2004-03-04 | Wake Susan L. | Billing system for wireless device activity |
US20040068724A1 (en) * | 2002-08-30 | 2004-04-08 | Gardner Richard Wayne | Server processing for updating dataset versions resident on a wireless device |
US6999782B2 (en) * | 2003-02-19 | 2006-02-14 | Motorola, Inc. | Method for joining dispatch calls |
US20050039178A1 (en) * | 2003-06-27 | 2005-02-17 | Sunil Marolia | System and method for downloading update packages into a mobile handset in a carrier network |
US20050003797A1 (en) * | 2003-07-02 | 2005-01-06 | Baldwin Johnny E. | Localized cellular awareness and tracking of emergencies |
US7177623B2 (en) * | 2003-07-02 | 2007-02-13 | The United States Of America As Represented By The Secretary Of The Army | Localized cellular awareness and tracking of emergencies |
US6842715B1 (en) * | 2003-07-21 | 2005-01-11 | Qualcomm Incorporated | Multiple measurements per position fix improvements |
US20050028034A1 (en) * | 2003-07-28 | 2005-02-03 | Alexander Gantman | Fault diagnosis, repair and upgrades using the acoustic channel |
US20050041578A1 (en) * | 2003-08-18 | 2005-02-24 | Nokia Corporation | Setting up communication sessions |
US6861980B1 (en) * | 2004-05-26 | 2005-03-01 | Qualcomm Incorporated | Data messaging efficiency for an assisted wireless position determination system |
US20060053225A1 (en) * | 2004-09-08 | 2006-03-09 | Nokia Corporation | Group details of group services |
US6985105B1 (en) * | 2004-10-15 | 2006-01-10 | Telecommunication Systems, Inc. | Culled satellite ephemeris information based on limiting a span of an inverted cone for locating satellite in-range determinations |
US20070026854A1 (en) * | 2005-07-28 | 2007-02-01 | Mformation Technologies, Inc. | System and method for service quality management for wireless devices |
US20070030539A1 (en) * | 2005-07-28 | 2007-02-08 | Mformation Technologies, Inc. | System and method for automatically altering device functionality |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8892495B2 (en) | 1991-12-23 | 2014-11-18 | Blanding Hovenweep, Llc | Adaptive pattern recognition based controller apparatus and method and human-interface therefore |
US8364136B2 (en) | 1999-02-01 | 2013-01-29 | Steven M Hoffberg | Mobile system, a method of operating mobile system and a non-transitory computer readable medium for a programmable control of a mobile system |
US8369967B2 (en) | 1999-02-01 | 2013-02-05 | Hoffberg Steven M | Alarm system controller and a method for controlling an alarm system |
US10361802B1 (en) | 1999-02-01 | 2019-07-23 | Blanding Hovenweep, Llc | Adaptive pattern recognition based control system and method |
US9535563B2 (en) | 1999-02-01 | 2017-01-03 | Blanding Hovenweep, Llc | Internet appliance system and method |
US8126889B2 (en) | 2002-03-28 | 2012-02-28 | Telecommunication Systems, Inc. | Location fidelity adjustment based on mobile subscriber privacy profile |
US8089401B2 (en) | 2004-10-15 | 2012-01-03 | Telecommunication Systems, Inc. | Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas |
US8681044B2 (en) | 2004-10-15 | 2014-03-25 | Telecommunication Systems, Inc. | Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas |
US20100045520A1 (en) * | 2004-10-15 | 2010-02-25 | Lance Douglas Pitt | Culled satellite ephemeris information for quick, accurate assisted locating satellite location determination for cell site antennas |
US20070075848A1 (en) * | 2005-10-05 | 2007-04-05 | Pitt Lance D | Cellular augmented vehicle alarm |
US7965222B2 (en) * | 2006-03-01 | 2011-06-21 | Telecommunication Systems, Inc. | Cellular augmented radar/laser detector |
US20100238065A1 (en) * | 2006-03-01 | 2010-09-23 | Lance Douglas Pitt | Cellular augmented radar/laser detector |
US20100093371A1 (en) * | 2008-10-14 | 2010-04-15 | Todd Gehrke | Location based geo-reminders |
US8892128B2 (en) | 2008-10-14 | 2014-11-18 | Telecommunication Systems, Inc. | Location based geo-reminders |
US20150123834A1 (en) * | 2009-12-07 | 2015-05-07 | Cobra Electronics Corporation | Analyzing data from networked radar detectors |
US20120032833A1 (en) * | 2010-08-09 | 2012-02-09 | Milligan Stephen D | Radar coherent processing interval scheduling via ad hoc network |
US8730088B2 (en) * | 2010-08-09 | 2014-05-20 | Raytheon Bbn Technologies Corp. | Radar coherent processing interval scheduling via ad hoc network |
Also Published As
Publication number | Publication date |
---|---|
US20090079614A1 (en) | 2009-03-26 |
US20100238065A1 (en) | 2010-09-23 |
US7965222B2 (en) | 2011-06-21 |
US7471236B1 (en) | 2008-12-30 |
US7764219B2 (en) | 2010-07-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7471236B1 (en) | Cellular augmented radar/laser detector | |
US7899450B2 (en) | Cellular augmented radar/laser detection using local mobile network within cellular network | |
CN107454554B (en) | Emergency access using vehicle-to-vehicle communication | |
US8824997B2 (en) | Cellular network based assistant for vehicles | |
EP1224647B1 (en) | Information system | |
US8401589B2 (en) | Controlled text-based communication on mobile devices | |
US7133685B2 (en) | Monitoring boundary crossings in a wireless network | |
US8744401B2 (en) | Enhanced telematic emergency response | |
US20070038360A1 (en) | Traffic alert system and method | |
JPH10108246A (en) | Device for establishing communication between caller station and more than one callee stations and its method | |
KR101769127B1 (en) | System for informing vehicle accident | |
KR20060122626A (en) | Method and system for coping with emergency situation using a terminal including global positioning system | |
EP3456069B1 (en) | Reporting of location information | |
EP1939833B1 (en) | Method for improving traffic safety by means of using beacons | |
CN101188855A (en) | Method and device for precisely measuring quality of location service | |
US20190235072A1 (en) | Method for determining the position of a mobile radio station by means of a vehicle, and vehicle | |
US11598837B2 (en) | Enhancing location accuracy in dense urban environment | |
JP2005332263A (en) | Method and system for emergency vehicle notification | |
WO2021227066A1 (en) | Method and management entity for determination of geofence | |
KR101096729B1 (en) | Method and System for Alerting Service of Sleepiness Driving Based on Location | |
CN118314759A (en) | Parking space management method and communication device | |
KR20130058154A (en) | Telematics system for public transportation and method for providing telematics service |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TELECOMMUNICATION SYSTEMS, INC., MARYLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PITT, LANCE DOUGLAS;LAWRENCE, SARAH JEAN;DELAPP, DANIEL D.;REEL/FRAME:017741/0069 Effective date: 20060407 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: SILICON VALLEY BANK, AGENT, MASSACHUSETTS Free format text: SECURITY AGREEMENT;ASSIGNORS:TELECOMMUNICATION SYSTEMS, INC.;LONGHORN ACQUISITION, LLC;SOLVERN INNOVATIONS, INC.;AND OTHERS;REEL/FRAME:023870/0484 Effective date: 20091231 Owner name: SILICON VALLEY BANK, AGENT,MASSACHUSETTS Free format text: SECURITY AGREEMENT;ASSIGNORS:TELECOMMUNICATION SYSTEMS, INC.;LONGHORN ACQUISITION, LLC;SOLVERN INNOVATIONS, INC.;AND OTHERS;REEL/FRAME:023870/0484 Effective date: 20091231 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: CITIBANK N.A., AS ADMINISTRATIVE AGENT, NEW YORK Free format text: SECURITY AGREEMENT;ASSIGNORS:COMTECH EF DATA CORP.;COMTECH XICOM TECHNOLOGY, INC.;COMTECH MOBILE DATACOM CORPORATION;AND OTHERS;REEL/FRAME:037993/0001 Effective date: 20160223 Owner name: TELECOMMUNICATION SYSTEMS, INC., MARYLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:037994/0113 Effective date: 20160223 Owner name: SOLVEM INNOVATIONS, INC., MARYLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:037994/0113 Effective date: 20160223 Owner name: QUASAR ACQUISITION, LLC, GEORGIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:037994/0113 Effective date: 20160223 Owner name: LONGHORN ACQUISITION, LLC, MARYLAND Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:037994/0113 Effective date: 20160223 Owner name: NETWORKS IN MOTION, INC., WISCONSIN Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:SILICON VALLEY BANK;REEL/FRAME:037994/0113 Effective date: 20160223 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
MAFP | Maintenance fee payment |
Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Year of fee payment: 12 |
|
AS | Assignment |
Owner name: TCW ASSET MANAGEMENT COMPANY LLC, AS AGENT, MASSACHUSETTS Free format text: SECURITY INTEREST;ASSIGNOR:TELECOMMUNICATION SYSTEMS, INC.;REEL/FRAME:067776/0309 Effective date: 20240617 |
|
AS | Assignment |
Owner name: TELECOMMUNICATION SYSTEMS, INC., NEW YORK Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 037993/FRAME 0001;ASSIGNOR:CITIBANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:067780/0566 Effective date: 20240618 Owner name: MAPLE ACQUISITION LLC, MARYLAND Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 037993/FRAME 0001;ASSIGNOR:CITIBANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:067780/0566 Effective date: 20240618 Owner name: COMTECH XICOM TECHNOLOGY, INC., CALIFORNIA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 037993/FRAME 0001;ASSIGNOR:CITIBANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:067780/0566 Effective date: 20240618 Owner name: COMTECH SYSTEMS, INC., FLORIDA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 037993/FRAME 0001;ASSIGNOR:CITIBANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:067780/0566 Effective date: 20240618 Owner name: COMTECH SATELLITE NETWORK TECHNOLOGIES, INC., ARIZONA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 037993/FRAME 0001;ASSIGNOR:CITIBANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:067780/0566 Effective date: 20240618 Owner name: COMTECH MOBILE DATACOM LLC, MARYLAND Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 037993/FRAME 0001;ASSIGNOR:CITIBANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:067780/0566 Effective date: 20240618 Owner name: COMTECH EF DATA CORP., ARIZONA Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 037993/FRAME 0001;ASSIGNOR:CITIBANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:067780/0566 Effective date: 20240618 Owner name: COMTECH TELECOMMUNICATIONS CORP., NEW YORK Free format text: RELEASE OF SECURITY INTEREST IN PATENTS AT REEL 037993/FRAME 0001;ASSIGNOR:CITIBANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:067780/0566 Effective date: 20240618 |