US20080258404A1 - Seal Arrangement and Method for Manufacturing a Sealing Body for a Seal Arrangement - Google Patents
Seal Arrangement and Method for Manufacturing a Sealing Body for a Seal Arrangement Download PDFInfo
- Publication number
- US20080258404A1 US20080258404A1 US11/632,332 US63233205A US2008258404A1 US 20080258404 A1 US20080258404 A1 US 20080258404A1 US 63233205 A US63233205 A US 63233205A US 2008258404 A1 US2008258404 A1 US 2008258404A1
- Authority
- US
- United States
- Prior art keywords
- wear component
- main body
- seal arrangement
- sealing body
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
- C23C26/02—Coating not provided for in groups C23C2/00 - C23C24/00 applying molten material to the substrate
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C10/00—Solid state diffusion of only metal elements or silicon into metallic material surfaces
- C23C10/02—Pretreatment of the material to be coated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/02—Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D11/00—Preventing or minimising internal leakage of working-fluid, e.g. between stages
- F01D11/08—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
- F01D11/12—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
- F01D11/122—Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with erodable or abradable material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/22—Blade-to-blade connections, e.g. for damping vibrations
- F01D5/225—Blade-to-blade connections, e.g. for damping vibrations by shrouding
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/20—Manufacture essentially without removing material
- F05D2230/22—Manufacture essentially without removing material by sintering
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/55—Seals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/12—Light metals
- F05D2300/121—Aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2300/00—Materials; Properties thereof
- F05D2300/10—Metals, alloys or intermetallic compounds
- F05D2300/13—Refractory metals, i.e. Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W
- F05D2300/132—Chromium
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
Definitions
- the invention relates to a seal arrangement and a method for manufacturing a sealing body for a seal arrangement.
- the invention further relates to a turbine engine and a gas turbine.
- Gas turbines consist of several subassemblies, for example, of at least a compressor, a combustion chamber and at least one turbine.
- the or each compressor as well as the or each turbine has a rotor which rotates relative to a stationary stator.
- the stator it is specifically a stationary housing to which stationary guide vanes are assigned. Rotor blades are assigned to the rotor which rotate together with the rotor relative to the stationary guide vanes and the stationary housing.
- a gap between radially inner ends of the fixed guide vanes and the rotating rotor must be sealed.
- a seal arrangement to seal the gap between the radially inner ends of the stationary guide vanes and the rotating rotor is designated as an inner air seal.
- a further gap to be sealed is located, for example, between the radially outer end of the rotating rotor blades and the stationary housing.
- a seal arrangement for sealing the gap between the radially outer ends of the rotating rotor blades and the housing is designated as an outer air seal.
- seal arrangements for providing an inner air seal or an outer air seal as well as labyrinth seals, where such labyrinth seals are formed by a first, porous sealing body and a blade-shaped second sealing body co-acting with the first sealing body.
- the first porous sealing body can, for example, be configured as a honeycomb sealing body. It is also already known to configure the first sealing body as a porous layer of material.
- the blade-shaped second sealing body which co-acts with the first sealing body is also designated as a seal fin.
- the seal fins are preferably assigned to the rotor or rotating rotor blades in the area of an outer shroud of the blades.
- the porous sealing body is, on the other hand, preferably assigned to the housing or the stationary guide vanes in the area of an inner shroud of the guide vanes.
- Labyrinth seal systems known from the prior art are not suitable for high temperatures that are consistently above 500° C., since they are exposed to great wear at high operating temperatures, for example from oxidation. Furthermore, they are subject to vibrational load or deformation load. Labyrinth seals known from the prior art consequently have a limited operating life at temperatures of more than 500° C. However, due to the increasing improvements in gas turbines, higher operating temperatures are found more frequently within the turbines so that the labyrinth seals known from the prior art must be improved.
- the problem underlying the present invention is to create a novel seal arrangement and a method of manufacturing a sealing body for a seal arrangement.
- the or each first sealing body has a main body and a porous wear component wherein the main body and the wear component have a graduated material composition.
- a seal arrangement in which the porous sealing body consists of a main body and a porous wear component, wherein the main body and the porous wear component have a graduated material composition.
- the preference is for the main body and the porous wear component to be graduated in their surface area with respect to aluminum and/or chromium.
- the oxidation resistance of the wear component and the main body is clearly improved so that the seal arrangements can be used at temperatures of more than 600° C.
- the rigidity of the part is increased and at the same time the ductility of the porous wear component is preserved.
- the main body and the wear component have an aluminum content of 15% to 35% by weight in the area of their surfaces or edge zones.
- the method comprises at least the following steps: a) preparation of a main body; b) preparation of a porous wear component; c) bonding the main body and the wear component; d) calorizing and/or chromizing the main body and wear component which have been bonded.
- FIG. 1 shows a schematized section from a seal arrangement in accordance with the invention
- FIG. 2 shows a detail of the seal arrangement from FIG. 1 ;
- FIG. 3 shows an alternative detail of the seal arrangement from FIG. 1 ;
- FIG. 4 shows a schematized section from a further seal arrangement in accordance with the invention.
- FIG. 1 shows a seal arrangement 10 in accordance with a first embodiment of the invention to seal a gap 11 between a rotor 12 and a stator 13 of a gas turbine, in particular a low-pressure turbine of an aero engine.
- the seal arrangement shown in FIG. 1 may be, for example, an outer air seal, wherein the stator 13 is formed by a housing and the rotor 12 by rotating rotor blades, that is to say an outer shroud for the rotor blades.
- FIG. 1 The seal arrangement of FIG. 1 is formed by a first sealing body 14 assigned to the stator 13 and a second sealing body 15 co-acting with the first sealing body 14 .
- FIG. 2 shows the first sealing body 14 in a separate view.
- the first sealing body 14 is formed by a carrier or main body 16 and a porous wear component 17 .
- the main body 16 and the wear component 17 are solidly bonded, by high-temperature soldering for example.
- the porous wear component 17 is configured as a honeycomb sealing body.
- FIG. 3 shows an alternative configuration of the first sealing body 14 , in which the porous wear component 17 is composed of a porous material layer, specifically a powder metal sintered body.
- the main body 16 and the porous wear component 17 are both formed from a ferrous alloy or a nickel based alloy which have a graduated material composition in the area of their surfaces, or edge zones, with respect to aluminum and/or chromium.
- the aluminum content and/or chromium content in the area of the surface, or edge zone, of main body 16 and wear component 17 lies in a range between 15 and 35% by weight.
- FIG. 4 shows a further seal arrangement according to the invention 18 which is essentially the same as the embodiment from FIG. 1 . So identical reference numerals are used for identical assemblies.
- the seal arrangement 18 from FIG. 4 differs from the seal arrangement 10 in accordance with FIG. 1 only in that the wear component 17 has a stepped configuration and co-acts with two second blade-shaped sealing bodies 15 which have different radial extensions. With respect to the remaining details, reference can be made to the above explanations.
- the process begins with the preparation of a main body 16 and a porous wear component 17 for the seal arrangements, wherein the main body and the wear element are made from a ferrous based alloy or a nickel based alloy.
- the wear component 17 it can be a honeycomb sealing body or a sealing body of a layer of porous material, specifically a powder metal sintered body.
- the wear component 17 and the main body 16 are solidly bonded together.
- Bonding the main body 16 to the wear component 17 is preferably performed by means of high-temperature soldering, in which the soldering temperature is higher than approximately 80% of the melting temperature of the base material of the wear component 17 and the main body 16 to be bonded. If, for example, a wear component 17 of Hastelloy is used in a honeycomb structure, the soldering temperature can be 1180° C.
- the bonding of wear component 17 and main body 16 can also be carried out by diffusion bonding.
- the bonded components are calorized and/or chromized.
- the calorizing and/or chromizing is preferably performed with the aid of a Chemical Vapor Deposition (CVD) process, in which an alloy gradient with respect to aluminum and/or chromium results on the surface or in the edge zone of main body 16 and porous wear component 17 through calorizing and/or chromizing.
- Calorizing is preferably carried out at 1050° C. over a 4 hour period.
- a coating thickness of 40 ⁇ m to 100 ⁇ m, preferably 80 ⁇ m is created on the carrier or main body 16 ; on the porous wear component on the other hand, a coating thickness of 20 ⁇ m to 60 ⁇ m, preferably of 40 ⁇ m is created.
- An aluminum content and/or chromium content of 15% to 35% by weight, preferably of 30% by weight, is thereby created on the surface or on the edge zone of wear component 17 and main body 16 . Furthermore, the oxidation resistance of the sealing body 14 is thereby improved and the rigidity of the wear component 17 is increased without negatively influencing its ductility.
- the seal arrangement in accordance with the invention is preferably used in turbine engines, gas turbines or aero engines. It is especially suitable for use in a low-pressure compressor of an aero engine.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004034312.8 | 2004-07-15 | ||
DE102004034312A DE102004034312A1 (de) | 2004-07-15 | 2004-07-15 | Dichtungsanordnung und Verfahren zur Herstellung eines Dichtkörpers für eine Dichtungsanordnung |
PCT/DE2005/001177 WO2006005308A1 (fr) | 2004-07-15 | 2005-07-05 | Systeme de garniture d'etancheite et procede de production d'un corps d'etancheite pour un systeme de garniture d'etancheite |
Publications (1)
Publication Number | Publication Date |
---|---|
US20080258404A1 true US20080258404A1 (en) | 2008-10-23 |
Family
ID=35094183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/632,332 Abandoned US20080258404A1 (en) | 2004-07-15 | 2005-07-05 | Seal Arrangement and Method for Manufacturing a Sealing Body for a Seal Arrangement |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080258404A1 (fr) |
EP (1) | EP1766194A1 (fr) |
DE (1) | DE102004034312A1 (fr) |
WO (1) | WO2006005308A1 (fr) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090072487A1 (en) * | 2007-09-18 | 2009-03-19 | Honeywell International, Inc. | Notched tooth labyrinth seals and methods of manufacture |
US20100259013A1 (en) * | 2009-04-09 | 2010-10-14 | Rolls-Royce Deutschland Ltd & Co Kg | Abradable labyrinth seal for a fluid-flow machine |
RU2498879C1 (ru) * | 2012-08-01 | 2013-11-20 | Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" | Составной сегмент прирабатываемого уплотнения турбины |
US20140105725A1 (en) * | 2012-10-17 | 2014-04-17 | MTU Aero Engines AG | Fish mouth seal carrier |
WO2015084441A3 (fr) * | 2013-08-30 | 2015-07-30 | United Technologies Corporation | Joint d'étanchéité coulissant |
US20160076454A1 (en) * | 2014-09-16 | 2016-03-17 | Alstom Technology Ltd | Sealing arrangement at the interface between a combustor and a turbine of a gas turbine and gas turbine with such a sealing arrangement |
US20160215646A1 (en) * | 2013-09-06 | 2016-07-28 | General Electric Company | Gas turbine laminate seal assembly comprising first and second honeycomb layer and a perforated intermediate seal plate in-between |
US10240473B2 (en) | 2013-08-30 | 2019-03-26 | United Technologies Corporation | Bifurcated sliding seal |
US20190186282A1 (en) * | 2016-08-25 | 2019-06-20 | Safran Aircraft Engines | Assembly forming a labyrinth seal for a turbomachine comprising an abradable material and inclined fins |
US10369630B2 (en) * | 2017-02-24 | 2019-08-06 | General Electric Company | Polyhedral-sealed article and method for forming polyhedral-sealed article |
US11674396B2 (en) | 2021-07-30 | 2023-06-13 | General Electric Company | Cooling air delivery assembly |
US11674405B2 (en) | 2021-08-30 | 2023-06-13 | General Electric Company | Abradable insert with lattice structure |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102007004743A1 (de) | 2007-01-31 | 2008-08-07 | Mtu Aero Engines Gmbh | Dichtungsanordnung |
DE102007047739B4 (de) * | 2007-10-05 | 2014-12-11 | Rolls-Royce Deutschland Ltd & Co Kg | Gasturbinenverdichter mit Anlaufschicht |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4566700A (en) * | 1982-08-09 | 1986-01-28 | United Technologies Corporation | Abrasive/abradable gas path seal system |
US5314304A (en) * | 1991-08-15 | 1994-05-24 | The United States Of America As Represented By The Secretary Of The Air Force | Abradeable labyrinth stator seal |
US5562999A (en) * | 1992-07-07 | 1996-10-08 | Mtu Motoren-Und Turbinen-Union Muenchen Gmbh | Component made of an intermetallic compound with an aluminum diffusion coating |
US6251494B1 (en) * | 1998-06-24 | 2001-06-26 | Rolls-Royce Deutschland Ltd & Co Kg | Honeycomb structure seal for a gas turbine and method of making same |
US6610416B2 (en) * | 2001-04-26 | 2003-08-26 | General Electric Company | Material treatment for reduced cutting energy and improved temperature capability of honeycomb seals |
US20030207142A1 (en) * | 2002-05-03 | 2003-11-06 | Honeywell International, Inc | Use of powder metal sintering/diffusion bonding to enable applying silicon carbide or rhenium alloys to face seal rotors |
US6844392B2 (en) * | 2000-08-29 | 2005-01-18 | Andrew W. Suman | Abradable dry powder coatings, methods for making and coating, and coated articles therefrom |
US20060131815A1 (en) * | 2002-12-02 | 2006-06-22 | Reinhold Meier | Honeycomb seal |
US7294361B2 (en) * | 2001-01-11 | 2007-11-13 | Mtu Aero Engines Gmbh | Method and device for gas phase diffusion coating of metal components |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4897315A (en) * | 1985-10-15 | 1990-01-30 | United Technologies Corporation | Yttrium enriched aluminide coating for superalloys |
DE3742944C1 (de) * | 1987-12-18 | 1988-10-27 | Mtu Muenchen Gmbh | Oxidationsschutzschicht |
DE4123595A1 (de) * | 1991-07-17 | 1993-01-21 | Stefan Prof Dipl Ing D Polonyi | Stahlbeton-platte, insbesondere quadratische stahlbeton-platte |
AT5837U1 (de) * | 2002-04-17 | 2002-12-27 | Plansee Tizit Ag | Hartmetallbauteil mit gradiertem aufbau |
DE10225532C1 (de) * | 2002-06-10 | 2003-12-04 | Mtu Aero Engines Gmbh | Schichtsystem für die Rotor-/Statordichtung einer Strömungsmaschine |
-
2004
- 2004-07-15 DE DE102004034312A patent/DE102004034312A1/de not_active Withdrawn
-
2005
- 2005-07-05 WO PCT/DE2005/001177 patent/WO2006005308A1/fr active Application Filing
- 2005-07-05 EP EP05763723A patent/EP1766194A1/fr not_active Withdrawn
- 2005-07-05 US US11/632,332 patent/US20080258404A1/en not_active Abandoned
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4566700A (en) * | 1982-08-09 | 1986-01-28 | United Technologies Corporation | Abrasive/abradable gas path seal system |
US5314304A (en) * | 1991-08-15 | 1994-05-24 | The United States Of America As Represented By The Secretary Of The Air Force | Abradeable labyrinth stator seal |
US5562999A (en) * | 1992-07-07 | 1996-10-08 | Mtu Motoren-Und Turbinen-Union Muenchen Gmbh | Component made of an intermetallic compound with an aluminum diffusion coating |
US6251494B1 (en) * | 1998-06-24 | 2001-06-26 | Rolls-Royce Deutschland Ltd & Co Kg | Honeycomb structure seal for a gas turbine and method of making same |
US6844392B2 (en) * | 2000-08-29 | 2005-01-18 | Andrew W. Suman | Abradable dry powder coatings, methods for making and coating, and coated articles therefrom |
US7294361B2 (en) * | 2001-01-11 | 2007-11-13 | Mtu Aero Engines Gmbh | Method and device for gas phase diffusion coating of metal components |
US6610416B2 (en) * | 2001-04-26 | 2003-08-26 | General Electric Company | Material treatment for reduced cutting energy and improved temperature capability of honeycomb seals |
US20030207142A1 (en) * | 2002-05-03 | 2003-11-06 | Honeywell International, Inc | Use of powder metal sintering/diffusion bonding to enable applying silicon carbide or rhenium alloys to face seal rotors |
US20060131815A1 (en) * | 2002-12-02 | 2006-06-22 | Reinhold Meier | Honeycomb seal |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090072487A1 (en) * | 2007-09-18 | 2009-03-19 | Honeywell International, Inc. | Notched tooth labyrinth seals and methods of manufacture |
US20100259013A1 (en) * | 2009-04-09 | 2010-10-14 | Rolls-Royce Deutschland Ltd & Co Kg | Abradable labyrinth seal for a fluid-flow machine |
RU2498879C1 (ru) * | 2012-08-01 | 2013-11-20 | Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" | Составной сегмент прирабатываемого уплотнения турбины |
US9856736B2 (en) * | 2012-10-17 | 2018-01-02 | MTU Aero Engines AG | Fish mouth seal carrier |
US20140105725A1 (en) * | 2012-10-17 | 2014-04-17 | MTU Aero Engines AG | Fish mouth seal carrier |
WO2015084441A3 (fr) * | 2013-08-30 | 2015-07-30 | United Technologies Corporation | Joint d'étanchéité coulissant |
EP3039316A4 (fr) * | 2013-08-30 | 2017-03-29 | United Technologies Corporation | Joint d'étanchéité coulissant |
US10107123B2 (en) | 2013-08-30 | 2018-10-23 | United Technologies Corporation | Sliding seal |
US10240473B2 (en) | 2013-08-30 | 2019-03-26 | United Technologies Corporation | Bifurcated sliding seal |
US20190107000A1 (en) * | 2013-08-30 | 2019-04-11 | United Technologies Corporation | Sliding seal |
US11125095B2 (en) * | 2013-08-30 | 2021-09-21 | Raytheon Technologies Corporation | Sliding seal |
US20160215646A1 (en) * | 2013-09-06 | 2016-07-28 | General Electric Company | Gas turbine laminate seal assembly comprising first and second honeycomb layer and a perforated intermediate seal plate in-between |
US10393025B2 (en) * | 2014-09-16 | 2019-08-27 | Ansaldo Energia Switzerland AG | Sealing arrangement at the interface between a combustor and a turbine of a gas turbine and gas turbine with such a sealing arrangement |
US20160076454A1 (en) * | 2014-09-16 | 2016-03-17 | Alstom Technology Ltd | Sealing arrangement at the interface between a combustor and a turbine of a gas turbine and gas turbine with such a sealing arrangement |
US20190186282A1 (en) * | 2016-08-25 | 2019-06-20 | Safran Aircraft Engines | Assembly forming a labyrinth seal for a turbomachine comprising an abradable material and inclined fins |
US10975716B2 (en) * | 2016-08-25 | 2021-04-13 | Safran Aircraft Engines | Assembly forming a labyrinth seal for a turbomachine comprising an abradable material and inclined fins |
US10369630B2 (en) * | 2017-02-24 | 2019-08-06 | General Electric Company | Polyhedral-sealed article and method for forming polyhedral-sealed article |
US11674396B2 (en) | 2021-07-30 | 2023-06-13 | General Electric Company | Cooling air delivery assembly |
US11674405B2 (en) | 2021-08-30 | 2023-06-13 | General Electric Company | Abradable insert with lattice structure |
Also Published As
Publication number | Publication date |
---|---|
WO2006005308A1 (fr) | 2006-01-19 |
EP1766194A1 (fr) | 2007-03-28 |
DE102004034312A1 (de) | 2006-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080258404A1 (en) | Seal Arrangement and Method for Manufacturing a Sealing Body for a Seal Arrangement | |
RU2615088C2 (ru) | Уплотнение, уплотнение турбинного двигателя и способ изготовления уплотнения | |
EP1229252B1 (fr) | Revêtement abradable et procédé de fabrication | |
US6610416B2 (en) | Material treatment for reduced cutting energy and improved temperature capability of honeycomb seals | |
EP1801472B1 (fr) | Dispositif d'étanchéité | |
US20240026120A1 (en) | Wear resistant coating, method of manufacture thereof and articles comprising the same | |
US20100150730A1 (en) | Component having an abrasive layer and a method of applying an abrasive layer on a component | |
EP2141328A1 (fr) | Système d'étanchéité entre un segment de virole et une extrémité d'aube de rotor et procédé de manufacture d'un tel segment | |
US20090060724A1 (en) | Methods and apparatus for fabricating gas turbine engines | |
US20080263865A1 (en) | Method for the Production of an Armor Plating for a Blade Tip | |
US20190048454A1 (en) | Abradable Seal Composition for Turbomachine Compressor | |
US20150118060A1 (en) | Turbine engine blades, related articles, and methods | |
US11028721B2 (en) | Coating to improve oxidation and corrosion resistance of abrasive tip system | |
US11555419B2 (en) | Cost effective manufacturing method for GSAC incorporating a stamped preform | |
US20200024971A1 (en) | Coating to improve oxidation and corrosion resistance of abrasive tip system | |
US6783642B2 (en) | Method of making labyrinth seal lips for the moving parts of turbomachines | |
US10287989B2 (en) | Seal support of titanium aluminide for a turbomachine | |
GB2475850A (en) | An Abrasive Layer and a Method Of Applying an Abrasive Layer on a Turbomachine Component | |
US12044142B2 (en) | Gas turbine blade | |
KR20230125082A (ko) | 특히 가스 터빈 블레이드를 위한 연마 코팅으로서, 고온 능력을 갖는 예비 소결된 예비 성형품 | |
JP2023113025A (ja) | シール部材、ガスタービン、シール部材の交換方法、及びシール部材の製造方法 | |
WO2020068114A1 (fr) | Joint d'étanchéité annulaire formé par un corps rhomboïde à base de céramique, pour turbine à gaz |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MTU AERO ENGINES GMBH, GERMAN DEMOCRATIC REPUBLIC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PILLHOEFER, HORST;REEL/FRAME:020221/0810 Effective date: 20070213 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |