US20080260059A1 - Method and apparatus for efficient precoding information validation for mimo communications - Google Patents

Method and apparatus for efficient precoding information validation for mimo communications Download PDF

Info

Publication number
US20080260059A1
US20080260059A1 US12/106,581 US10658108A US2008260059A1 US 20080260059 A1 US20080260059 A1 US 20080260059A1 US 10658108 A US10658108 A US 10658108A US 2008260059 A1 US2008260059 A1 US 2008260059A1
Authority
US
United States
Prior art keywords
pmi
wtru
message
enodeb
precoding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/106,581
Other versions
US9716604B2 (en
Inventor
Kyle Jung-Lin Pan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
InterDigital Technology Corp
Original Assignee
InterDigital Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by InterDigital Technology Corp filed Critical InterDigital Technology Corp
Priority to US12/106,581 priority Critical patent/US9716604B2/en
Assigned to INTERDIGITAL TECHNOLOGY CORPORATION reassignment INTERDIGITAL TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PAN, KYLE JUNG-LIN
Publication of US20080260059A1 publication Critical patent/US20080260059A1/en
Priority to US15/626,508 priority patent/US10284265B2/en
Application granted granted Critical
Publication of US9716604B2 publication Critical patent/US9716604B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0652Feedback error handling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0665Feed forward of transmit weights to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0028Formatting
    • H04L1/0029Reduction of the amount of signalling, e.g. retention of useful signalling or differential signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03375Passband transmission
    • H04L2025/03414Multicarrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/03777Arrangements for removing intersymbol interference characterised by the signalling
    • H04L2025/03802Signalling on the reverse channel

Definitions

  • Third generation partnership project 3GPP and 3GPP2 are considering long term evolution LTE for radio interface and network architecture.
  • multi-antenna systems in wireless communications networks to obtain advantages of increased channel capacity, spectrum efficiency, system throughputs, peak data rates and/or link reliability.
  • Such multi-antenna systems are generically referred to as multiple-input-multiple-output (MIMO) systems but may also include multiple-input-single-output (MISO) and or single-input-multiple-output (SIMO) configurations.
  • MIMO multiple-input-multiple-output
  • MISO multiple-input-single-output
  • SIMO single-input-multiple-output
  • Efficient signaling is essential to evolved universal terrestrial radio access (E-UTRA).
  • E-UTRA evolved universal terrestrial radio access
  • a low overhead control signaling scheme can improve MIMO link performance, system capacity, system throughputs, information data rates and increased spectrum efficiency.
  • MIMO systems promise high spectral efficiency and have been proposed in many wireless communication standards. A lot of research is also currently underway on preceding for spatially multiplexed or space-time coded MIMO systems. Precoding is a technique used to provide increased array and/or diversity gains.
  • Precoding information needs to be communicated from a transmitter, (e.g., a base station), to receiver, (e.g., a wireless transmit/receive unit (WTRU)), to avoid a channel mismatch between transmitting and receiving signals.
  • a transmitter e.g., a base station
  • receiver e.g., a wireless transmit/receive unit (WTRU)
  • WTRU wireless transmit/receive unit
  • precoding information may be communicated using explicit control signaling, particularly when the transmitter and receiver are restricted to the use of limited sets of antenna weights and coefficients for precoding.
  • the limited sets of antenna weights and coefficients are sometimes referred to as precoding codebook.
  • Explicit signaling to communicate precoding information from a transmitter to a receiver may incur large signaling overhead, particularly for a large size codebook. This signaling overhead is magnified manifold when frequency selective precoding is used.
  • Precoding matrix or antenna weights validation and verification is used to avoid effective channel mismatch between a transmitter and a receiver.
  • An effective channel between a base station and a mobile handset is a channel that experiences MIMO preceding effect, and is the multiplication of channel matrix H and precoding matrix V used at an evolved Node-B (eNodeB) or a transmitter.
  • eNodeB evolved Node-B
  • a mismatch of the effective channel between the transmitter and the receiver causes severe performance degradation for MIMO communication systems.
  • FIG. 1A shows a precoding matrix or antenna weights signaling scheme.
  • a wireless transmit/receive unit (WTRU) 111 feeds back precoding matrix indices (PMIs) or antenna weights to a base station or an eNodeB 113 .
  • PMI_j having Y bits
  • the eNodeB sends a validation message PMI_k (Y bits) 117 to the WTRU.
  • PMI_j is not equal to PMI_k.
  • PMI_j PMI_k.
  • the validation message can be sent in several forms, for example via control signaling or via reference signal.
  • One precoding matrix is used to precode transmitted data per sub-band. In an extreme case precoding can be performed per sub-carrier if a sub-band consists of only a sub-carrier. If multiple PMIs are needed to be signaled to receiver (WTRU), then the signaling overhead could be significant. For example if there are Z PMIs to be signaled and each PMI has Y bits, then the total overhead is Z x Y bits. If Z or Y itself are large, the signaling overhead is significant.
  • preceding matrix and precoding vector is interchangeable and depends upon the number of data streams to be precoded.
  • Each PMI is represented by L bits, wherein the value of L depends upon MIMO configurations and codebook sizes and number of data streams to be supported.
  • WTRUs are assigned resources for communications.
  • a resource block (RB) consists of M subcarriers, for example, M can take the value twelve (12).
  • a system bandwidth can have one or more RBGs or sub-bands depending on the size of the bandwidth and the value of N_RB per RBG.
  • the number of RBGs per system bandwidth, N_RBG can be one, two, four, ten, twenty and fifty.
  • the terminology RBG and sub-band is interchangeable.
  • the WTRU feeds back one PMI for each RBG that is configured for or selected by the WTRU for reporting.
  • N_RBG RBGs for a given bandwidth
  • N RBGs where ‘N ⁇ N_RBG’ can be configured for or selected by a WTRU.
  • the WTRU feeds back ‘N’ PMIs to the eNodeB.
  • the eNodeB sends the precoding validation message comprising ‘N’ PMIs back to the WTRU.
  • the eNodeB To inform the WTRU of current PMIs used at the eNodeB, the eNodeB sends ‘N’ PMIs back to the WTRU.
  • the total number of bits that the eNodeB sends to the WTRU per PMI validation message is ‘N_PMI ⁇ N’ bits.
  • the second row is N_RB, the number of RBs per RBG. For example, the N_RB ranges from 2 to 100 for 20 MHz.
  • the third row is N_RBG per system bandwidth, i.e., number of RBGs per system bandwidth of 5, 10 or 20 MHz, and the value of N_RBG ranges from one to fifty 50.
  • the fourth row is the total number of bits for PMI validation signaling per validation message or grant channel.
  • N_RB Number of resource blocks.
  • N_RBG Number of frequency blocks for pre-coding control unit to which assigned RBs belong.
  • precoding information validation may require up to 250 bits or more per validation message. Hence, this scheme is inefficient.
  • a method and apparatus for efficient precoding information validation in a MIMO wireless communications is provided.
  • a wireless transmit/receive unit WTRU transmits one or multiple precoding information or precoding matrix indices (PMIs) to an eNodeB.
  • the WTRU receives from eNodeB a validation message (a PMI indicator) including a precoding confirmation message indicating whether or not there is a match to the precoding information reported by the WTRU. If there is a match between the precoding information, i.e. the precoding information are identical, a precoding validation message including a precoding confirmation message is received by the WTRU from eNodeB to confirm the precoding information that are used at eNodeB are the same as the precoding information fed back from WTRU.
  • the WTRU receives a validation message including a precoding confirmation/indication message from the eNodeB to indicate that the eNodeB does not use precoding information that are fed back from WTRU.
  • the WTRU may also receive a validation message including a precoding indication message from the eNodeB to indicate the precoding information that is being used at eNodeB. Precoding validation using a precoding confirmation message is used to reduce signaling overhead.
  • the eNodeB sends a precoding confirmation message to a WTRU.
  • the precoding confirmation message can be carried by a PMI indicator which indicates the state of the downlink DL precoding validation.
  • the PMI indicator could be 1 bit or a bit sequence representing the precoding confirmation state or one or several precoding information states for the precoding validation corresponding to the WTRU precoding feedback.
  • the validation message or PMI indicator using precoding confirmation may consist of one or more bits.
  • the use of PMI indicator using either a single bit or more bits helps indicate precoding information and state used and therefore helps in reducing overhead and increases efficiency.
  • FIG. 1A illustrates a precoding matrix or antenna weights signaling scheme
  • FIG. 1B shows an example block diagram of a transmitter and receiver configured to implement a precoding matrix transmission
  • FIG. 2 illustrates a first embodiment of a signaling scheme (single PMI validation for single PMI feedback);
  • FIG. 3A illustrates a second embodiment of a signaling scheme for precoding matrix or antenna weights verification; (multiple PMI validation for multiple PMI feedback);
  • FIG. 3B illustrates another embodiment of a signaling scheme for single PMI validation for multiple PMI feedback
  • FIGS. 4-8 illustrate various PMI validation message schemes
  • FIG. 9 illustrates a control signaling scheme with a PMI validation signaling attached.
  • FIG. 10 illustrates a control signaling scheme with a PMI validation signaling inserted.
  • FIG. 11 shows a wireless communication system with multiple NodeBs in communication with various WTRUS
  • the terminology “WTRU” includes but is not limited to a Wireless Transmit/Receive Unit (WTRU), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a computer, or any other type of user device capable of operating in a wireless environment.
  • WTRU Wireless Transmit/Receive Unit
  • PDA personal digital assistant
  • eNodeB includes but is not limited to Node-B, a base station, a site controller, an access point (AP), or any other type of interfacing device capable of operating in a wireless environment.
  • PMI indicator is used to refer to an indicator responding to the feedback signal of or corresponding to the validation state of antenna weights, PMI, beamforming weights, etc.
  • the “PMI indicator” may carry precoding confirmation message, precoding indication message, other precoding related message, or combination of them depending on various designs, schemes and purposes.
  • Precoding indication message could be a precoding information indication message, rank override message, feedback error message, e.t.c depending on the state of precoding validation.
  • Precoding information indication message, rank override message, etc may indicate rank information or other precoding related information.
  • the methods as described hereafter provide an efficient antenna weights, beamforming information or precoding information or precoding matrix indication PMI signaling and validation scheme for E-UTRA.
  • FIG. 1B is a functional block diagram of a transmitter 110 and receiver 120 configured to perform a method of precoding matrix indication as described hereafter.
  • transmitter 110 comprises a precoding information determiner 114 , a precoding processor 116 , an antenna array 118 , a precoding validation message generator 136 comprising of a precoding confirmation message block 132 and precoding indication message block 134 .
  • Precoding information determiner 114 that is coupled to precoding processor 116 is used to determine a preceding information based on the received precoding feedback from precoding information generator 124 at RX 120 .
  • precoding validation message generator 136 that is coupled to precoding information determiner 114 is used to generate the validation message based on the output of precoding information determiner 114 .
  • Precoding validation message generator 136 uses the received precoding feedback signal from precoding information generator 124 and the precoding information generated from precoding information determiner 114 to determine the state of precoding validation and generate the corresponding validation message. For example, if there is a match between precoding information generated by precoding information determiner 114 and precoding information generator 124 , a validation message including a precoding confirmation message is sent, otherwise a validation message including a precoding indication message is sent.
  • Receiver 120 comprises a receiver 128 , a precoding information generator 124 , a channel estimator 130 , a demodulator/processor 126 and a precoding validation message to precoding information converter 138 .
  • receiver 120 comprising receiver 128 , receives a transmitted OFDM block from transmitter 110 , performs channel estimation by channel estimator 130 , generates precoding information using the precoding information generator 124 for generating the precoding feedback signal that is then sent via antennas 127 .
  • Receiver 120 also receives precoding validation message from precoding validation message generator 136 of transmitter 110 and detects and decodes the precoding validation message and translates the precoding validation message to precoding information using the precoding validation message to precoding information converter 138 .
  • the precoding information at the output of precoding validation message to precoding information converter 138 is fed to demodulator/processor 126 for MIMO data detection, decoding and processing.
  • An eNodeB comprises transmitter 110 , and WTRU 20 comprises receiver 120 . It should be noted though that transmitter 110 may be located at a WTRU or at a base station or both, and receiver 120 may be located at either the WTRU, base station, or both.
  • a validation message or a PMI indicator using precoding confirmation may consist of a single bit.
  • precoding confirmation or PMI indicator can carry two possible validation messages using a single bit as follows: (1) The precoding confirmation message to inform the WTRU that precoding information used at eNodeB is exactly the same as the precoding information fed back from the WTRU, or (2) The precoding indication message to inform the WTRU that precoding information used at eNodeB is not the same as the precoding information fed back from the WTRU and this indicates that different precoding information is being used at the eNodeB.
  • Precoding validation message or a PMI indicator may also consist of more than one bit.
  • Precoding validation messages may carry one precoding confirmation message and several precoding indication messages.
  • precoding validation message or PMI indicator can carry several possible messages using more than one bit as follows: (1) The precoding confirmation message to inform the WTRU that precoding information used at eNodeB is exactly the same as the precoding information fed back from the WTRU, or (2) One of several possible precoding indication messages to inform the WTRU that precoding information used at eNodeB is not the same as the precoding information fed back from the WTRU and indicates which precoding information is being used at eNodeB.
  • the precoding indication message may indicate the kind of precoding information used if WTRU precoding feedback has an error or is not reliable or if the WTRU's precoding feedback is overridden by eNodeB. Furthermore the precoding indication message may indicate which subset of precoding information is used if WTRU's rank information in its precoding feedback is overridden by eNodeB.
  • Precoding information or PMI may contain all the information related to MIMO precoding including rank information.
  • a validation message may also include an indication message.
  • the confirmation message and indication message can either be separately coded or encoded or jointly coded or encoded.
  • the validation message may consist of two parts—a confirmation part and an indication part.
  • the confirmation part usually uses one bit to carry a positive-confirmation message or a negative confirmation message.
  • the indication part usually uses one or more bits to carry two or more indication messages.
  • confirmation message a positive-confirmation message is used to inform the WTRU that precoding information used at eNodeB is exactly the same as the precoding information fed back from the WTRU.
  • a negative-confirmation message is used to inform WTRU that the preceding information used at the eNodeB is not the same as the precoding information fed back from the WTRU.
  • the kind of precoding information being used at the eNodeB is indicated in the indication part of validation message. In the indication part of the validation message, the precoding information being used at the eNodeB is pointed out.
  • the validation message may consist of only one part that combines confirmation and indication messages which are encoded jointly.
  • Each of validation messages can carry either one confirmation message (positive-confirmation message) or one of the possible several indication messages.
  • the confirmation message (positive-confirmation message) is used to inform the WTRU that precoding information used at eNodeB is exactly the same as the precoding information fed back from the WTRU.
  • the indication message in joint coding serves two purposes—to provide negative confirmation and precoding indication at the same time. That is, the indication message is used to inform the WTRU that the precoding information used at eNodeB is not the same as the precoding information fed back from the WTRU and it also indicates the precoding information being used at the eNodeB.
  • Ajoint coding message format having a single combined confirmation/indication part or field for validation message is depicted as follows:
  • the scheme using only one confirmation and one indication message is a wide-band precoding or non-frequency selective precoding since only one indication message is sent corresponding to a single precoding information or matrix that is used at eNodeB for all the sub-bands.
  • the scheme using one confirmation message and multiple indication messages is a multi-band precoding or frequency selective precoding since multiple precoding information or matrices are used for multiple sub-bands, each precoding information or matrix is used for a sub-band.
  • Joint coding combines confirmation and indication messages and can save greater bits per validation message. But, every validation message that is sent contains both confirmation and indication messages, and therefore, there are a constant number of bits that are sent consistently in a validation message. The overall efficiency may be lower for joint coding as compared to separate coding but joint coding may not increase the detection complexity of the receiver.
  • the use of confirmation and indication messages for responding to precoding feedback using either of the separate or joint coding or encoding schemes for precoding information provides greater efficiency than the straightforward method as it uses a very high number of bits.
  • confirmation part of validation message may use one bit and indication part of validation message may use the other bit.
  • Confirmation part of validation message with bit 0 may represent the positive-confirmation message and bit 1 may represent the negative-confirmation message;
  • indication part of validation message with bit 0 and 1 may represent indication message 1 and indication message 2 respectively which may indicate a precoding information 1 and precoding information 2 correspondingly.
  • validation message with bit sequence 00 may represent a confirmation message (a positive-confirmation message); validation message with bit sequence 01 , 10 and 11 may represent indication message 1 , indication message 2 and indication message 3 respectively which may indicate a precoding information 1 , precoding information 2 and precoding information 3 correspondingly.
  • Validation message with bit sequence 01 , 10 and 11 automatically represent the negative-confirmation message due to the joint coding or encoding of confirmation and indication messages.
  • confirmation part of validation message may use one bit and indication part of validation message may use two bits.
  • Confirmation part of validation message with bit 0 may represent the positive-confirmation message and bit 1 may represent the negative-confirmation message;
  • indication part of validation message with bit 00 - 11 may represent indication message number 1 to message number 4 respectively, that indicates the precoding information number 1 to 4 correspondingly.
  • validation message with bit sequence 000 may represent the positive-confirmation message; validation message with bit sequence 001 to 111 may represent negative-confirmation message and at the same time represent the indication message number 1 to indication message number 7 respectively which indicates the precoding information number 1 to preceding information number 7 respectively.
  • the indication message may indicate the preceding information. Furthermore the indicate message may also indicate the subset of precoding information, precoding rules, override rules, e.t.c. For example the indication message may indicate the following: which preceding information or matrix is used (this may also include rank information), how the eNodeB overrides (e.g., which precoding information or matrix subset should be used when WTRU's rank in precoding feedback is overridden), how the eNodeB handle the case when WTRU feedback is erroneous (e.g., use the previously used precoding information that is valid).
  • the indication message may have different types of message, e.g., precoding information indication type message, precoding or rank override message, feedback error message, e.t.c.
  • the validation message may have several types of message.
  • the validation message having two types of messages—confirmation message and indication message is summarized in Table 1B.
  • a validation message having four types of messages—confirmation message, indication message, override message and feedback error message is summarized in Table 1C.
  • TABLE 1C Type of Validation Message Usage Confirmation Confirm the same precoding information fed message back from UE is used at eNodeB.
  • Indication message Indicate the precoding information used at eNodeB.
  • Override message Indicate the eNodeB overrides WTRU's feedback. If it is rank override, indicate which precoding information subset should be used.
  • Feedback error Indicate the WTRU's feedback is in error.
  • the method as described above is applicable to any MIMO wireless communication system and is applicable to uplink UL and downlink DL.
  • the terminology “PMI indicator” is used to refer to an indicator responding to the feedback signal of or corresponding to the validation state of antenna weights, PMI, beamforming weights, etc.
  • M 1 indication messages indicating different precoding information
  • M 2 override messages indicating different override rules for precoding
  • M 3 feedback error messages indicating different precoding rules to handle feedback error.
  • the total number of bits to represent the validation message is log 2 (1+M 1 +M 2 +M 3 ).
  • Joint coding may be performed for precoding confirmation message, precoding information or indication messages which may or may not include rank information for different designs and purposes.
  • joint coding may also be performed for rank override messages or feedback error messages or other MIMO related information and messages if override messages or feedback error messages or other MIMO related information and messages are used.
  • a plurality of PMIs may be sent simultaneously, and the PMIs may be partitioned into a plurality of groups.
  • FIG. 2 depicts a signaling scheme in accordance with another embodiment of the method as described hereafter.
  • a WTRU or a receiver 211 transmits a PMI or antenna weights to an eNodeB or transmitter 213 , denoted as PMI_j (having Y bits) 215 .
  • PMI_j having Y bits
  • the eNodeB sends a validation message back to the WTRU or receiver, denoted as PMI_k (Y bits) 217 .
  • the eNodeB sends only a PMI indicator, PMI_IND (1 bit) 217 , indicating that the precoding matrix or the antenna weights are identical, instead of sending the entire PMI or antenna weights bits.
  • the feedback error is usually small, typically 1%.
  • the eNodeB and the WTRU use the same precoding matrix or antenna weights. Therefore, most of the time, one bit PMI indicator (positive-confirmation or negative-confirmation messages) is sent.
  • This signaling scheme significantly reduces the signaling overhead and is summarized as follows: When PMI indicator, the PMI or antenna weight indicator is set at 1, it indicates a negative-confirmation message and that PMI or antenna weights used at the eNodeB and the WTRU are not identical. This usually occurs in the event of feedback error or the eNodeB override the WTRU's feedback.
  • PMI indicator When PMI indicator, the PMI or antenna weight indicator is set at 0, it indicates a positive-confirmation message and that PMI or antenna weights used at the eNodeB and the WTRU are identical. This usually occurs in the event of no feedback error and the eNodeB does not override the WTRU's feedback. This scheme is summarized in Tables 2A and 2B.
  • the PMI indicator is denoted by PMI_IND.
  • PMI indicator using 1 bit PMI_IND State Usage 0 Confirmation Confirm eNodeB to use precoding (or positive confirm) information fed back from UE. 1 Not confirm eNodeB uses different precoding (or negative confirm) information than those fed back from UE. This is usually due to feedback error or eNodeB override. This could also be due to other factors.
  • Non-Frequency Selective Precoding (for non-frequency selective feedback or single PMI feedback) PMI_IND Message Usage 0 Positive- Confirm to use PMI_n fed back from confirmation WTRU. message 1 Negative- Send single PMI.
  • Send PMI_m which is a confirmation precoding matrix used at eNodeB for all message the sub-bands or RBGs. i.e., the same single precoding matrix is used for entire system bandwidth.
  • the PMI indicator may also be used to indicate the beamforming matrix/matrices or vectors, antenna weights and any other matrix, vector or weights when applicable. Other notations for PMI indicator other than PMI_IND may also be used.
  • the bit assignment for the PMI_IND above is arbitrary and any other values than ‘1’ and ‘0’ may be used for PMI indicator.
  • FIG. 3A shows a signaling scheme for precoding matrix or antenna weights validation in accordance with another embodiment.
  • This embodiment is for an efficient signaling for multiple PMIs validation or verification.
  • This embodiment is for the case of frequency selective channel. For example the entire system bandwidth may be divided into multiple sub-bands (or RBGs) and one PMI reported for each sub-band when there are multiple PMIs to be reported for the entire bandwidth. In this embodiment, there can be N PMIs for reporting.
  • a WTRU or receiver 311 transmits precoding matrix indices or antenna weights information 315 to an eNodeB or transmitter 313 , denoted as PMI_j 1 , PMI_j 2 , . . . , PMI_jN.
  • the eNodeB sends validation message 317 back to the WTRU, denoted as PMI_k 1 , PMI_k 2 , . . . , PMI_kN which corresponds to precoding feedback PMI_j 1 , PMI_j 2 , . . . , PMI_jN respectively.
  • PMI_j 1 PMI_k 1
  • PMI_j 2 PMI_k 2 , .
  • the eNodeB 313 sends only a PMI indicator (1 bit) indicating that the PMIs are identical, instead of sending all the PMIs or all sets of antenna weights bits back to the WTRU 311 .
  • the feedback error is usually small, typically 1% for design requirements.
  • the eNodeB 313 and the WTRU 311 use the same precoding matrices or antenna weights. In case of no feedback error and no override, eNodeB or TX sends only PMI_IND to WTRU or RX.
  • eNodeB or TX sends PMI_IND and precoding information to WTRU.
  • eNodeB or TX sends different amount of precoding information to WTRU. For example, if frequency selective precoding is used at eNodeB or TX, eNodeB or TX sends PMI_IND and PMI_k 1 , PMI_k 2 . . . , PMI_kN to WTRU or RX, where PMI_k 1 , PMI_k 2 . . . , PMI_kN represent N precoding matrices for N sub-bands or RBGs.
  • eNodeB or TX sends PMI_IND and a single precoding information say PMI_m, where PMI_m is a precoding matrix used for all the sub-bands or RBGs. That is, the same precoding matrix is used for all sub-bands or RBGs. This scheme is summarized in Tables 3 and 4 respectively.
  • FIG. 3B shows a signaling scheme for precoding matrix or antenna weights validation in accordance with yet another embodiment.
  • This embodiment is for an efficient signaling for multiple PMIs feedback and a validation message including a single precoding indication message.
  • a WTRU or receiver 311 transmits precoding matrix indices or antenna weights information 316 to an eNodeB or transmitter 313 , denoted as PMI_j 1 , PMI_j 2 , . . . , PMI_jN.
  • the eNodeB sends validation message 318 back to the WTRU, denoted as PMI_IND+PMI_k which responds to precoding feedback PMI_j 1 , PMI_j 2 , . . . , PMI_jN. This is used when there is multiple PMIs feedback and a validation message with a single PMI indication message is used.
  • the eNodeB 313 sends a confirmation message indicating that the PMIs are identical, instead of sending all the PMIs or all sets of antenna weights bits back to the WTRU 311 . Otherwise the eNodeB 313 sends an indication message to WTRU 311 indicating that the PMIs are not identical.
  • PMI_IND and PMI are sent in which PMI_IND serves positive- or negative-confirmation message and PMI serves as the indication message. In this case PMI_IND is one bit and PMI is at least one bit. If joint coding PMI_IND that contains PMI is sent, the PMI_IND serves as both, a positive or negative-confirmation and indication messages. In this case PMI_IND is at least one bit.
  • validation message format with single field can be depicted as follows:
  • validation message format 2 the single PMI_IND field contains the combined information of PMI_IND and PMI in validation message format 1 .
  • Yet another implementation is by use of a default precoding message instead of sending indication message or PMIs.
  • the signaling can be done in another way wherein there is no feedback error and no override, eNodeB, TX sends only PMI_IND (positive-confirmation message) to WTRU or RX in which PMI_IND confirms that eNodeB uses the same precoding information fed back from WTRU.
  • PMI_IND positive-confirmation message
  • eNodeB or TX sends PMI_IND (negative-confirmation message) to WTRU in which PMI_IND informs WTRU to use default or pre-determined precoding indication message or information. Therefore only PMI_IND containing confirmation message is sent while indication message or PMI(s) are not sent in any case.
  • This scheme is summarized in Table 5.
  • the PMI indicator may also be used to indicate the beamforming matrix/matrices or vectors, antenna weights and any other matrix, vector or weights when applicable. Other notations for PMI indicator other than PMI_IND may also be used.
  • the confirmation state for the PMI_IND as positive and negative is arbitrary and any other values than positive and negative may be used for PMI indicator.
  • the signaling overhead for the PMI validation or verification may required up to 250 bits or more per validation signaling in the case of multiple RBGs and multiple PMIs each time when PMI validation messages are sent. Therefore, the signaling scheme using precoding confirmation message as described saves a significant amount of signaling overhead.
  • the downlink PMI indicator signaling scheme in accordance with another embodiment is summarized as follows:
  • PMI_IND the PMI or antenna weight indicator
  • PMI_IND the PMI or antenna weight indicator
  • PMI_IND the PMI or antenna weight indicator
  • it indicates a negative-confirmation message and that at least one of a plurality of PMIs used at the eNodeB 313 and the WTRU 311 are not identical. This usually occurs in the event of feedback errors or when eNodeB 313 overrides the WTRU's 311 feedback. All PMIs are sent following the PMI_IND (1 bit) as shown in FIG. 4 .
  • the first element is PMI_IND 411 followed by individual PMIs 413 ( a ) to 413 ( n ).
  • PMI_IND the PMI or antenna weight indicator
  • PMI_IND the PMI or antenna weight indicator
  • PMIs are partitioned into groups; for example G groups. As shown in FIG. 5 , each group has one bit to indicate whether the precoding matrices or antenna weights are the same for the eNodeB 313 and the WTRU 311 .
  • Such signaling can be implemented to have either Q bits in one indicator signaling or Q PMI indicators each of which has one bit.
  • PMI indicators, PMI_IND( 1 ) 511 , PMI_IND( 2 ) 513 , . . . , and PMI_IND(G) 51 g may be spread over the validation messages as shown in FIG. 5 .
  • FIG. 6 An alternate mode of grouping can be seen in FIG. 6 , wherein the PMI indicators ( 611 , 613 and 61 g ), PMI_IND( 1 ), PMI_IND( 2 ), . . . , and PMI_IND(G), may be grouped in the front portion of the validation message as shown in FIG. 6 .
  • PMI_IND the PMI or antenna weight indicator
  • PMI_IND the PMI or antenna weight indicator
  • PMI_IND (g) ‘1', a negative-confirmation message for the g th group, all the PMIs belonging to the g th group are sent following the PMI_IND (g) that is set to ‘1’. For example, in FIG. 5 , if any of PMI_ 1 , PMI_ 2 and PMI_ 3 are not the same for the eNodeB and the WTRU, PMI_IND( 1 ) and PMI_ 1 , PMI_ 2 and PMI_ 3 are sent by the eNodeB.
  • PMI_ 4 , PMI_ 5 and PMI_ 6 are the same for the eNodeB and the WTRU, only the 1-bit PMI_IND( 2 ) is sent by the eNodeB.
  • the fields reserved for the unsent PMIs can be used for sending other information or data. This increases the information or data throughput and spectrum efficiency.
  • the fields reserved for PMI_ 4 , PMI_ 5 and PMI_ 6 can be used for sending other information or data.
  • PMI_IND can represent the messages or states that consist of bit sequence.
  • PMI_IND can represent precoding confirmation message or state, precoding information message 1 or state 1 , precoding information message 2 or state 2 , . . . and so on. This scheme is summarized in Table 6A. A similar scheme in case of an override scheme is shown in Table 6B.
  • codebook ( 1 ) using the above scheme has four precoding vectors for rank 1 and two precoding matrices for rank 2 . There are six precoding matrices/vectors in total in codebook ( 1 ) shown in Table 7.
  • PMI confirmation and indication scheme PMI_IND Message Usage 000 Precoding confirmation Confirm that eNodeB uses message precoding information fed back from WTRU. 001 Precoding information or Inform WTRU to use precoding indication message#1 matrix C1. . . . . . . . 101 Precoding information or Inform WTRU to use precoding indication message#5 matrix C5 110 Precoding information or Inform WTRU to use precoding indication message#6 matrix C6 111 Reserved Reserved or used for other purpose.
  • rank 2 precoding matrix consists of two column vectors and rank 1 precoding matrix is a precoding vector.
  • rank information is overridden from rank 2 to rank 1 , either the first or the second column vector of rank 2 matrix can be indicated to be used.
  • PMI confirmation and indication scheme for Rank 1 with respect to Codebook (1).
  • Precoding information or Inform UE to use precoding matrix indication message#3 C3 100
  • Precoding information or Inform UE to use precoding matrix indication message#4 C4 101-111 Reserved Reserved or used for other purpose.
  • the PMI confirmation and indication scheme table when rank is separately indicated, can be as shown in Table 9B.
  • PMI confirmation and indication scheme for Rank 2 with respect to Codebook (1) PMI_IND Message Usage 00 Precoding confirmation Confirm that eNodeB uses message precoding information fed back from WTRU. 01 Precoding information or Inform WTRU to use precoding indication message#1 matrix C5. 10 Precoding information or Inform WTRU to use precoding indication message#2 matrix C6 11 Reserved Reserved or used for other purpose.
  • codebook ( 2 ) has sixteen preceding vectors for rank 1 and sixteen precoding matrices for rank 2 , 3 and 4 .
  • Rank 1 preceding matrix is a column vector.
  • Rank 1 precoding matrices are C 1 -C 16 .
  • Rank 2 precoding matrix is a matrix consisting of two column vectors and are from and rank 2 precoding matrices are C 17 -C 32 .
  • Rank 3 precoding matrix is a matrix consisting of three column vectors and rank 3 precoding matrices are C 33 -C 48 .
  • Rank 4 precoding matrix is a matrix consisting of four column vectors and rank 4 precoding matrices are C 49 -C 64 .
  • the precoding matrix for lower rank is a subset of precoding matrix in higher rank.
  • C 1 is a subset of C 17 which is a subset of C 33 which again is a subset of C 49 .
  • a corresponding table for PMI confirmation and indication scheme with rank overriding for Codebook ( 2 ) can be as shown in Table 11B.
  • rank 3 0000111-0011100 Rank information Inform WTRU to use six precoding matrix override from rank 4 to subsets respectively.
  • rank 2 0011101-0100000 Rank information Inform WTRU to use four precoding matrix override from rank 4 to subsets respectively.
  • rank 1 0100001-0100010 Rank information Inform WTRU to use three precoding matrix override from rank 3 to subsets respectively.
  • rank 2 0100100-0100110 Rank information Inform WTRU to use three precoding matrix override from rank 3 to subsets respectively.
  • rank 1 0100111-0101000 Rank information Inform WTRU to use two precoding matrix override from rank 2 to subsets (select the first or the second column rank 1 vector) respectively. 0101001-1111111 Reserved Reserved or used for other purpose.
  • one of the precoding matrices can be removed from codebook ( 2 ). As an example, if C 64 or one of the other matrices is removed then the scheme reduces to the scheme as shown in Table 11C.
  • the nth PMI is sent. For example, in FIG. 8 , if PMI_n is not the same for the eNodeB and the WTRU, PMI_IND(n) and PMI_n are sent by the eNodeB. This increases signaling efficiency.
  • the n th PMI is not sent, but only PMI_IND for the n th PMI, i.e., PMI_IND(n) is sent. For example, in FIG. 8 , if PMI_n is the same for the eNodeB and the WTRU, only the 1-bit PMI_IND(n) is sent by the eNodeB.
  • a PMI indicator may be sent along with, attached to, or embedded, in the existing control signaling.
  • FIG. 9 shows that PMI validation signaling is attached to a control signaling.
  • FIG. 10 shows that PMI validation signaling is inserted in a control signaling.
  • the PMI indicator may be sent using a separate signaling or a stand alone signaling.
  • the PMI validation messages may be signaled to the WTRU via a control signaling or a dedicated reference signal (RS).
  • part of validation message may be sent via control signaling and part of validation message may be sent via dedicated reference signal.
  • precoding confirmation part may be sent via control signaling and preceding indication part may be sent via dedicated reference signal.
  • the PMI indicator signaling may be applied to both control signaling or dedicated reference signal and be used to reduce the amount of control signaling overhead or dedicated RS overhead.
  • dedicated reference signals are used to send the PMI validation messages, several forms for dedicated reference signals may be used, such as precoded pilots. The use of the PMI indicator to reduce dedicated RS is described as follows.
  • the PMI_IND When the PMI_IND is set to 1 (negative-confirmation message), it indicates that at least one of PMIs multiple used at the eNodeB and the WTRU are not identical. This usually occurs in the event of feedback errors or the eNodeB overrides the WTRU's feedback. All dedicated reference signals that carry PMIs are sent by the eNodeB. PMI_IND is set to ‘1’ and is also sent by the eNodeB.
  • the PMI_IND When the PMI_IND is set to 0 (positive-confirmation message), it indicates that all of the PMIs (multiple) used at the eNodeB and the WTRU are identical. This usually occurs in the event of no feedback error and the eNodeB does not override the WTRU's feedback. All dedicated reference signals that carry PMIs are not sent by the eNodeB, but only 1-bit PMI_IND that is set to ‘0’ is sent by the eNodeB.
  • PMI indicator signaling in accordance with the present invention may be applied to both single user SU MIMO and multi-user MU MIMO for reduced signaling overhead.
  • SU-MIMO only PMI indicator for one WTRU is sent by the eNodeB in a sub-band or a frequency and time resource.
  • MU-MIMO multiple PMI indicators for multiple WTRUs that share the same sub-band or the same frequency and time resource are sent by the eNodeB. It is, therefore, a simple extension from SU-MIMO.
  • An eNodeB sends multiple PMI validation signaling each of which has one or multiple PMIs for each WTRU, WTRU 1 , WTRU 2 , . . . , WTRU K.
  • the eNodeB sends multiple PMI indicators to the WTRUs.
  • Each WTRU receives one PMI indicator if no group PMI is used as shown in FIG. 4 , or multiple PMI indicators if group PMIs is used for the WTRU as shown in FIGS. 5 and 6 or 7 and 8 .
  • the eNodeB sends 1-bit PMI indicator to the k th WTRU.
  • the eNodeB sends PMI indicator denoted by PMI _IND (k)
  • the eNodeB sends multiple PMI indicators each for one group of WTRUs.
  • the eNodeB may also send one PMI indicator for all WTRUs.
  • the precoding schemes and usage can be generalized as described earlier.
  • each WTRU sees rank 1 transmission for itself.
  • C 1 , C 2 , . . . , C 8 in the beamforming codebook.
  • One bit combination ( 111 ) is reserved.
  • PMI_IND 1
  • eNodeB will not use WTRU's feedback and a different beamforming vector will be used.
  • the number of vector combinations can be reduced and thus number of bits can be reduced.
  • the rule restricts only certain combinations are allowed, for instance C 1 ,C 2 ,C 3 ,C 4 can be combined together as a group, C 5 ,C 6 ,C 7 ,C 8 can be combined together as a group, and the group C 1 ,C 2 ,C 3 ,C 4 cannot be combined with the group C 5 ,C 6 ,C 7 ,C 8 ; for example C 1 can be combined with C 2 , C 3 , or C 4 but cannot be combined with C 5 , C 6 , C 7 , or C 8 .
  • Combination restriction requirements may be rules to meet unitary properties or unitary beamforming requirement.
  • C 1 is the beamforming vector for the desired user and that the restriction rule is used.
  • the vector combinations can be reduced to seven combinations. For two users, only combinations [C 1 , C 2 ], [C 1 , C 3 ] and [C 1 , C 4 ] are allowed. For three users only [C 1 , C 2 , C 3 ], [C 1 , C 2 , C 4 ] and [C 1 , C 3 , C 4 ] are allowed. For four users only [C 1 , C 2 , C 3 , C 4 ] is allowed. Table 14 summarizes this particular scheme with restrictions:
  • the seven vectors or matrices are selected or pre-selected from C 1 -C 8 . Similar tables can be built for different beamforming vectors other than C 1 used for a desired user.
  • Joint coding may be performed for precoding confirmation message, precoding information or indication messages which may or may not include rank information for different designs and purposes.
  • joint coding may also be performed for rank override messages or feedback error messages or other MIMO related information and messages.
  • FIG. 11 shows a wireless communication system with multiple eNodeBs 1113 implementing the embodiments as described.
  • Each eNodeB 1113 provides communication coverage for a particular geographic area commonly referred to as cells and shown as idealized hexagons.
  • the term “cell” can refers to its coverage area depending on the context in which the term is used.
  • an eNode B coverage area may be partitioned into multiple smaller areas, e.g., three smaller areas.
  • WTRUs 1111 may be dispersed throughout the coverage area.
  • the methods or flow charts provided in the present invention may be implemented in a computer program, software, or firmware tangibly embodied in a computer-readable storage medium for execution by a general purpose computer or a processor.
  • Examples of computer-readable storage mediums include a read only memory ROM, a random access memory RAM, a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks DVDs.
  • Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor DSP, a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits ASICs, Field Programmable Gate Arrays FPGAs circuits, any other type of integrated circuit IC, and/or a state machine.
  • a processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit WTRU, Wireless Transmit/Receive Unit WTRU, terminal, base station, radio network controller RNC, or any host computer.
  • the WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth® module, a frequency modulated FM radio unit, a liquid crystal display LCD display unit, an organic light-emitting diode OLED display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network WLAN module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

A method and apparatus for efficient precoding matrix verification in a multiple-input multiple-output MIMO wireless communication system are disclosed. A wireless transmit/receive unit WTRU sends a precoding matrix index PMI to an eNodeB. The eNodeB sends a verification message including a PMI indicator indicating whether or not the PMI of the WTRU and a PMI of the eNodeB are identical. If the PMI of the WTRU and of the eNodeB are identical, the eNodeB sends just a PMI indicator otherwise the eNodeB sends to the WTRU a PMI indicator and the PMI of the eNodeB. A plurality of PMIs may be sent simultaneously, and the PMIs may be partitioned into a plurality of groups. The PMI indicator may be either attached to or inserted into control signaling. PMI validation messages can be signaled to WTRU by control signaling or use of a dedicated reference signal.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. provisional application No. 60/913,145 and having a filing date of Apr. 20, 2007, which is incorporated by reference as if fully, set forth.
  • BACKGROUND
  • Third generation partnership project 3GPP and 3GPP2 are considering long term evolution LTE for radio interface and network architecture.
  • There is an ever-increasing demand on wireless operators to provide better quality voice and high-speed data services. As a result, wireless communication systems that enable higher data rates and higher capacities are a pressing need.
  • To achieve this, it is becoming increasingly popular to use multi-antenna systems in wireless communications networks to obtain advantages of increased channel capacity, spectrum efficiency, system throughputs, peak data rates and/or link reliability. Such multi-antenna systems are generically referred to as multiple-input-multiple-output (MIMO) systems but may also include multiple-input-single-output (MISO) and or single-input-multiple-output (SIMO) configurations.
  • Efficient signaling is essential to evolved universal terrestrial radio access (E-UTRA). A low overhead control signaling scheme can improve MIMO link performance, system capacity, system throughputs, information data rates and increased spectrum efficiency.
  • MIMO systems promise high spectral efficiency and have been proposed in many wireless communication standards. A lot of research is also currently underway on preceding for spatially multiplexed or space-time coded MIMO systems. Precoding is a technique used to provide increased array and/or diversity gains.
  • Precoding information needs to be communicated from a transmitter, (e.g., a base station), to receiver, (e.g., a wireless transmit/receive unit (WTRU)), to avoid a channel mismatch between transmitting and receiving signals. This is particularly important for MIMO data demodulation when precoding is used. When a receiver uses incorrect channel responses for data detection, significant performance degradation can occur.
  • Generally, precoding information may be communicated using explicit control signaling, particularly when the transmitter and receiver are restricted to the use of limited sets of antenna weights and coefficients for precoding. The limited sets of antenna weights and coefficients are sometimes referred to as precoding codebook. Explicit signaling to communicate precoding information from a transmitter to a receiver may incur large signaling overhead, particularly for a large size codebook. This signaling overhead is magnified manifold when frequency selective precoding is used.
  • Precoding matrix or antenna weights validation and verification is used to avoid effective channel mismatch between a transmitter and a receiver. An effective channel between a base station and a mobile handset is a channel that experiences MIMO preceding effect, and is the multiplication of channel matrix H and precoding matrix V used at an evolved Node-B (eNodeB) or a transmitter. A mismatch of the effective channel between the transmitter and the receiver causes severe performance degradation for MIMO communication systems.
  • FIG. 1A shows a precoding matrix or antenna weights signaling scheme. In a scheme as shown in FIG. 1, a wireless transmit/receive unit (WTRU) 111 feeds back precoding matrix indices (PMIs) or antenna weights to a base station or an eNodeB 113. Suppose that the WTRU feeds back PMI_j (having Y bits) 115 to an eNodeB. To inform the WTRU of current precoding matrix used at the eNodeB, the eNodeB sends a validation message PMI_k (Y bits) 117 to the WTRU. In case of feedback error or override, PMI_j is not equal to PMI_k. In case of no feedback error and no eNodeB override, PMI_j=PMI_k. The validation message can be sent in several forms, for example via control signaling or via reference signal.
  • In some systems such as Wideband Code Division Multiple Access WCDMA, there is only one PMI needed to be signaled to receiver from transmitter and vice versa. The signals are transmitted in time domain using spreading code. Signaling the exact single PMI (Y bits) to receiver does not incur too much overhead as long as the value of Y is reasonable. However in some systems such as Orthogonal frequency-division multiplexing OFDM systems, where frequency domain is additional to time domain, there may be multiple PMIs needed to be fed back from the WTRU and sent from the eNodeB for validation to support frequency selective preceding. Frequency selective precoding performs MIMO precoding per sub-band within system bandwidth. The entire system bandwidth can be divided into several sub-bands. Each sub-band consists of one or several sub-carriers. One precoding matrix is used to precode transmitted data per sub-band. In an extreme case precoding can be performed per sub-carrier if a sub-band consists of only a sub-carrier. If multiple PMIs are needed to be signaled to receiver (WTRU), then the signaling overhead could be significant. For example if there are Z PMIs to be signaled and each PMI has Y bits, then the total overhead is Z x Y bits. If Z or Y itself are large, the signaling overhead is significant.
  • The terminology for preceding matrix and precoding vector is interchangeable and depends upon the number of data streams to be precoded.
  • Each PMI is represented by L bits, wherein the value of L depends upon MIMO configurations and codebook sizes and number of data streams to be supported. WTRUs are assigned resources for communications. A resource block (RB) consists of M subcarriers, for example, M can take the value twelve (12). A resource block group (RBG) or sub-band consists of N resource blocks (N_RB), for example, N_RB=2, 4, 5, 6, 10, 25 or entire bandwidth. A system bandwidth can have one or more RBGs or sub-bands depending on the size of the bandwidth and the value of N_RB per RBG. For example, the number of RBGs per system bandwidth, N_RBG, can be one, two, four, ten, twenty and fifty. In general, the terminology RBG and sub-band is interchangeable.
  • The WTRU feeds back one PMI for each RBG that is configured for or selected by the WTRU for reporting. Among N_RBG RBGs for a given bandwidth, N RBGs, where ‘N≦N_RBG’ can be configured for or selected by a WTRU. If ‘N’ RBGs are configured for or selected by a WTRU for reporting precoding information, the WTRU feeds back ‘N’ PMIs to the eNodeB. The eNodeB sends the precoding validation message comprising ‘N’ PMIs back to the WTRU.
  • To inform the WTRU of current PMIs used at the eNodeB, the eNodeB sends ‘N’ PMIs back to the WTRU. The total number of bits that the eNodeB sends to the WTRU per PMI validation message is ‘N_PMI×N’ bits.
  • Table 1A shows the number of bits for PMI validation message assuming N_PMI=5 bits. The numbers are summarized for 5, 10 and 20 MHz system bandwidth. The second row is N_RB, the number of RBs per RBG. For example, the N_RB ranges from 2 to 100 for 20 MHz. The third row is N_RBG per system bandwidth, i.e., number of RBGs per system bandwidth of 5, 10 or 20 MHz, and the value of N_RBG ranges from one to fifty 50. The fourth row is the total number of bits for PMI validation signaling per validation message or grant channel.
  • TABLE 1A
    5 MHz
    300 10 MHz 20 MHz
    (subcarriers) 600 (subcarriers) 1200 (subcarriers)
    N_RB per RBG 2 5 10 25 2 5 10 25 50 2 5 10 25 50 100
    N_RBG 13 5 3 1 25 10 5 2 1 50 20 10 4 2 1
    per band
    Total # of bits for PMI 65 25 15 5 125 50 25 10 5 250 100 50 20 10 5
    signaling per validation
    message
    Assume 12 subcarriers per RB.
    N_RB: Number of resource blocks.
    N_RBG: Number of frequency blocks for pre-coding control
    unit to which assigned RBs belong.
    N_PMI: Number of bits to represent a PMI.
    Maximum total number of bits per PMI validation message = N_RBG × N_PMI.
  • This precoding matrix/matrices or antenna weights validation, hereinafter called “precoding information validation” or “PMI validation”, may require up to 250 bits or more per validation message. Hence, this scheme is inefficient.
  • Therefore, it would be desirable to provide a method and apparatus to reduce the signaling overhead for PMI validation.
  • SUMMARY
  • A method and apparatus for efficient precoding information validation in a MIMO wireless communications is provided.
  • A wireless transmit/receive unit WTRU transmits one or multiple precoding information or precoding matrix indices (PMIs) to an eNodeB. In response, the WTRU receives from eNodeB a validation message (a PMI indicator) including a precoding confirmation message indicating whether or not there is a match to the precoding information reported by the WTRU. If there is a match between the precoding information, i.e. the precoding information are identical, a precoding validation message including a precoding confirmation message is received by the WTRU from eNodeB to confirm the precoding information that are used at eNodeB are the same as the precoding information fed back from WTRU. However, if there is a mismatch or the precoding information fed back from the WTRU are overridden by the eNodeB, the WTRU receives a validation message including a precoding confirmation/indication message from the eNodeB to indicate that the eNodeB does not use precoding information that are fed back from WTRU. The WTRU may also receive a validation message including a precoding indication message from the eNodeB to indicate the precoding information that is being used at eNodeB. Precoding validation using a precoding confirmation message is used to reduce signaling overhead.
  • The eNodeB sends a precoding confirmation message to a WTRU. The precoding confirmation message can be carried by a PMI indicator which indicates the state of the downlink DL precoding validation. The PMI indicator could be 1 bit or a bit sequence representing the precoding confirmation state or one or several precoding information states for the precoding validation corresponding to the WTRU precoding feedback.
  • The validation message or PMI indicator using precoding confirmation may consist of one or more bits. The use of PMI indicator using either a single bit or more bits helps indicate precoding information and state used and therefore helps in reducing overhead and increases efficiency.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more detailed understanding of the invention may be had from the following description of a preferred embodiment, given by way of example and to be understood in conjunction with the accompanying drawings wherein:
  • FIG. 1A illustrates a precoding matrix or antenna weights signaling scheme;
  • FIG. 1B shows an example block diagram of a transmitter and receiver configured to implement a precoding matrix transmission;
  • FIG. 2 illustrates a first embodiment of a signaling scheme (single PMI validation for single PMI feedback);
  • FIG. 3A illustrates a second embodiment of a signaling scheme for precoding matrix or antenna weights verification; (multiple PMI validation for multiple PMI feedback);
  • FIG. 3B illustrates another embodiment of a signaling scheme for single PMI validation for multiple PMI feedback;
  • FIGS. 4-8 illustrate various PMI validation message schemes;
  • FIG. 9 illustrates a control signaling scheme with a PMI validation signaling attached; and
  • FIG. 10 illustrates a control signaling scheme with a PMI validation signaling inserted.
  • FIG. 11 shows a wireless communication system with multiple NodeBs in communication with various WTRUS
  • DETAILED DESCRIPTION
  • When referred to hereafter, the terminology “WTRU” includes but is not limited to a Wireless Transmit/Receive Unit (WTRU), a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a personal digital assistant (PDA), a computer, or any other type of user device capable of operating in a wireless environment. When referred to hereafter, the terminology “eNodeB” includes but is not limited to Node-B, a base station, a site controller, an access point (AP), or any other type of interfacing device capable of operating in a wireless environment.
  • The terminology “PMI indicator” is used to refer to an indicator responding to the feedback signal of or corresponding to the validation state of antenna weights, PMI, beamforming weights, etc. The “PMI indicator” may carry precoding confirmation message, precoding indication message, other precoding related message, or combination of them depending on various designs, schemes and purposes. Precoding indication message could be a precoding information indication message, rank override message, feedback error message, e.t.c depending on the state of precoding validation. Precoding information indication message, rank override message, etc may indicate rank information or other precoding related information.
  • The methods as described hereafter provide an efficient antenna weights, beamforming information or precoding information or precoding matrix indication PMI signaling and validation scheme for E-UTRA.
  • FIG. 1B is a functional block diagram of a transmitter 110 and receiver 120 configured to perform a method of precoding matrix indication as described hereafter. In addition to components included in a typical transmitter/receiver, transmitter 110 comprises a precoding information determiner 114, a precoding processor 116, an antenna array 118, a precoding validation message generator 136 comprising of a precoding confirmation message block 132 and precoding indication message block 134. Precoding information determiner 114 that is coupled to precoding processor 116 is used to determine a preceding information based on the received precoding feedback from precoding information generator 124 at RX 120. The output of precoding information determiner 114 is used by precoding processor 116 and transmitter 110 when transmitting a data transmission, for example, an orthogonal frequency division multiplexing (OFDM) symbols, to a receiver 120. Precoding validation message generator 136 that is coupled to precoding information determiner 114 is used to generate the validation message based on the output of precoding information determiner 114. Precoding validation message generator 136 uses the received precoding feedback signal from precoding information generator 124 and the precoding information generated from precoding information determiner 114 to determine the state of precoding validation and generate the corresponding validation message. For example, if there is a match between precoding information generated by precoding information determiner 114 and precoding information generator 124, a validation message including a precoding confirmation message is sent, otherwise a validation message including a precoding indication message is sent.
  • Receiver 120 comprises a receiver 128, a precoding information generator 124, a channel estimator 130, a demodulator/processor 126 and a precoding validation message to precoding information converter 138. As disclosed in greater detail hereinafter, receiver 120 comprising receiver 128, receives a transmitted OFDM block from transmitter 110, performs channel estimation by channel estimator 130, generates precoding information using the precoding information generator 124 for generating the precoding feedback signal that is then sent via antennas 127. Receiver 120 also receives precoding validation message from precoding validation message generator 136 of transmitter 110 and detects and decodes the precoding validation message and translates the precoding validation message to precoding information using the precoding validation message to precoding information converter 138. The precoding information at the output of precoding validation message to precoding information converter 138 is fed to demodulator/processor 126 for MIMO data detection, decoding and processing.
  • An eNodeB comprises transmitter 110, and WTRU 20 comprises receiver 120. It should be noted though that transmitter 110 may be located at a WTRU or at a base station or both, and receiver 120 may be located at either the WTRU, base station, or both.
  • A validation message or a PMI indicator using precoding confirmation may consist of a single bit. For example, precoding confirmation or PMI indicator can carry two possible validation messages using a single bit as follows: (1) The precoding confirmation message to inform the WTRU that precoding information used at eNodeB is exactly the same as the precoding information fed back from the WTRU, or (2) The precoding indication message to inform the WTRU that precoding information used at eNodeB is not the same as the precoding information fed back from the WTRU and this indicates that different precoding information is being used at the eNodeB.
  • Precoding validation message or a PMI indicator may also consist of more than one bit. Precoding validation messages may carry one precoding confirmation message and several precoding indication messages. For example, precoding validation message or PMI indicator can carry several possible messages using more than one bit as follows: (1) The precoding confirmation message to inform the WTRU that precoding information used at eNodeB is exactly the same as the precoding information fed back from the WTRU, or (2) One of several possible precoding indication messages to inform the WTRU that precoding information used at eNodeB is not the same as the precoding information fed back from the WTRU and indicates which precoding information is being used at eNodeB.
  • The precoding indication message may indicate the kind of precoding information used if WTRU precoding feedback has an error or is not reliable or if the WTRU's precoding feedback is overridden by eNodeB. Furthermore the precoding indication message may indicate which subset of precoding information is used if WTRU's rank information in its precoding feedback is overridden by eNodeB.
  • Precoding information or PMI may contain all the information related to MIMO precoding including rank information.
  • The method as described reduces the overhead for PMI validation by using an efficient validation message that consists of confirmation messages pertaining to the WTRU's precoding feedback. A validation message may also include an indication message. As an example, a Q-bit validation message or PMI indicator is used. Q can be greater than or equal to one for every PMI indicator. For example, if a validation message is either one confirmation message or one indication message, then Q=1 bit is sufficient. If validation message is either one confirmation message or one of the several indication messages, then Q>1 bits may be used.
  • The confirmation message and indication message can either be separately coded or encoded or jointly coded or encoded. In a separate coding or encoding scheme, the validation message may consist of two parts—a confirmation part and an indication part. The confirmation part usually uses one bit to carry a positive-confirmation message or a negative confirmation message. The indication part usually uses one or more bits to carry two or more indication messages. In confirmation message, a positive-confirmation message is used to inform the WTRU that precoding information used at eNodeB is exactly the same as the precoding information fed back from the WTRU. On the other hand, a negative-confirmation message is used to inform WTRU that the preceding information used at the eNodeB is not the same as the precoding information fed back from the WTRU. This indicates to the WTRU that different precoding information is being used at the eNodeB. The kind of precoding information being used at the eNodeB is indicated in the indication part of validation message. In the indication part of the validation message, the precoding information being used at the eNodeB is pointed out.
  • A separate coding message format having confirmation and indication parts or fields is depicted as follows:
  • Confirmation Message Indication Message
  • Validation Message.
  • In a joint coding or encoding scheme, the validation message may consist of only one part that combines confirmation and indication messages which are encoded jointly. Each of validation messages can carry either one confirmation message (positive-confirmation message) or one of the possible several indication messages. The confirmation message (positive-confirmation message) is used to inform the WTRU that precoding information used at eNodeB is exactly the same as the precoding information fed back from the WTRU. The indication message in joint coding serves two purposes—to provide negative confirmation and precoding indication at the same time. That is, the indication message is used to inform the WTRU that the precoding information used at eNodeB is not the same as the precoding information fed back from the WTRU and it also indicates the precoding information being used at the eNodeB. Ajoint coding message format having a single combined confirmation/indication part or field for validation message is depicted as follows:
  • Confirmation/Indication Messages
  • Validation Message
  • Separate coding or encoding of confirmation and indication messages is simple. In addition most of time only confirmation message or one bit needs to be sent, therefore the efficiency is high. However, the receiver has to distinguish between “confirmation message” and “confirmation+indication messages” because they are of different lengths. This may increase the detection complexity of the receiver. To avoid the issue of different lengths between “confirmation message” and “confirmation+indication messages”, a same format may be used regardless the precoding information of eNodeB and WTRU are identical or not. For example a same format for “confirmation+indication messages” may be used by “confirmation message” that has only confirmation message. Furthermore only one confirmation message and one indication message may be sent instead of sending one confirmation message and multiple indication messages in case of multiple sub-bands precoding. The scheme using only one confirmation and one indication message is a wide-band precoding or non-frequency selective precoding since only one indication message is sent corresponding to a single precoding information or matrix that is used at eNodeB for all the sub-bands. The scheme using one confirmation message and multiple indication messages is a multi-band precoding or frequency selective precoding since multiple precoding information or matrices are used for multiple sub-bands, each precoding information or matrix is used for a sub-band. By using the same format for both confirmation only message and confirmation and indication messages and using the non-frequency selective precoding when the precoding information used at eNodeB and precoding information fed back from WTRU are not identical, detection complexity at receiver is reduced or avoided. When the preceding information used at eNodeB and precoding information fed back from WTRU are identical, multi-band precoding or frequency selective preceding is used.
  • Joint coding combines confirmation and indication messages and can save greater bits per validation message. But, every validation message that is sent contains both confirmation and indication messages, and therefore, there are a constant number of bits that are sent consistently in a validation message. The overall efficiency may be lower for joint coding as compared to separate coding but joint coding may not increase the detection complexity of the receiver. The use of confirmation and indication messages for responding to precoding feedback using either of the separate or joint coding or encoding schemes for precoding information provides greater efficiency than the straightforward method as it uses a very high number of bits.
  • As another example, for Q=2 bits, using separate coding for confirmation and indication messages, confirmation part of validation message may use one bit and indication part of validation message may use the other bit. Confirmation part of validation message with bit 0 may represent the positive-confirmation message and bit 1 may represent the negative-confirmation message; indication part of validation message with bit 0 and 1 may represent indication message 1 and indication message 2 respectively which may indicate a precoding information 1 and precoding information 2 correspondingly.
  • For Q=2 bits, using joint coding for confirmation and indication messages, validation message with bit sequence 00 may represent a confirmation message (a positive-confirmation message); validation message with bit sequence 01, 10 and 11 may represent indication message 1, indication message 2 and indication message 3 respectively which may indicate a precoding information 1, precoding information 2 and precoding information 3 correspondingly. Validation message with bit sequence 01, 10 and 11 automatically represent the negative-confirmation message due to the joint coding or encoding of confirmation and indication messages.
  • Similarly for Q=3 bits, when using separate coding for confirmation and indication messages, confirmation part of validation message may use one bit and indication part of validation message may use two bits. Confirmation part of validation message with bit 0 may represent the positive-confirmation message and bit 1 may represent the negative-confirmation message; indication part of validation message with bit 00-11 may represent indication message number 1 to message number 4 respectively, that indicates the precoding information number 1 to 4 correspondingly.
  • Similarly for Q=3 bits when using joint coding or encoding of confirmation and indication messages, validation message with bit sequence 000 may represent the positive-confirmation message; validation message with bit sequence 001 to 111 may represent negative-confirmation message and at the same time represent the indication message number 1 to indication message number 7 respectively which indicates the precoding information number 1 to preceding information number 7 respectively.
  • The indication message may indicate the preceding information. Furthermore the indicate message may also indicate the subset of precoding information, precoding rules, override rules, e.t.c. For example the indication message may indicate the following: which preceding information or matrix is used (this may also include rank information), how the eNodeB overrides (e.g., which precoding information or matrix subset should be used when WTRU's rank in precoding feedback is overridden), how the eNodeB handle the case when WTRU feedback is erroneous (e.g., use the previously used precoding information that is valid). According to what the information are indicated, the indication message may have different types of message, e.g., precoding information indication type message, precoding or rank override message, feedback error message, e.t.c. Accordingly the validation message may have several types of message. The validation message having two types of messages—confirmation message and indication message is summarized in Table 1B.
  • TABLE 1B
    Type of Validation
    Message Usage
    Confirmation Confirm the same precoding information fed back
    message from UE is used at eNodeB.
    Indication message Indicate the precoding information used at eNodeB.
  • A validation message having four types of messages—confirmation message, indication message, override message and feedback error message is summarized in Table 1C.
  • TABLE 1C
    Type of Validation
    Message Usage
    Confirmation Confirm the same precoding information fed
    message back from UE is used at eNodeB.
    Indication message Indicate the precoding information used at eNodeB.
    Override message Indicate the eNodeB overrides WTRU's feedback.
    If it is rank override, indicate which precoding
    information subset should be used.
    Feedback error Indicate the WTRU's feedback is in error.
    message
  • The method as described above is applicable to any MIMO wireless communication system and is applicable to uplink UL and downlink DL. The terminology “PMI indicator” is used to refer to an indicator responding to the feedback signal of or corresponding to the validation state of antenna weights, PMI, beamforming weights, etc.
  • In general there can be one confirmation message, M1 indication messages (indicating different precoding information), M2 override messages (indicating different override rules for precoding) and M3 feedback error messages (indicating different precoding rules to handle feedback error). The total number of bits to represent the validation message is log2(1+M1+M2+M3).
  • Joint coding may be performed for precoding confirmation message, precoding information or indication messages which may or may not include rank information for different designs and purposes. In addition joint coding may also be performed for rank override messages or feedback error messages or other MIMO related information and messages if override messages or feedback error messages or other MIMO related information and messages are used.
  • An implementation of the above scheme using either a single bit or more bits is described as follows: When there is a match between the PMI's, i.e. the PMIs are identical, only a PMI indicator is received by the WTRU. Alternatively, a PMI indicator with the PMI of the eNodeB can also be received by the WTRU. However, if there is a mismatch or the PMIs of the WTRU are overridden, the WTRU receives a PMI indicator with the PMI of the eNodeB. In this example the PMI indicator is a precoding confirmation field and PMI is a preceding indication field.
  • A plurality of PMIs may be sent simultaneously, and the PMIs may be partitioned into a plurality of groups.
  • FIG. 2 depicts a signaling scheme in accordance with another embodiment of the method as described hereafter. A WTRU or a receiver 211 transmits a PMI or antenna weights to an eNodeB or transmitter 213, denoted as PMI_j (having Y bits) 215. To inform the WTRU or receiver of currently used precoding matrix or antenna weights at the eNodeB, the eNodeB sends a validation message back to the WTRU or receiver, denoted as PMI_k (Y bits) 217. When the eNodeB and the WTRU use the same preceding matrix or antenna weights, the eNodeB sends only a PMI indicator, PMI_IND (1 bit) 217, indicating that the precoding matrix or the antenna weights are identical, instead of sending the entire PMI or antenna weights bits. The feedback error is usually small, typically 1%. Most of the time, the eNodeB and the WTRU use the same precoding matrix or antenna weights. Therefore, most of the time, one bit PMI indicator (positive-confirmation or negative-confirmation messages) is sent.
  • This signaling scheme significantly reduces the signaling overhead and is summarized as follows: When PMI indicator, the PMI or antenna weight indicator is set at 1, it indicates a negative-confirmation message and that PMI or antenna weights used at the eNodeB and the WTRU are not identical. This usually occurs in the event of feedback error or the eNodeB override the WTRU's feedback.
  • When PMI indicator, the PMI or antenna weight indicator is set at 0, it indicates a positive-confirmation message and that PMI or antenna weights used at the eNodeB and the WTRU are identical. This usually occurs in the event of no feedback error and the eNodeB does not override the WTRU's feedback. This scheme is summarized in Tables 2A and 2B. The PMI indicator is denoted by PMI_IND.
  • TABLE 2A
    PMI indicator using 1 bit.
    PMI_IND State Usage
    0 Confirmation Confirm eNodeB to use precoding
    (or positive confirm) information fed back from UE.
    1 Not confirm eNodeB uses different precoding
    (or negative confirm) information than those fed back from
    UE. This is usually due to feedback
    error or eNodeB override. This could
    also be due to other factors.
  • TABLE 2B
    Non-Frequency Selective Precoding (for non-frequency selective
    feedback or single PMI feedback)
    PMI_IND Message Usage
    0 Positive- Confirm to use PMI_n fed back from
    confirmation WTRU.
    message
    1 Negative- Send single PMI. Send PMI_m which is a
    confirmation precoding matrix used at eNodeB for all
    message the sub-bands or RBGs. i.e., the same
    single precoding matrix is used for entire
    system bandwidth.
  • The PMI indicator may also be used to indicate the beamforming matrix/matrices or vectors, antenna weights and any other matrix, vector or weights when applicable. Other notations for PMI indicator other than PMI_IND may also be used. The bit assignment for the PMI_IND above is arbitrary and any other values than ‘1’ and ‘0’ may be used for PMI indicator.
  • FIG. 3A shows a signaling scheme for precoding matrix or antenna weights validation in accordance with another embodiment. This embodiment is for an efficient signaling for multiple PMIs validation or verification. This embodiment is for the case of frequency selective channel. For example the entire system bandwidth may be divided into multiple sub-bands (or RBGs) and one PMI reported for each sub-band when there are multiple PMIs to be reported for the entire bandwidth. In this embodiment, there can be N PMIs for reporting. A WTRU or receiver 311 transmits precoding matrix indices or antenna weights information 315 to an eNodeB or transmitter 313, denoted as PMI_j1, PMI_j2, . . . , PMI_jN. To inform the WTRU 311 of currently used precoding matrices or antenna weights at the eNodeB 313, the eNodeB sends validation message 317 back to the WTRU, denoted as PMI_k1, PMI_k2, . . . , PMI_kN which corresponds to precoding feedback PMI_j1, PMI_j2, . . . , PMI_jN respectively. When the eNodeB 313 and the WTRU 311 use the same precoding matrices or same sets of antenna weights for all the sub-bands, (i.e., PMI_j1=PMI_k1, PMI_j2=PMI_k2, . . . , PMI_jN=PMI_kN), the eNodeB 313 sends only a PMI indicator (1 bit) indicating that the PMIs are identical, instead of sending all the PMIs or all sets of antenna weights bits back to the WTRU 311. The feedback error is usually small, typically 1% for design requirements. Most of the time, the eNodeB 313 and the WTRU 311 use the same precoding matrices or antenna weights. In case of no feedback error and no override, eNodeB or TX sends only PMI_IND to WTRU or RX. In case of feedback error or precoding or rank override, eNodeB or TX sends PMI_IND and precoding information to WTRU. Depending on whether frequency selective precoding is used or not, eNodeB or TX sends different amount of precoding information to WTRU. For example, if frequency selective precoding is used at eNodeB or TX, eNodeB or TX sends PMI_IND and PMI_k1, PMI_k2 . . . , PMI_kN to WTRU or RX, where PMI_k1, PMI_k2 . . . , PMI_kN represent N precoding matrices for N sub-bands or RBGs. If non-frequency selective precoding is used at eNodeB or TX, eNodeB or TX sends PMI_IND and a single precoding information say PMI_m, where PMI_m is a precoding matrix used for all the sub-bands or RBGs. That is, the same precoding matrix is used for all sub-bands or RBGs. This scheme is summarized in Tables 3 and 4 respectively.
  • TABLE 3
    Frequency Selective Precoding when positive and negative confirmation
    (for frequency selective feedback or multiple PMIs feedback)
    PMI_IND Message Usage
    0 Positive- Confirm to use PMI_j1, PMI_j2, . . . ,
    confirmation PMI_jN fed back from WTRU.
    message
    1 Negative- Send N PMIs. (Send PMI_k1,
    confirmation PMI_k2, . . . PMI_kN.)
    message N precoding matrices are used for N sub-
    bands.
  • TABLE 4
    Frequency Selective Precoding when Positive Confirmation and Non-
    Frequency Selective Precoding when Negative Confirmation
    (for frequency selective feedback or multiple PMIs feedback)
    PMI_IND Message Usage
    0 Positive- Confirm to use PMI_j1, PMI_j2, . . .,
    confirmation PMI_jN fed back from WTRU.
    message
    1 Negative- Send a single PMI. Send PMI_m which is a
    confirmation precoding matrix used at eNodeB for all the
    message sub-bands or RBGs.
    i.e., the same single precoding matrix is
    used for entire system bandwidth.
  • FIG. 3B shows a signaling scheme for precoding matrix or antenna weights validation in accordance with yet another embodiment. This embodiment is for an efficient signaling for multiple PMIs feedback and a validation message including a single precoding indication message. A WTRU or receiver 311 transmits precoding matrix indices or antenna weights information 316 to an eNodeB or transmitter 313, denoted as PMI_j1, PMI_j2, . . . , PMI_jN. To inform the WTRU 311 of currently used precoding matrices or antenna weights at the eNodeB 313, the eNodeB sends validation message 318 back to the WTRU, denoted as PMI_IND+PMI_k which responds to precoding feedback PMI_j1, PMI_j2, . . . , PMI_jN. This is used when there is multiple PMIs feedback and a validation message with a single PMI indication message is used.
  • When the eNodeB 313 and the WTRU 311 use the same precoding matrices or same sets of antenna weights, the eNodeB 313 sends a confirmation message indicating that the PMIs are identical, instead of sending all the PMIs or all sets of antenna weights bits back to the WTRU 311. Otherwise the eNodeB 313 sends an indication message to WTRU 311 indicating that the PMIs are not identical. If separate coding is used, PMI_IND and PMI are sent in which PMI_IND serves positive- or negative-confirmation message and PMI serves as the indication message. In this case PMI_IND is one bit and PMI is at least one bit. If joint coding PMI_IND that contains PMI is sent, the PMI_IND serves as both, a positive or negative-confirmation and indication messages. In this case PMI_IND is at least one bit.
  • The validation message format with two fields can be depicted as follows:
  • PMI_IND PMI
  • Validation Message Format 1
  • Furthermore for validation message using joint coding of confirmation and indication
    messages, the validation message format with single field can be depicted as follows:
  • PMI_IND
  • Validation Message Format 2
  • In validation message format 2 the single PMI_IND field contains the combined information of PMI_IND and PMI in validation message format 1.
  • Yet another implementation is by use of a default precoding message instead of sending indication message or PMIs. The signaling can be done in another way wherein there is no feedback error and no override, eNodeB, TX sends only PMI_IND (positive-confirmation message) to WTRU or RX in which PMI_IND confirms that eNodeB uses the same precoding information fed back from WTRU. In case of feedback error or PMI override, eNodeB or TX sends PMI_IND (negative-confirmation message) to WTRU in which PMI_IND informs WTRU to use default or pre-determined precoding indication message or information. Therefore only PMI_IND containing confirmation message is sent while indication message or PMI(s) are not sent in any case. This scheme is summarized in Table 5.
  • TABLE 5
    Negative confirmation using default precoding indication message.
    PMI_IND Message Usage
    0 Positive Use precoding information fed back from.
    confirmation WTRU
    1 Negative Use default or predetermined precoding
    confirmation indication message or information.
  • The PMI indicator may also be used to indicate the beamforming matrix/matrices or vectors, antenna weights and any other matrix, vector or weights when applicable. Other notations for PMI indicator other than PMI_IND may also be used. The confirmation state for the PMI_IND as positive and negative is arbitrary and any other values than positive and negative may be used for PMI indicator.
  • As described earlier, the signaling overhead for the PMI validation or verification may required up to 250 bits or more per validation signaling in the case of multiple RBGs and multiple PMIs each time when PMI validation messages are sent. Therefore, the signaling scheme using precoding confirmation message as described saves a significant amount of signaling overhead.
  • The downlink PMI indicator signaling scheme in accordance with another embodiment is summarized as follows: When PMI_IND (the PMI or antenna weight indicator) is set at 1, it indicates a negative-confirmation message and that at least one of a plurality of PMIs used at the eNodeB 313 and the WTRU 311 are not identical. This usually occurs in the event of feedback errors or when eNodeB 313 overrides the WTRU's 311 feedback. All PMIs are sent following the PMI_IND (1 bit) as shown in FIG. 4. In FIG. 4, the first element is PMI_IND 411 followed by individual PMIs 413(a) to 413(n).
  • When PMI_IND (the PMI or antenna weight indicator) is set at 0, it indicates a positive-confirmation message and that all of the PMIs used at the eNodeB 313 and the WTRU 311 are identical. This usually occurs in the event of no feedback error and the eNodeB 313 does not override the WTRU's 311 feedback. PMIs are not sent, but only the PMI_IND (1 bit) 411 is sent.
  • In accordance with another embodiment, PMIs are partitioned into groups; for example G groups. As shown in FIG. 5, each group has one bit to indicate whether the precoding matrices or antenna weights are the same for the eNodeB 313 and the WTRU 311. Such signaling can be implemented to have either Q bits in one indicator signaling or Q PMI indicators each of which has one bit. PMI indicators, PMI_IND(1) 511, PMI_IND(2) 513, . . . , and PMI_IND(G) 51 g, may be spread over the validation messages as shown in FIG. 5.
  • An alternate mode of grouping can be seen in FIG. 6, wherein the PMI indicators (611, 613 and 61 g), PMI_IND(1), PMI_IND(2), . . . , and PMI_IND(G), may be grouped in the front portion of the validation message as shown in FIG. 6.
  • The signaling mechanism in accordance with PMI indicators (PMI_IND(g), g=1,2, . . . , G) for group PMIs, is summarized as follows: When PMI_IND (the PMI or antenna weight indicator) for a group of WTRUs is set at 1, it indicates a negative-confirmation message and that at least one of the PMIs belonging to that group that are used at the eNodeB 313 and the WTRU 311 are not identical. This usually occurs in the event of feedback errors or the eNodeB overrides the WTRU's feedback for that PMI group. If PMI_IND (g)=‘1', a negative-confirmation message for the gth group, all the PMIs belonging to the gth group are sent following the PMI_IND (g) that is set to ‘1’. For example, in FIG. 5, if any of PMI_1, PMI_2 and PMI_3 are not the same for the eNodeB and the WTRU, PMI_IND(1) and PMI_1, PMI_2 and PMI_3 are sent by the eNodeB.
  • When PMI_IND the PMI or antenna weight indicator for a group of WTRUs is set at 0, it indicates a positive-confirmation message and that all of the PMIs belonging to that group that are used at the eNodeB and the WTRU are identical. This usually occurs in the event of no feedback error or the eNodeB does not override the WTRU's feedback. If PMI_IND(g)=‘0’, a positive-confirmation message for the gth group, PMIs belonging to the gth group are not sent, but only the PMI indicator for the gth group is sent. The sent PMI_IND(g) is set to ‘0’. For example, in FIG. 5, if all of PMI_4, PMI_5 and PMI_6 are the same for the eNodeB and the WTRU, only the 1-bit PMI_IND(2) is sent by the eNodeB. Alternatively the fields reserved for the unsent PMIs can be used for sending other information or data. This increases the information or data throughput and spectrum efficiency. For example the fields reserved for PMI_4, PMI_5 and PMI_6 can be used for sending other information or data.
  • A special case for group PMI indicator signaling is when each group has only one PMI, i.e., G=N. In this implementation, each group has exactly one PMI. This scheme is illustrated in FIG. 7. An increase in the groups (G) may increase the signaling efficiency because only a few PMIs which are not identical need to be signaled.
  • In general PMI_IND can represent the messages or states that consist of bit sequence. For example PMI_IND can represent precoding confirmation message or state, precoding information message 1 or state 1, precoding information message 2 or state 2, . . . and so on. This scheme is summarized in Table 6A. A similar scheme in case of an override scheme is shown in Table 6B.
  • TABLE 6A
    PMI_IND Message (state) Usage
    000 Precoding Confirm that eNodeB uses precoding
    confirmation message information fed back from WTRU.
    001 Precoding information Inform WTRU to use precoding
    message#
    1 matrix 1.
    010 Precoding information Inform WTRU to use precoding
    message#
    2 matrix 2
    . . . . . . . . .
    110 Precoding information Inform WTRU to use precoding
    message#6 matrix 6
    111 Precoding information Inform WTRU to use precoding
    message#7 matrix 7
  • TABLE 6B
    With rank override
    PMI_IND Message Usage
    000 Precoding Confirm that eNodeB uses precoding
    confirmation message information fed back from WTRU.
    001 Precoding information Inform WTRU to use precoding
    message#
    1 matrix 1.
    . . . . . . . . .
    110 Rank information Inform WTRU to use precoding
    override message#1 sub-matrix 1
    111 Rank information Inform WTRU to use precoding
    override message#2 sub-matrix 2
  • As an example, codebook (1) using the above scheme has four precoding vectors for rank 1 and two precoding matrices for rank 2. There are six precoding matrices/vectors in total in codebook (1) shown in Table 7.
  • TABLE 7
    Codebook (1)
    Rank 1 Rank 2
    C1 C5
    C2 C6
    C3
    C4

    A corresponding PMI confirmation and indication scheme to codebook 1, when rank is jointly indicated can be seen in Table 8A.
  • TABLE 8A
    PMI confirmation and indication scheme
    PMI_IND Message Usage
    000 Precoding confirmation Confirm that eNodeB uses
    message precoding information fed back
    from WTRU.
    001 Precoding information or Inform WTRU to use precoding
    indication message#1 matrix C1.
    . . . . . . . . .
    101 Precoding information or Inform WTRU to use precoding
    indication message#5 matrix C5
    110 Precoding information or Inform WTRU to use precoding
    indication message#6 matrix C6
    111 Reserved Reserved or used for other
    purpose.
  • Another scheme for codebook (1) using the above scheme, when rank is jointly indicated and rank override is indicated, the corresponding PMI confirmation and indication scheme table for rank 1, can be as shown in Table 8B.
  • TABLE 8B
    Joint Coding for Precoding Confirmation, Indication and Rank
    Override Messages
    PMI_IND Message Usage
    000 Precoding confirmation Confirm that eNodeB uses
    message precoding information fed back
    from UE.
    001 Precoding information or Inform UE to use precoding matrix
    indication message#1 C1.
    010 Precoding information or Inform UE to use precoding matrix
    indication message#2 C2
    . . . . . . . . .
    110 Precoding information or Inform UE to use precoding matrix
    indication message#6 C6
    111 Rank information Inform UE to use precoding matrix
    override message subset of higher rank precoding
    matrix
  • A PMI_IND=111 as used in Table 9 indicates that eNodeB informs WTRU to use precoding matrix subset of higher rank precoding matrix. For example rank 2 precoding matrix consists of two column vectors and rank 1 precoding matrix is a precoding vector. When rank information is overridden from rank 2 to rank 1, either the first or the second column vector of rank 2 matrix can be indicated to be used.
  • Another scheme for codebook (1) using the above scheme, when rank is separately indicated, the corresponding PMI confirmation and indication scheme table for rank 1, can be as shown in Table 9A.
  • TABLE 9A
    PMI confirmation and indication scheme for Rank 1 with respect to
    Codebook (1).
    PMI_IND Message Usage
    000 Precoding confirmation Confirm that eNodeB uses
    message precoding information fed back
    from UE.
    001 Precoding information or Inform UE to use precoding matrix
    indication message#1 C1.
    010 Precoding information or Inform UE to use precoding matrix
    indication message#2 C2
    011 Precoding information or Inform UE to use precoding matrix
    indication message#3 C3
    100 Precoding information or Inform UE to use precoding matrix
    indication message#4 C4
    101-111 Reserved Reserved or used for other
    purpose.

    For rank 2, corresponding to codebook (1), the PMI confirmation and indication scheme table, when rank is separately indicated, can be as shown in Table 9B.
  • TABLE 9B
    PMI confirmation and indication scheme for Rank 2 with respect to
    Codebook (1).
    PMI_IND Message Usage
    00 Precoding confirmation Confirm that eNodeB uses
    message precoding information fed back
    from WTRU.
    01 Precoding information or Inform WTRU to use precoding
    indication message#1 matrix C5.
    10 Precoding information or Inform WTRU to use precoding
    indication message#2 matrix C6
    11 Reserved Reserved or used for other
    purpose.
  • As an example, codebook (2) has sixteen preceding vectors for rank 1 and sixteen precoding matrices for rank 2, 3 and 4. There are sixty four precoding matrices/vectors in total in codebook 2 as shown in table 10. Rank 1 preceding matrix is a column vector. Rank 1 precoding matrices are C1-C16. Rank 2 precoding matrix is a matrix consisting of two column vectors and are from and rank 2 precoding matrices are C17-C32. Rank 3 precoding matrix is a matrix consisting of three column vectors and rank 3 precoding matrices are C33-C48. Rank 4 precoding matrix is a matrix consisting of four column vectors and rank 4 precoding matrices are C49-C64. The precoding matrix for lower rank is a subset of precoding matrix in higher rank. For instance, C1 is a subset of C17 which is a subset of C33 which again is a subset of C49.
  • TABLE 10
    Codebook 2
    Rank 1 Rank 2 Rank 3 Rank 4
    C1 C17 C33 C49
    C2 C18 C34 C50
    C3 C19 C35 C51
    C4 C20 C36 C52
    C5 C21 C37 C53
    C6 C22 C38 C54
    C7 C23 C39 C55
    C8 C24 C40 C56
    C9 C25 C41 C57
    C10 C26 C42 C58
    C11 C27 C43 C59
    C12 C28 C44 C60
    C13 C29 C45 C61
    C14 C30 C46 C62
    C15 C31 C47 C63
    C16 C32 C48 C64

    A corresponding table for PMI confirmation and indication scheme for Codebook (2) can be as shown in Table 11A.
  • TABLE 11A
    Joint Coding for Precoding Confirmation, Indication, Feedback Error
    and Override Messages.
    PMI_IND Message Usage
    0000000 Precoding confirmation Confirm that eNodeB uses precoding
    message information fed back from WTRU.
    0000001 Precoding feedback error Inform WTRU to use precoding matrix X.
    message
    0000010 Precoding information Inform WTRU to use precoding matrix Y
    override message
    0000011-0010010 Precoding information or Inform WTRU to use precoding matrix C1 to
    indication message#1-64 C64 respectively.
    0010011-1111111 Reserved Reserved or used for other purpose.
  • A corresponding table for PMI confirmation and indication scheme with rank overriding for Codebook (2) can be as shown in Table 11B.
  • TABLE 11B
    Joint Coding for Precoding Confirmation, Indication, Rank Override
    and Feedback Error Messages
    PMI_IND Message Usage
    0000000 Precoding confirmation Confirm that eNodeB uses precoding
    message information fed back from WTRU.
    0000001 Precoding feedback Inform WTRU to use precoding matrix X.
    error message
    0000010 Precoding information Inform WTRU to use precoding matrix Y
    override message
    0000011-0010010 Precoding information Inform WTRU to use precoding matrix C1 to
    or indication message 1-64 C64 respectively.
    0010011-0010110 Rank information Inform WTRU to use four precoding matrix
    override from rank 4 to subsets respectively.
    rank 3
    0000111-0011100 Rank information Inform WTRU to use six precoding matrix
    override from rank 4 to subsets respectively.
    rank 2
    0011101-0100000 Rank information Inform WTRU to use four precoding matrix
    override from rank 4 to subsets respectively.
    rank 1
    0100001-0100010 Rank information Inform WTRU to use three precoding matrix
    override from rank 3 to subsets respectively.
    rank 2
    0100100-0100110 Rank information Inform WTRU to use three precoding matrix
    override from rank 3 to subsets respectively.
    rank 1
    0100111-0101000 Rank information Inform WTRU to use two precoding matrix
    override from rank 2 to subsets (select the first or the second column
    rank
    1 vector) respectively.
    0101001-1111111 Reserved Reserved or used for other purpose.
  • To save the signaling overhead, one of the precoding matrices can be removed from codebook (2). As an example, if C64 or one of the other matrices is removed then the scheme reduces to the scheme as shown in Table 11C.
  • TABLE 11C
    Modified Joint Coding for Precoding Confirmation and Indication
    Messages.
    PMI_IND State Usage
    000000 Precoding confirmation Confirm that eNodeB uses
    message precoding information fed
    back from WTRU.
    000001-111111 Precoding information or Inform WTRU to use
    indication message 1-63 precoding matrix C1 to C63
    respectively.
  • When each group has only one PMI (the PMI or antenna weight indicator) and the PMI_IND is set at (n)=1, it indicates that the nth PMI that are used at the eNodeB and the WTRU are not identical. This usually occurs in the event of feedback errors or the eNodeB overrides the WTRU's feedback. The nth PMI is sent. For example, in FIG. 8, if PMI_n is not the same for the eNodeB and the WTRU, PMI_IND(n) and PMI_n are sent by the eNodeB. This increases signaling efficiency.
  • When each group has only one PMI the PMI or antenna weight indicator and the PMI_IND is set at n=0, it indicates that the nth PMIs that are used at the eNodeB and the WTRU are identical. This usually occurs in the event of no feedback error and the eNodeB does not override the WTRU's feedback. The nth PMI is not sent, but only PMI_IND for the nth PMI, i.e., PMI_IND(n) is sent. For example, in FIG. 8, if PMI_n is the same for the eNodeB and the WTRU, only the 1-bit PMI_IND(n) is sent by the eNodeB.
  • A PMI indicator may be sent along with, attached to, or embedded, in the existing control signaling. FIG. 9 shows that PMI validation signaling is attached to a control signaling. FIG. 10 shows that PMI validation signaling is inserted in a control signaling. Alternatively, the PMI indicator may be sent using a separate signaling or a stand alone signaling.
  • The PMI validation messages may be signaled to the WTRU via a control signaling or a dedicated reference signal (RS). Alternatively part of validation message may be sent via control signaling and part of validation message may be sent via dedicated reference signal. For example precoding confirmation part may be sent via control signaling and preceding indication part may be sent via dedicated reference signal. The PMI indicator signaling may be applied to both control signaling or dedicated reference signal and be used to reduce the amount of control signaling overhead or dedicated RS overhead. When dedicated reference signals are used to send the PMI validation messages, several forms for dedicated reference signals may be used, such as precoded pilots. The use of the PMI indicator to reduce dedicated RS is described as follows.
  • New downlink PMI indicator signaling for dedicated reference signal
  • When the PMI_IND is set to 1 (negative-confirmation message), it indicates that at least one of PMIs multiple used at the eNodeB and the WTRU are not identical. This usually occurs in the event of feedback errors or the eNodeB overrides the WTRU's feedback. All dedicated reference signals that carry PMIs are sent by the eNodeB. PMI_IND is set to ‘1’ and is also sent by the eNodeB.
  • When the PMI_IND is set to 0 (positive-confirmation message), it indicates that all of the PMIs (multiple) used at the eNodeB and the WTRU are identical. This usually occurs in the event of no feedback error and the eNodeB does not override the WTRU's feedback. All dedicated reference signals that carry PMIs are not sent by the eNodeB, but only 1-bit PMI_IND that is set to ‘0’ is sent by the eNodeB.
  • Most of the time all of the PMIs multiple used at the eNodeB and the WTRU are identical and dedicated reference signals are not transmitted, but only the PMI_IND one bit that is set to ‘0’ is sent by the eNodeB. Therefore, this signaling scheme too, significantly reduces the overhead of dedicated reference signals.
  • PMI indicator signaling in accordance with the present invention may be applied to both single user SU MIMO and multi-user MU MIMO for reduced signaling overhead. In SU-MIMO, only PMI indicator for one WTRU is sent by the eNodeB in a sub-band or a frequency and time resource. In MU-MIMO, multiple PMI indicators for multiple WTRUs that share the same sub-band or the same frequency and time resource are sent by the eNodeB. It is, therefore, a simple extension from SU-MIMO.
  • In MU-MIMO, it is assumed that K WTRUs exist. An eNodeB sends multiple PMI validation signaling each of which has one or multiple PMIs for each WTRU, WTRU 1, WTRU 2, . . . , WTRU K. The eNodeB sends multiple PMI indicators to the WTRUs. Each WTRU receives one PMI indicator if no group PMI is used as shown in FIG. 4, or multiple PMI indicators if group PMIs is used for the WTRU as shown in FIGS. 5 and 6 or 7 and 8.
  • In the case that PMIs are the same at the eNodeB and the kth WTRU, the eNodeB sends 1-bit PMI indicator to the kth WTRU. In case that PMIs are NOT the same for the eNodeB and the kth WTRU, the eNodeB sends PMI indicator denoted by PMI _IND(k), and PMIs denoted by PMI(k) of the kth WTRU to the kth WTRU.
  • For example if PMIs are not the same for the eNodeB and the first WTRU but the same for all other WTRUs, then 1 bit PMI_IND(1) and PMI(1) are sent to the first WTRU by the eNodeB and 1-bit PMI _IND(k) for k=2,3, . . . K are sent to all other WTRUs by the eNodeB. Alternatively in MU-MIMO, the eNodeB sends multiple PMI indicators each for one group of WTRUs. The eNodeB may also send one PMI indicator for all WTRUs. For MU-MIMO, the precoding schemes and usage can be generalized as described earlier.
  • For two users simultaneously supported in the same RB or RBG, it is assumed there is one stream per user, i.e., each WTRU sees rank 1 transmission for itself. Further suppose there are eight beamforming vectors C1, C2, . . . , C8 in the beamforming codebook. Table 12 describes this scheme: If PMI_IND=0 (positive-confirmation message), it indicates eNodeB confirms that WTRU's feedback is used at eNodeB (Cdesired). A 3-bit PMI indicates seven possible interfering beamforming vectors of the other user, Cj, j=1,2, . . . , 8 and Cj≠Cdesired. One bit combination (111) is reserved. If PMI_IND=1, it indicates eNodeB will not use WTRU's feedback and a different beamforming vector will be used. A 3-bit PMI indicates eight possible beamforming vectors (Cj,j=1,2, . . . , 8) for the desired user. There is no separate indication for interfering beamforming vector unless signaling overhead is allowed to increase.
  • TABLE 12
    Separate Coding for Confirmation and Indication Messages
    PMI_IND
    (1 bit) PMI
    (Confirmation (3 bits)
    Message) (Indication Messages)
    0 000-110 Cj,
    for j = 1, 2, . . . , 8, and
    Cj C desired
    111 Reserved
    1 000 C1
    001 C2
    010 C3
    011 C4
    100 C5
    101 C6
    110 C7
    111 C8
  • Another option is the use of default beamforming vector for desired user when PMI_IND is 1 (negative-confirmation message) and use 3-bit PMI to indicate seven possible interfering vectors similar to the case when PMI_IND=0.
  • Similarly, for a four user MU-MIMO and rank 1 per user, a scheme is described in table 13.
  • TABLE 13
    Separate Coding for Confirmation and Indication Messages
    PMI_IND PMI
    (1 bit) (6 bits)
    0 000000-100010 35 combinations
    (Ci, Cj, Ck),
    for i, j, k = 1, 2, . . . , 8, i < j < k
    and Ci, Cj, Ck ≠ Cdesired
    100011-111111 reserved
    1 000-111 Ci, i = 1, 2, . . . , 8
    (First 3 bits indicate the
    desired beamforming
    vector)
    000-111 8 combinations
    (Last 3 bits indicate the (Ci, Cj, Ck),
    interference vector for i, j, k = 1, 2, . . . , 8, i < j < k
    combinations) and Ci, Cj, Ck ≠ Cdesired
  • If some kind of restriction is imposed, the number of vector combinations can be reduced and thus number of bits can be reduced. For example, if the rule restricts only certain combinations are allowed, for instance C1,C2,C3,C4 can be combined together as a group, C5,C6,C7,C8 can be combined together as a group, and the group C1,C2,C3,C4 cannot be combined with the group C5 ,C6,C7,C8; for example C1 can be combined with C2, C3, or C4 but cannot be combined with C5, C6, C7, or C8. Combination restriction requirements may be rules to meet unitary properties or unitary beamforming requirement.
  • An example, assuming C1 is the beamforming vector for the desired user and that the restriction rule is used. The vector combinations can be reduced to seven combinations. For two users, only combinations [C1, C2], [C1, C3] and [C1, C4] are allowed. For three users only [C1, C2, C3], [C1, C2, C4] and [C1, C3, C4] are allowed. For four users only [C1, C2, C3, C4] is allowed. Table 14 summarizes this particular scheme with restrictions:
  • TABLE 14
    Beamforming Vector Combinations (Assuming C1 is the Desired
    Vector)
    Two WTRUs S1 = (C1, C2), S2 = (C1, C3), S3 = (C1, C4)
    Three WTRUs S4 = (C1, C2, C3), S5 = (C1, C2, C4), S6 =
    (C1, C3, C4)
    Four WTRUs S7 = (C1, C2, C3, C4)
  • Similar tables can be built for different beamforming vectors other than C1 used for desired user. The PMI confirmation and indication messages can be jointly coded and the corresponding PMI confirmation and indication scheme can be the following: If PMI_IND=000, confirm WTRU's feedback. If PMI_IND=001, inform WTRU that C2 is interfering beamforming vector. If PMI_IND=010, inform WTRU that C3 is interfering beamforming vector and so on as shown in the table 16. If PMI_IND=111, inform WTRU that C2, C3 and C4 are interfering beamforming vectors. This is shown in the following table.
  • TABLE 15
    Joint Coding for Precoding Confirmation and Indication Messages
    PMI_IND
    (Confirmation/Indication Messages) Messages or States
    000 Confirm
    001 C2
    010 C3
    011 C4
    100 C2, C3
    101 C2, C4
    110 C3, C4
    111 C2, C3, C4
  • Another alternative is to have PMI_IND=000 as confirmation message and PMI_IND=001-111 as indication messages to indicate the seven possible desired vectors. The seven vectors or matrices are selected or pre-selected from C1-C8. Similar tables can be built for different beamforming vectors other than C1 used for a desired user.
  • Joint coding may be performed for precoding confirmation message, precoding information or indication messages which may or may not include rank information for different designs and purposes. In addition joint coding may also be performed for rank override messages or feedback error messages or other MIMO related information and messages.
  • FIG. 11 shows a wireless communication system with multiple eNodeBs 1113 implementing the embodiments as described. Each eNodeB 1113 provides communication coverage for a particular geographic area commonly referred to as cells and shown as idealized hexagons. The term “cell” can refers to its coverage area depending on the context in which the term is used. To improve system capacity, an eNode B coverage area may be partitioned into multiple smaller areas, e.g., three smaller areas. WTRUs 1111 may be dispersed throughout the coverage area.
  • Although the features and elements of the present invention are described in the preferred embodiments in particular combinations, each feature or element can be used alone without the other features and elements of the preferred embodiments or in various combinations with or without other features and elements of the present invention. The methods or flow charts provided in the present invention may be implemented in a computer program, software, or firmware tangibly embodied in a computer-readable storage medium for execution by a general purpose computer or a processor. Examples of computer-readable storage mediums include a read only memory ROM, a random access memory RAM, a register, cache memory, semiconductor memory devices, magnetic media such as internal hard disks and removable disks, magneto-optical media, and optical media such as CD-ROM disks, and digital versatile disks DVDs.
  • Suitable processors include, by way of example, a general purpose processor, a special purpose processor, a conventional processor, a digital signal processor DSP, a plurality of microprocessors, one or more microprocessors in association with a DSP core, a controller, a microcontroller, Application Specific Integrated Circuits ASICs, Field Programmable Gate Arrays FPGAs circuits, any other type of integrated circuit IC, and/or a state machine.
  • A processor in association with software may be used to implement a radio frequency transceiver for use in a wireless transmit receive unit WTRU, Wireless Transmit/Receive Unit WTRU, terminal, base station, radio network controller RNC, or any host computer. The WTRU may be used in conjunction with modules, implemented in hardware and/or software, such as a camera, a video camera module, a videophone, a speakerphone, a vibration device, a speaker, a microphone, a television transceiver, a hands free headset, a keyboard, a Bluetooth® module, a frequency modulated FM radio unit, a liquid crystal display LCD display unit, an organic light-emitting diode OLED display unit, a digital music player, a media player, a video game player module, an Internet browser, and/or any wireless local area network WLAN module.

Claims (88)

1. A method for reducing signaling overhead for a Wireless Transmit/Receive Unit (WTRU), in a multiple-input multiple-output MIMO wireless communications by using precoding confirmation and precoding information or indication in the form of a validation message, the method comprising:
using the validation message to indicate the kind of precoding information used at an evolved NodeB (eNodeB) wherein the validation message comprises of at least one bit;
the validation message provides precoding confirmation message and indication message and validation message could be composed of one confirmation message and one indication message using separate coding;
validation message could also be a single message that indicates confirmation, information, override or error message using joint coding; and
indication message can be a precoding information indication message or rank override message or a feedback error message or a combination and can indicate precoding information for single user SU-MIMO and can also indicate desired precoding information, interfering precoding information or both for multi user MU-MIMO.
2. The method of claim 1, wherein the precoding information may also contain precoding matrices or ranks or other precoding related information or a combination of all.
3. The method of claim 1, wherein the validation message comprises of at least two of: a confirmation message and an indication message, a feedback error message and an override error message.
4. The method of claim 1, wherein the precoding confirmation and indication messages (validation message) can be separately encoded or jointly encoded.
5. The method of claim 1, wherein when the validation message is separately coded or encoded, the validation message itself consists of two parts: a confirmation part and an indication part.
6. The method of claim 5, wherein the confirmation part uses one bit or a plurality of bits to carry a positive-confirmation message or a negative confirmation message
7. The method of claim 6, wherein a positive-confirmation message is used to inform the WTRU that precoding information used at eNodeB is exactly the same as the precoding information fed back from the WTRU.
8. The method of claim 6, wherein a negative confirmation message is used to inform WTRU that the precoding information used at the eNodeB is not the same as the precoding information fed back from the WTRU.
9. The method of claim 6, wherein the indication part uses at least one bit to carry a two or more indication messages.
10. The method of claim 6, wherein the indication part indicates to the WTRU that different precoding information is being used at the eNodeB.
11. The method of claim 3, wherein when the validation message is jointly coded or encoded, the validation message combines the confirmation part and the indication part.
12. A method for reducing signaling overhead for a Wireless Transmit/Receive Unit (WTRU), in a multiple-input multiple-output MIMO wireless communications by using precoding confirmation and precoding information or indication, the method comprising:
transmitting a precoding matrix index (PMI) that includes antenna weights and beamforming weights to an evolved Node-B (eNodeB); and
receiving a validation message from the eNodeB as a PMI indicator that includes information about its antenna weights.
13. The method of claim 12 wherein the part of validation message is sent to the WTRU via a dedicated reference signal and the part of validation message is sent to the WTRU via control signaling scheme.
14. The method of claim 12 wherein the eNodeB sends only a precoding confirmation message or PMI indicator when the PMI of the WTRU and a PMI of the eNodeB are identical.
15. The method of claim 12 wherein the eNodeB sends to the WTRU a PMI indicator with its PMI when the PMI of the WTRU and a PMI of the eNodeB are not identical or when the PMI of the WTRU is overridden by the PMI of the eNodeB or when a feedback error occurs.
16. The method of claim 12 wherein PMI indicator size is one bit or more than one bit, can represent state confirmations and can be any arbitrary value depending upon design choice.
17. A method for reducing signaling overhead for a Wireless Transmit/Receive Unit (WTRU), in a multiple-input multiple-output MIMO wireless communications by using precoding confirmation and precoding information or indication, the method comprising:
transmitting a plurality of precoding matrix indices (PMI) that includes antenna weights and beamforming weights to an eNodeB;
receiving a validation message from the eNode B as an individual PMI indicator for each PMI that includes information about its antenna weights.
18. The method of claim 12 wherein the part of validation message is sent to the WTRU via a dedicated reference signal and the part of validation message is sent to the WTRU via control signaling scheme.
19. The method of claim 17 wherein the eNodeB sends only a PMI indicator when the PMI of the WTRU and a PMI of the eNodeB are identical.
20. The method of claim 17 wherein the Node-B sends to the WTRU a PMI indicator with its PMI when at least one of the PMIs of the WTRU and at least one of the PMIs of the eNodeB are not identical or when the PMI of the WTRU is overridden by the PMI of the eNodeB or when a feedback error occurs.
21. The method of claim 17, wherein PMI indicator size is one bit or more than one bit, can represent state confirmations and can be any arbitrary value depending upon design choice.
22. A method for reducing signaling overhead for a Wireless Transmit/Receive Unit (WTRU), in a multiple-input multiple-output MIMO wireless communications by using precoding confirmation and precoding information or indication, the method comprising:
transmitting a plurality of precoding matrix indexes PMI that are separated into groups that includes antenna weights and beamforming weights to a eNodeB;
receiving from the eNodeB a validation message as an individual PMI indicator for each group of PMIs that includes information about its antenna weights.
23. The method of claim 22 wherein the part of validation message is sent to the WTRU via a dedicated reference signal and the part of validation message is sent to the WTRU via control signaling scheme.
24. The method of claim 22 wherein the eNodeB sends only a PMI indicator that includes the PMI indicators of all groups when the PMIs at the WTRU and a PMI of the group at eNodeB are identical.
25. The method of claim 22 wherein the eNodeB sends to the WTRU a PMI indicator with its PMI when at least one of the PMIs of groups of the WTRU and at least one of the PMIs of the groups at eNodeB are not identical or when the PMI of the WTRU is overridden by the PMI of the eNodeB or when a feedback error occurs.
26. The method of claim 22 wherein each group of PMI indicators or each PMI indicator has one bit or more than one bit to indicate whether antenna weights are same for eNodeB and WTRU.
27. The method of claim 22 when each group has only one PMI.
28. A method of either of claims 1, 12, 17 or 22 to send the PMI indicator without modifying the existing control signaling wherein the PMI is either attached to or embedded into existing control signaling.
29. A method for reducing signaling overhead in multiple-input multiple-output MIMO wireless communications by use of a validation message that includes precoding confirmation and precoding information or indication, messages, and the validation message comprises of:
a confirmation message having one bit;
a confirmation message having more than one bits;
one possible sub-message for an indication message having at least bit showing the different possible precoding information;
one possible sub-message for an override message having at least one bit showing the different override rules for precoding; and
one possible sub-message for feedback error message having at least one bit showing different precoding rules to handle feedback error.
30. An evolved NodeB eNodeB for reducing signaling overhead between a Wireless Transmit/Receive Unit (WTRU) and the eNodeB, in a multiple-input multiple-output MIMO wireless communications by using precoding confirmation and precoding information or indication in the form of a validation message, the eNodeB configured to:
transmit the validation message to indicate the kind of precoding information used at the eNodeB wherein the validation message comprises of at least one bit;
the validation message provides confirmation message and indication message and validation message could be composed of one confirmation message and one indication message using separate coding;
validation message could also be a single message that indicates confirmation, information, override or error message using joint coding; and
indication message can be a precoding information indication message or rank override message or a feedback error message or a combination and can indicate precoding information for single user SU-MIMO and can also indicate desired precoding information, interfering precoding information or both for multi user MU-MIMO.
31. The eNode of claim 30, wherein the precoding information may contain precoding matrices or ranks or other precoding related information or a combination of all.
32. The eNodeB of claim 30, wherein the validation message comprises a combination of at least two of: a confirmation message, an indication message, a feedback error message and an override error message.
33. The eNodeB of claim 30, wherein the validation message can be separately coded or encoded or jointly coded or encoded.
34. The eNodeB of claim 30, wherein when the precoding confirmation and indication messages (validation message) is separately coded or encoded, the validation message itself consists of two parts: a confirmation part and an indication part.
35. The eNodeB of claim 34, wherein the confirmation part uses one bit or more than one bit to carry a positive-confirmation message or a negative confirmation message.
36. The eNodeB of claim 34, wherein a positive-confirmation message is used to inform the WTRU that precoding information used at eNodeB is exactly the same as the precoding information fed back from the WTRU.
37. The eNodeB of claim 34, wherein a negative confirmation message is used to inform WTRU that the precoding information used at the eNodeB is not the same as the precoding information fed back from the WTRU.
38. The eNodeB of claim 34, wherein the indication part uses at least one bit to carry a two or more indication messages.
39. The eNodeB of claim 34, wherein the indication part indicates to the WTRU that different preceding information is being used at the eNodeB.
40. The eNodeB of claim 34, wherein when the validation message is jointly coded or encoded, the validation message combines the confirmation part and the indication part into a single part or field.
41. An evolved Node B (eNodeB) for reducing signaling overhead, operating in multiple-input multiple-output MIMO wireless communications suitable for precoding confirmation and precoding information or indication and configured to:
receive a precoding matrix index (PMI) from a Wireless Transmit/Receive Unit (WTRU) that includes the WTRUs antenna weights;
transmit a validation message to the WTRU as a PMI indicator that includes information about its own antenna weights.
42. The eNodeB of claim 41 wherein the validation message is sent to the WTRU via a dedicated reference signal or via control signaling scheme.
43. The eNodeB of claim 41 wherein the eNodeB sends only a PMI indicator when the PMI of the WTRU and a PMI of the eNodeB are identical.
44. The eNodeB of claim 41 wherein the Node-B sends to the WTRU a PMI indicator with its PMI when the PMI of the WTRU and a PMI of the eNodeB are not identical or when the PMI of the WTRU is overridden by the PMI of the eNodeB or when a feedback error occurs.
45. The eNodeB of claim 41 wherein PMI indicator size is one bit or more than one bit, can represent state confirmations and can be any arbitrary value depending upon design choice.
46. An evolved Node B (eNodeB) for reducing signaling overhead, operating in multiple-input multiple-output MIMO wireless communications suitable for precoding confirmation and precoding information or indication and configured to:
receive a plurality of preceding matrix indices (PMIs) from a Wireless Transmit/Receive Unit (WTRU) that includes the WTRUs antenna weights; and
transmit a validation message to the WTRU as an individual PMI indicator that includes information about its own antenna weights.
47. The method of claim 46 wherein the part of validation message is sent to the WTRU via a dedicated reference signal and the part of validation message is sent to the WTRU via control signaling scheme.
48. The eNodeB of claim 46 wherein the eNodeB sends only a PMI indicator when the PMI of the WTRU and a PMI of the eNodeB are identical.
49. The eNodeB of claim 46 wherein the eNodeB sends to the WTRU a PMI indicator with its PMI when at least one of the PMIs of the WTRU and at least one of the PMIs of the eNodeB are not identical or when the PMI of the WTRU is overridden by the PMI of the eNodeB or when a feedback error occurs.
50. The eNodeB of claim 46 wherein PMI indicator size is one bit or more than bit, can represent state confirmations and can be any arbitrary value depending upon design choice.
51. The eNodeB of claim 46 configured to send the PMI indicator without modifying the existing control signaling wherein the PMI is either attached to or embedded into existing control signaling.
52. An evolved Node B (eNodeB) for reducing signaling overhead, operating in multiple-input multiple-output MIMO wireless communications suitable for precoding confirmation and precoding information or indication and configured to:
receive a plurality of precoding matrix indices (PMIs) from a Wireless Transmit/Receive Unit (WTRU) that are separated into groups that includes the WTRUs antenna weights; and
transmit a validation message to the WTRU as an individual PMI indicator for each group of PMIs that includes information about its own antenna weights.
53. The eNodeB of claim 52, wherein part of validation message is sent to the WTRU via a dedicated reference signal and the part of validation message is sent to the WTRU via control signaling scheme.
54. The eNodeB of claim 52, wherein the eNodeB sends only a PMI indicator that includes the PMI indicators of all groups when the PMIs at the WTRU and a PMI of the group at eNodeB are identical.
55. The eNodeB of claim 52 wherein the eNodeB sends to the WTRU a PMI indicator with its PMI when at least one of the PMIs of groups of the WTRU and at least one of the PMIs of the groups at eNodeB are not identical or when the PMI of the WTRU is overridden by the PMI of the eNodeB or when a feedback error occurs.
56. The eNodeB of claim 52 wherein each group of PMI indicators or each PMI indicator has one bit or more than one bit to indicate whether antenna weights are same for eNodeB and WTRU.
57. The eNodeB of claim 52 wherein each group has only one PMI.
58. The eNodeB of claim 52 configured to send the PMI indicator without modifying the existing control signaling wherein the PMI is either attached to or embedded into existing control signaling.
59. An evolved Node B (eNodeB) for reducing signaling overhead, operating in multiple-input multiple-output MIMO wireless communications having a transceiver and processor for precoding confirmation and precoding information or indication and configured to generate a validation message that includes precoding matrix information PMI, and the validation message comprises:
a confirmation message having one bit; or a confirmation message having more than one bit;
one possible sub-message for an indication message having at least bit showing the different possible precoding information;
one possible sub-message for an override message having at least one bit showing the different override rules for precoding; and
one possible sub-message for feedback error message having at least one bit showing different preceding rules to handle feedback error.
60. A wireless transmit/receive unit (WTRU) for reducing signaling overhead between an evolved NodeB and the WTRU, in a multiple-input multiple-output MIMO wireless communications by using precoding confirmation and precoding information or indication in the form of a validation message, the WTRU configured to:
receive the validation message to indicate the kind of precoding information used at the eNodeB wherein the validation message comprises of at least one bit;
the validation message provides precoding confirmation message and indication message and validation message could be composed of one confirmation message and one indication message using separate coding;
validation message could also be a single message that indicates confirmation, information, override or error message using joint coding; and
indication message can be a precoding information indication message or rank override message or a feedback error message or a combination and can indicate precoding information for single user SU-MIMO and can also indicate desired precoding information, interfering precoding information or both for multi user MU-MIMO.
61. The WTRU of claim 60, wherein the validation message comprises a combination of at least two of: a confirmation message, an indication message, a feedback error message and an override error message.
62. The WTRU of claim 60, wherein the precoding information and indication messages (validation message) can be separately encoded or jointly encoded.
63. The WTRU of claim 60, wherein when the validation message is separately coded or encoded, the validation message itself consists of two parts: a confirmation part and an indication part.
64. The WTRU of claim 63, wherein the confirmation part uses one bit or more than one bit to carry a positive-confirmation message or a negative confirmation message.
65. The WTRU of claim 60, wherein a positive-confirmation message is used to inform the WTRU that precoding information used at eNodeB is exactly the same as the precoding information fed back from the WTRU.
66. The WTRU of claim 60, wherein a negative confirmation message is used to inform WTRU that the precoding information used at the eNodeB is not the same as the precoding information fed back from the WTRU.
67. The WTRU of claim 63, wherein the indication part uses one bit or more than one bit to carry a two or more indication messages.
68. The WTRU of claim 64, wherein the indication part indicates to the WTRU that different precoding information is being used at the eNodeB.
69. The WTRU of claim 64, wherein when the validation message is jointly coded or encoded, the validation message combines the confirmation part and the indication part.
70. A wireless transmit/receive unit WTRU for reducing signaling overhead, operating in multiple-input multiple-output MIMO wireless communications having a transceiver and processor and processor for precoding confirmation and precoding information or indication and configured to generate a validation message that includes precoding matrix information PMI, and the validation message comprises:
a confirmation message having one bit; or a confirmation message having at least one bit;
one possible sub-message for an indication message having at least bit showing the different possible precoding information;
one possible sub-message for an override message having at least one bit showing the different override rules for precoding; and
one possible sub-message for feedback error message having at least one bit showing different preceding rules to handle feedback error.
71. A wireless transmit/receive unit (WTRU) for reducing signaling overhead, operating in multiple-input multiple-output MIMO wireless communications, having a transceiver and a processor for preceding confirmation and preceding information or indication and configured to:
transmit a precoding matrix index (PMI) to an evolved NodeB (eNodeB) that includes the WTRUs antenna weights;
receive a validation message from the eNodeB as a PMI indicator that includes information about its own antenna weights.
72. The WTRU of claim 71, wherein part of validation message is received via a dedicated reference signal and the part of validation message is received via control signaling scheme.
73. The WTRU of claim 72, wherein the WTRU receives only a precoding confirmation or PMI indicator when the PMI of the WTRU and PMI of the eNodeB are identical.
74. The WTRU of claim 71, wherein the WTRU receives a PMI indicator with its PMI when the PMI of the WTRU and a PMI of the eNodeB are not identical or when the PMI of the WTRU is overridden by the PMI of the eNodeB or when a feedback error occurs.
75. The WTRU of claim 71, wherein PMI indicator size is one bit or more than one bit, can represent state confirmations and can be any arbitrary value depending upon design choice.
76. The WTRU of claim 71, wherein part of validation message is received by the transceiver via a dedicated reference signal and the part of validation message is received via control signaling scheme.
77. A wireless transmit/receive unit (WTRU) for reducing signaling overhead, operating in multiple-input multiple-output MIMO wireless communications, having a transceiver and a processor for precoding confirmation and precoding information or indication and configured to:
transmit a plurality of precoding matrix indices (PMIs) to an evolved NodeB (eNodeB) that includes the WTRUS antenna weights; and
receive a validation message from the eNodeB as an individual PMI indicator that includes information about eNodeBs own antenna weights.
78. The WTRU of claim 77, wherein part of validation message is received by the transceiver via a dedicated reference signal or via control signaling scheme.
79. The WTRU of claim 77, wherein the WTRU receives only a PMI indicator from the eNodeB when the PMI of the WTRU and a PMI of the eNodeB are identical.
80. The WTRU of claim 77, wherein the WTRU receives a PMI indicator with eNodeBs PMI when at least one of the PMIs of the WTRU and at least one of the PMIs of the eNodeB are not identical or when the PMI of the WTRU is overridden by the PMI of the eNodeB or when a feedback error occurs.
81. The WTRU of claim 80, wherein PMI indicator size is one bit or more than one bit, can represent state confirmations and can be any arbitrary value depending upon design choice.
82. A wireless transmit/receive unit (WTRU) for reducing signaling overhead, operating in multiple-input multiple-output MIMO wireless communications, having a transceiver and a processor for preceding matrix indication and configured to:
transmit a plurality of precoding matrix indices (PMIs) to an evolved NodeB (eNodeB) that are separated into groups that includes the WTRUs antenna weights; and
receive a validation message from the eNodeB as an individual PMI indicator for each group of PMIs that includes information about its own antenna weights.
83. The WTRU of claim 82, wherein wherein part of validation message is received by the transceiver via a dedicated reference signal and the part of validation message is received via control signaling scheme.
84. The WTRU of claim 82, wherein the wherein the WTRU receives only a PMI indicator from the eNodeB that includes the PMI indicators of all groups when the PMIs at the WTRU and a PMI of the group at eNodeB are identical.
85. The WTRU of claim 82, wherein the WTRU receives a PMI indicator from eNodeB with its PMI when at least one of the PMIs of groups of the WTRU and at least one of the PMIs of the groups at eNodeB are not identical or when the PMI of the WTRU is overridden by the PMI of the eNodeB or when a feedback error occurs.
86. The WTRU of claim 82, wherein each group of PMI indicators or each PMI indicator has one bit or more than one bit to indicate whether antenna weights are same for eNodeB and WTRU.
87. The WTRU of claim 82, wherein each group has only one PMI.
88. The WTRU of claim 82 configured to receive the PMI indicator from the eNodeB wherein the PMI is either attached to or embedded into existing control signaling.
US12/106,581 2007-04-20 2008-04-21 Method and apparatus for efficient precoding information validation for MIMO communications Active 2032-01-04 US9716604B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/106,581 US9716604B2 (en) 2007-04-20 2008-04-21 Method and apparatus for efficient precoding information validation for MIMO communications
US15/626,508 US10284265B2 (en) 2007-04-20 2017-06-19 Method and apparatus for efficient precoding information validation for MIMO communications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US91314507P 2007-04-20 2007-04-20
US12/106,581 US9716604B2 (en) 2007-04-20 2008-04-21 Method and apparatus for efficient precoding information validation for MIMO communications

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/626,508 Continuation US10284265B2 (en) 2007-04-20 2017-06-19 Method and apparatus for efficient precoding information validation for MIMO communications

Publications (2)

Publication Number Publication Date
US20080260059A1 true US20080260059A1 (en) 2008-10-23
US9716604B2 US9716604B2 (en) 2017-07-25

Family

ID=39708289

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/106,581 Active 2032-01-04 US9716604B2 (en) 2007-04-20 2008-04-21 Method and apparatus for efficient precoding information validation for MIMO communications
US15/626,508 Active US10284265B2 (en) 2007-04-20 2017-06-19 Method and apparatus for efficient precoding information validation for MIMO communications

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/626,508 Active US10284265B2 (en) 2007-04-20 2017-06-19 Method and apparatus for efficient precoding information validation for MIMO communications

Country Status (18)

Country Link
US (2) US9716604B2 (en)
EP (4) EP2797250B1 (en)
JP (4) JP2010525684A (en)
KR (5) KR20090130206A (en)
CN (2) CN101689962B (en)
AR (1) AR066220A1 (en)
AU (1) AU2008242610A1 (en)
BR (1) BRPI0809746B1 (en)
CA (1) CA2684874C (en)
ES (1) ES2563427T3 (en)
HK (2) HK1203716A1 (en)
IL (1) IL201649A (en)
MX (1) MX2009011299A (en)
MY (1) MY159052A (en)
RU (1) RU2438251C2 (en)
SG (1) SG10201503104PA (en)
TW (3) TWI528747B (en)
WO (1) WO2008131352A1 (en)

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093221A1 (en) * 2007-10-08 2009-04-09 Interdigital Patent Holdings, Inc. Method and apparatus for signaling interference information for multi-user mimo
US20090181708A1 (en) * 2007-12-31 2009-07-16 Jae Wan Kim Method for reducing inter-cell interference
US20090325496A1 (en) * 2008-06-30 2009-12-31 Alcatel-Lucent via the Electronic Patent Assignmen System (EPAS) Method of reducing intra-cell spatial interference in a mobile cellular network
US20100009717A1 (en) * 2008-07-11 2010-01-14 Pantelis Monogioudis Wireless communication system and method of joint beamforming wireless communication
US20100048148A1 (en) * 2008-08-20 2010-02-25 Infineon Technologies Ag Method, apparatus and communication unit
US20100111226A1 (en) * 2007-03-12 2010-05-06 Hyun Soo Ko Method for transmitting control information in multiple antenna system
WO2010061302A2 (en) * 2008-11-03 2010-06-03 Koninklijke Philips Electronics N.V. Antenna configuration for co-operative beamforming
US20100183085A1 (en) * 2007-06-19 2010-07-22 Ntt Docomo, Inc. Base station apparatus, user equipment, and communication control method in mobile communication system
US20100195748A1 (en) * 2009-02-02 2010-08-05 Samsung Electronics Co., Ltd. Method and system for reference signal pattern design in resource blocks
US20100208709A1 (en) * 2007-06-14 2010-08-19 Electronics And Telecommunications Research Instit Method of transmitting ack/nack bit supporting harq in mobile communication system supporting multi user mimo
WO2010130097A1 (en) * 2009-05-14 2010-11-18 华为技术有限公司 Information process method, device and system
WO2010135924A1 (en) * 2009-05-25 2010-12-02 富士通株式会社 Communication device, communication method and base station
WO2010143780A2 (en) * 2009-06-10 2010-12-16 한국전자통신연구원 Multi-cell cooperative communication system and terminal device
US20100322330A1 (en) * 2007-06-27 2010-12-23 George Jongren Mode Switching Between SU-MIMO and MU-MIMO
US20110002282A1 (en) * 2008-03-19 2011-01-06 Takamichi Inoue Wireless communication system, wireless communication setting method, base station, mobile station, and program
US20110013719A1 (en) * 2008-01-08 2011-01-20 Ntt Docomo, Inc. Weighting factor reporting method in a mimo mobile communications system, and base station and user apparatus that are suitable for use in the method
US20110026421A1 (en) * 2009-07-29 2011-02-03 Qualcomm Incorporated Adaptive transmissions in coordinated multiple point communications
US20110075746A1 (en) * 2009-09-30 2011-03-31 Rheinschmitt Rupert J Transmission of precoding codebook over an air interface
WO2011005533A3 (en) * 2009-06-22 2011-04-21 Qualcomm Incorporated Precoding control channels in wireless networks
US20110096658A1 (en) * 2008-08-20 2011-04-28 Suck Chel Yang Precoding method for reducing uplink papr and apparatus thereof
US20110105137A1 (en) * 2009-04-23 2011-05-05 Qualcomm Incorporated Rank and precoding indication for mimo operation
US20110103510A1 (en) * 2009-04-23 2011-05-05 Qualcomm Incorporated Rank and precoding indication for mimo operation
US20110103498A1 (en) * 2009-04-23 2011-05-05 Qualcomm Incorporated Method and apparatus for control and data multiplexing in a mimo communication system
US20110110455A1 (en) * 2009-04-23 2011-05-12 Qualcomm Incorporated Rank and precoding indication for mimo operation
US20110131461A1 (en) * 2008-08-05 2011-06-02 Egon Schulz Communication Network Element and Mthod Transmitting Data
US20110142166A1 (en) * 2008-08-25 2011-06-16 Jae Wan Kim Method of feedback information transmission, method and apparatus of data transmission in a wireless communication system having multiple antennas
US20110211539A1 (en) * 2007-08-21 2011-09-01 Hyun Soo Ko Method for transmitting data in multiple antenna system
US20110244906A1 (en) * 2010-03-30 2011-10-06 Qualcomm Incorporated Systems, apparatuses, and methods to facilitate coordinated scheduling in wireless communication systems
US20110255483A1 (en) * 2010-04-16 2011-10-20 Research In Motion Limited Signaling of Precoding Granularity for LTE and LTE-A
US20110310831A1 (en) * 2010-06-21 2011-12-22 Qualcomm Incorporated Physical resource block (prb) bundling for open loop beamforming
WO2011162663A1 (en) * 2010-06-23 2011-12-29 Telefonaktiebolaget L M Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
US20120099554A1 (en) * 2009-07-03 2012-04-26 Panasonic Corporation Wireless communication device and wireless communication method
CN102447524A (en) * 2010-10-11 2012-05-09 电信科学技术研究院 Information indication method and equipment
US20120188932A1 (en) * 2009-09-28 2012-07-26 Zhengwei Gong Pre-coding method in cooperative relay system, communication apparatus, and relay apparatus
US20120201321A1 (en) * 2009-10-30 2012-08-09 Nokia Corporation Channel feedback to support efficient rank override
US20120270535A1 (en) * 2009-12-17 2012-10-25 Texas Instruments Incorporated Implicit CSI Feedback for DL Multiuser MIMO Transmission
US20130094453A1 (en) * 2008-05-02 2013-04-18 Nec Laboratories America, Inc. Multi-resolution precoding codebook
EP2654217A1 (en) * 2011-04-14 2013-10-23 LG Electronics Inc. Method for suppressing interference of terminal in multiple input multiple output wireless communication system and apparatus therefor
US20130329649A1 (en) * 2012-03-06 2013-12-12 Niklas Wernersson Beamformed downlink communications for a multiple antenna system
US9124313B2 (en) 2008-06-10 2015-09-01 Electronics And Telecommunications Research Institute Multi-cell cooperative communication system and terminal device
CN104935368A (en) * 2010-04-12 2015-09-23 Lg电子株式会社 Method and device for efficient feedback in wireless communication system supporting multiple antennas
CN104980204A (en) * 2010-04-08 2015-10-14 Lg电子株式会社 Signal Transmission Method And Apparatus Using Codebook In Wireless Communication System Supporting Multiple Antennas
US20150373721A1 (en) * 2013-02-28 2015-12-24 Huawei Technologies Co., Ltd. Radio resource configuration method and device
US9253784B2 (en) 2010-01-11 2016-02-02 Samsung Electronics Co., Ltd. Method and system for enabling resource block bundling in LTE-A systems
WO2016080742A1 (en) * 2014-11-17 2016-05-26 Samsung Electronics Co., Ltd. Csi feedback for mimo wireless communication systems with polarized active antenna array
EP2885883A4 (en) * 2012-08-14 2016-07-20 Samsung Electronics Co Ltd Multi-user and single user mimo for communication systems using hybrid beam forming
EP2415183A4 (en) * 2009-03-30 2016-08-10 Lg Electronics Inc Method and apparatus for transmitting signal in wireless communication system
US9438324B2 (en) 2008-06-30 2016-09-06 Alcatel Lucent Method of assigning precoding vectors in a mobile cellular network
US9647736B1 (en) * 2015-03-05 2017-05-09 Quantenna Communications, Inc. Compressed training for massive MU-MIMO in a wireless local area network
WO2018082910A1 (en) * 2016-11-02 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Mechanism for switching between uplink and downlink training in hybrid beamforming systems
US10084579B2 (en) 2014-11-17 2018-09-25 Samsung Electronics Co., Ltd. CSI feedback for MIMO wireless communication systems with polarized active antenna array
US10171135B2 (en) * 2014-08-30 2019-01-01 Huawei Technologies Co., Ltd. Precoding method, apparatus, and system
US10374837B2 (en) * 2015-07-07 2019-08-06 Lg Electronics Inc. Method for measuring effective channel for must transmission in wireless communication system and apparatus therefor
US10382295B2 (en) * 2013-09-18 2019-08-13 Luminous Cyber Corporation Metadata correlation and disambiguation
US10476568B2 (en) * 2017-08-12 2019-11-12 Huawei Technologies Co., Ltd. Method for determining precoding matrix set and transmission apparatus
EP3621384A4 (en) * 2017-05-04 2020-03-25 China Academy of Telecommunications Technology Precoding matrix indication method, terminal, and network apparatus
WO2021077050A1 (en) * 2019-10-18 2021-04-22 Qualcomm Incorporated Precoding matrix identifier confirmation for post processing
WO2023122401A1 (en) * 2021-12-22 2023-06-29 Qualcomm Incorporated Synthesized synchronization system block beams

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090130206A (en) * 2007-04-20 2009-12-18 인터디지탈 테크날러지 코포레이션 Method and apparatus for efficient precoding information validation for mimo communications
JP5226011B2 (en) * 2007-12-25 2013-07-03 パナソニック株式会社 Terminal apparatus and demodulation method
CN101499986B (en) * 2008-01-31 2012-05-09 富士通株式会社 Base station and scheduling method used in base station
KR101587005B1 (en) * 2009-03-11 2016-02-02 삼성전자주식회사 Apparatus and method for transmitting control information for interference mitigation in multiple antenna system
JP5149257B2 (en) * 2009-10-02 2013-02-20 シャープ株式会社 Wireless communication system, communication apparatus, and wireless communication method
US8964657B2 (en) 2009-11-02 2015-02-24 Qualcomm Incorporated Apparatus and method for joint encoding of user specific reference signal information in wireless communication
JP2011166536A (en) * 2010-02-10 2011-08-25 Sharp Corp Radio transmitter, base station device, radio transmission method, and control program and integrated circuit of base station device
KR101793259B1 (en) 2010-03-12 2017-11-02 한국전자통신연구원 Method of transmitting data frame to multi-user in wireless communication systems
WO2011137595A1 (en) * 2010-05-07 2011-11-10 Huawei Technologies Co.,Ltd. Method and system for quantized feedback rate adaptation in a communication system
CN101834701B (en) * 2010-05-12 2015-10-21 中兴通讯股份有限公司 A kind of method, system and mobile terminal realizing coordinated multipoint transmission
CN101986588B (en) * 2010-11-09 2016-03-30 中兴通讯股份有限公司 Channel state information feedback method and terminal
CN102025450B (en) * 2010-11-29 2015-06-03 中兴通讯股份有限公司 Method for feeding back channel information coding and mobile terminal
CN102623012B (en) 2011-01-26 2014-08-20 华为技术有限公司 Vector joint coding and decoding method, and codec
JP4800447B2 (en) * 2011-03-01 2011-10-26 株式会社エヌ・ティ・ティ・ドコモ Base station apparatus, transmission method, and mobile communication system
US8842760B2 (en) * 2012-07-17 2014-09-23 Broadcom Corporation Enhanced multi user MIMO scheduling
RU2621066C1 (en) 2013-06-05 2017-05-31 Эл Джи Электроникс Инк. Method and device for transmission of channel status information in wireless communication system
US20140362940A1 (en) * 2013-06-07 2014-12-11 Nec Laboratories America, Inc. Channel State Information (CSI) Feedback and Subsampling
US10511361B2 (en) 2015-06-17 2019-12-17 Intel Corporation Method for determining a precoding matrix and precoding module
CN105790854B (en) * 2016-03-01 2018-11-20 济南中维世纪科技有限公司 A kind of short range data transmission method and device based on sound wave
CN108631844B (en) * 2017-03-24 2021-05-18 电信科学技术研究院 Method, terminal and network side equipment for acquiring channel state information

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148738A1 (en) * 2002-02-07 2003-08-07 Lucent Technologies Inc. Method and apparatus for feedback error detection in a wireless communications systems
US20030148770A1 (en) * 2002-02-07 2003-08-07 Lucent Technologies Inc. Method and apparatus for closed loop transmit diversity in a wireless communications system
US20050037718A1 (en) * 2003-05-15 2005-02-17 Kim Sung-Jin Device and method for transmitting and receiving data by a transmit diversity scheme using multiple antennas in a mobile communication system
US20060035643A1 (en) * 2004-08-12 2006-02-16 Vook Frederick W Method and apparatus for closed loop transmission
US20060098568A1 (en) * 2004-11-09 2006-05-11 Samsung Electronics Co., Ltd. Method for supporting various multi-antenna schemes in BWA system using multiple antennas
US20060153112A1 (en) * 2005-01-11 2006-07-13 Samsung Electronics Co., Ltd. Method and system for indicating data burst allocation in a wireless communication system
US20070165738A1 (en) * 2005-10-27 2007-07-19 Barriac Gwendolyn D Method and apparatus for pre-coding for a mimo system
US20070220151A1 (en) * 2006-03-20 2007-09-20 Qinghua Li Downlink resource allocation and mapping
US20070223423A1 (en) * 2006-03-20 2007-09-27 Byoung-Hoon Kim Grouping of users for mimo transmission in a wireless communication system
US20070263746A1 (en) * 2006-05-12 2007-11-15 Nokia Corporation Feedback frame structure for subspace tracking precoding
US20080013610A1 (en) * 2006-05-17 2008-01-17 Texas Instruments Inc. Cqi feedback for mimo deployments
US20080037675A1 (en) * 2006-08-14 2008-02-14 Che Lin Codebook and pre-coder selection for closed-loop mimo
US20080043867A1 (en) * 2006-08-18 2008-02-21 Qualcomm Incorporated Feedback of precoding control indication (pci) and channel quality indication (cqi) in a wireless communication system
US20080188190A1 (en) * 2007-02-05 2008-08-07 Narayan Prasad Multi-rank beamforming precoding apparatus and method
US20080186934A1 (en) * 2007-02-05 2008-08-07 Farooq Khan MIMO control signaling in a wireless communication system
US20080187030A1 (en) * 2007-02-05 2008-08-07 Farooq Khan Precoding signaling in a MIMO wireless communication system
US20080232503A1 (en) * 2007-03-22 2008-09-25 Kyungho Kim Variable codebook for mimo system
US20080247488A1 (en) * 2007-04-04 2008-10-09 Ntt Docomo Inc. Uplink multiple-input-multiple-output (mimo) and cooperative mimo transmissions
US20080310353A1 (en) * 2007-06-18 2008-12-18 Motorola, Inc. Method and Apparatus to Facilitate Use of Default Transmitter-Receiver Configurations
US20080310356A1 (en) * 2007-06-15 2008-12-18 Zhijun Cai System and Method for Large Packet Delivery During Semi-Persistently Allocated Session
US20090122857A1 (en) * 2007-11-09 2009-05-14 Interdigital Patent Holdings, Inc. Method and apparatus for performing rank overriding in long term evolution networks
US20090219838A1 (en) * 2006-03-17 2009-09-03 Ming Jia Closed-loop mimo systems and methods
US20090238256A1 (en) * 2008-03-24 2009-09-24 Texas Instruments Incorporated Cqi feedback structure
US20090296844A1 (en) * 2004-11-01 2009-12-03 Bin Chul Ihm Method of transmitting a precoding matrix in a multi-input multi-output (mimo) system
US20090323840A1 (en) * 2007-03-21 2009-12-31 Wook Bong Lee Method of transmitting codebook index in wireless communication system
US7729442B2 (en) * 2005-10-31 2010-06-01 Samsung Electronics Co., Ltd Method and system for transmitting data in a communication system
US20100183085A1 (en) * 2007-06-19 2010-07-22 Ntt Docomo, Inc. Base station apparatus, user equipment, and communication control method in mobile communication system
US7809074B2 (en) * 2007-03-16 2010-10-05 Freescale Semiconductor, Inc. Generalized reference signaling scheme for multi-user, multiple input, multiple output (MU-MIMO) using arbitrarily precoded reference signals
US8259824B2 (en) * 2007-05-23 2012-09-04 Texas Instruments Incorporated Nested precoding codebook structures for MIMO systems
US8472547B2 (en) * 2010-04-07 2013-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Parameterized codebook with subset restrictions for use with precoding MIMO transmissions
US8531958B2 (en) * 2008-02-28 2013-09-10 Apple Inc. Communicating a feedback data structure containing information identifying coding to be applied on wirelessly communicated signaling
US8626081B2 (en) * 2007-10-08 2014-01-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangements for signaling control information in a communication system
US20140023154A1 (en) * 2012-07-17 2014-01-23 Broadcom Corporation Enhanced Multi User MIMO Scheduling

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US7020494B2 (en) 2002-02-07 2006-03-28 Sap Aktiengesellschaft Integrating contextual information into mobile enterprise applications
CN1788502B (en) 2003-06-10 2011-05-18 诺基亚有限公司 Method and apparatus for switching mobile station between autonomous and scheduled transmissions
KR20060028989A (en) * 2004-09-30 2006-04-04 엘지전자 주식회사 Method for processing receving signals in mimo system
US9184870B2 (en) * 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
WO2008031037A2 (en) * 2006-09-07 2008-03-13 Texas Instruments Incorporated Antenna grouping for mimo systems
KR20090130206A (en) * 2007-04-20 2009-12-18 인터디지탈 테크날러지 코포레이션 Method and apparatus for efficient precoding information validation for mimo communications

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030148770A1 (en) * 2002-02-07 2003-08-07 Lucent Technologies Inc. Method and apparatus for closed loop transmit diversity in a wireless communications system
US20030148738A1 (en) * 2002-02-07 2003-08-07 Lucent Technologies Inc. Method and apparatus for feedback error detection in a wireless communications systems
US20050037718A1 (en) * 2003-05-15 2005-02-17 Kim Sung-Jin Device and method for transmitting and receiving data by a transmit diversity scheme using multiple antennas in a mobile communication system
US20060035643A1 (en) * 2004-08-12 2006-02-16 Vook Frederick W Method and apparatus for closed loop transmission
US20090296844A1 (en) * 2004-11-01 2009-12-03 Bin Chul Ihm Method of transmitting a precoding matrix in a multi-input multi-output (mimo) system
US20060098568A1 (en) * 2004-11-09 2006-05-11 Samsung Electronics Co., Ltd. Method for supporting various multi-antenna schemes in BWA system using multiple antennas
US20060153112A1 (en) * 2005-01-11 2006-07-13 Samsung Electronics Co., Ltd. Method and system for indicating data burst allocation in a wireless communication system
US20070165738A1 (en) * 2005-10-27 2007-07-19 Barriac Gwendolyn D Method and apparatus for pre-coding for a mimo system
US7729442B2 (en) * 2005-10-31 2010-06-01 Samsung Electronics Co., Ltd Method and system for transmitting data in a communication system
US20090219838A1 (en) * 2006-03-17 2009-09-03 Ming Jia Closed-loop mimo systems and methods
US20070223423A1 (en) * 2006-03-20 2007-09-27 Byoung-Hoon Kim Grouping of users for mimo transmission in a wireless communication system
US20070220151A1 (en) * 2006-03-20 2007-09-20 Qinghua Li Downlink resource allocation and mapping
US20070263746A1 (en) * 2006-05-12 2007-11-15 Nokia Corporation Feedback frame structure for subspace tracking precoding
US20080013610A1 (en) * 2006-05-17 2008-01-17 Texas Instruments Inc. Cqi feedback for mimo deployments
US20080037675A1 (en) * 2006-08-14 2008-02-14 Che Lin Codebook and pre-coder selection for closed-loop mimo
US20080043867A1 (en) * 2006-08-18 2008-02-21 Qualcomm Incorporated Feedback of precoding control indication (pci) and channel quality indication (cqi) in a wireless communication system
US20080186934A1 (en) * 2007-02-05 2008-08-07 Farooq Khan MIMO control signaling in a wireless communication system
US20080187030A1 (en) * 2007-02-05 2008-08-07 Farooq Khan Precoding signaling in a MIMO wireless communication system
US20080188190A1 (en) * 2007-02-05 2008-08-07 Narayan Prasad Multi-rank beamforming precoding apparatus and method
US7809074B2 (en) * 2007-03-16 2010-10-05 Freescale Semiconductor, Inc. Generalized reference signaling scheme for multi-user, multiple input, multiple output (MU-MIMO) using arbitrarily precoded reference signals
US20090323840A1 (en) * 2007-03-21 2009-12-31 Wook Bong Lee Method of transmitting codebook index in wireless communication system
US20080232503A1 (en) * 2007-03-22 2008-09-25 Kyungho Kim Variable codebook for mimo system
US20080247488A1 (en) * 2007-04-04 2008-10-09 Ntt Docomo Inc. Uplink multiple-input-multiple-output (mimo) and cooperative mimo transmissions
US8259824B2 (en) * 2007-05-23 2012-09-04 Texas Instruments Incorporated Nested precoding codebook structures for MIMO systems
US20080310356A1 (en) * 2007-06-15 2008-12-18 Zhijun Cai System and Method for Large Packet Delivery During Semi-Persistently Allocated Session
US20080310353A1 (en) * 2007-06-18 2008-12-18 Motorola, Inc. Method and Apparatus to Facilitate Use of Default Transmitter-Receiver Configurations
US20100183085A1 (en) * 2007-06-19 2010-07-22 Ntt Docomo, Inc. Base station apparatus, user equipment, and communication control method in mobile communication system
US8626081B2 (en) * 2007-10-08 2014-01-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangements for signaling control information in a communication system
US20090122857A1 (en) * 2007-11-09 2009-05-14 Interdigital Patent Holdings, Inc. Method and apparatus for performing rank overriding in long term evolution networks
US8531958B2 (en) * 2008-02-28 2013-09-10 Apple Inc. Communicating a feedback data structure containing information identifying coding to be applied on wirelessly communicated signaling
US20090238256A1 (en) * 2008-03-24 2009-09-24 Texas Instruments Incorporated Cqi feedback structure
US8472547B2 (en) * 2010-04-07 2013-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Parameterized codebook with subset restrictions for use with precoding MIMO transmissions
US20140023154A1 (en) * 2012-07-17 2014-01-23 Broadcom Corporation Enhanced Multi User MIMO Scheduling

Cited By (143)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9584200B2 (en) 2007-03-12 2017-02-28 Lg Electronics Inc. Method for transmitting control information in multiple antenna system
US9025688B2 (en) * 2007-03-12 2015-05-05 Lg Electronics Inc. Method for transmitting control information in multiple antenna system
US20100111226A1 (en) * 2007-03-12 2010-05-06 Hyun Soo Ko Method for transmitting control information in multiple antenna system
US20100208709A1 (en) * 2007-06-14 2010-08-19 Electronics And Telecommunications Research Instit Method of transmitting ack/nack bit supporting harq in mobile communication system supporting multi user mimo
US8811301B2 (en) * 2007-06-14 2014-08-19 Electronics And Telecommunications Research Institute Method of transmitting ACK/NACK bit supporting HARQ in mobile communication system supporting multi user MIMO
US8811506B2 (en) 2007-06-19 2014-08-19 Ntt Docomo, Inc. Base station apparatus, user equipment, and communication control method in mobile communication system
US8422574B2 (en) * 2007-06-19 2013-04-16 Ntt Docomo, Inc. Base station apparatus, user equipment, and communication control method in mobile communication system
US20100183085A1 (en) * 2007-06-19 2010-07-22 Ntt Docomo, Inc. Base station apparatus, user equipment, and communication control method in mobile communication system
US10673497B2 (en) 2007-06-27 2020-06-02 Unwired Planet, Llc Method and arrangements in a telecommunication system
US11323159B2 (en) 2007-06-27 2022-05-03 Unwired Planet, Llc Method and arrangements in a telecommunication system
US10056953B2 (en) 2007-06-27 2018-08-21 Unwired Planet, Llc Method and arrangements in a telecommunication system
US9698879B2 (en) 2007-06-27 2017-07-04 Unwired Planet, Llc Method and arrangements in a telecommunication system
US8989290B2 (en) 2007-06-27 2015-03-24 Unwired Planet, Llc Mode switching between SU-MIMO and MU-MIMO
US20100322330A1 (en) * 2007-06-27 2010-12-23 George Jongren Mode Switching Between SU-MIMO and MU-MIMO
US20110211539A1 (en) * 2007-08-21 2011-09-01 Hyun Soo Ko Method for transmitting data in multiple antenna system
US8335194B2 (en) * 2007-08-21 2012-12-18 Lg Electronics Inc. Method for transmitting data in multiple antenna system
US20090093221A1 (en) * 2007-10-08 2009-04-09 Interdigital Patent Holdings, Inc. Method and apparatus for signaling interference information for multi-user mimo
US8140019B2 (en) 2007-12-31 2012-03-20 Lg Electronics Inc. Method for reducing inter-cell interference
US8705404B2 (en) 2007-12-31 2014-04-22 Lg Electronics Inc. Method for transmitting and receiving signals using collaborative MIMO scheme
US20090181708A1 (en) * 2007-12-31 2009-07-16 Jae Wan Kim Method for reducing inter-cell interference
US8369788B2 (en) * 2007-12-31 2013-02-05 Lg Electronics Inc. Method for reducing inter-cell interference
US9084229B2 (en) 2007-12-31 2015-07-14 Lg Electronics Inc. Method for transmitting and receiving signals using collaborative MIMO scheme
US8190094B2 (en) 2007-12-31 2012-05-29 Lg Electronics Inc. Method for reducing inter-cell interference
US20090207822A1 (en) * 2007-12-31 2009-08-20 Lg Electronics Inc. Method for transmitting and receiving signals using collaborative MIMO scheme
US8179819B2 (en) 2007-12-31 2012-05-15 Lg Electronics Inc. Method for transmitting and receiving signals using collaborative MIMO scheme
US20090215480A1 (en) * 2007-12-31 2009-08-27 Kim Jaewan Method for reducing inter-cell interference
US9130616B2 (en) * 2008-01-08 2015-09-08 Ntt Docomo, Inc. Weighting factor reporting method in a mimo mobile communications system, and base station and user apparatus that are suitable for use in the method
US20110013719A1 (en) * 2008-01-08 2011-01-20 Ntt Docomo, Inc. Weighting factor reporting method in a mimo mobile communications system, and base station and user apparatus that are suitable for use in the method
US11601939B2 (en) 2008-03-19 2023-03-07 Nec Corporation Wireless communication system, wireless communication setting method, base station, mobile station, and program
US8953551B2 (en) * 2008-03-19 2015-02-10 Nec Corporation Wireless communication system, wireless communication setting method, base station, mobile station, and program
US9743410B2 (en) 2008-03-19 2017-08-22 Nec Corporation Wireless communication system, wireless communication setting method, base station, mobile station, and program
US9277545B2 (en) 2008-03-19 2016-03-01 Nec Corporation Wireless communication system, wireless communication setting method, base station, mobile station, and program
US10624096B2 (en) 2008-03-19 2020-04-14 Nec Corporation Wireless communication system, wireless communication setting method, base station, mobile station, and program
US10849126B2 (en) 2008-03-19 2020-11-24 Nec Corporation Wireless communication system, wireless communication setting method, base station, mobile station, and program
US10117250B2 (en) 2008-03-19 2018-10-30 Nec Corporation Wireless communication system, wireless communication setting method, base station, mobile station, and program
US9031034B2 (en) 2008-03-19 2015-05-12 Nec Corporation Wireless communication system, wireless communication setting method, base station, mobile station, and program
US20110002282A1 (en) * 2008-03-19 2011-01-06 Takamichi Inoue Wireless communication system, wireless communication setting method, base station, mobile station, and program
US9474074B2 (en) 2008-03-19 2016-10-18 Nec Corporation Wireless communication system, wireless communication setting method, base station, mobile station, and program
US8717997B2 (en) * 2008-05-02 2014-05-06 Nec Laboratories America, Inc. Multi-resolution precoding codebook
US20130230116A1 (en) * 2008-05-02 2013-09-05 Nec Laboratories America, Inc. Multi-resolution precoding codebook
US20130094453A1 (en) * 2008-05-02 2013-04-18 Nec Laboratories America, Inc. Multi-resolution precoding codebook
US9124313B2 (en) 2008-06-10 2015-09-01 Electronics And Telecommunications Research Institute Multi-cell cooperative communication system and terminal device
US9438324B2 (en) 2008-06-30 2016-09-06 Alcatel Lucent Method of assigning precoding vectors in a mobile cellular network
US20090325496A1 (en) * 2008-06-30 2009-12-31 Alcatel-Lucent via the Electronic Patent Assignmen System (EPAS) Method of reducing intra-cell spatial interference in a mobile cellular network
US8254318B2 (en) * 2008-07-11 2012-08-28 Alcatel Lucent Wireless communication system and method of joint beamforming wireless communication
US20100009717A1 (en) * 2008-07-11 2010-01-14 Pantelis Monogioudis Wireless communication system and method of joint beamforming wireless communication
US20110131461A1 (en) * 2008-08-05 2011-06-02 Egon Schulz Communication Network Element and Mthod Transmitting Data
US9374199B2 (en) * 2008-08-05 2016-06-21 Nokia Solutions And Networks Oy Communication network element and method transmitting data
US10367567B2 (en) 2008-08-20 2019-07-30 Intel Deutschland Gmbh Method, apparatus and communication unit
US9065719B2 (en) 2008-08-20 2015-06-23 Intel Mobile Communications GmbH Method, apparatus and communication unit
US20100048148A1 (en) * 2008-08-20 2010-02-25 Infineon Technologies Ag Method, apparatus and communication unit
US9413446B2 (en) 2008-08-20 2016-08-09 Intel Deutschland Gmbh Method, apparatus and communication unit
US20110096658A1 (en) * 2008-08-20 2011-04-28 Suck Chel Yang Precoding method for reducing uplink papr and apparatus thereof
US8204453B2 (en) * 2008-08-20 2012-06-19 Intel Mobile Communications GmbH Method, apparatus and communication unit
US9900077B2 (en) 2008-08-20 2018-02-20 Intel Deutschland Gmbh Method, apparatus and communication unit
US10644779B2 (en) 2008-08-20 2020-05-05 Intel Deutschland Gmbh Method, apparatus and communication unit
US8554157B2 (en) 2008-08-20 2013-10-08 Intel Mobile Communications GmbH Method, apparatus and communication unit
US8520494B2 (en) * 2008-08-20 2013-08-27 Lg Electronics Inc. Precoding method for reducing uplink PAPR and apparatus thereof
US20110142166A1 (en) * 2008-08-25 2011-06-16 Jae Wan Kim Method of feedback information transmission, method and apparatus of data transmission in a wireless communication system having multiple antennas
US8351535B2 (en) * 2008-08-25 2013-01-08 Lg Electronics Inc. Method of feedback information transmission, method and apparatus of data transmission in a wireless communication system having multiple antennas
WO2010061302A2 (en) * 2008-11-03 2010-06-03 Koninklijke Philips Electronics N.V. Antenna configuration for co-operative beamforming
WO2010061302A3 (en) * 2008-11-03 2010-12-02 Koninklijke Philips Electronics N.V. Antenna configuration for co-operative beamforming
US20100195748A1 (en) * 2009-02-02 2010-08-05 Samsung Electronics Co., Ltd. Method and system for reference signal pattern design in resource blocks
US9729218B2 (en) 2009-03-30 2017-08-08 Lg Electronics Inc. Method and apparatus for transmitting signal in wireless communication system
US9520925B2 (en) 2009-03-30 2016-12-13 Lg Electronics Inc. Method and apparatus for transmitting signal in wireless communication system
EP2415183A4 (en) * 2009-03-30 2016-08-10 Lg Electronics Inc Method and apparatus for transmitting signal in wireless communication system
RU2495528C2 (en) * 2009-04-23 2013-10-10 Квэлкомм Инкорпорейтед Method and apparatus for controlling and multiplexing data in mimo communication system
US20110110455A1 (en) * 2009-04-23 2011-05-12 Qualcomm Incorporated Rank and precoding indication for mimo operation
US9236985B2 (en) 2009-04-23 2016-01-12 Qualcomm Incorporated Method and apparatus for control and data multiplexing in a MIMO communication system
US20110103498A1 (en) * 2009-04-23 2011-05-05 Qualcomm Incorporated Method and apparatus for control and data multiplexing in a mimo communication system
US20110103510A1 (en) * 2009-04-23 2011-05-05 Qualcomm Incorporated Rank and precoding indication for mimo operation
US20110105137A1 (en) * 2009-04-23 2011-05-05 Qualcomm Incorporated Rank and precoding indication for mimo operation
WO2010130097A1 (en) * 2009-05-14 2010-11-18 华为技术有限公司 Information process method, device and system
US8885747B2 (en) 2009-05-14 2014-11-11 Huawei Technologies Co., Ltd. Information processing method, device, and system
WO2010135924A1 (en) * 2009-05-25 2010-12-02 富士通株式会社 Communication device, communication method and base station
CN102415004A (en) * 2009-05-25 2012-04-11 富士通株式会社 Communication device, communication method and base station
WO2010143780A2 (en) * 2009-06-10 2010-12-16 한국전자통신연구원 Multi-cell cooperative communication system and terminal device
WO2010143780A3 (en) * 2009-06-10 2014-01-09 한국전자통신연구원 Multi-cell cooperative communication system and terminal device
US8848603B2 (en) 2009-06-22 2014-09-30 Qualcomm Incorporated Precoding control channels in wireless networks
WO2011005533A3 (en) * 2009-06-22 2011-04-21 Qualcomm Incorporated Precoding control channels in wireless networks
US20110141927A1 (en) * 2009-06-22 2011-06-16 Qualcomm Incorporated Precoding control channels in wireless networks
CN102474382A (en) * 2009-07-03 2012-05-23 松下电器产业株式会社 Wireless communication device and wireless communication method
US20120099554A1 (en) * 2009-07-03 2012-04-26 Panasonic Corporation Wireless communication device and wireless communication method
US9172561B2 (en) * 2009-07-29 2015-10-27 Qualcomm Incorporated Adaptive transmissions in coordinated multiple point communications
US20110026421A1 (en) * 2009-07-29 2011-02-03 Qualcomm Incorporated Adaptive transmissions in coordinated multiple point communications
US8861392B2 (en) * 2009-09-28 2014-10-14 Huawei Technologies Co., Ltd. Pre-coding method in cooperative relay system, communication apparatus, and relay apparatus
US20120188932A1 (en) * 2009-09-28 2012-07-26 Zhengwei Gong Pre-coding method in cooperative relay system, communication apparatus, and relay apparatus
US8798186B2 (en) 2009-09-30 2014-08-05 Alcatel Lucent Transmission of precoding codebook over an air interface
US20110075746A1 (en) * 2009-09-30 2011-03-31 Rheinschmitt Rupert J Transmission of precoding codebook over an air interface
WO2011041299A1 (en) * 2009-09-30 2011-04-07 Alcatel-Lucent Usa Inc. Transmission of precoding codebook over an air interface
US8369439B2 (en) 2009-09-30 2013-02-05 Alcatel Lucent Transmission of precoding codebook over an air interface
CN102577159A (en) * 2009-09-30 2012-07-11 阿尔卡特朗讯 Transmission of precoding codebook over an air interface
US8811516B2 (en) * 2009-10-30 2014-08-19 Nokia Corporation Channel feedback to support efficient rank override
CN102640431A (en) * 2009-10-30 2012-08-15 诺基亚公司 Channel feedback to support efficient rank override
US20120201321A1 (en) * 2009-10-30 2012-08-09 Nokia Corporation Channel feedback to support efficient rank override
US20120270535A1 (en) * 2009-12-17 2012-10-25 Texas Instruments Incorporated Implicit CSI Feedback for DL Multiuser MIMO Transmission
US9253784B2 (en) 2010-01-11 2016-02-02 Samsung Electronics Co., Ltd. Method and system for enabling resource block bundling in LTE-A systems
US10333597B2 (en) 2010-01-11 2019-06-25 Samsung Electronics Co., Ltd. Method and system for enabling block bundling in LTE-A systems
US9516655B2 (en) 2010-01-11 2016-12-06 Samsung Electronics Co., Ltd. Method and system for enabling resource block bundling in LTE-A systems
US9130607B2 (en) 2010-03-30 2015-09-08 Qualcomm Incorporated Systems, apparatuses, and methods to facilitate coordinated scheduling in wireless communication systems
US20110244906A1 (en) * 2010-03-30 2011-10-06 Qualcomm Incorporated Systems, apparatuses, and methods to facilitate coordinated scheduling in wireless communication systems
US8948800B2 (en) * 2010-03-30 2015-02-03 Qualcomm Incorporated Systems, apparatuses, and methods to facilitate coordinated scheduling in wireless communication systems
US10855349B2 (en) 2010-04-08 2020-12-01 Lg Electronics Inc. Signal transmission method and apparatus using codebook in wireless communication system supporting multiple antennas
US10567053B2 (en) 2010-04-08 2020-02-18 Lg Electronics Inc. Signal transmission method and apparatus using codebook in wireless communication system supporting multiple antennas
CN104980204A (en) * 2010-04-08 2015-10-14 Lg电子株式会社 Signal Transmission Method And Apparatus Using Codebook In Wireless Communication System Supporting Multiple Antennas
US9806779B2 (en) 2010-04-08 2017-10-31 Lg Electronics Inc. Signal transmission method and apparatus using codebook in wireless communication system supporting multiple antennas
US10181885B2 (en) 2010-04-08 2019-01-15 Lg Electronics Inc. Signal transmission method and apparatus using codebook in wireless communication system supporting multiple antennas
CN104935368A (en) * 2010-04-12 2015-09-23 Lg电子株式会社 Method and device for efficient feedback in wireless communication system supporting multiple antennas
US20110255483A1 (en) * 2010-04-16 2011-10-20 Research In Motion Limited Signaling of Precoding Granularity for LTE and LTE-A
US20110310831A1 (en) * 2010-06-21 2011-12-22 Qualcomm Incorporated Physical resource block (prb) bundling for open loop beamforming
US9148204B2 (en) * 2010-06-21 2015-09-29 Qualcomm Incorporated Physical resource block (PRB) bundling for open loop beamforming
WO2011162663A1 (en) * 2010-06-23 2011-12-29 Telefonaktiebolaget L M Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
USRE49804E1 (en) 2010-06-23 2024-01-16 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
US8489029B2 (en) 2010-06-23 2013-07-16 Telefonaktiebolaget L M Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
US9571246B2 (en) 2010-06-23 2017-02-14 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
US10225057B2 (en) 2010-06-23 2019-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Reference signal interference management in heterogeneous network deployments
CN102447524A (en) * 2010-10-11 2012-05-09 电信科学技术研究院 Information indication method and equipment
US9100067B2 (en) 2011-04-14 2015-08-04 Lg Electronics Inc. Method for suppressing interference of terminal in multiple input multiple output wireless communication system and apparatus therefor
EP2654217A1 (en) * 2011-04-14 2013-10-23 LG Electronics Inc. Method for suppressing interference of terminal in multiple input multiple output wireless communication system and apparatus therefor
EP2654217A4 (en) * 2011-04-14 2014-08-27 Lg Electronics Inc Method for suppressing interference of terminal in multiple input multiple output wireless communication system and apparatus therefor
US20130329649A1 (en) * 2012-03-06 2013-12-12 Niklas Wernersson Beamformed downlink communications for a multiple antenna system
US9331386B2 (en) * 2012-03-06 2016-05-03 Telefonaktiebolaget Lm Ericsson (Publ) Beamformed downlink communications for a multiple antenna system
EP2885883A4 (en) * 2012-08-14 2016-07-20 Samsung Electronics Co Ltd Multi-user and single user mimo for communication systems using hybrid beam forming
US10912091B2 (en) 2013-02-28 2021-02-02 Huawei Technologies Co., Ltd. Radio resource configuration method and device
US10111225B2 (en) * 2013-02-28 2018-10-23 Huawei Technologies Co., Ltd. Radio resource configuration method and device
US20150373721A1 (en) * 2013-02-28 2015-12-24 Huawei Technologies Co., Ltd. Radio resource configuration method and device
US11523393B2 (en) 2013-02-28 2022-12-06 Huawei Technologies Co., Ltd. Radio resource configuration method and device
US10382295B2 (en) * 2013-09-18 2019-08-13 Luminous Cyber Corporation Metadata correlation and disambiguation
US10171135B2 (en) * 2014-08-30 2019-01-01 Huawei Technologies Co., Ltd. Precoding method, apparatus, and system
US10084579B2 (en) 2014-11-17 2018-09-25 Samsung Electronics Co., Ltd. CSI feedback for MIMO wireless communication systems with polarized active antenna array
WO2016080742A1 (en) * 2014-11-17 2016-05-26 Samsung Electronics Co., Ltd. Csi feedback for mimo wireless communication systems with polarized active antenna array
US9647736B1 (en) * 2015-03-05 2017-05-09 Quantenna Communications, Inc. Compressed training for massive MU-MIMO in a wireless local area network
US10374837B2 (en) * 2015-07-07 2019-08-06 Lg Electronics Inc. Method for measuring effective channel for must transmission in wireless communication system and apparatus therefor
US10601478B2 (en) * 2016-11-02 2020-03-24 Telefonaktiebolaget Lm Ericsson (Publ) Mechanism for switching between uplink and downlink training in hybrid beamforming systems
WO2018082910A1 (en) * 2016-11-02 2018-05-11 Telefonaktiebolaget Lm Ericsson (Publ) Mechanism for switching between uplink and downlink training in hybrid beamforming systems
US11336339B2 (en) 2017-05-04 2022-05-17 Datang Mobile Communications Equipment Co., Ltd. Precoding matrix indication method, terminal, and network side device
EP3621384A4 (en) * 2017-05-04 2020-03-25 China Academy of Telecommunications Technology Precoding matrix indication method, terminal, and network apparatus
US10897293B2 (en) 2017-08-12 2021-01-19 Huawei Technologies Co., Ltd. Method for determining precoding matrix set and transmission apparatus
US10476568B2 (en) * 2017-08-12 2019-11-12 Huawei Technologies Co., Ltd. Method for determining precoding matrix set and transmission apparatus
WO2021077050A1 (en) * 2019-10-18 2021-04-22 Qualcomm Incorporated Precoding matrix identifier confirmation for post processing
CN114556799A (en) * 2019-10-18 2022-05-27 高通股份有限公司 Precoding matrix identifier validation for post-processing
US11569887B2 (en) 2019-10-18 2023-01-31 Qualcomm Incorporated Precoding matrix identifier confirmation for post processing
WO2023122401A1 (en) * 2021-12-22 2023-06-29 Qualcomm Incorporated Synthesized synchronization system block beams

Also Published As

Publication number Publication date
EP2797250A3 (en) 2014-11-12
CN105634573A (en) 2016-06-01
CN105634573B (en) 2019-08-20
EP2568640A2 (en) 2013-03-13
CA2684874A1 (en) 2008-10-30
WO2008131352A1 (en) 2008-10-30
ES2563427T3 (en) 2016-03-15
TW200847709A (en) 2008-12-01
TWI475822B (en) 2015-03-01
CN101689962B (en) 2016-03-16
RU2009142850A (en) 2011-05-27
KR20130017092A (en) 2013-02-19
KR101494728B1 (en) 2015-02-25
KR101494731B1 (en) 2015-02-25
RU2438251C2 (en) 2011-12-27
JP5833688B2 (en) 2015-12-16
IL201649A0 (en) 2010-06-16
US10284265B2 (en) 2019-05-07
JP6006397B2 (en) 2016-10-12
MX2009011299A (en) 2010-01-14
US20170294944A1 (en) 2017-10-12
EP2797250A2 (en) 2014-10-29
EP2147516A1 (en) 2010-01-27
EP2568640A3 (en) 2013-05-01
AU2008242610A1 (en) 2008-10-30
EP3313013A1 (en) 2018-04-25
JP2016054499A (en) 2016-04-14
IL201649A (en) 2014-05-28
KR20090130206A (en) 2009-12-18
JP2010525684A (en) 2010-07-22
KR101381329B1 (en) 2014-04-11
AR066220A1 (en) 2009-08-05
HK1203716A1 (en) 2015-10-30
JP2014132764A (en) 2014-07-17
KR101496106B1 (en) 2015-02-25
JP2017011750A (en) 2017-01-12
KR20130127002A (en) 2013-11-21
CN101689962A (en) 2010-03-31
EP2147516B1 (en) 2015-12-09
KR20100017117A (en) 2010-02-16
TWI528747B (en) 2016-04-01
TW201244404A (en) 2012-11-01
SG10201503104PA (en) 2015-06-29
TW201507382A (en) 2015-02-16
BRPI0809746B1 (en) 2020-06-16
CA2684874C (en) 2015-08-18
KR20140042929A (en) 2014-04-07
US9716604B2 (en) 2017-07-25
MY159052A (en) 2016-12-15
EP2797250B1 (en) 2017-12-20
BRPI0809746A2 (en) 2014-09-23
HK1253948A1 (en) 2019-07-05
TWI455541B (en) 2014-10-01
EP2568640B1 (en) 2014-07-09

Similar Documents

Publication Publication Date Title
US10284265B2 (en) Method and apparatus for efficient precoding information validation for MIMO communications
US20090003474A1 (en) Constant modulus mimo precoding for constraining transmit antenna power for differential feedback
CN101502020A (en) Method, apparatus and system for implementing multi-user virtual multiple-input multiple-output
US9438325B2 (en) Method for signaling MU-MIMO parameters
AU2012203560B2 (en) Method and apparatus for efficient precoding information validation for MIMO communications
WO2023241215A1 (en) Communication method and device

Legal Events

Date Code Title Description
AS Assignment

Owner name: INTERDIGITAL TECHNOLOGY CORPORATION, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PAN, KYLE JUNG-LIN;REEL/FRAME:021119/0284

Effective date: 20080603

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4